Morphological and tribological evaluation of the use of Ti2AlC and Ti3AlC2MAX Phases as a surgical AISI 304 stainless steel coating for a future hip replacement femoral head coating
Abstract
La cadera es una de las articulaciones esféricas más conocidas, y está formada por la cabeza
del fémur asentada en la pelvis (acetábulo). En las últimas dos décadas, el reemplazo total
de cadera (RTC o THR en inglés) ha sido una intervención quirúrgica de gran éxito. Lamentablemente,
el Perú no cuenta con un registro nacional como el de la Academia Americana de
Cirujanos Ortopédicos. Sin embargo, en base a los registros de los 5 años anteriores al 2020, se
reporta un ingreso anual promedio de entre 20-70 pacientes por hospital de nivel II-2 o III-1. La
revisión del implante de la articulación de la cadera indica el fin de la cirugía de sustitución con
éxito y anuncia una reaparición de los síntomas que, con frecuencia, superan con creces los de
la afección inicial. Los principales motivos registrados fueron: infección e inflamación (20,1%),
inestabilidad (18,3%), aflojamiento aséptico (15,9%), complicaciones mecánicas (14,9%), entre
otras.
En este contexto, la biotribología estudia las interacciones de las superficies en contacto bajo
movimiento relativo en sistemas biológicos. Para reducir la pérdida de material, se puede aplicar
una capa de lubricante que evite el contacto directo. Debido al aumento de pacientes menores
de 30 años, que requieren implantes que no limiten sus actividades y duren más de 10 años,
se sigue investigando en nuevos recubrimientos de implantes metálicos o cerámicos seguros
bajo las evaluaciones de comportamiento tribológico y corrosivo para reducir la posibilidad de
una revisión a corto plazo que retrase la rehabilitación del paciente. En este contexto, esta tesis
presenta una alternativa para los lubricantes sólidos como recubrimientos en la cabeza femoral
de los implantes de cadera.
Esta tesis tiene dos objetivos principales. En primer lugar, es una revisión de los avances actuales
en la tecnología de recubrimientos para mejoras tribológicas en materiales de prótesis de
cadera. Para ello, se revisan los resultados obtenidos en diferentes tribómetros. En segundo lugar,
se presenta el primer intento con éxito de crear un recubrimiento de Ti2AlC y Ti3AlC2 sobre
un sustrato de acero inoxidable. La caracterización estructural y morfológica de estos recubrimientos
se realizó mediante técnicas como la microscopía electrónica de barrido, la difracción de rayos X y la espectroscopia Raman. Los resultados evidencian una formación significativa
de fases MAX sobre un sustrato de acero inoxidable AISI 304 con una barrera de difusión de
SixNy.
Estas muestras se probaron posteriormente con un tribómetro "bola sobre plano"para estudiar
si el coeficiente de fricción (COF) se veía afectado. Las 6 configuraciones trabajadas
fueron una combinación de 3 fuerzas (0.16 N, 0.8 N y 1.6 N) con 2 velocidades (2mms−1 y
10mms−1) contra una bola de 4mms de diámetro de AISI 52100 durante 15 minutos. Los resultados
fueron prometedores, ya que en todas las condiciones probadas, el Ti3AlC2 tenía un
COF en torno a 0,13. El revestimiento de Ti2AlC sobre AISI 304 presentaba valores similares al
AISI 304 sin revestimiento a altas fuerzas (COF entre 0.7 y 0.75), pero al aumentar la velocidad
y, por tanto, el recorrido, el Ti2AlC tenía un COF más estable en torno a 0,72 para todas las
fuerzas. En general, el COF se vió reducido a largo plazo en las muestras con recubrimientos
de Ti2AlC y Ti3AlC2, en comparación al AISI 304 sin recubrimiento.
Para la caracterización de las huellas dejadas tras la prueba tribológica, se utilizó SEM-EDX
para un escaneo lineal de la composición de una sección transversal de huellas y un análisis
puntual de puntos alrededor del borde de la huella (donde la bola cambia de dirección). También
se utilizó la espectroscopia Raman para caracterizar los subproductos alrededor de las pistas
con mayores fuerzas aplicadas (1.6 N). El Ti2AlC tenía marcas visibles y un alto desgaste del
revestimiento, con la única excepción de la pista a 2mms−1 y 0,16 N. El Ti3AlC2 tenía las
marcas menos visibles, y solo a baja velocidad y alta fuerza (2mms−1 y 1,6 N) había desgaste
del revestimiento. En general, la mayoría de los restos en los resultados del análisis elemental
provenían de la bola homóloga de AISI 52100.
