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Abstract

The ball and plate system is a nonlinear MIMO system that has interesting characteristics
which are also present in aerospace and industrial systems, such as: instability, subactuation,
nonlinearities such as friction, backlash, and delays in the measurements.

In this work, the modeling of the system is based on the Lagrange approach. Then it is
represented in the state-space form with plate accelerations as inputs to the system. These
have a similar effect as applying torques. In addition, the use of an internal loop of the servo
system is considered. From the obtained model, we proceed to carry out the analysis of
controllability and observability resulting in that the system is globally weak observable and
locally controllable in the operating range. Then, the Jacobi linearization is performed to use
the linearized model in the design of linear controllers for stabilization.

On the other hand, analyzing the internal dynamics of the ball and plate system turns out
to be a non-minimum phase system, which makes it difficult to design the tracking control
using the exact model. This is the reason why we proceed to make approximations. Using the
approximate model, nonlinear controllers are designed for tracking using different approaches
as: feedback linearization for tracking with and without integral action, backstepping and
sliding mode. In addition, linear and nonlinear observers are designed to provide full state
information to the controller.

Simulation tests are performed comparing the different control and observation approaches.
Moreover, the effect of the delay in the measurement is analyzed, where it is seen that the
greater the frequency of the reference signal the more the error is increased. Then, adding the
Smith predictor compensates the delay and reduces the tracking error.

Finally, tests performed with the real system. The system was successfully controlled for
stabilization and tracking using the designed controllers. However, it is noticed that the effect
of the friction, the spring oscillation and other non-modeled characteristics significantly affect
the performance of the control.



Zusammenfassung

Das "Ball und Platte" System ist ein nichtlineares MIMO System, das interessante Eigenschaften
aufweist die auch in der Luft und Raumfahrt und in industriellen Systemen vorgestellt werden,
wie z.B.: Instabilität, Unteraktuierung, Effekte von Nichtlinearitäten wie Reibung, Spiel und
besitzt Verzögerungen bei den Messungen.

In dieser Arbeit wird die Modellierung des auf dem Lagrange-Ansatz basierenden Systems
durchgeführt und dann in der Zustandsraumdarstellung mit Plattenbeschleunigungen als
Eingaben in das System dargestellt, die eine ähnliche Wirkung haben wie die Drehmomente.
Darüber hinaus wird die Verwendung einer internen Schleife im Servosystem berücksichtigt.
Mit dem erhaltenen Modell analysieren wir, die Steuerbarkeit und Beobachtbarkeit. Das System
ist global schwach beobachtbar und lokal steuerbar im Betriebsbereich. Anschließend wird die
Jacobi-Linearisierung durchgeführt, um das linearisierte Modell mit linearen Regelungen zu
stabilisieren.

Die Analyse der internen Dynamik des "Ball und Platte" Systems erweist sich als ein nichtmin-
imales Phasensystem, was es schwierig macht, eine Folgeregelung mit dem exakten Modell
zu entwerfen. Aus diesem Grund entwerfen wir Näherungen. Mit dem Näherungsmodell
werden nichtlineare Folgeregelungen mit unterschiedlichen Ansätzen konzipiert : Rückkop-
plungslinearisierung für die Verfolgung mit und ohne I-Anteil, backstepping und sliding mode.
Darüber hinaus sind lineare und nichtlineare Beobachter so ausgelegt, dass sie der Regelung
vollständige Zustandsinformationen zur Verfügung stellen.

Simulationen werden durchgeführt, um die verschiedenen Steuerung und Beobachtungsan-
sätze zu vergleichen. Darüber hinaus wird die Wirkung der Verzögerung in der Messung
analysiert, wobei dort zu sehen ist, dass die grössere Frequenz des Referenzsignals den Fehler
erhöht. Der hinzugefügte "Smith predictor" kompensiert die Verzögerung und verringert den
Verfolgungsfehler.

Bei Tests mit dem realen System, wurde das System zur Stabilisierung und Verfolgung mit
den konstruierten Reglungen erfolgreich gesteuert. Es wurde jedoch festgestellt, dass die
Wirkung der Reibung, die Oszillation der Feder und andere nicht modellierte Eigenschaften die
Leistungsfähigkeit der Regelung signifikant beeinflusst.
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2

1 Introduction

The ball and plate system was firstly established in Rockwell laboratory of Czechoslovakia
University in the mid-1990s. This system is a multivariable plant (MIMO), which is the extension
of the ball and beam system. It has four degree of freedom consisting of a ball that can roll
freely on a rigid plate operated by servomotors, in order to control the position of the ball [4].

The ball and plate system is widely used as a test bed for verifying the performance and
effectiveness of new control algorithms [5]. It serves to visually demonstrate and reinforce
the underlying principles of nonlinear dynamics and control theory, because of its inherent
nonlinearity, instability and under actuation. The system is also influenced by nonlinearities
like frictions, backlash effect, measurement time delay, parameters uncertainty and so on [6].

The stabilization control is to hold the ball at a desired position on the plate and trajectory
tracking control demands the ball to follow a geometric path with associated timing law. Both
tasks are challenging problems, especially when high tracking precision is desired. Since only
feedback control based on linearized models are not suitable for tracking under higher tracking
velocity, control design using nonlinear model and approaches is expected to be better [7].

1.1 State of the Art

Table 1.1 shows an overview about the hardware that is used in other ball and plate systems. The
actuation is commonly realized by combinations of DC motors. Other implemented concepts
use magnetic suspension actuators or stepper motors. The sensor system is realized either by
cameras with machine vision or by touchscreen monitors. There are also works based on full
setup commercial test-beds.

Most of the previous works use simplified models of the system, neglecting coupling terms.
It is common to implement a cascaded structure for the controlled system, since the ball and
plate system is under actuated with respect to the plate’s angles and ball’s position. An inner
control loop is used for controlling the plate’s angles and implemented commonly by a PID
controller. In order to neglect the inner dynamics, the inner loop has to be very fast compared
to the outer loop. The outer loop is used to control the ball’s position. Many different concepts
are implemented for the outer control loop. The used concepts are listed in Table 1.2 and can
be divided into three general classes: Linear, nonlinear and knowledge based methods.
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Table 1.1: List of used hardware in other projects.

Hardware Used in
Actuation System
DC Motors with Encoders [8, 9, 10, 6]
Magnetic Suspension Actuators [11]
Stepper Motors [7]
Sensor System
camera with machine vision [9, 10, 7, 12, 5, 13, 4]
touchscreen sensor [8, 11, 14, 15]
Commercial Test-beds
Humusoft BP CE151 [16]
Googol Technology GPB2001 [17]

Table 1.2: List of control strategies applied in other projects.

Control Strategy Used in
Linear Methods
Lead Controller [8]
Linear Quadratic Regulator (LQR) [12, 9]
Model Predictive Control (MPC) [16]
Nonlinear Methods
Backstepping [7, 11]
Flatness-based Linearization [5, 13, 14]
Sliding-Mode Control (SMC) [10, 6]
PD-Controller with Nonlinear Compensation [4]
Knowledge Based Methods
Fuzzy Sliding Mode Control [18]
Neural Network Tuned PID [17]

Linear methods in previous works are lead control, linear quadratic regulation and model
predictive control. These control strategies are based on a decoupled, (simplified) linearized
model.

The shown nonlinear methods are backstepping, flatness based input-output linearization,
sliding mode control and a PD-controller with nonlinear compensation terms. These strategies
are also based on simplified models, which are mainly provided to decouple the two axis of
the system. Thus, the controlled systems are reduced to two ball and beam systems. The
flatness-based concept requires the negligence of some terms, which increase the vector relative
degree of the system.

In [13] two different flatness-based controllers are presented and compared with respect to
robustness: An exact feedback linearization control law and an exact feedforward linearization
control law. It is shown experimentally that the feedforward control law leads to a smoother
tracking performance. Moreover, it is more robust against modeling errors and measurement
noise than the feedback control [cf. 13].
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Finally, there are some works that use knowledge based concepts for the regulation and tracking
of the ball and plate system. These concepts are for instance a fuzzy sliding mode control and a
PID controller, which is tuned by a radial basis function neural network.

Most of the shown concepts require full state information. Hence, a Luenberger or Kalman
observer is used in many cases.

1.2 Objectives

This master thesis continues the work of previous projects [19, 3]. The concept of mechanism
using belt-pulley will be changed to the transmition of movement using the cam-plate .

The main tasks in this work are:

• The modelling of the ball and plate system in work. Also analyze the controllability,
observability of the system using the obtained model.

• The real time evaluation of the hardware, like the touch screen sensor and servomotors
using dSpace real time system.

• Design the controller for regulation and tracking using different methods of nonlinear
and linear controllers, and the comparison between them.

• Design the observer for the full feedback state controller, and compare some methods
for obtain the best results (performance and robustness). Also will be designed a Smith
predictor for compensate the dead-time of the touch screen sensor.

• Simulate the control system (controller , observer and predictor) using the exact nonlinear
model in Simulink.

• Perform experimental test to verify the correct operation of the control system designed
using the software and hardware provided by dSPACE for real time implementation

1.3 Limitation and Scope

The controlled system to design only will be the outer loop because the inner loop will be
controlled by the servomotor controller. Also, for that reason only will be necessary to use the
ball dynamic to design the control system because the plate dynamics will be controlled using
the torques exerted by the servomotors. The servomotor are selected, such that the inner loop is
fast enough.
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1.4 Overview

The content presented in this thesis is organized as follows

Chapter 2 presents the most important concepts used in this thesis related to the analysis of the
system and the design of the control system. Specifically, approximate and exact linearization,
characteristics of the ball and plate system as the concepts of subactuated systems and non-
minimal phase systems. In addition, the controller design process is presented using the linear
approach, such as the pole placement and LQR, as well as nonlinear approaches: feedback
linearization, backstepping and sliding mode. In the same way for the observer the design
process is presented using linear approaches, such as the Luenberger observer and the Kalman
filter; as well as nonlinear approaches, such as the nonlinear Luenberger observer and the
extended Kalman filter. Finally, the compensation of the delay for the state estimation is
presented.

Chapter 3 describes the ball and plate system implemented by the Control Engineering Group of
TU Ilmenau. Specifically, the main characteristics and restrictions of the hardware components,
such as the servo system, touch screen, encoders, dSPACE real-time system and the mechanism
for motion transmission based on two cam-plate and a cardan joint are described in detail. It also
presents the physical configuration of these components in order to have a better understanding
of the operation of the system.

Chapter 4 presents the considerations taken for the mathematical modeling of the ball and
plate system. This chapter also presents the calculation of the kinematics using matrices
of coordinate transformation and the deduction of the dynamics equations using the Euler-
Lagrange approach.

Chapter 5 presents the ball and plate system in its state-space and input affine representation,
afterwards the analysis of observability and controllability is made through the rank condition of
the matrices of observability and controllability, respectively. In addition, the Jacobi linearization
of the system is performed to then analyze locally the stability in open loop. This linearization
will then be used in later chapters to design the controller and linear observer for operation
near to the equilibrium point.

Chapter 6 presents the design process of linear and nonlinear controllers. In the linear approach
are considered the methods of pole placement and LQR. In the nonlinear approach the exact
linearization of the system is analyzed through feedback linearization; however, the case of
input-state is not possible, hence the case of input-output is studied but results a non-minimum
phase system. Therefore, is difficult to use the exact model to design tracking controllers, mainly
by the feedforward action, so proceed to take the approximation of the ball and plate system in
its closest approximation with flat outputs. Then using the approximate model we proceed with
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the controller design based on feedback linearization for tracking, the backstepping controller
and finally the controller based on sliding mode.

Chapter 7 presents the design process of linear and nonlinear observers. In the linear approach
the Luenberger observer and Kalman filter are considered. Also, in the nonlinear approach, the
nonlinear Luenberger-like observer is used for the linear form of Brunovsky, calculated for the
approximate model type flat, and then, through the observability matrix, the linear observer
gain is converted to the nonlinear gain. The other nonlinear observer approach used is the
extended Kalman filter which calculates the gain of the observer at each sampling time using
the linearized system around the estimated mean of the states and the covariance matrices of
the measurement noise and the disturbance input.

Chapter 8 simulations are shown and the performance of the different concepts is compared. It
also shows the benefit of the inclusion of the Smith predictor to compensate the delay in the
measurement of the ball’s position.

Chapter 9 presents the experimental results of the most promising approach used for the
design of the controller and observer for tracking control using different reference trajectories.
In addition, the benefit of the inclusion of Smith predictor to compensate the delay in the
measurement of the position of the ball is presented.

Chapter 10 concludes and summarizes the results of the present work as well as some useful
recommendations. In addition, ideas are presented for possible future research work that could
improve the results obtained.
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2 Conceptual Framework

2.1 Linearization

The nonlinear system is represented using the following model:

ẋ = f (x, u)

y = h(x, u),
(2.1)

where x ⊂ Rn, u ⊂ Rp and y ⊂ Rq.

Jacobi Linearization around an Equilibrium Point [20]. A common source of linear system
models is the approximation of a nonlinear system by a linear one. These approximations are
aimed at studying the local behavior of a system, where the nonlinear effects are expected to be
small.

To study local behavior of the system around the equilibrium point(xe, ue), with x − xe and
u− ue are both small, so that nonlinear perturbations around this equilibrium point can be
ignored compared with the (lower-order) linear terms. These variables

z = x− xe, v = u− ue, w = y− h(xe, ue) (2.2)

used are all close to zero when we are near the equilibrium point.

The Jacobi linearization of the nonlinear system is:

ż = Az + Bv, w = Cz + Dv (2.3)

where

A =
∂ f (x, u)

∂x xe,ue
, B =

∂ f (x, u)
∂u xe,ue

, C =
∂h(x, u)

∂x xe,ue
, D =

∂h(x, u)
∂u xe,ue

. (2.4)

The system 2.3 approximates the original system 2.1 when it’s near the equilibrium point. If
the linearization is asymptotically stable, then the equilibrium point xe is locally asympotically
stable for the nonlinear system.
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Feedback Linearization. Feedback linearization is another type of linearization that uses
feedback to convert the dynamics of a nonlinear system into those of a exact linear one [21].

More generally, we say that a system 2.1 is feedback linearizable if we can find a control law
u = α(x, v) such that the resulting closed loop is input/output linear with input v and output y.
We can also use the tools of linear system theory to analyze and design the control law for the
linearized system, considering to apply the input transformation to obtain the actual input that
will be applied to the system [21]. More details of this process are presented in 2.3.2.1.

2.2 Underactuated System

Underactuated multibody systems are system that have fewer control input than degrees of
freedom . The concept of degrees of freedom is usually refereed to the generalized coordinates
q . Also is assumed than the number of inputs and outputs coincides [1].

In order to establish the nonlinear input-output normal form of an underactuated multibody
systems the equation of motion (2.5a) with output (2.5b) is partitioned into two parts, actuated
and unactuated part, presented in (2.6).

M (q) q̈ + C (q, q̇) q̇ + G (q) = B (q)u (2.5a)

y = h (q) (2.5b)

The actuated part is represented by the first row of (2.6) with input matrix Ba (q) nonsingular,
and the unactuated part represented by the second row with input matrix Bu (q) singular or
not full rank.(

Maa (q) Mau (q)
Mᵀau (q) Muu (q)

)(
q̈a

q̈u

)
+

(
Caa (q, q̇) Cau (q, q̇)
Cua (q, q̇) Cuu (q, q̇)

)(
q̇a

q̇u

)
+

(
Ga (q)
Gu (q)

)
=

(
Ba (q)
Bu (q)

)
u

(2.6)

The actuated part has an independent input which directly acts on the generalized coordinates.
The second part has not direct actuation input and thus is unactuated. The equation of motion
simply reads as follows(

Maa (q) Mau (q)
Mᵀau (q) Muu (q)

)(
q̈a

q̈u

)
+

(
Caa (q, q̇) Cau (q, q̇)
Cua (q, q̇) Cuu (q, q̇)

)(
q̇a

q̇u

)
+

(
Ga (q)
Gu (q)

)
=

(
Ba (q)

0

)
u

(2.7)

While the control of fully actuated multibody systems is relatively straightforward and well
established, the output trajectory tracking control problem of underactuated multibody systems
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is much more complicated and not fully solved yet. The most obvious form of underactuation
are multibody systems with passive joints [1].

Determination of the relative degree is useful for characterization of nonlinear systems. In
general the determination of the relative degree requires a state-space representation and also
the symbolic calculation of Lie derivatives [1] . Using the vector relative degree is possible to
classify the underactuated multibody systems as is presented in Figure 2.1.

