73 Anexos Anexo I. Medición de las características de salida Una vez que se ha montado el sistema de medición con la configuración recomendada de la sección 2.2.3, se utiliza la siguiente secuencia de programación en Test Script Builder para la obtención de las características de salida para diferentes valores de voltaje de puerta (Vg): --Se reinicia los instrumentos, la conexión TSP-Link,y se limpian los buffers. tsplink.initialize() reset() node[2].reset() state = tsplink.state if state ~= "online" then print("Error:\n-Revisar que los dispositivos tienen diferente numero de nodo") print("-Revisar que todos los dispositivos estan conectados correctamente\n") return end --Se programa el número de puntos de medición num = 51 --############ Configuración (Drenador) SMU 1 ############# smu.source.func = smu.FUNC_DC_VOLTAGE smu.source.ilimit.level = 300e-3 smu.source.autorange = smu.ON smu.measure.func = smu.FUNC_DC_CURRENT smu.measure.autorange = smu.ON smu.measure.terminals = smu.TERMINALS_FRONT --Se programa el rango del barrido del voltaje Vds smu.source.sweeplinear('MOSFET', -1, 1, num, 0.001) --############ configuración (Gate) SMU 2 ############# node[2].smu.source.func = node[2].smu.FUNC_DC_VOLTAGE node[2].smu.source.autorange = node[2].smu.ON node[2].smu.source.ilimit.level = 100e-3 node[2].smu.measure.func = node[2].smu.FUNC_DC_CURRENT 74 node[2].smu.measure.autorange = node[2].smu.ON node[2].smu.measure.terminals = node[2].smu.TERMINALS_FRONT node[2].smu.source.output = node[2].smu.ON readings = {} sourcevalues = {} iteration = 0 steppoints = 4 --Se programan los valores de Vg (En este caso 0.2V, 0.3V, 0.4V y 0.5V) for i = 2, 5 do node[2].smu.source.level = i/10 delay(0.01) trigger.model.initiate() waitcomplete() for j = 1, num do readings[j+iteration*num] = defbuffer1[j] sourcevalues[j+iteration*num] = defbuffer1.sourcevalues[j] end iteration = iteration+1 end node[2].smu.source.output = node[2].smu.OFF if defbuffer1.n == 0 then print("\nNo readings in buffer\n") else for k=1,num do --Se imprimen los valore de Vds Vs Ids para cada valor de Vg aplicado print(string.format("%f\t%f\t\t%f\t%f\t\t%f\t%f\t\t%f\t%f", sourcevalues[k], readings[k], sourcevalues[k+num], readings[k+num], sourcevalues[k+num*2], readings[k+num*2], sourcevalues[k+num*3], readings[k+num*3])) end end Finalmente, se exportan los datos obtenidos al Excel y/o Origin para para su posterior procesamiento y análisis. 75 Anexo II. Medición de las Caracteristicas de transferencia Una vez que se ha montado el sistema de medición en la configuración recomendada de la sección 2.2.3 se utiliza la siguiente secuencia en el programa KickStart para la obtención de las características de transferencia: - Se selecciona el instrumento MODEL 2450:1 (Es importante configurar al SMU 1 como nodo 1 y al SMU 2 como nodo 2 como paso previo). - Se selecciona el tipo de prueba o test en este caso Caracterización I-V. - Se programan los parámetros del SMU 1 que controlan el voltaje Vds que se aplica al transistor como sigue: - Se programan los parámetros del SMU 2 que controlan el voltaje Vg que se aplica al transistor como sigue: Vds Ids 76 - Se ejecuta la prueba. - Se exportan los datos obtenidos en Excel y/o Origin y se guardan para su posterior análisis. Barrido de Vg Vg En estas pestañas se muestran los datos de los parámetros seleccionados en tablas y gráficos respectivamente 77 Anexo III. Especificaciones técnicas del grafeno y los sustratos utilizados 78 79 5. Referencias [1] D. Morens, G. Folkers and A. Fauci, "Emerging infections: a perpetual challenge," The Lancet Infectious Diseases, vol. 8, pp. 710-719, 2008. [2] J. C. Garcia-Monco, "Chapter 