FlexiForce Sensors User Manual

Tekscan, Inc. 307 West First Street, South Boston, MA 02127
Tel: 617.464.4500/800.248.3669 fax: 617.464.4266
Email: marketing@tekscan.com web: www.tekscan.com

Table of Contents

WELCOME 6
ISO 6
Introduction 7
Getting Assistance 7
OVERVIEW 8
FlexiForce Sensors 8
Standard FlexiForce Sensors 8
High-Temperature FlexiForce Sensors 9
Application 9
SENSOR LOADING CONSIDERATIONS 10
SEnsor LoAding 10
SATURATION. 10
Conditioning Sensors 11
CALIBRATION 12
Calibration Guidelines 12
SENSOR PERFORMANCE CHARACTERISTICS 13
Repeatability 13
Linearity 13
Hysteresis 13
Drift 13
Temperature Sensitivity 13
Sensor Life / Durability 14
SENSOR PROPERTIES 15
Standard FlexiForce Sensor (Model A201) 15
High-Temperature FlexiForce Sensor (Model HT201) 15

WELCOME

ISO

Tekscan is registered to the following standard(s):

- ISO 9001: 2000
- ISO 13485: 2003

INTRODUCTION

This manual describes how to use Tekscan's FlexiForce Sensors. These sensors are ideal for designers, researchers, or anyone who needs to measure forces without disturbing the dynamics of their tests. The FlexiForce sensors can be used to measure both static and dynamic forces (up to 1000 lbf .), and are thin enough to enable non-intrusive measurement.

The FlexiForce sensors use a resistive-based technology. The application of a force to the active sensing area of the sensor results in a change in the resistance of the sensing element in inverse proportion to the force applied.

GETTING ASSISTANCE

Tekscan, Inc. will provide technical assistance for any difficulties you may experience using your FlexiForce system.

Write, call or fax us with any concerns or questions. Our knowledgeable support staff will be happy to help you. Comments and suggestions are always welcome.

FlexiForce
a division of Tekscan, Inc.
307 West First Street
South Boston, MA 02127-1309
Phone: (617) 464-4500
Fax: (617) 464-4266
E-mail: flexiforce@tekscan.com
Copyright © 2008 by Tekscan, Incorporated. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means without the prior written permission of Tekscan, Inc., 307 West First Street, South Boston, MA 02127-1309.

Tekscan, Inc. makes no representation or warranties with respect to this manual. Further, Tekscan, Inc. reserves the right to make changes in the specifications of the product described within this manual at any time without notice and without obligation to notify any person of such revision or changes.

FlexiForce is a registered trademarks of Tekscan, Inc.
Windows 95/98/ME/2000/XP/Vista, MS-DOS, Word, Notepad, and Excel are registered trademarks of Microsoft Corporation.

OVERVIEW

This section outlines Sensor Construction and Application.

FLEXIFORCE SENSORS

The FlexiForce sensor is an ultra-thin and flexible printed circuit, which can be easily integrated into most applications. With its paper-thin construction, flexibility and force measurement ability, the FlexiForce force sensor can measure force between almost any two surfaces and is durable enough to stand up to most environments. FlexiForce has better force sensing properties, linearity, hysteresis, drift, and temperature sensitivity than any other thin-film force sensors. The "active sensing area" is a 0.375 " diameter circle at the end of the sensor.

The sensors are constructed of two layers of substrate. This substrate is composed of polyester film (or Polyimide in the case of the High-Temperature Sensors). On each layer, a conductive material (silver) is applied, followed by a layer of pressure-sensitive ink. Adhesive is then used to laminate the two layers of substrate together to form the sensor. The silver circle on top of the pressure-sensitive ink defines the "active sensing area." Silver extends from the sensing area to the connectors at the other end of the sensor, forming the conductive leads.

FlexiForce sensors are terminated with a solderable male square piṇ connector, which allows them to be incorporated into a circuit. The two outer pins of the connector are active and the center pin is inactive. The length of the sensors can be trimmed by Tekscan to predefined lengths of 2 ", 4 " and 6 " or can be trimmed by the customer. If the customer trims the sensor, a new connector must be attached. This can be accomplished by purchasing staked pin connectors and a crimping tool. A conductive epoxy can also be used to adhere small wires to each conductor.

The sensor acts as a variable resistor in an electrical circuit. When the sensor is unloaded, its resistance is very high (greater than 5 Meg-ohm); when a force is applied to the sensor, the resistance decreases. Connecting an ohmmeter to the outer two pins of the sensor connector and applying a force to the sensing area can read the change in resistance.

Sensors should be stored at temperatures in the range of $15^{\circ} \mathrm{F}\left(-9^{\circ} \mathrm{C}\right)$ to $165^{\circ} \mathrm{F}\left(74^{\circ} \mathrm{C}\right)$

Standard FlexiForce Sensors

The Standard A201 sensor is available in the following force ranges:

- Sensor A201-1 (0-1 lb. force range)
- Sensor A201-25 (0-25 lb. force range)
- Sensor A201-100 (0-100 lb. force range)*
* In order to measure forces above 100 lbs . (up to 1000 lbs), apply a lower drive voltage and reduce the resistance of the feedback resistor ($1 \mathrm{k} \Omega \mathrm{min}$.). See the sample drive circuit below.

High-Temperature FlexiForce Sensors

The High-Temperature HT201 sensor is available in the following force ranges* (as tested with the sample drive circuit).

- Sensor HT201-L Low: 0-30lb (133N) force range
- Sensor HT201-H High: 0-100lb (445N) force range
* In order to measure forces outside specified ranges, use recommended circuit and adjust drive voltage and/or reference resistance

APPLICATION

There are many ways to integrate the FlexiForce sensor into an application. One way is to incorporate it into a force-to-voltage circuit. A means of calibration must then be established to convert the output into the appropriate engineering units. Depending on the setup, an adjustment could then be done to increase or decrease the sensitivity of the sensor.

An example circuit is shown below. In this case, it is driven by a -5 V DC excitation voltage. This circuit uses an inverting operational amplifier arrangement to produce an analog output based on the sensor resistance and a fixed reference resistance (R_{F}). An analog-to-digital converter can be used to change this voltage to a digital output. In this circuit, the sensitivity of the sensor could be adjusted by changing the reference resistance (R_{F}) and/or drive voltage (VT); a lower reference resistance and/or drive voltage will make the sensor less sensitive, and increase its active force range.

In the circuit shown, the dynamic force range of the sensor can be adjusted by changing the reference resistor (R_{F}) or by changing the Drive Voltage (V_{o}). Refer to the Saturation section for additional information.

SENSOR LOADING CONSIDERATIONS

The following general sensor loading guidelines can be applied to most applications, and will help you achieve the most accurate results from your tests. It is important that you read the Sensor Performance Characteristics section for further information on how to get the most accurate results from your sensor readings.

SENSOR LOADING

The entire sensing area of the FlexiForce sensor is treated as a single contact point. For this reason, the applied load should be distributed evenly across the sensing area to ensure accurate and repeatable force readings. Readings may vary slightly if the load distribution changes over the sensing area.

Note that the sensing area is the silver circle on the top of the sensor only.

It is also important that the sensor be loaded consistently, or in the same way each time.
If the footprint of the applied load is smaller than the sensing area, the load should not be placed near the edges of the sensing area, to ensure an even load distribution.

It is also important to ensure that the sensing area is the entire load path, and that the load is not supported by the area outside of the sensing area.

If the footprint of the applied load is larger than the sensing area, it may be necessary to use a "puck." A puck is a piece of rigid material (smaller than the sensing area) that is placed on the sensing area to ensure that the entire load path goes through this area. The puck must not touch any of the edges of the sensing area, or these edges may support some of the load and give an erroneous reading.

The FlexiForce sensor reads forces that are perpendicular to the sensor plane. Applications that impart "shear" forces could reduce the life of the sensor. If the application will place a "shear" force on the sensor, it should be protected by covering it with a more resilient material.

If it is necessary to mount the sensor to a surface, it is recommended that you use tape, when possible. Adhesives may also be used, but make sure that the adhesive will not degrade the substrate (polyester) material of the sensor before using it in an application. Adhesives should not be applied to the sensing area; however, if it is necessary, ensure that the adhesive is spread evenly. Otherwise, any high spots may appear as load on the sensor.

SATURATION

The Saturation force is the point at which the device output no longer varies with applied force. The saturation force of each sensor is based on the maximum recommended force specified by Tekscan, which is printed on the system packaging or the actual sensor, along with the "Sensitivity."

The saturation value is based on using the circuit and the values shown in the example circuit in the 'Application' section. In this example, the saturation force (maximum force) of each sensor is related to the RF (reference resistance), and can be altered by changing the sensitivity. The sensitivity of the sensor would be adjusted by changing the reference resistance (RF); a lower reference resistance will make the system less sensitive, and increase its active force range.

It is essential that the sensor(s) do not become saturated during testing.

CONDITIONING SENSORS

Exercising, or Conditioning a sensor before calibration and testing is essential in achieving accurate results. It helps to lessen the effects of drift and hysteresis. Conditioning is required for new sensors, and for sensors that have not been used for a length of time.

To condition a sensor, place 110% of the test weight on the sensor, allow the sensor to stabilize, and then remove the weight. Repeat this process four or five times. The interface between the sensor and the test subject material should be the same during conditioning as during calibration and actual testing.

IMPORTANT! Sensors must be properly conditioned prior to calibration and use.