Figure 2.1: Classification of some underactuated multibody systems [1].

2.3 Full State-Feedback Controller

The controller full state feedback use information of all states to calculate the control action. The
objective is that the designed control law has desirable closed-loop stability and performance.
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2.3.1 Linear Controllers

For the case of linear (or linearized) system order n (x ⊂ Rn) represented by (2.8)

ẋ = Ax + Bu

y = Cx
(2.8)

The linear controller can be represented only as a state feedback gain. There are some alterna-
tives to design the full-state feedback controller presented below [20].

Pole Placement. The eigenvalues of the closed loop system (2.9) can be assigned choosing
the gain of the controller K in the complex plane.

ẋ = (A− BK) x + krr

y = Cx
(2.9)

where r is the reference input and kr the inverse of the DC gain of the closed loop system

calculated as kr = −
(

C (A− BK)−1 B
)−1

. The useful equation to calculate in general the
controller gain K in order to obtain the desired poles p1 , p2 , ... pn is (2.10).

det (sI − (A− BK)) = (s− p1) (s− p2) . . . (s− pn) (2.10)

The desired poles represent the desired behavior of the closed loop system. Also is possible to
calculate K converting first the system to the canonical controllable form.

Linear quadratic regulator (LQR). As an alternative to select the closed loop eigenvalue
locations to accomplish a certain objective, the gains for a state feedback controller can instead
be chosen by attempting to optimize a cost function. This can be particularly useful in order to
balance the performance of the system with the magnitude of the inputs required to achieve
that level of performance.

This controller solve the quadratic optimization problem: considering the linear system ẋ =

Ax + Bu , determine the gain K in u = −Kx that minimize the cost function [22] :

J =
∞∫

0

(xᵀQx + uᵀRu) dt, (2.11)

where:
Q : weight matrix of the error states, positive definite or semi definite,
R : weight matrix of the control action , positive definite .
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The control gain obtained is:

Klqr = R−1BᵀP (2.12)

P is symmetric and positive definite matrix, that satisfy the Algebraic Riccati equation:

AᵀP + PA− PBR−1BᵀP + Q = 0. (2.13)

2.3.2 Nonlinear Controllers

2.3.2.1 Feedback Linearization

The central idea of the approach is to algebraically transform a nonlinear system dynamics into
a (fully or partly) linear one, so that linear control techniques can be applied [21].

Input affine representation of nonlinear systems (2.14) can often be very useful to obtain a
solution of a control problem.

ẋ = f (x) + g(x)u, x ⊂ Rn, u ⊂ Rp

y = h(x), y ⊂ Rq
(2.14)

We consider to work with square systems, i.e. systems with the same number of inputs and
outputs (p = q). The state vector x are local coordinates for the smooth n-dimensional manifold
Mn. The vector fields f (x), g(x) are defined on the manifold Mn and are given in the local
coordinates x. For many necessary calculations it is sufficient to assume that the vector fields
are sufficiently often differentiable. Both, the output function h(x) and the input function u are
smooth nonlinear functions [1].

Feedback linearization uses the geometric approach : the Lie algebra, the diffeomorphism,
distribution and involutivity are concepts presented detail in [23].

Relative Degree. The relative degree is a system property, defined as the exactly number of
derivatives of the output y which must be taken until of the inputs appear explicitly [1]. In the
present work the notation of the relative degree will be r .

Input-State Linearization SISO case. Input state or full state linearization is a type of feedback
linearization which can be applied to an input affine nonlinear systems as (2.14) with relative
degree r = n at some operation point [1].
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A single-input nonlinear system in the form (2.14) with f (x) and g(x) smooth vector fields on
Rn, is said to be input-state linearizable if there exists a region Ω in Rn , a diffeomorphism T :
Ω→ Rn , and a nonlinear feedback control law

u = α (x) + β (x) v, (2.15)

such that the new state variables z = T(x) and new input v satisfy a linear time-invariant
relation

ż = Azz + Bzv (2.16a)

where

Az =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . 0


nxn

, Bz =



0
0
...
0
1


nx1

. (2.16b)

The new state z is called the linearizing state, and the control u is called the linearizing control
law. Also the linear system (2.16) obtained after linearization is called Brunovsky form or
Canonical Form [21].

The nonlinear system (2.14), with f (x) and g(x) being smooth vector fields, is input-state
linearizable if, and only if, there exists a region Ω such that the following conditions hold [21]

• the vector fields
[

g, ad f g, . . . , adn−1
f g

]
are linearly independent in Ω.

• the distribution
[

g, ad f g, . . . , adn−2
f g

]
is involutive in Ω.

Input-Output Linearization SISO case. Input-output linearization is a type of feedback lin-
earization for input affine nonlinear systems (2.14), where the given output y = h(x) yields
a relative degree r < n. In this case, it is not possible to apply input-state linearization, but
it might be still possible to obtain by coordinate transformation and state feedback a subsys-
tem with a linear behavior between the input and output. However, in this case there is no
linear relationship between the input and all states of the transformed system and a nonlinear
unobservable system remains called internal dynamics [1].
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Using the new states z with the following notation :

z =



z1

z2
...

zr

zr+1
...

zn


=



ξ1
...

ξr

η1
...

ηn−r


=

(
ξ

η

)
(2.17)

and the state feedback law

u =
1

LgLr−1
f h(x)

(
−Lr

f h(x) + v
)

(2.18)

the system (2.14) is transformed to the Byrnes Isidori Normal Form (2.19) [23].

ξ̇ = Azξ + Bzv⇔



ξ1 = y

ξ̇1 = ξ2
...

ξ̇r−1 = ξr

ξ̇r = v

(2.19a)

η̇ = q (ξ, η)⇔


η̇1 = τr+1 (ξ, η)

...

η̇n−r = τn (ξ, η)

(2.19b)

The new system is composed of two subsystems. The first subsystem is linear, has dimension r
and represent a chain of integrators. The second subsystem is in general nonlinear of dimension
n− r and is called internal dynamics. The n− r internal states are chosen according to

Lgτj = 0 for r + 1 ≤ j ≤ n, (2.20)

in order to obtain the internal dynamics in the form

η̇ = q (ξ, η) , (2.21)

otherwise the internal dynamics has the following form

η̇ = q (ξ, η) + p (ξ, η)
1

LgLr−1
f h(x)

(
−Lr

f h(x) + v
)

. (2.22)
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The internal dynamics do not influenced the ξ states, and thus are observable. However, the
internal dynamics are influenced by the ξ states and might influenced the new input v [1].

Similar to the input-state linearization approach one can use linear control methods. However,
the control task is also influenced by the whole dynamics therefore the internal η states have to
be bounded [1] .

Output Tracking Control SISO case. Output trajectory tracking deals with the problem of
forcing the physical system to reproduce or follow a predefined desired reference output
trajectory yd(t). In a perfect world, with precisely known initial conditions and model pa-
rameters and no external disturbances, this can be achieved by a pure feedforward control
based on an exact inverse model of the physical system. However, since there are always
disturbances or unknowns a control schema with additional feedback is required to compen-
sate for these disturbances. This yields a so-called two degrees of freedom control structure,
composed of a feedforward control and a feedback control. A trajectory generator provides a
sufficiently smooth desired output trajectory. Moreover, the desired trajectory is at least r times
differentiable [1].

In general, the design of the feedforward and feedback controller can be performed separately.
There is a large number of techniques available for the design of the feedback part, such
Jacobi linearization around the desired trajectory, resulting in a time-varying system [1]. A
unified approach to design feedforward an feedback control based on feedback linearization for
minimum phase nonlinear system is presented in (2.32).

The design of the feedforward controller is based on the model inversion. Model inversion, or
dynamic inversion, means that for a given trajectory yd(t) the corresponding input ud(t) and
the corresponding trajectories of the states xd(t) are computed as follows [1]

1. the input ud(t) and states xd(t) satisfy the differential equation of the system

ẋd = f (xd) + g (xd) ud (2.23)

2. the states xd(t) yields the desired output

h (xd) = yd (2.24)

3. the states xd(t) satisfy the initial condition

x(t0) = x0 (2.25)
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Also the model inversion can be performed using the normal form (2.19). In order to perform
the tracking control, the coordinates ξ must satisfy

ξ1 = yd

ξ2 = ẏd

...

ξr = y(r−1)
d

(2.26)

with ξ = ξd.

Also, the rth derivative of the output has to satisfy

y(r)d = β̄ (ξd, η) + ᾱ (ξd, η) ud, (2.27)

with the coefficient ᾱ (zo) 6= 0 , the feedforward control law for exact output tracking ud is
calculated as follows

ud =
1

ᾱ (zo)

(
−β̄ (ξd, η) + y(r)d

)
. (2.28)

The η states appear unconstrained by the tracking problem and are the solution of the internal
dynamics, which is driven by the ξd states, that must be stable in order to obtain a bounded
feedforward control [1].

The simple pole-placement controller for stabilization (2.18) can be extended to asymptotic
tracking control tasks of minimum phase nonlinear system with relative degree r [21]. Let

ξd =
(

yd ẏd . . . y(r−1)
d

)ᵀ
, (2.29)

and define the tracking error vector by

e(t) = ξ(t)− ξd(t) (2.30a)
e
ė
...

e(r−1)

 =


ξ1 − yd

ξ2 − ẏd
...

ξr − y(r−1)
d

 (2.30b)

Choose constants pi such that the polynomial (2.31) has all roots strictly in the left-half plane
(LHP).

P(s) = sr + pr−1sr−1 + . . . p1s + p0 (2.31)
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Then, using the control law

u =
1

LgLr−1
f h(x)

(
−Lr

f h(x) + y(r)d − pr−1e(r−1) − . . .− p0e
)

(2.32)

the whole state remains bounded and the tracking error e(t) converges to zero [21].

Feedback Linearization MIMO case. The concepts used in the above sections for SISO systems
can be extended to MIMO systems [23] .
Considering the MIMO square input affine system (2.14) in a better representation as follows

ẋ = f (x) +
p

∑
i=1

gi(x)ui

y1 = h1(x)

y2 = h2(x)
...

yp = hp(x)

(2.33)

The relative degree of each output is calculated using the differentiation until the first time at
least one of the p inputs appears explicitly, then is obtained

y(k)i = Lk
f hi(x), 0 ≤ k ≤ ri − 1, 0 ≤ i ≤ p (2.34)

y(ri)
i = Lri

f hi(x) +
p

∑
j=1
LgjL

ri−1
f hi(x)uj (2.35)

with ∑
p
j=1 LgjL

ri−1
f hi(x)uj 6= 0 results the vector relative degree r = {r1, r2, . . . , rp} and r =

r1 + . . . rp is called the sum or total relative degree.

The rth derivative of each output can be summarized in the following vector representation
y(r1)

1
...

y(rp)
p

 =


Lr1

f h1(x)
...

Lrp
f hp(x)

+


Lg1L

r1−1
f h1(x) . . . LgpL

r1−1
f h1(x)

...
. . .

...

Lg1L
rp−1
f hp(x) . . . LgpL

rp−1
f hp(x)




u1
...

up

 . (2.36)

Using the new variable v as input of the linearized system, then following equation is ob-
tained:

v = b(x) + A(x)u. (2.37)

The matrix A(x) is called decoupling matrix and must be regular in order to have well defined
vector relative degree r and therefore a noninteracting control problem [23].
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The control law in original coordinates, called decoupling control law, is calculated as

u = A−1(x) (v− b(x)) (2.38)

The new state vector using the state transformation as follows

z = T(x) =

[
ξ

η

]
, (2.39)

convert the system (2.33) into the Byrnes Isidori Normal Form [23] presented below

External dynamics



ξ̇1
1 = ξ1

2
...

ξ̇1
r1

= b1(ξ, η) + ∑
p
j=1 a1j(ξ, η)uj

y1 = ξ1
1

ξ̇2
1 = ξ2

2
...

ξ̇2
r2

= b2(ξ, η) + ∑
p
j=1 a2j(ξ, η)uj

y2 = ξ2
1

...

ξ̇
p
1 = ξ

p
2

...

ξ̇
p
rp = bp(ξ, η) + ∑

p
j=1 apj(ξ, η)uj

yp = ξ
p
1

(2.40)

Internal dynamics
{

η̇ = q(ξ, η) + ∑
p
j=1 pj(ξ, η)uj . (2.41)

Also, if the distribution {g1, . . . . , gp} is involutive and the vector fields τr+1(x) to τn(x) are
chosen such that

∂τi(x)
∂x

g(x) = 0 , n− r ≤ i ≤ n (2.42)

the internal dynamics can be expressed as

η̇ = q(ξ, η), η ⊂ Rn−r. (2.43)
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Finally the exact linearized system, sometimes reduced order, is as follows

ξ̇ = Azξ + Bzv, ξ ⊂ Rr

y = Cξ,
(2.44)

where (Az, Bz, Cz) is a Brunovsky form, i.e. controllable and observable.

2.3.2.2 Backstepping Control

The backstepping approach, a recursive Lyapunov-based scheme, was proposed in the beginning
of 1990s. With this method, the construction of feedback control laws and Lyapunov functions
is systematic, following a step-by-step algorithm [24]. In the last two decades, backstepping has
gained immense popularity as a nonlinear control design algorithm providing an alternative to
feedback linearization [25].

Backstepping can be used to relax the matching condition, which blocked the traditional
Lyapunov-based design. A major advantage of backstepping is that it has the flexibility to
avoid cancellations of useful nonlinearities and achieve regulation and tracking properties. The
technique was comprehensively addressed by Krstic, Kanellakopoulos and Kokotovic [24].

Backstepping is suited for the class of strict feedback systems [24]. The idea of backstepping
is to design a controller recursively by considering some of the state variables as virtual
controls and designing for them intermediate control laws. Backstepping achieves the goals of
stabilization and tracking. The proof of these properties is a direct consequence of the recursive
procedure, because a Lyapunov function is constructed for the entire system [24].

Integrator Backstepping assumption. Consider the system

ẋ1 = f (x1) + g(x1)u , f (0) = 0 (2.45)

where x1 ⊂ Rn1 is the state and u ⊂ R is the control input. There exist a continuously
differentiable feedback control law

u = α(x1), α(0) = 0, (2.46)

and a smooth, positive definite, radially unbounded function V : Rn1 → R such that

∂V(x1)

∂x1
( f (x1) + g(x1)α(x1)) ≤ −W(x1) ≤ 0, ∀x1 ⊂ Rn1 , (2.47)

where W : Rn1 → R is positive semidefinite. Under this assumption, the control (2.46) applied
to the system (2.45), guarantees global boundedness of x1(t) , and via the LaSalle Theorem, the
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regulation of W(x1(t)) :

lim
x→∞

W(x1(t)) = 0. (2.48)

Clearly, if W(x1) is positive definite, the control renders x1 = 0 the globally asymptotically
stable equilibrium of (2.45) [26].

Integrator Chain Backstepping. Let the system satisfying the previous assumption with
α(x1) = α0(x1) be augmented by a chain of k integrators such that u is replaced by x2, the state
of the last integrator in the chain :

ẋ1 = f (x1) + g(x1)x2

ẋ2 = x3

...

ẋk−1 = xk

ẋk = u.

(2.49)

For this system, the procurement of integrator backstepping presented in [26] with x2, . . . , xk as
virtual controls, results in the Lyapunov function

Va (x1, x2, . . . , xk) = V(x1) +
1
2

k

∑
i=1

(xi − αi−1 (x1, x2, . . . , xk−1))
2 . (2.50)

Any choice of feedback control which renders V̇a ≤ −Wa (x1, x2, . . . , xk) ≤ 0 , with
Wa (x1, x2, . . . , xk) = 0 only if W(x1) = 0 and x1 6= αi−1 (x1, x2, . . . , xk−1) , i = 1, . . . , k , guaran-
tees that (x1(t), x2(t), . . . , xk(t))

T is globally bounded and converges to a largest invariant set.
Furthermore, if W(x1) is positive definite, that is x1 = 0 can be rendered globally asymptotically
stable through x1 then (2.50) is a control Lyapunov function for (2.49) and the equilibrium
x1 = 0, x2 = . . . = xk = 0 can be rendered globally asymptotically stable through u [26].