100: Tuberculosis," Handbook of Clinical Neurology, vol. 121, pp. 1485-1499, 2014. [3] WHO, "Global tuberculosis report 2014," World Health Organization, France, 2014. [4] F. Tenover, J. Crawford and R. Clin, "The Resurgence of Tuberculosis: Is Your Laboratory Ready?," Journal of clinical microbiology, vol. 31, pp. 767-770, 1993. [5] Z. Zhang, L. Li, F. Luo, P. Cheng, F. Wu, Z. Wu, T. Hou, M. Zhong and J. Xu, "Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosis in spinal tuberculosis specimens by CapitalBio™ DNA microarray: A prospective validation study," BMC Infectius Desease, vol. 12, pp. 303-309, 2012. [6] H. Wang, H. Chen, M. Hupert, P. Chen, P. Datta, T. Pittman, J. Goettert, M. Murphy, D. Williams, F. Barany and S. Soper, "Fully Integrated Thermoplastic Genosensor for the Highly Sensitive Detection and Identification of Multi-Drug Resistant Tuberculosis (MDR-TB)," Angewandte Chemie, vol. 51, pp. 4349-4353, 2012. [7] Y. Pang, G. Liu, Y. Wang, S. Zheng and Y. Zhao, "Combining COLD-PCR and high- resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis," Journal of Microbiological Methods, vol. 93, pp. 32- 36, 2013. [8] K. Jain, "Nanodiagnostics: application of nanotechnology in molecular diagnostics," Expert Review of Molecular Diagnostics, vol. 3, pp. 153-161, 2003. [9] M. Das, G. Sumana, R. Nagarajan and B. Malhotra, "Application of nanostructured ZnO films for electrochemical DNA biosensor," Thin Solid Films, vol. 519, pp. 1196- 1201, 2010. [10] C. Thiruppathiraja, S. Kamatchiammal, P. Adaikkappan, D. Santhosh and M. Alagar, "Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor," Analytical Biochemistry, vol. 417, pp. 73-79, 2011. [11] P. Soo, Y. Horng, K. Chang, J. Wang, P. Hsueh, C. Chuang, C. Lu and H. Lai, "A simple gold nanoparticle probes assay for identification of Mycobacterium 80 tuberculosis and Mycobacterium tuberculosis complex from clinical specimens," Molecular and Cellular Probes, vol. 23, pp. 240-246, 2009. [12] M. Das, C. Dhand, G. Sumana, A. K. Srivastava, N. Vijayan, R. Nagarajan and B. D. Malhotra, "Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection," Applied Physics Letters, vol. 99, p. 143702 (3 pp), 2011. [13] F. Rumiche, B. Castañeda, F. Casado, S. Vallenas and M. Guzmán, "Desarrollo de un Biosensor Nanoestructurado para el Diagnóstico de Tuberculosis," DGI, Lima, 2010. [14] A. Muhammad, "Advances in nanodiagnostic techniques for microbial agents," Biosensors & Bioelectronics, vol. 51, pp. 391-400, 2014. [15] F. Li, Y. Yu, Q. Li, M. Zhou and H. Cui, "A Homogeneous Signal-On Strategy for the Detection of rpoB Genes of Mycobacterium tuberculosis Based on Electrochemiluminescent Graphene Oxide and Ferrocene Quenching," Analytical Chemistry, vol. 86, pp. 1608-1613, 2014. [16] N. Chiu, T. Huang, C. Kuo, W. Lee, M. Hsieh and H. Lai, "Single-layer graphene based SPR biochips for tuberculosis bacillus detection," SPIE Proceedings, vol. 8427, pp. 3M1-3M7, 2012. [17] Y. Ohno, K. Maehashi and K. Matsumoto, "Chemical and biological sensing applications based on graphene field-effect transistors," Biosensors & Bioelectronics, vol. 26, pp. 1727-1730, 2010. [18] P. Zhang, X. Chai, C. Xu and J. Zhou, "Electrochemical biosensor based on modified graphene oxide for tuberculosis diagnosis," in ASIC (ASICON), 2011 IEEE 9th International Conference, Xiamen, 2011. [19] I. Sohn, D. Kim, J. Jung, O. Yoon, N. Tien, T. Trung and T. Lee, "pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors," Biosensors and Bioelectronics, vol. 45, pp. 70-76, 2013. [20] T. Chen, P. Loan, C. Hsu, Y. Lee, T. Wang, K. Wei and L. Li, "Label-free detection of DNA hybridization using transistors based on CVD grown graphene," Biosensors and Bioelectronics, vol. 41, pp. 103-109, 2013. [21] Y. Huang, X. Dong, Y. Liu, L. Li and P. Chen, "Graphene-based biosensors for detection of bacteria and their metabolic activities," Journal of Materials Chemistry, vol. 21, p. 12358–12362, 2011. 