CALIBRATION

Calibration is the method by which the sensor's electrical output is related to an actual engineering unit, such as pounds or Newtons. To calibrate, apply a known force to the sensor, and equate the sensor resistance output to this force. Repeat this step with a number of known forces that approximate the load range to be used in testing. Plot Force versus Conductance (1/R). A linear interpolation can then be done between zero load and the known calibration loads, to determine the actual force range that matches the sensor output range.

Resistance Curve:

Conductance Curve:

CALIBRATION GUIDELINES

The following guidelines should be considered when calibrating a sensor:

- Apply a calibration load that approximates the load to be applied during system use, using dead weights or a testing device (such as an MTS or Instron). If you intend to use a "puck" during testing, also use it when calibrating the sensor. See Sensor Loading Considerations for more information on using a puck.
- Avoid loading the sensor to near saturation when calibrating. If the sensor saturates at a lower load than desired, adjust the "Sensitivity."
- Distribute the applied load evenly across the sensing area to ensure accurate force readings. Readings may vary slightly if the load distribution changes over the sensing area.
- Sensors should be calibrated at the same temperature for which testing will occur. This is especially important for High-Temp Sensors, as these sensors have a wide operating temperature range. If multiple temperatures are used during testing, calibrate the sensors at those same multiple temperatures.

Note: Read the Sensor Performance Characteristics section before performing a Calibration.

SENSOR PERFORMANCE CHARACTERISTICS

There are a number of characteristics of sensors, which can affect your results. This section contains a description of each of these conditions, and recommendations on how to lessen their effects.

REPEATABILITY

Repeatability is the ability of the sensor to respond in the same way to a repeatedly applied force. As with most measurement devices, it is customary to exercise, or "condition" a sensor before calibrating it or using it for measurement. This is done to reduce the amount of change in the sensor response due to repeated loading and unloading. A sensor is conditioned by loading it to 110% of the test weight four or five times. Follow the full procedure in the Conditioning Sensors section.

LINEARITY

Linearity refers to the sensor's response (digital output) to the applied load, over the range of the sensor. This response should ideally be linear; and any non-linearity of the sensor is the amount that its output deviates from this line. A calibration is performed to "linearize" this output as much as possible. FlexiForce standard sensors are linear within $+/-3 \%$. FlexiForce High-Temperature sensors have a linearity that is 1.2% of full scale.

HYSTERESIS

Hysteresis is the difference in the sensor output response during loading and unloading, at the same force. For static forces, and applications in which force is only increased, and not decreased, the effects of hysteresis are minimal. If an application includes load decreases, as well as increases, there may be error introduced by hysteresis that is not accounted for by calibration.

DRIFT

Drift is the change in sensor output when a constant force is applied over a period of time. If the sensor is kept under a constant load, the resistance of the sensor will continually decrease, and the output will gradually increase. It is important to take drift into account when calibrating the sensor, so that its effects can be minimized. The simplest way to accomplish this is to perform the sensor calibration in a time frame similar to that which will be used in the application.

TEMPERATURE SENSITIVITY

In general, your results will vary if you combine high loads on the sensor with high temperatures.
To ensure accuracy, calibrate the sensor at the temperature at which it will be used in the application. If the sensor is being used at different temperatures, perform a calibration at each of these temperatures, save the calibration files, then load the appropriate calibration file when using the sensor at that temperature.

SENSOR LIFE / DURABILITY

Sensor life depends on the application in which it is used. Sensors are reusable, unless used in applications in which they are subjected to severe conditions, such as against sharp edges, or shear forces. FlexiForce sensors have been successfully tested at over one million load cycles using a 50 lb . force.

Rough handling of a sensor will also shorten its useful life. For example, a sensor that is repeatedly installed in a flanged joint will have a shorter life than a sensor installed in the same joint once and used to monitor loads over a prolonged period. After each installation, visually inspect your sensors for physical damage.

It is also important to keep the sensing area of the sensor clean. Any deposits on this area will create uneven loading, and will cause saturation to occur at lower applied forces.

SENSOR PROPERTIES

STANDARD FLEXIFORCE SENSOR (MODEL A201)

Sensor Properties	
Thickness	0.008 (0.208 mm)
Length	$\begin{aligned} & 8^{\prime \prime}(203 \mathrm{~mm}) \\ & 6^{\prime \prime}(152 \mathrm{~mm}) \\ & 4^{\prime \prime}(102 \mathrm{~mm}) \\ & 2^{\prime \prime}(51 \mathrm{~mm}) \\ & \hline \end{aligned}$
Width	0.55 " (14 mm)
Sensing Area	0.375 " (9.53 mm) diameter
Connector	3 -pin male square pin (center pin is inactive)
Typical Performance	
Force Ranges	$\begin{array}{\|l\|} \hline 0-1 \mathrm{lb}(4.4 \mathrm{~N}) \\ 0-25 \mathrm{lbs}(110 \mathrm{~N}) \\ 0-100 \mathrm{lbs}(440 \mathrm{~N})^{\star} \end{array}$
Operating Temperature Range	$15^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-9^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Linearity (Error)	+/-3\%
Repeatability	+/- 2.5\% of full scale (conditioned sensor, 80% force applied)
Hysteresis	<4.5\% of full scale (conditioned sensor, 80\% force applied)
Drift	$<5 \%$ per logarithmic time scale (constant load of 90\% sensor rating)
Response Time	<5 microseconds
Output Change/Degree F	Up to $0.2 \% ~\left(\sim 0.36 \% /{ }^{\circ} \mathrm{C}\right)$. Loads $<10 \mathrm{lbs}$, operating temperature can be increased to $165^{\circ} \mathrm{F}\left(74^{\circ} \mathrm{C}\right)$.

HIGH-TEMPERATURE FLEXIFORCE SENSOR (MODEL HT201)

Sensor Properties	
Thickness	$0.008^{\prime \prime}$ (0.203 mm)
Length	7.75" (197 mm) Optional: 6" (152 mm) Trimmed: 4" (102 mm) Lengths: 2" (51 mm)
Width	0.55 " (14 mm)
Sensing Area	0.375 " (9.53 mm) diameter
Connector	3 -pin Male Square Pin (center pin is inactive)
Substrate	Polyimide (ex: Kapton)
Typical Performance	
Force Ranges	0-30 lbs (133N) $0-100 \mathrm{lbs}(445 \mathrm{~N})$
Operating Temperature Range	$15^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}\left(-9^{\circ} \mathrm{C}\right.$ to $\left.204^{\circ} \mathrm{C}\right)$
Repeatability	+/-3.5\% of full scale
Linearity	+/-1.2\% of full scale
Hysteresis	3.6\% of full scale
Drift	3.3\% per log time
Output Change/Degree F	0.16\%

FET-Input, Low Power INSTRUMENTATION AMPLIFIER

FEATURES

- LOW BIAS CURRENT: ± 4 pA
- LOW QUIESCENT CURRENT: $\pm 450 \mu \mathrm{~A}$
- LOW INPUT OFFSET VOLTAGE: $\pm 200 \mu \mathrm{~V}$
- LOW INPUT OFFSET DRIFT: $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW INPUT NOISE:
$20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at $\mathrm{f}=1 \mathrm{kHz}(\mathrm{G}=100)$
- HIGH CMR: 106dB
- WIDE SUPPLY RANGE: $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- LOW NONLINEARITY ERROR: 0.001\% max
- INPUT PROTECTION TO $\pm 40 \mathrm{~V}$
- 8-PIN DIP AND SO-8 SURFACE MOUNT

APPLICATIONS

- LOW-LEVEL TRANSDUCER AMPLIFIERS Bridge, RTD, Thermocouple
- PHYSIOLOGICAL AMPLIFIERS ECG, EEG, EMG, Respiratory
- HIGH IMPEDANCE TRANSDUCERS
- CAPACITIVE SENSORS
- MULTI-CHANNEL DATA ACQUISITION
- PORTABLE, BATTERY OPERATED SYSTEMS
- GENERAL PURPOSE INSTRUMENTATION

DESCRIPTION

The INA121 is a FET-input, low power instrumentation amplifier offering excellent accuracy. Its versatile three-op amp design and very small size make it ideal for a variety of general purpose applications. Low bias current ($\pm 4 \mathrm{pA}$) allows use with high impedance sources.

Gain can be set from 1 V to $10,000 \mathrm{~V} / \mathrm{V}$ with a single external resistor. Internal input protection can withstand up to $\pm 40 \mathrm{~V}$ without damage.
The INA121 is laser-trimmed for very low offset voltage $(\pm 200 \mu \mathrm{~V})$, low offset drift $\left(\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$, and high common-mode rejection (106 dB at $\mathrm{G}=100$). It operates on power supplies as low as $\pm 2.25 \mathrm{~V}(+4.5 \mathrm{~V})$, allowing use in battery operated and single 5 V systems. Quiescent current is only $450 \mu \mathrm{~A}$.

Package options include 8-pin plastic DIP and SO-8 surface mount. All are specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491• FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and IA reference $=0 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	INA121P, U			INA121PA, UA			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX					
INPUT Offset Voltage, RTI vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode Input Voltage Range Safe Input Voltage Common-Mode Rejection	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ \\ \mathrm{~V}_{\mathrm{CM}}=-12.5 \mathrm{~V} \text { to } 13.5 \mathrm{~V} \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$	$\begin{aligned} & \text { See } \\ & \\ & 78 \\ & 91 \\ & 96 \end{aligned}$	$\begin{array}{\|c} \pm 200 \pm 200 / \mathrm{G} \\ \pm 2 \pm 2 / \mathrm{G} \\ \pm 5 \pm 20 / \mathrm{G} \\ \pm 0.5 \\ 10^{12} \\| 1 \\ 10^{12} \\| 12 \end{array}$ $\begin{array}{\|c\|} \hline 86 \\ 100 \\ 106 \\ 106 \\ \hline \end{array}$	$\begin{gathered} \pm 500 \pm 500 / \mathrm{G} \\ \pm 5 \pm 20 / \mathrm{G} \\ \pm 50 \pm 150 / \mathrm{G} \end{gathered}$ Curves ± 40	$\begin{aligned} & 72 \\ & 85 \\ & 90 \end{aligned}$	$\begin{gathered} \pm 300 \pm 200 / \mathrm{G} \\ * \\ * \\ * \\ * \\ * \\ * \\ \\ * \\ * \\ * \\ * \\ \hline \end{gathered}$	$\begin{gathered} \pm 1000 \pm 1000 / \mathrm{G} \\ \pm 15 \pm 20 / \mathrm{G} \\ * \end{gathered}$ *	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ $\Omega \\| \mathrm{pF}$ $\Omega \\| \mathrm{pF}$ V dB dB dB dB				
BIAS CURRENT vs Temperature Offset Current vs Temperature	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$\begin{array}{c\|c\|c} \hline \mid & \pm 4 & \pm 50 \\ \text { See Typical Curve } & \\ \mid \quad \pm 0.5 \text { \| } \\ \text { See Typical Curve } \end{array}$				$\begin{aligned} & \text { * } \\ & \text { * } \\ & \text { * } \\ & \text { * } \end{aligned}$	*	pA pA				
$\begin{aligned} & \text { NOISE, RTI } \\ & \begin{aligned} & \text { Voltage Noise: } f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \text { Current Noise: } \mathrm{f}=1 \mathrm{kHz} \\ & \hline \end{aligned} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=0 \Omega \\ & \mathrm{G}=100 \\ & \mathrm{G}=100 \\ & \mathrm{G}=100 \\ & \mathrm{G}=100 \end{aligned}$		$\begin{gathered} 30 \\ 21 \\ 20 \\ 1 \\ 1 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\begin{aligned} & n V / \sqrt{\mathrm{Hz}} \\ & n \mathrm{n} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mu \mathrm{Vp}-\mathrm{p} \\ & \mathrm{f} A / \sqrt{\mathrm{Hz}} \end{aligned}$				
GAIN Gain Equation Range of Gain Gain Error Gain vs Temperature ${ }^{(1)}$ Nonlinearity	$\begin{gathered} V_{O}=-14 V \text { to } 13.5 V \\ G=1 \\ G=10 \\ G=100 \\ G=1000 \\ G=1 \\ G>1 \end{gathered}$ $\begin{gathered} V_{O}=-14 V \text { to } 13.5 \mathrm{~V} \\ G=1 \\ G=10 \\ G=100 \\ G=1000 \end{gathered}$	1	$\begin{gathered} 1+\left(50 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ \\ \pm 0.01 \\ \pm 0.03 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 1 \\ \pm 25 \\ \\ \pm 0.0002 \\ \pm 0.0015 \\ \pm 0.0015 \\ \pm 0.002 \\ \hline \end{gathered}$	$\begin{gathered} 10,000 \\ \pm 0.05 \\ \pm 0.4 \\ \pm 0.5 \\ \\ \pm 10 \\ \pm 100 \\ \\ \pm 0.001 \\ \pm 0.005 \\ \pm 0.005 \end{gathered}$	*	* * * *	$\begin{gathered} * \\ \pm 0.1 \\ \pm 0.5 \\ \pm 0.7 \\ \\ * \\ * \\ \\ \pm 0.002 \\ \pm 0.008 \\ \pm 0.008 \end{gathered}$	V/V V/V \% \% \% \% ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ \% of FSR \% of FSR \% of FSR \% of FSR				
OUTPUT Voltage: Positive Negative Positive Negative Capacitance Load Drive Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-1.5 \\ (\mathrm{~V}-)+1 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}-)+0.15 \\ (\mathrm{~V}+)-0.9 \\ (\mathrm{~V}-)+0.25 \\ 1000 \\ \pm 14 \end{gathered}$		$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		V V V V pF mA				
FREQUENCY RESPONSE Bandwidth, -3 dB Slew Rate Settling Time, 0.01\% Overload Recovery	$\begin{gathered} G=1 \\ G=10 \\ G=100 \\ G=1000 \\ V_{O}= \pm 10 \mathrm{~V}, \mathrm{G} \leq 10 \\ G=1 \text { to } 10 \\ G=100 \\ G=1000 \end{gathered}$ 50\% Input Overload		600 300 50 5 0.7 20 35 260 5			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		kHz kHz kHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$				
POWER SUPPLY Voltage Range Quiescent Current	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~V}$	± 2.25	$\begin{gathered} \pm 15 \\ \pm 450 \\ \hline \end{gathered}$	$\begin{gathered} \pm 18 \\ \pm 525 \\ \hline \end{gathered}$	*	$\begin{aligned} & * \\ & * \end{aligned}$	*	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$				
TEMPERATURE RANGE Specification Operating Storage Thermal Resistance, θ_{JA} 8-Lead DIP SO-8 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{gathered} 85 \\ 125 \\ 125 \end{gathered}$	*	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

* Specification same as INA121P, U.

NOTE: (1) Temperature coefficient of the "Internal Resistor" in the gain equation. Does not include TCR of gain-setting resistor, R_{G}.

PIN CONFIGURATION

Top View

8-Pin DIP and SO-8

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

(1) ELECTROSTATIC DISCHARGE SENSITIVITY

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Supply Voltage ... $\pm 18 \mathrm{~V}$	
Analog Input Voltage Range	40V
Output Short-Circuit (to ground) .	Continuous
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10	$+300^{\circ} \mathrm{C}$

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER(1)	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER(2)	TRANSPORT MEDIA
Single						
INA121P	8-Pin DIP	006	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	INA121P	INA121P	Rails
INA121PA	8-Pin DIP	006	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	INA121PA	INA121PA	Rails
INA121U	SO-8 Surface-Mount	182	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	INA121U	$\begin{gathered} \text { INA121U } \\ \text { INA121U/2K5 } \end{gathered}$	Rails Tape and Reel
INA121UA	SO-8 Surface-Mount	182	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	INA121UA	INA121UA INA121UA/2K5	Rails Tape and Reel

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "INA121U/2K5" will get a single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

PUT COMMON-MODE RANGE

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

QUIESCENT CURRENT AND SLEW RATE vs TEMPERATURE

INPUT BIAS CURRENT

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

INPUT OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA121. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80 dB CMR ($\mathrm{G}=1$).

SETTING THE GAIN

Gain of the INA121 is set by connecting a single external resistor, R_{G}, connected between pins 1 and 8 :

$$
\begin{equation*}
\mathrm{G}=1+\frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

Commonly used gains and resistor values are shown in Figure 1.

The $50 \mathrm{k} \Omega$ term in Equation 1 comes from the sum of the two internal feedback resistors of A_{1} and A_{2}. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA121.

The stability and temperature drift of the external gain setting resistor, R_{G}, also affects gain. R_{G} 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA121 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the INA121. Settling time also remains excellent at high gain.

FIGURE 1. Basic Connections.

The INA121 provides excellent rejection of high frequency common-mode signals. The typical performance curve, "Common-Mode Rejection vs Frequency" shows this behavior. If the inputs are not properly balanced, however, common-mode signals can be converted to differential signals. Run the $\mathrm{V}_{\text {IN }}^{+}$and $\mathrm{V}_{\text {IN }}^{-}$connections directly adjacent each other, from the source signal all the way to the input pins. If possible use a ground plane under both input traces. Avoid running other potentially noisy lines near the inputs.

NOISE AND ACCURACY PERFORMANCE

The INA121's FET input circuitry provides low input bias current and high speed. It achieves lower noise and higher accuracy with high impedance sources. With source impedances of $2 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ the INA114, INA128, or INA129 may provide lower offset voltage and drift. For very low source impedance $(\leq 1 \mathrm{k} \Omega)$, the INA103 may provide improved accuracy and lower noise. At very high source impedances (> $1 \mathrm{M} \Omega$) the INA116 is recommended.

OFFSET TRIMMING

The INA121 is laser trimmed for low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. The op amp buffer provides low impedance at the Ref terminal to preserve good commonmode rejection. Trim circuits with higher source impedance should be buffered with an op amp follower circuit to assure low impedance on the Ref pin.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA121 is extremely highapproximately $10^{12} \Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically 4 pA . High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA121 is to operate properly. Figure 3 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA121 and the input amplifiers will saturate.
If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

FIGURE 3. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA121 is from approximately 1.2 V below the positive supply voltage to 2.1 V above the negative supply. A differential input voltage causes the output voltage to increase. The linear input range, however, will be limited by the output voltage swing of amplifiers A_{1} and A_{2}. So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage-see typical performance curve "Input Com-mon-Mode Range vs Output Voltage".

A combination of common-mode and differential input voltage can cause the output of A_{1} or A_{2} to saturate. Figure 4 shows the output voltage swing of A_{1} and A_{2} expressed in terms of a common-mode and differential input voltages. For applications where input common-mode range must be maximized, limit the output voltage swing by connecting the INA121 in a lower gain (see performance curve "Input Common-Mode Voltage Range vs Output Voltage"). If necessary, add gain after the INA121 to increase the voltage swing.
Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of A_{3} will be near 0 V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA121 can be operated on power supplies as low as $\pm 2.25 \mathrm{~V}$. Performance remains excellent with power supplies ranging from $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Most parameters vary only slightly throughout this supply voltage range-see typical
performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$ supplies.

INPUT FILTERING

The INA121's FET input allows use of an R/C input filter without creating large offsets due to input bias current. Figure 5 shows proper implementation of this input filter to preserve the INA121's excellent high frequency commonmode rejection. Mismatch of the common-mode input time constant $\left(\mathrm{R}_{1} \mathrm{C}_{1}\right.$ and $\left.\mathrm{R}_{2} \mathrm{C}_{2}\right)$, either from stray capacitance or mismatched values, causes a high frequency common-mode signal to be converted to a differential signal. This degrades common-mode rejection. The differential input capacitor, C_{3}, reduces the bandwidth and mitigates the effects of mismatch in C_{1} and C_{2}. Make C_{3} much larger than C_{1} and C_{2}. If properly matched, C_{1} and C_{2} also improve ac CMR.

FIGURE 4. Voltage Swing of A_{1} and A_{2}.

FIGURE 5. Input Low-Pass Filter.

FIGURE 6. Bridge Transducer Amplifier.

FIGURE 7. High-Pass Input Filter.

FIGURE 9. AC-Coupled Instrumentation Amplifier.

FIGURE 8. Galvanically Isolated Instrumentation Amplifier.

FIGURE 10. Voltage Controlled Current Source.

FIGURE 11. Capacitive Bridge Transducer Circuit.

FIGURE 12. Multiplexed-Input Data Acquisition System.

FIGURE 13. Shield Driver Circuit.

FIGURE 14. ECG Amplifier With Right-Leg Drive.

Single Supply, MicroPower INSTRUMENTATION AMPLIFIER

FEATURES

- LOW QUIESCENT CURRENT: 60 $\mu \mathrm{A}$
- WIDE POWER SUPPLY RANGE Single Supply: 2.2 V to 36 V Dual Supply: $-0.9 /+1.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- COMMON-MODE RANGE TO (V-)-0.1V
- RAIL-TO-RAIL OUTPUT SWING
- LOW OFFSET VOLTAGE: $250 \mu \mathrm{~V}$ max
- LOW OFFSET DRIFT: $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- LOW NOISE: 60nV/ $\sqrt{\mathrm{Hz}}$
- LOW INPUT BIAS CURRENT: 25nA max
- 8-PIN DIP AND SO-8 SURFACE-MOUNT

APPLICATIONS

- PORTABLE, BATTERY OPERATED SYSTEMS
- INDUSTRIAL SENSOR AMPLIFIER: Bridge, RTD, Thermocouple
- PHYSIOLOGICAL AMPLIFIER:

ECG, EEG, EMG

- MULTI-CHANNEL DATA ACQUISITION

DESCRIPTION

The INA122 is a precision instrumentation amplifier for accurate, low noise differential signal acquisition. Its two-op-amp design provides excellent performance with very low quiescent current, and is ideal for portable instrumentation and data acquisition systems. The INA122 can be operated with single power supplies from 2.2 V to 36 V and quiescent current is a mere $60 \mu \mathrm{~A}$. It can also be operated from dual supplies. By utilizing an input level-shift network, input commonmode range extends to 0.1 V below negative rail (single supply ground).
A single external resistor sets gain from $5 \mathrm{~V} / \mathrm{V}$ to $10000 \mathrm{~V} / \mathrm{V}$. Laser trimming provides very low offset voltage ($250 \mu \mathrm{~V}$ max), offset voltage drift $\left(3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ max) and excellent common-mode rejection.
Package options include 8-pin plastic DIP and SO-8 surface-mount packages. Both are specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended industrial temperature range.

[^0]
SPECIFICATIONS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITIONS	INA122P, U			INA122PA, UA			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
INPUT Offset Voltage, RTI vs Temperature vs Power Supply (PSRR) Input Impedance Safe Input Voltage Common-Mode Voltage Range Common-Mode Rejection	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=+2.2 \mathrm{~V} \text { to }+36 \mathrm{~V} \\ \mathrm{R}_{\mathrm{S}}=0 \\ \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \\ \\ \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.4 \mathrm{~V} \end{gathered}$	$\begin{gathered} (\mathrm{V}-)-0.3 \\ (\mathrm{~V}-)-40 \\ 0 \\ 83 \end{gathered}$	$\begin{gathered} \pm 100 \\ \pm 1 \\ 10 \\ 10^{10} \\| 3 \end{gathered}$ 96	$\begin{gathered} \pm 250 \\ \pm 3 \\ 30 \\ \\ (\mathrm{~V}+)+0.3 \\ (\mathrm{~V}+)+40 \\ 3.4 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \\ & 76 \end{aligned}$	$\begin{gathered} \pm 150 \\ * \\ * \\ * \\ \\ \\ 90 \end{gathered}$	$\begin{gathered} \pm 500 \\ \pm 5 \\ 100 \\ \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \Omega \\| \mathrm{pF} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT vs Temperature Offset Current vs Temperature			$\begin{gathered} -10 \\ \pm 40 \\ \pm 1 \\ \pm 40 \end{gathered}$	$\begin{aligned} & -25 \\ & \pm 2 \end{aligned}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & -50 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \\ \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \end{gathered}$		
GAIN Gain Equation Gain Error vs Temperature Gain Error vs Temperature Nonlinearity	$\begin{aligned} \mathrm{G} & =5 \\ \mathrm{G} & =5 \\ \mathrm{G} & =100 \\ \mathrm{G} & =100 \\ \mathrm{G}=100, \mathrm{~V}_{\mathrm{O}} & =-14.85 \mathrm{~V} \text { to }+14.9 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \begin{array}{l} \mathrm{G}=5 \text { to } 10 h \\ =5+200 \mathrm{k} \Omega \\ =5 \\ \pm 0.05 \\ 5 \\ \pm 0.3 \\ \pm 25 \\ \pm 0.005 \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{G}} \\ & \quad \pm 0.1 \\ & \quad 10 \\ & \pm 0.5 \\ & \pm 100 \\ & \pm 0.012 \end{aligned}$			$\begin{gathered} \pm 0.15 \\ * \\ \pm 1 \\ * \\ \pm 0.024 \end{gathered}$	V/V V/V \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ \% ppm $/{ }^{\circ} \mathrm{C}$ \%		
$\begin{aligned} & \text { NOISE (RTI) } \\ & \text { Voltage Noise, } f=1 \mathrm{kHz} \\ & \qquad f=100 \mathrm{~Hz} \\ & f=10 \mathrm{~Hz} \\ & f_{\mathrm{B}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \text { Current Noise, } \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{B}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$			$\begin{gathered} 60 \\ 100 \\ 110 \\ 2 \\ 80 \\ 2 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{Vp}$-p $\mathrm{f} \mathrm{A} / \sqrt{\mathrm{Hz}}$ pAp-p		
OUTPUT Voltage, Positive Negative Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$ Short-Circuit to Ground	$\begin{gathered} (\mathrm{V}+)-0.1 \\ (\mathrm{~V}-)+0.15 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.05 \\ (\mathrm{~V}-)+0.1 \\ +3 /-30 \\ 1 \end{gathered}$		$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{nF} \end{gathered}$		
FREQUENCY RESPONSE Bandwidth, -3 dB Slew Rate Settling Time, 0.01\% Overload Recovery	$\begin{aligned} G & =5 \\ G & =100 \\ G & =500 \end{aligned}$ $\begin{aligned} G & =5 \\ G & =100 \\ G & =500 \end{aligned}$ 50% Input Overload		$\begin{array}{\|c} 120 \\ 5 \\ 0.9 \\ +0.08 /-0.16 \\ 350 \\ 450 \\ 1.8 \\ 3 \end{array}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		kHz kHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ ms $\mu \mathrm{s}$		
POWER SUPPLY Voltage Range, Single Supply Dual Supplies Current	$\mathrm{I}_{\mathrm{O}}=0$	$\begin{gathered} +2.2 \\ -0.9 /+1.3 \end{gathered}$	$\begin{aligned} & +5 \\ & 60 \end{aligned}$	$\begin{gathered} +36 \\ \pm 18 \\ 85 \\ \hline \end{gathered}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$		
TEMPERATURE RANGE Specification Operation Storage Thermal Resistance, θ_{JA} 8-Pin DIP SO-8 Surface-Mount		$\begin{aligned} & -40 \\ & -55 \\ & -55 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{gathered} +85 \\ +85 \\ +125 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$		

* Specification same as INA122P, INA122U.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

Top View

8-Pin DIP, SO-8

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Signal Input Terminals, Voltage ${ }^{(2)}$ \qquad (V-)-0.3V to (V+)+0.3V Current ${ }^{(2)}$ \qquad .5 mA	
Output Short Circuit	.. Continuous
Operating Temperature	$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (solder	$+300^{\circ} \mathrm{C}$

NOTES: (1) Stresses above these ratings may cause permanent damage. (2) Input terminals are internally diode-clamped to the power supply rails. Input signals that can exceed the supply rails by more than 0.3 V should be current-limited to 5 mA or less

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER				
${ }^{\mathbf{1})}$			$	$	INA122PA	8-Pin DIP
:---	:---:					

NOTE: (1) For detailed drawing and dimension table, see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$, unless otherwise noted.

NEGATIVE POWER SUPPLY REJECTION

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, unless otherwise noted.

SETTLING TIME vs GAIN

QUIESCENT CURRENT vs TEMPERATURE

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, unless otherwise noted.

$50 \mu \mathrm{~s} / \mathrm{div}$

$50 \mu \mathrm{~s} / \mathrm{div}$

SMALL-SIGNAL STEP RESPONSE

$100 \mu \mathrm{~s} / \mathrm{div}$

$500 \mathrm{~ms} / \mathrm{div}$

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA122. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins.
The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to ensure good common-mode rejection. A resistance of 10Ω in series with the Ref pin will cause a typical device to degrade to approximately 80 dB CMR.

SETTING THE GAIN

Gain of the INA122 is set by connecting a single external resistor, R_{G}, as shown:

$$
\begin{equation*}
\mathrm{G}=5+\frac{200 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

Commonly used gains and R_{G} resistor values are shown in Figure 1.
The $200 \mathrm{k} \Omega$ term in equation 1 comes from the internal metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA122.

The stability and temperature drift of the external gain setting resistor, R_{G}, also affects gain. R_{G} 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1).

OFFSET TRIMMING

The INA122 is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external
offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to the Ref terminal is added to the output signal. An op amp buffer is used to provide low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA122 is extremely highapproximately $10^{10} \Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately -10 nA (current flows out of the input terminals). High input impedance means that this input bias current changes very little with varying input voltage.

DESIRED GAIN $(\mathbf{V} / \mathbf{V})$	$\mathbf{R}_{\mathbf{G}}$ (Ω)	NEAREST 1\% \mathbf{R}_{G} VALUE
5	NC	NC
10	40 k	40.2 k
20	13.33 k	13.3 k
50	4444	4420
100	2105	2100
200	1026	1020
500	404	402
1000	201	200
2000	100.3	100
5000	40	40.2
10000	20	20

NC: No Connection.

Also drawn in simplified form:

FIGURE 1. Basic Connections.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range of the INA122 and the input amplifiers will saturate.
If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

FIGURE 3. Providing an Input Common-Mode Current Path.

INPUT PROTECTION

The inputs of the INA122 are protected with internal diodes connected to the power supply rails (Figure 4). These diodes will clamp the applied signal to prevent it from damaging the input circuitry. If the input signal voltage can exceed the power supplies by more than 0.3 V , the input signal current should be limited to less than 5 mA to protect the internal clamp diodes. This can generally be done with a series input resistor. Some signal sources are inherently current-limited and do not require limiting resistors.

INPUT COMMON-MODE RANGE

The common-mode range for some common operating conditions is shown in the typical performance curves. The INA122 can operate over a wide range of power supply and $\mathrm{V}_{\text {REF }}$ configurations, making it impractical to provide a comprehensive guide to common-mode range limits for all possible conditions. The most commonly overlooked overload condition occurs by attempting to exceed the output swing of A_{2}, an internal circuit node that cannot be measured. Calculating the expected voltages at A_{2} 's output (see equation in Figure 4) provides a check for the most common overload conditions.
The design of A_{1} and A_{2} are identical and their outputs can swing to within approximately 100 mV of the power supply rails, depending on load conditions. When A_{2} 's output is saturated, A_{1} can still be in linear operation, responding to changes in the non-inverting input voltage. This may give the appearance of linear operation but the output voltage is invalid.
A single supply instrumentation amplifier has special design considerations. Using commonly available single-supply op amps to implement the two-op amp topology will not yield equivalent performance. For example, consider the condition where both inputs of common single-supply op amps are

FIGURE 4. INA122 Simplified Circuit Diagram.

Burr-brown

equal to 0 V . The outputs of both A_{1} and A_{2} must be 0 V . But any small positive voltage applied to $\mathrm{V}_{\mathrm{IN}}{ }^{+}$requires that A_{2} 's output must swing below 0 V , which is clearly impossible without a negative power supply.
To achieve common-mode range that extends to singlesupply ground, the INA122 uses precision level-shifting buffers on its inputs. This shifts both inputs by approximately +0.5 V , and through the feedback network, shifts A_{2} 's output by approximately +0.6 V . With both inputs and $\mathrm{V}_{\text {REF }}$ at single-supply, A_{2} 's output is well within its linear range. A positive $\mathrm{V}_{\mathrm{IN}}{ }^{+}$causes A_{2} 's output to swing below 0.6 V .
As a result of this input level-shifting, the voltages at pin 1 and pin 8 are not equal to their respective input terminal voltages (pins 2 and 3). For most applications, this is not important since only the gain-setting resistor connects to these pins.

LOW VOLTAGE OPERATION

The INA122 can be operated on a single power supply as low as +2.2 V (or a total of +2.2 V on dual supplies). Performance remains excellent throughout the power supply range up to +36 V (or $\pm 18 \mathrm{~V}$). Most parameters vary only slightly throughout this supply voltage range-see typical performance curves.

Operation at very low supply voltage requires careful attention to ensure that the common-mode voltage remains within its linear range.

LOW QUIESCENT CURRENT OPERATION

The INA122 maintains its low quiescent current $(60 \mu \mathrm{~A})$ while the output is within linear operation (up to 200 mV from the supply rails). When the input creates a condition that overdrives the output into saturation, quiescent current increases. With V_{O} overdriven into the positive rail, the quiescent current increases to approximately $400 \mu \mathrm{~A}$. Likewise, with V_{O} overdriven into the negative rail (single supply ground) the quiescent current increases to approximately $200 \mu \mathrm{~A}$.

OUTPUT CURRENT RANGE

Output sourcing and sinking current values versus the output voltage ranges are shown in the typical performance curves. The positive and negative current limits are not equal. Positive output current sourcing will drive moderate to high load impedances. Battery operation normally requires the careful management of power consumption to keep load impedances very high throughout the design.

FIGURE 5. Micropower Single Supply Bridge Amplifier.

FIGURE 6. Single-Supply Current Shunt Measurement.

GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION REQUIRED
- SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6dB/octave) insures stability in closed loop circuits.

DIP8
(Plastic Package)

D

SO8
(Plastic Micropackage)

ORDER CODES

Part Number	Temperature Range	Package	
		$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet
UA741I	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet
UA741M	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet
Example : UA741CN			

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA741M	UA741I	UA741C	Unit
V_{cc}	Supply Voltage	± 22			V
$V_{\text {id }}$	Differential Input Voltage	± 30			V
V_{i}	Input Voltage	± 15			V
$\mathrm{P}_{\text {tot }}$	Power Dissipation	500			mW
	Output Short-circuit Duration	Infinite			
Toper	Operating Free Air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(\mathrm{Rs}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega\right) \\ \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \\ \hline \end{gathered}$		1	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	mV
I_{1}	$\begin{gathered} \text { Input Offset Current } \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$		2	$\begin{aligned} & 30 \\ & 70 \end{aligned}$	nA
$\mathrm{l}_{\text {b }}$	$\begin{gathered} \text { Input Bias Current } \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ T_{\text {min. }} \leq T_{\text {amb }} \leq T_{\text {max }} . \end{gathered}$		10	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA
Avd	Large Signal Voltage Gain * $\begin{gathered} \left(\mathrm{Vo}+10 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} . \end{gathered}$	$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$	200		V/mV
SVR	Supply Voltage Rejection Ratio $\begin{gathered} (\mathrm{Rs} \leq 10 \mathrm{k} \Omega) \\ \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{gathered}$	$\begin{aligned} & 77 \\ & 77 \end{aligned}$	90		dB
Icc	$\begin{gathered} \hline \text { Supply Current, no load } \\ T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{gathered}$		1.7	$\begin{aligned} & 2.8 \\ & 3.3 \end{aligned}$	mA
Vicm	$\begin{aligned} & \text { Input Common Mode Voltage Range } \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }} . \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$			V
CMR	$\begin{aligned} & \text { Common-mode Rejection Ratio }\left(R_{S} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} . \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	90		dB
los	Output Short-circuit Current	10	25	40	mA
$\pm \mathrm{V}_{\text {OPP }}$	Output Voltage Swing $\begin{array}{ll} \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max. }} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$		V
SR	Slew Rate $\left(\mathrm{V}_{\mathrm{i}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unity gain)	0.25	0.5		V/us
tr	Rise Time ($\mathrm{V}_{\mathrm{i}}= \pm 20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unity gain)		0.3		$\mu \mathrm{s}$
Kov	Overshoot $\left(\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unity gain)		5		\%
R_{1}	Input Resistance	0.3	2		$\mathrm{M} \Omega$
GBP	Gain Bandwidth Product $\left(\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}, R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}\right)$	0.7	1		MHz
THD	Total Harmonic Distortion $\left(\mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$		0.06		\%
e_{n}	Equivalent Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{s}}=100 \Omega$)		23		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
$\varnothing \mathrm{m}$	Phase Margin		50		Degrees

- EQUIVALENT INPUT NOISE vS FREQUENCY

OUTPUT CURRENT vS AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING

741-13.EPS

INPUT NOISE CURRENT

741-15.EPS

MEASUREMENT DIAGRAMS

OFFSET VOLTAGE NULL CIRCUIT

CURRENT TO VOLTAGE CONVERTER

POSITIVE VOLTAGE REFERENCE

TRANSIENT RESPONSE TEST CIRCUIT

NEUTRALIZING INPUT CAPACITANCE TO OPTIMIZE RESPONSE TIME

NEGATIVE VOLTAGE REFERENCE

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ.)					
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Features

- High-performance, Low-power Atmel ${ }^{\circledR}$ AVR ${ }^{\oplus}$ 8-bit Microcontroller
- Advanced RISC Architecture
- 130 Powerful Instructions - Most Single-clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 16MIPS Throughput at 16MHz
- On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
- 8Kbytes of In-System Self-programmable Flash program memory
- 512Bytes EEPROM
- 1Kbyte Internal SRAM
- Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
- Data retention: 20 years at $85^{\circ} \mathrm{C} / 100$ years at $25^{\circ} \mathrm{C}^{(1)}$
- Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
- Programming Lock for Software Security
- Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Three PWM Channels
- 8-channel ADC in TQFP and QFN/MLF package Eight Channels 10-bit Accuracy
- 6-channel ADC in PDIP package

Six Channels 10-bit Accuracy

- Byte-oriented Two-wire Serial Interface
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
- 23 Programmable I/O Lines
- 28-lead PDIP, 32-lead TQFP, and 32-pad QFN/MLF
- Operating Voltages
- 2.7V-5.5V (ATmega8L)
- 4.5V-5.5V (ATmega8)
- Speed Grades
- 0 - 8MHz (ATmega8L)
- 0-16MHz (ATmega8)
- Power Consumption at $4 \mathrm{Mhz}, \mathbf{3 V}, 25^{\circ} \mathrm{C}$
- Active: 3.6mA
- Idle Mode: 1.0mA
- Power-down Mode: $0.5 \mu \mathrm{~A}$

Atmel

Summary

Pin

Configurations

PDIP

(RESET) PC6	\checkmark		
	1	28	$\square \mathrm{PC5}(\mathrm{ADC5} / \mathrm{SCL})$
(RXD) PDO	2	27	$\square \mathrm{PC4}$ (ADC4/SDA)
(TXD) PD1	3	26	$\square \mathrm{PC} 3$ (ADC3)
(INT0) PD2 \square	4	25	$\square \mathrm{PC} 2$ (ADC2)
(INT1) PD3	5	24	$\square \mathrm{PC} 1$ (ADC1)
(XCK/T0) PD4	6	23	$\square \mathrm{PCO}$ (ADC0)
VCC	7	22	$\square \mathrm{GND}$
GND	8	21	\square AREF
(XTAL1/TOSC1) PB6	9	20	$\square \mathrm{AVCC}$
(XTAL2/TOSC2) PB7 \square	10	19	\square PB5 (SCK)
(T1) PD5	11	18	$\square \mathrm{PB4}$ (MISO)
(AINO) PD6	12	17	$\square \mathrm{PB} 3$ (MOSI/OC2)
(AIN1) PD7	13	16	$\square \mathrm{PB2}$ (SS/OC1B)
(ICP1) PB0	14	15	$\square \mathrm{PB1}$ (OC1A)

TQFP Top View

ATmega8(L)

Overview

Block Diagram

The Atmel ${ }^{\circledR} A V R^{\circledR}$ ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8 achieves throughputs approaching 1MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Figure 1. Block Diagram

The Atme ${ }^{\circledR} A V R^{\circledR}$ core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8 Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1 Kbyte of SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Twowire Serial Interface, a 6 -channel ADC (eight channels in TQFP and QFN/MLF packages) with 10-bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Powerdown mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel's high density non-volatile memory technology. The Flash Program memory can be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash Section will continue to run while the Application Flash Section is updated, providing true Read-While-Write operation. By combining an 8 -bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATmega8 is supported with a full suite of program and system development tools, including C compilers, macro assemblers, program simulators, and evaluation kits.

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Minimum and Maximum values will be available after the device is characterized.

Pin Descriptions

vcc

GND

Port B (PB7..PB0)
XTAL1/XTAL2/TOSC1/ TOSC2

Port C (PC5..PC0)

PC6/RESET

Port D (PD7..PDO) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega8 as listed on page 63.

RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 38. Shorter pulses are not guaranteed to generate a reset.

Ordering Information

Speed (MHz)	Power Supply (V)	Ordering Code ${ }^{(2)}$	Package ${ }^{(1)}$	Operation Range
8	2.7-5.5	ATmega8L-8AU ATmega8L-8AUR ${ }^{(3)}$ ATmega8L-8PU ATmega8L-8MU ATmega8L-8MUR ${ }^{(3)}$	$\begin{aligned} & \hline 32 \mathrm{~A} \\ & 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \\ & 32 \mathrm{M} 1-\mathrm{A} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
16	4.5-5.5	ATmega8-16AU ATmega8-16AUR ${ }^{(3)}$ ATmega8-16PU ATmega8-16MU ATmega8-16MUR ${ }^{(3)}$	$\begin{aligned} & \text { 32A } \\ & \text { 32A } \\ & \text { 28P3 } \\ & \text { 32M1-A } \\ & 32 M 1-A \end{aligned}$	
8	2.7-5.5	ATmega8L-8AN ATmega8L-8ANR ${ }^{(3)}$ ATmega8L-8PN ATmega8L-8MN ATmega8L-8MUR ${ }^{(3)}$	$\begin{aligned} & \hline 32 \mathrm{~A} \\ & 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & \text { 32M1-A } \\ & \text { 32M1-A } \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C}\right) \end{gathered}$
16	4.5-5.5	ATmega8-16AN ATmega8-16ANR ${ }^{(3)}$ ATmega8-16PN ATmega8-16MN ATmega8-16MUR ${ }^{(3)}$	$\begin{aligned} & \text { 32A } \\ & 32 \mathrm{~A} \\ & 28 \mathrm{P} 3 \\ & 32 \mathrm{M} 1-\mathrm{A} \\ & \text { 32M1-A } \end{aligned}$	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green
3. Tape \& Reel
4. See characterization specification at $105^{\circ} \mathrm{C}$

Package Type	
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
32M1-A	$32-$-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

Packaging Information

32A

COMMON DIMENSIONS
(Unit of measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
B	0.30	-	0.45	
C	0.09	-	0.20	
L	0.45	-	0.75	
e	0.80 TYP			

2010-10-20

1. This package conforms to JEDEC reference MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

(Unit of Measure $=$ mm)				
SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	4.5724	
A1	0.508	-	-	
D	34.544	-	34.798	Note 1
E	7.620	-	8.255	
E1	7.112	-	7.493	Note 1
B	0.381	-	0.533	
B1	1.143	-	1.397	
B2	0.762	-	1.143	
L	3.175	-	3.429	
C	0.203	-	0.356	
eB	-	-	10.160	
e		2.540 TYP		

09/28/01

2325 Orchard Parkway San Jose, CA 95131	TITLE 28P3, 28-lead (0.300"/7.62mm Wide) Plastic Dual Inline Package (PDIP)	DRAWING NO. 28P3	$\begin{gathered} \text { REV. } \\ B \end{gathered}$

32M1-A

Errata

ATmega8

Rev. D to I, M

The revision letter in this section refers to the revision of the ATmega8 device.

- First Analog Comparator conversion may be delayed
- Interrupts may be lost when writing the timer registers in the asynchronous timer
- Signature may be Erased in Serial Programming Mode
- CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2
- Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising V_{CC}, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix / Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronized to the asynchronous timer clock is written when the asynchronous Timer/Counter register(TCNTx) is 0×00.

Problem Fix / Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0×00 before writing to the asynchronous Timer Control Register(TCCRx), asynchronous Timer Counter Register(TCNTx), or asynchronous Output Compare Register(OCRx).
3. Signature may be Erased in Serial Programming Mode

If the signature bytes are read before a chiperase command is completed, the signature may be erased causing the device ID and calibration bytes to disappear. This is critical, especially, if the part is running on internal RC oscillator.
Problem Fix / Workaround:
Ensure that the chiperase command has exceeded before applying the next command.
4. CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2
When the internal RC Oscillator is used as the main clock source, it is possible to run the Timer/Counter2 asynchronously by connecting a 32 KHz Oscillator between XTAL1/TOSC1 and XTAL2/TOSC2. But when the internal RC Oscillator is selected as the main clock source, the CKOPT Fuse does not control the internal capacitors on XTAL1/TOSC1 and XTAL2/TOSC2. As long as there are no capacitors connected to XTAL1/TOSC1 and XTAL2/TOSC2, safe operation of the Oscillator is not guaranteed.

Problem Fix / Workaround

Use external capacitors in the range of 20pF - 36pF on XTAL1/TOSC1 and XTAL2/TOSC2. This will be fixed in ATmega8 Rev. G where the CKOPT Fuse will control internal capacitors also when internal RC Oscillator is selected as main clock source. For ATmega8 Rev. G, CKOPT = 0 (programmed) will enable the internal capacitors on XTAL1 and XTAL2. Customers who want compatibility between Rev. G and older revisions, must ensure that CKOPT is unprogrammed (CKOPT = 1).
5. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.
Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an unexpected EEPROM interrupt request.
Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.