2.3.2.3 Sliding Mode Control

Sliding mode control is a particular approach of robust control. In the formulation of practical
control problems, there will be discrepancy between the actual plant and its mathematical model
used for controller design. These discrepancies arise from unknown external disturbances, plant
parameters, and unmodeled dynamics. Using sliding mode control is possible to the design
control laws that provide the desired performance to the closed-loop system in the presence of
the mentioned discrepancies [27].
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The modeling inaccuracies can have strong adverse effects on nonlinear control systems. Sliding
mode control is based on the remark that is much easier to control 1st order systems, be they
nonlinear or uncertain, than it is to control general nth order systems. High order systems can
be replaced by 1st order problems. It is then easy to show that, for the transformed system,
perfect performance can in principle be achieved in presence of arbitrary parameter inaccuracies.
However, it is obtained at the price of extremely high control activity. This lead us to modify
the control law, given the admissible control activity, is aimed at achieving an effective trade-off
between tracking performance and parametric uncertainty [21].

Sliding Variable. The idea of sliding mode control is based on the introduction of a designed
function σ named sliding variable. As soon as the properly designed sliding variable becomes
equal to zero, it defines the sliding manifold or sliding surface. The proper design of the sliding
variable yields suitable closed-loop system performance while the systems trajectories belong
to the sliding surface [27].

Conventional Sliding Mode Control. Conventional sliding mode control is focus in the
creation of sliding surfaces , or hyperplanes, which give appropriate close-loop dynamics when
sliding motion is induced [27].

Consider a surface in the state space given by

S = {x : σ(x) = 0}, (2.51)

an ideal sliding mode is said to take place if the states x(t) evolve with time such that σ(x(tr)) =

0 for some finite tr ∈ R+ and σ(x(t)) = 0 for all t > tr.
During a sliding mode, σ(x(t)) = 0 for all t > tr. Intuitively this dynamical collapse implies the
motion of the system when confined to S will be of reduced dynamical order. If the control
action u = u(x) is discontinuous, the differential equation describing the resulting closed loop
system is discontinuous respect to the state vector and therefore is now not applicable the
classical theory of differential equations since Lipschitz assumptions are usually employed to
guarantee the existence of unique solution. The solution concept proposed by Filippov for
differential equations with discontinuities right-hand sides constructs a solution as the average
of the solutions obtained from approaching the point of discontinuity from different directions
[27].

The equivalent control ueq is the control action necessary to maintain an ideal sliding motion
on the sliding surface. The idea is to exploit the fact that in conventional sliding modes both
σ = σ̇ = 0. The equivalent control depends on the disturbance which will be generally unknown
[27].
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The conventional sliding mode design approach requires the system requires the relative degree
to be equal to one with respect to the sliding variable, it is very limited, and very often yields
to high-frequency switching control action that leads to the so-called chattering effect. These
intrinsic difficulties are mitigated by high-order sliding mode controllers (HOSM) [27].

Chattering Attenuation. In many practical control systems is important to avoid control
chattering by providing continuous and smooth control signal but at the same time it is
desirable to retain the robustness and insensitivity of the control system to bounded model
uncertainties and external disturbances. Chattering elimination using quasi-sliding mode is a
solution make the control function continuous and smooth is to approximate the discontinuous
function v(σ) = −ρ sign(σ) by some continuous/smooth function as sigmoidal function
represented by

sign(σ) ≈ σ

|σ|+ ε
(2.52)

where ε is a small positive scalar. It can be observed that

lim
ε→∞

σ

|σ|+ ε
= sign(σ), σ 6= 0. (2.53)

The value of ε should be selected to trade-off the requirement to maintain an ideal performance
with that of a smooth control effort. The smooth control cannot provide finite-time convergence
of the sliding variable σ to zero in the presence of external disturbance. Besides, the sliding
variable and the state variables do not converge to zero at all, but instead converge to domains
in a vicinity of the origin due the effect of the disturbances (if exist).

The price to pay for obtaining smooth control action is a loss of robustness and, as result, a
loss of accuracy. However, the system’s performance under the smooth control law is close to
the system’s performance under the discontinuous sliding mode control. Another method of
chattering elimination is asymptotic sliding mode. This method design a sliding mode control
in terms of the control function derivative (v = u̇). In this case, the actual control, which is
the integral of the high frequency switching function, is continuous. In this approach, the
original variable σ converges to zero only asymptotically. This is the price to pay for chattering
attenuation [27].

High Order Sliding Mode Control (HOSMC). The high-order sliding modes solve the
problems of arbitrary relative degree r. The realization of the scheme requires to calculate or
measure a number of successive time derivatives of the sliding variables. However, that problem
is solved within a similar framework that use arbitrary-order exact robust differentiators. The
higher order sliding mode controllers are able to drive to zero not only the sliding variable but
also its k− 1 successive derivatives (kth order sliding mode)[27].
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The two most well-known arbitrary order sliding mode controllers are the nested sliding
controllers and the quasi-continuous sliding controllers. These controllers have the following
form

u = −αΨr−1,r

(
σ, σ̇, . . . , σ(r−1)

)
(2.54)

defined by recursive procedures and solve the general output regulation problem. The parame-
ters of the controller can be chosen for each relative degree r [27].

The nested sliding mode controllers, used in the present thesis work, are defined by r-sliding
controllers, based on a pseudo-nested structure of 1-sliding modes. The controllers are built by
the following recursive procedure :

Ni,r =

(
|σ|q/r + |σ̇|q/(r−1) + . . . + |σ(i−1)|q/(r−i+1)

)1/q

(2.55)

Ψ0,r = sign(σ), Ψi,r = sign
(

σ(i) + βiNi,rΨi−r,r

)
, (2.56)

with q ∈N , q > 1 and βi are tuning parameters which define the convergence rate [27].

2.4 Non-Minimum Phase System

In general, a nonlinear system is non-minimum phase when it has unstable zero dynamics [21].
In order to understand the concept of the non-minimum phase property and its influence in the
control design are presented the following definitions :

Internal Dynamics. Is the part of the system dynamics that result unobservable in the input-
output linearization. The internal states can be chosen. If the internal dynamics is stable
(bounded during tracking), the tracking control design can be solved. For linear systems are
the internal dynamics result the zero dynamics [21].

Zero Dynamics. The zero-dynamics is an intrinsic feature of a nonlinear system which does
not depend on the choice of control law or desired trajectories. Also, zero-dynamics is defined
to be the internal dynamics of the system when the system output and its derivatives are kept
at zero by the input. Examining the stability of zero-dynamics is much easier than examining
the stability of internal dynamics because zero dynamics involves only internal states and has
reduced form (while the internal dynamics is coupled to the external dynamics and desired
trajectories) [21].
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Minimum Phase System. The nonlinear system is said to be locally asymptotically (expo-
nentially) minimum phase at x0 if the the equilibrium point η = 0 is locally asymptotically
(exponentially) stable.

It is important to note that the minimum phase property of a nonlinear system depends on the
equilibrium point x0 of the undriven system under consideration. Thus, a nonlinear system
may be minimum phase at some equilibrium points and be non-minimum phase at some others
[28].

For linear systems, the stability of the zero-dynamics implies the global stability of the internal
dynamics. However in nonlinear systems is different, local or even global asymptotic stability of
the zero-dynamics is enough to guarantee the local asymptotic stability of the internal dynamics
[21].

Dynamic Inversion. For non-minimum phase systems is applied stable inversion dynamics
that requires the solution of a boundary value problem and yields a non-causal solution.
However, stable inversion requires hyperbolic zero-dynamics i.e. that the zero-dynamics have
no eigenvalues on the imaginary axis [1].

Trajectory Tracking for Non-minimum Phase Systems. For non-minimum phase systems
perfect tracking and asymptotic tracking cannot be achieved. The inability of perfect tracking
for a non-minimum phase system has its roots in its inherent tendency of undershooting in its
step response. Thus the control design objective for non-minimum phase system should not
be perfect tracking or asymptotic tracking. Instead we should be satisfied with bounded error
tracking for desired trajectories of interest. For non-minimum phase systems perfect tracking of
arbitrary trajectories requires infinite control effort [21].

The tracking control is a topic of active current research. There are some methods to solve the
tracking problem for non-minimum phase systems presented below [21].

• Output redefinition so that the resulting zero-dynamics is stable. The new output should
be practically the same that the original output in the operation range.

• Approximate zero-dynamics or approximate feedback linearization. Obtain flat outputs
neglecting some terms that affect the full relative degree.

• Modification of the plant, i.e. addition of actuators and sensores, or modification of the
construction of the plant.

Also, there are other methods presented in [28] for tracking with bounded state trajectories of
non-minimum phase systems presented below:
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• The Method of Devasia, Chen, and Paven

This method has two steps, the first use numerical methods to solve the internal dynamics
that represent non-causal solution for the feedforward part, and the second step stabilize
the Jacobi linearized closed loop system.

• Byrnes Isidori Regulator This method use a exosystem to generate the reference trajectory
and stabilize the tracking error using the Jacobi linearized closed loop system.

The previous methods are restricted usually to smooth trajectories and low frequencies, and
depend of the neighborhood of the Jacobi linearization used for the stabilization. Also, for real
time application, it result computational expensive.

2.5 Output Feedback and Observers

In most cases the complete state information is not available due to lack of sensors, thus is
necessary to observe the other not measured states. Also, when the output measurement is
corrupted by noise, it is useful to apply and observer which reduces the noise effects and acts
as a filter. This case corresponds to the full-order observer. When the observability condition is
fulfilled is possible to design an observer. Furthermore its is required that the estimation error
converges quickly relative to the system’s dynamics, so that it can be used for the controller.

2.5.1 Linear Observers

An observer is a linear dynamical system that takes the inputs and outputs of the system we
are observing and produces an estimate of the system’s state.
The general representation is as follows [20]

˙̂x = Ax̂ + Bu + L(y− Cx̂) (2.57)

This version will also works for unstable systems. The feedback from the measured output
is provided by adding the term L(y− Cx̂). The dynamics of the estimation error is presented
below

˙̃x = (A− LC)x̃ (2.58)

The most used methods to calculate the observer gain are:
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Pole placement (Luenberger). Is a generic observer with which the objective is to guarantee
the stability of the estimation error and to fulfill design characteristics using the poles placement.
The matrix L must be chosen in such a way that the matrix A− LC has eigenvalues with negative
real parts, such that the error x̃ will go to zero. The convergence rate is determined by an
appropriate selection of the eigenvalues. The observer design problem is the dual of the state
feedback design problem as follows:

A↔ Aᵀ, B↔ Cᵀ, K ↔ Lᵀ (2.59)

The observer gain L is a matrix that tells how the estimation error is weighted and distributed
among the states. The observer thus combines measurements with a dynamical model of the
system [20].

Kalman Bucy Filter like Observer. Theoretically the Kalman filter is an estimator for the
linear-quadratic problem, it is an interesting technique to estimate the instantaneous state of a
linear dynamic system perturbed by white-noise measurements that is linearly related to the
corrupted white noise state. The resulting estimator is statistically optimal with respect to any
quadratic function of the estimation error [29].

The Kalman filter analyses a dynamic system’s behavior with external disturbance and mea-
surement noise. In general, the output is affected by noise measurement. In addition, the
process dynamics are also affected by disturbances. By defining, a continuous-time process and
measurement model is as follows:

ẋ = Ax + Bu + Wω

y = Cx + η
(2.60)

where w and v are zero-mean Gaussian noises (uncorrelated from each other). The following
process and measurement covariance matrices hold namely :

E{η(t)ηᵀ(s)} = Rδ(t− s) (2.61a)

E{η(t)ωᵀ(s)} = 0 (2.61b)

E{ω(t)ωᵀ(s)} = Qδ(t− s) (2.61c)

Using the general structure of the linear observer (2.57), in this approach L is the Kalman gain
calculated as:

L = SCᵀR−1, (2.62)
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where covariance matrix S, is the solution to a Riccati Differential Equation (RDE) or an
Algebraic Riccati Equation (ARE). For the time invariant linear case, the ARE is

AS + SAᵀ − SCᵀR−1CS + WQWᵀ = 0. (2.63)

The dependent variable in the Riccati differential equation of the Kalman-Bucy filter is the
covariance matrix of the estimation error, defined as the difference between the estimated state
vector x̂ and the true state vector x. The matrix S is the covariance matrix of the estimation
error, with initial value chosen as:

S0 = E{[x(t)− ˆx(t)][x(t)− ˆx(t)]ᵀ} at t→ ∞ (2.64)

The state error covariance S is a square and symmetric order n matrix, and must remain positive
definite to retain filter stability. Diagonal elements of this matrix are variances of errors of the
estimations for corresponding components of the state vector.

2.5.2 Nonlinear Observers

Extended Luenberger Observer. The gain of this Luenberger-like observer can be calculated
straightforward. The nonlinear system to is considered fully linearized using exact linearization,
then a linear observer can be used to calculate the nonlinear observer gain for the nonlinear
system. The proof is presented in the work [30].

The representation of the linear observer using the Brunovsky form (2.16) with the Luenberger’s
structure is:

˙̂z = Azẑ + Bzv + G(y− ŷ)

ŷ = Czẑ
(2.65)

where G is the linear observer gain and is calculated using the pole placement or Kalman
approach.

The linear observer (2.65) is converted to the nonlinear observer presented below

˙̂x = f̄ (x̂) + ḡ(x̂)u + L(x̂) (y− h(x̂)) , x̂(0) = x̂0 (2.66)

using the transformation of the observer gain trough the observability matrix as follows

L(x̂) = Ō−1(x̂)G (2.67)
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where Ō(x̂) is the observability matrix (2.68) of the system and is calculated as the Jacobian
matrix obtained from nonlinear coordinate transformation [31].

Ō(x̂) =
dT(x)

dx̂
=

d
dx̂


h(x)
L f h(x)

...
Ln−1

f h(x)

 (2.68)

Extended Kalman Filter (EKF). The extended Kalman filter is a local observer. This method
is useful when is possible to model the process and measurement noise together with the
nonlinear representation of the system :

ẋ = f (x) + g(x)u + Wω

y = h(x) + η
(2.69)

where ω , η, W are identical referring to (7.6).

Using the extended kalman filter method is possible to calculate the observer gain with the
approximate linearized system (around the mean of the states) and then replace it in the
nonlinear observer structure (2.73) [32].

The linearized system around the mean of the states is represented by :

A =
∂ f (x)

∂x x=x̂
, B = g(x̂), C =

∂h(x)
∂x x=x̂

. (2.70)

The Kalman gain is calculated as follows

L = SCᵀR−1, (2.71)

being S be a solution of the following Riccati equation

AS + SAᵀ − SCᵀR−1CS + WQWᵀ = 0. (2.72)

Finally the EKF observer equation results in :

˙̂x = f (x̂) + g(x̂)u + L(y− h(x̂)) (2.73)

2.6 Delay compensation in the measurement

Dead time processes, also called process with delay, are common in industry and it has been
shown that the controller design for systems exhibiting dead time is more difficult than for dead
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time free systems. Dead times are mainly caused by information, energy or mass transportation
phenomena, but they can also be caused by processing time or by the accumulation of time lags
in a number of simple dynamic systems connected in series [2].

Furthermore there are two types of dead-time system: dead time in the actuators and dead time
in the measurements, in this work is only analyzed dead time in the measurements because the
problem is with the considerable dead time of the touch screen [2].

2.6.1 Smith Predictor

The Smith predictor uses the system model without delay and the value of the delay to predict
the actual value of the delayed outputs. Using a perfect model of the system this approach
gives a ideal solution [2].

There are some approaches to work with the Smith predictor, in discrete and continuous time,
also work with the nonlinear or linear systems (linearized model in the case of nonlinear
system).

The continuous representation of the Smith predictor for linear SISO systems with output
delayed τ seconds is presented in Figure 2.2.

u(t) y(t)e(t)r(t)
+ -

ŷ(t)

e
−sτG(s)C(s)

Ĝ(s)

e
−sτ

y(t− τ)
ŷ(t− τ)

ysp(t)

+

-
+

Figure 2.2: Continuous representation of the Smith predictor [2].

The predicted continuous output is given by

ysp(t) = y(t− τ)− ŷ(t− τ) + ŷ(t); (2.74a)

hence, the continuous control error is calculated with the following equation

e(t) = r(t)− ysp(t) (2.74b)

e(t) = r(t)− (y(t− τ)− ŷ(t− τ) + ŷ(t)). (2.74c)
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3 Physical Setup

This chapter describes features of the ball and plate system hardware developed by the Control
Engineering Group of TU Ilmenau, in addition to the configuration it has. The details of the
calculations and selection criteria of the components are detailed in [3].

The physical setup of the ball and plate system is shown in Figure 3.1. The principle of
operation is based on the transmission of the movement from the servomotor to the screen
using cam-plates and a cardan joint in the rotation center.

The main characteristics of the physical configuration of the system are [3]:

• It has a spring connected to the screen and a fixed point, so that it always keeps in contact
the cam-plates and the support wheels connected to the screen.

• Because there is no fixed connection between the support wheels connected to the screen
and the cam-plates, there is movement of the contact points when rotating simultaneously
on both x and y axes (cf. Figure 3.1). Therefore, a compensation of the error caused
by the movement of the contact points using experimentally calculated lookup tables is
performed.

• The dimension of the screen is 39 cm x 70 cm. However, the operation range of displace-
ment of the ball over the screen is considered from −0.25 m to 0.25 m in the x− axis and
from −0.15 m to 0.15 m in the y− axis.

• The operation range of rotation in both axes allowed according to the physical configura-
tion is from −10 to 10 degrees.

• The maximum angular acceleration of the screen is |ϕ̈| = 7rad/s2 in such a way that the
ball does not lose contact with the surface of the screen, or said otherwise, that the ball
does not jump to obtain a measurement without errors of the ball’s position.
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Figure 3.1: Physical configuration of the ball and plate system [3].

3.1 Implementation

3.1.1 Servo System

There are many types of servosystems, in this case is referred to the AC servosystem. Highly
accurate AC servo systems consisting of compact, high-torque servo motors and a rich lineup
of servo driver. They are ideal for applications where high precision movement is required,
such as semiconductor manufacturing equipment, chip mounters, robots, and machine tools.
The servo system uses feedback loops so that the difference between the response and command
values will be as close as possible to zero. The servo system consists of three feedback loops :
position loop, speed loop, and current loop [33].

The model of the servomotor used is the Cartridge DDR C041A (cf. Figure 3.2), and the servo
driver AKD of the brand Kollmorgen. The specs of the servosystem are presented in Table 3.1
obtained from [34].
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Table 3.1: Specs of the Kollmorgen Cartridge Servosystem.

Brand Kollmorgen

Servomotor model C041A-13-3305

Maximum speed 1750 RPM

Continuous torque 4.57 N-m

Continuous current 2.38 A

Peak torque 12.3 N-m

Frecuency 50 Hz

Servodriver model ADK Servodriver

Figure 3.2: Servomotor Kollmorgen Cartridge DDR C041A.

3.1.2 Touch Screen

Lumio’s patented technology is based on the highly efficient use of small amounts of infrared
light, tiny cameras and advanced algorithms. The device controller supports USB (HID) and
serial R232 communications, emulates legacy protocols and operates in a wide variety of
operating systems [35].

The Lumio touch screen used is shown Figure 3.3a, it has a resolution of 4096x4096 pixels and
screen size of 0.395mx0.7m. Also can operate in single-touch and multi-touch mode.

3.1.3 Encoders

The encoder used is C80E ROTAPULS incremental encoder with resolution 4096 pulses/rev.
This encoder is hollow shaft and is presented in the Figure 3.3b.
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(a) Lumio Crystal Touch Screen. (b) Incremental encoder C80E ROTAPULS.

Figure 3.3: Instrumentation sensors.

3.1.4 Real Time System - dSpace

The harware component used is DS1104 RD Controller Board and the software component
Control Desk v5.1 both from dSpace GmbH.

The DS1104 RD Controller Board is a piece of hardware that upgrades your PC to a powerful
development system for rapid control prototyping. The real-time hardware based on PowerPC
technology and its set of I/O interfaces makes the board an ideal solution for developing
controllers in various industrial field [36].

The simulations have been done in Matlab/Simulink and the implementation of the C-code
generated is downloaded in the DS1104 RD Controller Board. Then for monitoring, saving data
and run the program is used the dSpace Control Desk v 5.1 as a process interface.

3.1.5 Mechanics

The ball and plate system use the cam-plate mechanism for transmit the movement from the
motors to the screen (cf. Figure 3.4). Also, a cardan-joint is used as center of rotation and a
spring to maintain the contact between the wheels (attached to the screen) and the cam plates.

3.2 Implementation

The system implemented by the Control Engineering Group of TU Ilmenau, presented in
Figure 3.5 , is used to validate the dynamical model and to perform the experimental tests of
the control system designed in the present work.
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(a) Isometric view from top. (b) Isometric view from bottom.

Figure 3.4: Mechanism of movement transmission using cam-plates.

Figure 3.5: Ball and plate system implemented by the Control Engineering Group of TU Ilmenau
[3].
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4 Modeling of the System

In order to obtain the equations of the ball and plate system, for purposes of system analysis
and controller design , we proceed to calculate the kinematics and then the dynamic modeling
using the Euler-Lagrange approach [37]. The tables of variables and parameters presented in
appendix A is taken into account for the modeling process.

4.1 Considerations

In order to simplify the mathematical modeling, the following assumptions are used [8, 18]

• The ball never loses contact with the plate.

• There is no sliding between the ball and the plate.

• There is no rolling friction between the ball and the plate.

• The ball no spin about its vertical axis.

• The servomotors are considered to be sufficiently powerful. Moreover, the servo system
has an inner control loop to compensate the effect of the displaced center of mass of the
plate with respect to the geometric center (the distribution of mass in the screen is not
uniform) and the effect of the spring on the dynamics of the plate (since its function
is mainly to keep the monitor in contact with the cam plates but not to influence in
the dynamics of the ball). In other words, the inner loop of the servosystem practically
controls the plate’s dynamics.

4.2 Physical Con�guration

In order to express the position of the ball (center of mass) in the ball and plate system, two
coordinates systems are used. The first coordinates system OXYZ is fixed with center located
in the cardan-joint and serves mainly for the calculation of the energy (kinetic and potential) of
the ball because represent absolute coordinates. The second coordinate system Oxyz is mobile,
also with center located in the cardan-joint, important because it relates directly to the position
reference for the tracking control.



4 Modeling of the System 35

'

#

X

Y

Z

x

y

z

cardan-joint

O

Figure 4.1: Fixed (red) and mobile (green) coordinate system.

The plane Oxy in Figure 4.1 is parallel to the surface of the screen (plate) as shown in Fig-
ure 3.1.

The ball’s position vector and the ball’s velocity vector in the space fixed coordinate system are
defined as follows

~r =

X
Y
Z

 , ~̇r =

Ẋ
Ẏ
Ż

 , (4.1)

also ball’s position vector and the ball’s velocity vector in the mobile coordinate system are
defined as

~r′ =

x
y
z

 , ~̇r′ =

ẋ
ẏ
ż

 . (4.2)

The transformation between both coordinate systems is presented in the kinematic section
(4.7).

4.3 Kinematics

The kinematics represent the relation between the space-fixed coordinates and plate-fixed
coordinates. In this part is used the convention of positive angles in counterclockwise (CCW).
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4.3.1 Rotational Matrix

Using the transformation matrices due rotation, the following coordinate transformations are
considered to transform the ball’s position from the mobile coordinates Oxyz to the fixed
coordinates OXYZ presented in Figure 4.1 : first rotation around the X-axis (ϑ) (4.3) and then
around the y-axis (ϕ) (4.4).

Rotation about the X−axis:

Rx (ϑ) =

1 0 0
0 cos(ϑ) − sin(ϑ)
0 sin(ϑ) cos(ϑ)

 (4.3)

Rotation about the y-axis:

Ry (ϕ) =

 cos(ϕ) 0 sin(ϕ)

0 1 0
− sin(ϕ) 0 cos(ϕ)

 (4.4)

The total transformation matrix is calculated as the product of the previous matrices.

Rxy (ϑ, ϕ) = Rx (ϑ)Ry (ϕ) (4.5a)

Rxy (ϑ, ϕ) =

 cos(ϕ) 0 sin(ϕ)

sin(ϑ) sin(ϕ) cos(ϑ) − sin(ϑ) cos(ϕ)

− cos(ϑ) sin(ϕ) sin(ϑ) cos(ϑ) cos(ϕ)

 (4.5b)

4.3.2 Transformation of Coordinates

The z-coordinate of the ball is constant

d̃ = dcs + rb, (4.6)

where dcs is the distance between the cardan joint and the screen surface, and rb the radius of
the ball.
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On the other hand, in order to obtain the ball’s position in absolute coordinates the transforma-
tion from the mobile coordinates to the fixed coordinates is performed as followsX

Y
Z

 = Rxy (ϑ, ϕ)

x
y
d̃

 . (4.7)

Therefore, ball’s position in fixed coordinates results

~r =

X
Y
Z

 =

 cos(ϕ)x + sin(ϕ)d̃
sin(ϑ) sin(ϕ)x + cos(ϑ)y− sin(ϑ) cos(ϕ)d̃
− cos(ϑ) sin(ϕ)x + sin(ϑ)y + cos(ϑ) cos(ϕ)d̃

 . (4.8)

This result will be useful for calculating the energy of the ball.

4.4 Dynamic Modeling

In order to obtain the equations of motion of the ball and plate system, the Euler-Lagrange
approach is used. The Euler-Lagrange approach will be used since it is easier for sub actuated
systems, like the present one, than the Newton approach [37].

4.4.1 Lagrange Approach

Only the equations for the ball’s dynamics will be deducted due to the assumption of the
internal loop of the servosystem presented in 4.1.

4.4.1.1 Kinetics Energy

Using the methodology presented in [5] the kinetics are obtained as follows:

Angular Velocity of the Plate The angular velocity of the plate in global coordinates is

~ωp =

ωpx

ωpy

ωpz

 . (4.9)
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Also, relation between the rotation matrix and the angular velocity of the plate is given by
[37]

Rxy (ϑ, ϕ) Ṙᵀxy (ϑ, ϕ) =

 0 −ωpz ωpy

ωpz 0 −ωpx

−ωpy ωpx 0

 , (4.10)

in such a way that after the multiplication of the matrices (4.5b) and comparing term by term,
the determined angular velocity of the plate results

~ωp =

ϑ̇ cos(ϕ)

ϕ̇

ϑ̇ sin(ϕ)

 . (4.11)

Angular Velocity of the Ball The relative angular velocity of the ball respect to the plate
(considering rolling without twisting) is

~ωb/p =

−
ẏ
rb

ẋ
rb

0

 . (4.12)

Hence, the absolute angular velocity of the ball results

~ωb = ~ωp + ~ωb/p =

ϑ̇ cos(ϕ)− ẏ
rb

ϕ̇ + ẋ
rb

ϑ̇ sin(ϕ)

 . (4.13)

Kinetic Energy of the Ball Using the ball’s position in absolute coordinates (4.8) and the
absolute angular velocity of the ball (4.13), the kinetic energy of the ball is calculated as

T =
1
2

mb~̇r ·~̇r +
1
2

Jb~̇ωb · ~̇ωb (4.14a)

T =
1
2

mb
(
Ẋ2 + Ẏ2 + Ż2)+ 1

2
Jb

[(
ϑ̇ cos(ϕ)− ẏ

rb

)2

+

(
ϕ̇ +

ẋ
rb

)2

+
(
ϑ̇ sin(ϕ)

)2
]

, (4.14b)

with Jb as the identical moment of inertia in x and y-axis and mb as the mass of the ball.
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4.4.1.2 Potential Energy

The potential energy of the ball is calculated as follows

V = mbgZ. (4.15)

Using the absolute coordinate Z of the ball from (4.8), the potential energy results:

V = mbg
(
− cos(ϑ) sin(ϕ)x + sin(ϑ)y + cos(ϑ) cos(ϕ)d̃

)
. (4.16)

4.4.1.3 Lagrange Equations

As mentioned before, only the dynamical modeling of the ball is considered. The Lagrangian is
calculated by

L = T −V. (4.17)

The vector of generalized coordinates, that represents the degree of freedom of the system, for
the ball and plate system is

q =
(

x y ϑ ϕ
)ᵀ

. (4.18)

Furthermore the Lagrange’s equation is [cf. 37]

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi, (4.19)

with the generalized force Qi.

Neglecting the viscous damping the overall system is conservative (Q1 = 0 , Q2 = 0). Also,
considering only the degree of freedom of the ball (x and y), the resulting equations are in
x-axis

ẍ
(

mb +
Jb

rb
2

)
+ ϕ̈

(
mbd̃ +

Jb

rb

)
− y sin(ϕ)ϑ̈mb +

1
2

sin(2ϕ)ϑ̇2mbd̃− x sin2(ϕ)ϑ̇2mb

− 2ẏ2 sin(ϕ)ϑ̇mb − ϕ̇2xmb −mbg cos(ϑ) sin(ϕ) = 0, (4.20)

and in y-axis

ÿ
(

mb +
Jb

rb
2

)
+ ϑ̈

(
sin(ϕ)xmb − cos(ϕ)d̃mb −

Jb

rb
cos(ϕ)

)
+

Jb

rb
ϕ̇ sin(ϕ)ϑ̇

+ 2 sin(ϕ)ϑ̇ϕ̇d̃mb + 2ϕ̇x cos(ϕ)ϑ̇mb + 2 sin(ϕ)ẋϑ̇mb − yϑ̇2mb + mbg sin(ϑ) = 0 (4.21)
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5 Analysis of the System

The rewriting of the equations obtained in the modelling into state-space representation allows
the analysis regarding observability and controllability. This process allows to obtain a model in
the most compact representation (input affine state-space model) to later design the controller
and observer in the operating range, knowing beforehand if the system is controllable and
observable in said operating range.

5.1 Model of Ball and Plate Dynamics

New constants are used to reduce the length of the equations (4.20) and (4.21)

c̄1 =
mr2

mr2 + J
, c̄2 =

d̃mr2 + Jr
mr2 + J

, c̄3 =
J + 2d̃mr

mr
, c̄4 =

J + d̃mr
mr

(5.1)

The following equations are obtained after replacing the new constants

ẍ = c̄1

(
− d̃

2
sin(2ϕ)ϑ̇2 + x sin2(ϕ)ϑ̇2 + 2ẏ sin(ϕ)ϑ̇ + ϕ̇2x

+ g cos(ϑ) sin(ϕ)− c̄2

c̄1
ϕ̈ + y sin(ϕ)ϑ̈

)
, (5.2a)

ÿ = c̄1

(
− c̄3 ϕ̇ϑ̇ sin(ϕ)− 2ϕ̇x cos(ϕ)ϑ̇− 2 sin(ϕ)ẋϑ̇ + yϑ̇2 − g sin(ϑ)

+
(
−x sin(ϕ) + c̄4 cos(ϕ))ϑ̈

) )
. (5.2b)

The measured outputs of the system considering the available hardware, i. e. the touch screen
and the two encoders, are

h(x) =
(

x ϕ y ϑ
)ᵀ

. (5.3)

Note that the considered output for the trajectory tracking control is reduced to the ball’s
position.
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State Space Model Using the equations (5.2a) and (5.2b) obtains the following form of the
system

ẋ = F(x, u)

y = h(x).
(5.4)

This leads to the state vector

x =
(

x1 x2 x3 x4 x5 x6 x7 x8

)ᵀ
=
(

x ẋ ϕ ϕ̇ y ẏ ϑ ϑ̇
)ᵀ

, (5.5)

with

F(x, u) =



x2

c̄1
(
− d̃

2 sin(2x3)x2
8 + x1 sin2(x3)x2

8 + 2x6 sin(x3)x8 + x2
4x1+

g cos(x7) sin(x3)− c̄2
c̄1

u1 + x5 sin(x3)u2
)

x4

u1

x6

c̄1{−c̄3x4x8 sin(x3)− 2x4x1 cos(x3)x8 − 2 sin(x3)x2x8 + x5x2
8−

g sin(x7) + (−x1 sin(x3) + c̄4 cos(x3))u2}
x8

u2



, (5.6)

and the measured outputs of the system

h(x) =
(

x1 x3 x5 x7

)ᵀ
. (5.7)

In order to obtain the system in the input-affine form, we use ϑ̈ and ϕ̈ as inputs:

u =
(

u1 u2

)ᵀ
=
(

ϕ̈ ϑ̈
)ᵀ

(5.8)

Therefore, the resulting input-affine system is

ẋ = f (x) + g(x)u

y = h(x),
(5.9a)
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where

f (x) =



x2

c̄1

(
− d̃

2 x2
8 sin(2x3) + x1x2

8 sin2(x3) + 2x6x8 sin(x3) + x1x2
4 + g sin(x3)cos(x7)

)
x4

0
x6

c̄1
(
−c̄3x4x8 sin(x3)− 2x1x4x8 cos(x3)− 2x2x8 sin(x3) + x5x2

8 − g sin(x7)
)

x8

0


,

(5.9b)

and

g(x) =



0 0
−c̄2 c̄1x5 sin(x3)

0 0
1 0
0 0
0 −c̄1x1 sin(x3) + c̄2cos(x3)

0 0
0 1


. (5.9c)

The highlighted blue terms represent the coupling terms between the two ball and beam
subsystems (reference model presented in [38]) that conform the ball and plate system. It is
also useful as a simple way to validate the model.