81 [22] D. Kim, I. Sohn, J. Jung, O. Yoon, N. Lee and J. Park, "Reduced graphene oxide field- effect transistor for label-free femtomolar protein detection," Biosensors and Bioelectronics, Vols. 621-626, p. 41, 2013. [23] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Ithaca: Cornell University Press, 1960. [24] W. Andreoni, The Physics of Fullerene-Based and Fullerene-Related Materials, 1st ed., Rüschlikon: Springer Netherlands, 2000. [25] R. Saito, G. Dresselhaus and M. Dresselhaus, Physical Properties of Carbon Nanotubes, 1st ed., London: Imperial College Press, 1998. [26] H. Petroski, The Pencil: A History of Design and Circumstance, 1st ed., New York: Knopf, 1992. [27] K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Gregorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004. [28] A. H. Castro Neto, F. Guinea and N. M. R. Peres, "Drawing conclusions of graphene," Physics World, vol. 19, pp. 33-37, 2006. [29] S. Ijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, 1991. [30] M. Dresselhaus, G. Dresselhaus and P. Eklund, Science of Fullerenes and Carbon Nanotubes, 1st ed., San Diego: Academic Press, 1996. [31] J. Robertson, "Growth of Nanotubes for Electronics," Materials Today, vol. 10, pp. 36-43, 2007. [32] T. Odom, J. Huang, P. Kim and C. Lieber, "Estructure and Electronic Properties of Carbon Nanotubes," Journal of Physical Chemistry, vol. 104, pp. 2794-2809, 2000. [33] G. Chen, Y. Guo, N. Karasawa and W. G. III, "Electron-phonon interactions and superconductivity in K3C60," Physical Review B, vol. 48, pp. 13959-13970, 1993. [34] M. Carano, P. Ceroni, T. Ros, K. Kordatos, V. Tomberli, F. Paolucci, M. Prato and S. Roffia, "Electrochemical properties of soluble fullerene derivatives," Solid State Communications, vol. 146, pp. 351-355, 2008. 82 [35] P. Ma, N. Siddiqui, G. Marom and J. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review," Composites Part A, vol. 41, pp. 1345-1367, 2010. [36] T. Ando, "Physics of Graphene Zero-Mode Anomalies and Roles of Symmetry," Progress of Theoretical Physics Supplements, vol. 176, pp. 203-226, 2008. [37] K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, "Two-dimensional gas of massless Dirac fermions in grapheme," Nature, vol. 438, pp. 197-200, 2005. [38] M. Katsnelson, K. Novoselov and A. Geim, "Chiral tunnelling and the Klein paradox in graphene," Natural Physics, vol. 2, pp. 620-625, 2006. [39] A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008. [40] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. Stormer, "Ultrahigh electron mobility in suspended grapheme," Solid State Communications, vol. 146, pp. 351-355, 2008. [41] K. Novoselov, V. Fal´ko, L. Colombo, P. Gellert, M. Schwab and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012. [42] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of grapheme," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009. [43] A. Geim and K. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183- 191, 2007. [44] P. Wallace, "The Band Theory of Graphite," Physical Review, vol. 71, pp. 622-634, 1947. [45] M. Purewal, Y. Zhang and P. Kim, "Unusual transport properties in carbon based nanoscaled materials: nanotubes and grapheme," Physica Status Solidi (B), vol. 243, pp. 3418-3422, 2006. [46] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. First and W. A de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006. 