PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ 
 
FACULTAD DE CIENCIAS E INGENIERÍA 
 
 
 
 
 
 
DISEÑO DE UN MARTINETE PARA LABORATORIO 
UNIVERSITARIO 
 
 
 
 
Tesis para optar el Título de Ingeniero Mecánico, que presenta el bachiller: 
 
 
 
 
Santiago Jordan Granados Sánchez 
 
 
 
 
 
 
 
 
ASESOR: Ing. Kurt F. Paulsen Moscoso 
 
 
 
Lima, diciembre de 2014 
 i 
 
 
RESUMEN 
En el presente trabajo se  desarrolla el diseño de un martinete, acorde a las 
características de un equipo de laboratorio universitario, cuya función principal es 
contribuir al estudio de los parámetros del conformado plástico por impacto. 
El resultado del trabajo es un equipo con capacidad de 750 N.m por golpe. Cuenta con 
un mecanismo mecánico para la elevación del martillo accionado por un motor DC, un 
sistema de liberación del martillo gobernado por un actuador lineal eléctrico DC, unas 
guías lineales a ambos lados del martillo, un sistema de protección tanto para el 
usuario como para las partes criticas del equipo y con sensores para registran las 
cargas ocurridas durante la operación del equipo. 
En el trabajo no solo se analiza las características de la máquina sino también se 
determina la capacidad apropiada de la máquina. Esta se determina basándose en los 
cambios de dimensión de un elemento en particular de aluminio AlSi1.  Se utilizaron 
relaciones empíricas que toman en consideración los parámetros relacionados con los 
mecanismos de deformación plástica del material evaluado. Se determinó la 
importancia de cada uno de los parámetros, masa y altura, sobre el proceso de 
deformación; en base a ello se determinó la carrera máxima del martillo, la cual se 
asemeja a la de un equipo de producción, y se concluyó con el dimensionamiento del 
resto del equipo. 
A partir de la revisión de la tecnología se proponen distintas soluciones para el 
mecanismo de elevación. Estas propuestas son evaluadas con el fin de determinar 
cuál es tecnología más conveniente a desarrollar. Se realiza la selección y diseño de 
los principales elementos que conforman el equipo.  
Finalmente, se explica las verificaciones mecánicas de los componentes de la 
configuración definitiva del equipo. El resultado final del diseño se muestra en las 
ilustraciones del documento y planos.  
  
 ii 
 
 
TEMA DE TESIS PARA OPTAR EL TÍTULO DE INGENIERO MECÁNICO 
 
 
TÍTULO : DISEÑO DE UN MARTINETE PARA LABORATORIO 
UNIVERSITARIO  
   
ÁREA : Diseño 
   
PROPUESTO 
POR 
: Ing. Kurt F. Paulsen Moscoso 
   
ASESOR : Ing. Kurt F. Paulsen Moscoso 
   
TESISTA : Santiago Jordan Granados Sánchez 
   
CÓDIGO : 20080551 
   
FECHA :  06 de  octubre del 2014 
 
 
DESCRIPCIÓN Y OBJETIVOS: 
 
La determinación de la fuerza y energía necesarias para la deformación 
a altas velocidades y el porcentaje de deformación conseguido se pueden 
calcular en forma aproximada empleando expresiones matemáticas teórico-
experimentales. 
El contar con un martinete universitario permitirá estudiar la deformación 
plástica a alta velocidad y la influencia de los distintos parámetros que 
intervienen en el proceso, tales como la velocidad y la masa del elemento con 
el que se golpea, además de la influencia de forma del elemento forjado. 
El alcance de este trabajo comprende el diseño del equipo, el 
dimensionamiento y verificación de los distintos elementos, así como los planos 
del mismo.  
 iii 
 
 
 
TEMA DE TESIS PARA OPTAR EL TÍTULO DE INGENIERO MECÁNICO 
 
 
DISEÑO DE UN MARTINETE PARA LABORATORIO 
UNIVERSITARIO  
 
Introducción 
1. Descripción de la necesidad. Estado del arte y determinación de los 
parámetros de diseño. 
2. Planteamiento conceptual 
3. Diseño del mecanismo y cálculo de los elementos 
4. Estimado del costo 
Conclusiones 
Bibliografía 
Planos  
Anexos 
 
 
 
 
 
 
Ing. Kurt Paulsen Moscoso 
Asesor 
   
 iv 
 
 
Índice general 
 
Resumen i 
Índice de contenido iv 
Índice de tablas vii 
Índice de figuras  vii 
Lista de símbolos x 
Introducción  1 
Capítulo 1. 1.Descripción de la necesidad. Estado del arte y determinación de los 
parámetros de diseño. 
1.1 Descripción de la necesidad 2 
1.2 Estado de la tecnología  3 
1.2.1 Distinción entre martillo y martinete 4 
1.2.1.1 Martinete de laboratorio 4 
1.2.1.2 Martinete de producción 5 
1.2.2 Clasificación de los martinetes 5 
1.2.2.1 Neumáticos 5 
1.2.2.2 Vapor 5 
1.2.2.3 Hidroneumáticos 6 
1.2.2.4 Mecánicos 6 
1.2.3 Conformado plástico 7 
1.2.3.1 Deformación plástica 7 
1.2.3.2 Esfuerzo a la fluencia 8 
1.2.3.3 Resistencia a la deformación  8 
1.3 Determinación de los parámetros de diseño  8 
1.3.1 Relaciones entre los parámetros de conformado 9 
1.3.2 Determinación de los parámetros de diseño 9 
1.3.3 Relaciones empíricas 10 
1.3.4 Determinación de la fuerza y energía  12 
1.3.5 Energía de deformación – Conceptos complementarios 16 
1.4 Partes principales del equipo 
1.4.1 Martillo 20 
1.4.2 Estructura 20 
1.4.3 Sistema de elevación  20 
1.4.4 Sistema de adquisición de datos 20 
1.4.5 Acelerómetro 20 
1.4.6 Transductor de fuerza  20 
1.4.7 Guías lineales 21 
1.4.8 Sistema de liberación  21 
 v 
 
1.4.9 Actuador lineal eléctrico   21 
Capítulo 2. Planteamiento conceptual 22 
2.1 Estructura de funciones 22 
2.2 Matriz morfológica  25 
2.3 Conceptos solución  26  
2.4 Evaluación de los criterios técnico-económicos 29  
2.5 Valorización técnica-económica  de los conceptos solución   32 
2.6 Gráfica de la evaluación de los conceptos solución  34 
Capítulo 3. Diseño del mecanismo y cálculo de los elementos  35 
3.1 Funcionamiento del mecanismo de elevación  35 
3.2 Diseño del portapesas 37 
3.2.1 Verificación de las uniones soldadas  38 
3.2.2 Verificación de los refuerzos radiales 40 
3.2.3 Análisis con el método de elementos finitos  41 
3.3 Selección de guías y apoyos  43 
3.3.1 Determinación de las cargas en los rodamientos 43 
3.3.2 Verificación del rodamiento 45 
3.3.3 Selección del rodamiento 46 
3.3.4 Diseño de las guías 47 
3.3.5 Deflexión de la guía 47 
3.4 Diseño del sistema de elevación 48 
3.4.1 Selección del cable 48 
3.4.2 Diseño del tambor ranurado 51 
3.5 Planteamiento del motor DC 52 
3.5.1 Selección del motor 52 
3.5.2 Selección del reductor 54 
3.6 Diseño de los elementos de transmisión 55 
3.6.1 Verificación del eje del tambor 55 
3.6.2 Selección de los acoplamientos 57 
3.7 Diseño del mecanismo de liberación de carga 58 
3.7.1 Selección del actuador lineal 59 
3.8 Selección de los sensores 59 
3.8.1 Selección del acelerómetro 61 
3.8.2 Selección del transductor de fuerza 62 
3.9 Diseño de la estructura 64 
3.9.1 Determinación de las cargas en la estructura 64 
3.9.2 Dimensionamiento de la base de la columna 66 
3.9.3 Determinación de las cargas en los anclajes 67 
3.9.4 Diseño de los refuerzos de la base de la columna 69 
3.9.5 Dimensionamiento de los pernos de anclaje 69 
3.9.6 Diseño de los fundamentos 72 
3.10 Selección de los topes 73 
 
 vi 
 
Capítulo 4. Estimado del costo  77 
Conclusiones 79 
Bibliografía 82 
Lista de anexos 
Anexo 1: Catálogo. Especificaciones del cable de alma de fibra. 
Anexo 2: Catálogo. Especificaciones del motor DC y reductor MAXON 400 W. 
Anexo 3: Catálogo. Especificaciones del actuador lineal DC. 
Anexo 4: Catálogo. Especificaciones del rodamiento lineal SKF. 
Anexo 5: Catálogo. Especificaciones del acelerómetro. 
Anexo 6: Catálogo. Especificaciones del transductor de fuerza. 
Anexo 7: Catálogo. Especificaciones del soporte de rodamiento radial SKF. 
Anexo 8: Catálogo. Especificaciones de los elementos estructurales. 
Anexo 9: Catálogo. Especificaciones del absorbedor de impacto. 
Anexo 10: Manual de montaje del arborbedor de impactos. 
 
  
 vii 
 
Índice de tablas 
Capítulo 1 
Tabla 1.1 Influencia de los parámetros del conformado sobre las propiedades 
mecánicas del material.  11 
Tabla 1.1 Energía del matillo en función de la carrera del martillo  y la velocidad 
de deformación. 15 
Capítulo 2 
Tabla 2.1 Evaluación técnica – económica de los conceptos solución  32  
Capítulo 4 
Tabla 4.1 Costo de los materiales  77 
Tabla 4.2 Costo del fabricación del martinete 78 
 
Índice de figuras 
Capítulo 1  
Figura 1.1 Esfuerzos cortantes en la microestructura de los metales. 7 
Figura 1.2 Influencia de la temperatura y la velocidad de deformación sobre las 
propiedades mecánicas de un metal. 10 
Figura 1.3 Curvas de la prueba Charpy. 11 
Figura 1.4 Estructura cristalina cubica centrada en el cuerpo y en las caras. 12 
Figura 1.5 Dimensiones de la pieza: Antes y después del recalcado. 13 
Figura 1.6 Curva de la fuerza en el tiempo para una prueba de impacto. 16 
Figura 1.7 Curvas de fuerza en el tiempo para  dos pruebas de impacto con la 
misma energía pero con materiales de distinta dureza. 17 
Figura 1.8 Esquema del resultado del recalcado 19 
Figura 1.9 Diagrama de la fuerza durante la carrera de deformación  20 
 
Capítulo 2 
Figura 2.1 Caja negra del equipo 23 
Figura 2.2 Esquemas de los conceptos  26 
Figura 2.3 Diagrama de resultados de la evaluación técnica económica  34 
Capítulo 3  
Figura 3.1 Ensamble del martinete 36 
 viii 
 
Figura 3.2 Esquema del portapesas 37 
Figura 3.3 DCL de la parte más exigida del portapesas  38 
Figura 3.4 Verificación de los cordones de soldadura al corte portapesas. 39 
Figura 3.5 Verificación de los esfuerzos radiales. 42 
Figura 3.6 Esquema de las soldaduras entre el alma y los esfuerzos radiales. 42 
Figura 3.7 Condición de las cargas y apoyos del portapesas 43 
Figura 3.8 Determinación de los esfuerzos en el portapesas FEM 42 
Figura 3.9 Determinación de las deformaciones en el portapesas FM 42 
Figura 3.10 Distribución de cargas sobre el rodamiento 43 
Figura 3.11 Disposición de los rodamientos y la carga excéntrica  43 
Figura 3.12 Máxima excentricidad de la pieza sobre el bloque de impacto 44 
Figura 3.13 Unidad de rodamiento SKF LUCR 60  45  
Figura 3.14 DCL de la guía 47 
Figura 3.15 Diagramas de fuerzas y momentos de la guía 47 
Figura 3.16 Diagrama de deflexión en la guía 48 
Figura 3.17 Ensamble del sistema de elevación. 48 
Figura 3.18 Relación entre el diámetro de la polea y del cable. 49 
Figura 3.19 Esquema del tambor ranurado. 51 
Figura 3.20 Esquema de la fijación del cable al tambor: placa y tornillo. 52 
Figura 3.21 Esquema del motor Maxon 400 w 48 V. 53 
Figura 3.22 Diagrama de las zonas operaciones del motor. 53 
Figura 3.22 Esquema del reductor planetario Maxon 54 
Figura 3.23 Esquema del sistema de elevación  55 
Figura 3.24 Diagrama de fuerzas y momentos sobre el eje del tambor  55 
Figura 3.26 Dimensiones del eje del tambor del eje 56 
Figura 3.27 Esquema del acoplamiento 58 
Figura 3.28 Ensamble del mecanismo de liberación  58 
Figura 3.29 Diagrama de fuerzas sobre el gancho 59 
Figura 3.30 Diagrama de rango de operación del actuador lineal 60 
Figura 3.31 Esquema del actuador seleccionado 60 
 ix 
 
Figura 3.32 Esquema del acelerómetro y ubicación. 62 
Figura 3.33 Esquema del transductor de fuerza 62 
Figura 3.34 Arreglo en serie del martillo, los transductores y la mesa 63 
Figura 3.35 Esquema del arreglo triangular de transductores  63 
Figura 3.36 DCL de la estructura  64 
Figura 3.37 Esquema de los refuerzos en la base de la columna 69 
Figura 3.38 Esquema del cordón de soldadura entre la columna y placa 70 
Figura 3.39 Esquema del perno de anclaje 71 
Figura 3.40 Esquema de los fundamentos del equipo 72 
Figura 3.41 Esquema del arreglo de absorbedores de impactos 73 
Figura 3.42 Comparación de la fuerza durante la carrera de desaceleración 
para distintos desaceleradores lineales  74 
Figura 3.43 Esquema de un tope bajo la acción de una carga de impacto 75 
Figura 3.44 Esquema de los absorbedores seleccionados 75 
Figura 3.45 Esquema de los componentes internos del absorbedor 
seleccionado 76 
 
 
  
 x 
 
LISTA DE SIMBOLOS 
F : Fuerza  (N) 
p :  presión  (Pa) 
pa : presión sobre la superficie A  (Pa) 
g : gravedad  (m/s
2
) 
v : velocidad  (m/s) 
v0 : velocidad antes del impacto (m/s) 
Ea : Energía absorbida durante el impacto  (J) 
a : aceleración (m/s2) 
t : tiempo  (s) 
Pot : Potencia   (W) 
N : velocidad de rotación  (RPM) 
T : Momento torsor  (Nm) 
M1-x : Momento en el punto 1 con dirección en eje y (Nm) 
Mf  : Momento flector  (Nm) 
h : Altura  (m) 
V : Volumen  (m3) 
l : Longitud  (m) 
lf inal : Longitud final de la barra deformada  (m) 
m : masa  (kg) 
m : masa del portapesas  (kg) 
m : masa de la pesa  (kg) 
I : Momento de inercia  (m4) 
Ix : Momento de inercia respecto al eje x  (m
4) 
J : Momento de inercia polar   (m4) 
t : Temperatura  (K) 
DCL : Diagrama de cuerpo libre 
σ : Esfuerzo  (Pa) 
τ : Esfuerzo cortante  (Pa) 
b : Ancho  (m) 
ϕ : Velocidad de deformación  (1/s) 
e :  Deformación  
ϕ : Deformación principal 
Kstr0 : Resistencia inicial  (Pa) 
Kstr1 : Resistencia final  (Pa) 
D :  diámetro  (m) 
d 1 : diámetro de la polea  (m) 
d 2 :  diámetro del tambor  (m) 
d eje : diámetro del eje  (m) 
d tornillo : diámetro del tornillo  (m) 
L tambor : Longitud del tambor  (m) 
N1 : Velocidad del eje del motor        (rpm) 
N2 :  Velocidad del eje del tambor      (rpm) 
w : velocidad angular  (rad/s) 
velev ación  : Velocidad de elevación del martillo  (m/s) 
s : Separación de los apoyos del martillo (m) 
d guía : diámetro de la guía redonda (m) 
FEM : Método de elementos finitos 
MEC1 : Concepto solución Electromagnético  
MEC2 : Concepto solución Mecánico eléctrico 
NEU : Concepto solución Neumático 
MEC3 : Concepto solución Mecánico con actuador eléctrico 
a : profundidad de garganta de la soldadura  (mm) 
 xi 
 
b :  ancho del ala  (mm) 
h : Separación entre alas  (mm) 
t1 : Espesor del ala  (mm) 
t2 : Espesor del alma  (mm) 
f y ,k : Resistencia a la fluencia  (Pa) 
a w : Factor de forma de la soldadura en ángulo 
τ adm : Esfuerzo cortante admisible  (Pa) 
σ adm : Esfuerzo normal admisible  (Pa) 
σ eq : Esfuerzo equivalente  (Pa) 
F nerv io : Fuerza sobre nervio (N) 
F total : Fuerza total (N) 
A nerv io :  Área proyectada del nervio (m
2) 
A total : Área proyectada total (m
2) 
F io : Factor de dirección de la carga sobre el rodamiento  
F m : Factor  
F ho : Factor de dureza de la guía redonda 
Co : Carga estática del rodamiento (N) 
P : Fuerza aplicada sobre el rodamiento durante el impacto (N) 
d : Diámetro del cable (mm) 
D : Diámetro del tambor (mm) 
L min : Longitud mínima del tambor  (mm) 
DC : Corriente continua 
F resorte : Fuerza del resorte (N) 
F f ricción  : Factor de seguridad del rodamiento 
F motor : Factor de seguridad del rodamiento 
So : Factor de seguridad del rodamiento 
La : Separación longitudinal entre pernos de anclaje (mm) 
Lb : Separación transversal entre pernos de anclaje (mm) 
Pc : Carga excéntrica en la columna (N) 
P : Fuerza en un perno de anclaje (N) 
N : Numero de pernos  
τ hormigón : Esfuerzo cortante del hormigón (Pa) 
P f undamento : Peso de los fundamentos (N) 
E cinética : Energía cinética (J) 
E potencial : Energía potencial (J) 
E total : Energía total (J) 
i : Relación de reducción de la velocidad 
IT : Calidad. Amplitud de la tolerancia. 
Ra : Rugosidad superficial media aritmética 
Rt : Rugosidad. Altura máxima entre pico y valle. 
1 
 
 
 
INTRODUCCIÓN 
Uno de los retos de la actualidad es la mejora de la productividad y la calidad de los 
productos en las empresas. La investigación en este tema se enfoca en los procesos.  
Una empresa manufacturera de metales buscará reducir los tiempos de los procesos 
productivos. Si nos centramos en el proceso de conformado, una mejora sería trabajar 
las piezas a altas velocidades y mayores frecuencias. Con ello mejora el índice de 
unidades producidas por unidad de tiempo. Por lo que es necesario conocer las 
características y limitaciones de las tecnologías a altas velocidades. Sin embargo, 
muchas veces este tema no está bien entendido.  La falta de atención es significativa, 
ya que entendiendo mejor las limitaciones mecánicas del proceso se podría maximizar 
los beneficios de un proceso rápido y reducir el número de piezas con defectos. 
Para atender este problema, esta tesis ha sido realizada con el propósito de estudiar y 
modelar un equipo que contribuya con la técnica experimental al estudiar la 
complejidad dinámica del conformado por impacto. El equipo desarrollado será 
diseñado en base a los requerimientos de un equipo de laboratorio universitario. En la 
opinión del autor, los estudiantes de ingeniería necesitan herramientas de aprendizaje 
para entender fenómenos complejos como el de la deformación plástica y esa la 
motivación principal por la cual se ha desarrolla el presente trabajo. 
Los objetivos parciales de la tesis son: estudiar, modelar y evaluar los principios de 
funcionamiento de cada una de las alternativas, cuantificar la capacidad del equipo 
que se necesita en el laboratorio, y desarrollar documentación del dimensionamiento y 
verificación del equipo, de acuerdo a la metodología concerniente  al diseño del 
equipo.  
Para la realización del presente trabajo se adoptó la metodología de diseño de Karl T. 
Ulrich y Steven D. Eppinger  sumada a la guía de metodología del diseño en ingeniera 
normalizada VDI 2222 propuesta en el curso de Proyecto Mecánico 1, la cual se basa 
en un proceso iterativo de mejoras hasta lograr una solución satisfactoria a los 
requerimientos planteados al comienzo de este trabajo.   
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPITULO 1 
DESCRIPCIÓN DE LA NECESIDAD. ESTADO DEL ARTE Y DETERMINACIÓN DE 
LOS PARÁMETROS DE DISEÑO 
Al inicio del presente capítulo se expone los requerimientos que debe cumplir un 
martinete de laboratorio universitario. Se repasan las tecnologías actuales que 
contribuyen en la solución final del equipo y a partir del análisis de las tecnologías y 
parámetros característicos del proceso de deformación plástica, se definen los 
parámetros más importantes para el diseño del martinete, tales como la energía y 
altura de diseño. Finalmente se hace una descripción de las partes principales del 
martinete. 
1.1 Descripción de la necesidad 
Un equipo de laboratorio universitario contribuye con el estudio de un fenómeno. En el 
caso del martinete, este desarrolla una técnica experimental para estudiar la 
complejidad dinámica del conformado por impacto. Para poder cumplir con este 
propósito, a continuación se detallan los requerimientos que condicionan el diseño. 
Estas exigencias del equipo se elaboraron gracias al aporte de profesionales que 
3 
 
 
 
actualmente desarrollan actividades de docencia universitaria y están familiarizados 
con el trabajo de laboratorio. 
Características generales 
1. La capacidad de la máquina está limitada a la capacidad de una máquina 
pequeña de producción. 
2. Cuenta con dispositivos para monitorear y controlar los parámetros del 
proceso. 
3. Es de dimensiones reducidas. 
4. Se fabrica con materiales de fácil adquisición y de fácil montaje, de preferencia.  
5. Los elementos seleccionados son de fácil mantenimiento.  
Características particulares 
1. Conformar plásticamente por impacto. 
2. La energía debe ser regulada mediante la variación de la masa y la altura. 
3. Los materiales trabajables de preferencia serán el cobre, latón y aluminio.   
4. Tiempo tolerable de la carrera de retorno tiene un estimado de  2 minutos. 
5. La fuente de energía será eléctrica o neumática. (De preferencia eléctrica)  
6. El movimiento de la masa móvil durante el descenso será de caída libre. 
7. Se dispone de sensores de carga que permitan evaluar el comportamiento del 
material. 
8. La masa móvil debe estar guiada por la estructura. 
9. Cuenta con un sistema de seguridad ante la caída involuntaria del martillo. 
 
1.2 Estado de la tecnología  
En base a la revisión del estado de la tecnología de los martinetes de laboratorio se 
distingue entre los tipos de equipos que conforman plásticamente por impacto: los 
martillos y los martinetes. 
 
  
4 
 
 
 
1.2.1 Distinción entre martillo y martinete 
En un primer grupo se encuentran los martillos. Los martillos se caracterizan por 
realizar un movimiento percutor sobre la pieza de trabajo. La masa móvil  es pequeña 
y los desplazamientos son cortos. Por tanto la energía por golpe transmitida a la pieza 
es pequeña. El martillo da varios golpes hasta alcanzar la forma definitiva a la pieza 
trabajada. Debido a la naturaleza maleable de los materiales, los golpes producen 
deformaciones locales en los puntos de aplicación de la carga.  
En un segundo grupo se encuentran los martinetes. Los martinetes a diferencia de los 
martillos mueven masas grandes y las carreras son amplias. Cuando deforman, no 
deforman locamente, sino gran parte de la pieza. 
Con la finalidad de estudiar los parámetros del proceso de conformado, así como 
cuanta energía se invierte en deformar la pieza por golpe, se desarrollará el diseño de 
un equipo con las características del segundo grupo. 
1.2.1.1  Características de un martinete de laboratorio 
Usualmente los martinetes de laboratorio son por general máquinas que dejan caer 
libremente un bloque guiado con la finalidad de probar la resistencia de un producto o 
componente a determinada carga de impacto. En muchos de esos casos, basta una 
evaluación visual para verificar el cumplimiento de los estándares perseguidos, 
mientras otros equipos más especializados registran las cargas dinámicas que ocurren 
en la estructura cuando ocurre el impacto.    
Tecnologías en los martinetes  
Mover piezas de mayor masa implicó que los sistemas de elevación cuenten con 
acumuladores de energía y dispongan de suficiente energía para realizar grandes 
desplazamientos. A mayor cantidad de energía entregada por la maquina a la pieza, 
mayor puede ser la complejidad de la pieza trabajada. Entre otras mejoras 
significativas se incrementó la frecuencia entre golpes y control debido a la 
incorporación de la tecnología neumática e hidráulica. 
  
5 
 
 
 
1.2.1.2  Martinetes de producción 
El martinete es una máquina de producción altamente productiva que se caracteriza 
por mover una gran masa, llamada martillo, alternadamente y transformar así la 
energía potencial en cinética para conformar por impacto.  
A continuación se describirá brevemente algunas características particulares de cada 
uno de los martinetes que se encuentran en uso. 
1.2.2. Clasificación de los martinetes 
Según el tipo de mecanismo, pueden ser neumáticos, a vapor, hidroneumáticos y 
mecánicos. 
1.2.2.1  Neumáticos 
Son usados preferentemente cuando se requiere transmitir gran cantidad de energía y 
alta repetitividad en los movimientos del martillo. Estos martinetes cuentan con 
actuadores lineales y transforman la energía del gas comprimido en energía cinética 
del martillo. 
Algunas de las ventajas del uso de aire comprimido son la regulación de la velocidad 
del pistón y la facilidad de cambiar de sentido del movimiento. 
Una desventaja del uso de esta tecnología es el bajo aprovechamiento de la energía a 
causa de las caídas significativas de presión debido a las restricciones encontradas en 
recorrido del aire hacia los actuadores. Además se requiere espacio para una estación 
de aire comprimido. 
1.2.2.2. Vapor 
Esta tecnología tiene características similares a la usada por el aire comprimido. Se 
realiza trabajo por la expansión del vapor a presión. Inclusive, la tecnología del aire 
comprimido ha ido desplazando su uso. 
Este mecanismo requiere una caldera y sus complementos. 
  
6 
 
 
 
1.2.2.3. Hidroneumáticos 
Esta tecnología combina las características de un cilindro neumático e hidráulico.  
Durante la carrera de elevación, el fluido hidráulico ingresa al cilindro y a la vez 
comprime el nitrógeno contenido sobre el pistón.  
Cuando alcanza la altura deseada, la válvula de rápido escape se abre y el nitrógeno 
comprimido empuja el cilindro hacia abajo. La aceleración del bloque es 
aproximadamente igual a la gravitacional, la energía potencial de aire comprimido 
compensa la energía empleada para desplazar el aceite que se encuentra debajo del 
pistón. 
Mientras la válvula de rápido escape no sea accionada, el mecanismo mantiene 
suspendida la masa móvil impidiendo su retorno. Esta característica es una ventaja 
notable sobre los circuitos enteramente neumáticos. 
La principal limitación de este mecanismo a nivel industrial es el requerir grandes 
acumuladores de aceite a presión. De otra forma no lograría grandes desplazamientos 
de fluido hidráulico en tan poco tiempo y afectaría su capacidad de producción. Por lo 
mismo requiere de grandes bombas para abastecer de aceite al acumulador. 
Por lo mismo, este equipo es más costoso ya que por sus dimensiones utiliza más 
material y espacio. Sin embargo, actualmente es una de las tecnologías preferidas por 
los fabricantes por su grado de productividad [Schuler].  
1.2.2.4 Mecánicos 
Algunas máquinas cuentan con sistemas mecánicos que incluyen sogas, cables, 
cadenas o fajas para elevación de los martillos. 
El mecanismo de fajas presenta ventajas sobre el resto de sistemas, ya que la faja 
tiene buena resistencia mecánica a la tracción y evita el giro indeseado de la masa 
móvil. Estos sistemas cuentas con mecanismos para arrastrar, fijar y liberar la faja.  
Es una exigencia para los equipos actuales contar con sistemas de guiado.  
7 
 
 
 
1.2.3 Conformado plástico 
El conformado plástico es un proceso de fabricación y  consiste en la transformación 
plástica de la forma de un material sólido, en el cual la masa y la cohesión del material 
permanecen inalteradas. (Tschätsch, 2006, p.7) 
1.2.3.1 Términos y parámetros en deformación volumétrica 
1.2.3.2 Deformación plástica  
La deformación se entiende como la variación en el tamaño y forma de una pieza. 
Durante el conformado se puede distinguir dos tipos de deformación, la elástica y 
plástica. La elástica ocurre cuando la pieza recupera su forma original luego de 
retirada la carga cuando los esfuerzos desarrollados no sobrepasaron el límite elástico 
del material. La deformación plástica ocurre cuando el material ha sido expuesto a 
esfuerzos tan altos, como los que ocurren durante el impacto, que alcanza una nueva 
forma definitiva. [Tschätsch, 2006, p.8] 
La ciencia de los materiales describe la deformación plástica como la migración de 
gran número de dislocaciones sobre los planos preferentes de deslizamiento debido a 
los altos esfuerzos cortantes aplicados a la red cristalina del material en ese instante. 
Asimismo, el endurecimiento de los materiales se debe al reordenamiento de las 
dislocaciones en la estructura cristalina.  
  
Figura 1.1. Esfuerzos cortantes en la microestructura de los metales.  
  
8 
 
 
 
1.2.3.3 Esfuerzo a la fluencia o al flujo 
Es la solicitación requerida por el material para deformarse plásticamente. El material 
se endurece cuando se deforma, los esfuerzos a la fluencia son menores a mayor 
temperatura y el material es sensible a la velocidad con la que es deformado. Todos 
estos factores mencionados influyen en el comportamiento mecánico del material y las 
solicitaciones mecánicas durante el proceso de conformado plástico por impacto. 
[Tschätsch, 2006, p.8] 
En el rango de las altas velocidades de deformación, el comportamiento mecánico 
está caracterizado por el incremento a la sensibilidad de la velocidad de deformación, 
por el incremento de las fuerzas de inercia de la masa y por el carácter adiabático del 
proceso de deformación. (El-Magd, 1994, p.1, 2)  
1.2.3.4 Resistencia a la deformación 
Es la resistencia compuesta por el esfuerzo a la fluencia y la resistencia por fricción 
durante el proceso de conformado plástico. La resistencia por fricción se debe al 
deslizamiento de la pieza sobre las superficies del martillo y mesa. 
1.3 Determinación de los parámetros de diseño  
1.3.1 Relaciones entre los parámetros del proceso 
Las relaciones empíricas entre el esfuerzo, deformación y velocidad de deformación 
mediante fórmulas empíricas ahora están siendo remplazadas por las relaciones de la 
ciencia de los materiales basados en los modelos estructurales mecánicos cuyos 
parámetros son determinados  por métodos sistemáticos. De ello se puede explicar los 
modos de fractura y ductilidad están altamente relacionados con  la velocidad de 
deformación. (El-Magd, 1994, p.2)   
  
9 
 
 
 
1.3.2 Determinación de los parámetros de diseño  
En el primer capítulo se menciona que el requerimiento principal del equipo es 
conformar por impacto.  Dado este requerimiento de la máquina, se describirá a 
continuación la influencia de los parámetros del proceso sobre los parámetros 
dinámicos. Para ello es necesario describir algunas relaciones correspondientes a las 
propiedades mecánicas de los materiales cuando son deformados. Estas relaciones 
derivan en la determinación de las cargas dinámicas y la capacidad óptima de la 
máquina. 
1.3.3 Relaciones entre los parámetros del conformado 
Se tiene dos formas de relacionar los parámetros de conformado plástico por impacto. 
La primera es la relación constitutiva. La relación constitutiva está basada en modelos 
mecánicos-estructurales y ha sido ampliamente estudiada por la ciencia de los 
materiales debido a que los materiales se comportan diferentes a determinadas 
velocidades de deformación. Así se puede explicar los modos de fractura y la variación 
de la ductibilidad. La relación constitutiva describe y predice mejor el comportamiento 
mecánico de los materiales en un rango amplio de velocidades de deformación.  
La segunda es la relación empírica. Se basa en la modelo de endurecimiento por 
deformación e incluye el efecto de la temperatura. La desventaja de este método es la 
necesidad de realizar mucha experimentación para conocer las constantes del proceso 
que varían de material a material, además de tener un rango limitado de utilización. 
Este modelo no puede explicar lo que ocurre con las propiedades mecánicas fuera del 
rango.  (El-Magd, 1994, p. 2)  
Se utilizará el segundo método, ya que se cuenta con información experimental y la 
estimación de los valores mediante la relación empírica es válida para el rango 
estudiado. 
  
10 
 
 
 
1.3.4 Relaciones empíricas 
Las relaciones se simplifican bajo determinadas condiciones del proceso. Se tiene 
distintas relaciones si se establece que el proceso de deformación se llevará a cabo en 
frio o en caliente. 
Estudios demuestran que cuando se experimenta altas deformaciones a temperaturas 
bastante menores a la temperatura de fusión, el esfuerzo a la fluencia dependerá 
principalmente de la deformación. En la zona I de la figura 1.2, para el proceso de 
deformación de un acero de medio carbono, se observa que el esfuerzo cortante se 
mantiene casi constante a 493 K  independientemente de la velocidad de deformación 
cuando es menor a 100 s -1. También se observa que a menor temperatura de trabajo, 
mayores son los esfuerzos cortantes que deben ser aplicados para deformar el 
material. (El-Magd, 1994, p.4)  
 
Figura 1.2 Relación entre resistencia mecánica y la velocidad de deformación para un acero de 
medio carbono. (El-Magd, 1994, p.4) 
 
En la siguiente tabla se resume la influencia de cada parámetro del proceso para 
determinar la relación entre las propiedades mecánicas del material. 
  
11 
 
 
 
Tabla 1.1 Influencia de los parámetros del conformado sobre las propiedades mecánicas del 
material. 
 Esfuerzo a la fluencia 
En función de la temperatura 
Parámetro En frío En caliente 
Deformación Influye x 
Razón de deformación x Influye 
 
De las muchas situaciones que se puede analizar, la más crítica ocurre cuando se 
trabaja en frío. En caso de trabajar en frío, las características del material  depende 
significativamente del grado de deformación, mas no de la velocidad de deformación 
como se puede observar en la figura anterior en la zona I. 
Justificación de los materiales seleccionados 
En base a la prueba Charpy, en la cual se determina la temperatura de transición 
vítrea característica para cada material, se predice el comportamiento al impacto de 
los materiales bajo distintas temperaturas. El comportamiento puede ser dúctil o frágil 
dependiendo de la cantidad de energía que absorba la pieza ensayada. 
 
Figura 1.3 Curvas de la prueba Charpy. Comportamiento frágil o dúctil.  
Los materiales con estructura cristalina cubica centrada en las caras (fcc, por sus 
siglas en inglés) son los que presentan mejores características para ser trabajados por 
impacto ya que en un amplio rango de temperaturas presentan un comportamiento 
dúctil por predominar en ellos el mecanismo de deformación por deslizamiento.  De 
esta forma se evita que presenten fallas debido al trabajo de deformación. Algunos de 
12 
 
 
 
los materiales que cumplen con estas características son el aluminio (Al) y el cobre 
(Cu). 
 
Figura 1.4. Estructura cristalina cubica centrada en el cuerpo y cubica centrada en las caras  
El deslizamiento ocurre en los planos de empaquetamiento compacto. Al poseer más 
planos de deslizamiento que otras estructuras, una estructura fcc requiere menos 
energía para deformarse.  (Smith, 1998, p.195-243)  
1.2.4.3 Determinación de la fuerza y energía  
Identificado el caso más crítico, procedemos a estimar los parámetros (fuerza, 
deformación y energía y finalmente velocidad.)  
Entre todas las aleaciones que se disponen para conformar por impacto (aluminio, 
cobre y latón), la aleación de aluminio estructural AlMgSi1 es la más resistente a la 
deformación y por tanto, requiere las mayores cargas para deformarse. 
Se procede con el cálculo de las cargas bajo determinadas condiciones.  
1. La pieza es recalcada a 298 K. 
2. Las dimensiones iniciales de la pieza a trabajar son 20 mm de diámetro y 30 
mm de longitud. 
3. La pieza recalcada producto de un solo golpe tiene como longitud final 20 mm.  
13 
 
 
 
 
Figura 1.5. Dimensiones de la pieza. Antes (derecha) y después (izquierda) del 
recalcado 
 
El recalcado es una operación de conformado plástico en el cual se reduce la longitud 
de una pieza sin alterar el volumen total.  
Conformado en frío (Aluminio, Cobre, CuNi) 
A continuación se determina cuánta  energía y fuerza se requiere para deformar la 
barra de aluminio utilizando las relaciones propuestas por Tschätsch. 
La resistencia a la fluencia inicial en estado de recocido para la barra de aluminio es 
de 130 N/mm
2
; mientras la resistencia final del aluminio es 189 N/mm
2
 cuando el 
material ha sido endurecido por deformación. Los valores de resistencia a la fluencia 
son determinados en función de la deformación principal. (Tschätsch, 2006, p. 305) 
Deformación principal: 
Se evalúa la deformación principal ϕ en función de las longitudes inicial y final de la 
barra. 
             (
      
        
)       
  
14 
 
 
 
Fuerza: 
Se evalúa la fuerza máxima ocurrida durante el impacto en función de la resistencia 
final de la pieza Kstr1, del área final de la sección circular Af inal, el coeficiente de fricción 
μ, el diámetro final d1 y la longitud final de la pieza l1. 
               (  
 
 
   
  
  
)  
             
Donde el coeficiente de fricción μ asumido es igual a 0,15. (Tschätsch, 2006, p. 23) 
Energía:  
Finalmente, se puede evaluar la energía en función del volumen de la pieza V, la 
resistencia final Kstr1, la resistencia inicial Kstr0, la deformación principal ϕ y la eficiencia 
de la operación n. 
          
(           )
 
 
 
         
 
 
             
Donde la eficiencia asumida para la operación es igual a 0,8. (Tschätsch, 2006, p. 23) 
Los valores encontrados en este espacio definen la capacidad máxima del equipo. 
Cualquier otro material adecuado para ser trabajado por el martinete deberá tener 
menor resistencia que el aluminio estructural y requerirá menos de 760 N.m de 
energía para deformarse. 
Limitación de la altura y velocidad 
Por tratarse del proceso de conformado por impacto a altas velocidades es necesario 
evaluar hasta qué velocidad es conveniente que opere el equipo. Se evalúa distintas 
combinaciones de masa y altura hasta obtener la velocidad más adecuada en función 
de la energía necesaria para deformar la barra de aluminio.  
La velocidad final de la caída libre depende fundamentalmente de la altura de 
descenso. (Se considera que la aceleración g es igual a 9.81 m/s2) 
15 
 
 
 
  √    
La velocidad de deformación depende de la velocidad y geometría de la pieza. Por 
definición, la velocidad de deformación o razón de deformación es la relación entre la 
velocidad de caída de la masa y la longitud inicial de la pieza de trabajo en el sentido 
de la deformación principal.  
 ̇  
 
      
 
Para una pieza de longitud igual a 30 mm con distintas combinaciones de carreras y 
masas del martillo, se obtuvo la siguiente tabla. Además se sabe que la energía 
necesaria para deformar la barra de aluminio es 750 N.m.  
Tabla 1.2 Tabla de energía del martillo en función de la carrera del martillo, velocidad de 
deformación  
Carrera (m) 0.5 0.65 0.85 1.10 1.43 1.86 2.41 3.14 4.08 
Velocidad de 
deformación (s-1) 
104 119 135 154 176 201 229 261 298 
m
as
a 
 d
el
 m
ar
ti
llo
 
(k
g)
 
40 197 256 333 433 563 732 951 1237 1608 
48 237 308 400 520 676 878 1142 1484 1930 
58 284 369 480 624 811 1054 1370 1781 2315 
69 341 443 576 748 973 1265 1644 2137 2779 
83 409 531 691 898 1167 1518 1973 2565 3334 
100 491 638 829 1078 1401 1821 2368 3078 4001 
120 589 765 995 1293 1681 2185 2841 3693 4801 
 
 
Energía (N.m) 
 
Para obtener valores próximos al estimado requerido de energía (aprox. 750 N.m) se 
puede realizar distintas combinaciones de masa y  carrera del martillo. Por ejemplo, 69 
kg de masa con 1,10 metros de carrera o 120 kg de masa con 0,6 metros de carrera.  
En cuanto a la carrera del martillo, se observa que la velocidad crece en proporción a 
la raíz cuadrada de la altura. Es decir, aumenta en menor proporción que los 
16 
 
 
 
incrementos de la altura. Por ejemplo, para triplicar la velocidad de deformación de 
104.4 s-1 a 298.4 s-1 es necesario incrementar ocho veces la altura.  
Adicionalmente, se encontró que los procesos de conformado industrial normalmente 
no trabajan a velocidades de deformación mayores que 200 s-1 (Tschätsch, 2006), 
puesto que las piezas trabajadas tendrían muy poco espesor o las velocidades del 
martillo serían muy altas, tal como está expresado en la definición de velocidad de 
deformación. 
El rango de masas variables permite trabajar materiales menos resistentes, como el 
cobre o latón,  a la máxima velocidad de deformación permitida por el equipo.  
En base a la tabla y las afirmaciones anteriores, se limitará la energía del equipo a 750 
N.m a una carrera máxima de 1800 mm. En cuanto a la masa del martillo, se limitará a 
valores entre los  40kg hasta 120 kg.  
1.3.5. Energía de deformación – Conceptos complementarios.  
Relación entre la energía cinética y la fuerza de contacto 
Es posible estimar la energía necesaria para la deformación si se conoce el 
comportamiento de la fuerza en el tiempo y la velocidad anterior al impacto.  
              ∫     
 
Figura 1.6. Valores de fuerza en el tiempo. Curva característica de una prueba de impacto. 
Pero la velocidad, tal como la suponemos, en caída libre está en función de la altura 
de descenso y cumple la siguiente relación:  
   √    
  
17 
 
 
 
Relación entre la fuerza y dureza del material 
 
Figura 1.7. Curvas de dos pruebas de impacto “fuerza en el tiempo” realizadas con la misma 
cantidad de energía cinética.  
Si se registran los valores de la fuerza y el tiempo de impacto para dos materiales de 
distinta dureza tales como el acero y el aluminio, la prueba del material con mayor 
dureza presenta un menor ancho de pulso y un mayor pico de fuerza (Metz, 2007). 
Ello se puede explicar con un modelo dinámico de masa – resorte, en el cual 
dependiendo de la rigidez del sistema se reduce o incrementa el tiempo de contacto 
(periodo de oscilación). 
La dureza del material está relacionada con la rigidez. Los elementos que forman parte 
del sistema y tienen baja rigidez también se deforman. Los cambios en las 
dimensiones (deformaciones) de la pieza dependen del pico de fuerza; si la rigidez del 
sistema es baja, la fuerza también será baja y la pieza se deformara menos. Por ello, 
la rigidez del sistema es uno de los aspectos más importantes a trabajar durante el 
diseño del martinete. 
Mecanismos de deformación 
Su importancia radica en que para distintas condiciones de la operación influyen de 
forma diferente en los esfuerzos desarrollados y por tanto se necesita una metodología 
distinta para el cálculo de cargas. 
Como en el caso de los metales deformados a altas temperaturas que presentan un 
comportamiento de suavizado debido a la recuperación y recristalización dinámica. 
Los estudios muestran como con el incremento de la temperatura y velocidad de 
deformación, la resistencia al flujo disminuye y la recristalización dinámica es más 
18 
 
 
 
propensa a ocurrir. La recristalización dinámica elimina las dislocaciones y las 
microfisuras (imperfecciones) que son acumuladas por endurecimiento mecánico. Lo 
cual mejora el comportamiento termoplástico de los metales en gran forma.1 2 
Recalcado 
El recalcado consiste en la reducción longitudinal de una pieza, tal como se muestra 
en el esquema se reduce la altura y se incrementa el diámetro.  
    
Figura 1.8. Esquema del resultado del recalcado. 
La resistencia de la pieza a ser deformada y el área de la sección deformada definen 
la fuerza necesaria para ser deformadas.  La resistencia depende del material, la 
temperatura de la pieza, la relación de compresión, la velocidad de deformación e 
inclusive de la complejidad geométrica de la pieza.  
 
Figura 1.9. (Derecha). Diagrama fuerza – desplazamiento durante el recalcado. (Izquierda) 
Diagrama fuerza - tiempo. 
                                                                 
1.  Xue Qin Jin et al., Influences of Strain Rate and Deformation Temperature on Flow Stress and 
Dynamic Recrystalliazation of Heat Resistant Steel P91, 2011, Advanced Materials Research, 
217-218, 958. 
2 T.Z. Blazynski, Materials at High Strain Rates, Springer, 1987, pag. 136, 260 p. 
19 
 
 
 
En la figura 1.9 se muestra la curva característica de la operación de  recalcado. La  
fuerza alcanza su máximo valor al final de la carrera de deformación. Mientras que en 
la curva fuerza vs tiempo se registran valores de fuerza aún después de alcanzado el 
pico. Ello puede estar asociado con la acumulación de energía elástica y la 
recuperación elástica de los elementos del sistema. Lo mejor sería realizar una 
verificación experimental del fenómeno, ya que no se puede determinar con certeza el 
tiempo en el que se está realizando efectivamente trabajo de deformación.  
  
20 
 
 
 
1.4. Partes principales del equipo 
A continuación se muestra los elementos más importantes de los martinetes y 
máquinas de laboratorio.   
1.4.1 Martillo 
Masa libre que define la cantidad de energía transferida a la pieza por golpe. La 
cantidad de masa está relacionada con  la energía potencial del equipo. 
1.4.2 Estructura 
Elemento que da soporte a  las guías y al sistema de izaje del martillo. Por ello, su 
dimensionamiento estará basado en el largo de las guías y las cargas trasmitidas 
desde las guías redondas hasta los cimientos, además de las cargas generadas por el 
sistema de izaje.  
1.4.3 Sistema de elevación  
Permite trasformar la energía eléctrica en energía potencial. En  el caso del martinete 
la energía potencial es almacenada en el martillo. 
1.4.4 Sistema de adquisición de datos 
Los sistemas electrónicos de adquisición concentran los datos de los parámetros del 
proceso tales como la velocidad o la fuerza de impacto. 
1.4.5 Acelerómetros 
Son los sensores diseñados para registrar la desaceleración del martillo y entregar una 
señal eléctrica en función de la magnitud registrada. 
1.4.6 Transductor de fuerza 
Es un dispositivo que transforma una señal física en eléctrica. La señal física es la 
presión sobre su superficie y la señal de salida es una señal eléctrica de tensión que 
requiere ser amplificada para los fines de medición. 
  
21 
 
 
 
1.4.7 Guías lineales 
Son elementos cuyo propósito es reducir el rozamiento y suavizar el deslizamiento de 
los cuerpos en una trayectoria fija. Las variedades de guías se pueden diferenciar por 
la precisión de su movimiento, capacidad de carga y  velocidad con que se desplazan.  
1.4.8 Sistema de liberación (accionado a distancia) 
Mecanismo que permite liberar el martillo una vez alcanzada la altura de trabajo. El 
sistema tiene la finalidad de trabar el martillo y evitar que descienda. 
1.4.9 Actuador lineal eléctrico 
La geometría de este motor es cilíndrica. La energía electromagnética del actuador 
genera el movimiento axial del vástago durante ida y retorno.  
Las desventajas tecnológicas están relacionadas con su construcción, resulta difícil 
mantener la separación entre el inductor e inducido. El entrehierro demanda intensidad 
de campo para lograr la inducción necesaria. Son más grandes que un motor rotario 
de igual potencia y tienen menor rendimiento. 
 
  
22 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 2 
PLANTEAMIENTO CONCEPTUAL 
En este capítulo se detalla los pasos seguidos para la determinación de las solución 
conceptual óptima del equipo. 
2.1. ESTRUCTURA DE FUNCIONES 
2.1.1. CAJA NEGRA 
En la caja negra se simplifican los todos procesos técnicos del martinete.  
23 
 
 
 
 
Figura 2.1. Entradas y salidas del martinete. 
Explicación breve  
Se logra un cambio en la forma la pieza al ser procesado por el equipo. 
Entradas 
Energía: Mecánica (Necesaria para accionar el equipo) y humana para colocar la pieza 
y accionar la máquina. 
Material: Bloques de metal a temperaturas superiores a la recristalización. 
Señal: Visual Pieza correctamente posicionada. 
Salidas 
Energía: Calor, ruido y vibración. 
Material: Pieza de metal deformada más cascarilla.  
Señal: Visual y sonora (pieza deformada) y mediciones realizadas.
24 
 
 
 
 
25 
 
 
 
2.2 Matriz morfológica  
A continuación se muestra algunos portadores de solución para cada uno de los 
aspectos que debe satisfacer el equipo.  
Mecanismo de elevación  Cadenas 
 Fajas 
 Motor eléctrico.  
 Cilindros neumáticos 
 Cilindro a vapor 
 Tornillo  
Seguridad  Rejilla  
 Pulsadores a distancia de la 
máquina. 
Guiado  Barras redondas. 
 Con canales V 
 Guía redonda. 
 Guía plana 
 Sin guía  
Medición de la energía  Indicadores sobre la máquina.  
 Señales visuales.  
Sistema de adquisición de 
datos  
 Acelerómetros piezoeléctricos. 
 Acelerómetros piezoresistivos. 
Sujeción   Desde la mesa con tornillo. 
 Sin apoyo. 
 Elevadores por vacío 
 Elevadores electromagnéticos 
Sistema de seguridad 
antiretorno 
 Fricción en las partes móviles. 
 Cable amarrado. 
 Cuña 
 
  
26 
 
 
 
2.3 Conceptos solución  
A continuación se muestran las distintas combinaciones del martinete. 
 
(1)                   (2)                    (3)                        (4) 
Figura 2.2 . Conceptos ordenados de izquierda a derecha: (1) Electromagnético, (2) Mecánico, 
(3) Neumático,  (4) Electromecánico  
2.3.1 Concepto solución 1 
Componentes 
 Mecanismo de elevación por cadena y motor eléctrico con frenado pasivo. 
 Elevador electromagnético con rectificador  
 Martillo guiado 
 Guías planas soportadas por la estructura 
27 
 
 
 
 Mesa (yunque) 
 Sensores de la carga y sistema de adquisición de datos 
Descripción  
Esta solución permite elevar el martillo a posiciones intermedias de la carrera 
mediante un elevador magnético sujeto a un sistema mecánico de elevación.  
Para dejar caer el martillo por las guías, se interrumpe el campo magnético del 
elevador.  
Ante ausencia de energía eléctrica durante la elevación, el sistema mecánico de 
elevación supone un riesgo puesto que deja caer el martillo involuntariamente. 
2.3.2 Concepto solución 2  
Componentes 
 Mecanismo de elevación por cadena y motor eléctrico con frenado pasivo. 
 Mecanismo mecánico de liberación del martillo. Gancho con resorte.  
 Tope móvil de altura regulable por un tornillo autobloqueante 
 Martillo guiado 
 Guías planas soportadas por la estructura 
 Mesa (yunque) 
 Sensores de la carga y sistema de adquisición de datos 
Descripción 
Esta solución cuenta con un tope móvil que puede ubicarse en cualquier posición 
intermedia de la carrera. 
El sistema de liberación del martillo consta de un gancho y mecanismo botador del 
gancho que actúa cuando el martillo alcanza el nivel del tope. 
 
2.3.3 Concepto solución 3 
Componentes  
 Dos cilindros neumáticos sin vástago en paralelo con frenado pasivo. 
28 
 
 
 
 Unidad de aire comprimido y conexiones. 
 Martillo guiado 
 Guías planas soportadas por la estructura 
 Mesa (yunque) 
 Sensor de la carga y sistema de adquisición de datos 
Descripción   
Esta solución permite elevar el martillo mediante una canasta sujeta a actuadores 
neumáticos situados en paralelo. Estos actuadores permiten alcanzar posiciones 
intermedias mediante topes en sus guías. 
Durante el descenso la canasta y el martillo se separan. De esta forma el martillo 
desciende libremente hasta impactar con la mesa. 
Ante la ausencia de presión durante la elevación, el cilindro cuenta con un sistema 
neumático de frenado pasivo que fija la posición de la canasta y martillo. 
Se cuenta además con un sistema de adquisición de datos y sensores de carga. 
2.3.4 Concepto solución 4 
Se incorporó la mejora de un actuador lineal eléctrico para la liberación de la carga al 
concepto solución 2 y se retiró el tope móvil. 
  
29 
 
 
 
2.4 Evaluación de criterios técnicos y económicos. 
Equipos 1.Mecánico (MEC1) 
Electromagnético  
2. Mecánico (MEC2) 
Mecánico 
3.Neumático (NEU) 
Criterios técnicos 
Pedagógico – didáctico (Importancia alta) 
El propósito del equipo es estudiar la complejidad dinámica del conformado por impacto. 
Como parte de ello se requiere que la maquina regule los parámetros del proceso. Para 
ello es necesario visualizar cómo se realizan están regulaciones. Por esta razón se 
valoran con mayor puntaje las opciones mecánicas. 
Contaminación 
MEC1, MEC2: Poca. Las máquinas utilizan eficientemente la energía. 
NEU: La neumática consume más energía, en consecuencia contamina más.  
Contaminación sonora 
MEC1, MEC2: La contaminación sonora proviene del proceso de impacto. 
NEU: Además del ruido por impacto, hay ruido por el aire descargado del cilindro. 
Intercambiabilidad 
MEC1, MEC2: Son intercambiables. 
NEU: Algunos elementos del sistema neumático están normalizados. 
Baja posibilidad de error del operario 
MEC2: Presenta menor posibilidad de error del operario 
Rápida variación de las condiciones/parámetros de operación.  
Tiempo estimado de cambiar las condiciones del proceso. 
NEU: La opción neumática presenta un mecanismo electroneumático para el ajuste 
rápido de la carrera de la masa.  
Facilidad de automatización 
MEC1: MEC2: NEU: Todas las opciones tienen posibilidades de automatización. Pero, la 
opción neumática presenta mayor facilidad de ser automatizada.  
Buena accesibilidad a los sistemas de medición  
Similar en todas las máquinas   
Probabilidad a inducir error en la lectura 
Similar en todas las máquinas.  
Confiabilidad en alcanzar la altura con precisión y repetitividad de los parámetros 
de seteo. 
30 
 
 
 
MEC2: El tope y mecanismo de liberación aseguran la repetitividad de la operación.   
Requerimiento de espacio 
La opción mecánica requiere mayor espacio. 
Uso de la energía (De los mecanismos de elevación)  
MEC1: Requiere de una fuente eléctrica adicional para accionar el imán.  
MEC2: Requiere de una fuente eléctrica adicional para el motor que mueve el tornillo de 
transporte. 
NEU: El fluido presenta caídas de presión cada vez que el aire atraviesa los accesorios 
del sistema neumático. La etapa de compresión del aire del aire también es ineficiente. 
Seguridad 
MEC1: MEC2: Los sistemas de elevación cuentan con mecanismos pasivos que impiden 
el retorno involuntario de la carga  durante la elevación del martillo. 
MEC2: Tiene alta seguridad mecánica. 
NEU: El aire es una mezcla no explosiva. Cuenta con freno pasivo y ante la ausencia de 
presión durante la carrera de elevación impide el descenso de la masa. 
Complejidad 
MEC2: Puede resultar más complejo por el gran número de piezas. 
MEC1: MEC2: NEU: El principio de funcionamiento es el mismo en todos los casos.  
NEU: Cuenta con menos elementos. Salvo los accesorios de control. 
Criterios económicos  
Costo de la tecnología.  Proporción de las partes estándar a piezas únicas. 
MEC1: MEC2: La mayoría de los componentes pueden ser fabricados, son de materiales 
comerciales y construcción sencilla. 
NEU: El mecanismo neumático presenta la mayor cantidad de piezas únicas. 
Facilidad al operar Tiempo y costo. 
MEC1: MEC2: NEU: Los equipos pueden ser comandados a distancia. 
Costos de operación 
Considerando que todas las máquinas pueden ser operadas por una sola persona. 
MEC1: MEC2: Tiene características similares de operación.  
NEU: Dada la baja eficiencia del sistema neumático, es la opción más costosa. 
Facilidad de montaje y tiempo de pruebas antes de comenzar a operar 
MEC1: MEC2: NEU: Todas son tienen la misma facilidad de montaje. 
Cantidad de piezas 
MEC1: Es una máquina de construcción simple y cuenta con pocas piezas. 
31 
 
 
 
MEC2: El equipo enteramente mecánico requiere de una gran cantidad de piezas. 
NEU: El mecanismo neumático es de construcción simple.   
Posibilidad de fabricarse en el propio taller 
MEC1, MEC2: Son posibles de fabricarse en el propio taller. 
NEU: Los componentes del mecanismo de elevación tienen que ser adquiridos del 
fabricante. 
Pocos desperdicios 
MEC1: MEC2: NEU: El proceso genera pocos desperdicios. Solo se cambia la forma de 
la pieza sin alterar el volumen total de la pieza. 
 
 A continuación se muestra la valorización de los conceptos solución. 
32 
 
 
 
33 
 
 
 
34 
 
 
 
2.6 Gráfica de la evaluación de los conceptos solución 
 
Figura 2.3. Valoración técnica – económica de las alternativas. 
 
El concepto solución S4 es el producto de la mejoras de S1 y S3. El concepto solución 
S4 satisface mejor los requerimientos para el equipo en las necesidades de brindar 
seguridad durante la operación y utilidad didáctica.  
En el siguiente capítulo se seguirán incorporando mejoras técnicas a la solución 
escogida 
  
S1 
S2 
S3 
S4 
Ideal 
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
V
al
o
r 
 t
é
cn
ic
o
 
Valor económico 
35 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 3 
DISEÑO DEL MECANISMO Y CÁLCULO DE LOS ELEMENTOS 
Conocidos los valores dela fuerza de impacto, la carrera del martillo y la masa 
escalonada del martillo, se puede desarrollar el cálculo y selección de los 
componentes más importantes del martinete. 
El diseño preliminar cuenta con un sistema electromecánico de elevación para 
posicionar el martillo. Además cuenta con mecanismo mecánico eléctrico de liberación 
instantánea que puede ser operado a distancia. 
3.1 Funcionamiento del mecanismo de elevación  
El sistema de elevación funciona de la siguiente manera. 
1. El martillo descansa apoyado sobre la mesa de trabajo. Debe acoplarse al 
mecanismo de liberación. 
2. Una vez acoplado, se configura la referencia de la altura. 
3. El gancho del mecanismo de elevación asciende junto con el mecanismo de 
liberación rápida. 
36 
 
 
 
4. El martillo alcanza la altura requerida y se coloca la pieza de trabajo. 
5. Se activa el actuador del sistema de liberación. 
6. El martillo desciende libremente apoyado en las guías. 
7. Alcanzado el paso anterior se reinicia la operación. 
Para mejorar la posición del martillo a la altura deseada se sugiere la incorporación 
de un sistema de control soportado por sensores de posición y el motor eléctrico. 
En el siguiente esquema se muestra su distribución. 
 
Figura 3.1. Ensamble del martinete 
A continuación se muestra la selección y cálculo de los componentes más importantes 
del sistema de elevación.  
Para el diseño se optó utilizar medios mecánicos para elevar el martillo y teniendo en 
consideración que la aplicación exige la regulación de la altura.  
  
37 
 
 
 
3.2 Diseño del portapesas 
Como se mencionó en los requerimientos del equipo, debe ser posible la regulación de 
la masa del martillo. Para ello, se cuenta este elemento llamado portapesas, el cual 
permite variar la masa desde 50 hasta 120 kg. El martillo cuenta con 7 pesas 
desmontables de 240 x 180 x 32 mm de acero St 37. Cada pesa tiene una masa 
aproximada de 10,7  kilogramos. La masa aproximada del portapesas es igual a 40,3 
kilogramos y tiene las dimensiones 520 x 510 x 160 mm. En la parte inferior del 
martillo se tiene un bloque de acero austenítico X120Mn12 con dimensiones 120 x 90 
x 25 mm y masa de aproximadamente 2 kilogramos.  También forman parte del 
martillo los cuatro rodamientos lineales. Cada uno de ellos tiene una masa de 2,17 
kilogramos. La masa del martillo sin incluir pesas es aproximadamente igual a 51 kg. 
 
  
Figura 3.2. Esquemas del martillo (arriba) y portapesas (abajo). 
38 
 
 
 
La parte más crítica del portapesas es la sección media inferior. Por ello cuenta con 
refuerzos radiales que distribuyen las cargas hacia el resto del cuerpo. 
3.2.1 Verificación de las uniones soldadas entre las placas laterales y el cuerpo 
principal. 
Se realiza una simplificación para analizar la zona más esforzada del elemento 
portapesas. 
La simplificación consiste en considerar la sección media del portapesas como una 
viga empotrada por ambos extremos y la carga de impacto esta aplicada en el medio 
de la viga. 
 
 
Figura 3.3. La parte más exigida del portapesas durante el impacto (Superior). Vista frontal y 
transversal de la viga (Inferior). 
En el esquema se muestra la sección media inferior del portapesas. La sección de viga 
consta de una plancha de 10 mm que actúa como alma y dos planchas de 6 mm que 
trabajan como alas. 
Se puede observar que las alas tienden a deslizar sobre el  alma, si es que no 
estuvieran unidas. Los esfuerzos cortantes que evitan que estos deslicen deben ser 
soportados por los cordones de soldadura ubicados a cada lado del alma.  
39 
 
 
 
 
 
Figura 3.4. Verificación de los cordones de soldadura a esfuerzos cortantes. 
 
Los cordones de soldadura evitan que resbalamiento entre el alma y ala. El esfuerzo 
cortante en la sección transversal de la viga, sometida a flexión, se debe a la fuerza de 
impacto de 94 kN. (Ver figura 3.3) 
   
     
  
        (  
  
 
)
 
   
  
   
  
         
  
   
     
 
  (      )
     
     
 
   
                     
 
   
 
Para las uniones soldadas se tomó como referencia la norma DIN 18800. La que 
establece los valores máximos y mínimos de espesor de garganta, así como, los 
valores admisibles de resistencia de los cordones. El material es un St-37 con 
resistencia a la fluencia igual a 240 N/mm2 y con el factor α de 0.95 por ser una 
soldadura en ángulo.  
  
40 
 
 
 
3.2.2 Verificación de los refuerzos radiales 
Los elementos de rigidización soldados al alma están dispuestos según el siguiente 
arreglo. 
  
  
Figura 3.5. Verificación de los refuerzos radiales. 
Arriba se puede observar una proyección de la sección donde el alma está dispuesta 
para trabajar a compresión o tracción  y los refuerzos evitan la flexión del alma cuando 
aparecen cargas excéntricas a la línea de simetría. Los cordones de soldadura que se 
muestran proyectados soportan esfuerzos de corte. 
          (
       
      
)          
 
Figura 3.6. Esquema de las soldaduras entre el alma y los refuerzos radiales. . 
41 
 
 
 
 
La fuerza cortante debe ser soportada por los cordones de soldadura. 
  
 
    
            
3.2.3 Resultados obtenidos por el método de elementos finitos.  
Consideraciones. La carga de impacto de 92 kN esta aplicada como una carga 
distribuida uniforme de 8,5 N/mm2 sobre la toda superficie inferior media del 
portapesas. Se consideró el portapesas como un sólido rígido y la base del portapesas 
esta empotrada al suelo. 
En el análisis transitorio del portapesas se considera que las superficies laterales 
(planchas soldadas) deslizan sin deformarse y la fuerza es aplicada como un pulso 
con una duración de 10ms. El tiempo que se asumió de 10ms es un  valor intermedio 
entre los valores que sucederían si impactaran dos bloques de acero, 5 ms y dos 
bloques que se deforman plásticamente igual a 20ms.  
 
Figura 3.7. Condiciones de la cargas y apoyos del portapesas. 
42 
 
 
 
 
Figura 3.8. Determinación de los esfuerzos en el portapesas por el método de elementos finitos  
Resultados. Los máximos esfuerzos ocurren puntualmente en los agujeros donde va 
sujeto el bloque superior de impacto y son iguales a 200 N/mm2.  
Discusión de los resultados. El limite a la fluencia de un acero St-37 es igual a 240 
N/mm2. Por tanto en este punto el factor de seguridad es 1,2. En otras partes criticas 
del portapesas, los esfuerzos alcanzan los 130 N/mm2. Es un valor próximo al que se 
estimó analíticamente. 
 
Figura 3.9. Determinación de las deformaciones en el portapesas por el método de elementos 
finitos. 
43 
 
 
 
Las deformaciones más críticas ocurren próximas al medio de la sección inferior y 
tienen un valor de 0,08 milímetros. 
3.3 Selección de las guías y sus apoyos. 
3.3.1 Cargas en las guías y rodamientos 
Según la metodología de selección de guías de SKF, una parte importante de la 
selección del tipo de rodamiento es conocer la dinámica de los rodamientos.  
 
Figura 3.10. Distribución de cargas sobre el rodamiento. 
El fabricante SKF recomienda un arreglo de dos rodamientos por guía para evitar la 
rotación y mala distribución de cargas sobre un solo rodamiento rodamiento. 
DCL1. Durante el impacto. La máxima solicitación en los rodamientos ocurre durante 
el impacto. Esta carga presenta cierto grado de excentricidad respecto al centro de 
gravedad del portapesas. 
 
Figura 3.11. Derecha. Disposición de los rodamientos y la carga excéntrica respecto al centro 
de masa del portapesas. Izquierda. DCL de las guías. 
44 
 
 
 
La magnitud de la fuerza excéntrica es igual a 94 kN y corresponde a la máxima fuerza 
durante el impacto. La fuerza excéntrica produce momentos en el portapesas que son 
equilibrados con reacciones radiales entre los rodamientos y las guías redondas. A 
modo de simplificar el cálculo, se considera inicialmente el portabloques como un 
bloque rígido.  
La vista en la figura 3.12 corresponde al bloque inferior de impacto donde se ubica la 
pieza cilíndrica a deformar. Fuera de esta superficie la pieza no puede ser deformada. 
Entonces, la máxima excentricidad posible en el plano ocurre aproximadamente a 20 
mm en sentido longitudinal “y” y 20mm transversal “z” del portapesas.  
 
Figura 3.12. Máxima excentricidad de la pieza cilíndrica sobre el bloque de impacto.  
La excentricidad produce reacciones normales de igual magnitud sobre las guías  pero 
con sentidos contrarios con separación entre rodamientos igual a 400 mm. Ver figura 
3.11. 
La fuerza en el sentido longitudinal “y”: 
        
 
 
   
   
  
 
       
 
 
  
   
       
La fuerza en el sentido transversal “z”: 
        
 
 
   
   
  
 
       
 
 
  
   
        
                   
45 
 
 
 
3.3.2 Verificación del rodamiento 
Para la verificación del rodamiento se toma en consideración los siguientes factores: 
que la carga es constante en magnitud y dirección, además actúa radialmente sobre 
una fila de bolas. Además se tiene un factor relacionado con la dureza del eje. 
Dado que: 
   
             
 
 
   
    
          
 
      
       
        
El método para calcular la vida útil del rodamiento se detalla en el estándar ISO 14728: 
“Method for calculating dynamic and static loads ratings”. La vida útil generalmente 
esta expresada en metros recorridos. 
El factor de seguridad “S0“dado por el fabricante SKF cuando los rodamientos operan 
normalmente bajo cargas pesadas de impacto es igual a 4. 
La carga radial obtenida debe ser comparada con la carga estática del rodamiento 
“Co” 
3.3.3 Selección del rodamiento  
Para aplicaciones donde  las velocidades de los rodamientos superan 1 m/s y la 
precisión no es tan determinante (>1 mm) se puede utilizar los rodamientos lineales de 
bolas.  (SKF, 2011, p. 8) 
El rodamiento que cumple con los requerimientos antes mencionados es el que se 
muestra a continuación: 
 
Figura 3.13. Unidad de rodamiento LUCR 60 – 2 LS (sellado por ambos lados) 
46 
 
 
 
           
La carga estática Co de la unidad LUCR 60 – 2LS es 18000 N. Este valor fue tomado 
del catálogo SKF Linear ball bearings (2011).  
El rodamiento consta de jaula polimérica, una pista fabricada en acero templado para 
guiar conjuntos de bolas, y sellos a ambos lados del rodamiento lineal de bolas. 
Los componentes mecánicos del sistema de guiado son de construcción económica. 
Entre otras ventajas, la utilización del rodamiento lineal de bolas reduce la complejidad 
del montaje de las guías,  reduce el tiempo de montaje, requiere únicamente de piezas 
no solo estandarizadas sino especializadas, y principalmente permite  guiar el martillo 
con pocas pérdidas por fricción.  
 
3.3.4 Diseño de las guías  
En el manual Linear bearings and units (SKF, 2011)  se recomienda para las guías el 
acero AISI 1055 con tratamiento superficial mayor y dureza superficial mínima de 60 
HRC. 
Las dimensiones principales de las guías son la longitud, relacionada con la carrera 
máxima del portapesas, y el diámetro, acorde a la máxima deflexión permitida en las 
guías. El diámetro de la guía es 60 milímetros y la tolerancia es h7.  
Las guías requieren tener una cilindricidad igual a 0.0075 mm y una rugosidad  IT7 con 
Ra 1,6 um. 
3.3.5 Deflexión de la guía 
Bastará analizar las solicitaciones en una de las guías para conocer los  esfuerzos y 
deformaciones máximas. El caso analizado es cuando las guías soportan las cargas 
generadas debido a la excentricidad de la reacción de la fuerza de impacto sobre el 
portapesas.  
Para el análisis se consideró en los extremos de la guías apoyos articulados. Bajo 
esas consideraciones se pudo determinar la máxima deflexión que se da casi al medio 
de la guía.  
47 
 
 
 
A continuación se muestra el DCL de la guía. 
 
Figura 3.14. DCL de la guía 
 
 
Figura 3.15. Diagrama de fuerza cortante graficado en Autodesk Inventor. Diagrama de 
momentos flectores graficado en Autodesk Inventor 
  
48 
 
 
 
Rigidez de la guía.   
Se verifica la máxima deflexión que se origina en las guías.  
 
Fig.3.16. Deflexión en la guía  
La máxima deflexión ocurre cerca de la mitad de la guía y tiene un valor de 3,8 
milímetros.  
3.4 Diseño del sistema de elevación  
 
Figura 3.17. Ensamble del sistema de elevación. 
3.4.1 Selección del cable 
El cable es el elemento encargado de transmitir la fuerza de elevación al martillo. Se 
opta por seleccionar un cable de alma de fibra (polipropileno). Los alambres del alma 
de fibra tienen propiedad de deslizar y ajustarse cuando el cable se dobla. (Larrode, 
1996, p. 99) 
  
49 
 
 
 
Tabla 3.1. Cable de alma flexible 
  
La disposicion 6 x19 es usada en aplicaciones de elevacion por su gran resistencia a 
la abrasion y flexibilidad. 
Sobre el diámetro mínimo de enrollamiento, Larrode (1998, p.98) señala que hay una 
relación entre el diámetro del tambor y la vida útil de cable. Mientras menor sea el 
tamaño del tambor, menor será la vida útil del cable. 
El cable seleccionado tiene una relación geométrica mínima recomendada entre 
diámetro de la polea y del cable igual a 34. Si el diámetro requerido de cable es 3,16 
mm, entonces el diámetro mínimo de tambor es 108 mm. 
  
Figura 3.18. Relación entre diámetro mínimo del tambor y el diámetro del cable.  
El largo del tambor depende del número de espiras enrolladas y el diámetro del cable. 
Mientras el número de espiras enrolladas depende de la longitud enrollada del cable, 
del diámetro del tambor y del cable.   
El número de espiras enrolladas es igual a: 
             
                           
  (   )
             
La longitud de tambor cubierta por el cable es igual al número de espiras enrollas más 
las espiras adicionales utilizadas para la  sujeción del cable. 
50 
 
 
 
                  (                                  )          
La longitud del tambor será de 32 milímetros, ya que se requiere una separación 
adicional entre los extremos del tambor. 
El peso del cable para una longitud de 2200 milímetros que cuelga cuando el cable 
está totalmente extendido es igual a 0.079 kg-f. 
La relación de las masas que cuelgan del cable son: 2,2 kg del motor lineal, 2,4 kg del 
apoyo del motor lineal, 0,1 kg de los resortes, ganchos y pines, 0,08 kg de cable y 120 
kg del portapesas. 
La masa total de las cargas que cuelgan del cable es aproximadamente 125 kg. 
Para seleccionar el alma del cable y la construcción torón se recuerda que la 
aplicación es de elevación. Por lo cual el factor de seguridad debe estar comprendido 
entre 4 y 5. (Catalogo Cables Deacero, p. 10).  
La relación de seguridad  “zp” del cable se calcula de la siguiente manera: 
   
  
 
          
(                         )
(                       )
 
Entonces para una tracción máxima de 1250 newton es suficiente el cable 
seleccionado de 1/8” que tiene una carga a la rotura igual a 6300 newton. 
               
El torsor que transmite el cable al eje del tambor será igual a: 
   
(   )        
 
         
  
51 
 
 
 
3.4.2 Diseño del tambor 
 
Figura 3.19. Esquema del tambor ranurado y geometría. 
El tambor ranurado permite enrollar como máximo una capa de cable. Dado que el 
tambor tiene 108 milímetros de diámetro, es conveniente la fabricación del mismo a 
partir de un disco.  
A pesar que las paredes del tambor están sometidas a solicitaciones de torsión, flexión 
por la tracción del cable y compresión por el apriete del cable, los tambores de acero 
moldeado no requieren ser verificados.  
Fijación del cable al tambor 
Se deja entre 1,5 a 3 espiras muertas en el tambor para que el cable trabaje en 
buenas condiciones de fijación: sin flexiones bruscas ni esfuerzos elevados. Las 
espiras muertas quedan sujetas al tambor por el apriete de una placa y tornillo. 
  
52 
 
 
 
Dimensionamiento la placa de apriete 
La placa cubre las dos últimas espiras del cable. La tensión del cable ante la placa 
     es proporcional a la tensión máxima del cable     .                                                                                                       
     
    
   
      
La fricción (f), entre el cable y tambor. Cuyo valor mínimo es 0,1. α es el ángulo de 
tambor abrazado por las espiras muertas. (Larrodé, 1998, p. 171) 
Verificación del apriete del tornillo 
El tornillo M4 debe ejercer una fuerza de apriete al cable   igual a:  
  
        
 
      
Donde el coeficiente de descargada   debido al rozamiento entre espiras y tambor es 
0,65, el coeficiente de seguridad   es 1,25 y el coeficiente de resistencia al 
deslizamiento del cable apretado por placas es 0,35.  (Larrodé, 1998, p. 172) 
Solo un tornillo M4 es necesario para fijar el cable al tambor.  
 
Figura 3.20. Esquema de la placa y tornillo sobre el cable. 
3.5 Planteamiento del motor y reductor. 
Se seleccionó un motor DC debido a las características requeridas en la aplicación. 
Estas características son buen control de la posición a bajas velocidades y la 
capacidad de cambiar el sentido de giro. La utilización un motor DC en el sistema de 
elevación favorece a la regulación con precisión de la altura. 
3.5.1 Selección del motor de DC 
Las razones para utilizar un motor DC durante la regulación de la altura del martillo 
son principalmente el amplio rango de velocidades de giro, la facilidad de cambiar el 
53 
 
 
 
sentido de giro, la posibilidad de trabajar con el mismo torque a distintas velocidades y 
la posibilidad de automatización al integrarlo a un sistema de control. 
Es necesario señalar que el comportamiento de la carga es constante. Un sistema de 
control puede ayudar a mantener la velocidad constante durante el ascenso. Dado que 
la aplicación exige tener una velocidad controlada para poder regular adecuadamente 
la altura de martillo. 
Se debe poder controlar la velocidad de elevación del martillo para las distintas masas 
del martillo en el rango de 50 a 120 kg. 
Además se conocen las cargas que debe mover el motor. Como se puede observar en 
la gráfica un motor MAXON EC 60 Ø60 mm tiene un rango de operación a 2680 rpm 
con un par nominal máximo en continuo de 830 mNm. 
 
Figura 3.21. Motor Maxon 400W 48V 
 
Figura 3.22. El área sombreada muestra condiciones posibles de operación para el motor 
Maxon. 
  
54 
 
 
 
3.5.2 Selección del reductor  
Este motor se puede combinar con un reductor planetario GP 81 A Ø81 mm, 20 - 120 
Nm.  
 
Figura 3.23 Reductor Planetario Maxon. 
La relación de reducción de este reductor es de 93:1. El fabricante sugiere que la 
velocidad máxima a la entrada no supere los 3000 rpm. 
La velocidad de elevación no ha sido observada entre los requerimientos de diseño del 
martinete Así que puede tomar el valor hallado en esta sección. 
La velocidad de 3000 rpm  para el reductor y la velocidad de 2680 para el motor, por lo 
cual la máxima velocidad permisible para la combinación será de 2680 rpm. 
El torque necesario para mover la carga es 68.2 Nm. Mientras el arreglo motor 
reductor puede entregar en el eje 77 Nm como máximo de manera constante a una 
velocidad de 28,8 rpm. 
El mismo fabricante también ofrece el freno AB 41, 24 VCC, 2.0 Nm, el cual va 
acoplado directamente al eje del motor y es especialmente útil para el instante en el 
cual el martillo queda suspendido. 
  
55 
 
 
 
3.6 Diseño de los elementos de transmisión  
 
Figura 3.24. Ensamble del sistema de elevación. Se muestra el cable (5), tambor (4), eje del 
tambor (3), acoplamiento (2), motor y reductor (1). 
3.6.1 Verificación del eje del tambor 
El eje del tambor está apoyado en un extremo por dos rodamientos. Las cargas que 
actúan sobre el eje son la tensión y el momento torsor debido a la acción del cable 
sobre el tambor. Al otro extremo el eje se encuentra unido al motor mediante un 
acoplamiento. Las dimensiones del eje se muestran en la figura 3.27. 
DCL del eje del tambor 
 
 
56 
 
 
 
 
 
Figura 3.25. Diagrama de fuerzas cortantes, momentos flectores, esfuerzos flectores, esfuerzos 
torsores y deflexión.  
Verificación a la fatiga del eje 
 
Figura 3.26. Dimensiones del eje. 
La sección más crítica sometida a flexión es donde se encuentra el apoyo A (Ver figura 
3.25). El eje está sometido a flexión rotatoria. Dado que el eje gira, el esfuerzo es 
alternante puro. 
57 
 
 
 
 
       
     
    
          
Factores que afectan a la fatiga 
 Coeficiente de superficie: con Rt=8 um/ Ra=0.8 um y resistencia a la rotura= 
650 N/mm2  Cs = 0.9 
 Coeficiente de tamaño: con d = 30 mm  Ct = 0.77 
 Coeficiente de temperatura: con T = 30°C  Ct = 1 
 Coeficiente de carga: El esfuerzo de flexión  Ccarg = 1 
 Coeficiente de confiabilidad: La confiabilidad requerida es de 50%  Cc = 1 
 Factor de concentración de esfuerzos: No hay cambio de sección  β = 1 
El eje es fabricado con  el acero Ck45 según el estándar DIN 17200. Este acero tiene 
una resistencia a la fatiga en flexión alternante de 370 N/mm
2
.  
Se calcula los esfuerzos alternantes incluyendo los factores de tamaño, temperatura, 
carga, confiabilidad y concentración de esfuerzos para la sección donde se ubica el 
apoyo A. 
     (
 
                
)            
 
  
 
    
    
 
  
   
         
 
3.6.2. Selección de los acoplamientos  
Dado que se requiere proteger al motor y reductor, es una buena consideración el uso 
de un acoplamiento que actué ante una eventual sobrecarga o error en la instalación 
58 
 
 
 
de la transmisión. Asimismo, el reductor, según las especificaciones del producto,  no 
debe mostrar deflexiones mayores a un milímetro al final del eje. Por otro lado, la 
carga que mueve el reductor, el tambor, a medida que gira se deforma en sus 
extremos.  Un acoplamiento flexible absorbe esas desalineaciones y no las transmite 
de eje a eje.  
El acoplamiento debe transmitir un par de 62,2 Nm y el factor de servicio para una 
máquina elevadora es 1.3 veces del par nominal. Entonces el acoplamiento debe tener 
un par mínimo de 81 Nm. Bajo esas condiciones, el acoplamiento escogido es un 
acoplamiento flexible ECCN 040R de SKF que cuenta con un par continuo de 82 Nm. 
 
Figura 3.27. Acoplamientos 
3.7 Diseño del mecanismo de liberación de la carga 
 
Figura 3.28. Ensamble del mecanismo de liberación. (1) Portapesas, (2) Gancho, (3) Resorte y  
(4) Actuador lineal 
59 
 
 
 
El mecanismo cuenta con un motor eléctrico lineal que permite empujar el gancho del 
que cuelga el portapesas. Una vez liberado el gancho, el portapesas puede descender 
libremente.  
A continuación se muestra la representación del gancho y las cargas que actúan en él 
cuando el bloque se encuentra suspendido. 
 
Figura 3.29. Diagrama de fuerzas que actúan sobre el gancho. 
Entonces: 
∑                                     
                                    
                                                
             
3.7.1 Selección de actuador lineal 
Para la selección del actuador se tomó en cuenta el desplazamiento del vástago, la 
fuerza axial y la velocidad de disparo.  
60 
 
 
 
 
Figura 3.30. Rango de operación del actuador lineal. 
Catálogo de referencia: Ledex Low Profile / Size 8EC / 25 % Duty cycle 400 W. 
 
Figura 3.31. Actuador lineal de 400W. 
En la selección, se verifica además que la carrera del cilindro sea suficiente para 
liberar al bloque. La velocidad lineal del vástago no es importante. 
La verificación de pandeo del vástago no es necesaria ya que por la esbeltez (<60), el 
elemento fallaría por fluencia.  
3.8 Selección del sensor de velocidad y transductor de fuerza 
Para la selección de ambos sensores se tuvo en consideración la dinámica del 
martillo, relacionada con la desaceleración del bloque y la fuerza del choque.  
Por tratarse de impacto entre dos bloques considerablemente rígidos, la variación de 
la velocidad ocurre en un lapso corto de tiempo. Es decir, la desaceleración es muy 
61 
 
 
 
alta. Los valores experimentales tomados para este cálculo son extraídos de la 
experiencia  de ingeniero Metz (2007), en la cual ensaya distintos materiales  con una 
masa en caída libre a un metro de altura. 
La velocidad que alcanza el bloque justo antes de impactar de una luego de recorrer 
una altura de 1 metro es: 
  √             
Se considera que el portapesas se recupera y retorna inmediatamente con la misma 
velocidad (Coalición elástica). 
                 
Entonces se aplican las siguientes relaciones  al portapesas.  
      (
  
  
) 
  
               
  
 
        
  
       
El tiempo de contacto depende de los materiales de las piezas que coalicionan y es un 
valor experimental. Si fueran dos bloques de acero, bajo circunstancias similares, el 
tiempo sería igual a 0,0005 s. (Metz, 2007) 
El acero es el material menos maleable para el cual esta máquina ha sido diseñada. 
Para cualquier otro material como el aluminio el tiempo de contacto será mayor y por 
tanto, la desaceleración y la fuerza serán menores.  
3.8.1 Selección de acelerómetro   
El valor encontrado de la desaceleración sirve como referencia para la selección del 
rango dinámico del sensor. Además se requiere la verificación de la frecuencia de 
respuesta del sensor. El acelerómetro va montado roscado sobre el portapesas.  
62 
 
 
 
  
Figura 3.32. Acelerómetro piezoeléctrico de 5000g. (Mesuarement Specialties, Modelo 7109A) 
3.8.2 Selección del transductor   
Los sensores piezoeléctricos son los más adecuados para esta aplicación debido a 
que toman menor tiempo de incremento de la señal para alcanzar el 90% de su carga 
nominal. 
 
Figura 3.33. Figura referencial de transductor de fuerzo tipo arandela. PACEline CFW / 50 KN. 
Si bien es cierto, que el bloque desciende libremente, este al alcanzar la mesa es 
rápidamente frenado. La aceleración o desaceleración es el parámetro más importante 
para la selección estos elementos. 
Cuidados del transductor 
Por recomendación del fabricante para el montaje, la pretensión de la arandela debe 
ser el 5% de la carga nominal del transductor. 
63 
 
 
 
 
 
 
Figura 3.34 Arreglo en serie del martillo, los transductores y la mesa. 
Los transductores en forma de anillo están dispuestos en un arreglo en serie con el 
bloque fijo de impacto y la mesa. Entonces la fuerza del impacto será la sumatoria de 
las fuerzas parciales registradas en cada uno de los  transductores. 
  
Figura 3.35. El arreglo triangular le da estabilidad al bloque superior durante el impacto.   
64 
 
 
 
3.9 Diseño de la estructura 
La estructura del equipo está constituida por dos columnas de perfil tipo I y un canal en 
forma de U. 
Los perfiles que conforman la estructura están sujetos por uniones atornilladas, de 
modo que se puede regular la posición durante el montaje. Se tiene una estructura 
simétrica, pero con cargas asimétricas debido a la posible excentricidad de la carga 
durante el impacto. Se verificara la columna con las mayores solicitaciones.     
3.9.1 Determinación de las cargas en la estructura  
DCL de la estructura 
El instante donde se generan las mayores cargas es cuando se alcanza del pico por el 
pulso máximo debido al impacto. 
 
Figura 3.36. DCL de las columnas y guías.  
65 
 
 
 
Las reacciones producidas en los extremos de la guía son transmitidas a las columnas 
por medio de los soportes que se hallan en los extremos de las guías. 
Si se evalúa  el desplazamiento del punto A en  la dirección “y”, la unión atornillada, en 
este caso, no permite desplazamientos en la base de la columna.  
∑    
∑        (    
  
 
)    (    
 
 
)    (  )    
                   
∑              (     
 
       
  
 )    
Debido a la simetría de las cargas sobre la estructura. 
                      
Entonces la relación de Castigliano para  la columna de la izquierda seria:  
      
    ∫
  
   
(
   
   
)
  
 
   
                   
De ambas relaciones se puede obtener los valores. 
                                               
De las reacciones en la base B, se obtiene la siguiente relación.  
∑             (     ) 
  
 
              
      
 
 
         
      (     
 
       
  
 )   (     
 
       
  
 ) 
                  
66 
 
 
 
Los esfuerzos en la base  
                      
                  
      
 
 
         
                           
La viga escogida para la columna es  una viga I 140 de ala ancha y caras paralelas 
(serie IPB). 
           
                   
  
          
                     
  
        
                                              
   
      
   
 
      
   
 
    
 
       
Por tratarse de una columna, se verifica a pandeo. 
   
  
  
 
     
  
 
        
    
              
        
 
   
          
 
   
 
El material de las columnas es acero estructural St 37-2.  
3.9.2 Dimensionamiento de la placa en la base de la columna. 
Las planchas en la base deben soportar todas las reacciones transferidas al suelo. 
Separación  entre anclajes  
La separación entre los pernos de anclaje se estima con la siguiente relación 
propuesta por Nonnast (1993). 
67 
 
 
 
   
    
   
[  √  
  
    
 (  
  
  
  )] 
Donde “Pc” es la fuerza normal al suelo en el apoyo B. “x” es un factor para una 
tensión de trabajo del anclaje de 800 kg-f/cm2  y una tensión de trabajo del hormigón 
de 30 kg-f/cm2. 
Bajo las siguientes las siguiente consideraciones. 
                                       
La separación longitudinal entre anclajes del apoyo  
   
    
   
[  √  
  
    
 (  
    
  
  )] 
            
La separación transversal entre anclajes del apoyo  
   
    
   
[  √  
  
    
 (  
    
  
  )] 
           
Los valores ingresados son en kg-f.cm, kg-f/cm2 y cm. 
Se han determinado las separaciones mínimas admisibles para los anclajes. Sin 
embargo, aumentando la separación entre los anclajes resulta en la selección de 
pernos de anclaje de menor diámetro.  
                    
 
3.9.3 Determinación de las cargas en los pernos de anclaje 
Los anclajes son los elementos utilizados para fijar las columnas a los fundamentos 
para así evitar que se produzca volcadura. Las cargas que pueden originar volcadura 
son las cargas excéntricas durante el choque, o bien las eventuales cargas sísmicas.  
68 
 
 
 
Las columnas soportan cargas céntricas, que se deben al peso de las columnas, y 
cargas excéntricas, se deben a las reacciones de las guías. 
Se evalúa la siguiente relación  para determinar la fuerza en los pernos de anclaje. 
[Nonnast, 1993]   
     (  
  
  
 
 
 
 
  ) 
Se obtiene las mayores cargas en el transversal. Bastará con analizar este caso.  
     (  
    
  
 
  
 
  
  )           
Si se utilizaran dos pernos a cada lado de la columna, P seria la fuerza resistida por 2 
pernos M10 con una fuerza de trabajo de 844 kg-f. 
  
69 
 
 
 
3.9.4 Dimensionamiento de los refuerzos de la base 
Se requiere reforzar la placa de la base de las columnas para transmitir las cargas del 
perno de anclaje a la columna y evitar volcadura. Para tal fin, se modela los refuerzos 
con viga empotradas en voladizo. Están unidos a la viga I mediante cordones de 
soldadura. (Nonnast,1993)  
 
 
Figura 3.37. Esquema de los refuerzos de la base 
Se verifica que el refuerzo resista el momento flector en la sección donde esta soldada 
a la viga I. 
     
(    )
 
     
(     )
 
              
   
    
 
                   
  
Si el refuerzo tiene una sección rectangular, se cumple:  
70 
 
 
 
   
   
 
 
    
  
 
  
    
 
                      
  
Se tiene dos refuerzos soldados de 40 mm x 10 mm x 50 mm cada uno. La resistencia 
admisible de los refuerzos es 120 N/mm2 cuando el acero es A36. 
 
Figura 3.38. Cordón de soldadura de columna y placa.  
Verificación del cordón de soldadura a corte.  
Se tiene dos placas con dos cordones de 5 mm x 40 mm cada una.   
       
 
 
 
    
      
       
 
   
        
 
   
 
El acero AISI A36 cumple con las solicitaciones de la aplicación. 
3.9.5 Dimensiones del perno de anclaje 
El perno se fabrica de una barra de acero y está dimensionado teniendo en cuenta la 
adherencia entre la superficie del perno y el hormigón. En base a tales 
consideraciones se muestra  de su geometría a continuación. (Nonnast, 1993) 
71 
 
 
 
 
Figura 3.39 Perno de anclaje de la columna 
La longitud del perno se evalúa con la siguiente relación: 
  
 
                
        
El esfuerzo cortante del hormigón es de 5 kg-f/cm2. El número de pernos M10 
empleados “n” es 2 para una fuerza de trabajo de 844 kg-f. (Nonnast, 1993) 
  
72 
 
 
 
3.9.6 Diseño de los fundamentos  
Queda pendiente conocer el tipo de piso para verificar si el suelo soporta todas las 
cargas verticales en la base de los fundamentos, incluyendo el peso de los 
fundamentos. (Nonnast, 1993) 
     
                   
   
 
El peso del fundamento recomendado debe estar comprendido entre 1 o 2 veces la 
fuerza de trabajo de los pernos de anclaje.  
Un tipo de geometría recomendado para los fundamentos es el de una pirámide trunca 
con un ángulo de incremento de 60 grados. 
 
Figura 3.40. Dimensiones de los fundamentos.  
Ya no es necesaria la verificación por volteo de todo el equipo. Ya que los momentos 
que se generan por el desalineamientos de la fuerza en el portapesas se anulan con 
los momentos que ocurren en la mesa durante el impacto. 
73 
 
 
 
3.10. Selección de los topes 
Los topes son un conjunto de elementos ubicados a ambos lados de la mesa que 
protegen a los bloques de la mesa y del portapesas en caso el martillo descienda sin 
que la pieza de trabajo haya sido colocada. En caso ocurriera el impacto, el 
portapesas fallaría por resistencia ya que no dimensionado para soportar dichas 
cargas dinámicas.  
El sistema consiste de absorbedores que se deforman mientras la velocidad del 
portapesas se reduce a cero. (Parker Industrial Shock absorbers, 2007) 
 
.Figura 3.41. Amortiguadores a ambos lados del arreglo de transductores de fuerza.  
  
74 
 
 
 
Se evaluó varias alternativas de desaceleradores lineales. 
 
Figura 3.42. Comparación entre los desaceleradores lineales: Fuerza vs carrera de parada. 
La curva 1 le pertenece a los amortiguadores neumáticos que cuentan con un orificio 
que estrangula el aire mientras escapa de la cámara. En el instante que el tope entra 
en contacto con la carga con el amortiguador, la fuerza de frenado es muy alta, pero 
luego disminuye.  
La curva 2 le pertenece a los amortiguadores de caucho, en el cual la fuerza depende 
de la deformación. La curva fuerza deformación se caracteriza por la dependencia 
lineal entre la fuerza y deformación. La resistencia del material no debe superar los 6 
MPa cuando esta comprimido. La limitación de esta tecnología es que se requiere 
mucha área superficial bajo carga. 
La curva 3 le pertenece a los absorbedores industriales de impacto. Esta tecnología 
elimina los picos de fuerza durante el frenado y reduce el tiempo de frenado. Se 
caracteriza por disipar la energía del impacto en forma de calor. El sistema de 
absorción consiste de una cámara hidráulica y otra neumática. La energía cinética se 
transforma en calor. 
  
75 
 
 
 
A continuación se detalla la selección del absorbedor de impacto. 
 
Figura 3.43. Tope bajo la acción de una carga de impacto por caída libre.  
La energía que tiene que absorber el tope es igual a: 
                                      
       (   ) 
La carrera de frenado del vástago del absorbedor “s” es igual a 20 mm y la carrera 
libre del martillo “h” es igual a 1800 mm. 
           
 
Figura 3.44. Absorbedor de choques industrial. MC 4550-1. Parker.  
76 
 
 
 
El cuerpo del absorbedor es roscado y la fijación a la mesa de trabajo es mediante 
tuercas. El rango de velocidades de impacto recomendado está comprendido entre  
los 0,15 y 5 m/s. 
Un amortiguador tiene la capacidad de absorber 678 Nm por ciclo. El equipo cuenta 
con dos amortiguadores, juntos superan los 758 Nm que se requiere en el equipo. 
 
Figura 3.45. Absorbedor de choques industrial. MC 4550-1. Parker. 
 
  
77 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 4 
ESTIMADO DEL COSTO 
En el presente capitulo se detalla la información sobre los costos relacionados con la 
fabricación del equipo. Se están considerando los costos de materiales, los costos de 
horarios de mano de obra y la duración de las tareas. Las piezas estandarizadas como 
lo son los rodamientos de bolas lineales están indicadas con las referencias de los 
proveedores locales. 
Costo de los materiales 
Cabe resaltar que los sensores no se encuentran disponibles en el mercado nacional. 
Sin embargo, ello no es impedimento para su adquisición, tan solo se tendrá que 
adicionar los costos de envío. 
Tabla 4.1. Costos de los materiales 
Descripción  
Cantidad 
(u) 
Precio unitario 
(S/./u) 
Costo total 
(S./) 
Rodamiento lineal de bolas 4 100 400 
Guías redondas 2 800 1600 
Cable de acero con fibra flexible 1/8”  3 metros 3 9 
Acelerómetro piezoeléctrico  1 600 600 
78 
 
 
 
Transductor de fuerza 3 500 1500 
Motor lineal 1200 1200 1200 
Motor y reductor  4000 4000 4000 
Pernos de anclaje J 8 15 120 
Bloques de cimentación 2000kg 1 bloque 1000 1000 
Perfil I IPB 140 St. 37 7 metros 100 700 
Plancha St -37 de 10 mm 4’x8’ 1 650 650 
Plancha St-37 de 6 mm 4’x8’ 1 400 400 
Total 12179 
 
Fabricación del portapesas 
Las planchas de 10 y 6 mm son la materia prima para la fabricación del portapesas. 
Tabla 4.2. Costos de fabricación del portapesas 
Servicio 
Costo horario 
(S/. / hora) 
Cantidad 
(horas) 
Costo total 
(S/.) 
Costo de soldeo de planchas. 70 20 1400 
Costo de corte de la planchas.  
(60 planchas) 
120 10 1200 
Costo por doblado y rolado de planchas 
(4 planchas) 
60 2 120 
Total 2720 
 
 En el costo total de soldeo se incluye el costo del material de aporte, el costo 
por uso de las máquinas, el costo de preparación de las juntas y el costo de la 
mano de obra para el soldeo.  
 En los costos totales de corte, doblado y rolado de las planchas se considera el 
costo por preparación  de los equipos, el costo del uso de los equipos y el 
costo de la mano de obra.  
Costo de recubrimiento y ensamble 
Se estima que se requiere otros 900 Nuevos soles más para la fabricación de la 
estructura, 1000 Nuevos soles para la aplicación de un recubrimiento anticorrosivo a 
los elementos fabricados, 600 Nuevos soles para el ensamble de todo el equipo 
incluyendo los costos de equipos de carga y mano de obra.  
El costo aproximado del equipo será 17400 Nuevos soles.   
79 
 
 
 
Conclusiones y recomendaciones 
Conclusiones 
1. Se diseñó un martinete de laboratorio universitario con máxima energía de 
impacto por golpe igual a 750 J que permite regular la carrera y masa del 
martillo. De esta forma, se pueden obtener distintas combinaciones de masa y 
carrera según se requiera. La regulación de la altura es continua, mientras la 
regulación de la masa es escalonada según la masa de las pesas que se 
adicionen al martillo.  
El equipo tiene un costo aproximado de 17400 Nuevos Soles. 
Dada la importancia de la seguridad durante la operación del equipo, el 
martinete permite liberar el martillo a distancia mediante el accionamiento de 
un actuador eléctrico.  
La estructura del equipo ha sido pensada en facilitar la manipulación de las 
partes durante el montaje. En ese sentido, las uniones atornilladas permiten 
ubicar más rápidamente las piezas durante el montaje.  
2. Uno de los sistemas más importantes del equipo es el sistema de elevación, se 
optó por usar un motor eléctrico DC para elevar el martillo por las facilidades 
que ofrece en el control de la velocidad a distintas cargas y el cambio del 
sentido de giro. 
Adicionalmente, se puede adicionar sensores al sistema de control del motor 
para optimizar la seguridad durante la operación. 
3. La mayoría de piezas  que han sido seleccionadas son estandarizadas y 
optimizadas. En el caso de los rodamientos lineales con guías redondas de 
acero se evalúa una alternativa que permite estimar la vida útil del rodamiento  
en términos de carreras recorridas (u horas de servicio) y de esa forma es 
posible prever los costos de mantenimiento. Por otro lado, las piezas que 
requieren ser fabricadas cuentan con una simplicidad en geometría y de 
80 
 
 
 
montaje que permite que sean manufacturadas sin la necesidad de requerir de 
un servicio de manufactura ni muy complejo ni de tecnología costosa. 
4. Aunque inicialmente se consideró utilizar un servomotor síncrono, durante la 
selección de los motores se encontró una limitación a su uso. Los 
servomotores no pueden mantener cargas suspendidas como la masa del 
martinete. Trabajar de esta manera implica que el motor trabaje como freno 
para mantener suspendida la carga y ello produce el calentamiento del motor.  
Si se deseara utilizar un servomotor se debería sobredimensionar el motor o 
contar un sistema de freno auxiliar al eje del motor. 
5. Cuando se verificó analíticamente la rigidez de las guías, se encontró una 
deformación máxima de 3,8 milímetros al medio de la guía. El cálculo es 
conservador al considerar que los apoyos de la guía se comportan como 
articulados y permiten desalineamientos. En realidad las deflexiones en la guía 
son menores; los apoyos de la guía están sujetos con uniones atornilladas de 
tal manera que aumentan la rigidez del sistema guía.  
Mediante la verificación del portapesas por métodos finitos se encontró los 
máximos esfuerzos en los agujeros de la sección media inferior del portapesas 
iguales a 200 N/mm
2
. El acero seleccionado St 37 tiene una resistencia de 240 
N/mm2 y cumple con la solicitación.  
El bloque de impacto, que se ubica en la parte inferior del sistema martillo y 
soporta esfuerzos no uniformemente distribuidos durante la deformación, es de 
acero austenítico resistente al impacto X120Mn12 y soporta hasta 800 N/mm2 a 
la fluencia. 
6. Si bien se esperaría que las cargas resultantes en los elementos sean mayores 
para velocidades mayores y la misma energía, se tiene conocimiento de 
experiencias de otros autores a través de  gráficas que en el rango de 
velocidades de deformación menores a 100 s-1, las variaciones en los 
esfuerzos y cargas producidas no son significativas. Esta característica puede 
ser aprovechada para este tipo de conformado.  
81 
 
 
 
7. Un aspecto relevante de las relaciones empíricas utilizadas para determinar los 
esfuerzos durante el conformado es que indican que el grado de deformación 
es más importante que la velocidad de deformación.  Ello quiere decir que la 
carrera del martillo, la cual determina la velocidad de deformación, no es tan 
relevante como lo es la energía para el conformado.  
Recomendaciones 
1. Se puede mejorar la estimación de la potencia del motor del sistema de 
elevación, ya que inicialmente no se ha considerado las pérdidas de potencia 
en los distintos elementos de transmisión. 
2. El mecanismo de liberación de la carga debe ser ensayado y mejorado. La 
geometría del gancho es un factor importante en el aspecto de la seguridad del 
equipo. 
3. Se recomienda la incorporación de una malla alrededor de la mesa de trabajo 
para asegurar que la pieza golpeada no lastimará a los observadores.   
4. Se recomienda el desarrollo de un sistema de adquisición de datos para la 
recopilación de los datos registrados durante el impacto. 
  
82 
 
 
 
Bibliografía 
1. Altan T., “Cold and Hot Forging: Fundamentals and Applications”, 
Volumen.  ASM International, 2005. pp. 215-216 
2. Datsko, J. “Material properties and manufacturing process”. New York 
1996. 
3. Datsko, J. “Material selection for design and manufacturing”. New York, 
1997. USA 
4. El-Magd, E.: ”Mechanical properties at high strain rates” 
Colloque C8, supplement au Journal de Physique III, Volume 4, septembre 
1994. Aachen Technical University. 
5. Larrodé, E. “Grúas” 
Reverte, 1996. pp. 161 – 171. 
6. Manual de Dibujo Mecánico 1.  
Lima: PUCP, 2006. 
7. Metz R. “Impact and drop testing with ICP Force sensors” 
Sound and vibration. New York, 2007. 
8. Nonnast, R. “El proyectista de estructuras metálicas”. Volumen 1. 
Madrid: Paraninfo, 1993.  
9. Norton, M. P. “Fundamentals of noise and vibration analysis for engineers” 
Cambridge: Cambridge University Press, 2003. 
10. Pahl, Gerard. Engineering Design: a systematic approach. 3rd Edition.  
London: Springer, 2007. 
11. Parker. “Industrial Shock Absorbers”. Febrero, 2007. USA. 
12. Schigley, J. , Mischke C. “Standart Handbook of Machine Design” 
McGraw Hill. Tercera Edicion (1 de Julio del 2014) 
13. Schuler GmbH. “Metal forming handbook” 
Berlín: Springer, 1998 
14. Schey, John A. “Procesos de manufactura” 
México: McGraw-Hill, 2002 
15. SKF. “Linear bearings and units: Technical handbook”. Octubre, 2011. 
Sweden. 
16. Smith, W. “Fundamentos de la ciencia e ingeniería de los materiales” 
Tercera edición. Mc Graw-Hill, Inc.1998 Madrid España pp 195 – 243 
83 
 
 
 
17. Subramanian, T. L.  and Altan T. “A Practrical Method for Estimating 
Forging Loads with the Use of a Programmable Calculator” Journal of 
Applied Metal Working. Nro 2. Enero 1980 pág. 60-68 Volumen 1 Número 2 
1980 American Society for Materials. 
18. Tlusty, Jiri. “Manufacturing process and equipment” 
Upper Saddle River, NJ: Prentice Hall, 2000 
19. Tschätsch, Heinz. “Metal forming practise” 
Berlín: Springer, 2006 
20. Rodríguez, J. “Resistencia de materiales 2” 
Lima: Editorial PUCP. 2011 
 
Enlaces web visitados 
 FIA: Forging Industry Association - www.forging.org 
 Schuler - http://www.schulergroup.com/