5.2 Observability

A system is observable if and only if the system state can be found by observing the input and
output over a period of time from x(t) to x(t + h). Also, the observability condition is necessary
to see what is going on inside the system under observation, and must be addressed before
designing the observer [20].

The observability analysis is useful because it will determine if a set of sensors is sufficient for
controlling a system [20].
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5.2.1 Observability for MIMO Nonlinear System

For the analysis of observability, a system in the general nonlinear form is considered:

ẋ = F(x, u)

y = h(x)
(5.10)

In order to determine the observability the following definitions are presented [cf. 39]:

Indistinguishability. A pair of initial states (x1
0, x2

0) of the system are called indistinguishable,
if:

∀u ∈ U, ∀t ≥ 0 : h(ϕ(t; x1
0, u)) = h(ϕ(t; x2

0, u)). (5.11)

Indistinguishability is so an equivalence relation on x.

Observability. The system is called observable (relative to x0) if it does not admit any indistin-
guishable pair. This definition is very general and without any practical relevance, therefore the
concept of weak observability is presented.

Weak Observability. The system is called weak observable (relative to x0) when a neigh-
borhood S for any x exists in which there is no indistinguishable state from x in S. This
definition does not prevent cases where the trajectories have to go far from S before one can
distinguish between two different states of S. Therefore, the concept of local weak observability
is presented.

Local Weak Observability. The system is called local weakly observable (with respect to x0),
if a neighborhood S for all x exists, such that in each neighborhood V of x where is V ⊆ S,
there is no indistinguishable state from x in V if in the time intervals considered the trajectories
remain in V. This definition opens the way to using a geometric approach, and thereby the
rank conditions.

Observability Map. In the case of smooth systems a possibility to check the observability
is the differentiation of the ouput. This lead to define the observability map. In general the
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observability map is defined as

ok(x) :=



h(x)
LFh(x)
L2

Fh(x)
...

Lk−1
F h(x)


, where h(x) =


h1

h2
...

hq

 . (5.12)

The expression ok(x) represent the observability map with order k. There are two types of
observability [39]:

• Partial Observability: When k < n, means that only a part of states are observable (or
necessary for the controller design).

• Full Observability: When k = n, means that all states can be observed. This case implies
the existence of the "normal observable form".

It is also possible to reduce the length of the observability map when the system is full relative
degree and the relative degree of each output is known, using the following vector

on(x) =



y1

ẏ1
...

y(n1−1)
1

y2
...

y(n2−1)
2

...

y(nq−1)
q



=



h1

LFh1
...

L(n1−1)
F h1

h2
...

L(n2−1)
F h2

...

L(nq−1)
F hq



, (5.13)

where the following relations must be satisfied (for detailed explanation see [40]):

q

∑
i=1

ni = n, ν− 1 = max
i=1:q
{ni − 1}, u[ν−1] ∈ Dν

u.

The previous representation of the observability map is only a simplification reducing the
redundant terms. However, through the symbolic calculation (i. e. using Maple) it is possible to
generalize the calculus by using the representation (5.12).
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Observability Matrix. The observability matrix at the point x = x0 is defined as

Ok(xo) :=
∂ok(x)

∂x

∣∣∣∣
x=xo

. (5.14)

The value of x0 represent any specific initial state of the system. The system is locally observable
if the Jacobian Ok(xo) has rank n, i. e. when the the rank condition is satisfied as follows:

rank(Ok(x0)) = n (5.15)

The system is weak locally observable at x0, when the rank condition is fulfilled. However,
when the rank condition is fulfilled for all x0, the system is weak globally observable.

5.2.2 Observability of the Ball and Plate System

The available outputs of the system are the ball’s position and the plate’s angles:

h(x) =


y1

y2

y3

y4

 =


x1

x3

x5

x7

 (5.16)

Observability map Building the observability map using (5.12) provides

on(x) =



y1
...

y4

ẏ1
...

ẏ4
...

y(7)1
...

y(7)4



=



h(x)
LFh(x)
L2

Fh(x)
...

L7
Fh(x)


=



o1(x)
o2(x)
o3(x)

...
o8(x)


. (5.17)



5 Analysis of the System 46

The normal observer form is considered using k = n. The required Lie derivatives are calculated
as follows:

o1(x) = h(x) =
(

x1 x3 x5 x7

)ᵀ
(5.18a)

o2(x) = LFh(x) =
∂o1(x)

∂x
F(x, u) =

(
x2 x4 x6 x8

)ᵀ
(5.18b)

o3(x) = L2
Fh(x) =

∂o2(x)
∂x

F(x, u) (5.18c)

... (5.18d)

o8(x) = L7
Fh(x) =

∂o7(x)
∂x

F(x, u) (5.18e)

Observability Matrix. Considering k = n the observability matrix at x = x0 is obtained by
evaluating

On(x0) =
∂on(x)

∂x x=x0

. (5.19)

The resulting observability matrix using symbolic calculation is:

On(xo) =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


32x8

⇒ Õn(xo) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


32x8

(5.20)

Rank Condition of the Observability Matrix. The elements ∗ in the observability matrix
obtained in (5.20) represent general terms that do not affect the rank of the matrix. After
ordering the columns of the observability matrix it is obvious that there exist eight linearly
independent columns. Hence, the rank is

rank(On(xo)) = 8 = n. (5.21)



5 Analysis of the System 47

The rank is kept constant independent of the states x and inputs (universal inputs [39]).
Therefore, global observability is shown for the ball and plate system.

5.3 Controllability

Controllability is a key issue that must be addressed before we start to design a control system.
The analysis of controllability for MIMO nonlinear system is analogous to the SISO nonlinear
case, detailed also in [32]. Furthermore, in the same way as the observability analysis, the
controllability analysis is based on the geometric approach.

5.3.1 Controllability for MIMO Nonlinear Input A�ne System

The nonlinear system in the input-affine representation is as follows

ẋ = f (x) + g(x)u, (5.22)

with x ∈ M ⊂ Rn , u ∈ U ⊂ Rp.

In order to present the mean of controllability, the following definitions are useful:

Reachable Set from x0. Let R(x0, T) ⊂ Rn, with T = [t0, t f ], to be the subset of all states
accessible from state x0 and through the admissible input, in time T with the trajectories being
confined to a neighborhood V of x0 [28].

Locally Accessible. The system is locally accessible if given any x0 ∈ M , the reachable set
contains a nonempty open set of M for all neighborhood of V and all T > 0 [41].

Locally Strongly Accessible. The system is locally accessible if given any x0 ∈ M then for any
neighborhood V of x0, the reachable set contains a nonempty open set for any T > 0 sufficiently
small [41].
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Controllable System. The system is controllable if there exists an admissible input vector u(t)
such that the system state x(t) can travel from an initial point x(t0) to x(t f ) within a finite time
interval T [28].

The definitions presented above help to understand the concept of controllability. However, for
the practical calculation whether the system is controllable or not, exist the geometric approach
that use the Lie’s algebra presented in [23]. First the controllability matrix has to be computed
and then its rank is evaluated.

Controllability Matrix. The matrix g(x) is decomposed into parts related to each input inde-
pendently.

ẋ = f (x) +
p

∑
i=1

gi(x)ui (5.23)

The controllability matrix for the MIMO system is defined as follows:

Q(x0) :=
(

g1 · · · gp ad f g1 · · · ad f gp · · · adn−1
f g1 · · · adn−1

f gp

)
, (5.24)

where the terms gi and f represent gi(x) and f (x) respectively, and are used in order to reduce
the size of expressions [23, 42].

Rank Condition of the Controllability Matrix. Evaluating the rank condition at any initial
condition state x0:

rank(Q(x0)) = n. (5.25)

When the rank condition is fulfilled, then the system is locally controllable at x0. Also, when
the rank condition is fulfilled for any x0, the system is globally controllable.

5.3.2 Controllability of the Ball and Plate System

The state-space equation of the system is represented as follows :

ẋ = f (x) + g1(x)u1 + g2(x)u2 , (5.26a)
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where:

g1(x) =



0
−c̄2

0
1
0
0
0
0


, g2(x) =



0
c̄1x5 sin(x3)

0
0
0

−c̄1x1 sin(x3) + c̄2 cos(x3)

0
1


. (5.26b)

Controllability Matrix The controllability matrix (5.24) for n = 8 and p = 2 is:

Q(x) =
(

g1 g2 ad f g1 ad f g2 · · · ad7
f g1 ad7

f g2

)
, (5.27a)

and can be represented in the following form:

Q(x) =
(

Q11 Q21 Q12 Q22 · · · Q18 Q28

)
. (5.27b)

The Lie Brackets for the inputs u1 and u2 are calculated as follows:

Qi1 = gi (5.28a)

Qi2 = ad f gi =
∂gi

∂x
f − ∂ f

∂x
gi (5.28b)

Qi3 = ad2
f gi =

∂Qi2

∂x
f − ∂ f

∂x
Qi2 (5.28c)

Qi4 = ad3
f gi =

∂Qi3

∂x
f − ∂ f

∂x
Qi3 (5.28d)

... (5.28e)

Qi8 = ad7
f gi =

∂Qi7

∂x
f − ∂ f

∂x
Qi7 (5.28f)

i = 1, 2
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Therefore controllability matrix Q(x) is obtained and performing row swapping, in order to
calculate the matrix rank, we obtain the matrix Q̃(x) as follows:

Q̃(x) =



1 0 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 0 · · · 0
0 0 −1 0 0 0 0 0 · · · 0
0 0 0 −1 0 0 0 0 · · · 0
−c̄2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · ∗

0 ♦ ∗ ∗ ∗ � ∗ ∗ · · · ∗
0 0 ∗ c̄2 ∗ ∗ ∗ ∗ · · · ∗
0 0 0 ♦ ∗ ∗ ∗ � · · · ∗


8x16

(5.29)

The elements ∗ of the controllability matrix represent the non constant terms, depending on the
states of the system. These terms are quite extensive; therefore, not shown and only analyzed.

Rank Condition. Evaluating the rank locally at x0, the following cases are obtained:

• When x3 ≡ 0∧ x4 ≡ 0∧ x7 ≡ π
2 ∧ x8 ≡ 0⇒ rank(Q(x0)) = 4 (∗ = 0,� = 0,♦ 6= 0).

It represent the physical condition ϕ = 0 , ϕ̇ = 0, ϑ = π
2 , which is impossible to occur

because the designed ball and plate system have restriction in the plate angles from −10°
to 10°.

• When x3 ≡ π
2 ∧ x4 ≡ 0∧ x8 ≡ 0⇒ rank(Q(x0)) = 6 (∗ = 0,� 6= 0,♦ = 0).

It represent the physical condition ϕ = π
2 , ϕ̇ = 0. In the same way as the previous case,

this state is impossible to occur due to the designed physical configuration.

• In all other cases: rank(Q(x0)) = 8 = n.

The ball and plate system is locally controllable for the operation range, and therefore it is
possible to influence the dynamics of all modes of the system with a controller.

5.4 Linearization

The system in the input affine form (5.9a) is used in this process. In order to use linear controller
design techniques, linearization of the system will be performed since linear control techniques
are easier to apply and assign performance.
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5.4.1 Jacobi Linerization around the Equilibrium Point

The linearization is done around the equilibrium point, and the process explained in 2.1 is
performed.

Calculation of the equilibrium point xe. The equilibrium point is calculated zeroing the
derivative of the states as follows

ẋ = 0⇒ f (xe) + g(xe)ue = 0 (5.30)

The states vector and input in the equilibrium are

xe =
(

x1e x2e x3e x4e x5e x6e x7e x8e

)ᵀ
(5.31a)

ue =
(

u1e u2e

)ᵀ
. (5.31b)

Using the equations (5.9b) and (5.9c) , the following equations are obtained

x2e = 0 (5.32a)

c̄1 (g cos(x7e) sin(x3e)) = 0 (5.32b)

x4e = 0 (5.32c)

u1e = 0 (5.32d)

x6e = 0 (5.32e)

c̄1 (−g sin(x7e)) = 0 (5.32f)

x8e = 0 (5.32g)

u2e = 0 (5.32h)

From (5.32b) and (5.32f) , the value of x3e and x7e result

x3e = kπ , k ∈ Z (5.33a)

x7e = kπ (5.33b)

In the operation range is considered k = 0. Hence , the resulting equilibrium point is

xe =
(

x1e 0 0 0 x5e 0 0 0
)ᵀ

(5.34a)

ue =
(

0 0
)ᵀ

. (5.34b)
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The obtained equilibrium point is interpreted as infinite equilibrium points corresponding to
static positions of the ball on the plate in horizontal position.

Calculation of the linear matrices. Using the system in the input-affine form (5.9a), the
matrices of the linearized system around the equilibrium point are calculated by the Jacobian
method. First the dynamics matrix results

A =
∂ f (x)

∂x x=xe
=



0 1 0 0 0 0 0 0
0 0 c̄1g 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −c̄1g 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (5.35a)

the control matrix results

B = g(xe) =

(
0 −c̄2 0 1 0 0 0 0
0 0 0 0 0 −c̄2 0 1

)ᵀ
, (5.35b)

and the output matrix results

C =
∂h(x)

∂x x=xe
=


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 (5.35c)

The locally linearized system have the following form

∆ẋ = A∆x + B∆u

y = Cx
, (5.36)

where ∆x = x− xe and ∆u = u− ue .

It is appreciated that the system obtained (5.36) represents the union of two decoupled linear
systems.
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6 Controller Design

The controllers to design are based on the Jacobi linearized model (5.36) and on the nonlinear
model (5.9a) of the ball and plate system. The controllers are categorized by the linear and non-
linear approaches. Also they will be tested for regulation and tracking control. In this chapter
is considered the full state feedback, then in the section 7 will be designed the correspondent
observer.

6.1 Linear Controller Design

Considering the structure of the linearized system:

ẋ = Ax + Bu

y = x
(6.1)

The control action is calculated from the error and a control gain K as follows:

e = x∗ − x (6.2a)

u = Ke, (6.2b)

where x∗ is the reference state and e is the control error. Therefore the closed loop system has
the following form:

ẋ = Ax + BK(x∗ − x) (6.3a)

ẋ = (A− BK)x + BKx∗, (6.3b)

where K must guarantee stability, i.e. that A− BK be Hurwitz. In order to design the linear
controller, the design process explained in (2.3.1) is followed below.

6.1.1 Pole Placement

There are criteria for the first and second order systems to calculate the closed-loop poles that
represent a desired performance, i.e. characteristics such as settling time, overshoot, rise time,
etc. However, for high order systems, as the ball and plate, one is taken into account choose the
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poles to ensure stable response without overshoot; therefore, pure real LHP poles are chosen.
Also, poles closest to the imaginary axis are considered as dominant poles because determine
the duration of the transient state.

On the other hand, it is important to verify that the required control effort and the states of the
closed-loop system are within the physical and / or considered constraints (see section 3). In
general, the further you move the LHP poles respect to the imaginary axis, the more control
effort it takes.

As was explained in 5.4, the system (5.36) represent two decoupled linear subsystems; therefore,
the controller gain K has the following form

K =

(
K11 K12 K13 K14 0 0 0 0
0 0 0 0 K21 K22 K23 K24

)
. (6.4)

Considering the following desired closed-loop poles

sdesired = {s1, s2, s3, s4, s5, s6, s7, s8}, (6.5)

where the poles for the first linear subsystem, i.e. s1, s2, s3, s4, can be used in the second linear
subsystem. Also the equation (2.10) is used to relate the characteristic polynomial of the system
(5.36) to the desired characteristic polynomial as follows

det (sI − (A− BK)) = (s− s1) (s− s2) . . . (s− s8) , (6.6)

obtaining

s4 + (−c̄2K12 + K14) s3 + (−c̄2K11 + K13) s2 + c̄1gK12s + c̄1gK11 = (s− s1) (s− s2) (s− s3) (s− s4)

(6.7a)

s4 + (c̄2K22 + K24) s3 + (c̄2K21 + K23) s2 − c̄1gK22s− c̄1gK21 = (s− s5) (s− s6) (s− s7) (s− s8)

(6.7b)

where there are eight unknown values and eight equations; therefore, K can be solved. For
practical purposes, the controller gain K is calculated using the command place(A, B, sdesired) in
Matlab.