83 [47] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak and A. Geim, "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer," Physical Review Letters, vol. 100, pp. 11-14, 2008. [48] B. Allen, P. Kichambare and A. Star, "Carbon nanotube field-effect-transistor-based biosensors," Advanced Materials, vol. 19, pp. 1439-1451, 2007. [49] M. Curreli, R. Zhang, F. Ishikawa, H. Chang, R. Cote, C. Zhou and M. E. Thompson, "Real-Time, Label-Free Detection of Biological Entities UsingNanowire-Based FETs," IEEE Transactions on Nanotechnology, vol. 7, pp. 651-667 , 2008. [50] S. Ingerbrandt and A. Offenhäuser, "Label-free detection of DNA using field-effect transistors," Physica Status Solidi (a), vol. 203, pp. 3399-3411, 2006. [51] W. Wang, C. Chen, K. Lin, Y. Fang and C. Lieber, "Label-free detection of small- molecule-protein interactions by using nanowires nanosensors," Proceedings of the National Academy of Sciences, vol. 102, pp. 3208-3212, 2005. [52] A. Poghossian, S. Ingerbrandt, M. Abouzar and M. Shöning, "Label-free detection of large macromolecules by using a field-effect based sensor platform: Experiments and possible mechanisms of signal generation," Applied Physics A: Materials Science & Processing, vol. 87, pp. 517-524, 2007. [53] S. Gowtham, R. Scheicher, R. Ahuja, R. Pandey and S. Karna, "Physisorption of nucleobases on grapheme: density-functional calculations," Physical Review B, vol. 76, pp. 1-4 033401, 2007. [54] C. Lin, P. Loan, T. Chen, K. Liu, C. Chen, K. Wei and L. Li, "Label-free electrical detection of DNA hybridization on graphene using hall effect measurements: revisiting the sensing mechanism," Advanced Functional Materials, vol. 23, pp. 2301- 2307, 2013. [55] J. Yun, N. Kim, J. Kim, D. Shin, W. Lee, S. Lee, M. Lieberman and S. Kim, "DNA origami nanopatterning on chemically modified graphene," Angewandte Chemie International Edition, vol. 51, pp. 912-915, 2013. [56] J. Lee, Y. Choi, H. Kim, R. Scheicher and J. Cho, "Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations," The Journal of Physical Chemistry C, vol. 117, pp. 13435-13441, 2013. [57] Y. Ohno, K. Maehashi and K. Matsumoto, "Label-free biosensors based on aptamer- modified grapheme field-effect transistors," Journal of the American Chemical Society, vol. 132, pp. 18012-18013, 2010. 84 [58] N. Green and M. Norton, "Interactions of DNA with grapheme and sensing applications of grapheme field-effect transistor devices: A review," Analytica Chimica Acta, vol. 853, pp. 127-142, 2014. [59] B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang and G. Zhang, "Ultrasensitive Label- Free Detection of PNA_DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor," ACS Nano, vol. 8, pp. 2632-2638, 2014. [60] A. Star, E. Tu, J. Niemann, J. Gabriel, C. Joiner and C. Valcke, "Label free detection of DNA hybridization using carbon nanotube network field-effect transistors," Proceedings of the National Academy of Sciences USA, vol. 103, pp. 921-926, 2006. [61] D. Fu and L. Li, "Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene," Nano Reviews, vol. 1, p. 5354, 2010. [62] N. Varghese, U. Mogera, A. Govindaraj, A. Das, P. Maiti and A. Sood, "Binding of DNA nucleobases and nucleosides with graphene," ChemPhysChem, vol. 10, pp. 206-210, 2009. [63] C. Lu, H. Yang, C. Zhu, X. Chen and G. Chen, "A graphene platform for sensing biomolecules," Angewandte Chemie International Edition, vol. 48, pp. 4785-4787, 2009. [64] J. Antony and S. Grimme, "Structures and interaction energies of stacked graphene- nucleobase complexes, Physical Chemistry Chemical Physics," Physical