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Abstract

Tuberculosis is a leading killing disease worldwide with more than 9 million people affected

per year. Current diagnostic methods exhibit several disadvantages; one of the most promis-

ing alternatives to overcome this is the development of nanostructured diagnostic systems

which are able to detect molecules associated with certain diseases. Graphene since its dis-

covery has been the focus for the development of these sensing elements due to its excellent

electronic properties.

In this work, a graphene-based field effect transistor (FET) has been developed for tubercu-

losis DNA detection, in order to set the basis for a diagnostic method that overcomes current

limitations. The sensing elements composed of graphene monolayers were manufactured in

the stages of annealing of the substrate, addition of the linker and functionalization with

the addition of a probe DNA for tuberculosis detection. Additionally, two conditions for the

sensing element were generated; one with the addition of a complementary DNA sequence

(“DNA Target”) and the other with a mismatched DNA sequence (“Non-complementary

DNA”). The graphene and the transistor, in each stage of the manufacturing process, were

structural, chemical and morphologically characterized by Raman Spectroscopy, Energy Dis-

persive X-ray Spectroscopy (EDS), Optical Microscopy, Laser Scanning Microscopy (LSM),

Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).

The results indicated an appropriate functionalization of the graphene surface with the

linker, the immobilization of the probe tuberculosis DNA and the hybridization with the

corresponding “DNA Target”, demonstrated by observation of different homogeneous mor-

phologies and an appropriate increase in the roughness in each stage of the manufacturing

process. Also by the presence of characteristic peaks of nitrogenous bases and in the varia-

tion of graphene bands in the Raman spectrum. On the contrary, the sensor element with

the “Non-complementary” showed an agglomeration of the molecules and segregation of salts

on a heterogeneous surface. The results of the characterization are consistent with the elec-

tronic characteristics previously determined. This investigation contributes to a basis for

the development of a tuberculosis detection system based on nanotechnology for clinical

application.
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Resumen

La tuberculosis es una de las principales enfermedades mortales en todo el mundo, con más

de 9 millones de personas afectadas por año. Los métodos de diagnóstico actuales presentan

varias desventajas; una de las alternativas más prometedoras para superar esto es el desar-

rollo de sistemas de diagnóstico nanoestructurados que son capaces de detectar moléculas

asociadas con ciertas enfermedades. El grafeno desde su descubrimiento ha sido un foco para

el desarrollo de estos elementos sensores debido a sus excelentes propiedades electrónicas.

En este trabajo, se ha desarrollado un transistor de efecto de campo basado en grafeno

(FET) para la detección del ADN de la tuberculosis, con el fin de sentar las bases para

un método de diagnóstico que supere las limitaciones actuales. Los elementos sensores com-

puestos de monocapas de grafeno se fabricaron en las etapas de recocido del sustrato, adición

del linker y funcionalización con la adición de un probe ADN para la detección de tuber-

culosis. Adicionalmente, se generaron dos condiciones para los elementos de detección; uno

con la adición de una secuencia de ADN complementaria (“DNA Target”) y el otro con

una secuencia de ADN no complementaria (“Non-complementary DNA”). El grafeno y el

transistor, en cada etapa del proceso de fabricación, se caracterizaron estructural, qúımica

y morfológicamente por Espectroscopia Raman, Espectrometŕıa de dispersión de enerǵıa de

rayos X (EDS), Microscoṕıa Óptica, Microscoṕıa de Láser de Barrido (LSM), Microscoṕıa

Electrónica de Barrido (SEM) y Microscoṕıa de Fuerza Atómica (AFM).

Los resultados indicaron una funcionalización apropiada de la superficie del grafeno con

el linker, la inmovilización del probe ADN de tuberculosis y la hibridación con el correspon-

diente “DNA Target”, demostrado por la observación de diferentes morfoloǵıas homogéneas

y un aumento apropiado de la rugosidad en cada etapa del proceso de fabricación. Tam-

bién por la presencia de picos caracteŕısticos de bases nitrogenadas y en la variación de las

bandas de grafeno en el espectro Raman. Por el contrario, el elemento sensor con el “Non-

complementary DNA” mostró una aglomeración de moléculas y segregación de sales sobre

una superficie heterogénea. Los resultados de la caracterización son consistentes con las car-

acteŕısticas electrónicas previamente realizadas. Esta investigación contribuye a dar una base

para el desarrollo de un sistema de detección de la tuberculosis basado en la nanotecnoloǵıa

para uso cĺınico.
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Zusammenfassung

Tuberkulose ist weltweit eine führende tödlichen Krankheiten mit mehr als 9 Millionen Neuin-

fektionen pro Jahr. Aktuelle diagnostische Methoden weisen mehrere Nachteile auf. Eine der

vielversprechendsten Alternativen, um dies zu überwinden, ist die Entwicklung von nanos-

trukturierten Diagnosesystemen, die in der Lage werden, Moleküle zu erkennen, die mit

bestimmten Krankheiten assoziiert sind. Seit seiner Entdeckung ist Graphen eine vielver-

sprechende Möglichkeit für die Entwicklung dieser Sensorelemente aufgrund seiner hervorra-

genden elektronischen Eigenschaften.

In dieser Arbeit wurde ein Graphen-basierter Feldeffekttransistor (FET) für die Tuberkulose-

DNA-Detektion entwickelt, um die Grundlage für ein diagnostisches Verfahren zu schaffen,

das die gegenwärtigen Einschränkungen überwindet. Die Sensorelemente aus Graphen-

monoschichten wurden in den Stufen: Glühen des Substrats, dem Zugeben des Linkers

und der Funktionalisierung unter Zugabe einer Probe-DNA zur TB-Detektion hergestellt.

Zusätzlich wurden zwei Sensorelemente hergestellt: Ein System mit der Zugabe einer kom-

plementären DNA-Sequenz (“DNA Target”) und die andere mit einer nicht übereinstim-

menden DNA-Sequenz (“Non-complementary DNA”). Das Graphen und der Transistor wur-

den in jeder Stufe des Herstellungsprozesses strukturell, chemisch und morphologisch mittels

Raman-Spektroskopie, energiedispersive Röntgenspektroskopie (EDS), Optische Mikroskopie,

Laserscanning-Mikroskopie (LSM), Rasterelektronenmikroskopie (SEM) und Rasterkraft-

mikroskopie (AFM) charakterisiert.

Die Ergebnisse zeigten eine geeignete Funktionalisierung der Graphenoberfläche mit dem

Linker, die Immobilisierung der Sonden - Tuberkulose - DNA und die Hybridisierung mit dem

entsprechenden (“DNA Target”), nachgewiesen durch Beobachtung unterschiedlicher homo-

gener Morphologien und eine entsprechende Erhöhung der Rauhigkeit in jedem Stadium des

Herstellungsprozesses sowie durch die Anwesenheit von charakteristischen Peaks der stick-

stoffhaltigen Basen in der energiedispersiven Röntgenspektroskopie und durch die Variation

von Graphen-Absorptionsbänder im Raman-Spektrum. Im Gegensatz dazu zeigte, das Sen-

sorelement mit der “nicht-komplementären DNA” eine Agglomeration der Moleküle und die

Segregation von Salzen auf einer heterogenen Oberfläche. Die Ergebnisse der Charakter-

isierung stimmen mit den zuvor durchgeführten elektronischen Merkmalen überein. Diese

Untersuchung bildet die Grundlage für die Entwicklung eines Tuberkulose-Nachweissystems

auf der Basis der Nanotechnologie für den klinischen Einsatz.
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1 Introduction

1.1 Motivation

Tuberculosis (TB) is one of the major health problems globally and is considered to be a

lethal and common disease caused by Mycobacterium tuberculosis [1]. A concern has arised

lately since it is known to that tuberculosis is associated to other diseases and health issues

such as HIV, diabetis, smoking, indoor air pollution, alcoholism, and malnutrition. TB af-

fects nearly 9.4 million patients and resulting in 1.7 million deaths worldwide in 2011 [2]. It

is estimated that in Peru a large percentage of the population carries the bacteria. Due to

the high incidence of TB it is necessary to find ways of effective detection and diagnosis.

The main current diagnostic methods, such as Ziehl-Neelsen stain and fluorescent staining,

work with sputum samples and are based on staining bacilli acid-resistant (BAAR). These

methods are explained in the manuals Bacteriology National Institute of Health (NIH) and

the World Health Organization (WHO) [3]. Nevertheless; in practice, they require extensive

and exhausting work of laboratory workers, who, at the same time, should have good expe-

rience and expensive equipment as well as infrastructure. [4, 5].

One of the most promising alternatives to overcome the limitations of current methods is the

development of nanostructured diagnostic systems based on graphene, due to its particular

characteristics and large surface area that makes it a suitable candidate for biomolecular

sensing. Different investigations for the detection of biomolecules based on graphene have

been reported [6, 7] and even the detection of TB by different methods [8, 9].

In recent years few studies have been reported showing graphene based field effect tran-

sistors (FET) as sensing elements to detect different molecules and biomolecules [10, 11].

In the present thesis we report on the structural, chemical and morphological characteri-

zation of a graphene based field effect transistor for detecting tuberculosis. The different

effects involved in each stage of the manufacturing process of the sensing element were in-

vestigated.
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1.2 General objective

1.2 General objective

To perform structural, chemical and morphological characterization of nanostructured graphene-

based sensing elements for the detection of tuberculosis.

1.3 Specific objectives

� To fabricate of graphene-based sensing elements for the detection of tuberculosis.

� To characterize them using techniques that allow to evaluate structure, chemical com-

position and morphology.

� To enlighten the behavior of the aggregated molecules at each stage of the surface

modification procedures of the sensing element.

1.4 Thesis organization

The content of this thesis is organized as follows:

� Chater 2 starts with a brief overview of the state of the art of graphene and how is used

as a sensing element. Main characterization techniques are also described. Furthermore

a summary of different characterizations performed to graphene based biosensors are

detailed and finally, the diagnosis and problematic of Tuberculosis is shown.

� Chater 3 presents the experimental procedure explained in detail. The fabrication of

the sensing elements is described step by step and also the materials used are presented.

Then the main techniques of characterization and parameters are summarized.

� Chater 4 shows and discusses the results of the structural, chemical and morphological

characterization of each stage of the manufacturing process and also its behavior as a

sensing element.

� Chater 5 concludes this thesis by mentioning the most important conclusions and

presents some suggestions for possible future work.
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2 State of technology

2.1 Graphene

Carbon is the fourth most abundant chemical element in nature and constitutes one of the

basic elements for life. It has unique capability for combining with other elements and is also

widely used in industry for materials manufacturing. Carbon has different allotropy forms,

some of the most important recently studied are:

� Graphite: Is a stack of graphene layers, is soft, optical opaque, chemical active and is

a good electric conductor. The most important applications are pencil tips, electrodes,

and solid lubricants [12].

� Fullerenes: In 1985, Harold Kroto, Robert Curl and Richard Smalley discovered the

furellenes, they are molecules of nanometre-size spheres of wrapped-up graphene. Furel-

lenes have been used for medical applications as substitutive ligans or in biosensors

devices.

� Nanotubes: In 1991, Ijima reported the preparation of new cylindrical structures called

carbon nanotubes [13]. They are made of rolled-up sheets of graphene. Applications

include field emission devices, fuel cells, cold cathodes and ultrahigh-strengh structural

materials [14].

� Graphene: Mother of all graphitic forms was discovered in 2004 by Andrey Gueim and

Konstantin Novosiolov, who were awarded the nobel prize in 2010. Since then, the

research of graphene has grown exponentially.

Figure 2.1 shows the similarities of the allotropy carbon forms and graphene.

Graphene is a two-dimensional mono layer of sp2 bonded carbon atoms (Figure 2.2) ar-

ranged in a honeycomb crystal structure with two carbon atoms in each unit cell. The

carbon atoms are densely packed with and atomic thickness of 3.4 Å[15]. The sp2 hybrids of

each carbon atom contribute to form σ bonds with three other carbon atoms in a trigonal

planar structure. These strong bonds maintain the interatomic distance of 0.142 nm [16],

the shortest distance of all the materials.
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2.1 Graphene

Figure 2.1: Graphene (top left) consists of a 2D hexagonal lattice of carbon atoms; graphite
is a stack of graphene layers (top right); carbon nanotubes are rolled-up cylinders
of graphene (bottom left); and a buckminsterfullerene (C60) molecule consists of
graphene balled into a sphere by introducing some pentagons as well as hexagons
into the lattice (bottom right). [14].

Figure 2.2: sp2 and p orbitals of carbon atoms in graphene [17].
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2.1 Graphene

2.1.1 Properties

� Mechanical properties:

Graphene has been reported to have the highest elastic modulus and strength, the

breaking strength of graphene is 200 times higher than that for steel, making it the

strongest material ever tested. Several researchers have determined by different kind

of methods the intrinsic mechanical properties of the single, bilayer and multilayer

graphene. A summarized list of the mechanical properties and methods to determine

them are showed in Table 2.1.

Table 2.1: Mechanical properties of graphene. Modified from [18].

Method Material Mechanical properties Reference
Nanoindentation Mono layer graphene E = 1± 0.1 TPa [19]

in an AFM σint = 130± 10 GPa at εint = 0.25

AFM Mono layer E = 1.02 TPa; σ = 130 GPa [20]
Bilayer E = 1.04 TPa; σ = 126 GPa

Tri-layer E = 0.98 TPa; σ = 101 GPa
Graphene

AFM Stacks of graphene E = 0.5 TPa [21]
sheets (less than 5)

Raman Graphene Strain ∼ 1.3% in tension [22]
Strain ∼ 1.3% in compression

Numerical Mono layer E ≥ 1 TPa [23]
simulations graphene

Numerical Finite graphene E ≈ 1 TPa; ν = 0.25 [24]
simulations sheets

� Thermal properties:

The unique structure of graphene and its strong C-C bonding provides excellent thermal

conductivity with low coefficient of thermal expansion, this properties are key factors

for better performance and reliability of electronic components making graphene a

good alternative for electronic devices where the considerable amount of heat generated

during the device operation needs to be dissipated. The thermal properties of graphene

are also greatly affected by phenomenon such as defect edge scattering [25] and isotopic

doping [26] due to scattering or localization of phonons at the defect sites [27]. A

summarized list of thermal properties and methods to determine them are shown in in
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2.1 Graphene

Table 2.2. where shows that graphene have higher thermal conductivity than graphene

oxide and carbon nanotubes.

Table 2.2: Thermal properties of graphene and carbon allotropes based materials. Modified
from [18].

Method Material Thermal conductivity Reference
Thermal flash technique Graphene oxide ∼ 2000 W/mK [28]

Microfabricated device MWCNT ∼3000 W/mK [29]
heat transfer model

Joule self-heating Single wall CNT ∼3500 W/mK [30]

Electrical four-point Reduced graphene 0.14− 0.87 W/mK [31]
measurement oxide flake

Confocal micro-Raman Single layer graphene 4840− 5300 W/mK at RT [32]
spectroscopy

Confocal micro-Raman Suspended graphene 4100− 4800 W/mK at RT [33]
spectroscopy flake

Thermal measurement Single layer 3000− 5000 W/mK at RT [34]
method (suspended) (suspended)

Thermal measurement Single layer 600 W/mK at RT [34]
method (on SiO2 support) (on a SiO2 support)

� Optical properties:

Many reports confirmed that single layer graphene absorbs 2.3% of incident light over

a broad wavelength range in spite of being just a monolayer (Figure 2.3) [35]. Also,

graphene has been shown to transmit 97.7% of the total incident light [36] which are

significant values for a single-atom thick material, likewise the optical contrast increase

with increase in the number of layers of graphene [37]. These values describe the reason

why graphene is almost transparent for the human eyes.
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2.1 Graphene

Figure 2.3: Representative of transmittance of different graphene layers. UV–vis spectra
roll-to-roll layer-by-layer transferred graphene films on quartz substrates [35].

� Electrical transport property:

In the same manner as the strong C-C bonding provides excellent thermal conductiv-

ity, it also gives excellent electrical conductivity. The metal or insulating properties

of a material are determined by the position of the Fermi level(εf ) and structure of

electronic bands. The Fermi level corresponds to the highest occupied energy level. In

Figure 2.4 the lowest unoccupied energy levels conform the conduction band (purple);

the higher energy levels occupied, the valence band (fuchsia). In metals, the band of

conduction and valence are overlapping. In non-metals, however, an energy gap that

prevents the passage of electrons from one band to another appears. Graphene is a

material out of the ordinary. Their electronic properties place it between metals and

semiconductors [38].

Figure 2.4: Dirac cones regarding the electronic properties. The cone below is the valence
band (electrons), and the cone above is the conduction band (holes) [38].

High carrier mobilities have been reported for graphene, 15000 cm2/V s for graphene on
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2.1 Graphene

SiO2 substrate [39], 25000 cm2/V s for epitaxial graphene [40] and higher than 200000

cm2/V s for suspended graphene [41, 42]. However, different scattering mechanisms, es-

pecially from charged impurity centers limit the mobility in electronic graphene devices

[43].

2.1.2 Applications

The exceptional electrical conductivity and thermal properties of graphene can be useful not

only in electronic devices but also in biomedical devices for measuring cell potential and as

a substrate for conductive cell culture devices and biosensors [44, 45]. The transparent and

flexible conductor is a great promise for solar cells [46] and touch panels for smartphones

[47]. Also several investigations showed polymer matrix with dispersion of graphene powder

for advanced composites [48, 49].

The 2D structure and presence of delocalized surface π electrons in graphene can be used

for effective drug loading via hydrophobic interactions and π− π stacking. Additionally, the

large surface area of graphene allows the application for high density bio-functionalization

via both covalent and non-covalent surface modification. Various studies have been made

regarding the in-vivo behavior and bioactivity of graphene making graphene suitable for drug

delivery, gene delivery and tissue engineering [50, 51].

The high carrier mobility in graphene sheets makes them attractive material for FETs

[52]. A single molecule detection has been achieved, which demonstrates the potential high

sensitivity of graphene-based sensors [53]. Chen et al. managed to fabricate and characterize

a FET device for detecting DNA with graphene layers [54] and Huang et al. produced a

graphene FET for detecting cellular activities, specifically Escherichia Coli [55].

The extraordinary mechanical properties also make graphene a suitable material for con-

structing Nanoelectromechanical Systems (NEMS) such as pressure sensors or resonators

[56, 57] and also molecular sensors and electromechanical resonators [58, 59].

2.1.3 Synthesis methods

Different studies reported at least a dozen methods but basically there are two different

approaches to prepare graphene. Exfoliation methods where graphene can be detached from

an already existing graphite crystal and methods where graphene layer can be grown directly

on a substrate surface.

� Mechanical exfoliation: In this method, graphene is detached from a graphite crystal

using adhesive tape, graphite is made of sheets of graphene kept together by Van Der
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2.1 Graphene

Waals force. After peeling it off the graphite, this process can lead to multilayer and

even single-layer graphene as it was done leading to its discovery [60].

Next, the graphene flakes are transferred onto a suitable substrate such as silicon

dioxide on silicon with an oxide thickness of 90 nm or 300 nm in order to increase the

contrast in visible range and to identify the graphene flakes [17, 61].

By this method is very difficult to obtain larger amount of graphene and is not suitable

for industrial scale production.

� Epitaxial Growth on Silicon Carbide Single Crystal: This growth on surface method

consists of sublimation of silicon atoms from the surface layers of silicon carbide (0001)

substrate at the temperature of about 1300 °C in an ultrahigh vacuum environment and

then cooling down [62, 63]. The produced graphene layers depend on the parameters

used. Surface studies show that are strained with limited structural coherence length,

20 nm [64]. Therefore, the graphene is not perfectly homogeneous, due to defect or

grain boundaries also high temperature and high cost of production are considered as

serious disadvantage for application of this method.

� Chemical Vapour Deposition: A very popular growth technique is chemical vapour

deposition. A transition metal film such as Ni, Co, Pt, Ir or Ru is used to decompose

molecules of a hydrocarbon gas (methane, acetylene, propane etc) [65]. The tempera-

tures and pressures depend on the metal substrate and gas type. Carbon atoms dissolve

into the metal surface and then force to precipitate by cooling [65, 66, 67]. Transition

metals are particularly appealing for obtaining large-area high quality graphene. This

method is a promising technique used especially for flat displays and transparent elec-

trode applications [68].

� Self Assembly of Soluble Graphene: Another growth technique is self assembly of sol-

uble graphene where graphene sheets can be prepared by two-dimensional assembly

of graphene suspended in organic solvent [69]. Although graphene obtained by this

method has still relatively poor electrical quality, this technique shows the possibility

of producing low cost and large-scale graphene for flexible and transparent electronics

[61, 68].

In Figure 2.5 the most common methods of synthesis related to quality of graphene, cost

and possible applications are shown. Table 2.3 shows that the properties of graphene vary

according to the manufacturing process.
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2.2 Graphene based biosensors

Figure 2.5: There are several methods of mass-production of graphene, which allow a wide
choice in terms of size, quality and price for any particular application [70].

Table 2.3: Properties of graphene obtained by different methods. Modified from [70].

Method Sample size (mm) Charge carrier mobility (at ambient
temperature) (cm2/V s)

Mechanical exfoliation > 1 > 2x105 and > 106

(at low temperature)

Chemical exfoliation Infinite as a layer of 100 (for a layer of
overlapping flakes overlapping flakes)

Chemical exfoliation Infinite as a layer of 1 (for a layer of
via graphene oxide overlapping flakes overlapping flakes)

CVD ∼ 1000 10,000

SiC 100 10,000

2.2 Graphene based biosensors

Biosensors can be simplified into two categories, label and non-label based. Label based

technologies chemically modify a biological molecule with a fluorescent tag that can be seen
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2.2 Graphene based biosensors

with a fluorescent microscope, however this method requires a lengthy labeling process and

expensive detection equipment [71]. Label free technologies do not require any tagging to

identify specific molecules and are ideal for quick and accurate diagnosis [72].

The use of nanostructures in electronic devices has allowed the development of biologi-

cal and chemical sensors and is label-free [73, 74, 75]. Being the most studied alternative

method observation of changes in the electrical, magnetic and optical device, information is

obtained about the state of the device, from which one can elucidate the status of the ana-

lyte. Graphene biological sensors are examples of label free technologies that are currently

under development [76].

2.2.1 Graphene biosensors

Nowadays, there have been several research works regarding the use of graphene for the

detection of biomolecules. The understanding of the interaction between DNA and graphene

is the key to the development of biological devices on substrates of conjugated carbon. The

main interaction of DNA and graphene is based on stacking non-covalent π - π bonds that

is shown in Figure 2.6 [77].

The stacking of nitrogenous bases leads to variation in the electrical response of DNA

sensors [78] and is responsible for adsorption of the DNA nanostructure on graphene [79].

The recognition of the DNA immobilization on graphene is an important step in the de-

velopment of biosensor. The bonding involves covalent and non-covalent processes. The first

provides stability, but reduces the electronic properties desired for graphene. On the other

hand, noncovalent immobilization maintains the structure of graphene with its electronic

properties [80, 81]. It has been shown that the bond between graphene and nucleotides is

dominated by non-covalent interactions [77, 82].

2.2.2 Graphene field effect transistors

Field effect transistor (FET) is a voltage controlled device which is capable of varying a

current across a semiconducting channel by the application of an electric field. In a graphene

field effect transistor (GFET)(see Figure 2.7) the graphene sheet acts as the semiconducting

channel between two metal source and drain electrodes which lie atop an electrical insulator

such as SiO2. When charged biological molecules bind on the surface of the semiconducting

graphene sheet in the GFET there is a measureable change in resistance [72].

Several investigations show the development in the use of GFET. Ohno et al. [7] suc-

cessfully used a label free GFET device to detect bovine serum albumin, immunoglobulin E

[76], and show that GFET has sensitivity under several hundred pico moles per liter [84].

Different sensors structures based on graphene with its corresponding analyte are shown in

Table 2.4.
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2.2 Graphene based biosensors

Figure 2.6: Equilibrium geometry of nucleobases on top of graphene based on density func-
tional calculations: (a) guanine, (b) adenine, (c) thymine, (d) cytosine and (e)
uracil [77].

Figure 2.7: Schematic representation of a field effect transistor based on graphene[83].
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2.2 Graphene based biosensors

Table 2.4: Different sensors structures based on graphene.

Structure
(based on graphene) Scheme Analyte Reference

Substrate: Glass
Source and drain: indium
tin oxide (ITO)
Gate: Au
Extraction electrodes with
silver conductive paint
Reservoir: PET

Adenosine
triphosphate

(ATP)
[10]

Substrate: PET
Source and drain:
Conductive silver paint
Gate: Platinum wire
Reservoir: PDMS

Glucose [11]

Substrate: Si/SiO2
Source and drain:
Lithography Au/Ti
Gate: Ag/AgCl
Reservoir: Epoxy

Alanine
aminotrans-

ferase
[85]

Substrate: Si/SiO2
Source and drain: Ni/Au
Gate: Ag/AgCl
Cover: Silicone rubber

K or Na ions
in a solution

[86]

Substrate: Quartz
Source and drain: Silver
conductive paint
Gate: Ag/AgCl
Silicone rubber to insulate
the electrodes and form the
recording chamber

E. coli
bacteria

[87]
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2.3 Characterization techniques

2.3 Characterization techniques

2.3.1 Analyzes of the structural and chemical properties

2.3.1.1 Raman Spectroscopy

Raman spectra are obtained by irradiating a sample with a powerful laser source of visible or

infrared monochromatic radiation. During the process, the spectrum of radiation scattered

at an angle, usually 90◦, using a suitable spectrometer is recorded. To avoid fluorescence,

wavelengths of excitation are removed from an absorption band of the analyte. The in-

tensities of the Raman lines are at most 0.001% of the source intensity. This might seem

more difficult to detect and measure the Raman vibrational bands in the infrared. However,

the Raman radiation is diffused in the visible and near-infrared regions, for which there are

already very sensitive detectors [88]. The Raman experiment is illustrated in Figure 2.8.

Figure 2.8: Origin of the Raman spectra [88].

In Figure 2.8, inelastic scattering in Raman spectroscopy occurs: a) When the frequency

νex incident radiation collides with the sample, the excited molecules of the sample move

from one of its fundamental vibrational mode to a higher called virtual state, which is

represented by the discontinuous level b). When the molecule relaxes, sometimes it returns

to the first vibrational state, as noted, and emits a photon energy E = h(νex − νv) where

νv is the frequency of the vibrational transition. Alternatively, if the molecule is in the first

excited vibrational state, it could absorb a quantum of the incident radiation, be excited

to virtual state and relax to the fundamental vibrational state. This process causes that a

photon energy is emitted E = h(νex + νv). In both cases, the emitted radiation and incident

radiation differ in the vibrational frequency of the molecule νv. c) The resulting spectrum

of the diffused radiation in inelastically form shows three peaks, namely, one in νex − νv

(Stokes), a second intense peak in νex to the radiation diffused without frequency change

and a third (anti-stokes) in νex + νv. The intensities of the Stokes and antiStokes peaks
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2.3 Characterization techniques

give quantitative information, and the position of the peaks provides qualitative data of the

molecule in or on top of the sample [88].

2.3.1.2 Energy Dispersive X-ray Spectroscopy (EDS)

In a scanning electron microscope (SEM), the electron beam of high energy (1 to 30 keV)

incident on the surface of a sample gives origin to different signals, one is x-ray photons.

X-ray photons emerging from the specimen have energies specific to the elements in the

specimen; these are the characteristics X-ray that provide the SEM with analytical capa-

bilities. Other photons that have no relationships to the specimen elements constitute the

continuum background of the spectrum. An example of the characteristic spectrum result is

shown in Figure 2.9

Figure 2.9: X-ray spectrum of copper showing K-series and L-series x-ray peaks and the
continuous x-ray spectrum obtained with a Si(Li) EDS detector with an ultra-
thin (diamond) x-ray window. Natural widths of peaks are much narrower than
measured here. A noise peak is measured at very low energies. [89].

There are two processes of interaction between the sample and the electron beam that give

rise to the emission of X-rays. One is originated from the fact that electrons to the beam

are braking when they reach the sample surface. Part of the energy that electrons bring

is emitted as electromagnetic radiation of very short wavelength (0.1 to 20 Å) in the range

corresponding to radiation X. The total spectrum of energies corresponding to the X-rays

emitted is called continuous spectrum. The amount of energy emitted by braking of the

electron of the incident beam is not always the same and its maximum value corresponds to

the condition of full braking, in which case it is equal to the energy of the incident beam (E0).
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2.3 Characterization techniques

The other process is originated from the electron energy of the incident beam that may

be partially transferred to the atoms of the sample kicking out electrons of different orbitals.

Electronic vacancies thus created are immediately filled by some electron of higher orbitals

and the energy difference is emitted as X-rays. The energy of this X-rays is equal to the

difference of the energies of the two levels concerned, and therefore has a characteristic value.

By analysing the energy of the X-rays, called characteristic radiation, it is possible to identify

the elements in the sample.

2.3.2 Analyzes of the morphological properties

2.3.2.1 Optical Microscopy

As seen in 3.1.1 graphene is considered an almost transparent material to the human eye.

One could imagine then, that the optical microscopy may not be a suitable characterization

technique. To overcome this problem, multi-reflection/interference effects can improve the

contrast of the sample, this is realized through optical microscopy via the color contrast

caused by the light interference effect at the SiO2 substrate, which is modulated by the

graphene layer [90, 91].

To obtain the mentioned effects, the incidence light passing from air onto a graphene

sheet/SiO2/Si tri-layer system should be considered, as shown in Figure 2.10. When a light

front meets an interface, for example, the air/graphene or graphene/SiO2 interface, a portion

of the beam is reflected and the rest is transmitted, and thus, an infinite number of optical

paths is possible [92].

Figure 2.10: Schematic laser reflection and transmission at a certain depth y in graphene
sheets deposited on a SiO2/Si substrate.n0 = 1 is the refractive index of air,
n1 = 2.6 − 1.3i, n2 = 1.46, n3 = 4.15 − 0.044i, are the refractive indices of
graphite, SiO2, and Si at 532 nm, respectively, d1 is the thickness of graphene
which is estimated as d1 = N 4 d , where 4d = 0.335 nm is the thickness of
single layer graphene and N is the number of layers, and d2 is the thickness of
SiO2 and the Si substrate is considered as semi-infinite [92].
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2.3.2.2 Confocal Laser Scanning Microscopy

The Confocal Laser Scanning Microscopy (CLSM) is a fluorescence-based imaging technique

and offers a higher resolution than fluorescence microscopy due to its point illumination

and detection properties [93]. The illumination in a confocal microscopy is achieved by

a collimated laser beam across the specimen. This laser beam is reflected by a dichroic

mirror and passes through the objective lens of the microscope in a focused manner on the

specimen, which excites fluorescence probe in the sample. So, light is emitted at a longer

wavelength which can come through the dichroic mirror and is again focused at the upper

pinhole aperture (see Figure 2.11) [94]. With CLSM, out-of-focus light (coming from places

of the specimen above or below the focus plane) is cut off before the beam hits the electronic

detector due to the addition of a spatial filter containing an aperture, – the pinhole or slit –

the point detection.

Just the in-focus light can pass through the pinhole (termed confocal aperture), reach the

detector, and then form the image with more details because the blurring from out-of-focus

has vanished. By using CLSM, it is possible to obtain high-resolution images from the

samples, which increases the accuracy of the microscopic images [93, 95].

Figure 2.11: Schematic illustration of the CLSM [94].

2.3.2.3 Field Emission Scanning Electron Microscopy (FESEM)

The Scanning Electron Microscope (SEM) is an instrument that has been developed com-

mercially from 1965 [96]. It was created from the work of Von Ardenne in 1938 and Zworykin

in 1942 [97]. This instrument allows the observation and characterization of heterogeneous

organic and inorganic materials on a nanometer (nm) to micrometer (µm) scale. SEM has
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the capability of obtaining three-dimensional-like images of the surfaces of a very wide range

of materials. The main use of this instrument is to obtain topographic images in the mag-

nification range 10-10000x although it is possible to reach up to 1000000x [89].

The scanning electron microscope (SEM) uses a very thin and focused beam of high-energy

electrons to generate an image and a variety of signals at the surface of solid specimens.

The signals that derive from electron-sample interactions reveal information about the mor-

phology of the surface, chemical composition, and crystalline structure and orientation of

materials constituting the sample. The types of signals produced from the interaction of the

electron beam with the sample include secondary electrons, backscattered electrons, char-

acteristics x-rays, and other photons of various energies. These signals are obtained from

specific emissions volumes within the sample (see Figure 2.12).

Figure 2.12: Different signals in the interaction volumen [98].

The imaging signals of greatest interest are the secondary and backscattered electrons

because these vary primarily as a result of differences in surface topography. In secondary

electron emission (emissive mode) the topographic contrast is the dominant and often masks

the effects due to the variation in chemical composition of the sample, also is the most used

for imaging in biology and the study of materials, given interest clear images and well-focused

on those details that are not visible with other microscopes.

The backscattered electrons (reflective mode) are more efficient to detect variations in the

chemical composition of the sample and can reveal details that are not visible in emissive

mode. The reflective mode is widely used for flat surfaces (little topographic contrast).

Characteristic x-rays are also emitted as a result of electron bombardment. The analysis

of the characteristic x-radiation emitted are used in EDS (see 3.3.1.2).
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2.3.2.4 Atomic Force Microscopy (AFM)

AFM was first demonstrated in 1986 by Binnig, Quate and Gerber [99], to overcome the

limitations in scanning tunnelling microscope (STM) that the substrate studied must be suf-

ficiently conducting to support a tunnel current. This technique allows to see and measure

surface structure with unprecedented resolution and accuracy.

An AFM is rather different from other microscopes, because it does not form an image by

focusing light or electrons onto a surface, like an optical or electron microscope. An AFM

physically “feels” the sample’s surface with a sharp probe, building up a map of the height

of the sample’s surface.

Figure 2.13 shows a comparison between several types of microscopes and profilometers;

the limitation of the AFM is that is not practical to make measurements on areas greater

than about 100 µm. This is because as we said the AFM requires mechanically scanning the

probe over a surface, and scanning such a large area would mean scanning very slowly.

Figure 2.13: Comparison of length-scales of various microscopes [100].

Comparing AFM with a profilometer, the AFM has a greater x-y resolution because in

the AFM the probe is sharper, the applied force in profilometer is around 10−6 N while in

AFM is 10−9 N or less. Table 2.5 presents a comparison between AFM and SEM.

The operation of an AFM relies on the surface forces acting on a sharp tip that is usually

supported on the end of a microcantilever whose minute deflections can be carefully moni-

tored and it is in close proximity to a surface, these surface forces are ubiquitous and exist

between tips of any material and substrates of any material. There are three main operation

modes for an AFM: contact, non-contact and tapping. Contact mode was the first mode de-

veloped for AFM, a schematic representation of AFM and force regimes for operation modes

are shown in Figure 2.14 .
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Table 2.5: Comparison of AFM with SEM [100].

AFM SEM

Sample preparation little or none from little to a lot
Resolution 0.1 nm 5 nm
Relative cost low medium
Sample environment any vacuum (SEM) or gas

(environmental SEM)
Depth of field poor good
Sample type conductive or conductive

insulating
Time for image 2-5 minutes 0.1-1 minute
Maximum field of view 100 µm 1 mm
Maximum sample size unlimited 30 mm
Measurements 3 dimensional 2 dimensional

Figure 2.14: Atomic force microscopy. a) Schematic presentation of AFM; b) Force regimes
governing AFM measurement [101].

2.4 Characterization of Graphene based biosensors

In this chapter, a summary of several investigations related to the characterization by differ-

ent methods of graphene and biosensor base on graphene is presented. First, we will show

investigations that produced and characterized bare graphene for use in different purposes.

Some are shown below:

Z. H. Ni et al. [91] made an investigation about how to determinate the thickness of

graphene using reflection and contrast spectroscopy. They discriminated the single-layer, bi-

layer, and multiple-layer graphene (<10 layers) on Si substrate with a 285 nm SiO2 capping
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layer by using contrast spectra, which were generated from the reflection light of a white

light source. Figure 2.15 shows the optical image for different thickness of graphene and

compared with Raman spectroscopy.

Figure 2.15: (A) Optical image of graphene with one, two, three, and four layers. (B) Raman
spectra as a function of number of layers. (C) Optical image of different thick-
ness. Besides the samples with one, two, three, four, seven, and nine layers,
samples a, b, c, d, e, and f are more than 10 layers and the thickness increases
from a to f [91].

Raman spectroscopy can provide a quick and effective way for structure and quality charac-

terization of graphene. Carbon allotropes show their fingerprints under Raman spectroscopy

mostly by D, G, and 2D peaks around 1350 cm−1, 1580 cm−1 and 2700 cm−1, respectively

due to the change in electron bands.

The G peak or band is derived from the motion of two adjacent carbon atoms in the

plane of a graphene lattice [102].This peak corresponds to the high-frequency E2g phonon at

the center of Brillouin zone, which corresponds to in-plane vibrations of sp2 carbon atoms.

The G band is observed both in graphene and in planar lattice vibrations in highly ordered

pyrolytic graphite which exhibit an optical response at 1582 cm−1 [103]. Although the

intensity increases with the number of graphene layers [104]. Comparison of Raman spectra

between graphite, single and few layer graphene are shown in Figure 2.16.
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Figure 2.16: Comparison of Raman spectra at 514 nm for bulk graphite and graphene. [105].

The D band (located at ∼ 1350 cm−1) originates from disorder in the sp2-hybridized car-

bon atoms, characteristic for lattice distortions in the curved graphene sheets and/or tube

ends . The D band typically contains defects and in the edges of a graphene flake. For these

reason it is called the defective band and is usually used as a measure of the quality of the

graphene flakes [104, 105].

Finally, the 2D or G´ band, at ∼ 2700 cm−1, is the second order effect of the D band and

it does not need the presence of defects or edges for its activation similar to the G band,

the 2D band is present in all types of sp2 carbon materials [103]. To this 2D band relies

most of the graphene characterization because its shape and intensity strongly depend on

the number of graphene layers [105].

The origin of the differences in the 2D band while increasing the number of layers is the

appearance of multiple vibration modes when, in spite of having one monolayer of graphene,

the measured sample has several layers. In multilayer graphene the D band is the result of

the addition of two peaks and the 2D band results from the addition of four different peaks.

The shape of the 2D band changes because of the relative intensity of these peaks varies

depending on the number of the layers. Hence, graphene monolayer has a very narrow 2D

band with intensity roughly four times greater than those of the G band whereas increasing

the number of graphene layers makes that the 2D/G intensity ratio decrease and the 2D

band becomes broader and upshifted [105].

Although these are the main peaks and they are reliable enough to characterize graphene,

disorder induced Raman features can also appear as a second band typically labeled D’

and occur around approximately 1620 cm−1 [106]. D and D’ bands have been observed on

graphene lattices after inducing defects by the deposition of SiO2 [107]. The 2D peak is the D

22



2.4 Characterization of Graphene based biosensors

peak overtone, and the 2D’ peak (∼ 3248 cm−1) is the D’ overtone (∼ 1620 cm−1). Because

the 2D and 2D’ peaks originate from a process where momentum conservation is satisfied

by two phonons with opposite wave vectors, no defects are required for their activation, and

are thus always present [105, 108].

The band at ∼ 2450 cm−1 in Figure 2.17 was first reported in graphite by Nemanich [109].

Its interpretation was subject to debate but it is assigned a combination of a D phonon and

D” phonon peak and it is known as a weak defect-induced one phonon process and should

be observed at ∼ 1100 cm−1 [110], it is indicated as D + D” or also called G* peak [111].

Figure 2.17: Raman spectra of pristine (top) and defected (bottom) graphene. The main
peaks are labelled. [105].

Lee et al. [112] reported the characterization of structural features in CVD graphene by

scanning electron microscopy (SEM). For the analysis of this investigation folding lines are

invisible in a backscattering electron SEM image (Figure 2.18 (A)), they are clearly observed

in secondary electron SEM images collected by the Everhart-Thornley Detector (ETD)and

Through the Lens Detector (TLD) with a magnetic immersion lens, where they appear as

lower brightness compared to the brightness of monolayer graphene regions. Shown in Fig-

ure 2.18 (B) and (C), folding lines appear with better contrast in the SEM images taken

with TLD than those taken with ETD. Additionally to graphene folding lines, many dark

spots (yellow circles in Figure 2.18 A–C) are also visible on the SEM images and these areas

correspond to few-layer graphene. Also besides dark graphene folding lines, narrow bright

lines were found in the transferred graphene on SiO2 (Figure 2.18 E-F). As shown in 2.18

(A), these lines are wrinkles in graphene which were introduced during the transfer process.
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Figure 2.18: (A) 5 kV SEM images of graphene on Cu substrates with different detectors.
High magnification SEM images using (A) backscattering detector (B) ETD,
and (C) TLD. (D) A schematic illustration of a folding line. (E) An illustration
of a graphene wrinkle. (F) 5 kV SEM images of transferred graphene on the
SiO2/Si substrate using a TLD. The red arrows indicate graphene folding lines,
the yellow circles present multilayer graphene regimes, and each blue text of
‘Cu GB’ indicates a Cu grain boundary, the violet circle marks the region with
many graphene wrinkles. Scale bars in (A)–(C), (F) are 5 µm [112].

Also, Giacchetti et al. [113] fabricated a single-layer graphene films that were grown by

CVD and characterized by optical microscopy, atomic force microscopy (AFM) and Raman

spectroscopy, showing excellent uniformity. Figure 2.19 presents the results of this process.

Characterization of biosensor base on graphene is more complicated and is related to the

comparison with bare graphene and how the added molecules will behave interacting be-

tween the graphene and between each other, and also the characterization of the electrical

characteristics. In this thesis we will emphasize the structural, chemical and morphological

characterization. Some research results on this topic are shown below:

Wojcik et al. [72] fabricated and characterized a field effect transistor biosensor for the

detection of thrombin protein. In the process of the fabrication they evaluated the effect

of the annealing in CVD graphene by atomic force microscopy (AFM), the GFET was an-

nealed at 400°C while flowing of 0.85 SLM Ar and 0.95 SLM H2 for 1 hour. The intention

of this annealing process was to improve the thrombin aptamer functionalization scheme by

cleaning the surface of the graphene.
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Figure 2.19: (A) and (B) optical micrograph of CVD-grown graphene on a silicon substrate.
Single layer graphene with uniformity greater than 95% is obtained. (C) AFM
image of the graphene shows excellent uniformity. (D) Raman spectrum con-
firms the presence of monolayer graphene [113]

The AFM analysis in Figure 2.20 of the graphene channel in the GFET device before the

annealing shows that the average height of the graphene surface above the substrate is ∼2-3

nm. The corresponding height profile shows that there are large ∼1-4 nm structures on the

graphene surface. The AFM analysis after annealing shows a drastic improvement in height

characteristics. A height profile was taken at the approximate location of the height profile

from the pre-annealing AFM image and shows that the average height of the graphene sur-

face above the substrate after the anneal was reduced to ∼0.5 nm. Also, we can see that

there was a thin coat of residue on the graphene surface before the anneal and that most of

this residue was removed after the annealing.

For the functionalization of Thrombin Aptamer they used amine-reactive 1-pyrenebutanoic

acid succinimidyl ester (PBASE) as the linker molecule between the graphene surface and

thrombin aptamer. The PBASE non-covalently binds to the graphene surface via π-π stack-

ing. After the addition of the PBASE comes the procedure of the addition of the thrombin

aptamer which is an aptamer DNA oligonucleotide with the base sequence of 5’-/5Amino

C6/GGT TGG TGT GGT TGG-3’. The oligonucleotide came synthesized with an amine

group which reacts with the amine-reactive PBASE molecule. In Figure 2.21 an AFM image

of the bare graphene channel before functionalization is shown. There are particles on the

graphene sheet which are present in both the AFM analysis and height profile, however the

average height of the graphene surface is ∼0.5 nm. After functionalization of the PBASE and

thrombin aptamer the height profile of the graphene surface increased to ∼3 nm, suggesting

that the thrombin aptamer was bound to the PBASE on the graphene surface [72].
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Figure 2.20: (A) AFM image of graphene channel in GFET before anneal and corresponding
height profile marked by a blue line. (B) AFM image of graphene channel in
GFET after anneal and corresponding height profile marked by a blue line. The
electrodes are located at the top and bottom ∼0.5 µm portions of both AFM
images. A color map of the height range is located at the left of each AFM
image [72].

Figure 2.21: (A) AFM image of bare graphene channel in GFET and corresponding height
profile marked by a blue line. (B) AFM image of aptamer modified graphene
channel in GFET and corresponding height profile marked by a blue line. The
electrodes are located at the top and bottom ∼0.5 µm portions of both AFM
images. A color map of the height range is located at the left of each AFM
image [72].
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In another publication also made by Wojcik et al. [114] with the same biosensor, they show

the interfase between the gold electrodes and the bare graphene, also with the presence of

an aptamer over the surfaces, as shown in Figure 2.22.

Figure 2.22: Functionalization of the graphene surface. (A) Atomic force microscopy image
showing the bare graphene channel (3 x 3 µm2) on a SiO2 substrate. A pair of
gold electrodes are seen at the top and bottom of the image. The color scale
represents surface height. The bare graphene surface is ∼0.5 nm above the
substrate. (B) Atomic force microscopy image of the same device after treating
the surface with PBASE and aptamer. The functionalized graphene surface
is ∼2 nm above the substrate. (C) Illustration of the bare graphene surface,
consistent with the first AFM image. (D) Illustration of the functionalized
graphene surface showing the molecular structure of PBASE (black) and the
molecular structure of the aptamer. The expected size of the PBASE–aptamer
construct is consistent with the second AFM image [114].

Yeon Hwa Hwak et al. [115] fabricated a flexible glucose sensor using CVD-Grown

graphene-based field effect transistor. The source and drain electrodes were prepared by

using conductive silver paint and epoxy resin at the two opposite ends of the graphene film

on the Polyethylene terephthalate (PET) substrate which made the device flexible. A custom

designed polydimethylsiloxine (PDMS) well was attached on top of the graphene channel.

The surface of graphene was functionalized with linker molecules (1-pyrenebutanoic acid

succinimidyl ester (PBASE)) in order to immobilize the enzymes that induce the catalytic

response of glucose. Then was functionalized with glucose oxidase (GOD).
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A summary of their results are shown in Figure 2.23, to validate the graphene film the

substrate was analyzed by Raman spectroscopy as shown in Figure 2.23 (A). According to

the Raman spectroscopy results, G and 2D peaks were found at around 1585 and 2674 cm−1

respectively. The full-width-at-half-maximum (FWHM) of the 2D Raman peak was about

31 cm−1 and the intensity ratio of the 2D Raman peak to the G peak was about 2.65, rep-

resenting the monolayer characteristics of the graphene film.

A characterization by AFM was performed in every step of the procedure (Figure 2.23

(C), where the averaged thickness of the graphene layer is ∼0.5 nm which does not deviate

much from the original thickness of graphene ∼0.35 nm, reported in the literature.

Figure 2.23: Fabricated CVD-grown graphene-based FET sensor; (A) Raman spectra of the
monolayer graphene film on a SiO2 deposited Si substrate, (B) experimental
apparatus of the solution gated CVD graphene sensor, (C) AFM images for the
surface modification procedures. The scanning area is 3 mm. [115].

Shi-Rui Guo et al. [116] fabricated a label-free DNA detector using large area CVD

graphene-based field effect transistor. In Figure 2.24 (A) a schematic illustration of the

graphene device where the contact electrodes were made of Ti/Au is presented. Then, to

achieve the non-covalent functionalization they use 1-Pyrenebutanoic acid succinimidyl es-

ter (PBASE) and a probe DNA sequence of (5’-3’) Amine-AAC-TGC-CAG-CCT-ATG-TCC-

AA, and a complementary DNA sequence of (5’-3’) FAM-TTG-GAC-ATA-GGC-TGG-CAG-
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TT (Figure 2.24 (B).

In Figure 2.24 (C-B) they show the characterization by AFM of the graphene before and

after the probe DNA immobilization and also in Figure 2.24 (E-F) the images of graphene be-

fore and after photolithography. To characterize the graphene they use Raman spectroscopy,

which results are shown in Figure 2.24 (C), where the difference between few-layer, bilayer

and monolayer graphene can be observed.

Figure 2.24: (A) Schematic illustration of graphene device; (B) Schematic illustration of the
graphene sensor concept: modifying graphene with non-covalent bond and its
binding of DNA strand. (C-D) AFM images of graphene before (C) and after
(B) probe DNA immobilization. (E-F). AFM images of graphene before (E)
and after (F) photolithography. (G) Raman spectra of the synthesized CVD
graphene [116].

Tzu-Yin Chen et al. [54] fabricated a label-free electrical detector of DNA hybridization

using a field effect transistor based on CVD grown graphene. The device fabrication involved

the preparation of CVD graphene, transference on a SiO2 substrate, the placement of the

silver paint as a source and drain electrodes and the creation of a silicone rubber reservoir.

Single-stranded DNA molecules with these sequences: 5’–AGG TCGCCGCCC-3’ (as probe)

and 3’–TCC AGCGGCGGG-5’ (as complement “target”) dissolved in phosphate buffered

saline (PBS) were tested.

Figure 2.25 presents a summary of the results of their investigation, Figure 2.25 (A-C)

shows the difference that produce the annealing in the graphene, characterized by Raman

spectroscopy and in transfer curves. The Raman spectrum for as-transferred sample exhibits

features of high-quality single-layer graphene: a symmetric 2D band (≈ 2700 cm−1) with
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a full width at half maximum of 30.2 cm−1 and a high I2D/IG ratio (1.95). After thermal

cleaning in H2/Ar environment (20/80 sccm) at 450°C, a shift in G band (from 1588.6 to

1592.0 cm−1) and 2D band (from 2701.9 to 2716.9 cm−1) occurs.

They also analyzed the effect of graphene surface condition to the DNA sensing perfor-

mance by differentiating the used PMMA layer (as a graphene transfer supporting layer) and

replaced by a layer of Au film. The Raman spectra in Figure 2.25 (D) shows that both gold-

transferred graphene and annealed PMMA-graphene exhibit a G-band at 1595.7 and 1591.7

cm−1 in addition to 2D-band at 2719.8 and 2720.3 cm−1 correspondingly. The I2D/IG ratio

of the gold-transferred sample (1.81) is comparable to that (1.58) of the annealed PMMA

one, this suggests that the graphene transferred by PMMA and Au are comparable in film

quality. The AMF image shows in Figure 2.25 (D-F) that the graphene layer is still cov-

ered with some PMMA residues even after annealing. In clear contrast, the surface of the

gold-transferred graphene is relatively much cleaner, as demonstrated in Figure 2.25 (D).

Figure 2.25: (A) Raman spectra of single-layer CVD graphene before and after thermal clean-
ing. The inset shows a graphene sheet set on a silicon substrate. (B) Schematic
illustration of a graphene FET in liquid-gated configuration. (C) Transfer curves
of a liquid-gated graphene FET before and after annealing. (D) Raman spec-
tra of graphene sheets prepared by gold-transfer and PMMA-transfer methods,
respectively. (E) (F) AFM images of PMMA- and gold-transferred graphene.
Note that annealing was performed for the PMMA-transferred sample. [54].

Yinxi Huang et al. [87] fabricated CVD graphene-based biosensors for electrically detec-

tion of E. coli bacteria. The fabrication of the graphene device involves the placement of the

electrodes (source and drain) made by silver conductive paint and the insulate of the elec-
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trodes with silicone rubber. A linker molecule (1-pyrenebutanoic acid succinimidyl ester) was

used for the immobilization of the DNA and then functionalized with anti-E. coli antibodies.

Additionally of this process they used ethanolamine to quench the unreacted succinimidyl es-

ter group on linker molecules and followed by Tween 20 to passivate uncoated graphene area.

Figure 2.26 (A-B) shows the results of the characterization of the CVD graphene by Raman

spectroscopy and AFM, the Raman spectrum taken at a darker spot (indicated by a circle

in the Raman map) exhibits the characteristic spectrum of single-layered graphene with a

sharp 2D peak and a ratio between 2D and G band (I2D/IG) of ∼4.0 (solid trace in Figure

2.26 (A)). In contrast, the spectrum in a brighter spot (indicated by a square) exhibits an

attenuated 2D band and a low I2D/IG (∼0.5), indicating its few-layered structure (dotted

trace). As observed, the graphene film is continuous, uniform, and dominantly single-layered

while some wrinkles are observed in the AFM analysis. Additionally Figure 2.26 (C) shows

an illustration of the E. coli attached onto the antibody functionalized graphene film and

Figure 2.26 (D) presents the CVD-grown graphene exhibiting the characteristic ambipolar

field-effect-behavior and how each functionalization step led to a shift in the transfer curve

(drain-source current Ids versus the solution-gate voltage Vg).

Finally, Jin Heak Jung et al. [117] attempted to elucidate the importance of graphene surface

quality for their use as a FET biosensor by comparing two types of CVD graphene transfer

using polymer-mediated transfer and Au mediated transfer. The procedure of the transfer

of graphene can be seen in reference [117]. The fabrication of their sensor to detect a protein

biomarker for cancer (carbohydrate antigen 19-9 (CA 19-9)) involved the development of

CVD graphene transferred to SiO2 substrate, and the use of chromium/Au layers as source

and drain electrodes, the adition of a PDMS well attached to the graphene channels for

the sensing experiments, the use of 1-pyrenebutanoic acid succinimidyl ester (PBASE) as a

linker molecule and the antibodies (Ab) probes.

The surfaces of the graphene samples transferred by the PMMA and Au transfer meth-

ods were investigated by AFM, for the graphene transferred using a PMMA layer, polymer

residues could be clearly observed while no polymer residues were observed on the graphene

transferred using the Au layer method (Figure 2.27 (A-B)). The root-mean squared (RMS)

surface roughnesses of the graphene surfaces from the AFM analysis were 4.2 and 1.2 nm

for the graphene transferred by the PMMA and Au methods, respectively. The AFM results

indicated that a smoother and cleaner graphene surface free of polymer residue was obtained

by the Au transfer method. Also Raman spectroscopy was performed for the comparison,

lower signal to-noise ratio and intensity of G and 2D peaks as well as absence of low-frequency

background (1100–1600 cm−1) in the Raman spectra from Au-transferred graphene compared

to those of PMMA-transferred graphene (Figure 2.27 (C-E)) confirm the surface cleanness

of Au-transferred graphene.
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Figure 2.26: (A) Raman map and spectrum of graphene film. The map is constructed by
plotting the peak width at half height of the 2D-band as the pixel intensity.
Scale bar = 0.8 mm. (B) AFM image of the graphene film. Scale bar = 500
nm. (C) Illustration of anti-E. coli antibody functionalized graphene- FET for
detection of E. coli. Inset: Scanning electron microscopy (SEM) image of an
E. coli on antibody functionalized graphene. (D) Transfer curves of a graphene
FET before functionalization and after functionalizing sequentially with linker
molecules, anti-E. coli antibodies, ethanolamine and Tween 20. Vds = 100 mV
[87].

Figure 2.28 (A) shows an illustration of the antibody successfully attached on linker-

functionalized graphene channels. A characterization by AFM was performed after the

immobilization of antibodies probes with the linker for both types of sensors. In Figure

2.28 (B) weakly bright areas indicate Ab probe molecules, wherein the surface roughness of

PMMA-transferred graphene with Ab probes (∼2.2 nm) decreased from that of the PMMA-

transferred graphene FET with no Ab probes (∼4.2 nm), Thus, as shown in Figure 2.28

(C)), the surface roughness of the Au-transferred graphene with Ab probes increased from

∼1.2 for the Au-transferred graphene FET with no Ab probes to ∼2.8 nm.
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Figure 2.27: (A) AFM image of the graphene surface after removal of the PMMA layer using
acetone (RMS surface roughness = ∼4.2 nm). (B) AFM image of the graphene
surface after removal of the Au layer by a KI/I2 solution (RMS surface rough-
ness = ∼1.2 nm). (C) Raman spectra of graphene transferred by two different
methods, (D) histogram distributions of variation in the G band positions, and
(E) histogram distributions of variations in the 2D band [117].

The result in the transfer characteristics indicated changes of ID and VDP with surface

modification. With the attachment of Ab probe molecules, VDP did not shift significantly;

however, the hole current increased slightly. Also the Raman spectra after functionalization

by linker molecules, shows that the G and 2D bands decreased from 1584.82 and 2694.97 to

1583.78 and 2669.45 cm−1, respectively [117].
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2.5 Tuberculosis: diagnosis and problematic

Figure 2.28: (A) Illustration of Ab functionalized graphene FET for CA 19-9 detection,
(B) AFM images of graphene after immobilization of Ab probes with PBASE
as a linker molecule on PMMA-transferred graphene (RMS surface roughness
(∼4.2 nm), (C) AFM image after immobilization of Ab with the linker on Au-
transferred graphene (RMS surface roughness ∼2.8 nm), (d) transfer charac-
teristics of graphene FET with no modification (bare graphene channel), after
modification by linker and after Ab functionalization obtained at VDS = 100
mV. The variations in the Raman spectra were measured after removal of solu-
tion; (E) G band position and (F) 2D band. [117].

2.5 Tuberculosis: diagnosis and problematic

Tuberculosis (TB) is an infectious bacterial disease caused by the bacillus Mycobacterium

tuberculosis, also known as Koch’s bacillus. Mainly it affects the lungs (pulmonary TB) but

can affect other organs or tissues (extrapulmonary TB) as skin, bones, kidneys and brain

[3]. TB can occur in any organ; since the bacillus spreads throughout the body and can

be set anywhere in the body. But nevertheless; usually between 80% and 85% of cases, TB

manifests as lung disease, because the bacillus needs plenty of oxygen to multiply [118].

The tuberculosis bacillus spreads through the air when infected people expel the bacteria

by coughing, sneezing, talking or spitting. Infection occurs when the bacteria that can re-

main airborne for several hours until inhaled. After infection the bacteria multiply slowly,

after one to two months the first injuries occur, it is at that moment in which the immune

system is activated to fight the bacteria. In 90% of cases the situation is stabilized and tu-

berculosis can be kept inactive or dormant for several years, in this state the infected person

has no symptoms and cannot spread the disease. On the other hand, if the immune system

fails to control the infection, it is derived active tuberculosis [119].
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2.5 Tuberculosis: diagnosis and problematic

In 1993, the World Health Organization (WHO) declared tuberculosis as a global public

health emergency. At that time they were presented about 7 to 8 million cases and 1.3 to

1.6 million deaths per year due to this disease. In 2011 approximately 9 million new cases

and 1.4 million deaths were estimated. Tuberculosis is considered the second leading cause

of death from an infectious disease worldwide and it is estimated that one third of the world

population is infected.

In 2013, there were an estimated 9.0 million incident cases of TB (range, 8.6 million −
9.4 million) globally, equivalent to 126 cases per 100 000 population. The absolute number

of incident cases is falling slowly (Figure 2.29), at an average rate of 1.5% per year 2000 −
2013 and 0.6% between 2012 and 2013 [3].

Figure 2.29: Estimated absolute numbers of TB cases and deaths (in millions per year),
1990–2013 [3].

In Peru, for 2010, 32.477 cases of tuberculosis were diagnosed in all its forms, most con-

centrated in Lima, of which 28.297 were new, corresponding to them about 17,264 were

cases of pulmonary tuberculosis with positive bacilloscopy. It was estimated that in Peru in

2012, between 30% and 40% of the population were infected with the TB bacteria (not all

developed the disease). Of this percentage the largest ratio would be among health workers

and public transport workers. In both cases, transmission is performed by the conditions of

their occupation, so one can think of TB as an occupational disease [120].
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2.5 Tuberculosis: diagnosis and problematic

During the last decades the Ministry of Health of Peru has implemented one of the best

strategies for prevention and control of tuberculosis, recognized and awarded internationally

by the WHO, by conducting training workshops for control and prevention, and also has

recently published a new law in 2016 for the rights and responsibilities of people with tuber-

culosis [121]. All this effort has reduced significantly the incidence rate and mortality due to

tuberculosis in Peru; however, despite the efforts made by the Ministry of Health, Peru still

has one of the highest rates of incidence and mortality of America.

Farga and Caminero [122] indicate that the increase of tuberculosis worldwide is because

of the following reasons:

� Increased risk populations in crowded urban areas

� Pandemic infection of HIV / AIDS in both urban and rural areas

� Increased poverty in Peru

� Migration from the countryside to the city and the return of people affected by TB to

their communities.

� Neglect of TB programs in Peru

� Multi-resistant tuberculosis in Peru

Different techniques exist to diagnose TB, the most common used in Peru are:

� Examination of sputum or bacilloscopy: The main way to diagnose TB. It involves

taking samples of sputum in order to observe bacillus that cause the disease through a

microscope. These samples must be deposited in plastic disposable containers, totally

clean, dry and wide-mouth screw cap.

� Cultivation of sputum: It is a more sensitive test that bacilloscopy to give the diagnosis,

the result is given after 8 weeks. It is indicated for people with suspected TB but whose

bacilloscopy was negative, or is also used for monitoring.

� Chest x-ray test: Is an essential and very useful in the diagnosis of TB, can see the

extent of lung disease, its evolution and its aftermath.

Of these techniques, one of the most used is the examination of sputum or bacilloscopy

for being effective, simple, inexpensive and relatively quick; besides being recommended by

WHO is the staining Ziehl Neelsen method. This technique is based on staining acid-fast

bacillus (AFB) of the sputum samples of patients following the principle of acid-fast, when

the smear is stained with carbol fuchsin, it solubilizes the lipoidal material present in the

Mycobacterial cell wall but by the application of heat, carbol fuchsin further penetrates
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2.5 Tuberculosis: diagnosis and problematic

through lipoidal wall and enters into cytoplasm. Then after all cell appears red. Then the

smear is decolorized with decolorizing agent (3% HCL in 95% alcohol) but the acid fast

cells are resistant due to the presence of large amount of lipoidal material in their cell wall

which prevents the penetration of decolorizing solution. The non-acid fast organism lack the

lipoidal material in their cell wall due to which they are easily decolorized, leaving the cells

colorless. Then the smear is stained with counterstain, methylene blue. Only decolorized

cells absorb the counter stain and take its color and appears blue while acid-fast cells retain

the red color. This identifies the TB bacillus as a fuchsia red swab on a color background for

easy viewing (see Figure 2.30) [118]. This process incurs a series of procedures if the person

in charge has no special care may suffer contagion so the staff must have good training and

care in the use of the technique [123].

Figure 2.30: Visualization of Mycobacterium tuberculosis using the Ziehl-Neelsen method
[118].

Recent advances in methodologies based on the polymerase chain reaction (PCR) to detect

the gene of tuberculosis, such as quantitative PCR, probe assays line, or nucleic acid amplifi-

cation tests (NAATs), make it possible to create new rapid diagnostic tests [5, 124]; although

these diagnostic methods require sophisticated laboratory facilities and highly qualified staff,

which implies a high cost in implementation.

With this background the use of nanomaterials is a good alternative to develop new rapid

and low-cost methods to diagnose and identify Mycobacterium tuberculosis bacillus with

good sensitivity and specificity.
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3 Experimental procedure

In this chapter, the experimental procedure is explained in detail. First, the fabrication of

the sensing elements is described step by step and also the materials used are presented.

Then, the procedures and the experimental parameters used in the characterization tech-

niques such as Raman Spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), Optical

Microscopy, Laser Scanning Microscopy (LSM), Field Emission Electron Microscopy (FE-

SEM) and Atomic force Microscocy (AFM) characteristics and parameters are mentioned.

3.1 Manufacturing process of the sensing element

The manufacturing process of the sensing element presented in this study is based as a field

effect transistor with a liquid gate (a similar structure is show in Figure 2.7). The substrate

was obtained from Graphenea [125]. This substrate is a monolayer graphene transferred to

a silicon - silicon dioxide wafers, with thicknesses of 500 µm and 285 nm respectively, the

dimensions of the wafers were 10 x 10 mm2 fabricated by chemical vapor deposition.

Therefore, fabrication process started by positioning the substrates into a thermal evapora-

tor (Quorum Q150R ES Figure 3.1 (B)) for gold deposition to create the source and drain

electrodes. For this deposition, a copper mask with the dimensions required of three elec-

trodes of 10 x 1 mm2 was used and aligned on the substrate (Figure 3.1 (A)). The evaporator

parameters that were used for gold deposition in all the devices manufactured were: Sput-

tering current of 50 mA, tooling factor of 2.70 and time of exposure of the sample of 300

s.

After the deposition of the electrodes, the substrates were exposed to a thermal annealing

process at 250 °C for 30 min in order to reduce graphene defects, eliminate adsorbed species

and to lower the contact resistance. A vacuum furnace with nitrogen gas flow shown in

Figure 3.2 was used.

Afterward applying the thermal annealing process, a polydimethylsiloxane container (PDMS)

was applied manually over the source and drain electrodes for protection and for electrical

insulation (Figure 3.3 ). The wall of PDMS also serves as a container for the solutions that

were added in the following steps. This process creates two sensing elements per graphene
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3.1 Manufacturing process of the sensing element

Figure 3.1: Process of deposition of the gold electrodes on the substrate with graphene. A)
Alignment of the mask with the dimensions of the electrodes to be deposited on
graphene. B) Equipment for the deposition of metals by thermal evaporation
Quorum Q150R ES.

Figure 3.2: Thermal annealing furnace with vacuum system and nitrogen gas flow.
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3.1 Manufacturing process of the sensing element

substrate with an active area of approximately 3.5 x 7 mm2.

Figure 3.3: PDMS protection on the sensing element.

The succinimidyl ester of 1-pyrenebutanoic acid (PBASE) dissolved in methanol at a con-

centration of 4.6 x 10−7 mg/mL was used as a linker (Sigma-Aldrich) between the graphene

surface and the oligonucleotide, the linker will have an interaction π - π with the surface

graphene (see Figure 3.4). For each transistor (sensing element), 30 µL of the linker-methanol

solution were deposited by drop casting technique, and was let dry for 4 hours until the

methanol was completely evaporated.

Figure 3.4: Structure of the linker.

The recognition oligonucleotide (probe) chain 5’ - CCA GGT CGA CAC ATA GGT GAG

GTC- 3’ modified with amine in 5’, which was dissolved in phosphate buffer solution (PBS)
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3.1 Manufacturing process of the sensing element

with pH 8.6, was used. This modification of amine in 5’ will have an effective interaction

between the oligonucleotide and the linker with a strong amide covalent bond. 30 µL of

DNA probe solution were deposited over the linker by drop casting technique. The time

for promoting bonding between linker and probe DNA was 16 hours. With the addition

of the oligonucleotide (see Figure 3.5) the manufacturing process of the sensing element is

completed, and then the elements that allow us to evaluate the performance of the sensing

elements are added, the Figure 3.6 shows its final structure.

Figure 3.5: Resulting structure with the addition of oligonucleotide (probe).

As a “DNA Target” sequence the complementary strand 5’ - GGT CCA GCT GTG TAT

CCA CTC CAG - 3’ specific for Mycobacterium Tuberculosis dissolved in PBS (pH 8.6) was

used. To evaluate the specificity a “Non-complementary DNA” as a mismatched sequence 5’

- CCT GCG AGC GTA GGC GTC GGT GAC - 3’ with no amine modification was used in

another sample after the adittion of the probe. Both“DNA Target”and“Non-complementary

DNA” were dissolved in PBS with a concentration of 0.01 nM and added at a temperature

of 60°C by drop casting technique. All DNA sequences were synthesized and supplied by

ThermoFisher Scientific (Invitrogen) [126].

Measurements were conducted in the following stages and identified accordingly: only graphene

(G), graphene with linker (G-L), graphene with linker and probe DNA (G-L-O), after hy-

bridization with “DNA Target” (G-L-O-T) and a different sample with “Non-complementary

DNA” (G-L-O-NC). All the mentioned steps are summarized in the Figure 3.7.
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3.1 Manufacturing process of the sensing element

Figure 3.6: Final structure of the sensing element.

Figure 3.7: Step by step of the manufacturing process.
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3.2 Characterization techniques

3.2 Characterization techniques

3.2.1 Structural and chemical

3.2.1.1 Raman Spectroscopy

The graphene on the Si/SiO2 sustrate was fabricated by CVD, in order to verify the graphene

structure, Raman spectrum was taken using Qontor inVia Raman microscope with a 514 nm

excitation input. Also the Raman spectra was taken in order to analyze the structure of the

interaction area and the behavior with the linker and the nitrogenous bases. An analysis

range of 450 to 3200 cm−1 was used in order to find the different signals of the aggregated

elements.

3.2.1.2 Energy Dispersive X-ray Spectroscopy (EDS)

To evaluate the chemical composition of the sample at each step of the fabrication, an EDS

detector (Thermo SDD-Detector System NORAN7) installed in a FESEM Hitachi S4800-II

was used.

The elements present in the sensing element that should be present in the result of the

chemical analysis are the following:

� Substrate:

– Si, SiO2, C

� Addition of Linker

– Linker: 1-pyrenebutanoic acid, succinimidyl ester (PBASE) (C24H19NO4)

– Solution: Methanol (CH3OH)

� Addition of Oligonucleotide (also “DNA Target” and “Non-complementary DNA”)

– Nitrogenous bases

* Probe: 5’ - CCA GGT CGA CAC ATA GGT GAG GTC- 3’

* DNA Target: 5’ - GGT CCA GCT GTG TAT CCA CTC CAG - 3’

* Non-complementary DNA: 5’ - CCT GCG AGC GTA GGC GTC GGT GAC

- 3’

– Phosphate buffer solution (PBS) - Composed of the salts : Na2HPO4 + KH2PO4
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3.2 Characterization techniques

As for the voltage used, this must be at least two times for the highest energy line and

no more than 10 to 20 times the lowest energy line of interest. Because at lower voltages

the fraction of the interaction volume where the element can be excited becomes very small

and one will not be able to generate many X-rays of that energy. When the voltage number

is excessive, the proportion of the interaction volume for which the low energy x rays can

escape without being absorbed also becomes small giving a small peak [89]. Since EDS is not

accurate for low atomic number elements (C, B, N, O) a 5 kV was used for bare graphene.

Line scan analysis was performed at 20 kV for the Au electrode chemical composition varia-

tion. 10 kV for G-L, G-L-O, G-L-O-T and G-L-O-NC was used. The time of acquisition of

all measures was 90 seconds.

3.2.2 Morphological

3.2.2.1 Optical Microscopy

Optical microscopy characterization was performed with a Leica DMI 500M inverse system

microscope with a Digital Camara DFC 450C and the software Leica Application Suite to

observe possible defects or presence of multilayers in the basic morphology of the substrate.

Images were taken at 500X and 1000X.

3.2.2.2 Laser Scanning Microscopy (LSM)

In order to evaluate the height of the deposition of gold electrodes with respect to the surface

of graphene a 3D-Laser-Scanning-Microscope LEXT OLS4100 was used at 100X.

3.2.2.3 Field Emission Scanning Electron Microscopy (FESEM)

To evaluate the surface and topography contrast a Field Emission Scanning Electron Mi-

croscopy Hitachi S 4800-II was used. This FESEM is equipped with the following detectors:

� SE detector in sample chamber

� SE detector above the objective lens (through-the-lense detector) with energy filter

(ExB filter)

� BSE detector (photodiode detector)

� EDS detector (Thermo SDD detector system NORAN7)

� STEM detector

A scheme of detector related to the signal information is shown in Figure 3.8. The Upper

SE detector provides surface information (including voltage contrast), the Lower SE topo-

graphic contrast and the Uppper SE(BSE) compositional with topographic information. In

44



3.2 Characterization techniques

this thesis Upper SE together with Lower SE was used, giving the label SE(M) in the images

and also the Upper SE(BSE) detector with the label SE(U,LAX) in the images. Images

were taken with 5 kV for bare graphene and 10 kV for all the following steps mentioned.

A extractor current of 10 µA, a probe current set to normal, Focus Mose set to Ultra High

Resolution and a working distance equal to or greater than the Z height of the stage were

also used.

Figure 3.8: Scheme of detector related to the signal information.

3.2.2.4 Atomic Force Microscopy (AFM)

The results in the AFM will give more information on the topography in each stage of the

manufacturing process of the sensing element and the detection process. The AFM gives

greater resolution in images of 10 x 10 µm. An AFM Cypher SPM System Asylum Research

was used. The AFM was set to Tapping Mode, FB gain of 0.3 and a set point of 5 with a

NSG10 silicon AFM cantilever.
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4 Results and discussion

This chapter is dedicated to present and discuss the results of the characterization of the

nanostructured sensing element fabricated as explained in the previous chapter (Figure 3.7).

The discussion follows the sequence of fabrication, stage by stage. The stages correspond

to: bare graphene, gold deposition + annealing, addition of the linker and the addition

of the oligonucleotide (probe). Additionally, two sensing elements were characterized, one

with the addition of the “DNA Target” and the other with the “Non-complementary DNA”.

The characterization contemplated the analysis by: Optical Microscopy, Laser Scanning

Microscopy, Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy

(FESEM), Energy Dispersive X-ray Spectroscopy (EDS) and Raman Spectroscopy. Each of

these techniques served to find particular characteristics in each stage and to elucidate, the

behavior of the aggregated molecules over the surface of the sensing element.

4.1 Bare graphene

Many researchers have been in the search for an appropriate substrate where in the wave-

length range of maximal sensitivity one can achieve the maximum optical contrast of the

carbon atom monolayer . In the case of commonly used oxide-covered silicon wafers, by

adjusting the silica thickness to 90 or 300 nm, the reflected light intensity is maximal at

about 550 nm, that is at the maximum of the human eye sensitivity [127]. The contrast

between graphene and the substrate can be as high as 12% so the short optical path added

by graphene (monolayer) can be easily seen [56]. Graphene used in this thesis work was

deposited over a SiO2 thickness of 285 nm so Figure 4.1(A) shows that at 500X it is possible

to distinguish folding lines (red arrows), Figure 4.1(B) at 1000X folding lines were observed

and small areas of multilayer graphene islands (yellow circles).

Also, the surface of bare graphene was analyzed at 5 kV and detector setting of SE(M),

since the volume of interaction is less and allows us to observe the details in the small

thickness of graphene over the SiO2 surface. Figures 4.2 (A-E) depict that is possible to

observe the graphene at different magnification levels (1000X, 4500X, 10 000X, 20 000X, 30

000X respectively) were it is important to note regions of multilayer graphene (yellow circles)

and also the presence of several folding lines (red arrows) very similar to Jaesung Lee et al.

investigation [128].
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4.1 Bare graphene

Figure 4.1: Optical microscopy of bare graphene. (A)500X, (B)1000X.

Figure 4.2: 5kV FESEM images of bare graphene. All samples were performed using SE(M)
mode. (A)1000X, (B)4500X, (C)10 000X, (D)20 000X, (E)30 000X.

AFM analysis shown in Figures 4.3 and 4.4 two different areas of the graphene channel before

the annealing designated as A1 and A2 respectively. They show that the average height of

the graphene surface above the substrate is ∼ 2 nm for both areas. There is also fencing like

structures indicated with blue arrows of ∼ 7 nm for A1 and ∼ 4.5 nm for A2. Also the RMS

surface roughnesses were 3.224 and 1.586 nm for A1 and A2 respectively, showing that the

roughness varies according to the different areas taken.

An EDS at 5kV was performed over the surface of the graphene, the main elements that

correspond to the graphene substrate (C, O, Si) were observed (Figure 4.5).
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4.1 Bare graphene

Figure 4.3: AFM image of graphene channel before annealing (left) and line analysis (right)
taken in A1 area.

Figure 4.4: AFM image of graphene channel before annealing (left) and line analysis (right)
taken in A2 area.

A raman spectroscopy analisis was performed over the bare graphene surface to evaluate

their structure, according to the results (Figure 4.6) the G and 2D (G’) peaks were found

at around 1592 and 2690 cm−1 respectively. The G band is due to E2g mode at the gamma

point which stems from the stretching of the C-C bond in graphitic materials. The 2D (G’)

band is related to identify the number of layers by the shape and intensity of the signal.

The intensity ratio of the 2D Raman peak to the G peak was about 1.4, representing the

monolayer characteristics of the graphene film (monolayer structure if ratio >1), this result

is very similar to the data provided by Graphenea [125]. Additionally, a low intensity band

is observed at 1350 cm−1, which suggests the presence of small defects, particularly related

to vacancies, dislocations and mechanical deformations.

48



4.2 Bare graphene, gold deposition + annealing

Figure 4.5: Eds at 5kV analysis of bare graphene.

Figure 4.6: Raman spectra of bare graphene.

4.2 Bare graphene, gold deposition + annealing

By using Laser Scanning Microscopy it was possible to evaluate the transition step between

the gold eletrodes and the surface of the graphene, it can be seen in Figure 4.7(A) that this

step covers a length of approximately 70 µm. An analysis of the cross section reveals that
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4.2 Bare graphene, gold deposition + annealing

the height of the electrodes is about 175 nm (see Figure 4.7(B)).

Figure 4.7: Interface between the gold electrodes and graphene.

As mentioned in 4.1 the substrate was annealed at 250°C with nitrogen gas flow for 30

min after the deposition of the Au electrodes. The intention of this annealing process was

to improve the interaction with the linker by cleaning the surface of the graphene and also

improve the contact resistances demonstrated by AFM analysis for Wojcik et al. [72]. The

improvement in the electrical characteristics by the annealing process in this present sensing

element is mentioned in a previous investigation where the electrical resistance of graphene

was reduced by 38% ± 15% [129].

The images in Figure 4.8 correspond to a FESEM characterization at 10 kV. They show

the interface between the electrode of gold and the graphene, Figures 4.8(A) and (B) at 50X

and 4500X respectively, depict the distribution of gold on the surface of graphene. Since

the interface is around 70 µm the presence of the gold is increasing throughout this length

as the Figures 4.8 (C) to (E) show (red arrow direction) at 10 000X. It was observed that

the gold content on the surface is gradual and not staggered. Also a EDS line scan at 20

kV was performed, the increase of the Au concentration in all the section of this length is
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4.2 Bare graphene, gold deposition + annealing

observed (Figure 4.9) with a smooth transition at the interphase, possible generated during

the annealing process where The vertical black line shows the beginning of this transition.

The surface of the Au electrodes was also evaluated at 30 000X (Figure 4.10), where it

is possible to observe that the gold is homogeneous and appropriately deposited over the

graphene surface and with the non existence of areas with little Au concentration or defects.

Figure 4.8: 10kV FESEM images of interface between Au electrodes and graphene. All
images were performed using SE(M) mode. (A)50X, (B)450X, (C-E)10 000X.

The AFM analysis of the graphene channel after the annealing process was performed

in two different areas designated as B1 (Figure 4.11) and B2 (Figure 4.12). They show

an improvement in height characteristics. The images show that the average height of the

graphene surface above the substrate after the annealing was reduced to < 1.5 nm in both

areas. The height profile also shows fencing structures of ∼ 2.3 nm in B2 area (blue arrows

in Figure 4.12). Comparing the two AFM images it can be noticed that there were some

defects of graphene and contamination of the environment that were removed after the an-

nealing. Additionally the RMS surface roughnesses were 1.427 and 1.430 nm for area B1

and B2 respectively, these results indicate a smoother and cleaner graphene area unlike the

3.224 and 1.586 nm values for the bare graphene. As mentioned before the surface quality

of graphene is of vital importance for its use as a FET biosensor demonstrated by Jin Heak

Jung et al. [117] and Wojcik et al. [72].
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4.2 Bare graphene, gold deposition + annealing

Figure 4.9: EDS Line Scan of the interface between Au electrodes and graphene performed
at 20 kV.

Figure 4.10: 10kV FESEM image of the Au electrode surface at 30 000X. Image was per-
formed using SE(M).
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4.3 Addition of the linker

Figure 4.11: AFM image of graphene channel after annealing (left) and line analysis (right)
taken in B1 area.

Figure 4.12: AFM image of graphene channel after annealing (left) and line analysis (right)
taken in B2 area.

4.3 Addition of the linker

In the process of the addition of the linker (solubilized in methanol) and after the drying of

the solution on the surface, two areas with different morphology can be observed in the FE-

SEM images (Figure 4.13(A) at 50X ) performed on the graphene channel since the solution

dry over the surface first and then in the borders. Figure 4.13 (B-C) show zones that are

close to the edge of the PDMS wall performed at 10 kV and 1000X, the solution dry at the

end showing that there are some agglomerations of the solution on the surface. The images

(B) and (C) are the same but with different detector setting of SE(M) and SE(U,LA100)

respectively. Since the agglomerations generate a differentiation in the chemical composition

it is observed that the image (C) performed with SE(U,LA100) provides more information,
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4.3 Addition of the linker

emphasized the analysis of the edges to the compositinal/topographic information, thus im-

proving the depth of field in this zone.

On the other hand, Figure 4.13 (D-E) show zones in the middle of the graphene channel

performed at 10kV and 1000X, where it is possible to observe that the surface is complete

homogeneous showing tenuously some areas of islands of graphene (yellow circles). Also, im-

ages (D) and (E) are the same but with different detector setting of SE(M) and SE(U,LA100)

respectively. Since it is wanted to observe how the molecules to add are embedded in the

surface, the detector SE(M) gives more information focusing on the surface information and

topographic contrast.

Figure 4.13: 10kV FESEM images of the graphene channel with the addition of Linker.
(A)50X - SE(M), (B) and (C) are the same image close to the edge but with
detector setting of SE(M) and SE(U,LA100) at 1000X respectively. (D) and (E)
same image in the middle but with detector setting of SE(M) and SE(U,LA100)
at 1000X respectively.

An AFM analysis of the graphene channel is shown in the Figure 4.14 where the average

height of the element above the surface obtained by line analysis as indicated is ∼<5 nm with

fencing like structures of around ∼8 nm (blue arrows). The RMS surface roughnesses was

2.235 nm which is a notable increase compared to the 1.427 and 1.430 nm for the annealing

graphene.
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4.3 Addition of the linker

Figure 4.14: AFM image of graphene channel after addition of linker (left) and line analysis
(right).

An EDS at 10 kV was performed over the graphene channel, the main elements that corre-

spond to the graphene substrate (C, O, Si) (Figure 4.15) were observed, very similar to bare

graphene (Figure 4.5), but with higher concentration of oxygen and less carbon due to the

addition of the solution.

Figure 4.15: EDS at 10kV analysis of graphene channel in after addition of linker.
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4.4 Nanostructured sensing element (addition of the probe)

4.4 Nanostructured sensing element (addition of the

probe)

Subsequently, in the process of the addition of the probe (dissolved in PBS) and after the

drying of the solution on the surface, a pattern similar to the addition of the linker can

be observed in the FESEM image (Figure 4.16 (A) performed at 10 kV, detector setting

of SE(M) and at 50X) where the solution is first dried in the center and at the end at the

edges. Figures 4.16 (B) and (D) performed at 10 kV, detector setting of SE(M) and at 1000X

and 4500X respectively show the central zone of the graphene channel where a homogeneous

surface is observed free of defects. On the other hand, Figures 4.16 (C) and (E) performed at

10 kV, detector setting of SE(U,LA100) and at 1000X and 4500X respectively depict similar

agglomerations of the solution added but with a different morphology than when the linker

was added and are presumed to be segregated from the salts contained in the phosphate

buffer solution (PBS).

The AFM analysis was performed to make sure that the probe was properly immobilized

on the interaction area surface of the graphene channel. The AFM image in Figure 4.17

shows structures roughly a few hundred nanometers wide and an average of 2.5-7.5 nm tall

with fencing like structures of 10 nm and 15 nm approximately (blue arrows in Figure 4.17).

Whereas the bare graphene region does not have a distinguishable structure except for a

few nanometer tall ridges which might be coming from the fabrication process. The tall

structures are assumed to be poles of oligonucletoides with linker binding to the graphene

layer which is also confirmed by looking into the height profiles of the red line analysis. The

RMS surface roughnesses was 2.306 nm which constitutes an increase in comparison with

the addition of the linker.

It is also possible to confirm the relative roughness of the surface using images as inputs

and 3D reconstruction converting them in roughness patterns by using the Gwyddion soft-

ware. Figure 4.18 shows the comparison, with the help of the software, of the sample of

graphene with the final part of the manufacturing process of the sensing element(until the

probe), where Figures 4.18(A) and (B) were FESEM images performed at high vacuum, 1

kV and 1500X and Figures 4.18(C) and (D) the 3D reconstruction respectively. It can be

observed that the surface increases in height but remains homogenous due to a good affinity

between the aggregate solutions.
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4.4 Nanostructured sensing element (addition of the probe)

Figure 4.16: 10kV FESEM images of the graphene channel with the addition of oligonu-
cleotide (probe). (A) 50X - SE(M). The images to the left (B) and (D) cor-
respond to the central area of the GFET using SE(M) at 1000X and 4500X
respectively. The images to the right (C) and (E) correspond to the edge of the
GFET using SE(U,LA100) at 1000X and 4500X respectively.
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4.4 Nanostructured sensing element (addition of the probe)

Figure 4.17: AFM image of graphene channel after addition of the probe (left) and line
analysis (right).

Figure 4.18: Comparing between bare graphene and the sensing element with the probe,
through the Gwyddion software.(A) and (B) FESEM images performed at high
vacuum, 1 kV and 1500X of G and G-L-O respectively. (C) and (D) 3D recon-
struction of G and G-L-O respectively.
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4.4 Nanostructured sensing element (addition of the probe)

A EDS at 10 kV was performed over the interaction area of the graphene channel in two

different zones, in the middle and close to the edge. The results in Figure 4.19 performed

in the middle show the presence of sodium on the surface and the results of Figure 4.20

performed in the edges show, in addition to the presence of sodium, a small percentage of

phosphorus. These elements belong to the salts that make up the phosphate buffer solution

(PBS) and that correspond to the FESEM images on Figures 4.16(C) and (E).

Figure 4.19: EDS at 10kV analysis of graphene channel (middle) after addition of the probe.
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4.5 Nanostructured sensing element + “DNA Target”

Figure 4.20: EDS at 10kV analysis of graphene channel (close to the edge) after addition of
the probe.

The characterization contemplates up to this point how the surface of the sensing element is

for its next use as a sensing element with a “DNA Target” sample or a “Non-complementary

DNA” sample.

4.5 Nanostructured sensing element + “DNA Target”

The FESEM images in Figure 4.21(A) performed at 10 kV, detector setting of SE(M) and

at 50X presented the same pattern that when the linker and the oligonucleotide were added,

given the compatibility between the “DNA Target” and the probe the correct hybridization

was carried out, resulting in a homogeneous surface free from defects or non-hybridization

elements. Figures 4.21(B) and (D) performed at 10 kV, detector setting of SE(M) and at

1000X and 4500X respectively show the central zone of the graphene channel where a ho-

mogeneous surface is observed free of defects. On the other hand, Figures 4.21(C) and (E)

performed at 10 kV, detector setting of SE(U,LA100) and at 1000X and 4500X respectively

depict the same salt agglomerations of the previous step but in greater quantity, these el-

ements belong to the PBS solution used for the probe and for the “DNA Target”. Despite

these salts segregated the area is homogeneous on its surface.
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4.5 Nanostructured sensing element + “DNA Target”

Figure 4.21: 10kV FESEM images of the graphene channel with the addition of the “DNA
Target”.(A) 50X - SE(M). The images to the left (B) and (D) correspond to
the central area of the GFET using SE(M) at 1000X and 4500X respectively.
The images to the right (C) and (E) correspond to the edge of the GFET using
SE(U,LA100) at 1000X and 4500X respectively.
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4.5 Nanostructured sensing element + “DNA Target”

The AFM analysis of the graphene channel is shown in the Figure 4.22, the large white

spots could be attributable to the agglomeration of probes or linker molecules, even though

the density of inmmobilized probes was not directly measured, the change in roughness indi-

cate the hybridization of “DNA Target” to probes on the limited graphene surface. Thus the

surfaces roughness of the surface increased from 1.430 nm in the annealing graphene to 2.306

nm with the probe and finally reaches 2.622 nm with the “DNA Target” demonstrating an

affinity between the elements, similar behavior has been demonstrated by Yeon Hwa Hwak

et al. [115], Shi-Rui Guo et al. [116] and Jin Heak Jung et al. [117].

Figure 4.22: AFM image of graphene channel after addition of “DNA Target”(left) and line
analysis (right).

A EDS at 10 kV was performed over the graphene channel also in two different zones, in the

middle and close to the edge. The results in Figure 4.23 performed in the middle show an

increase in sodium concentration to 0.26 in weight % and the results of Figure 4.34 performed

in the edges also show an increase in sodium and phosphorus concentration to 12.40 and 7.60

weight % respectively. This result is due to the addition of the “DNA Target” on the surface

associated with the increase of the salt concentration which come from the phosphate buffer

solution.
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4.5 Nanostructured sensing element + “DNA Target”

Figure 4.23: EDS at 10 kV analysis of graphene channel (middle) after addition of “DNA
Target”.

Figure 4.24: EDS at 10kV analysis of graphene channel (close to the edge) after addition of
“DNA Target”.

63



4.5 Nanostructured sensing element + “DNA Target”

The spectrum Raman allowed to understand the structure of the interaction zone, Figure

4.25 shows a spectrum of silicon which is the pattern of the Raman spectrometer that helps as

a basis for the following spectra, it must be taken into account that the corresponding peaks

in the range of 493 cm−1 and 531 cm−1 correspond to the peak of ∼520 cm−1 characteristic

of silicon. Two different areas over the graphene channel were analyzed, designated as C1

and C2. Figure 4.27 (C1 area) shows the Raman spectrum where it is assumed that the

peaks marked with red correspond to at assigned frequencies of DNA taking as reference

Benavides et al. research [130]. The peak ∼615 cm−1 is assigned to the presence of adedine,

cytosine and thymine; the peak 678 cm−1 to guanine and thymine. Figure 4.27 (C2 area)

can be seen the same peak of ∼615 cm−1 and another of 1342 cm−1 which is assigned to

adenine and guanine. Additionally, the Raman Spectroscopy can confirm the doping after

functionalization by linker molecules. The G and 2D bands decreased from 1592 and 2690

to 1585 and 2685 cm−1 in the C2 area shown in the Figures 4.28 and 4.29 for the G and 2D

bands respectively. Based on the research developed by Das et al. [131] and Jin Heak Jung

et al. [117] on the characteristics of the G and 2D bands. it can be concluded that the G

band has a different behavior to electron and hole doping nevertheless the decrease in the

2D band is presumed to be assigned to the increase in n doping.

Figure 4.25: Silicon spectrum pattern of the Raman spectrometer.
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4.5 Nanostructured sensing element + “DNA Target”

Figure 4.26: Raman spectra of the nanostructure sensing element over the graphene channel
for C1 area.

Figure 4.27: Raman spectra of the nanostructure sensing element over the graphene channel
for C2 area.
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4.5 Nanostructured sensing element + “DNA Target”

Figure 4.28: The variations in the Raman spectra in G band position.

Figure 4.29: The variations in the Raman spectra in 2D band position.
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4.5 Nanostructured sensing element + “DNA Target”

Comparing a complementary thesis in relation to the electronic properties, Rojas et al.

[129] developed the I-V curves of two identical transistors (sensing elements), designated

as D1 and D2. D1 was evaluated in all the stages of the fabrication process while d2 was

evaluated only at the G-L-O and G-L-O-T conditions. Figures 4.30(A) and (B) show the I-V

curves for transistors D1 and D2 (Id = f(Vd)). For D1 transistor the Id-Vd slopes are identical

for all three G, G-L and G-L-O states, and lower for G-L-O-T state; a decrease of 24% is

evidenced. For D2, a similar decrease in the slope of G-L-O-T compared to the G-L-O state

is registered (26%). This behavior has been widely discussed in the literature and it has been

proposed that DNA introduction produces an n doping effect on the graphene corroborated

with decrease of the band 2D in the raman spectrum (see Figure 4.29). The displacements

are attributed to the linkage of the pyrene group of the linker with the graphene by π-π

interactions, to the bonding of the linker ester group with the aminated termination of the

DNA recognition sequence (probe) and finally to the hybridization of the recognition DNA

sequences and objective. It can be concluded that after functionalization of the graphene

surfaces with the linker molecules through π-π interactions, probes for the detection of

tuberculosis were successfully attached on linker functionalized graphene channels due to

the response generated by the “DNA Target”.

Figure 4.30: I-V curves for transistors D1 (A) and D2 (B) obtained at different fabrication
stages. G-L-O-T indicates the DNA hybridization stage, “DNA Target” concen-
trations was 0.01 nM[129].
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4.6 Nanostructured sensing element + “Non-complementary DNA”

4.6 Nanostructured sensing element +

“Non-complementary DNA”

Case totally opposite to the FESEM Figure 4.21 where the “DNA Target” was added, now

instead of the “DNA Target” the “Non-complementary DNA” was added being this macro-

molecule incompatible with the structure developed. The FESEM results are observed in

Figure 4.31(A) performed at 10 kV, detector setting of SE(M) and at 50X where it can

be seen a heterogeneous surface with an appreciate products derived from salts over the

graphene channel. Figures 4.31(B) and (D) performed at 10 kV, detector setting of SE(M)

and at 1000X and 4500X respectively show the central zone of the graphene channel where

a heterogeneous surface is observed with different defects from the salts belonging to the

PBS solutions. The same pattern is observed in Figures 4.31(C) and (E) performed at 10

kV, detector setting of SE(U,LA100) and at 1000X and 4500X respectively where they show

the same salt agglomerations found in the central zone belonging to the salts of the PBS

solution with a considerable increase of them unlike the previous stages also it is observed

that these salt segregates are heterogeneously dispersed throughout the surface of the edges.

The AFM analysis in Figure 4.32 shows specific areas with residues with height of ∼25-30

nm, which can be attributed to the inhibition of effective hybridization of probe molecules

with the “Non-complementary DNA” due to the inherent difficulty of affinity of the nitroge-

nous sequences that compose them. The AFM line analysis image shows a remarkably

increased roughness from 2.306 with the probe to a 6.606 nm, comparatively higher than the

2.622 nm obtained with the addition of the “DNA Target”.

An EDS analysis at 10 kV was perfomed over the graphene channel area also in two

different zones, in the middle and close to the edge. The results follow the same pattern

as the previous ones, Figure 4.19 performed in the middle shows an increase in sodium

concentration to 1.03 in weight % but also a small amount of phosphorus of 0.81 in weight %.

Additionally the results of Figure 4.20 performed in the edges also show an increase in sodium

and phosphorus concentration to 27.10 and 17.13 weight % respectively. These results show

a noticeable increase in the concentration of the salts compared to the previous stages, this is

due to the poor interaction between the probe and the“Non-complementary DNA”increasing

the number of elements segregated in the surface, thus showing more agglomerations of salts.
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4.6 Nanostructured sensing element + “Non-complementary DNA”

Figure 4.31: 10kV FESEM images of the graphene channel with the addition of the “Non-
complementary DNA”. (A) 50X - SE(M). The images to the left (B) and (D)
correspond to the central area of the GFET using SE(M) at 1000X and 4500X
respectively. The images to the right (C) and (E) correspond to the edge of the
GFET using SE(U,LA100) at 1000X and 4500X respectively.
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4.6 Nanostructured sensing element + “Non-complementary DNA”

Figure 4.32: AFM image of graphene channel after addition of “Non-complementary DNA”
(left) and line analysis (right).

Figure 4.33: EDS at 10 kV analysis of graphene channel (middle) after addition of “Non-
complementary DNA”.
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4.6 Nanostructured sensing element + “Non-complementary DNA”

Figure 4.34: EDS at 10kV analysis of graphene channel (close to the edge) after addition of
“Non-complementary DNA”.
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5 Conclusions and Future Work

From the work presented in this thesis, the following are the most important conclusions and

possible future works that will allow to improve the performance of the sensing element.

5.1 Conclusions

� Has been successfully fabricated a graphene based FET-like sensing element for the

detection of tuberculosis.

� A structural, chemical and morphological characterization of the fabricated element

in each stage of the manufacturing process, has been performed. This was satisfacto-

rily attained by enlightening the behavior of the different elements added thanks to

specialized characterization techniques.

� The advanced characterization techniques used in the present work complement each

other by the fact that information revealed by one, in which assumptions can be made,

can be corroborated and validated by another. Raman spectroscopy facilitated the ver-

ification of the graphene structure, the detection of possible defects in it, the possible

behavior to doping of the surface and the DNA presence. Optical microscopy showed

the basic morphology of the graphene substrate. The analysis by FESEM corrobo-

rated the information of the optical microscopy showing also the homogeneity of the

surface in the different stages of the manufacturing process but also the presence of

salt segregates in the edges of the sensing element corroborated by the EDS analysis

when evaluating its chemical composition. The LSM facilitated the obtaining of how

the Au electrodes were distributed over the graphene surface and their height. The

AFM analysis corroborates the homogeneity of the surface and helped evaluate the

probe binding verification and the “DNA Target” hybridization.

� The initial characterization of the substrate is fundamental to be able to evaluate its

future performance as a sensing element and evaluate the next stage in the manufac-

turing process. The Raman spectrum pointed out the presence of monolayer graphene,

both the FESEM and AFM image showed the presence of common defects in the sur-

face and some environmental contaminants. This aided in improving the fabrication

process with an annealing, where AFM analysis reveals an increase in the homogeneity

of the graphene surface, which is corroborated by several investigations that a surface
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5.1 Conclusions

with less defects free of impurities will have a better behavior in its use as a sensing

element.

� It is possible to enlighten that the process of manufacture was adequate since in the

results in the FESEM and AFM a homogeneous surface is observed in the step of

the addition of the linker (interaction π-π) and the step of the addition of the probe

(functionalization) observing an increase in roughness.

� The affinity in the hybridization between the DNA probe and the “DNA Target” is

concluded, since a homogeneous surface is observed in the center of the sample demon-

strated by FESEM and AFM analysis, unlike when the “Non-complementary DNA” is

added where a heterogeneous surface is observed with the presence of segregated salts

on the entire surface.

� It is possible to appreciate a difference in the behavior of the sensing element for the de-

tection of the “DNA Target” and the non-compatibility with the “Non-complementary

DNA”, both for its electrical characteristics and its morphology, despite the presence

of salt segregations produced by the phosphate buffer solution (PBS) observed in the

FESEM and EDS.

� The FESEM and EDS analysis revealed the presence of segregated agglomerates of salt

accumulated at the edge of the sample corroborated with their morphology and the

chemical analysis, it is possible that these elements vary the behavior of the sensing

element in service although the AFM analysis at nanometric scale performed in the

center of the graphene channels show a similar behavior developed by different investi-

gations, with an increase in roughness of 1.430 nm of annealing graphene to 2.622 nm

with the “DNA Target”. However the analysis of the electronic properties show a good

behavior that can possibly be improved by eliminating those elements.

� The Raman spectroscopy is a great tool used for many researchers for the analysis

of the graphene surface due to the behavior of the D, G and 2D bands, also for the

possible n or p doping over the surface, for the effect that the annealing may cause by

measure the D band that is related to the defects over the surface and for the analysis

of the signal given by the oligonucleotides added. In the present thesis G and 2D bans

(1592 and 2690 cm−1) and the intensity 2D/G ratio of about 1.4 evidenced a monolayer

graphene, the decrease in the 2D band demonstrated the n doping corroborated by the

I-V curves, since the annealing were performed at relative low temperature (250°C)

and time (30 min) no defect due to the annealing can be observed, and finally the

bands ∼615, 678 and 1342 cm−1 corroborate the presence of DNA over the surface.
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5.2 Future work

5.2 Future work

� In the process of deposition of the gold electrodes, the mask used was home made. The

improvement of the dimensions of this mask could be investigated to improve the area

of interaction analyzing possible changes in the electronic characteristics. Likewise a

finer and more accurate deposition would be achieved with a lithographic process.

� In the present investigation, only one probe sequence of oligonucleotide was used, an

investigation can be followed with other similar sequences to observe its behavior and

improvement in the sensing element. A research currently being developed is comparing

two related sequences evaluating their electronic properties.

� In the results shown, especially in the deposition of the probe and the “DNA Tar-

get”, the presence of salt segregations pertaining to the PBS solution was observed.

A more detailed study of the concentrations of the solutions should be carried out.

Also a change in technique to add the solutions must be analyzed, since the drop cast-

ing technique does not leave a totally homogeneous surface a possible alternative to

investigate could be spin coating.

� In the process of deposition of the “DNA Target” a good hybridization is desired. This

step is fundamental for the correct interaction of the probe with the corresponding

sequences belonging to the complementary sequences of the “DNA Target”. Different

factors can influence to achieve this, one of them is a homogeneous graphene channel

surface achieved by the annealing. Another important factor to investigate in detail is

the correct temperature at which the “DNA Target” is added.

� A further investigation of the behavior of the Raman spectra by changing different

characteristics in the manufacturing process can be made. For example by changing

the temperature and time in the annealing process evaluating the D band for defects,

changes in the functionalization process for the evaluation of p or n doping evaluat-

ing the G and 2D band behavior, changes In the selected DNA sequences revealing

characteristic bands.

� The work presented was done with a single concentration of “DNA Target”. A more

detailed investigation should be carried out with different concentrations to evaluate

the sensitivity of the sensing element and its behavior at all levels.
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i Òptica (2006)

[13] Iijima, Sumio: Helical microtubules of graphitic carbon

[14] Neto, Antonio C. ; Guinea, Francisco ; Peres, Nuno M.: Drawing conclusions from

graphene. In: Physics World 19 (2006), Nr. 11, S. 33–37. http://dx.doi.org/[193.171.

33.83. – DOI [193.171.33.83. – ISBN 0953–8585

[15] Weber, J. W. ; Calado, V. E. ; Van De Sanden, M. C M.: Optical constants of graphene

measured by spectroscopic ellipsometry. In: Applied Physics Letters 97 (2010), Nr. 9. http:

//dx.doi.org/10.1063/1.3475393. – DOI 10.1063/1.3475393. – ISBN 2001501005

[16] Heyrovska, Raji: Atomic Structures of Graphene, Benzene and Methane with

Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Car-

bon. In: arXiv preprint arXiv:0804.4086 (2008), 1–4. http://dx.doi.org/10.2174/

1874199100802010001. – DOI 10.2174/1874199100802010001. – ISSN 18741991

[17] Lemme, M: Current Status of Graphene Transistors. In: Diffusion and defect data. Solid

state data. Part B (2010), 1–12. http://dx.doi.org/10.4028/www.scientific.net/SSP.

156-158.499. – DOI 10.4028/www.scientific.net/SSP.156–158.499. – ISSN 1662–9779

76

http://dx.doi.org/10.1117/12.922698
http://dx.doi.org/10.1117/12.922698
http://dx.doi.org/10.1021/ac403281g
http://dx.doi.org/10.1016/j.snb.2014.01.071
http://dx.doi.org/10.1016/j.snb.2014.01.071
http://dx.doi.org/10.1016/j.bios.2012.04.042
http://dx.doi.org/[193.171.33.83
http://dx.doi.org/[193.171.33.83
http://dx.doi.org/10.1063/1.3475393
http://dx.doi.org/10.1063/1.3475393
http://dx.doi.org/10.2174/1874199100802010001
http://dx.doi.org/10.2174/1874199100802010001
http://dx.doi.org/10.4028/www.scientific.net/SSP.156-158.499
http://dx.doi.org/10.4028/www.scientific.net/SSP.156-158.499


Bibliography

[18] Singh, Virendra ; Joung, Daeha ; Zhai, Lei ; Das, Soumen ; Khondaker, Saiful I. ; Seal,

Sudipta: Graphene based materials: Past, present and future. In: Progress in Materials

Science 56 (2011), Nr. 8, 1178–1271. http://dx.doi.org/10.1016/j.pmatsci.2011.03.

003. – DOI 10.1016/j.pmatsci.2011.03.003. – ISBN 0079–6425

[19] Lee, Changgu ; Wei, Xiaoding ; Kysar, Jeffrey W. ; Hone, James ; =: Measurement

of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. In: Science 321

(2008), Nr. 18 July 2008, S. 385–388. http://dx.doi.org/10.1126/science.1157996. –

DOI 10.1126/science.1157996. – ISBN 0036–8075

[20] Lee, Changgu ; Wei, Xiaoding ; Li, Qunyang ; Carpick, Robert ; Kysar, Jeffrey W.

; Hone, James: Elastic and frictional properties of graphene. In: Physica Status Solidi

(B) 246 (2009), Nr. 11, 2562–2567. http://dx.doi.org/10.1002/pssb.200982329. – DOI

10.1002/pssb.200982329. – ISBN 1521–3951

[21] Frank, I. W. ; Tanenbaum, D. M. ; Zande, Arend M. d. ; McEuen, Paul L.: Mechanical

properties of suspended graphene sheets. In: Journal of Vacuum Science & Technology B:

Microelectronics and Nanometer Structures 25 (2007), Nr. 6, S. 2558. http://dx.doi.org/

10.1116/1.2789446. – DOI 10.1116/1.2789446. – ISBN 1071–1023

[22] Tsoukleri, Georgia ; Parthenios, John ; Papagelis, Konstantinos ; Jalil, Rashid ; Fer-

rari, Andrea C. ; Geim, Andre K. ; Novoselov, Kostya S. ; Galiotis, Costas: Subjecting

a graphene monolayer to tension and compression. In: Small 5 (2009), Nr. 21, S. 2397–2402.

http://dx.doi.org/10.1002/smll.200900802. – DOI 10.1002/smll.200900802. – ISBN

1613–6829

[23] Van Lier, Gregory ; Van Alsenoy, Christian ; Van Doren, Vic ; Geerlings, Paul:

Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene.

In: Chemical Physics Letters 326 (2000), Nr. 1-2, 181–185. http://dx.doi.org/10.1016/

S0009-2614(00)00764-8. – DOI 10.1016/S0009–2614(00)00764–8. – ISBN 0009–2614

[24] Reddy, C D. ; Rajendran, S ; Liew, K M.: Equilibrium configuration and continuum

elastic properties of finite sized graphene. In: Nanotechnology 17 (2006), Nr. 3, S. 864–870.

http://dx.doi.org/10.1088/0957-4484/17/3/042. – DOI 10.1088/0957–4484/17/3/042.

– ISBN 0957–4484

[25] Nika, D. L. ; Pokatilov, E. P. ; Askerov, A. S. ; Balandin, A. A.: Phonon thermal

conduction in graphene: Role of Umklapp and edge roughness scattering. In: Physical Review

B - Condensed Matter and Materials Physics 79 (2009), Nr. 15, S. 1–12. http://dx.doi.org/

10.1103/PhysRevB.79.155413. – DOI 10.1103/PhysRevB.79.155413. – ISBN 1098–0121

[26] Jiang, Jin-Wu ; Lau, Jinghua ; Wang, Jian-sheng ; Li, Baowen ; Lan, Jinghua ; Wang,

Jian-sheng ; Li, Baowen: Isotopic effects on the thermal conductivity of graphene nanorib-

bons: localization mechanism. In: Arxiv:1007.5358V1 054314 (2010), Nr. 2010, 9–13.

http://dx.doi.org/10.1063/1.3329541. – DOI 10.1063/1.3329541. – ISBN 0021–8979

77

http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1002/pssb.200982329
http://dx.doi.org/10.1116/1.2789446
http://dx.doi.org/10.1116/1.2789446
http://dx.doi.org/10.1002/smll.200900802
http://dx.doi.org/10.1016/S0009-2614(00)00764-8
http://dx.doi.org/10.1016/S0009-2614(00)00764-8
http://dx.doi.org/10.1088/0957-4484/17/3/042
http://dx.doi.org/10.1103/PhysRevB.79.155413
http://dx.doi.org/10.1103/PhysRevB.79.155413
http://dx.doi.org/10.1063/1.3329541


Bibliography

[27] Goenka, Sumit ; Sant, Vinayak ; Sant, Shilpa: Graphene-based nanomateri-

als for drug delivery and tissue engineering. In: Journal of Controlled Release 173

(2014), Nr. 1, 75–88. http://dx.doi.org/10.1016/j.jconrel.2013.10.017. – DOI

10.1016/j.jconrel.2013.10.017. – ISBN 1873–4995 (Electronic)\r0168–3659 (Linking)

[28] Mahanta, Nayandeep K. ; Abramson, Alexis R.: Thermal conductivity of graphene and

graphene oxide nanoplatelets. In: 13th InterSociety Conference on Thermal and Thermo-

mechanical Phenomena in Electronic Systems (2012), 1–6. http://dx.doi.org/10.1109/

ITHERM.2012.6231405. – DOI 10.1109/ITHERM.2012.6231405. – ISBN 978–1–4244–9532–0

[29] Kim, P ; Shi, L ; Majumdar, A ; McEuen, P L.: Thermal Transport Measure-

ments of Individual Multiwalled Nanotubes. In: Physical Review Letters 87 (2001), Nr.

21, 215502. http://dx.doi.org/10.1103/PhysRevLett.87.215502. – DOI 10.1103/Phys-

RevLett.87.215502. – ISBN 0031–9007

[30] E., Pop ; D., Mann ; Q., Wang ; K., Goodson ; H, Dai: Thermal Conductance of an

Individual Single-Wall Carbon Nanotube above Room Temperature. In: Nano Lett. 6 (2006),

Nr. 1, S. 96. http://dx.doi.org/10.1021/nl052145f. – DOI 10.1021/nl052145f. – ISSN

1530–6984

[31] Schwamb, Timo ; Burg, Brian R. ; Schirmer, Niklas C. ; Poulikakos, Dimos: An

electrical method for the measurement of the thermal and electrical conductivity of reduced

graphene oxide nanostructures. In: Nanotechnology 20 (2009), Nr. 40, S. 405704. http://

dx.doi.org/10.1088/0957-4484/20/40/405704. – DOI 10.1088/0957–4484/20/40/405704.

– ISBN 0957–4484

[32] Balandin, Alexander A. ; Ghosh, Suchismita ; Bao, Wenzhong ; Calizo, Irene ; Tewelde-

brhan, Desalegne ; Miao, Feng ; Lau, Chun N.: Superior thermal conductivity of single-

layer graphene. In: Nano Letters 8 (2008), Nr. 3, S. 902–907. http://dx.doi.org/10.1021/

nl0731872. – DOI 10.1021/nl0731872. – ISBN 1530–6984

[33] Ghosh, S. ; Calizo, I. ; Teweldebrhan, D. ; Pokatilov, E. P. ; Nika, D. L. ; Ba-

landin, A. A. ; Bao, W. ; Miao, F. ; Lau, C. N.: Extremely high thermal conductivity

of graphene: Prospects for thermal management applications in nanoelectronic circuits. In:

Applied Physics Letters 92 (2008), Nr. 15, S. 2–4. http://dx.doi.org/10.1063/1.2907977.

– DOI 10.1063/1.2907977. – ISBN 0003–6951

[34] Seol, Jae H. ; Seol, Jae H. ; Jo, Insun ; Moore, Arden L. ; Lindsay, Lucas ; Aitken,

Zachary H. ; Pettes, Michael T. ; Li, Xuesong ; Yao, Zhen ; Huang, Rui ; Broido, David

; Mingo, Natalio: Two-Dimensional Phonon Transport in Supported Graphene. 213 (2010),

Nr. 2010. http://dx.doi.org/10.1126/science.1184014. – DOI 10.1126/science.1184014.

– ISSN 0036–8075

[35] Bae, Sukang ; Kim, Hyeongkeun ; Lee, Youngbin ; Xu, Xiangfan ; Park, Jae-Sung ;

Zheng, Yi ; Balakrishnan, Jayakumar ; Lei, Tian ; Ri Kim, Hye ; Song, Young I. ; Kim,

78

http://dx.doi.org/10.1016/j.jconrel.2013.10.017
http://dx.doi.org/10.1109/ITHERM.2012.6231405
http://dx.doi.org/10.1109/ITHERM.2012.6231405
http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://dx.doi.org/10.1021/nl052145f
http://dx.doi.org/10.1088/0957-4484/20/40/405704
http://dx.doi.org/10.1088/0957-4484/20/40/405704
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1063/1.2907977
http://dx.doi.org/10.1126/science.1184014


Bibliography
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