Finally the control action results

u = K (x∗ − x) , (6.8)

where the reference state x∗ for stabilization tasks to constant references is

x∗ =
(

x∗1 0 0 0 x∗5 0 0 0
)ᵀ

, (6.9a)
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and for control of variant references as smooth functions or pseudo-tracking, since this type
of control is only feedback for stabilization, could be improved using the following state
reference

x∗ =
(

x∗1 ẋ∗1 0 0 x∗5 ẋ∗5 0 0
)ᵀ

, (6.9b)

that is deduced from the linearized model (5.36) as a approximation of the trajectory state
generation.

6.1.2 LQR Controller

Using the procedure explained in 2.3.1, the cost function associated to the optimal control of
the Jacobi linearized system (5.36) is

J =
∞∫

0

(∆xᵀQ∆x + ∆uᵀR∆u)dt, (6.10)

where the matrices Q and R selected, after some tests, have the following form

Q = ρ



1 0 0 0 0 0 0 0
0 κ 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 κ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 κ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 κ


, R =

(
1 0
0 1

)
, (6.11)

with ρ and κ chosen according to the desired performance. The values ρ = 300 and κ = 0.3 give
acceptable performance that will be presented in the simulation tests chapter.

The control gain is given by

Klqr = R−1BᵀP, (6.12)

where the matrix P must satisfy the algebraic Riccati equation

AᵀP + PA− PBR−1BᵀP + Q = 0, (6.13)
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and gives the control law of the form ∆u = Klqr∆x, which can then be used to derive the control
law in terms of the original variables

u = ue + ∆u = ue − Klqr∆x (6.14a)

u = −Klqr (x− x∗) , (6.14b)

where the reference state is the same as that deduced in (6.9).

In practice the matrix P is calculated using the Matlab command are(A, B, Q, R).

Finally, as results, the closed-loop response of the system to a step input of the desired position
is shown in Figure. The response can be tuned by adjusting the weights Q and R.

The control diagram for simulation test of the linear controllers, pole placement and LQR
controllers that use only feedback in the control action, applied to the nonlinear system (5.9a) is
presented in Figure 6.1.

ue Klqr
x
∗ +

-

_x = f(x) + g(x)u
y = x

y

Figure 6.1: Linear controller applied to the nonlinear system.

6.2 Nonlinear Controller Design

6.2.1 Feedback Linearization

As was explained in the introduction (see section 1), the ball and plate system is a extension of
the ball and beam system; therefore, some known characteristics of the ball and beam system
are taken to be applied to the ball and plate system with the aim of facilitating the analysis and
design of the control system. In this way, it is not possible to apply input-state linearization to
the ball and plate system (5.9a) since it is not possible to apply input-state linearization to the
ball and beam system because it does not satisfy the involutivity condition as is explained in
[28].

Considering the nonlinear input affine model of the ball and plate system (5.9a), we proceed
first to calculate the relative degree of each output and then analyze the internal dynamics in
order to know if is possible to apply input-output linearization explained in 2.3.2.1.
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Relative Degree of the System Calculating the relativ degree of each output:

y1 = h1(x) = x1

ẏ1 = L f h1(x) = x2

ÿ1 = L2
f h1(x) + Lg1L f h1(x)u1 + Lg2L f h1(x)u2 = f2(x)− c̄2u1 + c̄1x5 sin(x3)u2

(6.15a)

y2 = h2(x) = x5

ẏ2 = L f h2(x) = x6

ÿ2 = L2
f h1(x) + Lg1L f h2(x)u1 + Lg2L f h2(x)u2 = f6(x) + c̄1(−x1 sin(x3) + c̄4 cos(x3))u2

(6.15b)

The vector relative degree obtained is

r = {r1, r2} = {2, 2}, (6.16)

but is necessary to verify if the vector relative degree is well defined using the decoupling
matrix.

From (6.15), the following relationship is obtained(
y(2)1

y(2)2

)
=

(
L2

f h1(x)

L2
f h2(x)

)
+

(
Lg1L f h1(x) Lg2L f h1(x)
Lg1L f h2(x) Lg2L f h2(x)

)(
u1

u2

)
(6.17)

and represent the change of input as follows(
v1

v2

)
= B(x) + A(x)

(
u1

u2

)
. (6.18)

The matrix A(x), called the decoupling matrix, is

A(x) =

(
−c̄2 c̄1x5 sin(x3)

0 c̄1(−x1 sin(x3) + c̄4 cos(x3))

)
(6.19)

and the matrix B(x) obtained is

B(x) =

(
c̄1

(
− d̃

2 x2
8 sin(2x3) + x1x2

8 sin2(x3) + 2x6x8 sin(x3) + x1x2
4 + g sin(x3) cos(x7)

)
c̄1
(
−c̄3x4x8 sin(x3)− 2x1x4x8 cos(x3)− 2x2x8 sin(x3) + x5x2

8 − g sin(x7)
) )

(6.20)

The rank of A(x) is 2, i.e. is invertible. Therefore, the vector relative degree (6.16) is well defined.
Also, the sum relative degree is:

r = r1 + r2 = 4. (6.21)
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Therefore, there are n− r = 4 internal states.

Byrnes Isidori Normal Form The original system is transformed to the Byrnes Isidori normal
form using the diffeomorphism

z = T(x) =



h1(x)
L f h1(x)

h2(x)
L f h2(x)

τ5(x)
τ6(x)
τ7(x)
τ8(x)


=

(
ξ

η

)
=



ξ1
1

ξ1
2

ξ2
1

ξ2
2

η1

η2

η3

η4


, (6.22)

where ξ represent the external states and η the internal states. Also, x = T−1(z) and T(0) = 0.

External Dynamics The external dynamics is given by

ξ̇1
1 = ξ1

2

ξ̇1
2 = v1

y1 = ξ1
1

(6.23a)

ξ̇2
1 = ξ2

2

ξ̇2
2 = v2

y2 = ξ2
1

(6.23b)

which is presented in the form the Brunovsky as
ξ̇1

1

ξ̇1
2

ξ̇2
1

ξ̇2
2

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




ξ1
1

ξ1
2

ξ2
1

ξ2
2

+


0 0
1 0
0 0
0 1


(

v1

v2

)
(6.24a)

y =

(
1 0 0 0
0 0 1 0

)
ξ1

1

ξ1
2

ξ2
1

ξ2
2

 (6.24b)
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Internal Dynamics In order to get a representation of the internal dynamics without the direct
influence of the inputs, the involutivity of the distribution {g1, g2} is checked

[g1, g2] =



0
−c̄2

0
1
0
0
0
0

,

0
c̄1x5 sin(x3)

0
0
0

c̄1(−x1 sin(x3) + c̄4 cos(x3))

0
1


= 0 (6.25)

Therefore, according to (2.42) is possible to find τ5(x), τ6(x), τ7(x), τ8(x) in order to obtain the
internal dynamics in the following form

η̇ = q(ξ, η), q(0, 0) = 0, η ∈ R4. (6.26)

The calculation of τ5(x) to τ8(x) according to (2.42), proceed as follows

∂τ5(x)
∂x

g(x) =
∂τ6(x)

∂x
g(x) =

∂τ7(x)
∂x

g(x) =
∂τ8(x)

∂x
g(x) = 0 (6.27)

First is calculated τ5(x):

[
∂τ5(x)

∂x1
. . . ∂τ5(x)

∂x8

]



0 0
−c̄2 c̄1x5 sin(x3)

0 0
1 0
0 0
0 c̄1(−x1 sin(x3) + c̄4 cos(x3))

0 0
0 1


= 0, (6.28)

and the following relationships are obtained:

−∂τ5(x)
∂x2

c̄2 +
∂τ5(x)

∂x4
= 0 (6.29a)

∂τ5(x)
∂x2

c̄1x5 sin(x3) +
∂τ5(x)

∂x6
c̄1(−x1 sin(x3) + c̄4 cos(x3)) +

∂τ5(x)
∂x8

= 0 (6.29b)
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Considering τ5(x) dependent of the factors τ5(x) = χ1(x2)χ2(x4)χ3(x6)χ4(x8) and replacing it
in (6.29), also considering τ5(0) = 0, the value of τ5(x) obtained is

τ5(x) = k3e(k1x2−k2x4−c̄1x5 sin(x3)x8) − k3 (6.30)

In the same way, the expression for τ6(x) , τ7(x) , τ8(x) are obtained and have the same form.
In order to apply the feedback linearization method, is necessary to check the stability of the
internal dynamics. In generally is difficult to determine the global stability because the internal
dynamics may have a long terms. For that reason, it is possible to analyze the stability of the
zero dynamics.

Zero Dynamics The zero dynamics results from the zeroing of the outputs and their derivatives
(ξ = 0). The zero dynamics is obtained from:

η̇ = q(0, η), η(0) = η0 (6.31)

If the zero dynamics is asymptotically stable, then the internal dynamics is locally asymptotically
stable at ξ = 0. Nevertheless, exist a theorem that said, the zero dynamics is independent of
the internal states chosen but only depend of the output of the system (since it is an intrinsic
property of the system) [1]. Also, it is not necessary to convert the system in the normal form to
analyze the stability of the zero dynamics, is possible to calculate the unforced zero dynamics
[21].
The internal states chosen are:

η =
[
η1 η2 η3 η4

]ᵀ
=
[

x3 x4 x7 x8

]ᵀ
(6.32)

then zeroing the outputs and its derivatives:

x1 = 0, x2 = 0, v1 = 0 (6.33a)

x5 = 0, x6 = 0, v2 = 0 (6.33b)

In the external dynamics, the inputs u∗1 and u∗2 needed to satisfy (6.33) are

c̄1

(
− d̃

2
x2

8 sin(2x3) + g sin(x3) cos(x7)

)
− c̄2u∗1 = 0 (6.34a)

−c̄3x4x8 sin(x3)− g sin(x7) + c̄4 cos(x3)u∗2 = 0 (6.34b)
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hence the calculated inputs are

u∗1 =
c̄1

c̄2

(
− d̃

2
x2

8 sin(2x3) + g sin(x3) cos(x7)

)
(6.35a)

u∗2 =
1

c̄4 cos(x3)
(c̄3x4x8 sin(x3) + g sin(x7)) (6.35b)

Replacing the inputs calculated into the equation of the internal states, the unforced zero
dynamics obtained is

η̇1 = η2

η̇2 =
c̄1

c̄2

(
− d̃

2
x2

8 sin(2x3) + g sin(x3) cos(x7)

)
η̇3 = η4

η̇4 =
1

c̄4 cos(x3)
(c̄3x4x8 sin(x3) + g sin(x7))

. (6.36)

Furthermore is possible to simplify the analysis to local stability using the Lyapunov’s indirect
method [21], i.e. analyzing the stability of the Jacobi linearization of the zero dynamics around
η = 0 as follows

η̇ = Anη, (6.37a)

with

An =
∂q(0, η)

∂η
|η = ηeq = 0. (6.37b)

and the matrix An results

An =


0 1 0 0
c̄1
c̄2

0 0 0
0 0 0 1
0 0 g

c̄4
0

 (6.38)

with the eigenvalues

λ = {
√

g
c̄4

,−
√

g
c̄4

,
√

c̄1

c̄2
g,−

√
c̄1

c̄2
g}. (6.39)

There are eigenvalues in the RHP, then the linearization of the zero dynamics is unstable and
thus the internal zero dynamics is also unstable. Therefore, cannot be applied the input-output
linearization using the nonlinear model (5.9a) according to [21].



6 Controller Design 62

Furthermore, tracking control cannot be done because it is not possible to perform the dynamic
inversion [1]. From the methods explained in 2.4 for tracking control of non-minimum phase
systems, the approximate feedback linearization will be used because it is a more practical
alternative [28], and was selected after trying the other methods without getting good results;
however, according to [21], perfect tracking cannot be achieved.

6.2.2 Approximate Feedback Linearization (AFL)

According to the approximate feedback linearization method explained in 2.4, the outputs of
the approximate model to use must be flat outputs, i.e. a full relative degree system is needed.
Therefore, it is initiated by eliminating some terms that affect the full relative degree of the
outputs (see (6.15)), in the exact nonlinear model(5.9a), hence the coupling terms are removed
and two decoupled ball and beam subsystems are obtained as follows [38]

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8


=



x2

k1 sin(x3) + k2x1x2
4

x4

0
x6

−k1 sin(x7) + k2x5x2
8

x8

0


+



0 0
−b 0
0 0
1 0
0 0
0 b
0 0
0 1



(
u1

u2

)
(6.40a)

y =

(
y1

y2

)
=

(
x
y

)
(6.40b)

where x and y are the ball’s position in x-axis and y-axis respectively and

k1 =
gmbr2

b
mr2

b + Jb
, k2 =

mbr2
b

mr2
b + Jb

, b =
mbd̃r2

b + Jbrb

mbr2 + Jb
. (6.41)

However, the model (6.40) still does not have flat outputs. So, in order to obtain a flat model
from the exact model (5.9a) of the ball and plate system, it is necessary to take into account the
following assumptions

| − d̃
2

x2
8 sin(2x3) + x1x2

8 sin2(x3) + 2x6x8 sin(x3) + x1x2
4| � |g sin(x3)| (6.42a)

| − c̄3x4x8 sin(x3)− 2x1x4x8 cos(x3)− 2x2x8 sin(x3) + x5x2
8| � |g sin(x7)|, (6.42b)

where the terms g sin(x3) and g sin(x7) are considered main terms and the terms of the left are
considered as neglected terms. This assumption is validated in the simulation test Figure 8.6.
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Now, the relative degree of the approximate model to be used, is calculated as follows

y1 = x1

ẏ1 = x2

ÿ1 = k1 sin(x3)

y(3)1 = k1 cos(x3)x4

y(4)1 = −k1 sin(x3)x2
4 + k1 cos(x3)u1

(6.43a)

y2 = x5

ẏ2 = x6

ÿ2 = −k1 sin(x7)

y(3)2 = −k1 cos(x7)x8

y(4)2 = k1 sin(x7)x2
8 − k1 cos(x7)u2

(6.43b)

and results a vector relative degree r = {r1, r2} = {4, 4}. Therefore, the approximate model to
use in the control design processes is given by

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8


=



x2

k1 sin(x3)

x4

0
x6

−k1 sin(x7)

x8

0


+



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1



(
u1

u2

)
= f̄ (x) + ḡ(x)u

y =

(
y1

y2

)
=

(
x
y

)
,

(6.44)

and it is considered that is composed of two subsystems, the first is formed by the dynamics of
states x1, x2, x3, x4 and the second formed by the dynamics of states x5, x6, x7, x8 as follows

First subsystem
ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

k1 sin(x3)

x4

0

+


0
0
0
1

 u1

y1 = x

(6.45a)

Second subsystem
ẋ5

ẋ6

ẋ7

ẋ8

 =


x6

−k1 sin(x7)

x8

0

+


0
0
0
1

 u2

y2 = y

(6.45b)
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6.2.2.1 Feedforward Control

Using the approximate model (6.44), the state trajectory generated for the trajectory references
x∗(t) and y∗(t), position references of the ball in x and y axes respectively, results

x∗ =



x∗1
x∗2
x∗3
x∗4
x∗5
x∗6
x∗7
x∗8


=



x∗(t)
ẋ∗(t)

arcsin (αx(t))
βx(t)
y∗(t)
ẏ∗(t)

arcsin
(
αy(t)

)
βy(t)


(6.46a)

where

αx(t) =
ẍ∗(t)

k1
, βx(t) =

ẍ∗(t)
k1 cos(x3)

(6.46b)

αy(t) = −
ÿ∗(t)

k1
, βy(t) =

ÿ∗(t)
−k1 cos(x7)

, (6.46c)

with cos(x3) 6= 0 and cos(x7) 6= 0 for the considered operating range in section 3.

The calculation of the feedforward control action u f f using the relationships from the state
trajectory and the following system equations

u∗1 = ẋ∗4 (6.47a)

u∗2 = ẋ∗8 , (6.47b)

results

u∗1 =
x∗(4)(t) + x2

4 ẍ∗(t)
k1 cos(x3)

(6.47c)

u∗2 =
y∗(4)(t) + x2

8ÿ∗(t)
−k1 cos(x7)

(6.47d)

u f f =

(
u∗1
u∗2

)
(6.47e)

This process is known as dynamic inversion because the control input is calculated from the
desired output using the dynamics of the system.

The feedback control u f b to be used may be any of the linear controllers designed in 6.1, such
as pole placement or linear quadratic regulator (LQR), where the reference state as input to the
feedback control is the state trajectory x∗ calculated in (6.46a).
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The total control action is computed as u = u f b + u f f , and the control scheme is presented in
Figure 6.2.

feedback

control

(

x∗(t)
y∗(t)

)

feedforward

control
+

+

x(t)

x
∗(t)

u(t)

uff (t)

ufb(t)

_x = f(x) + g(x)u
y = x

Figure 6.2: Scheme of the controlled system.