Enabling Unlimited Possibilities ${ }^{\circ}$

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 01-5 \& 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Roa
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81) (3) 6417-0300
Fax: (+81) (3) 6417-0370

Atmel ${ }^{\circledR}$, Atmel logo and combinations thereof, Enabling Unlimited Possibilities ${ }^{\circledR}$, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

 NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no

 automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Sistema de medición de fuerza para Módulo de Transmisibilidad Programa Principal de uC

```
;*
; Sistema envia paquetes de 12 en 12 (Lee, almacena, tx 12)
; aceleracion con rango de 1.5g
; ******************************************************
.include "C:\VMLAB\include\m8def.inc"
; Define here the variables
;
.def temp =r16
; Define here Reset and interrupt vectors, if any
;
reset:
    rjmp start
    reti ; Addr $01
    reti ; Addr $02
    reti ; Addr $03
    reti ; Addr $04
    rjmp MidePeriodo; Addr $05 Interrupción por captura de entrada ;;;;;
    reti ; Addr $06 Use 'rjmp myVector'
    reti ; Addr $07 to define a interrupt vector
    reti ; Addr $08
    reti ; Addr $09
    reti ; Addr $0A
```

```
reti ; Addr $0B This is just an example
reti ; Addr $0C Not all MCUs have the same
reti ; Addr $0D number of interrupt vectors
reti ; Addr $0E
reti ; Addr $0F
reti ; Addr $10
.dseg
fuerza1: .byte 2
fuerza2: .byte 2
fuerza3: .byte 2
fuerza4: .byte 2
aceleracion: .byte 2
RPS:
.byte 2
flanco_ant: .byte 2
.cseg
; Datos para configurar Acelerómetro
CONFIG_ACEL:
;POWER_CTL -00-link=0autosleep=1measurement=0(standby)sleep=0wakeup=00
.db 0b00101101,0b00000000 ; db 0x2D,0x00
;DATA_FORMAT selftest=0 SPI=0(4-wire)-00-Fullres=1 justify=0 range=01(3g)
.db 0b00110001,0b00001000 ; db 0x31,0x09
;FIFO_CTL fifomode=00trigger=0samples=00000
.db 0b00111000,0b00000000 ; db 0x38,0x00
;BW_RATE -000-lowpower=Orate=1111(3200Hz)
.db 0b00101100,0b00001111 ; db 0x2C,0x0D
;THRESH ACT
.db 0b00100100,0b00000000 ; db 0x24,0x00
```

```
;THRESH_INACT
.db 0b00100101,0b00000000 ; db 0x25,0x00
;TIME_INACT
.db 0b00100110,0b00000000 ; db 0x26,0x00
;ACT_INACT_CTL
.db 0b00100111,0b00000000 ; db 0x27,0x00
;INT_ENABLE
.db 0b00101110,0b00000000 ; db 0x2E,0x00
;INT_MAP
.db 0b00101111,0b00000000 ; db 0x2F,0x00
;Offset X = 0
.db 0b00011110,0b00000000 ; db 0x1E,0x00
;Offset Y = 0
.db 0b00011111,0b00000000 ; db 0x1F,0x00
;Offset Z = 0
.db 0b00100000,0b00000000 ; db 0x20,0x00
;POWER_CTL -00-link=Oautosleep=Omeasuremnt=1sleep=0wakeup=00
.db 0b00101101,0b00001000 ; db 0x2D,0x04
```

; Program starts here after Reset
start:

Idi	R16,high(RAMEND)
out	SPH,R16
Idi	R16,low(RAMEND)
out	SPL,R16
rcall	IniPorts

```
        rcall IniSerial
        rcall IniTimer1
        rcall IniSPI
        rcall ConfigAcelerometro
        rcall IniADC
        rcall IniVariables
    cli
lazo:
    clr R17
    clr R18
        rcall RxDato
        cpi R16,'W' ; recibe caracter de inicio
        brne lazo
sensa:
    rcall MideFuerza1
    rcall MideFuerza2
    rcall MideFuerza3
    rcall MideFuerza4
    rcall MideAcel
    cli
    rcall
        TxVariables
    sei
```

loop:
inc R17
cpi R17,200 ; muestras
brne sensa
inc R18
cpi R18,4
breq lazo
clr R17
rjmp sensa

```
;*************************************************************************************
;*******************************************************************************
;*****Subrutinas*****
;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
IniPorts:
push R16
Idi R16,0b00101100 ; salidas: SCK,MOSI,SS entradas: MISO,ICP1
out DDRB,R16
pop
R16
ret
\(;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) \(;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
IniSerial: ;38400,8,n,1
```

push R16
Idi R16,\$00
out UBRRH,R16
Idi R16,\$0C
out UBRRL,R16
Idi R16,\$02
out UCSRA,R16
Idi R16,\$86
out UCSRC,R16
Idi R16,\$18
out UCSRB,R16
pop R16

```ret
```


;++
IniTimer1: ; Timer 1 en modo normal, PRE=256, Capturador: flanco de bajada
push R16
Idi R16,\$00
out TCCR1A,R16
Idi R16,\$84 ;
out TCCR1B,R16
mine

```
Idi R16,0B00100000
```

out TIMSK,R16
; ינענMm,
ret

$;++$

IniSPI: ; Configurado a 2 MHz

$$
\begin{array}{ll}
\text { push } & \text { R16 }
\end{array}
$$

Idi R16,0b01011100 ; SPI master, CPOL=1 CPHA=1 Fosc/8
out SPCR, R16 ; MSB of the data word is transmitted first
Idi R16,0b00000001 ; SPI2X=1
out SPSR, R16
pop
R16
ret

```
; ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```

ConfigAcelerometro:

```
    push R16
```

 push R17
 push R18
 push ZL
 push ZH
 Idi R18,0 ; contador
 Idi ZH,high(CONFIG_ACEL*2)
 Idi ZL,Iow(CONFIG_ACEL*2)
 configacel:

Ipm	R16,Z+	
Ipm	R17, Z+	
rcall	Tx_SPI	
inc	R18	
cpi	R18,14	; fin de transmision
brne	configacel	
pop	ZH	
pop	ZL	
pop	R18	
pop	R17	
pop	R16	
ret		
;++		
;+++		
Tx_SPI:	; envia por SPI	os valores almacenados en r16 y r17
cbi	PORTB, 2	; SS $=0$
out	SPDR, R16	; se envia por el SPI
Tx_SPI_espera1:		
sbis	SPSR, SPIF	; Se espera a que se termine la transmision
rjmp	Tx_SPI_esp	era1
out	SPDR, R17	; se envia por el SPI
Tx_SPI_espera2:		
sbis	SPSR, SPIF	; Se espera a que se termine la transmision
rjmp	Tx_SPI_esp	era2
sbi	PORTB, 2	; SS = 1
ret		
;++		
;+++++++++++	+++++++++++++++++	+++

IniADC:
push R16

Idi R16,0b10000101 ; ADC habilitado, fosc/32 125kHz 101 ... 011 500Khz
out ADCSR,R16
Idi R16,0b01000000 ; AVCC, ADLAR=0, canal 0
out ADMUX,R16
pop R16
ret
;++
$;++$
IniVariables: ; borra todas las variables
push R16
push R17
push XL
push XH
clr \quad R16
clr R17
Idi $\quad X H$, high(fuerza1)
Idi XL,low(fuerza1)

IniVariables_lazo:

st	$\mathrm{X}+, \mathrm{R} 16$
inc	R17
cpi	R17,14
brne	IniVariables_lazo

pop	XH	
pop	XL	
pop	R17	
pop	R16	
ret		

$;++$

$;++$

; ++
$;++$

RxDato:
sbis UCSRA,RXC
rjmp RxDato
in
R16,UDR
ret

TxDato:
sbis UCSRA,UDRE
rjmp TxDato
out UDR,R16
ret
$;++$ $;+++$ $;++$

```
MideFuerza1:
    push R16
    push R17
    Idi R16,0b01000000 ; canal 0
    out ADMUX,R16
    sbi ADCSR,ADSC ; inicia conversion
MideFuerza1_espera:
    sbis ADCSR,ADIF
    rjmp MideFuerza1_espera
    in R16, ADCL
            R17, ADCH
    sts fuerza1,R17 ; ADCH
    sts fuerza1+1,R16 ; ADCL
    sbi ADCSR, ADIF ; limpia bandera ADIF
    pop R17
    pop R16
    ret
```

MideFuerza2:
push R16
push R17
Idi R16,0b01000001 ; canal 1
out ADMUX,R16
sbi ADCSR,ADSC ; inicia conversion

MideFuerza2_espera:

sbis ADCSR,ADIF	
rjmp	MideFuerza2_espera
in	R16, ADCL
in	R17, ADCH
sts	fuerza2,R17
sts	fuerza2+1,R16
sbi	ADCSR, ADIF ; limpia bandera ADIF
pop	R17
pop	R16
ret	
MideFuerza3:	
push	R16
push	R17
Idi	R16,0b01000010 ; canal 2
out	ADMUX,R16
sbi	ADCSR,ADSC ; inicia conversion
MideFuerza3_espera:	
sbis	ADCSR,ADIF
rjmp	MideFuerza3_espera
in	R16, ADCL
in	R17, ADCH
sts	fuerza3,R17
sts	fuerza3+1,R16
sbi	ADCSR, ADIF ; limpia bandera ADIF

pop R17
pop R16
ret

MideFuerza4:

push	R16
push	R17

Idi R16,0b01000011 ; canal 3
out ADMUX,R16
sbi ADCSR,ADSC ; inicia conversion
MideFuerza4_espera:

```
sbis
ADCSR,ADIF
rjmp MideFuerza4_espera
in
in
R16, ADCL
R17, ADCH
sts fuerza4,R17
sts fuerza4+1,R16
sbi
ADCSR, ADIF ; limpia bandera ADIF
```

pop
R17
pop
R16
ret
\qquad


```
MideAcel:
    push R16
    push R17
MideAcel_lazo:
    Idi
        R16,$B0
    rcall Rx_SPI2
    andi R16,0b00000010
    cpi R16,0
    breq MideAcel_lazo
    Idi R16,$F6 ;ID=>$CO $F6 =>DATA ZO
    rcall Rx_SPI
    sts aceleracion,R16 ;ZH z1
    sts aceleracion+1,R17 ;ZL z0
    pop R17
    pop R16
    ret
Rx_SPI: ; envia por SPI la direccion almacenada en R16 y recibe el dato leido en R16
    cbi PORTB,2 ; SS = 0
    out SPDR, R16 ; se envia por el SPI
Rx_SPI_espera:
    sbis SPSR, SPIF ; Se espera a que se termine la transmision
    rjmp Rx_SPI_espera
    out SPDR, R16 ; se envia por el SPI
```

