dc.contributor.advisor | Palomino Tofflinger, Jan Amaru | |
dc.contributor.author | Nuñez Rishmawi, David Elias | |
dc.date.accessioned | 2024-01-23T20:47:36Z | |
dc.date.available | 2024-01-23T20:47:36Z | |
dc.date.created | 2023 | |
dc.date.issued | 2024-01-23 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/26906 | |
dc.description.abstract | En el año 2020 se produjeron un poco más de 50 mil millones de toneladas de CO2eq a través de las
diferentes industrias. 12.2 mil millones de estas fueron producto de diversos procesos de generación
eléctrica. Es decir, 24.14% de las emisiones de CO2 equivalente en el mundo son producto de la
generación de la energía eléctrica. En vista de esto, uno de los avances más importantes para el control
de emisiones consiste en el uso de energías renovables, siendo la energía solar unos de sus principales
bastiones. En la actualidad los paneles monofaciales son los más comunes en la industria fotovoltaica.
Sin embargo, según el informe de 2023 de la International Technology Roadmap for Photovoltaic
(ITRPV), la participación de mercado de los Módulos Fotovoltaicos Bifaciales (BF) en 2023 es de
aproximadamente el 35% y se espera que aumente a 70% para el año 2033. Además, los módulos
fotovoltaicos bifaciales han abierto nuevas posibilidades para instalaciones en posiciones verticales
orientadas Este-Oeste y mejorando el albedo a través de reflectores. Esta última configuración es de
particular interés para el campo emergente de agrivoltaics. Hay poca investigación publicada sobre el
rendimiento energético de módulos bifaciales en sitios de baja latitud, y todavía no se ha publicado nada
para Lima, Perú. Este trabajo busca enmendar esta falta de conocimiento, buscando optimizar un arreglo
BF vertical (VBF) que apunta Este-Oeste en lugar de la convención usual de módulos BF inclinados
hacia el Norte en el hemisferio sur. Agregar reflectores fijos adjuntos a ambos lados del arreglo resultó
en mayores irradiancias recibidas por un módulo fotovoltaico y su posterior conversión energética. Se
utilizó el software de simulación óptica Tonatiuh y bifacial_radiance para estimar las ganancias de
irradiancia a través de los reflectores para diferentes configuraciones. Luego, en el trabajo experimental
subsiguiente, se utilizaron mediciones de reflectancia de diferentes materiales en un espectrofotómetro
para diseñar los mejores reflectores posibles. Una vez hecho esto, se utilizó una disposición que contenía
un VBF, junto con dos piranómetros adyacentes, para tomar mediciones de irradiancia recibida y
energía generada a través de curvas I-V en un día de control sin reflectores. Posteriormente, se
implementaron dos reflectores de aluminio a cada lado de la disposición para contrastar estas
mediciones con los resultados del control. Este proceso se llevó a cabo analizando las ganancias de
irradiancia y energía a través de los reflectores para días nublados y soleados típicos, con la finalidad
de averiguar si había una diferencia significativa en la mejora de la producción de energía entre estos
días. Los resultados indican que, después de ajustar por la variabilidad del GHI y comparado con los
días de control sin los reflectores, los piranómetros instalados percibieron un promedio de 59% más
irradiancia en días soleados y 32% más en días nublados. Asimismo, utilizando las Curvas I-V del
módulo, se pudo observar una mejora considerable de un promedio de 39% mayor entrega de máxima
potencia para días soleados y 21% en días nublados. | es_ES |
dc.description.abstract | In the year 2020, just over 50 billion tons of CO2eq were produced across various industries. 12.2
billion of these were the result of various electrical generation processes. This means that 24.14% of
the world’s equivalent CO2 emissions are the result of the generation of electrical energy. In light of
this, one of the most important advances for emission control is the use of renewable energies, with
solar energy being one of its main strongholds. Currently, monofacial panels are the most common in
the photovoltaic industry. However, according to the 2023 report by the International Technology
Roadmap for Photovoltaic (ITRPV), the market share of Bifacial (BF) PV Modules in 2023 is about
35% and is expected to increase to 70% by 2033. Additionally, bifacial PV modules have opened new
possibilities for installations in vertical positions facing East-West and enhancing the albedo through
reflectors. This latter configuration is of particular interest to the emerging field of agrivoltaics. There
is little published research on the energy yield of bifacial modules at low-latitude sites, and nothing has
been published yet for Lima, Peru. This work contributes to amending this lack of knowledge, seeking
to optimize a vertically installed BF (VBF) arrangement that points East-West instead of the usual
convention of inclined BF modules facing North in the southern hemisphere. Adding fixed reflectors
attached to both sides of the arrangement yielded higher irradiances received by a photovoltaic module
and its subsequent power conversion. Optical simulation software Tonatiuh and bifacial_radiance were
used to estimate the irradiance gains through the reflectors for different configurations. In the
subsequent experimental work, reflectance measurements of different materials in a spectrophotometer
were used to design the best possible reflectors. Once this was done, an arrangement containing a VBF
was used, along with two adjacent pyranometers, to take measurements of received irradiance and
generated power through I-V curves on a control day without reflectors. Subsequently, two aluminum
reflectors were implemented on each side of the arrangement to contrast these measurements with the
control results. This process was carried out by analyzing the irradiance and power gains through the
reflectors for typical cloudy and sunny days to find out if there was a significant difference in the
improvement of energy production between these days. The results indicate that, after adjusting for
GHI variability and compared to the control days without the reflectors, the installed pyranometers
perceived an average of 59% more irradiance on sunny days and 32% more on cloudy days. Likewise,
using the I-V Curves of the module, a considerable improvement of an average of 39% greater
maximum power delivery for sunny days and 21% on cloudy days could be observed. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/pe/ | * |
dc.subject | Sistemas de energía fotovoltaica | es_ES |
dc.subject | Energía solar--Producción | es_ES |
dc.subject | Aluminio | es_ES |
dc.title | Mejora en la producción energética de un módulo fotovoltaico bifacial vertical mediante la implementación de reflectores fijos de aluminio | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
thesis.degree.name | Maestro en Física Aplicada | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado. | es_ES |
thesis.degree.discipline | Física Aplicada | es_ES |
renati.advisor.dni | 48866095 | |
renati.advisor.orcid | https://orcid.org/0000-0002-2076-4046 | es_ES |
renati.author.dni | 73686250 | |
renati.discipline | 533027 | es_ES |
renati.juror | Gonzales Niño, Franco Alejandro | es_ES |
renati.juror | Palomino Tofflinger, Jan Amaru | es_ES |
renati.juror | Angulo Abanto, Jose Ruben | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_ES |
dc.publisher.country | PE | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.03.00 | es_ES |