6.2.2.2 Tracking Control

The tracking control can be designed in a single expression joining the feedforward and feedback
action using the approach of output tracking explained in 2.3.2.1, and developed below.

Using the last derivative of each output of the approximate model from (6.43)

y(4)1 = −k1 sin(x3)x2
4 + k1 cos(x3)u1

v1 = −k1 sin(x3)x2
4 + k1 cos(x3)u1

(6.48a)

y(4)2 = k1 sin(x7)x2
8 − k1 cos(x7)u2

v2 = k1 sin(x7)x2
8 − k1 cos(x7)u2,

(6.48b)

the relationship of the input transformation is obtained as follows

v = B(x) + A(x)u (6.49a)(
v1

v2

)
=

(
−k1 sin(x3)x2

4

k1 sin(x7)x2
8

)
+

(
k1 cos(x3) 0

0 −k1 cos(x7)

)(
u1

u2

)
, (6.49b)

and the inverse of the input transformation is given by

u = α(x) + β(x)v (6.50a)(
u1

u2

)
=

(
tan(x3)x2

4

− tan(x7)x2
8

)
+

(
1
k1

sec(x3) 0

0 − 1
k1

sec(x7)

)(
v1

v2

)
, (6.50b)

where cos(x3) 6= 0 and cos(x7) 6= 0 for the operation range considered in section 3 .
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Also, the states transformation is performed using the diffeomorphism z = T(x) as follows

z =



z1

z2

z3

z4

z5

z6

z7

z8


=



y1

ẏ1

ÿ1

y(3)1

y2

ẏ2

ÿ2

y(3)2


=



x1

x2

k1 sin(x3)

k1 cos(x3)x4

x5

x6

−k1 sin(x7)

−k1 cos(x7)x8


(6.51)

Using the input transformation (6.49) and state transformation (6.51), the approximate model
(6.44) is converted to a linear system in the Brunovsky form presented below.

ż =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


z +



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


v

y =

(
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

)
z

(6.52)

The reference signals in z-coordinates, is denoted by z∗. For example, for the case of tracking
sinusoidal trajectories in each axis (x and y), z∗ is given by

z∗ =



y∗1(t)
ẏ∗1(t)
ÿ∗1(t)

y∗(3)1 (t)
y∗2(t)
ẏ∗2(t)
ÿ∗2(t)

y∗(3)2 (t)


=



A sin (ωt)
Aω cos (ωt)
−Aω2 sin (ωt)
−Aω3 cos (ωt)
A sin (ωt)
Aω cos (ωt)
−Aω2 sin (ωt)
−Aω3 cos (ωt)


(6.53a)

y(4)∗1 = Aω4 sin (ωt) (6.53b)

y(4)∗2 = Aω4 sin (ωt) . (6.53c)
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In addition, a circular trajectory with polynomial initialization for soft initialization ( see
appendix D), Lissajous curves, or any sufficiently differentiable function can be used as trajectory
reference.

The error vector in z-coordinates, which consists of the tracking errors, e1 and e2, and its
derivatives is

e = z− z∗ =



e1

ė1

ë1

e(3)1

e2

ė2

ë2

e(3)2


=



y1 − y∗1(t)
ẏ1 − ẏ∗1(t)
ÿ1 − ÿ∗1(t)

y(3)1 − y∗(3)1 (t)
y2 − y∗2(t)
ẏ2 − ẏ∗2(t)
ÿ2 − ÿ∗2(t)

y(3)2 − y∗(3)2 (t)


, (6.54)

then the control action will be calculated using (2.32) . For the first subsystem (6.45a) is
computed as follows

v1 = y(4)1 (6.55a)

y(4)1 = y∗(4)1 −
(

p0e1 + p1ė1 + p2ë1 + p3e(3)1

)
(6.55b)

0 = e(4)1 + p3e(3)1 + p2ë1 + p1ė1 + p0e1. (6.55c)

In order to stabilize asymptotically the error e to zero (e→ 0) , the values of p0 , p1 , p2 , p3, are
real values chosen so that the following characteristic polynomial of the error dynamics

λ4 + p3λ3 + p2λ2 + p1λ + p0, (6.56)

be Hurwitz. It is also possible to use the desired poles of the error dynamics to create the
polynomial (6.56).

Using the same procedure and characteristic polynomial for the second subsystem (6.45b), it
results

v2 = y(4)2 (6.57a)

y(4)2 = y∗(4)2 −
(

p0e2 + p2ė2 + p2ë2 + p3e(3)2

)
(6.57b)

0 = e(4)2 + p3e(3)2 + p2ë2 + p1ė2 + p0e2 (6.57c)
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Then the control action for the Brunovsky form is

v1 = y∗(4)1 −
(

p0e1 + p1ė1 + p2ë1 + p3e(3)1

)
(6.58a)

v2 = y∗(4)2 −
(

p0e2 + p2ė2 + p2ë2 + p3e(3)2

)
(6.58b)

Finally the control input to the original system (5.9a) using the inverse input transformation
(6.50) is given by

u1 =
1

k1 cos(x3)

(
k1 sin(x3)x2

4 + y∗(4)1 −
(

p0e1 + p1ė1 + p2ë1 + p3e(3)1

))
, (6.59a)

u2 =
1

−k1 cos(x7)

(
−k1 sin(x7)x2

8 + y∗(4)2 −
(

p0e2 + p2ė2 + p2ë2 + p3e(3)2

))
, (6.59b)

and the control scheme of the tracking control approach developed is presented in Figure 6.3.

eigenvalue
assignment

(

x∗(t)
y∗(t)

)

state
trajectory

z-coordinates
x(t)

z
∗(t)

u(t)v(t)
α(x) + β(x)v

(

x∗(4)(t)

y∗(4)(t)

)

T(x)
z(t)

e(t)

+

-

_x = f(x) + g(x)u
y = x

Figure 6.3: Scheme of tracking control using feedback linearization.

6.2.2.3 Tracking Control with Integral Action

Considering the case of presence of steady state error due disturbances or due to not use a
exact model of the system in the control system design , integral action is added to the control
action in order to provide zero steady-state error to the response [32, 20].

Therefore, the integral of the tracking error is included to the control law weighted by the
integral gain pI as follows

v1 = y∗(4)1 −
(

p0e1 + p1ė1 + p2ë1 + p3e(3)1

)
− pI

t∫
0

e1(τ)dτ (6.60a)

v2 = y∗(4)2 −
(

p0e2 + p2ė2 + p2ë2 + p3e(3)2

)
− pI

t∫
0

e2(τ)dτ (6.60b)

where p0 , p1 , p2 , p3 ,and pI are real values chosen so that the following polynomial

λ5 + p3λ4 + p2λ3 + p1λ2 + p0λ + pI (6.61)
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be Hurwitz.

Finally, the control input to the original system (5.9a) is calculated as follows

u1 =
1

k1 cos(x3)

k1 sin(x3)x2
4 + y∗(4)1 −

(
p0e1 + p1ė1 + p2ë1 + p3e(3)1

)
− pI

t∫
0

e1(τ)dτ


(6.62a)

u2 =
1

−k1 cos(x7)

−k1 sin(x7)x2
8 + y∗(4)2 −

(
p0e2 + p2ė2 + p2ë2 + p3e(3)2

)
− pI

t∫
0

e2(τ)dτ


(6.62b)

6.2.3 Backstepping Control

Using the approximate model (6.44), a system in the integrator chain form is obtained and
the methodology explained in 2.3.2.2 can be applied. Moreover, it is possible to design
the backstepping controller using the first subsystem (6.45a) in the integrator chain form as
follows

ẋ1 = x2

ẋ2 = k1 sin(x3)

ẋ3 = x4

ẋ4 = u1

y1 = x1.

(6.63)

The idea is to stabilize the tracking error e1 = x1 − x∗1 , which represents the trajectory tracking
error of the ball on the x-axis, through four steps (the order and relative degree of the approxi-
mate model used) in which by means of virtual inputs the control action is calculated as shown
below:

Step 1 The tracking error of the first output y1 = x1 and its derivative are

e1 = x1 − y∗1 (6.64a)

ė1 = x2 − ẏ∗1 (6.64b)

also using the Lyapunov function V1 defined as

V1(.) =
1
2

e2
1 ≥ 0, (6.65)
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and α1 as artificial input to stabilize the error e1 given by

α1 → x2 (6.66a)

α1 = −c1e1 + ẏ∗1 , c1 > 0, (6.66b)

then e1 → 0 since

ė1 = −c1e1. (6.67)

By means of the virtual input α1 (6.67), the derivative of the Lyapunov function V1 results

V̇1(.) = e1ė1 (6.68a)

V̇1(.) = −c1e2
1 ≤ 0, (6.68b)

with V1 radially unbounded and V1(0) = 0, then e1 is globally asymptotically stabilizable.
Finally in this step, the error between the variable x2 and the artificial input α1 is

e2 = x2 − α1, (6.69a)

and the derivative of the tracking error

ė1 = −c1e1 + e2. (6.69b)

Step 2 The error between the variable x2 and the artificial input α1 , and its derivative are

e2 = x2 − α1 (6.70a)

ė2 = ẋ2 − α̇1 (6.70b)

ė2 = k1 sin(x3) + c1ė1 − ÿ∗1 (6.70c)

ė2 = k1 sin(x3)− c2
1e1 + c1e2 − ÿ∗1 , (6.70d)

also using the Lyapunov function V2 defined as

V2(.) =
1
2
(
e2

1 + e2
2
)
≥ 0, (6.71)

and α2 as artificial input to stabilize the error e2 as follows

α2 → k1 sin(x3). (6.72)
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Using the virtual input α2 in calculation of the derivative of the Lyapunov function V2 as
follows

V̇2(.) = e1ė1 + e2ė2 (6.73a)

V̇2(.) = e1 (e2 − c1e1) + e2
(
α2 − c2

1e1 + c1e2 − ÿ∗1
)

(6.73b)

V̇2(.) = −c1e2
1 + e2

(
α2 + e1 − c2

1e1 + c1e2 − ÿ∗1
)

; (6.73c)

and hence is convenient to select α2 as

α2 = e1
(
c2

1 − 1
)
− e2 (c1 + c2) + ÿ∗1 , c2 > 0. (6.74)

By means of the virtual input α2 (6.74), the derivative of the Lyapunov function V2 (6.73c)
results

V̇2(.) = −c1e2
1 − c2e2

2 ≤ 0, (6.75)

with V2 radially unbounded and V2(0) = 0, then e2 is globally asymptotically stabilizable.
Finally in this step, the error between the variable k1 sin(x3) and the artificial input α2 is

e3 = k1 sin(x3)− α2, (6.76a)

and the derivative of the error e2 results

ė2 = −c2e2 − e1 + e3. (6.76b)

Step 3 The error between the variable k1 sin(x3) and the artificial input α2 , and its derivative
are

e3 = k1 sin(x3)− α2 (6.77a)

ė3 = k1 cos(x3)x4 − α̇2 (6.77b)

ė3 = k1 cos(x3)x4 +
(
1− c2

1
)

ė1 + (c1 + c2) ė2 − y∗(3)1 (6.77c)

ė3 = k1 cos(x3)x4 +
(
1− c2

1
)
(e2 − c1e1) + (c1 + c2) (c2e2 − e1 + e3)− y∗(3)1 (6.77d)

ė3 = k1 cos(x3)x4 +
(
−c1 + c3

1 − c1 − c2
)

e1 +
(
1− c2

1 − c1c2 − c2
2
)

e2 + (c1 + c2) e3 − y∗(3)1 ,
(6.77e)

also using the Lyapunov function V3 defined as

V3(.) =
1
2
(
e2

1 + e2
2 + e2

3
)
≥ 0, (6.78)
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and α3 as artificial input to stabilize the error e3 as follows

α3 → x4. (6.79)

Using the virtual input α3 in calculation of the derivative of the Lyapunov function V3 as
follows

V̇3(.) = e1ė1 + e2ė2 + e3ė3 (6.80a)

V̇3(.) = e1 (e2 − c1e1) + e2 (−c2e2 − e1 + e3) + e3ė3 (6.80b)

V̇3(.) = −c1e2
1 − c2e2

2 + e2e3 + e3ė3, (6.80c)

also considering the indirect relationship

ė3 ≈ −e2 − c3e3 , c3 > 0, (6.81)

this implies

k1 cos(x3)α3 +
(
−2c1 + c3

1 − c2
)

e1 +
(
2− c2

1 − c1c2 − c2
2
)

e2 + (c1 + c2 + c3) e3 − y∗(3)1 = 0;
(6.82a)

and hence is convenient to select α3 as

α3 =
1

k1 cos(x3)

[(
2c1 − c3

1 + c2
)

e1 +
(
c2

1 + c1c2 + c2
2 − 2

)
e2 − (c1 + c2 + c3) e3 + y∗(3)1

]
, (6.82b)

where cos(x3) 6= 0 for the operation range considered in section 3 .

By means of the virtual input α3 (6.82b), the derivative of the Lyapunov function V3 (6.80c)
results

V̇3(.) = −c1e2
1 − c2e2

2 − c3e2
3 ≤ 0, (6.83)

with V3 radially unbounded and V3(0) = 0, then e3 is globally asymptotically stabilizable.
Finally in this step, the error between the variable x4 and the artificial input α3 is

e4 = x4 − α3, (6.84)

and the derivative of the error e3 results

ė3 = −c3e3 − e2 + k1 cos(x3)e4. (6.85)
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Step 4 The error between the variable x4 and the artificial input α3 , and its derivative are

e4 = x4 − α3 (6.86a)

ė4 = u1 − α̇3, (6.86b)

also using the Lyapunov function V4 defined as

V4(.) =
1
2
(
e2

1 + e2
2 + e2

3 + e2
4
)
≥ 0 (6.87)

Using the input u1 in calculation of the derivative of the Lyapunov function V4 as follows

V̇4(.) = e1ė1 + e2ė2 + e3ė3 + e4ė4 (6.88a)

V̇4(.) = e1 (e2 − c1e1) + e2 (−c2e2 − e1 + e3) + e3 (−c3e3 − e2 + k1 cos(x3)e4) + e4 (u1 − α̇3)

(6.88b)

V̇4(.) = −c1e2
1 − c2e2

2 − c3e2
3 + e4 (k1 cos(x3)e3 + u1 − α̇3) ; (6.88c)

and hence it is convenient to select u1 as

u1 = α̇3 − k1 cos(x3)e3 − c4e4 , c4 > 0, (6.89)

with

α̇3 =
sin(x3)x4

k1 cos2(x3)

[(
2c1 − c3

1 + c2
)

e1 +
(
c2

1 + c1c2 + c2
2 − 2

)
e2 − (c1 + c2 + c3) e3 + y∗(3)1

]
+

1
k1 cos(x3)

[(
2c1 − c3

1 + c2
)

ė1 +
(
c2

1 + c1c2 + c2
2 − 2

)
ė2 − (c1 + c2 + c3) ė3 + y∗(4)1

]
. (6.90)

By means of the input u1 (6.89), the derivative of the Lyapunov function V4 (6.88c) results

V̇4(.) = −c1e2
1 − c2e2

2 − c3e2
3 − c4e2

4 ≤ 0, (6.91)

with V4 radially unbounded and V4(0) = 0, then e4 is globally asymptotically stabilizable.
Therefore e1 , e2 , e3 , e4 converge asymptotically to zero with the control law u1.

On the other hand, for the second system (6.45b) the same procedure presented for the first
subsystem is applied, and even the same positive constants c1, c2, c3, c4 can be considered
because both have the same form. The idea is to stabilize the tracking error e5 = x5 − x∗5 ,
which represents the trajectory tracking error of the ball on the y-axis, obtaining the following
equations
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Step 1

e5 = x5 − y∗2 (6.92a)

α5 = −c1e5 + ẏ∗2 (6.92b)

Step 2

e6 = x6 − α5 (6.93a)

α6 =
(
c2

1 − 1
)

e5 − (c1 + c2) e6 + ÿ∗2 (6.93b)

Step 3

e7 = −k1 sin(x7)− α6 (6.94a)

α7 = − 1
k1 cos(x7)

[(
2c1 − c3

1 + c2
)

e5 +
(
c2

1 + c1c2 + c2
2 − 2

)
e6 − (c1 + c2 + c3) e7 + y∗(3)2

]
(6.94b)

where cos(x7) 6= 0 for the operation range considered in section 3 .