```
Rx_SPI_espera2:
    sbis SPSR, SPIF ; Se espera a que se termine la transmision
        rjmp Rx_SPI_espera2
        in R17, SPDR ; se recibe por el SPI
        out SPDR,R16 ; se envia por el SPI
Rx_SPI_espera3:
        sbis SPSR, SPIF ; Se espera a que se termine la transmision
        rjmp Rx_SPI_espera3
    in
                R16, SPDR ; se recibe por el SPI
    sbi PORTB,2 ; SS = 1
    ret
Rx_SPI2: ; envia por SPI la direccion almacenada en R16 y recibe el dato leido en R16
    cbi PORTB,2 ; SS = 0
    out SPDR,R16 ; se envia por el SPI
Rx_SPI2_espera:
    sbis SPSR, SPIF ; Se espera a que se termine la transmision
    rjmp Rx_SPI2_espera
    out SPDR,R16 ; se envia por el SPI
Rx_SPI2_espera2:
    sbis SPSR, SPIF ; Se espera a que se termine la transmision
    rjmp Rx_SPI2_espera2
    in R16, SPDR ; se recibe por el SPI
    sbi PORTB,2 ; SS = 1
    ret
```

```
;===================================================================================
;===================================================================================
```



```
MidePeriodo:
    push R16
    in R16,SREG
    push R16
    push XL
        push XH
    push YL
    push YH
    push ZL
    push ZH
MidePeriodo_Lazo: ; mide periodo y lo almacena en X
    in XL,ICR1L ; lee el valor capturado
    in XH,ICR1H
    mov YL,XL ; copia el valor a reg Y
    mov YH,XH
    Ids R16,flanco_ant ; calcula Periodo XHXL <- (Flanco actual - Flanco anterior)
    sub XL,R16
    Ids R16,flanco_ant+1
    sbc XH,R16
    brcs calcula2
    rjmp almacena_periodo
```

calcula2:

```
Ids XL,flanco_ant
Ids XH,flanco_ant+1
Idi R16,$FF
    mov ZL,R16
    mov ZH,R16
    sub ZL,XL
    sbc ZH,XH
    adiw ZL,1
    clr R16
    adc ZH,R16 ;suma 65536=ZHZL+1
    mov XL,YL ; copia el valor a reg X
    mov XH,YH
                                    ;suma el(valor actual=YHYI)+65536=XHXL
    add XL,ZL
    adc XH,ZH
```

almacena_periodo:
sts flanco_ant,YL ; Flanco anterior <- Flanco actual
sts flanco_ant+1,YH
inc R20 ;bandera de periodo
cpi R20,2
breq almacena_RPM
rjmp mantener_RPM
almacena_RPM:

```
mantener_RPM:
    pop ZH
    pop ZL
    pop YH
    pop YL
        pop XH
        pop XL
    pop R16
    out SREG,R16
    pop R16
    reti
```


TxVariables:

push	R16	
push	R17	
push		XL
push	XH	

clr

R17

Idi $\quad X H$,high(fuerza1)
Idi XL,low(fuerza1)

TxVariables_lazo:
Id
R16, X+
rcall TxDato
inc R17
cpi R17,12
brne TxVariables_lazo
pop XH
pop XL
pop R17
pop R16
ret

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

- Meet or Exceed TIA/EIA-232-F and ITU Recommendation V. 28
- Operate With Single 5-V Power Supply
- Operate Up to 120 kbit/s
- Two Drivers and Two Receivers
- ± 30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- Designed to be Interchangeable With Maxim MAX232
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- Applications

TIA/EIA-232-F
Battery-Powered Systems
Terminals
Modems
Computers

description/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-232 voltage levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V , and can accept $\pm 30-\mathrm{V}$ inputs. Each driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASICTM library.

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP (N)	Tube	MAX232N	MAX232N
	SOIC (D)	Tube	MAX232D	MAX232
		Tape and reel	MAX232DR	
	SOIC (DW)	Tube	MAX232DW	MAX232
		Tape and reel	MAX232DWR	
	SOP (NS)	Tape and reel	MAX232NSR	MAX232
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP (N)	Tube	MAX232IN	MAX232IN
	SOIC (D)	Tube	MAX232ID	MAX2321
		Tape and reel	MAX232IDR	
	SOIC (DW)	Tube	MAX232IDW	MAX2321
		Tape and reel	MAX232IDWR	

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

EACH DRIVER	
INPUT TIN	OUTPUT TOUT
L	H
H	L

$H=$ high level, $L=$ low
level

EACH RECEIVER
INPUT RIN
OUTPUT ROUT
L
H

$H=$ high level, $L=$ low level
logic diagram (positive logic)

MAX232, MAX232| DUAL EIA-232 DRIVERS/RECEIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input supply voltage range, V_{CC} (see Note 1) . - 0.3 V to 6 V	
Positive output supply voltage range, $\mathrm{V}_{\mathrm{S}_{+}}$	$\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ to 15 V
Negative output supply voltage range, V_{S} - . 0.3 l V to -15 V	
Input voltage range, V_{I} : Driver . - 0.3 V 的 $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
Receiver	$\pm 30 \mathrm{~V}$
Output voltage range, V_{O} : T1OUT, T2OUT R1OUT, R2OUT	$\begin{aligned} & \mathrm{V}_{\mathrm{S}-}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{S}+}+0.3 \mathrm{~V} \\ & \ldots \end{aligned}$
Short-circuit duration: T1OUT, T2OUT	Unlimited
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): D package	$73^{\circ} \mathrm{C} / \mathrm{W}$
DW package	$57^{\circ} \mathrm{C} / \mathrm{W}$
N package	$67^{\circ} \mathrm{C} / \mathrm{W}$
NS package	$64^{\circ} \mathrm{C} / \mathrm{W}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . $260^{\circ} \mathrm{C}$	
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to network ground terminal.
2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage (T1IN,T2IN)		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage (T1IN, T2IN)				0.8	V
R1IN, R2IN	Receiver input voltage				± 30	V
T_{A}	Operating free-air temperature	MAX232	0		70	${ }^{\circ} \mathrm{C}$
		MAX2321	-40		85	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP \ddagger
I MAX	UNIT			
Supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ All outputs open, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	10	mA

[^1]
DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

PARAMETER			TEST CONDITIONS	MIN	TYP
V_{OH}	High-level output voltage	T1OUT, T2OUT	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND	5	7
$\mathrm{~V}_{\mathrm{OL}}$	Low-level output voltage \ddagger	T1OUT, T2OUT	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND	UNIT	
r_{O}	Output resistance	T1OUT, T2OUT	$\mathrm{V}_{\mathrm{S}+}=\mathrm{V}_{\mathrm{S}-}=0, \quad \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	-7	
$\mathrm{I}_{\mathrm{OS}} \S$	Short-circuit output current	T1OUT, T2OUT	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad-5$	V	
I_{IS}	Short-circuit input current	T1IN, T2IN	$\mathrm{V}_{\mathrm{O}}=0$	300	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.
§ Not more than one output should be shorted at a time.
NOTE 3: Test conditions are $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 3)

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
SR	Driver slew rate	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \text {, }$ See Figure 2		30	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{SR}(\mathrm{t})$	Driver transition region slew rate	See Figure 3	3		$\mathrm{V} / \mu \mathrm{s}$
	Data rate	One TOUT switching	120		kbit/s

NOTE 3: Test conditions are $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 3)

PARAMETER			TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
V_{OH}	High-level output voltage	R1OUT, R2OUT	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$		3.5			V
V OL	Low-level output voltage \ddagger	R10UT, R2OUT	$\mathrm{IOL}=3.2 \mathrm{~m}$				0.4	V
$\mathrm{V}_{1 \mathrm{~T}+}$	Receiver positive-going input threshold voltage	R1IN, R2IN	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.7	2.4	V
VIT-	Receiver negative-going input threshold voltage	R1IN, R2IN	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.2		V
$\mathrm{V}_{\text {hys }}$	Input hysteresis voltage	R1IN, R2IN	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.2	0.5	1	V
r_{i}	Receiver input resistance	R1IN, R2IN	$\mathrm{V}_{\mathrm{CC}}=5$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	5	7	k Ω

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.
NOTE 3: Test conditions are $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 3 and Figure 1)

	PARAMETER	TYP	UNIT
$t P L H(R)$	Receiver propagation delay time, low- to high-level output	500	ns
tPHL(R)	Receiver propagation delay time, high- to low-level output	500	ns

NOTE 3: Test conditions are $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_{O}=50 \Omega$, duty cycle $\leq 50 \%$.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$ Measurements

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_{O}=50 \Omega$, duty cycle $\leq 50 \%$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$ Measurements (5- $\mu \mathrm{s}$ Input)

NOTE A: The pulse generator has the following characteristics: $Z_{O}=50 \Omega$, duty cycle $\leq 50 \%$.
Figure 3. Test Circuit and Waveforms for $\mathrm{t}_{\mathrm{THL}}$ and $\mathrm{t}_{\mathrm{TLH}}$ Measurements ($20-\mu \mathrm{s}$ Input)

APPLICATION INFORMATION

Figure 4. Typical Operating Circuit

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

[^0]: International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

[^1]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 3: Test conditions are $\mathrm{C} 1-\mathrm{C} 4=1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

