dc.contributor.advisor | Olivares Poggi, Cesar Augusto | |
dc.contributor.author | Huiza Pereyra, Eric Raphael | |
dc.date.accessioned | 2020-09-01T00:12:05Z | |
dc.date.available | 2020-09-01T00:12:05Z | |
dc.date.created | 2020 | |
dc.date.issued | 2020-08-31 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/16906 | |
dc.description.abstract | People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall. | es_ES |
dc.description.uri | Trabajo de investigación | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/pe/ | * |
dc.subject | Redes neuronales (Computación) | es_ES |
dc.subject | Algoritmos computacionales | es_ES |
dc.subject | Reconocimiento óptico de patrones | es_ES |
dc.title | Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
thesis.degree.name | Maestro en Informática | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado | es_ES |
thesis.degree.discipline | Informática | es_ES |
renati.advisor.dni | 09342040 | |
renati.discipline | 611077 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | http://purl.org/pe-repo/renati/type#trabajoDeInvestigacion | es_ES |
dc.publisher.country | PE | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.02.00 | es_ES |