Show simple item record

dc.contributor.advisorBeltrán Castañón, César Armando
dc.contributor.authorMaldonado Cadenillas, Rodrigo Ricardoes_ES
dc.date.accessioned2019-05-24T02:45:09Zes_ES
dc.date.available2019-05-24T02:45:09Zes_ES
dc.date.created2019es_ES
dc.date.issued2019-05-23es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/14254
dc.description.abstractEl cáncer al pulmón se ha convertido en una de las enfermedades con mayor incidencia a nivel mundial. Sin embargo, el análisis preventivo y detección de nódulos cancerígenos generalmente se realiza de forma manual por los radiólogos, lo cual ralentiza el proceso y genera posibles errores humanos. De esta manera, se han realizado diversas investigaciones sobre este problema utilizando Deep Learning como alternativa de solución para el análisis automático de tomografías. En este trabajo, se propone una aplicación y configuración de un modelo U- net, con bloques residuales y con regiones más rápidas para la detección de nódulos en tomografías computarizadas 3D. Los resultados obtenidos arrojan un FROC del 78 %, lo cual muestra que nuestra propuesta esta´ en el camino correcto, considerando las limitaciones de hardware en la que se ejecutó.es_ES
dc.description.uriTesises_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.subjectProcesamiento de imágenes digitaleses_ES
dc.subjectDiagnóstico por imágeneses_ES
dc.subjectCáncer--Imágeneses_ES
dc.subjectTomografíaes_ES
dc.titleModelo convolucional para la detección de nódulos pulmonares a partir de tomografías 3Des_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMaestro en Informática con mención en Ciencias de la Computaciónes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.disciplineInformática con mención en Ciencias de la Computaciónes_ES
renati.advisor.dni29561260
renati.advisor.orcidhttps://orcid.org/0000-0002-0173-4140es_ES
renati.discipline611087es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record