En conclusión, se obtuvieron resultados prometedores en la reducción de los valores de COF
de los recubrimientos de Ti2AlC y Ti3AlC2. Especialmente de Ti3AlC2, ya que tuvo la menor
formación de partículas y desgaste de recubrimiento con un COF inferior a los materiales comerciales
de prótesis de cadera incluso sin lubricación. En el trabajo futuro, el uso de Ti2AlC y
Ti3AlC2 recubrimientos debe ser seguido por el estudio de estos recubrimientos biocompatibilidad
comportamiento y osteointegración. Para verificar su uso en aplicaciones clínicas, deberá
realizarse un análisis sobre un implante de cadera comercial y un ensayo de tribocorrosión. The hip is one of the most known ball-and-socket joint is formed by the head of the femur,
seated in the pelvis (acetabulum). In the last couple of decades, total hip replacement
(THR) has been a highly successful surgical intervention. Unfortunaly, Peru does not have a
national registry like the American Academy of Orthopaedic Surgeons. However, based on record
from the 5 years prior to 2020, in average an anual admission of between 20-70 patient
per hospital level II-2 or III-1 are reported. The revision of the hip joint implant indicates the
end of the successful replacement surgery and announces a return to symptoms that frequently
much outweigh those of the initial condition. The main reasons recorded were: infection and inflammation
(20.1%), instability (18.3%), aseptic loosening (15.9%), mechanical complications
(14.9%), among others.
In this context, biotribology studies the interactions of surfaces in contact under relative
motion in biological systems. To reduce material loss, a layer of lubricant might be applied
to prevent direct contact. Due to the increase of patients younger than 30 years, who require
implants that do not limit their activities and last longer than 10 years, research continues on new
safe metallic or ceramic implant coatings under tribological and corrosive behavior evaluations
to reduce the possibility of a short-term revision that sets back the patient rehabilitation. In this
context, this thesis submits an alternative for solid lubricants as coatings on the femoral head of
hip implants.
This thesis has two main purposes. First, it is a revision of the current advances in coating
technology for tribological improvements in hip replacement materials. This is done mostly by
reviewing the results on different tribometers set-ups. Secondly, it presents the first successful
attempt on creating a coating of Ti2AlC and Ti3AlC2 coatings over a stainless steel substrate.
The structural and morphological characterization of these coatings was performed by techniques
like Scanning Electron Microscopy, X-Ray diffraction and Raman spectroscopy. The results
evidence a significant formation of MAX phases over a AISI 304 stainless steel substrate
with a diffusion barrier of SixNy. These samples were subsequently tested by a tribometer ball-on-flat in to find out if the
Coefficient of Friction (COF) was affected. The 6 configurations worked were a combination
of 3 forces (0.16 N, 0.8 N and 1.6 N) with 2 speeds (2mms−1 and 10mms−1) against a 4mm
diameter ball of AISI 52100 for 15 minutes. The results were promising, as in all conditions
tested, Ti3AlC2 had a COF around 0.13. The Ti2AlC coating on AISI 304 had similar values
to uncoated AISI 304 at high forces (COF between 0.7 and 0.75), but as the speed and thus
the stroke increased, the Ti2AlC had a more stable COF around 0.72 for all forces. In general,
the COF was reduced in the long term for the specimens with Ti2AlC and Ti3AlC2 coatings
compared to uncoated AISI 304.
For the characterization of the tracks left after the tribological test, SEM-EDX was used for
a linescan of the composition of a crossection of tracks and point analysis of points around the
border of the track (where the ball changes its direction). Also Raman spectroscpy was used to
characterize the by products around the tracks with higher forces applied (1.6 N). The Ti2AlC
had visible marks and high wear of the coating, with the only exception of the track at 2mms−1
and 0.16 N. The Ti3AlC2 had the least visible marks, and only at low speed and high force
(2mms−1 and 1.6 N) there was wear of the coating. In general, most of the debris in the results
of the elemental analysis came from from the ball counterpart of AISI 52100.
In conclusion, there were promising results on the reduction of COF values from both
Ti2AlC and Ti3AlC2 coatings. Specially of Ti3AlC2, since it had the least particles formation
and coating wear with a COF lower than commercial hip replacement materials even without
lubrication. In the future work, the used of Ti2AlC and Ti3AlC2 coatings must be follow up by
the studied of these coating biocompatibility behavior and osteointegration. To verified is used
in clinical application, an analysis over a commercial hip implant and tribocorrosive test should
be carried out.
Temas
Implantes artificiales
Lubricantes--Prótesis--Mejoramiento
Ingeniería biomédica--Aparatos e instrumentos
Lubricantes--Prótesis--Mejoramiento
Ingeniería biomédica--Aparatos e instrumentos
Para optar el título de
Ingeniero Biomédico
Collections
The following license files are associated with this item: