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Resumen

En este trabajo se presentará un estudio de las variedades de contacto obtenidas

mediante el método de reducción de contacto, demostrado inicialmente por

Geiges e impulsado por él mismo, E. Lerman entre otros. Dicho resultado

tiene su esencia en el teorema de reducción simpléctica demostrado por K. R.

Meyer en 1973 e independientemente por J. Marsden y A. Weinstein en 1974.

Ambas contribuciones a la mecánica clasica impulsaron que en los últimos

años se busque generalizar estos resultados al caso de contacto. Por ello, se

pone mucha atención en el tipo de grupo de automorfismos que actuará en

la variedad de estudio, con el objetivo de encontrar mayor información de la

estructura de las variedades obtenidas luego de la reducción. La particular-

idad en los ejemplos que desarrollaremos será en que el grupo actuando en

muchos casos será un toro de una cierta dimensión, lo cual nos generará las

llamadas variedades tóricas de contacto.

Palabras clave: variedades de contacto, acciones tóricas.
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Abstract

In this work, we will study contact manifolds obtained through the contact

reduction method, initially demonstrated by Geiges and promoted by him-

self, E. Lerman among others. This result has its essence in the symplectic

reduction theorem demonstrated by K. R. Meyer in 1973 and independently

by J. Marsden and A. Weinstein in 1974. Both contributions to classical

mechanics led to the search of generalization of these results to the contact

case over the last few years. Therefore, a lot of attention is paid to the type

of group of automorphisms that will act in the study manifold, with the aim

of finding more information on the structure of the manifolds obtained after

the reduction. The particularity in the examples that we will develop will be

that the group acting in many cases will be a torus of a certain dimension,

which will generate the so-called contact toric manifolds.

Keywords: contact manifolds, torus actions.
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Introduction

The purpose of this thesis is to study the group of automorphisms of certain

contact manifolds. To achieve this, we previously review the basic concepts

of symplectic manifolds, and the contact manifolds, as well as their different

incarnations in the Riemannian context, (Kähler and Sasaki structures, re-

spectively). It will allow us to describe in detail the relationship between the

contact manifolds and their symplectic cone.

Subsequently, we study the symplectic reduction, and we place emphasis

on the reduction in the complex projective space. The latter will be very

useful when we extend this technique to the case of interest in this work,

reduction on contact manifolds. We give a detailed proof of the contact re-

duction theorem (originally given by Geiges in [8]) and its application via

examples for the case of S1-actions on certain manifolds. In the majority of

examples that we exhibit, the 2n + 1- dimensional contact manifolds admit

torus actions of dimension (n + 1) which preserves the contact form, mani-

folds with this quality are called contact toric manifolds. In the last years,

the study of this type of contact manifolds allowed to find results of great

importance in the area (see for example [4], [6], [7] and [13]).
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Chapter 1

Almost complex structures and

symplectic manifolds

In this chapter we will give a general picture of a symplectic manifold as a way

to understand contact geometry, which can be viewed as the odd dimensional

analog of symplectic geometry.

1.1 Symplectic manifolds

1.1.1 Symplectic vector spaces

Let V be a real vector space of dimension n. We will denote by V ∗ its

dual space, and for k ∈ N, let ΛkV ∗ be the space of antisymmetric (i.e.,

alternating) multilinear mappings from V × · · · × V︸ ︷︷ ︸
k times

to R. Certainly, for

k > n, we have

ΛkV ∗ = 0 (1.1.1)

We get easily that

Λ0V ∗ = R, Λ1V ∗ = V ∗, dim ΛnV ∗ = 1. (1.1.2)
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A nonvanishing element of ΛnV ∗ defines an orientation of V . By taking

antisymmetric multiplication, ΛV ∗ = ⊕nk=0ΛkV ∗ becomes an algebra with its

Z- grading induced by its degree.

We say that a bilinear form θ : V ×V → R is nondegenerate if , for v ∈ V ,

θ(v, · ) = 0 implies that v = 0.

We say that a bilinear form g : V × V → R is a scalar product (or

Euclidean metric) on V if g is symmetric and positive, i.e., for any u, v ∈ V ,

symmetric : g(u, v) = g(v, u),

positive : g(u, u) > 0 if u 6= 0.

Definition 1.1. The vector space (V, ω) is called symplectic if V is a fi-

nite dimensional real vector space and ω : V × V → R is a nondegenerate

antisymmetric bilinear form. In this case, we call ω a symplectic form on V .

Definition 1.2. Let (V1, ω1), (V2, ω2) be two symplectic vector spaces. A

linear map φ : V1 → V2 is called symplectic if

ω1 = φ∗ω2. (1.1.3)

If the linear map φ : V1 → V2 is symplectic then, as ω1 is nondegenerate,

φ is injective. If φ is also an isomorphism, we call that φ is a symplectic

isomorphism.

Proposition 1.3. If (V, ω) is a symplectic vector space of dimension n, then

n is even and ωn/2 ∈ ΛnV ∗ is nonvanishing which defines an orientation of

V . Moreover, the map

v ∈ V → ω(v, · ) ∈ V ∗ (1.1.4)

is an isomorphism.
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Proof. Let 〈· , · 〉 be a scalar product on V . Then there exists an antisym-

metric invertible endomorphism A ∈ End(V ) such that

ω(· , · ) = 〈· , A· 〉 . (1.1.5)

Since

detA = det
(
−At

)
= (−1)n detA (1.1.6)

thus n is even. If 〈· , · 〉′ is another scalar product on V , and A′ is the corre-

sponding antisymmetric invertible endomorphism, then there is P ∈ GL(V )

such that PAP t = A′. Thus detA and detA′ have the same signature.

This means that V has a canonical orientation. In fact, this is equivalent to

ωn/2 ∈ ΛnV ∗ and ωn/2 6= 0.

As ω is nondegenerate, the map v ∈ V → ω(v, · ) ∈ V ∗ is injective. As

dimR V = dimR V
∗, (1.1.4) is an isomorphism.

The basic example is the following.

Example 1.4. Let L be a vector space. Then L⊕L∗ is a symplectic vector

space with a symplectic form ωL⊕L
∗

defined by:

ωL⊕L
∗

((l1, l
∗
1) , (l2, l

∗
2)) = 〈l1, l∗2〉 − 〈l2, l∗1〉 . (1.1.7)

for every (l1, l
∗
1), (l2, l

∗
2) ∈ L⊕ L∗.

In particular, if we identify Rn with Rn∗ by the canonical scalar product of

Rn:

〈x, y〉 =
n∑
i=1

xiyi (1.1.8)

for every x = (x1, . . . , xn) , y = (y1, . . . , yn) in Rn, we denote

(
R2n, ω0

)
:=
(
Rn ⊕ Rn∗, ωRn⊕Rn∗

)
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the standard symplectic space.

Furthermore, since R2n ' Cn, by replacing z = x+ iy in (1.1.7) and (1.1.8),

we obtain

ωst =
i

2

n∑
k=1

dzk ∧ dzk (1.1.9)

as the standard symplectic form for Cn.

Let (V, ω) be a symplectic vector space. For W ⊂ V a linear subspace,

set

W⊥ω = {v ∈ V : ω (v, w) = 0, for all w ∈ W}. (1.1.10)

Definition 1.5. For W a subspace of a symplectic vector space (V, ω), we

say

1. W is symplectic if W ∩W⊥ω = {0};

2. W is isotropic if W ⊂ W⊥ω ;

3. W is coisotropic if W⊥ω ⊂ W ;

4. W is Lagrangian if W = W⊥ω .

Proposition 1.6. For W a subspace of (V, ω), we have

dimW + dimW⊥ω = dimV,
(
W⊥ω

)⊥ω
= W. (1.1.11)

If W is symplectic, then W⊥ω is also symplectic and we have the direct de-

composition of symplectic vector spaces

(V, ω) = (W,ω|W )⊕
(
W⊥ω , ω|W⊥ω

)
. (1.1.12)

Proof. Let 〈·, ·〉 be a scalar product of V . Let A ∈ End(V ) as in (1.1.5).

Then W⊥ω = (AW )⊥.

Hence,

dimW⊥ω = dim (AW )⊥ = dimV − dim (AW ) . (1.1.13)
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As A is invertible, by (1.1.13), we get the first equation of (1.1.11), in par-

ticular we have dimW = dim
(
W⊥ω

)⊥ω
. But by definition of W⊥ω , we have

W ⊂
(
W⊥ω

)⊥ω
. This means the second equation of (1.1.11) holds.

If W is symplectic, then W⊥ω ∩
(
W⊥ω

)⊥ω
= W⊥ω ∩W = {0}, thus W⊥ω is

symplectic. Now we get (1.1.12) by the first equation of (1.1.11)

1.1.2 Compatible complex structures

The following definition will expose the nature of the 2- form that will play

a key role in defining a Kähler manifold in the next section.

Definition 1.7. Let V be a real vector space. If J ∈ End(V ) such that

J2 = −IdV , we call J a complex structure on V . Moreover, if ω is a symplectic

form on V , such that

g(·, ·) = ω(·, J ·) (1.1.14)

defines a scalar product on V , we call J a compatible complex structure on

(V, ω). We denote by J (V, ω) the space of compatible complex structures

on (V, ω).

Let us recall that J is antisymmetric with respect to g if

g(X, J tY ) = −g(X, JY )

for every X, Y ∈ V .

Proposition 1.8. If J is a compatible complex structure on a symplectic

vector space (V, ω), then ω is J- invariant, i.e.,

ω (J ·, J ·) = ω (·, ·) (1.1.15)
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Proof. By (1.1.14), we have

ω (·, ·) = g (·,−J ·) ,

ω (J ·, J ·) = g (J ·, ·) = g
(
·, J t·

)
. (1.1.16)

As ω is antisymmetric, J is antisymmetric with respect to g. Then

g
(
·, J t·

)
= −g (·, J ·) = −ω

(
·, J2·

)
= ω (·, ·) . (1.1.17)

From (1.1.16), (1.1.17), we get (1.1.15).

1.1.3 Symplectic vector bundles

Let M be a differentiable manifold, and K = R or C.

Definition 1.9. Let E be a manifold, π : E → M be a smooth surjective

map. We say that E is a K-vector bundle on M of rank m if π satisfy the

following conditions.

1. For every x ∈ M , Ex := π−1(x) have the structure of a vector space

over K.

2. There exists an open covering {Ui} of M and a family of diffeomor-

phisms

φi : π−1 (Ui)→ Ui ×Km (1.1.18)

such that for every i,

(a) the following diagram commutes,

π−1(Ui) Ui ×Km

Ui

π

φi

pr1
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(b) for every x ∈ Ui, the induced mapping φi,x := pr2 ◦ φi|Ex : Ex →

Km is linear.

We denote by m := rk(E). If m = 1, we say that E is a K-line bundle.

Let us recall that a section of E is an smooth mapping s : M → E

such that π ◦ s = idM . We denote C∞(M,E) as the space of sections

of E over M .

If F is another K-vector bundle on M , then we define the dual of E :

E∗ =
⋃
x∈M
{E∗x}, the direct sum of E and F : E ⊕ F =

⋃
x∈M
{Ex ⊕ Fx},

the tensor product of E and F : E ⊗ F =
⋃
x∈M
{Ex ⊗ Fx}. We also denote

Hom (E,F ) = E∗⊗F and C∞(M,E) as the space of sections of vector bun.

Let us see some examples.

Example 1.10. For every K-vector bundle V over M , End(V ) and Λ2E∗

are K-vector bundles over M .

A C∞-map ψ : E → F is a morphism of K-vector bundles over M if for

any x ∈M , ψx is aK-linear map from Ex to Fx, i.e., ψ ∈ C∞ (M,Hom (E,F )).

If for any x ∈ M , ψx is an isomorphism from Ex to Fx, then we say that ψ

is an isomorphism of K-vector bundles.

Definition 1.11. Let V be a real vector bundle on M , we say that (V, ω) is

a symplectic vector bundle on M if ω ∈ C∞ (M,Λ2V ∗) and for any x ∈ M ,

(Vx, ωx) is a symplectic vector space.

Definition 1.12. Let (V1, ω1) and (V2, ω2) be symplectic vector bundles

on M , ψ ∈ C∞ (M,Hom (V1, V2)). If for any x ∈ M , ψx : (V1,x, ω1,x) →

(V2,x, ω2,x) is a symplectic linear map, then we call ψ a symplectic mor-

phism of symplectic vector bundles. If moreover ψx is an isomorphism for

any x ∈ M , then we call ψ a symplectic isomorphism of symplectic vector

bundles.
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Definition 1.13. If J ∈ C∞ (M,End (V )) such that for any x ∈ M , J2
x =

−IdVx , we call J an almost complex structure on V . Moreover, if (V, ω)

is a symplectic vector bundle on M , and for any x ∈ M , Jx is a compatible

complex structure on (Vx, ωx), we call J a compatible complex structure on

(V, ω).

Remark 1.14. Let V be an n-dimensional vector space and B ∈ End(V ).

Then

ρ : End(V ) → V ⊗ V ∗

B → ρ (B) : V × V ∗ → R

is an isomorphism of algebras, where ρ (B) (v, v∗) = 〈Bv, v∗〉 for each (v, v∗) ∈

V × V ∗.

Definition 1.15. For a manifold M , if J ∈ C∞ (M,End (TM)) and for any

x ∈M , J2
x = −IdTxM , we call that J is an almost complex structure on

TM and (M,J) is an almost complex manifold.

Definition 1.16. A 2-form ω on a manifold M is called a symplectic form

on M , if ω is real and closed, and if for any x ∈ M , ωx ∈ Λ2 (T ∗xM) is

nondegenerate. In this case, (M,ω) is called a symplectic manifold.

For a submanifold W of a symplectic manifold (M,ω), we call W a

symplectic (resp. isotropic, coisotropic, Lagrangian) submanifold if for any

x ∈ M , TxW is a symplectic (resp. isotropic, coisotropic, Lagrangian) sub-

space of (TxM,ωx).

A diffeomorphism ψ : M → N is called a symplectic diffeomorphism

or symplectomorphism) for two symplectic manifolds (M,ω), (N,ω1) if

ψ∗ω1 = ω. And we can define Sympl(M,ω) as the group of symplecto-

morphisms over M .
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Let J ∈ C∞ (M,End(TM)) be an almost complex structure on a symplec-

tic manifold (M,ω), then we say J is a compatible almost complex structure

if ω (·, J ·) defines a J-invariant Riemannian metric on TM .

Remark 1.17. Let (M,ω) be a symplectic manifold. By Proposition 1.3, M

has even dimension. Let dimM = 2n. Then ωn 6= 0 ∈ Λ2n (T ∗M) induces a

canonical orientation on M .

Example 1.18. Let L be a manifold of dimension n, and π : T ∗L → L be

the natural projection. The Liouville form λ is a 1-form on T ∗L which is

defined as follows: for q ∈ L, p ∈ T ∗q L, X ∈ T(q,p)T
∗L,

〈λ,X〉(q,p) :=
〈
p, dπ(q,p)X

〉
q
. (1.1.19)

Set

ωT
∗L = −dλ. (1.1.20)

Then ωT
∗L is a closed 2-form on T ∗L. Let ψ : U ⊂ L → V ⊂ Rn, q →

(q1 = ψ1(q), · · · , qn = ψn(q)) be a local coordinate, then { ∂
∂qj
} is a local frame

of TL, and {dqj} is a local frame of T ∗L which gives the trivialization of T ∗L

on U . Thus

T ∗L→ V × Rn,

(
q,
∑
i

piψ
∗ (dqi)

)
→ (q1, · · · qn, p1, · · · , pn) (1.1.21)

is the induced local coordinate of T ∗L|U , and { ∂
∂qj
, ∂
∂pj
} is a local frame of

T (T ∗L).

For X =
∑
i

Xi
∂
∂qi

+ Pi
∂
∂pi

, we have

〈λ,X〉(q,p) =
n∑
i=1

piXi =

〈
n∑
i=1

pidqi, X

〉
. (1.1.22)

From (1.1.20) and (1.1.22), we get

λ =
n∑
i=1

pidqi, ωT
∗L =

n∑
i=1

dqi ∧ dpi. (1.1.23)
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Hence, ωT
∗L is nondegenerate, and

(
T ∗L, ωT

∗L
)

is a symplectic manifold.

The next definition will be key to understand the geometry of the sym-

plectic cone associated to a contact manifold.

Definition 1.19. Let (M,ω) be a symplectic manifold. A Liouville vector

field is a vector field Ψ which satisfies that LΨ ω = ω.

Remark 1.20. Notice that the flow ϕt corresponding to the Liouville vector

field is such that ϕt
∗ω = etω, that is along the flow the symplectic form is

rescaled exponentially. In fact, if we set λ = Ψ y ω 1 a 1- form in M , by

Cartan’s formula we have that dλ = ω and LΨ λ = λ.

For every Yp ∈ TpM with p ∈M ,

λp(Y )p = (LΨ λ)p(Yp) = lim
t→0

(ϕ∗tλp) (Yp)− λp(Yp)
t

. (1.1.24)

Thus, we can apply L’Hôpital’s rule in (1.1.24) to obtain that

λp(Yp) =
d

dt
|t=0 (ϕ∗tλp) (Yp) . (1.1.25)

Additionally,
d

dt
|t=0

(
etλp

)
(Yp) =

d

dt
|t=0 (ϕ∗tλp) (Yp) .

Finally, from the initial condition of the differential equation above, its unique

solution must be

(ϕ∗tλp) (Yp) =
(
etλp

)
(Yp).

Thus,

ϕ∗tλ = etλ.

1The symbol y is the contraction of differential forms by a vector field.
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Morevover,

ϕ∗tω = ϕ∗t (dλ)

= d (ϕ∗tλ)

= d(etλ)

= etdt ∧ λ+ etdλ = etω,

since λ = Ψ y ω implies that dt ∧ λ = 0 in M .

Let us see a useful example of a Liouville vector field in the Euclidean

space.

Example 1.21. On R2n, the radial vector field ∂r =
∑(

1
2
xj∂xj + 1

2
yj∂yj

)
is

a Liouville vector field.

1.2 Kähler manifolds

Let M be a complex manifold with an almost complex structure J . The

almost complex structure J induces a splitting

TMC := TM ⊗R C = T (1,0)M ⊕ T (0,1)M, (1.2.1)

where T (1,0)M = {X−iJX | X ∈ TM} and T (0,1)M = {X+iJX | X ∈ TM}

are known as the eigenbundles of J corresponding to the eigenvalues i and −i,

respectively. Let T ∗(1,0)M and T ∗(0,1)M be the corresponding dual bundles.

Let

Ωr,q(M) := C∞
(
M,Λr

(
T ∗(1,0)M

)
⊗ Λq

(
T ∗(0,1)M

))
(1.2.2)

be the spaces of smooth (r, q)-forms on M .

On local holomorphic coordinates (z1, · · · , zn) with zj = xj + iyj, we denote

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
, (1.2.3)

dzj = dxj + idyj, dzj = dxj − idyj.
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Then, on holomorphic coordinates (z1, · · · , zn) the ∂, ∂-operators on func-

tions are defined by

∂f =
∑
j

dzj
∂

∂zj
f, ∂f =

∑
j

dzj
∂

∂zj
f for f ∈ C∞ (M) . (1.2.4)

They extend naturally to

∂ : Ω•,•(M)→ Ω•+1,•(M), ∂ : Ω•,• (M)→ Ω•,•+1 (M) , (1.2.5)

which verify the Leibniz rule for ∂ and ∂. Besides, we have the decomposition

d = ∂ + ∂, ∂2 = ∂
2

= ∂∂ + ∂∂ = 0. (1.2.6)

The operator ∂ is called the Dolbeault operator.

Definition 1.22. A Kähler structure on a Riemannian manifold (Mn, g)

is given by a 2-form Ω and a field of endomorphisms of the tangent bundle

J satisfying the following conditions:

• J is an almost complex structure.

• g is an Hermitian metric (also known as J-invariant metric), that is,

g(X, Y ) = g(JX, JY ), for every X, Y ∈ TM .

• Ω(X, Y ) = g(JX, Y ).

• Ω is a closed 2-form.

• J is integrable, that is J is a complex structure.

Certainly, any Kähler manifold is a symplectic manifold. Kähler mani-

folds represent an important class of symplectic manifolds. Let us exhibit

one example that will be of great importance in this work.
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Example 1.23. (Projective space) For x, y ∈ Cn+1 \ {0}, we say x ∼ y if

there is λ ∈ C∗ such that x = λy. Then the complex projective space CPn

is defined as the quotient space (Cn+1 \ {0}) / ∼. Let π : Cn+1 \ {0} → CPn

be the standard projection map. For every z ∈ Cn+1, we denote [z] = [z0 :

z1 : . . . : zn] = π (z) which is known as the homogeneous coordinate on CPn.

Let Ui = {[z] ∈ CPn : zi 6= 0}, then

ϕi : Ui → Cn

[z]→
(
z0

zi
, . . . ,

ẑi
zi
,
zi+1

zi
, . . . ,

zn
zi

)
defines an holomorphic local coordinate of CPn, where, as usual, the symbol

“̂” refers to omitting the i-th coordinate.

Let ω̃FS,z a real 2-form in Cn+1 \ {0} defined by

ω̃FS,z =

√
−1

2π
∂∂ log

(
‖z‖2

)
.

(The notation FS is due to the fact that from ω̃FS we will exhibit the local

expresion for the Fubini-Study form in CPn, which is going to be exposed as

follows).
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Equivalently,

ω̃FS,z =

√
−1

2π
∂∂ log

(
|z0|2 + · · ·+ |zn|2

)
=

√
−1

2π
∂∂ log (z0z0 + · · ·+ znzn)

=

√
−1

2π
∂

[ n∑
j=0

dzj
∂

∂zj
log (z0z0 + · · ·+ znzn)

]

=

√
−1

2π
∂
[
dz0

∂

∂z0

log (z0z0 + · · ·+ znzn) + · · ·+ dzn
∂

∂zn
log (z0z0 + · · ·+ znzn)

]
=

√
−1

2π
∂
[ z0

z0z0 + · · ·+ znzn
dz0 + · · ·+ zn

z0z0 + · · ·+ znzn
dzn

]
=

√
−1

2π

[ n∑
k=0

dzk
∂

∂zk

(
z0

z0z0 + · · ·+ znzn
dz0 + · · ·+ zn

z0z0 + · · ·+ znzn
dzn

)]
=

√
−1

2π

[∑n
k=0 dzk ∧ dzk
‖z‖2

−
∑n

k=0 zkdzk ∧
∑n

j=0 zjdzj

‖z‖4

]
. (1.2.7)

Let U be an open set in CPn and ϕ : U → Cn+1\{0} an holomorphic section,

that is, ϕ is an holomorphic map with π ◦ ϕ = idU .

Claim 1.23.1. ϕ∗ω̃FS does not depend on the section ϕ.

Proof. Let ϕ1 : U → Cn+1 \ {0} be another holomorphic section , then for

every [z] ∈ U , there exists an holomorphic function

f : U → C∗ with ϕ1([z]) = f([z])ϕ([z]).

Thus,

ϕ∗1ω̃FS,[z] = ω̃FS,ϕ1([z])

=

√
−1

2π
∂∂ log

(
‖ϕ1 ([z]) ‖2

)
=

√
−1

2π
∂∂ log

(
‖f ([z])ϕ ([z]) ‖2

)
=

√
−1

2π
∂∂ log

(
|f ([z]) |2

)
+

√
−1

2π
∂∂ log

(
‖ϕ ([z]) ‖2

)
=

√
−1

2π
∂∂ log

(
|f ([z]) |2

)
+ ϕ∗ω̃FS,[z]. (1.2.8)
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Besides,

∂∂ log
(
|f |2
)

= ∂

(
dz

∂

∂z
log
(
ff
))

= ∂

(
dz

1

ff

∂

∂z

(
ff
))

= ∂

(
dz

1

ff

[
∂f

∂z
.f + f.

∂f

∂z

])
= ∂

(
dz

1

ff
f.
∂f

∂z

)
= ∂

(
dz

1

f
.
∂f

∂z

)
=

∂

∂z

(
1

f
.
∂f

∂z

)
dz ∧ dz

=

(
∂

∂z

(
1

f

)
.
∂f

∂z
+

1

f
.
∂

∂z

(
∂f

∂z

))
dz ∧ dz

= 0, (1.2.9)

since f is an holomorphic function and it is nonzero for every [z] in U . Conse-

quently, by replacing (1.2.9) in (1.2.8), we obtain that the claim is proved.

Therefore, by denoting ωFS := ϕ∗ω̃FS, the previous claim implies that

ωFS independient of the election of the section ϕ, and since these sections

exist locally, ωFS is a global differential form in CPn.

Let us choose the following coordinate map

ψ0 : U0 → Cn

[z]→ (w1, . . . , wn) := w

with wi = zi
z0

. Thus, for the section

ϕ : U0 → Cn+1 \ {0}

[z]→ (1, w)
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we obtain the following expression for ωFS respect to the coordinate ψ0:

ωFS =

√
−1

2π
∂∂ log

(
1 + ‖w‖2

)
. (1.2.10)

Additionally, ωFS is a real closed (1,1) form in CPn, indeed, since (1.2.10),

the properties of ∂ and ∂ stated in (1.2.6) and equation (1.2.7):

ωFS = −
√
−1

2π
∂∂ log

(
1 + ‖w‖2

)
= −
√
−1

2π
∂∂ log

(
1 + ‖w‖2

)
= ωFS, (1.2.11)

and dωFS = d (ϕ∗ω̃FS) = ϕ∗dω̃FS = 0.

Finally, we only need to show that ωFS is nondegenerate, (actually, pos-

itive definite) to see that (CPn, ωFS) is a symplectic manifold, where ωFS is

known as the Fubini-Study form. In fact, let

Φ : Un+1 × Cn+1 \ 0→ Cn+1 \ 0, Φ′ : Un+1 × CPn → CPn

(A, z)→ Az (A, [z])→ [Az]

be Un+1-actions on Cn+1 \ 0 and CPn, respectively, where Un+1 is the group

of unitary matrices. It is easy to see that

π ◦ ΦA = Φ′A ◦ π. (1.2.12)

First of all, we observe that Un+1 acts transitively on CPn since CPn ∼=

S2n+1/S1 and Un+1 acts transitively on S2n+1, which follows from the fact

that every unit vector can be extended to an orthonormal basis in R2n+2 '

Cn+1 and consequently, given two orthonormal bases in Cn+1, the linear

transformation which carries one basis to another corresponds to a unitary

matrix.
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Claim 1.23.2. Φ∗Aω̃FS = ω̃FS.

Proof.

Φ∗Aω̃FS,z = ω̃FS,ΦA(z)

=

√
−1

2π
∂∂ log

(
‖ΦA(z)‖2

)
=

√
−1

2π
∂∂ log

(
‖Az‖2

)
=

√
−1

2π
∂∂ log

(
‖z‖2

)
= ω̃FS,z,

where the fourth equality follows from the fact that A is a unitary matrix.

Claim 1.23.3. π∗ωFS = ω̃FS.

Proof. Since ωFS does not depend on the election of the section, we can use

the section ϕ0 related to the chart ψ0 defined in the coordinate open set U0

as we did in (1.2.10) to obtain:

π∗ωFS,z = ωFS,π(z)

=

√
−1

2π
∂∂ log

(
1 + ‖

(
z1

z0

, . . . ,
zn
z0

)
‖2

)
=

√
−1

2π
∂∂ log

(
‖z‖2

|z0|2

)
=

√
−1

2π
∂∂ log ‖z‖2 −

√
−1

2π
∂∂ log |z0|2

= ω̃FS,z,

where the last equality follows from (1.2.9), since z0 is an holomorphic func-

tion defined in U0 and take values in C∗.

Then ωFS is positive definite in every element of CPn if it is positive

definite in just one point.
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Thus, by working on the coordinate patch U0, it follows from (1.2.7) at

z′ = [1 : 0 : . . . : 0] that

ωFS,z′ =

√
−1

2π

n∑
k=1

dzk ∧ dzk (1.2.13)

which is positive definite, since ωFS = 1
π
ωst, where ωst is the standard sym-

plectic form of Cn (cf. (1.1.9)).

Claim 1.23.4. Φ′∗AωFS = ωFS.

Proof. We have that

Φ′∗AωFS,[z] = Φ′∗A (ϕ∗0ω̃FS),[z] = ω̃FS,(ϕ0◦Φ′A)([z])

= ω̃FS,(ϕ0◦Φ′A◦π)(z).

From (1.2.12),

Φ′∗AωFS,[z] = ω̃FS,(ϕ0◦π◦ΦA)(z) = ϕ∗0ω̃FS,(π◦ΦA)(z)

= ωFS,(π◦ΦA)(z)

= π∗ωFS,ΦA(z)

= ω̃FS,ΦA(z)

= Φ∗Aω̃FS,z.

Thus, from claims 1.23.2 and 1.23.3,

Φ′∗AωFS,[z] = ω̃FS,z

= π∗ωFS,z

= ωFS,[z].
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Chapter 2

Contact structures and

Symplectic cones

In [1], Lerman defines the notion of a symplectic cone and its relationship

with a given contact structure as a base space. Some results that will be

exposed but not proved can be found in [3] and [5]. It is stated as follows.

2.1 Symplectic cones

Definition 2.1. A symplectic manifold (M,ω) is a symplectic cone if

• M is a principal R - bundle over some manifold B which is called the

base of the cone, and

• the action of the real line R expands the symplectic form exponentially.

That is, ρ∗λω = eλω, where ρλ denotes the diffeomorphism defined by

λ ∈ R.

Definition 2.2. An action of a Lie group G on a manifold M is proper if

the map
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G×M →M ×M

(g,m) 7→ (g ·m,m)

is proper.

It follows that if a symplectic manifold (M,ω) has a complete vector field

X, (that is, the flow of X is globally defined on M × R), with the following

two properties:

1. the action of R induced by the flow of X is proper, and

2. the Lie derivative of the symplectic form ω with respect to the vector

field X is again ω: LXω = ω,

then (M,ω) is a symplectic cone relative to the induced action of R.

In fact, if the action of R induced by the flow of X is proper, we obtain

that M is a principal R - bundle over some manifold B ∼= M/R because we

additionally have that this action is free as it is globally defined on M × R

and generated by the flow of X. The second asumption comes from Remark

1.20.

Thus, we obtain an equivalent definition of a symplectic cone.

Definition 2.3. A symplectic cone is a triple (M,ω,X) where M is a

manifold, ω is a symplectic form on M , X is a vector field on M generating

a proper action of R such that LXω = ω.

Remark 2.4. From Definition 1.19, we note that X is a Liouville vector field

for the symplectic cone (M,ω,X).

Example 2.5. Let (V, ωV ) be a symplectic vector space. The manifold M =

V \ {0} is a symplectic cone with the action of R given by ρλ(v) = eλv.

Clearly ρ∗λωV = eλωV . The base is a sphere.
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Example 2.6. Let Q be a manifold. Denote the cotangent bundle of Q with

the zero section deleted by T ∗Q \ 0. There is a natural free action of R on

the manifold M := T ∗Q \ 0 given by dilations ρλ(q, p) = (q, eλp). It expands

the standard symplectic form on the cotangent bundle exponentially. Thus

T ∗Q \ 0 is naturally a symplectic cone. The base is the co-sphere bundle

S∗Q.

2.2 Contact manifolds and contact transfor-

mations

The following definition is the basic one we need in order to introduce the

notion of a contact manifold. As follows, we will develop some tools that will

be key to understand the intrinsic structure of a contact manifold.

Definition 2.7. A 1-form η on a manifold B is a contact form if the

following two conditions hold:

1. ηb 6= 0 for all points b ∈ B, where ηb ∈ T ∗b B. Hence D := kerη =

{(b, v) ∈ TB | ηb(v) = 0} is a vector subbundle of the tangent bundle

TB.

2. dη|D is a symplectic structure on the vector bundle D → B( i.e. dη|D
is nondegenerate).

Remark 2.8. If D → B is a symplectic vector bundle, then the dimension of

its fibers is necessarily even. Hence if a manifold B has a contact form then

B is odd-dimensional.

Remark 2.9. A 1-form η on 2n+ 1 dimensional manifold B is contact if and

only if the form η ∧ (dη)n is never zero, i.e. it is a volume form. This follows

28



from the fact that dη|D is a symplectic structure on the vector bundleD → B,

which from Remark 1.17, gives us a nowhere vanishing (2n + 1)-form, and

conversely.

Remark 2.10. ⊔
p∈M

Dp = D = kerη

is not integrable. Indeed, the Frobenius integrability condition states that if

X, Y ∈ D then [X, Y ] ∈ D. Besides, we have

dη(X, Y ) = η(X)Y − η(Y )X − η[X, Y ].

Thus dη(X, Y ) = −η[X, Y ].

However, we have that η ∧ (dη)n 6= 0 which implies that η ∧ dη 6= 0. We

conclude that η[X, Y ] can not be zero, i,e. D = kerη is not integrable.

The previous remark allows us to notice that a contact form gives us

the non integrable maximum condition for the distribution D. Now, let us

observe some examples of contact forms.

Example 2.11. The 1-form η = dz+ xdy on R3 is a contact form: η ∧ dη =

dz ∧ dx ∧ dy.

Example 2.12. Let B = R × T2. Denote the coordinates by t, θ1 and θ2

respectively. The 1-form η = cos t dθ1 + sin t dθ2 is contact.

We, indeed, can obtain a family of contact forms by a very easy but also

useful observation.

Lemma 2.13. Suppose η is a contact form on a manifold B. Then for any

positive function f on B the 1-form fη is also contact.

Proof. Note first that since f is positive then in particular nowhere zero,

kerfη = kerη. Thus to show that fη is contact, it is enough to check that
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d(fη)|D is nondegenerate, whereD = kerη = kerfη. Now d(fη) = df∧η+fdη

and η|D = 0. Therefore d(fη)|D = fdη|D. But f is nowhere zero and dη|D
is nondegenerate since η is a contact form by assumption. Thus d(fη)|D is

nondegenerate.

Definition 2.14. We define the conformal class of a 1-form η on a manifold

B to be the set [η] = {ehη |h ∈ C∞(B)}, that is, the set of all 1-forms

obtained from η by multiplying it by a positive function.

Thus if a 1-form η on a manifold B is a contact form, then its conformal

class consists of contact forms all defining the same subbundle D of the

tangent bundle of B.

Definition 2.15. M is coorientable if D is an orientable bundle.

Now, we have the enough machinery to define a contact structure.

Definition 2.16. A (co-orientable) contact structure D on a manifold B

is a subbundle of the tangent bundle TB of the form D = kerη for some

contact form η. The pair (B,D) is called a contact manifold.

A co-orientation of a contact structure D is a choice of a conformal class

of contact forms defining the contact structure.

Remark 2.17. More generally a contact structure on a manifold B is a sub-

bundle D of the tangent bundle TB such that for every point x ∈ B there

is a contact 1-form η defined in a neighborhood of x with kerη = D. There

exist contact structures which are not co-orientable. For such structures D

a 1-form η with kerη exists only locally.

Hopefully, we can always have a contact form for a contact manifold,

which resembles the contact form in R2n+1 in local coordinates. This is the

purpose of the following theorem.
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Theorem 2.18. (Darboux) About each point of a contact manifold (B2n+1, η),

there exist local coordinates (x1, ..., xn, y1, ..., yn, z) with respect to which

η = dz −
n∑
i=1

yidxi

Proof. See [3], page 26.

Under the same conditions of the previous theorem, there is a 1-form

η0 = dz −
∑n

i=1 y
idxi which is the standard contact form in R2n+1 where

ϕU : U ⊂ B 7→ (R2n+1, η0) is the local chart of B in the coordinate open U

of B.

Thus

ηU = ϕ∗Uη0 (2.2.1)

where ηU is the 1-form defined in U . Then η(X) = η0((ϕU)∗X) , where X is

a vector field in U and (ϕU)∗ : TU 7→ TR2n+1 .

Remark 2.19. By (2.2.1), it follows that ηU 6= 0 in U .

Remark 2.20. A 1-form ηU is a contact form in U , in fact,

ηU ∧ (dηU)n = ϕ∗Uη0 ∧ (d(ϕ∗Uη0))n

= ϕ∗Uη0 ∧ (ϕ∗Udη0)n

= ϕ∗Uη0 ∧ ϕ∗U(dη0)n

6= 0.

Definition 2.21. A diffeomorphism φ of a 2n+ 1-dimensional smooth man-

ifold B, with the contact structure of the Darboux form of theorem 2.18, is

called a contact transformation if there is a nowhere vanishing smooth

function f such that

φ∗η0 = fη0

If f ≡ 1 on U , then φ is called a strict contact transformation.
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Let us recall that a pseudrogroup Γ on a topological space A is a col-

lection of homeomorphisms between open subsets of A that is defined by a

set of closure conditions (identity map in Γ, existence of inverse element in Γ

and restriction of a map in Γ) by the composition operation and two special

properties such as:

• (Restriction condition) If we have U an open set in A such that it is

the union of open sets Ui and f is an homeomorphism from U to an

open subset of A , and the restrictions of f to Ui is in Γ for all i then

f is in Γ.

• (Gluing condition) If f : U → V and f ′ : U ′ → V ′ are in Γ, and the

intersection V ∩ U ′ is not empty, then the following composition is in

Γ:

f ′ ◦ f : f−1(V ∩ U ′)→ f ′(V ∩ U ′).

Afterwards, the collection ΓCon of all such contact transformations forms

a pseudogroup, called the contact pseudogroup. Besides, the subset of

strict contact transformations forms a subpseudogroup denoted by ΓsCon.

Therefore, we can expose a more general definition of a contact manifold in

terms of contact transformations. .

Definition 2.22. A 2n + 1 dimensional manifold B with a ΓCon-structure

is called a contact manifold. If B has a ΓsCon-structure, then it is called

a strict contact manifold. This structure is usually called the contact

structure in the wider sense.

Definition 2.23. An infinitesimal contact transformation is a local

vector field X defined on an open set U ⊂ R2n+1 that satisfies

LXη0 = fη0
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where f is a smooth function on U .

If f vanishes on U , then X is called an infinitesimal strict contact trans-

formation. Let scon(U) and con(U) denote the subsets of all vector fields on

U consisting of infinitesimal strict contact transformations and infinitesimal

contact transformations, respectively.

Definition 2.24. Let (B1, D1 = kerη1) and (B2, D2 = kerη2) be two co-

orientable contact manifolds. A diffeomorphism ϕ : B1 → B2 is a con-

tactomorphism if the differential dϕ maps D1 to D2 preserving the co-

orientations. That is, ϕ∗η2 = fη1 for some positive function f .

Definition 2.25. An action of a Lie group G on a manifold B preserves a

contact structure D and its co-orientation if for every element a ∈ G the

corresponding diffeomorphism aB : B → B is a contactomorphism. We will

also say that the action of G on (B,D) is a contact action.

Definition 2.26. A vector field X on a contact manifold (B, ξ = kerα) is

called a contact vector field if its flow ϕt consits of contactomorphisms.

Proposition 2.27. Let B be a 2n + 1-dimensional contact manifold with

D = kerη as its contact bundle . Then

1. If n is odd, then B is orientable.

2. If n is even, then B is co-orientable. Thus, in this case B has a strict

contact structure if and only if B is orientable.

Proof. Let Ui, ηi, with Ui open sets in B and ηi their 1- forms defined in each

Ui. Thus ηi = fijηj in Ui ∩ Uj and

dηi = d(fijηj)

= dfij ∧ ηj + fijdηj.
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Therefore

(dηi)
n|D = (dfij ∧ ηj + fijdηj)

n|D (2.2.2)

= (fij)
n(dηj)

n|D.

On the other hand, we have

ηi ∧ (dηi)
n = fn+1

ij (ηj ∧ (dηj)
n). (2.2.3)

Consequently, if n is odd , we obtain from (2.2.3) that the sign of the volume

form depends only on D but not on the choice of η, so the contact structure

D induces a natural orientation on B.

In case n is even, from (2.2.2) we will have that D is orientable, which means

that B is co-orientable. In this case, B has a strict contact structure if and

only if we can choose the fij all positive, that is, B is orientable.

The importance of the following lemma relies on one of its main conse-

quences (cf. Remark 2.29): the way we can characterize the tangent bundle

of a contact manifold from the existence of a certain vector field.

Lemma 2.28. Let (B2n+1, η) be a strict contact manifold. Then, there is a

unique vector field ξ, called the Reeb vector field, satisfying the following

conditions

1. η(ξ) = 1

2. ξ y dη = 0.

Proof. As we have that η ∧ (dη)n 6= 0, then η ∧ (dη)n is a volume form. And

this gives the following isomorphism of C∞(B)− modules

η ∧ (dη)n : X∞(B) → Ω2n(B)

X → X y (η ∧ (dη)n).
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Therefore, by choosing (dη)n ∈ Ω2n(B), we have that there is a unique vector

field ξ̂ defined in B such that

ξ̂ y (η ∧ (dη)n) = (dη)n. (2.2.4)

Consequently, ξ̂ y ξ̂ y (η ∧ (dη)n) = ξ̂ y (dη)n and we obtain that

ξ̂ y (dη)n = 0. (2.2.5)

By 2.2.4 and 2.2.5,

(ξ̂ y η) ∧ (dη)n − η ∧ (ξ̂ y (dη)n) = (dη)n

η(ξ̂)(dη)n = (dη)n.

Thus η(ξ̂) = 1.

On the other hand,

ξ̂ y (dη)n = ξ̂ y (dη ∧ (dη)n−1) (2.2.6)

= (ξ̂ y dη) ∧ (dη)n−1 + dη ∧ (ξ̂ y (dη)n−1)

= n(ξ̂ y dη) ∧ (dη)n−1

where the last equation is obtained by iterating n−1 times in the parentheses

of the second term of the second line like we have done it in the first line,

and dη is a 2-form.

Finally, by (2.2.5), (2.2.6) and the fact that n is the rank of the 2-form dη, it

follows that ξ̂ y dη = 0.

Remark 2.29. The Reeb vector field ξ uniquely determines a 1-dimensional

foliation Fξ on (B, η) called the characteristic foliation. Let Lξ be the trivial

line bundle consisting of tangent vectors that are tangent to the leaves of Fξ,

then

TB = D ⊕ Lξ.
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2.2.1 Examples of contact manifolds

As follows we will briefly expose an example of a noncoorientable contact

manifold and coorientable ones that will be of big significance in the core of

this work.

Example 2.30. (Rn+1 × RPn)

Let us consider B = Rn+1 × RPn, Rn+1 with coordinates (x0, . . . , xn) and

the real projective space RPn with homogeneous coordinates, (t0, . . . , tn). If

we set Ui ⊂ Rn+1 × RPn as the affine neighbourhood defined by ti 6= 0. We

have that {Ui}ni=0 cover B. We define the contact structure by a sequence of

1-forms ηi defined in Ui by

ηi = dxi +
∑
j=06=j

tj
ti
dxj

=
∑
j

tj
ti
dxj.

In Ui ∩ Uj, we have that

ηj =
ti
tj
ηi,

and this defines the contact line bundle L which is non-trivial since it is

induced by the tautological line bundle on RPn. Hence, there is no globally

defined contact 1-form on M which defines the contact structure, that is, the

contact structure is not strict. We can obtain that

ηj ∧ (dηj)
n =

(
ti
tj

)n+1

ηi ∧ (dηi)
n,

so M is orientable if and only if n is odd, and in this case M is not co-

orientable.

The following lemma can be useful in obtaining new contact manifolds,

roughly speaking, submanifolds of a certain symplectic manifold.
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Lemma 2.31. Let Ψ be a Liouville vector field on a symplectic manifold

(M,ω) of dimension 2n+2. Suppose that B is a codimension one submanifold

of M transverse to Ψ. Then α = Ψ y ω is a contact form on B.

Proof. In fact,

α ∧ (dα)n = (Ψ y ω) ∧ (d (Ψ y ω))n

= (Ψ y ω) ∧ ωn

=
1

n+ 1
Ψ y

(
ωn+1

)
,

where the second equality is a consequence of applying the Cartan’s formula

and using the definition of a Liouville vector field. The third equality can be

proved inductively. Consequently, since Ψ is transversal to B, for each point

p ∈ B and every v1, · · · , v2n+1 in TpB, Ψp is linear independent with respect

to each vi. Thus, Ψ y (ωn+1) 6= 0, and α is a contact form on B.

Example 2.32. The radial vector field ∂r =
∑(

1
2
xj∂xj + 1

2
yj∂yj

)
(cf. Ex-

ample 1.21) is transversal to the unit sphere S2n+1. Thus, from Lemma 2.31,

∂r yωst = 1
2

∑
dθj is a contact form on S2n+1, where ωst is the standard sym-

plectic form of Cn+1 ∼= R2n+2 stated in (1.1.9), this time exposed in polar

coordinates.

Subsequently, let us study the group of transformations that will provide

the necessary structure for strict contact manifolds in order to study the

moment maps in the contact case.

Definition 2.33. Let B be a strict contact manifold, and let Con(B,D) de-

note the group of global contact transformations, that is, the subgroup of the

group Diff (B) of diffeomorphisms of B that leaves the contact distribution

D invariant. Alternatively fixing a contact form η such that D = kerη, then
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Con(B,D) can be characterized as

Con (B,D) = {φ ∈ Diff (B) |φ∗η = fη for f ∈ C∞(B) nowhere vanishing}

With the 1-form η fixed we are also interested in the subgroup Con(B, η) of

global strict contact transformations defined by the condition φ∗η = η.

The Lie algebras of Con(B,D) and Con(B, η) denoted by con(B,D) and

con(B, η), respectively, can be characterized as follows:

con(B,D) = {X ∈ X∞(B)|LXη = gη for some g ∈ C∞(B)}

con(B, η) = {X ∈ X∞(B)|LXη = 0},

where X∞(B) denotes the Lie algebra of smooth vector fields on B.

Those Lie algebras are associated with the corresponding pseudogroups ΓCon,

not groups of global transformations.

Moreover, according to Definition 2.26, we can characterize con(B,D) as the

Lie algebra which consits of contact vector fields in B.

Lemma 2.34. If X ∈ con(B, η) then LXξ = [X, ξ] = 0.

Proof. We have that

LX (η(ξ)) = (LXη) (ξ) + η ([X, ξ])

0 = 0 + η ([X, ξ]) . (2.2.7)

Then

L[X,ξ]η ([X, ξ]) = L[X,ξ]η + η ([[X, ξ], [X, ξ]])

0 = L[X,ξ]η + 0. (2.2.8)

Thus, since (2.2.7), (2.2.8) and Cartan’s formula:

L[X,ξ]η = d ([X, ξ] y η) + [X, ξ] y dη

0 = 0 + [X, ξ] y dη. (2.2.9)
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Then, by using the nondegeneracy of dη in kerη , (2.2.7) and (2.2.9) imply

that:

[X, ξ] = 0 for every X ∈ con(B, η).

The following proposition will be useful as it will allow us to notice the

well definition of a contact moment map.

Proposition 2.35. Let (B,D = kerη) be a contact manifold. The linear map

from contact vector fields to smooth functions given by X → fX := η(X) is

one-to-one and onto.

Proof. Let us observe that, by taking the Reeb vector field ξ:

η(ξ) = 1.

Thus, η (X − η(X)ξ) = 0, which means that X−η(X)ξ ∈ D for every vector

field X in B.

As dη|D is nondegenerate, X − η(X)ξ is uniquely determined by

(X − η(X)ξ) y dη|D (2.2.10)

For every section v of D → B and every contact vector field X in B,

(LXη) (v) = 0

(X y dη + d (X y η)) (v) = 0

dη(X, v) + d (η(X)) (v) = 0.

Let us define the linear map from contact vector fields to smooth functions

by

X → fX := η(X).
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Thus, for every section v of D and for every contact vector field X in B,

dη(X, v) = −d (η(X)) (v)

= −dfX(v). (2.2.11)

Moreover, (
X −

(
X − fXξ

))
y dη = fXξ y dη

= 0, (2.2.12)

as ξ is the corresponding Reeb vector field.

Thus, in particular, from (2.2.11) and (2.2.12):

(X − η(X)ξ) y dη|D = X y dη|D

= −dfX |D, (2.2.13)

for every contact vector field X in B. Consequently, if we assume that

fX = fY for every contact vector fields X, Y in B, it follows from what we

observed in (2.2.10) and (2.2.13) that X = Y in D, and, as TB = D ⊕ Rξ

where X = X − η(X)ξ + η(X)ξ with η(X)ξ ∈ Rξ, we obtain that the linear

map is 1-1.

We are going to see that the linear map is onto. Indeed, for every f ∈ C∞(B)

and from (2.2.13), there exists a unique section X ′f of D, such that:

X ′f y dη|D = −df |D. (2.2.14)

Let us define the following vector field in B,

Xf := X ′f + fξ;

we observe that

η(Xf ) = η(X ′f + fξ) = η(X ′f ) + fη(ξ)

= η(X ′f ) + f = f. (2.2.15)
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It is only left to prove that Xf is a contact vector field.

In fact, for every w = w1 + w2 ∈ TB = D ⊕ Rξ :

LXfη(w) = (d(Xf y η) +Xf y dη) (w)

= d (η(Xf )) (w1) + d (η(Xf )) (w2) + (Xf y dη)(w1) + (Xf y dη)(w2).

From (2.2.14), (2.2.15) and the definition of the Reeb vector field ξ:(
LXfη

)
(w) = d(f)(w1) + d(f)(w2)− d(f)(w1) + (Xf y dη)(w2)

= df(w2) + (Xf y dη)(w2)

= d(η(Xf ))(w2) + (Xf y dη)(w2)

=
(
LXfη

)
(w2). (2.2.16)

Now, as w2 ∈ Rξ, we can write w2 = tξ for some t ∈ R, then:(
LXfη

)
(w) =

(
LXfη

)
(w2) = LXf (η(w2))− η ([Xf , w2])

= −η ([Xf , w2]) . (2.2.17)

If t was zero, we would obtain immediately that Xf is a contact vector field.

Otherwise, we can write: (
LXfη

)
(w) = g.η(w) (2.2.18)

where g = −η([Xf ,w2])

t
∈ C∞(B) and η(w) = t, which implies that Xf is a

contact vector field in B.

2.3 The link between Symplectic cones and

Contact manifolds

The following propositions in this section are going to show how a contact

manifold B and its symplectic cone M are intimately related.
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Proposition 2.36. Any principal R-bundle R→M
ω−→ B is trivial.

Proof. Note first that if s : B → M is a (local) section of M
ω−→ B and

f ∈ C∞(B) is a function, then s − f is again a (local) section of M
ω−→ B.

To prove that a principal bundle is trivial it is enough to construct a global

section. To this end choose an open cover {Uα} of B such that for each Uα

there is a section sα : Uα → M . Choose a partition of unity τα subordinate

to the cover {Uα}. Two sections of a principal R-bundle differ by real-valued

function. Thus by abuse of notation on an intersection Uα ∩ Uβ, sα − sβ is a

real-valued function. Now define for each index α

s′β = sβ −
∑
α6=β

τα(sβ − sα)

Then on an intersection Uα ∩ Uβ

s′β − s′γ =

(
sβ −

∑
α6=β

τα(sβ − sα)

)
−

(
sγ −

∑
α6=γ

τα(sγ − sα)

)

= sβ − sγ −

(∑
α6=β,γ

τα(sβ − sγ)

)
+ τβ(sγ − sβ)− τγ(sβ − sγ)

= sβ − sγ − (
∑
α

τα)(sβ − sγ)

= 0.

Therefore, the collection of local sections {s′α} defines a global section of

ω : M → B. Consequently the bundle is trivial.

Thus any symplectic cone is of the form B × R where B = M/R is an

odd-dimensional manifold.

Proposition 2.37. Let (M,ω,X) be a symplectic cone, let B be its base and

let ω : M → B denote the projection. Pick a trivialization ϕ : B × R→ M .
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Then ϕ∗ω = d(etη) where t is a coordinate on R and η is a contact form

on B. Conversely, if η is a contact form on B then (B × R, d(etη), ∂
∂t

) is a

symplectic cone.

Proof. By Proposition 2.36, the principal R-bundle ω : M → B is trivial.

Let us choose a trivialization

ϕ : B × R→M

(p, t)→ ϕ(p, t) := ρt(s(p)) (2.3.1)

where ρt is the flow generated by the Liouville vector field X according to

Definition 2.3 and s : B →M is a global section of ω : M → B.

Under this identification the vector field X becomes ∂
∂t

.

As dω = 0 and LXω = ω, then

ω = LXω = d(X y ω). (2.3.2)

Let us call β := X y ω in M . Then X y β = X y (X y β) = 0 and

LXβ = d(X y β) +X y dβ = X y dβ

= β. (2.3.3)

As β(X) = 0 and X = ∂
∂t

, we obtain that ϕ∗β = ρ∗tβ (1-forms in B×R) does

not depend on dt. So we can set

(ρ∗tβ)(p,0) := η(p) (2.3.4)

as a 1-form in B, for every p ∈ B.

Let Y ∈ TM , then, in local coordinates:

Y = (a1
1,2,...,2n+2)

∂

∂x1

+ ...+ (a2n+1
1,2,...,2n+2)

∂

∂x2n+1

+ (a2n+2
1,2,...,2n+2)

∂

∂t
, (2.3.5)
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where a1
1,2,...,2n+2,· · · ,a2n+2

1,2,...,2n+2 are C∞ functions in M .

From (2.3.3), we obtain that:

(β(Y ))s(p) = lim
λ→0

(ρ∗λβ(Y ))s(p) − (β(Y ))s(p)

λ

= lim
λ→0

(β (ρλ∗(Y )))(s(p)) − (β(Y ))s(p)
λ

= lim
λ→0

β

(
dρλ

ρ−1
λ(s(p))

(
Yρ−1

λ (s(p))

))
− (β(Y ))s(p)

λ
. (2.3.6)

Thus, from (2.3.5) and the fact that we are identifying X with ∂
∂t

, we can ap-

ply L’Hôpital’s rule in (2.3.6) to obtain that, due to a solution of a differential

equation,

(ϕ∗β)(p,t) = (ρ∗tβ)s(p) = et(ρ∗tβ)(p,0). (2.3.7)

Consequently, by taking the exterior derivative in (2.3.7) and in view of the

identification made above of η in B:

(ϕ∗ω)(p,t) = d(etη)p, (2.3.8)

for every p ∈ B.

Let us prove that η is a contact form in B. By setting n = 1
2

dimM − 1,

we know that ωn+1 6= 0 in M , and since (2.3.8) and the fact that ϕ is a

trivialization, we obtain :

(
d(etη)

)n+1 6= 0. (2.3.9)

On the other hand,

(
d(etη)

)n+1
= et(n+1) (dt ∧ η + dη)n+1

= et(n+1)
(
(n+ 1)dt ∧ η ∧ (dη)n + (dη)n+1

)
= (n+ 1)et(n+1) (dt ∧ η ∧ (dη)n) 6= 0
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But in B, we know that there is no depency on the variable t, so η∧(dη)n 6= 0.

Conversely, let us suppose that η is a contact 1-form on B. Let ω = d(etη)

and let X = ∂
∂t

. Then

LXω = d(
∂

∂t
y d(etη)) = d(

∂

∂t
y (etdt ∧ η + etdη)) = d(etη + 0) = ω,

that is, X is a Liouville vector field on M .

It remains to check that ω is nondegenerate. For any (b, t) ∈ B × R, the

tangent space T(b,t)(B×R) decomposes as T(b,t)(B×R) = ker ηb⊕Rξ(b)⊕R

where ξ is the Reeb vector field of η (cf. Remark 2.29).

Since η is contact, then dηb|ker ηb is nondegenerate. The restriction dt ∧ ηb to

Rξ(b)⊕R is nondegenerate as well. Hence ω = et(dt∧η+dη) is nondegenerate.

This proves that (B × R, d(etη), ∂
∂t

) is a symplectic cone.

Let (B, η) be a strict manifold of dimension 2n+ 1 with Reeb vector field

ξ, and M its symplectic cone. On M we define S(M,ω) as the group of

symplectomorphisms of (M,ω), and S0(M,ω) the subgroup of S(M,ω) that

commutes with homotheties, which are the ones that satisfy ρ∗λω = eλω with

ρλ ∈ Diff(M) and λ ∈ R.

Their correspondings Lie algebras are denoted by s(M,ω) and s0(M,ω),

which can be characterized respectively as:

s(M,ω) = {X ∈ X∞(M)|LXω = 0} (2.3.10)

s0(M,ω) = {X ∈ X∞(M)|[X,ψ] = 0}, (2.3.11)

where ψ is the Liouville vector field which generates the flow of the homoth-

eties.

According to the definitions given in Definition 2.33,
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Proposition 2.38. There exists an isomorphism S0(M,ω) ' Con(B, η) of

topological groups, which is induced by the natural inclusion B →M ' B×R.

Proof. cf. [12], page 314.

The following proposition characterizes the group of automorphisms of

our interest with the symplectic cone scenario.

Proposition 2.39. Infinitesimally, there are Lie algebra isomorphisms

s0(M,ω) ' con(B, η) ' C∞(B)ξ,

where

C∞(B)ξ = {f ∈ C∞(B)|ϕ∗tf = f},

where ϕt is the flow generated by the Reeb vector field ξ. Moreover, ξ is in

the center of con(B, η).

Proof. • con(B, η) ' C∞(B)ξ: In fact, we observe that we can use the

same linear map X → η(X), in this case, for every X ∈ con(B, η), cf.

Proposition 2.35 . Consequently, we have that the linear map is 1-1.

From Proposition 2.35, we obtain that con(B,D) ' C∞(B).

Then, there exists X ∈ con(B,D), that is, LXη = hη for some h ∈

C∞(B), such that f = η(X). Let us prove that our map is onto.

Let f ∈ C∞(B)ξ, that is,

Lξ (η(X)) = 0

(Lξη) (X) + η ([ξ,X]) = 0

0 + η ([ξ,X]) = 0
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On the other hand,

(LXη) (ξ) = (hη) (ξ)

LX (η(ξ))− η ([X, ξ]) = h

0 = h,

which implies that X ∈ con(B, η).

• s0(M,ω) ' con(B, η): Let us define a map

s0(M,ω)→ con(B, η)

X → XB

Since X ∈ s0(M,ω), [X,ψ] = 0 where ψ is the Liouville vector field

in M . This allow us to choose XB as X. Indeed, let X be in local

coordinates as (a1
1,...,2n+2) ∂

∂x1
+ · · · + (a2n+2

1,...,2n+2) ∂
∂t

and ψ := ∂
∂t

. Since

[X,ψ] = 0, in local coordinates this means:(
V i∂W

j

∂xi
−W i∂V

j

∂xi

)
∂

∂xj
= 0 (2.3.12)

where the V i’s and W j’s are the coefficients for X and ψ, respectively.

By calculating we obtain that:(
−
∂a1

1,...,2n+2

∂t

)
∂

∂x1
−
(
∂a2

1,...,2n+2

∂t

)
∂

∂x2
· · · −

(
∂a2n+2

1,...,2n+2

∂t

)
∂

∂t
= 0

∂a1
1,...,2n+2

∂t
= 0 = · · · =

∂a2n+2
1,...,2n+2

∂t
, (2.3.13)

which means that our vector field X has no any coefficient in the t

coordinate. So we can set XB := X.

It only remains to prove that our map is well defined. In fact, let γt be

the flow generated by X, ϕ the trivialization taken in Proposition 2.37
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and ρt the flow generated by the Liouville vector field ψ.

Since ϕ∗tω = ω,

ϕ∗(γ∗t ω) = ϕ∗ω

ρ∗λ (γ∗t ω) = d(eλη)

γ∗t (ρ
∗
λω) = d(eλη)

γ∗t d(eλη) = d(eλη)

d
(
γ∗t e

λη
)

= d(eλη). (2.3.14)

This implies that:

d
(
γ∗t e

λη − eλη
)

= 0, (2.3.15)

and if we we had that there exists a smooth function f in B such that

γ∗t e
λη − eλη = df (2.3.16)

for every λ and t in R, it would imply that df = 0, so we conclude in

particular that γ∗t η = η, and LXη = 0, obtaining the well definition of

our map and the isomorphism follows immediately.

• ξ is in the center of con(B, η): This is exactly what we proved in Lemma

2.34.
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Chapter 3

Contact reduction and Contact

Toric Manifolds

The notion of contact reduction arises from the natural interplay between

the symplectic cones and contact manifolds. As expected, the notion of sym-

plectic reduction plays a key role in understanding the concept of reduction

at the level of contact structures. We begin this chapter explaining symplec-

tic reduction performed on the complex projective space CPn. This example

will prove to be very useful, at the level of contact reduction, especially for

contact toric manifolds. First some preliminaries.

3.1 Symplectic moment maps

Now, let (M,ω) be a symplectic manifold, G a Lie group acting in M , g

its Lie algebra and φ : G → Sympl(M,ω) be a symplectic action, that is,

φ∗ω = ω.

Definition 3.1. φ is a Hamiltonian action if there is a map µ : M → g∗

such that

49



1. • For every X ∈ g, let

µX : M → R

µX(p) := 〈µ(p), X〉

be the component of µ along X.

• Let X# be the vector field in M generated by the one-parameter

subgroup {exp tX | t ∈ R} ⊂ G

Then

dµX = X# y ω.

That is, µX is a Hamiltonian function for the vector field X#.

2. µ is equivariant with respect to the action φ of G in M and the coadjoint

action Ad∗ of G in g∗, that is,

Ad∗g ◦ µ = µ ◦ φg.

(M,ω,G, µ) is called a G- Hamiltonian space and µ is called the moment

map.

Theorem 3.2. Let φ be a symplectic action of G in (M,ω) with moment map

µ. Suppose H : M → R is invariant under the action φ. (H(x) = H(φg(x))

for every x ∈ M, g ∈ G), then µ is an integral for XH (that is, if Ft is the

flow of XH then µ (Ft(p)) = µ(p) for every p, t where Ft is defined).

Proof. From the nondegeneracy of ω, it follows that for every 1-form α, there

is a unique vector field Ωα such that

Ωα y ω = α.

As H is invariant,

H
(
φexp(tX)(p)

)
= H(p)
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for every X ∈ g. Besides, as µ is a moment map for φ, it follows that

ΩdµX = X# , so by differentiating over t = 0 we have

0 = dH(p) ·X#(p)

= LX#H

= {H,µX}

= ω(ΩdH , X
#)

= −ω(X#,ΩdH)

= −dµX(p) · ΩdH(p)

where XH = ΩdH and the last equality follows from the fact that µ is a

moment map of φ. This implies that µ(Ft(p)) = µ(p) for every p ∈ M and

Ft flow of ΩdH .

Theorem 3.3. Let φ be a symplectic action of a Lie group G in a symplectic

manifold (M,ω). Suppose that ω = −dθ and the action leaves invariant θ,

that is

φ∗gθ = θ

for every g ∈ G. Then µ : M → g∗, defined by

〈µ(p), ξ〉 =
(
ξ# y θ

)
(p),

is an Ad∗ equivariant map for φ.

Proof. By invariance of θ, we have

0 =
d

dt
|t=0 φ

∗
exp(tξ)(θ) = Lξ#θ.

Thus, by Cartan’s formula,

0 = ξ# y dθ + d(ξ# y θ)

= ξ# y−ω + d(ξ# y θ).
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That is,

d(ξ# y θ) = ξ# y ω

which proves that µξ = ξ# y θ is a moment map for φ.

µ is Ad∗- equivariant:

We want to prove that

〈µ(φg(p)), ξ〉 =
〈
Ad∗g(µ(p), ξ)

〉
which is equivalent to prove

µξ (φg(p)) = 〈µ(p)),Adg−1ξ〉

⇔ µξ (φg(p)) = µAdg−1ξ(p)

⇔
(
ξ# y θ

)
(φg(p)) =

(
(Adg−1ξ)# y θ

)
(p)

Additionally, we have the following property:

(Adg−1ξ)# = φ∗g(ξ
#)

which proof is as follows:

(Adgξ)
#
p =

d

dt
φexp tAdgξ(p)|t=0

=
d

dt
φg(exp tξ)g−1(p)|t=0

=
d

dt
(φg ◦ φexp tξ)

(
g−1p

)
= (φg)∗g−1p

(
ξ#
)
g−1p

=
(
φ∗g−1

(
ξ#
))
p
.
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Consequently, we obtain that(
(Adg−1ξ)# y θ

)
(p) =

(
φ∗g(ξ

#) y θ
)

(p)

=
(
φ∗g(ξ

#) y φ∗gθ
)

(p)

=
(
φ∗g
(
ξ# y θ

))
(p)

=
(
ξ# y θ

)
(φg(p))

for every p ∈M , and g ∈ G.

Let us exhibit some examples which will be very useful in defining an

analogue of a moment map in the contact case scenario. In fact, we will see

that this analogy is not as easily seen as we would imagine.

Example 3.4. Let S1 = {z ∈ C : |z| = 1} where every element can be

represented by eit for t ∈ R. Thus, its Lie algebra is g = {it : t ∈ R} ' R.

Let us consider the action

ϕ : S1 × C→ C(
eit, z

)
7→ eitz.

By setting ω as the standard symplectic form in C, we want to find the

corresponding moment map µ : C → R∗ which must satisfy, by definition,

that dµX = X# y ω, for every X in R∗.

Indeed,

X#(z) =
d

dt

∣∣
t=0

exp(tX).z

=
d

dt

∣∣
t=0
ϕ(eit, z)

=
d

dt

∣∣
t=0
eitz

= iz. (3.1.1)
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At the same time, z = x+ iy = r cos θ + ir sin θ, then:

∂z

∂θ
= −r sin θ + ir cos θ

= iz. (3.1.2)

Thus, from (3.1.1) and (3.1.2):

X# =
∂

∂θ
.

If we want X# to be expressed in z and z coordinates,

X# =
∂

∂z
.
∂z

∂θ
+

∂

∂z
.
∂z

∂θ

= (iz).
∂

∂z
+ (−iz)

∂

∂z

= i

(
z
∂

∂z
− z ∂

∂z

)
. (3.1.3)

Additionally, from (1.2.3), (3.1.3) becomes, in real coordinates

X# = i

(
(x+ iy)

1

2

(
∂

∂x
− i ∂

∂y

)
− (x− iy)

1

2

(
∂

∂x
+ i

∂

∂y

))
= i

(
−i
(
x
∂

∂y

)
+ i

(
y
∂

∂x

))
= x

∂

∂y
− y ∂

∂x
. (3.1.4)

Since (1.1.9), ω = i
2
dz ∧ dz in C, and from (3.1.3):(

X# y ω
)

(.)
=

(
i

(
z
∂

∂z
− z ∂

∂z

)
y

(
i

2
dz ∧ dz

))
(.)

=

(
−1

2

(
z
∂

∂z
− z ∂

∂z

)
y (dz ∧ dz)

)
(.)

= −1

2

(
dz(z ∂∂z−z

∂
∂z )
.dz(.) − dz(.).dz(z ∂∂z−z

∂
∂z )

)
= −1

2

(
zdz(.) + zdz(.)

)
=

(
−1

2
(zdz + zdz)

)
(.)

= d

(
−1

2
(z.z)

)
(.)

. (3.1.5)
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Thus, by integrating in (3.1.5) over C, we obtain the following moment map

µ : C→ R∗:

µ(z) = −1

2
|z|2 + C

for every z ∈ C and C ∈ R a constant.

Example 3.5. Let G be a Lie group acting on a manifold M of dimension

n with its corresponding action φg : M →M .

By setting

φ̃g : T ∗M → T ∗M

T ∗qM → T ∗φg(p)M

(q, p) →
(
φg(q), φ

∗
g−1p

)
,

it is easily seen that this is a left action of G on T ∗M , for every q ∈ M and

p ∈ T ∗qM .

We observed in Example 1.18 that if (qi) is a local coordinate system on M ,

and (qi, pi) is the corresponding coordinate system on T ∗M , it follows that

λ =
n∑
i=1

pidqi. (3.1.6)

By its canonical expression, λ is G-invariant. Therefore, there is a moment

map for this G-action on T ∗M given by

〈µ,X〉 = −
(
X# y λ

)
, (3.1.7)

for every X ∈ g.

Thus, if X# =
∑n

i=1 Xi(q)
∂
∂qi

in local coordinates, we have

〈µ(q, p), X〉 =
n∑
i=1

piXi(q) =
〈
p,X#

q

〉
. (3.1.8)
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We notice that this map is, indeed, a moment map (that is, it satisfies the

second condition of being a moment map) because it verifies the hypotheses

of Theorem 3.3.

Next, we state one important result that determines how to produce from

coisotropic submanifolds of a symplectic manifold (the zero set of a moment

map coming from a Hamiltonian action) symplectic quotients.

3.2 The Marsden-Weinstein-Meyer Reduction

Theorem

This remarkable theorem serves as a preamble of what we are going to expose

about contact manifolds obtained by the reduction process. This result can

be appreciated naturally in Example 3.7 that follows.

Theorem 3.6. Let G be a Lie group and suppose we have a Hamiltonian

action of G on a symplectic manifold (M,ω) with moment map µ : M → g∗.

If G acts freely and properly on µ−1(0) (with zero as a regular value for µ and

then µ−1(0) is a manifold), then the orbit MG := µ−1(0)/G is a smooth man-

ifold, the natural projection π : µ−1(0) → MG is a principal G-bundle, and

there exists a unique symplectic form ωG on MG satisfying π∗ωG = ω|µ−1(0).

Proof. See [14]. Page 175.

Example 3.7. Let

CPn =
(
Cn+1 \ {0}

)
/ ∼ :=

(
Cn+1 \ {0}

)
/C∗ (3.2.1)

be the complex projective space.

Let us consider the following diagram (cf. Example 1.23), where π is the

standard projection map restricted to S2n+1 and i is the inclusion map:

56



S2n+1 Cn+1

(ωFS,CPn)

π

i

We found in Claim 1.23.3 that:

π∗ωFS = i∗ω. (3.2.2)

The diagram above represents a symplectic reduction of Cn+1, where S1 acts

on CPn with the following moment map:

µ : Cn+1 → R

z 7→ −‖z‖
2

2
+

1

2
.

In fact, let

ω =

√
−1

2

n+1∑
i=1

dzi ∧ dzi

=
n+1∑
i=1

dxi ∧ dyi

=
n+1∑
i=1

ridri ∧ dθi

be the standard symplectic form in Cn+1.

By considering the action of S1 on (Cn+1, ω):

eit ∈ S1 7→ Ψ := multiplication by eit,

we observe that it is the same action as :

j(S1)× Cn+1 → Cn+1(
j(eit), (z1, . . . , zn+1)

)
7→ (eitz1, . . . , e

itzn),
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where

j : S1 → Tn+1 = S1 × . . .× S1

eit 7→ (eit, . . . , eit)

is the inclusion map.

Thus, by noting that the Lie algebra of Tn+1 is isomorphic to R⊕ . . .⊕R '

Rn+1, we can proceed as we did in Example 3.4 to obtain that

X#(z1, . . . , zn+1) = i(z1, . . . , zn+1),

which is equivalent to

X# =
∂

∂θ1

+
∂

∂θ2

+ . . .+
∂

∂θn+1

= i
n+1∑
k=1

(
zk

∂

∂zk
− zk

∂

∂zk

)
. (3.2.3)

Now, let us consider

µ : Cn+1 → R

z 7→ −‖z‖
2

2
+ ct,

since

dµ = −1

2
d(

n+1∑
i=1

r2
i )

we have that

(
X# y ω

)
(v) =

(
n+1∑
i=1

ridri ∧ dθi

)
(X#, v)

=

(
−

n+1∑
i=1

ridri

)
(v)

=

(
−1

2

∑
d(ri)

2

)
(v) = dµ(v).
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Then, the action Ψ is Hamiltonian with moment map µ.

Besides, by taking 1
2

as the constant,

µ−1(0) =

{
z ∈ Cn+1/− ‖z‖

2

2
+

1

2
= 0

}
= S2n+1,

where

µ : Cn+1 → R

z 7→ −‖z‖
2

2
+

1

2
.

Consequently, µ−1(0)/S1 = S2n+1/S1 = CPn, that is, CPn is the symplectic

reduction of Cn+1.

3.3 Contact moment maps

An alternative way to define a cooriented contact structure for a manifold is

stated in terms of the annihilator of a certain distribution of T ∗B which is

going to be useful in understanding the way G acts in T ∗B.

Definition 3.8. A codimension-1 distribution ζ on a manifold B is co-

orientable if its annihilator ζ◦ ⊂ T ∗B is an oriented line bundle, that is,

has a nowhere vanishing global section. It is co-oriented if one component

ζ◦+ of ζ◦ \ 0 is chosen.

Let D ⊂ TB be a distribution of codimension 1. We define D◦ ⊂ T ∗B as

D◦ = {β 1-form | β(X) = 0 for every X ∈ D}

Then

D◦ = {0} ∪ {fη | f > 0} ∪ {fη | f < 0}.
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Definition 3.9. A co-oriented contact structure D on a manifold M

is a co-oriented codimension-1 distribution such that D◦ \ 0 is a symplectic

submanifold of the cotangent bundle T ∗B (the cotangent bundle is given the

canonical sympletic form). We denote the chosen component of D◦ \ 0 by

D◦+ and refer to it as the symplectization of (B,D).

Definition 3.10. If a Lie group G acts on a manifold B preserving a 1-form

η, the corresponding η-moment map Ψη : B → g∗ determined by η is

defined by

〈Ψη(x), X〉 = ηx (Xx)

for all x ∈ B and all vectors X in the Lie algebra g of G, where, as above,

X denotes the vector field induced by X : Xx = d
dt
|t=0 (exp tX) · x

If dη is a symplectic form then, up to a sign convention, Ψη is a symplectic

moment map. If η is a contact form then Ψη is a candidate for a contact

moment map. Note however that if f is a G - invariant function, then efη

is also a contact form defining the same contact distribution, while clearly

Ψefη = efΨη. That is, this definition of the moment map depends on a

particular choice of a contact form and not just on the contact structure.

Indeed, if η is a contact 1-form , with Ψη : M → g∗ as its η - moment map

and if f ∈ C∞(B) is G - invariant, then ker(efη) = kerη.

Let us call efη = η̂. Thus ker(η) = ker(η̂) = D.

Then

〈Ψη(x), X〉 = η (Xx)

〈Ψη̂(x), X〉 = η̂ (Xx) .

60



If we assume that ω = dη, in D:

dη̂ = d(efη) = d(ef ) ∧ η + efdη

= efdη

In particular, by the bilinearity of 〈, 〉, we obtain that

Ψefη = efΨη. (3.3.1)

Remark 3.11. From this last equation it is clear that the moment map de-

pends upon the 1-form η (to be more precise, it depends on the conformal

class of the contact form) and not on the contact structure. In [11], Ler-

man proposes the definition of a “universal” moment map which depends on

the contact structure and not only on the contact form. This generalisation

of the contact map will be explained in the next subsection. Nevertheless,

the restricted notion of a contact moment map given in Definition 3.10 will

suffice to exhibit examples of contact reduction in Chapter 3.

3.3.1 Construction of a universal moment map

If we suppose again that a Lie group G acts on a manifold B preserving a

co-oriented contact structure D, that is, we have the action φg : B → B

where (φg)∗|D(D) = D.

We have seen in Example 3.5 that there is an action of G on T ∗B

(q, p) 7→
(
φg(q), φ

∗
g−1p

)
,

for every q ∈ B and p ∈ T ∗B.

This action preserves D◦ and D◦+.

In fact, for every v ∈ TM ,

p(v) = p(vH + vV ) = p(vH) + p(vV ) = p(vV ).
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Thus

φ∗g(p)(v) = p (φg∗v)

= p
(
φg∗
(
vH + vV

))
= p

(
φg∗(v

H) + φg∗(v
V )
)

= p
(
v̂H
)

+ pφg∗(v
V )

= p
(
φg∗(v

V )
)

Therefore, the action preserves D◦. On the other hand, for every p ∈ D◦+ we

have that φ∗g(p)(X) = p
(
(φg)∗ (X)

)
> 0 because the G action preserves the

cooriented structure and p(Xv) > 0 where Xv is the vertical vector of X.

The restriction Ψ = Φ|D◦+ of the moment map Φ for the action of G on T ∗B

to D◦+ depends only on the action of the group and on the contact structure.

Moreover, since Φ : T ∗B → g∗ is given by the formula (cf. (3.1.8)),

〈Φ(q, p), X〉 =
〈
p,Xq

〉
for all q ∈ B, p ∈ T ∗qB and X ∈ g, we see that if η is any invariant contact

form with kerη = D and η(B) ⊂ D◦B then

〈η∗Ψ (q) , X〉 = 〈η∗Φ(q), X〉 =
〈
ηq, Xq

〉
= 〈Ψη(q), X〉

where η∗Φ(q) := (Φ ◦ η)(q) = Φ(q, ηq) . Thus Ψ ◦ η = Ψη, that is, Ψ = Φ|D◦+
can be considered a universal moment map.

B D◦+

g∗

η

Ψη
Ψ

3.4 The contact reduction theorem

We follow Geiges in [8], and study how we can construct other manifolds if

we choose a Lie group G acting in a contact manifold B, such that this group
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gives us some kind of symmetry, more explicitly, the group of automorphisms

Con(B, η).

First of all, let us take a look at the case where such group is S1.

Proposition 3.12. Let (B, η) be a contact manifold with a strict contact S1

- action, generated by the flow of a vector field X in B. Then X is tangent

to the level sets of the moment map Ψη. The value 0 is a regular value of

Ψη if and only if X is nowhere zero on the level set Ψ−1
η (0). Hence, in this

case the S1 action on B restricts to a locally free action on Ψ−1
η (0). If this

restricted action is free, η induces a contact form on the quotient manifold

Ψ−1
η (0)/S1.

Proof. We compute

dΨη = d(η(X)) = LXη −X y dη = −X y dη. (3.4.1)

Thus, dΨη(X) ≡ 0, which proves the first statement.

We see that, by definition, p ∈ Ψ−1
η (0) if and only if Xp ∈ kerηp. Hence,

along the 0–level of Ψη, the fact that η ∧ (dη)n 6= 0 and (3.4.1) gives us that

0 is a regular value of Ψη if and only if X is nowhere zero in the level set

Ψ−1
η (0).

Now assume that 0 is indeed a regular value of Ψη. The conditions LXη ≡ 0

and η(X) ≡ 0 along Ψ−1
η (0) imply that η descends to a well-defined 1–form

on the quotient manifold Ψ−1
η (0)/S1.

The restriction of the 2–form dη to Tp(Ψ
−1
η (0)) ∩ kerηp has 1–dimensional

kernel, indeed, kerηp is 1- dimensional for every p ∈ Ψ−1
η (0) because Xp 6= 0

lies in this kernel, and if kerdηp had dimension more than 1, it would imply

that η ∧ (dη)n will be zero in some point in Ψ−1
η (0).
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(For example, if n = 1, then

(ηp ∧ dηp)(Xp,Yp,Zp) = ηp(Xp)dηp(Yp, Zp)− ηp(Yp)dη(Xp, Zp) + ηp(Zp)dη(Xp, Yp)

= 0

for every Yp, Zp in Tp(Ψ
−1
η (0)) ∩ kerηp with dη(Xp, Zp) and dη(Xp, Yp) both

zeros if we assume that kerdηp has dimension more than 1.)

When we pass to the quotient Ψ−1
η (0)/S1, the 1–form induced by η is given

by restricting η to hyperplanes in Tp(Ψ
−1
η (0)) complementary to Xp. Sim-

ilarly, the differential of the induced 1–form is given by restricting dη to

such hyperplanes. It follows, as claimed, that η induces a contact form on

Ψ−1
η (0)/S1.

Lemma 3.13. The moment map Ψη is equivariant with respect to the given

G-action on B and the coadjoint action of G on g∗, that is,

Ψη(g ·m) = g(Ψη(m)) for all g ∈ G,m ∈ B

Proof.

Xg·m =
d

dt
(exp (tX) g ·m) |t=0

=
d

dt

((
gg−1 exp (tX) g

)
·m
)
|t=0

= g∗m

(
d

dt

(
g−1 exp (tX) g

)
·m|t=0

)
= g∗m

(
Adg−1(X)

m

)
.
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Thus, for every X ∈ g,

〈Ψη(g ·m), X〉 = ηg·m(Xg·m)

= ηg·m

(
g∗m

(
Adg−1(X)

m

))
= (g∗η)m

(
Adg−1(X)

m

)
= ηm

(
Adg−1(X)

m

)
= 〈Ψη(m),Adg−1(X)〉

= 〈g (Ψη(m)) , X〉 .

Lemma 3.14. (a) For all p ∈ B, v ∈ TpB, and X ∈ g, we have

〈dpΨη(v), X〉 = dη(v,Xp);

here we identify TΨη(p)g
∗ with g∗.

(b) The flow of the Reeb vector field ξ preserves the level sets of Ψη.

(c) If Ψη(p) = 0, then Tp(G · p), the tangent space to the orbit through p,

is an isotropic subspace of the symplectic vector space (kerηp, dηp).

(d) If 0 is a regular value of Ψη, then the isotropic subspace in (c) is of the

same dimension as G, and it equals the symplectic orthogonal comple-

ment of kerηp ∩ Tp
(
Ψ−1
η (0)

)
.

Proof. (a) As we have that LXη ≡ 0, the Cartan’s formula yields to

d(Xp y η) +Xp y dη = 0 (3.4.2)

Let v ∈ TpB, thus

d
(
η
(
Xp

))
(v) + dη(Xp, v) = 0. (3.4.3)
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Let us define 〈dpΨη(v), X〉 := d 〈Ψη, X〉 (v) for every v ∈ TpB. Since

we identify TΨη(p)g
∗ with g∗, this definition makes sense.

By definition of the moment map Ψη,

〈dpΨη(v), X〉 = d 〈Ψη, X〉 (v) = d
(
η(Xp)

)
(v).

Hence, by (3.4.3), we obtain

〈dpΨη(v), X〉 = dη(v,Xp)

for every p ∈ B, v ∈ TpB, and X ∈ g.

(b) From Lemma 2.28 and item (a),

〈dpΨη(ξ), X〉 = dη(ξ,Xp) = 0 for all X ∈ g, (3.4.4)

Thus, dpΨη(ξ) = 0 which means that the flow of the Reeb vector field

ξ preserves the level sets of Ψη.

(c) The tangent space Tp (G · p) is spanned by vectors of the form Xp with

X lying in g by the isomorphism between g and TeG . In particular, it

is a subspace of kerηp, since Ψη(p) = 0 then ηp(Xp) = 〈Ψη(p), X〉 = 0.

If we take v = Y p for some Y ∈ g and Xp both in Tp(G.p) we obtain

from (3.4.3) that

dηp(Y p, Xp) = d(η(Y p))(Xp)

= 0,

which means that Tp(G.p) is an isotropic subspace of (kerη, dηp).

(d) In order to prove that dimTp (G · p) = dimG, we need to show that

Xp 6= 0 for any non-zero X ∈ g. Given such an X, the fact that 0 is a

regular value of Ψη allows us to choose a tangent vector v ∈ TpB such
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that 〈dpΨη(v), X〉 6= 0 because dpΨη is surjective for every p ∈ Ψ−1
η (0).

Then Xp 6= 0 follows from (a) for every p ∈ Ψ−1
η (0).

We have that 0 is a regular value of Ψη, and the intersection of the

hyperplane kerηp with Tp
(
Ψ−1
η (0)

)
is transverse in the sense that it is a

manifold for points in Ψ−1
η (0) such that the Reeb vector field ξ belongs

to Tp
(
Ψ−1
η (0)

)
, as ξ is not in kerηp and by (b) the flow of ξ preserves

the level sets of Ψη so in particular it preserves the zero level set of Ψη.

Consequently, by the item (c), we obtain that

Tp (G · p) and kerηp ∩ Tp
(
Ψ−1
η (0)

)
are of complementary dimension in kerηp.

From (a), for every v ∈ kerηp ∩ Tp
(
Ψ−1
η (0)

)
, p ∈ Ψ−1

η (0) and Xp ∈

Tp(G · p) (we can use a linear combination of fundamental vector fields

but we will obtain the same result), it follows that

dη
(
v,Xp

)
= 〈dpΨη(v), X〉

= 0.

Thus,

(Tp (G · p))⊥ ⊃ kerηp ∩ Tp
(
Ψ−1
η (0)

)
.

Hence, as (Tp (G · p))⊥ and kerηp∩Tp
(
Ψ−1
η (0)

)
have the same dimension

by the the results obtained above, this inclusion must be an equality.

Theorem 3.15. (Contact reduction) Let G be a compact Lie group acting

by strict contact transformations on the contact manifold (B, η). If 0 ∈ g∗

is a regular value of the moment map Ψη of this action, then G acts locally

freely on the level set Ψ−1
η (0). If the action is free, η induces a contact form

on the quotient manifold Ψ−1
η (0)/G.
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Proof. First of all, we are going to show that G acts locally freely on the

level set Ψ−1
η (0). Indeed, let us call Gp = {g ∈ G | g.p = p} the isotropy

group of p, gp = {X ∈ g | Xp = 0} its correspondent Lie algebra, and

Ann gp = {T ∈ g∗ | 〈T,X〉 = 0,∀X ∈ gp} the annihilator of gp for every

p ∈ B.

Since 0 ∈ g∗ is a regular value for Ψη, it follows that

Im dpΨη = g∗.

for every p ∈ Ψ−1
η (0). On the other hand, Im dpΨη ⊂ Ann gp since for every

T ∈ Im dpΨη, that is, T = dpΨη(v) for some v ∈ TpB,

〈T,X〉 = 〈dpΨη(v), X〉

= dη(v,Xp)

= 0,

for every X ∈ gp (the second equality is obtained from item a) of Lemma

3.14).

Thus g∗ = Ann gp and this implies that gp = 0 and we obtain that dimGp = 0

for every p ∈ Ψ−1
η (0) which means that G acts locally freely on the level set

Ψ−1
η (0), moreover those isotropy groups are finite since we are assuming that

G is compact.

Let us show that η induces a contact action on the quotient if the action

is free. In fact, if we assume that the action of G on B is free, it follows

from the compactness of G that Ψ−1
η (0)/G is a manifold. Since we have that

g∗η = η for every g ∈ G (where g∗η represents the pullback of the action

map of G on B over η), we have LXη ≡ 0 and from item (c) of the Lemma

3.14, η(X) ≡ 0 along Ψ−1
η (0), where X is generated by the flow of the action
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of G over B . Therefore η descends to a well-defined 1–form on the quotient

manifold Ψ−1
η (0)/G.

The restriction of the 2–form dηp to Tp(Ψ
−1
η (0)) ∩ kerηp�TpG · p allows us to

obtain ηp ∧ (dηp)
n 6= 0, since TpG · p is an isotropic subspace of kerηp and we

found that (Tp (G · p))⊥ = kerηp ∩ Tp
(
Ψ−1
η (0)

)
, so the only obstruction for

ηp ∧ (dηp)
n to be nowhere zero is in Tp(G · p) and this is the reason why dηp

is nonzero in Tp(Ψ
−1
η (0)) ∩ kerη. Therefore, the induced 1- form by η is a

contact form for the quotient Ψ−1
η (0)/G.

In fact, the examples exhibiting contact reduction that will be presented

in the next section, are contact toric manifolds, these are manifolds with

a large group of automorphisms which allows the manifold to admit very

symmetric groups acting on them in an appropriate fashion. We have the

following definition.

Definition 3.16. An action of a torus G on a contact manifold (B,D) is

completely integrable if it is effective, preserves the contact structure D

and if 2 dimG = dimB + 1. A contact toric G-manifold is a co-oriented

contact manifold (B,D) with a completely integrable action of a torus G.

Remark 3.17. Lemma 3.14 reveals an important difference between the con-

tact and the symplectic case: in the proof of d), one notices that another

possible regular value besides zero can not ensure that Tp(G ·p) is a subspace

of kerηp. So contact reduction, stated as Theorem 3.15, only works for zero

as a regular value. There is a variation of this notion, given by Willet in

[20] where it is possible to contactify quotients for certain non-zero regular

values.
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3.5 Examples of contact toric reduction

As follows, we will compute some examples of contact manifolds obtained

by the reduction process, some of them proposed in [9] but not developed in

detail, and this is the purpose of this section.

Example 3.18. Let

S7 = {z = (z0, z1, z2, z3) ∈ C4; |z0|2 + |z1|2 + |z2|2 + |z3|2 = 1},

with zj = xj + iyj , then the contact form on S7 can be written as

η =
3∑
j=0

(xjdyj − yjdxj) ,

and its Reeb vector field is

ξ =
3∑
j=0

(xj∂yj − yj∂xj) .

Let S1 act on S7 by

φ : S1 × S7 → S7

(eit, (z0, z1, z2, z3)) 7→
(
e−itz0, e

−itz1, e
itz2, e

itz3

)
. (3.5.1)

The associated fundamental vector field of this action is (in real coordinates),

X0 = −
(
x0

∂

∂y0

− y0
∂

∂x0

)
−
(
x1

∂

∂y1

− y1
∂

∂x1

)
+

(
x2

∂

∂y2

− y2
∂

∂x2

)
+

(
x3

∂

∂y3

− y3
∂

∂x3

)
.

We can proceed by the same way as we did in Example 3.4 and we will

obtain that the moment map µ : S7 → R is then stated (up to a factor −1
2
)

as

µ(z) = ηz(X0) = −|z0|2 − |z1|2 + |z2|2 + |z3|2,
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with zero level set

µ−1(0) = {z ∈ S7; |z0|2 + |z1|2 = |z2|2 + |z3|2}

Now, since z ∈ S7, every element of µ−1(0) satisfies that:

|z0|2 + |z1|2 + |z0|2 + |z1|2 = 1

and

|z1|2 + |z2|2 + |z1|2 + |z2|2 = 1.

Thus,

µ−1(0) = S3

(
1√
2

)
× S3

(
1√
2

)
. (3.5.2)

Clearly, 0 is a regular value for µ. Thus, the reduced space can be iden-

tified with (S3 × S3) /S1 which, by the contact reduction theorem 3.15, is a

contact manifold.

Let us identify more explicitly the manifold (S3 × S3) /S1. In order to

do this, let us consider the following diffeomorphism

F : S3 × S3 → S3 × S3

(z0, z1, z2, z3) 7→ (z0z3 + z1z2, z0z2 − z1z3, z2, z3)

and the following S1 action

ψ : S1 × S7 → S7

(eit, (z0, z1, z2, z3)) 7→ (z0, z1, e
itz2, e

itz3).

In one hand we have that, for every (z0, z1, z2, z3) ∈ S3 × S3:

F ◦ φ(z0, z1, z2, z3) = F
(
e−itz0, e

−itz1, e
itz2, e

itz3

)
=
(
z0z3 + z1z2, z0z2 − z1z3, e

itz2, e
itz3

)
(3.5.3)
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Besides,

ψ ◦ F (z0, z1, z2, z3) = ψ (z0z3 + z1z2, z0z2 − z1z3, z2, z3)

=
(
z0z3 + z1z2, z0z2 − z1z3, e

itz2, e
itz3

)
, (3.5.4)

That is, F is an equivariant diffeomorphism under the S1-actions φ and ψ.

Thus

(
S3 × S3

)
/S1 ∼= S3 ×

(
S3/S1

) ∼= S3 × S2.

If we set G = T4 , B = S7 and consider the action in (3.5.1), we observe

that S7 becomes a contact toric manifold.

Example 3.19. Let us consider the weighted action of S1 on S2n−1 ⊂ Cn by

(
eit, (z0, . . . , zn−1)

)
7→
(
eλ0itz0, . . . , e

λn−1itzn−1

)
, (3.5.5)

where (λ0, . . . , λn−1) ∈ Zn. Additionaly, let us recall that S2n−1 has a stan-

dard contact structure given by

η =
n−1∑
i=0

(xidyi − yidxi), ξ =
n−1∑
i=0

(xi∂yi − yi∂xi). (3.5.6)

The associated moment map,

µ(z) = λ0|z0|2 + · · ·+ λn−1|zn−1|2,

which has zero as a regular value for any (λ0, . . . , λn−1) such that λ0 · · ·λn−1 6=

0, gcd (λ0, . . . , λn−1) = 1 and at least two λ’s have different signs.

Now, let us take λ0 = · · · = λk = a and λk+1 = · · · = λn−1 = −b, a, b ∈ Z+

relative prime. Then , by the same procedure made in the previous example,

µ−1(0) ∼= S2k+1
(√

a/a+ b
)
× S2(n−k)−1

(√
b/a+ b

)
,
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and the reduced space is

µ−1(0)/S1 = S2k+1
(√

a/a+ b
)
× S2(n−k)−1

(√
b/a+ b

)
/S1, (3.5.7)

where the S1-action is

(eit, (x, y)) 7→ (eiatx, e−ibty) (3.5.8)

for every x ∈ S2k+1
(√

a/a+ b
)

and y ∈ S2(n−k)−1
(√

b/a+ b
)

.

It is worth noting that S2n−1 is a contact toric manifold with a natural

extension of the action settled in (3.5.5) to Tn.

Moreover, the maximal torus Tn is generated by the vector fields Hi = xi∂yi−

yi∂xi , for i = 0, . . . , n−1 and we observe that the Reeb vector field ξ in (3.5.6)

belongs to the subspace generated by the vectors Hi.

One would like to generalise the Example 3.18, at least if we consider some

convenient weights in the associated S1-action. This leads us to a remark-

able result of M. Y. Wang and W. Ziller in [19], where they use topological

arguments to obtain relevant properties of certain type of manifolds which

apart from being contact manifolds, admit Riemannian metrics with quite

interesting properties, for instance these manifolds admit Einstein metrics

(a manifold has Einstein metric if its Ricci curvature is proportional to its

metric, cf. [2]). These manifolds will be explained briefly in the following

example.

Example 3.20. The Wang-Ziller manifold Mp,q
k,l given in [19] is defined as

the total space of the S1-bundle over CPp×CPq whose Euler class is kα1+lα2

where α1 and α2 are the positive generators of H2 (CPp) and H2 (CPq), re-

spectively and k and l are integers.

In the 5-dimensional case, Wang and Ziller obtained that, for p = q = 1, the
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manifolds M1,1
k,l are diffeomorphic to S3 × S2. To achive this, they used ar-

guments involving calculations of espectral sequences and a famous theorem

of Smale on the clasification of 5-dimensional manifolds in [16] . They show

that these manifolds are spin and simply connected and

H2(M1,1
k,l ,Z) = Z, hence applying Smale theorem, they concluded that all

these manifolds are diffeomorphic to S3 × S2 . For a detailed argument cf.

[19] or Appendix in [7]. We note that the in example 3.18 , the manifold we

studied is a Wang-Ziller manifold with weights k = −1 and l = 1.

Example 3.21. Let us consider the following action on S7

eit 7→
(
e−kitz0, e

itz1, e
itz2, e

itz3

)
(3.5.9)

with k a positive integer. Thus, its corresponding moment map will be

µ(z) = −k|z0|2 + |z1|2 + |z2|2 + |z3|2,

and, by proceeding as we did to obtain 3.5.2, we will have that:

µ−1(0) = S1(
√
k/(k + 1))× S5(

√
1/(k + 1)).

Now, if we consider the following k-fold covering map p:

p : S1 × S5 → S1 × S5

(z0, z1, z2, z3) 7→
(
(z0)−k, z1, z2, z3

)
we will obtain that the following diagram commutes

S1 × S5 S1 × S5

(S1 × S5)/S1 µ−1(0)/S1

p

π1 π2

p̂
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where π1 is the quotient map respect to the diagonal S1-action on S1 × S5

and π2 corresponds to the action which has been defined in (3.5.9).

Besides, the following diffeomorphism

G : S1 × S5 → S1 × S5

(z0, z1, z2, z3) 7→ (z0, z0z1, z0z2, z0z3)

and the S1-actions

φ1 : (z0, z1, z2, z3) 7→ (eitz0, e
itz1, e

itz2, e
itz3) (the diagonal S1-action) ,

φ2 : (z0, z1, z2, z3) 7→ (eitz0, z1, z2, z3)

satisfy that:

G ◦ φ1(z0, z1, z2, z3) = G(eitz0, e
itz1, e

itz2, e
itz3)

= (eitz0, z0z1, z0z2, z0z3)

φ2 ◦G(z0, z1, z2, z3) = φ2(z0, z0z1, z0z2, z0z3)

= (eitz0, z0z1, z0z2, z0z3).

Therefore, G is an equivariant diffeomorphism respect to the actions φ1 and

φ2, so we get that (S1×S5)/S1 ∼= S1/S1×S5 ∼= S5. Consequently, since the

diagram above commutes, we obtain that our reduced space is

µ−1(0)/S1 ∼=
(
(S1 × S5)/S1

)
/Zk ∼= S5/Zk. (3.5.10)

It is important to notice that what we have found is not a manifold, but an

orbifold, roughly speaking, a topological space which is locally the Euclidean

space quotiened by a finite group, (cf. [17]).
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