Show simple item record

dc.contributor.authorPatiño Antonioli, Miguel Ángeles_ES
dc.date.accessioned2011-12-06T20:35:51Zes_ES
dc.date.available2011-12-06T20:35:51Zes_ES
dc.date.created2011es_ES
dc.date.issued2011-12-06es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/1112
dc.description.abstractDebido al ambiente competitivo en las industrias peruanas del sector consumo masivo, es de gran interés poder determinar las preferencias de los consumidores para poder estimar de manera más eficiente sus necesidades. Es en este punto importante el uso de las Herramientas Estocásticas para el desarrollo de predicciones a largo plazo, evaluar posibles estados de movimiento entre marcas y determinar factores claves en el proceso de elección del consumidor. Este análisis se hace posible mediante el uso de modelos Estocásticos, pues se basan en Probabilidades, útiles al estimar las decisiones de los potenciales clientes. Este documento tiene como objetivo desarrollar a fondo y presentar los modelos ocultos markovianos, con la finalidad de orientar el análisis hacia los Procesos Estocásticos de tiempo discreto, que son las Cadenas de Markov, con la evidencia del supuesto de la optimización del análisis a través del reconocimiento de Estados Ocultos, difíciles de definir y que en los modelos markovianos ocultos, son el pilar para obtener los resultados deseados. Se tocarán temas relacionados y se explicarán los conceptos necesarios para poder entender las Cadenas Ocultas de Markov y su aplicación directa al sector consumo masivo. Finalmente, se demostrará su directa aplicación al tema de preferencias y los aportes para futuros estudios relacionados. En cuanto a la aplicación al tema de preferencias de los consumidores, especialmente en el mercado cervecero, cada vez cambiante, se eligieron las principales dos variables críticas que afectan de manera determinante y que además alimentan la situación de incertidumbre por la que una modelación matemática - estocástica es una de las soluciones más convenientes. Estas dos variables son: el Volumen de Ventas de cada empresa (de manera estimada) y las Transiciones entre marcas representativas por empresa. Para esas dos variables entonces, nuestro análisis tratará de poner a prueba al Modelamiento Clásico de Markov contra el Modelamiento Oculto.es_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Perú*
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectProcesos de Markoves_ES
dc.subjectIndustria cerveceraes_ES
dc.titleAplicación de las cadenas ocultas de Markov para la preferencia de los consumidores en el mercado cerveceroes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
thesis.degree.nameIngeniero Industriales_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.disciplineIngeniería Industriales_ES
renati.discipline722026es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Perú
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Perú