Show simple item record

dc.contributor.advisorVillanueva Talavera, Edwin Rafael
dc.contributor.authorCusi Chirapo, Hernán
dc.date.accessioned2020-10-27T20:35:32Z
dc.date.available2020-10-27T20:35:32Z
dc.date.created2020
dc.date.issued2020-10-27es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/17383
dc.description.abstractLa contaminación del aire es hoy en día uno de los mayores problemas en las grandes ciudades. Entender la dinámica de los contaminantes y determinar la calidad de aire en áreas no monitorizadas ha sido el objetivo de varias investigaciones recientes dada su relevancia en la creación de políticas de mitigación. Los enfoques propuestos se dividen principalmente en aquellos que intentan modelar la dinámica de emisión/difusión y en aquellos que intentan predecir la concentración de contaminantes en el espacio y/o tiempo. Comúnmente estos enfoques tienen fines diferentes, los primeros se enfocan en entender los mecanismos que expliquen la distribución histórica de contaminantes, mientras que los segundos se enfocan en crear modelos predictivos, sin importar si dichos modelos representan las causalidades de los procesos subyacentes. En la presente investigación se propone la aplicación de modelos de redes Bayesianas, las cuales pueden tanto capturar posibles causalidades del proceso de formación y difusión de contaminación, así como servir de modelos algorítmicos para inferir en el espacio y en el tiempo los parámetros de calidad del aire. Se aplicó la técnica de bootstraping junto con técnicas de aprendizaje estructural para aprender diversos modelos bayesianos e integrarlos en un modelo robusto en el cual se puede discriminar relaciones fuertes entre las variables de calidad del aire de posibles relaciones espurias. En un primer experimento se creó modelos para predecir un determinado tipo de contaminante en un punto en el espacio, dada las mediciones de una red de estaciones del mismo tipo de contaminante. En un segundo experimento se adicionó varios tipos de contaminantes para hacer dicha predicción. En un tercer experimento se aprendió modelos adicionando dos variables metereológicas comúnmente usadas para el modelado de calidad del aire: velocidad y dirección del viento. En un cuarto experimento se aprendió modelos suministrando conocimiento a priori aprendido en el primer experimento a fin de reducir costo computacional de aprendizaje e inferencia. En total, se aprendieron 504 modelos, identificándose 6 modelos en el ultimo experimento con capacidades predictivas significativas a costos computacionales razonables. Como ventaja del modelado se pudo identificar las distancias de influencia de la red de estaciones que incide directamente en la predicción espacial, ayudando así a entender la dinámica de difusión de los diferentes tipos de contaminantes.es_ES
dc.description.uriTrabajo de investigaciónes_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.subjectAire--Contaminaciónes_ES
dc.subjectEstadística bayesianaes_ES
dc.subjectAlgoritmos--Aplicacioneses_ES
dc.titleAplicación de redes bayesianas para modelamiento y predicción de calidad del aire en áreas urbanaes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMaestro en Informática con mención en Ciencias de la Computaciónes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.disciplineInformática con mención en Ciencias de la Computaciónes_ES
renati.advisor.dni29714308
renati.advisor.orcidhttps://orcid.org/0000-0002-6540-1230es_ES
renati.discipline611087es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#trabajoDeInvestigaciones_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record