Show simple item record

dc.contributor.advisorCastañeda Aphan, Benjamín
dc.contributor.authorDíaz Rojas, Kristians Edgardoes_ES
dc.date.accessioned2013-12-04T21:31:05Zes_ES
dc.date.available2013-12-04T21:31:05Zes_ES
dc.date.created2013es_ES
dc.date.issued2013-12-04es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/5008
dc.description.abstractUnderstanding the spatial distribution of prostate cancer and how it changes according to prostate specific antigen (PSA) values, Gleason score, and other clinical parameters may help comprehend the disease and increase the overall success rate of biopsies. This work aims to build 3D spatial distributions of prostate cancer and examine the extent and location of cancer as a function of independent clinical parameters. The border of the gland and cancerous regions from whole-mount histopathological images are used to reconstruct 3D models showing the localization of tumor. This process utilizes color segmentation and interpolation based on mathematical morphological distance. 58 glands are deformed into one prostate atlas using a combination of rigid, a ne, and b-spline deformable registration techniques. Spatial distribution is developed by counting the number of occurrences in a given position in 3D space from each registered prostate cancer. Finally a di erence between proportions is used to compare di erent spatial distributions. Results show that prostate cancer has a significant di erence (SD) in the right zone of the prostate between populations with PSA greater and less than 5 ng=ml. Age does not have any impact in the spatial distribution of the disease. Positive and negative capsule-penetrated cases show a SD in the right posterior zone. There is SD in almost all the glands between cases with tumors larger and smaller than 10% of the whole prostate. A larger database is needed to improve the statistical validity of the test. Finally, information from whole-mount histopathological images could provide better insight into prostate cancer.es_ES
dc.description.uriTesises_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/*
dc.subjectProcesamiento de señales e imágenes digitaleses_ES
dc.subjectReconocimiento de imágeneses_ES
dc.subjectCánceres_ES
dc.titleDesarrollo y comparación de diversos mapas de probabilidades en 3D del cáncer de próstata a partir de imágenes de histologíaes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMaestro en Procesamiento de señales e imágenes digitaleses_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.disciplineProcesamiento de señales e imágenes digitaleses_ES
renati.advisor.dni10791304
renati.discipline613077es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.05es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess