Caracterización espacio temporal de la ecofisiología de la "apodanthera biflora" utilizando minería de patrones secuenciales
Abstract
En los últimos años, los investigadores del Laboratorio de Ecología Evolutiva de la Universidad Peruana Cayetano Heredia (UPCH) han venido estudiando especies nativas del Bosque Seco Ecuatorial del norte del Perú. Este es el caso de la Apodanthera Biflora, raíz comestible de potencial uso alimentario e industrial. Con la finalidad de desarrollar planes de sostenibilidad y preservación de la especie, los expertos requieren realizar estudios más extensos sobre los factores que afectan las características nutricionales e industriales de la especie. Para determinar estos factores se deben descubrir correlaciones temporales a partir de fuentes de datos heterogéneas. Debido a la dificultad de explotar este tipo de datos no estandarizados ni agrupados, los métodos estadísticos tradicionales no son suficientes, por lo que se requiere herramientas permitan al experto identificar qué correlaciones temporales representan patrones frecuentes relevantes.
El presente trabajo evalúa el uso de las técnicas de minería de patrones secuenciales y visualización espacial, con el objetivo de determinar si su aplicación facilita la obtención de patrones frecuentes relevantes a partir de distintas fuentes de datos heterogéneos relacionados a la Apodanthera Biflora. Para lograr este objetivo, se utiliza una metodología basada en el Descubrimiento de Conocimiento a partir de Bases de Datos (KDD por sus siglas en inglés), el cuál define fases para la selección, pre procesamiento, transformación, minería y evaluación (visualización) de los datos.
Los resultados obtenidos demostraron que la técnica de minería de patrones secuenciales PrefixSpan y la visualización espacial, utilizando librerías de Google Maps API y D3 Js, permitieron a los expertos la obtención de patrones frecuentes relevantes. Así mismo, la técnica de transformación GIS para datos geográficos, y la técnica de discretización por entropía y frecuencia, han permitido el pre procesamiento de datos heterogéneos. A partir de las correlaciones descubiertas, los expertos identificaron patrones frecuentes relevantes, en las localidades de Chulucanas, Cerrato, El Morante, P. Mora y El Porvenir; principalmente relacionados a las características del suelo, precipitaciones y composición química de la raíz.
Temas
Minería de datos
Procesamiento secuencial (Computación)
Ecofisiología
Procesamiento secuencial (Computación)
Ecofisiología
Para optar el título de
Maestro en Informática con mención en Ciencias de la Computación