Chemistry Chemical Physics, vol. 10, pp. 2722-2729, 2008. [65] R. Branquinho, Label-Free Detection of Biomolecules with Ta2O5-Based Field Effect Devices, Lisboa, Portugal: Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, 2012. [66] S. Dzyadevych, A. Soldatkin, A. El’skaya, C. Martelet and N. Jaffrezic-Renault, "Enzyme biosensors based on ion-selective field-effect transistors," Analytica Chimica Acta, vol. 568, pp. 248-258, 2006. [67] S. Sze and K. Ng, Physics of Semiconductor Devices, 3rd ed., New Jersey: John Wiley & Sons: Hoboken, 2006. [68] E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen and M. F. Lawrence, "Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect," The Journal of Physical Chemistry B, vol. 101, pp. 2980-2985, 1997. 85 [69] F. Uslua, S. Ingebrandta, D. Mayera, S. Böcker-Mefferta, M. Odenthalb and A. Offenhäussera, "Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device," Biosensors and Bioelectronics, vol. 19, pp. 1723-1731, 2004. [70] F. Xu, G. Yan, Z. Wang and P. Jiang, "Continuous accurate pH measurements of human GI tract using a digital pH ISFET sensor inside a wireless capsule," Measurement, vol. 64, pp. 49-56, 2015. [71] C. Yoon, J. Kang, D. Yeom, D. Jeong and S. Kim, "Comparison of electrical characteristics of back- and top-gate Si nanowire field-effect transistors," Solid State Communications, vol. 148, pp. 293-296., 2008. [72] M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci and I. Barák, "Fully electronic DNA hybridization detection by a standard CMOS biochip," Sensors and Actuators B, vol. 118, pp. 41-46, 2006. [73] P. Stoliar, E. Bystrenova, S. Quiroga, P. Annibale, M. Facchini, M. Spijkman, S. Setayesh, D. de Leeuw and F. Biscarini, "DNA adsorption measured with ultra-thin film organic field effect transistors," Biosensors and Bioelectronics, vol. 24, pp. 2935- 2938, 2009. [74] M. Panzer and C. Frisbie, "Exploiting Ionic Coupling in Electronic Devices: Electrolyte- Gated Organic Field-Effect Transistors," Advance Materials, vol. 20, pp. 3177-3180, 2008. [75] M. Panzer and C. Frisbie, "Polymer electrolyte-gated organic field-effect transistors: Low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density," Journal of the American Chemical Society, vol. 129, pp. 6599-6607, 2007. [76] L. Herlogsson, Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus and M. Berggren, "Downscaling of Organic Field-Effect Transistors with a Polyelectrolyte Gate Insulator," Advanced Materials, vol. 20, pp. 4708-, 2008. [77] J. Lee, L. Kaake, J. Cho, X. Zhu, T. Lodge and C. Frisbie, "Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability," The Journal of Physical Chemistry C, vol. 113, pp. 8972-8981, 2009. [78] L. Kergoat, L. Herlogsson, D. Braga, B. Piro, M. Pham, X. Crispin and M. Berggren, "A Water-Gate Organic Field-Effect Transistor," Advanced Materials, vol. 22, pp. 2565-2569, 2010. 86 [79] L. Kergoat, B. Piro, M. Berggren, M. Pham, A. Yassar and G. Horowitz, "DNA detection with a water-gated organic field-effect transistor," Organic Electronics, vol. 13, pp. 1-6, 2012. [80] A. Al Naim, "Electrolyte-Gated thin film transistors with solution-processed semiconductors," University of Sheffield, Sheffield, Inglaterra, 2014. [81] I. K., Electrochemistry in nonaqueous solutions, Darmstadt: John Wiley & Sons, 2009. [82] R. Hagiwara, K. Matsumoto, Y. Nakamori, T. Tsuda, Y. Ito, H. Matsumoto and K. Momota, "Physicochemical properties of 1, 3-dialkylimidazolium fluorohydrogenate room-temperature molten salts," Journal of the electrochemical society, vol. 150, pp. D195-D199, 2003. [83] S. Nakamura, K. Ueno, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa and M. Kawasaki, "Electric-field-induced superconductivity in an insulator," Nature Materials, vol. 7, pp. 855 - 858, 2008. [84] P. Hsu, "Choosing a Gate Dielectric for Graphene Based Transistor," Massachusetts Institute of Technology, Cambridge, 2008. [85] K. Matsumoto, K. Maehashi, Y. Ohno and K. Inoue, "Recent advances in functional grapheme biosensors," Journal of Physics D: Applied Physics, vol. 47, p. 094005, 2014. [86] F. Schwierz, "Graphene Transistors," Nature Nanotechnology, vol. 5, pp. 487-496, 2010. [87] Y. Lin, K. A. Jenkin and A. Valdes, "Operation of graphene transistors at gigahertz frequencies," Nano Letters, vol. 9, p. 422–426, 2009. [88] Y. Lin, C. Dimitrakopoulos, K. Jenkins, D. Farmer, H. Chiu, A. Grill and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science, vol. 327, p. 662, 2010. [89] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy and D. Gaskill, "Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates," IEEE Xplore: Electron Device Letters, vol. 30, pp. 650-652, 2009. [90] I. Meric, M. Han, A. Young, B. Ozyilmaz, P. Kim and K. Shepard, "Current saturation in zero-bandgap, top-gated graphene field- effect transistors," Nature Nanotechnology, vol. 3, pp. 654-659, 2008. 87 [91] K. Tahy, S. Koswatta, T. Fang, Q. Zhang, H. Xing and D. Jena, "High field transport properties of 2D and nanoribbon graphene FETs," in Device Research Conference, IEEE, Singapore, 2009. [92] A. Nourbakhsh, M. Cantoro, A. Klekachev, F. Clemente, B. Soreé, M. van der Veen, T. Vosch, A. Stesmans, B. Sels and S. De Gendt, "Tuning the Fermi Level of SiO2- Supported Single-Layer Graphene by Thermal Annealing," The Journal of Physical Chemistry C, vol. 114, p. 6894, 2010. [93] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos and C. W. Magnuson, "The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2," Applied Physics Letters, vol. 99, p. 122108, 2011. [94] K. Kim, A. Reina, Y. Shi, H. Park, L. Li, Y. Lee and J. Kong, "Enhancing the conductivity of transparent graphene films via doping," Nanotechnology , vol. 21 , p. 285205, 2010. [95] C. Jang, J. Kim, J. Kim, D. Shin, S. Kim and S. Choi, "Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors," Nanotechnology, vol. 24, p. 405301 (6pp), 2013. [96] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo and H. Dai, "Room-temperature all- semiconducting sub-10-nm graphene nanoribbon field-effect transistors," Phys. Rev. Lett., vol. 100, p. 206803, 2008. [97] K. Nagashio, T. Nishimura, K. Kita and K. Toriumi, "Contact resistivity and current flow path at metal/graphene contact," Applied Physics Letters, vol. 97, p. 143514, 2010. [98] D. Schroder, Semiconductor Material and Device Characterization, New Jersey: John Wiley & Sons, 2006. [99] W. Liu, M. Li, S. Xu, Q. Zhang, Y. Zhu, K. Pey, H. Hu, Z. Shen, X. Zou, J. Wang, J. Wei, H. Zhu and H. Yu, "Understanding the Contact Characteristics in Single or Multi- Layer Graphene Devices: the Impact of Defects (Carbon Vacancies) and the Asymmetric Transportation Behaviour," in International Electron Devices Meeting, San Francisco, 2010. [100] M. Masson, E. Molnár, H. Donoghue, G. Besra, D. Minnikin, H. Wu, O.-C. Lee, I. D. Bull and G.Pálfi, "Osteological and Biomolecular Evidence of a 7000-Year-Old Case of Hypertrophic Pulmonary Osteopathy Secondary to Tuberculosis from Neolithic Hungary," PLoS ONE, vol. 8, p. e78252, 2013. 88 [101] B. Ligon, "Robert Koch: Nobel laureate and controversial figure in tuberculin research," Seminars in Pediatric Infectious Diseases, vol. 13, pp. 289-299, 2002. [102] N. Gandhi, P. Nunn, K. Dheda, H. Schaaf, M. Zignol, D. van Soolingen, P. Jensen and J. Bayona, "Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis," Lancet, vol. 375, pp. 1830-1843, 2010. [103] S. Wang, F. Inci, G. De Libero, A. Singhal y U. Demirci, «Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics,» Biotechnology Advances, vol. 31, p. 438–449, 2013. [104] Y. Huang, X. Dong, Y. Shi, C. Li, L.-J. Li and P. Chen, "Nanoelectronic Biosensors Based on CVD Grown Graphene," Nanoscale, vol. 2, p. 1485–1488, 2010. [105] P. Chiquet, P. Masson, J. Postel-Pellerin, R. Laffont, G. Micolau, F. Lalande and A. Regnier, "Experimental setup for non-destructive measurement of tunneling currents in semiconductor devices," Measurement, vol. 54, p. 234–240, 2014. [106] F. Yildirim, R. Schliewe, W. Bauhofer, R. Meixner, H. Goebel and W. Krautschneider, "Gate insulators and interface effects in organic thin-film transistors," Organic Electronics, vol. 9, pp. 70-76., 2008. [107] Y. Hwa, D. Soo, Y. Na, H. Kim, D. Ho, S. Ahn, J. Yang, W. Seok and S. Seo, "Flexible glucose sensor using CVD-grown graphene-based field effect transistor," Biosensors & Bioelectronics, vol. 37, p. 82–87, 2012. [108] S. Vasiri, "Fabrication and characterization of grapheme field effect transistor," Royal Institute of Technology, Stockholm, Sweden, 2011. [109] F. Liu, Y. Han, D. Sung and T. Seok, "Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection," Sensors and Actuators B, vol. 186, p. 252– 257, 2013. [110] K. Baba, R. Hatada, S. Flege and W. Ensinger, "Mechanical and electrical properties of diamond-like carbon films deposited by plasma source ion implantation," Nuclear Instruments and Methods in Physics Research B, vol. 267, pp. 1688-1691, 2009. [111] B. Kim, J. Lee, S. Namgung, J. Kim, J. Y. Park, M. Lee and S. Hong, "DNA sensors based on CNT-FET with floating electrodes," Sensors and Actuators B, vol. 169, pp. 182-187, 2012. 89 [112] P. D’Angelo, M. Barra, A. Cassinese, M. Maglione, P. Vacca, C. Minarini and A. Rubino, "Electrical transport properties characterization of PVK (poly N-vinyl carbazole) for electroluminescent devices applications," Solid-State Electronics, vol. 51, p. 12, 2007. [113] S. Park, J. Suk, J. An, J. Oh, S. Lee, W. Lee, J. Potts, J. Byun and R. Ruoff, "The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers," Carbon, vol. 50, pp. 4573-4578., 2012. [114] W. Dong, Y. Shi, W. Huang, P. Chen and L. Li, "Electrical detection of DNA hibridization with single-base specificity using transistors based on CVD-grown graphene sheets," Advanced Materials, vol. 22, pp. 1649-1653, 2010. [115] I. Keithley Instruments, "Model 2450 Interactive SourceMeter® Instrument User´s Manual," Cleveland, 2013. [116] L. Liu, S. Ryu, M. Tomasik, E. Stolyarova, N. Jung, M. Hybertsen, M. Steigerwald, L. Brus and G. Flynn, "Graphene oxidation: thickness-dependent etching and strong chemical doping," Nano Letters, vol. 8, pp. 1965-1970, 2008. [117] I. Kholmanov, C. Magnuson, A. Aliev, H. Li, B. Zhang, J. Suk, L. Zhang, E. Peng, S. Mousavi, A. Khanikaev, R. Piner, G. Shvets and R. Ruoff, "Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires," Nano Letters, vol. 12, pp. 5679-5683, 2012. [118] W. Yang, K. Ratinac, S. Ringer, P. Thordarson, J. Gooding and F. Braet, "Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?," Angewandte Chemie, vol. 49, pp. 2114-2138, 2010. [119] Y. Wang, Z. Li, J. Wang, J. Li and Y. Lin, "Graphene and graphene oxide: biofunctionalization and applications in biotechnology," Trends in Biotechnology, vol. 29, pp. 205-212, 2011. [120] M. Dresselhaus, G. Dresselhaus and P. Eklund, Science of Fullerenes and Carbon Nanotubes, San Diego, California, USA: Academic Press, 1996.