Step 4

e8 = x8 − α7 (6.95a)

α̇7 = − sin(x7)x8

k1 cos2(x7)

[(
2c1 − c3

1 + c2
)

e5 +
(
c2

1 + c1c2 + c2
2 − 2

)
e6 − (c1 + c2 + c3) e7 + y∗(3)2

]
+

− 1
k1 cos(x7)

[(
2c1 − c3

1 + c2
)

ė5 +
(
c2

1 + c1c2 + c2
2 − 2

)
ė6 − (c1 + c2 + c3) ė7 + y∗(4)2

]
(6.95b)

u2 = α̇7 + k1 cos(x7)e7 − c4e8 (6.95c)

6.2.4 Sliding Mode Control

Using the approximate model (6.44), a full relative degree system is obtained; hence the
methodology explained for high order sliding mode (HOSM) 2.3.2.3 can be applied. Moreover,
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it is possible to design the sliding mode controller using the first subsystem (6.45a)

ẋ1 = x2

ẋ2 = k1 sin(x3)

ẋ3 = x4

ẋ4 = u1

y1 = x1,

(6.96)

which is a high-order system with output relative degree r = 4 and therefore involves designing
a HOSM controller class, as follows [27]:

First, defining the sliding variable and its derivatives

σ1 = x1 − y∗1 (6.97a)

σ̇1 = ẋ1 − ẏ∗1 = x2 − ẏ∗1 (6.97b)

σ̈1 = ẍ1 − ÿ∗1 = k1 sin(x3)− ÿ∗1 (6.97c)

σ
(3)
1 = x(3)1 − y∗(3)1 = k1 cos(x3)x4 − y∗(3)1 ; (6.97d)

also, in the sliding surface is satisfied

σ1 = σ̇1 = σ̈1 = σ
(3)
1 = 0, (6.98)

where there is a discontinuity at 4-sliding mode (high frequency).

Then, according the methodology 2.3.2.3, using HOSM the nested r-sliding mode controllers
are calculated as follows

Ψ0,4 = sign(σ1) (6.99a)

Ψ1,4 = sign
(

σ̇1 + β1 |σ1|3/4 Ψ0,4

)
(6.99b)

Ψ2,4 = sign
(

σ̈1 + β2

(
σ̇4

1 + |σ1|3
)1/6

Ψ1,4

)
(6.99c)

Ψ3,4 = sign
(

σ
(3)
1 + β3

(
σ̈6

1 + σ̇4
1 + |σ1|3

)1/12
Ψ2,4

)
(6.99d)

with α as design parameter and β1,β2,β3 as controller gains to be tuned. Finally the control law
for the whole first subsystem results

u1 = −αΨ3,4. (6.100)

However, due to the signal function in the structure of the control law (6.100), it results non-
smooth and high frequency signal that makes it impossible to use for real applications as is
explained in 2.3.2.3. Therefore, in this case, the chattering evasion method using sigmoidal
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function instead the signal function is used. The sigmoidal function is defined by (2.52) with ε

chosen according to the trade-off between the robustness/accuracy of the control system and
the smoothness of the control law resulting in the simulation and experimental tests. Finally
the smooth control action using sigmoidal function results

Ψ0,4 = sigmoid(σ1) (6.101a)

Ψ1,4 = sigmoid
(

σ̇1 + β1 |σ1|3/4 Ψ0,4

)
(6.101b)

Ψ2,4 = sigmoid
(

σ̈1 + β2

(
σ̇4

1 + |σ1|3
)1/6

Ψ1,4

)
(6.101c)

Ψ3,4 = sigmoid
(

σ
(3)
1 + β3

(
σ̈6

1 + σ̇4
1 + |σ1|3

)1/12
Ψ2,4

)
(6.101d)

u1 = −αΨ3,4. (6.101e)

As was explained in 2.3.2.3, the smooth control cannot provide finite-time convergence of
the sliding variable σ even for the approximate model (6.44). However, the control system’s
performance using smooth control action is expected to be close the performance using non-
smooth control action.

On the other hand, it was explained in the begin of this approach, an approximate model (6.44)
is used to be able to apply the HOSM method, hence it is expected that exact tracking for the
approximate model will not lead to exact tracking for the exact system (5.9a). Therefore finding
a trade-off between accuracy and a smooth control action is an acceptable decision.

In the same way, the control action for the second subsystem (6.45b) is calculated, using the
same controller gains as for the first subsystem because they have the same form, and results

Ψ0,4 = sigmoid(σ2) (6.102a)

Ψ1,4 = sigmoid
(

σ̇2 + β1 |σ2|3/4 Ψ0,4

)
(6.102b)

Ψ2,4 = sigmoid
(

σ̈2 + β2

(
σ̇4

2 + |σ2|3
)1/6

Ψ1,4

)
(6.102c)

Ψ3,4 = sigmoid
(

σ
(3)
2 + β3

(
σ̈6

2 + σ̇4
2 + |σ2|3

)1/12
Ψ2,4

)
(6.102d)

u2 = −αΨ3,4, (6.102e)

with the sliding variable and its derivatives

σ2 = x5 − y∗2 (6.103a)

σ̇2 = x5 − ẏ∗2 (6.103b)

σ̈2 = −k1 sin(x7)− ÿ∗2 (6.103c)

σ
(3)
2 = −k1 cos(x7)x8 − y∗(3)2 . (6.103d)
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7 Observer Design and Delay Compensation

The observers to design are based on the Jacobi linearized model (5.36) and on the nonlinear
model (5.9a) of the ball and plate system. The observers are categorized by the linear and
nonlinear approaches, and are used to provide full state information to the controllers previously
designed in section 6 .

7.1 Linear Observer Design

The structure of the linear observer has the following form:

˙̂x = Ax̂ + Bu + L(y− Cx̂), x̂(0) = x̂0

y = Cx̂
(7.1)

where x̂ are the estimated states, (A, B, C) the matrices of the Jabobi linearized system (5.36)
and L the observer gain. The dynamics of the estimation error x̃ is given by

˙̃x = (A− LC)x̃ (7.2)

with L chosen such that A− LC be Hurwitz, this implies that the estimation error converges
asymptotically to zero.

The estimated states using the linear observer represent an approximation of the states near to
the equilibrium point (5.34) .

7.1.1 Luenberger Observer

Luenberger observer use the pole placement method to design the observer, the observer gain
L is calculated to make the observer dynamics (7.1) Λ times faster than the controlled system
dynamics. For it, the real part of the observer poles must be Λ times the real part of the stable
closed loop poles as follows

Re(λ (A− LC)) = Λ Re(λ (A− BK)), (7.3)
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with K the gain of the linear controller. Also, it is possible to calculate the linear observer
gain from pure real poles so = {so1, so2, . . . , so8} in order to obtain the estimation error without
overshoot (respect to zero) using the characteristic polynomial

det (sI − (A− LC)) = (s− so1) (s− so2) . . . (s− so8) (7.4a)

soi = Λ Re(si), i = 1, . . . , 8 (7.4b)

where si are the poles of the closed loop system. Then, the same procedure applied to the pole
placement controller (6.6) is used.

Finally, the application diagram of the Luenberger observer in the closed loop system, using
linear controller 6.1, is presented in Figure 7.1.

ue
K

x
∗ +

-

_̂x = Ax̂+Bu+ L [y − Cx̂]

x̂

y_x = f(x) + g(x)u
y = h(x)

Figure 7.1: Diagram of application of the Luenberger observer in closed-loop system.

7.1.2 Kalman Bucy Filter

The Kalman Bucy filter consider the measurement noise and process disturbance to improve the
pole placement observer as is explained in 2.5.1. Considering the the Jacobi linearized model
(5.36) with the noises mentioned as follows

ẋ = Ax + B (u + ω) = Ax + Bu + Wω

y = Cx + η
(7.5)

where η is the measurement noise vector zero-mean (η̄ = 0) with covariance R, and ω is the
process disturbance vector with mean ω̄ covariance Q. Also, the disturbances matrix results
W = B.

Following the procedure to design the Kalman Bucy filter explained in 2.5.1, first proceed with
the calculation of the symmetric and positive definite matrices R and Q. The measurement
noise vector is given by

η =
(

ηx ηφ ηy ηθ

)ᵀ
(7.6a)
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with covariance matrix

R = E{(η− η̄) (η− η̄)ᵀ} =


σ2

ηx
0 0 0

0 σ2
ηφ

0 0

0 0 σ2
ηy

0

0 0 0 σ2
ηθ

 , (7.6b)

where σ2
ηx

, σ2
ηφ

, σ2
ηy

and σ2
ηθ

are the variances of the measurement noises calculated from saved
experimental data. Also, the process disturbance vector is given by

ω =
(

ω1 ω2

)ᵀ
(7.6c)

with covariance matrix

Q = E{(ω− ω̄) (ω− ω̄)ᵀ} =
(

σ2
ω1

0
0 σ2

ω2

)
, (7.6d)

where σ2
ω1

and σ2
ω2

are the variance of the process disturbances, also calculated from experi-
mental data.

Using the covariance matrices calculated previously (7.6) and the matrices of the linearized
model with noise and disturbance (7.5), the covariance matrix of the estimation error, S, is
obtained by solving the following algebraic Riccati equation

AS + SAᵀ − SCᵀR−1CS + WQWᵀ = 0; (7.7)

finally, the Kalman gain is calculated as follows

L = SCᵀR−1, (7.8)

and is included in the linear observer with structure (7.1).

For practical purposes, the covariance matrix S is calculated using the command
are(Aᵀ, CᵀR−1C, WQWᵀ) in Matlab.

The application diagram of the Kalman filter in the closed loop system, using the input affine
representation of the plant (5.9a), is presented in Figure 7.2.
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Figure 7.2: Diagram of application of the Kalman observer in closed-loop system.

7.2 Nonlinear Observer Design

The structure of the nonlinear observer, considering the nonlinear model of the system in the
input-affine representation (5.9a), has the following form

˙̂x = f (x̂) + g(x̂)u + L(x̂)(y− h(x̂)), (7.9)

with the time-variant observer gain L. Also, the observer gain is calculated from the linearized
model around the estimated states, or from the approximate flat model (6.44) following the
procedure explained in 2.5.2.

7.2.1 Nonlinear Luenberger-Like Observer

The nonlinear Luenberger-like observer considers the calculation of the observer gain L using
the approximate model (6.44) in its linearized z-coordinates, and then convert the linear gain to
the nonlinear coordinates using the Jacobian of the diffeomorphism as was explained in 2.5.2.

The representation of the linear observer for the approximate model in the Brunovsky form
(6.52) using the Luenberger’s structure is given by

˙̂Z = AzẐ + Bzv + G(y− ŷ)

ŷ = CzẐ
, (7.10)

where G is the linear observer gain calculated using the pole placement method detailed in
(7.1.1).

The linear observer (7.10) is converted to the nonlinear observer for the approximate model
(6.44)

˙̂x = f̄ (x̂) + ḡ(x̂)u + L(x̂) (y− h(x̂)) , x̂(0) = x̂0 (7.11)
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using the gain transformation through the Jacobian of the diffeomorphism (6.51)

Ō(x̂) =
d
dx̂



y1(x̂)
ẏ1(x̂)
ÿ1(x̂)

y(3)1 (x̂)
y2(x̂)
ẏ2(x̂)
ÿ2(x̂)

y(3)2 (x̂)


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 k1 cos(x3) 0 0 0 0 0
0 0 −k1 sin(x3)x4 k1 cos(x3) 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −k1 cos(x7) 0
0 0 0 0 0 0 k1 sin(x7)x8 −k1 cos(x7)


,

(7.12)

also called observability matrix, as follows

L(x̂) = Ō−1(x̂)G. (7.13)

Also, is important to note that in this method only the ball’s position measurement is used;
hence is possible to design another observer only for the angular velocities using the measured
angles of the plate in order to reduce the noise in the estimated states.

7.2.2 Extended Kalman Filter (EKF)

The Extended Kalman filter consider the calculation of the observer gain using the Jacobi
linearized model around the estimated states as was explained in 2.5.2.

The Jacobi linearized model around the estimated states, with noises and disturbances, is given
by

ẋ = Ax̂x + Bx̂ (u + ω) = Ax̂x + Bx̂u + Wx̂ω

y = Cx̂x + η
(7.14)
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with the same measurement noise vector η and the process disturbance vector ω as in (7.5).
Also, the following time-variant matrices are computed, the state transition matrix is

Ax̂ =
∂ f (x)

∂x x=x̂
(7.15a)

Ax̂ =



0 1 0 0 0 0 0 0
A21 0 A23 A24 0 2c̄1 sin(x̂3)x̂8 −c̄1g sin(x̂7) sin(x̂3) A28

0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0

A61 −2c̄1 sin(x̂3)x̂8 A63 A64 c̄1 x̂2
8 0 −c̄1g cos(x̂7) A68

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


,

(7.15b)

where

A21 = c̄1
(
x̂2

8 sin2(x̂3) + x̂2
4
)

(7.15c)

A24 = c̄1
(
−d̃x̂2

8 cos (2x̂3) + x̂1 x̂2
8 sin(2x̂3) + 2x̂6 x̂8 cos(x̂3) + g cos(x̂7) cos(x̂3)

)
(7.15d)

A24 = 2c̄1 x̂1 x̂4 (7.15e)

A28 = c̄1
(
−d̃x̂8 sin(2x̂3) + 2x̂1 x̂8 sin2(x̂3) + 2x̂6 sin(x̂3)

)
(7.15f)

A61 = −2c̄1 x̂4 x̂8 cos(x̂3) (7.15g)

A63 = c̄1 (−c̄3 x̂4 x̂8 cos(x̂3) + 2x̂1 x̂4 x̂8 sin(x̂3)− 2x̂2 x̂8 cos(x̂3)) (7.15h)

A64 = c̄1 (−c̄3 x̂8 sin(x̂3)− 2x̂1 x̂8 cos(x̂3)) (7.15i)

A68 = c̄1 (−c̄3 x̂4 sin(x̂3)− 2x̂1 x̂4 cos(x̂3)− 2x̂2 sin(x̂3) + 2x̂5 x̂8) , (7.15j)

the input matrix is

Bx̂ = g(x̂) (7.15k)

Bx̂ =



0 0
−c̄2 c̄1 x̂5 sin(x̂3)

0 0
1 0
0 0
0 −c̄1 x̂1 sin(x̂3) + c̄2 cos(x̂3)

0 0
0 1


, (7.15l)
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and the output matrix Cx̂ is constant and equal to C, see (5.36). Moreover, the disturbances
matrix, now time-variant, results

Wx̂ = Bx̂. (7.15m)

Using the covariance matrices calculated previously (7.6) and the matrices of the linearized
model about the estimated states (7.15), with noise and disturbance, the time variant covariance
matrix of the estimation error, S, is obtained by solving continuously the following Riccati
equation

Ax̂S + SAᵀx̂ − SCᵀR−1CS + Wx̂QWᵀx̂ = 0; (7.16)

finally, the time-variant Kalman gain must be calculated in real time as follows

L(x̂) = SCᵀR−1, (7.17)

and is included in the linear observer with structure (7.9).

The application diagram of the EKF in the closed loop system, using the input affine represen-
tation of the plant (5.9a), is presented in Figure 7.3.

ymu y_x = f(x)+g(x)(u+!)
ym = h(x)

_̂x = f(x̂) + g(x̂)u+ L(x̂) [y − Cx̂]x̂

! η

+

+ +

+

controller

(

x∗(t)
y∗(t)

)

Figure 7.3: Diagram of controller and EKF observer designed for the nonlinear model.

7.3 Delay Compensation in the Measurement

The system has delay in the measurement of the ball’s position, because the touch screen not
has fast response.

The representation of the system with delay in the measurement of the ball’s position and
neglecting the delay in the measurement of the plate’s angles is presented in Figure 7.4.

Also, since the ball’s position is considered with the same measurement delay, the states vectors
X1 = [x, y]ᵀ and X2 = [φ, θ]ᵀ are used to simplify the output representation in Figure 7.4, as is
shown in ??.
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Figure 7.4: Representation of the system with delay in the sensor of ball’s position.

In order to compensate the delay it is necessary to use a predictor. In the presented work the
Smith predictor is used, explained in 2.6.1.

7.3.1 Delay in the measurement identi�cation

In order to obtain the delay in the ball’s position measurement an experiment is provided. In
the setup of the experiment (cf. Figure 7.5) the sensor delay of the screen in the x-direction is
measured. The used elements are:

• The screen, the ball and the mechanical setup.

• An array of six laser diodes/photoreceptors along the x-axis.

• A circuit of signal conditioning.

• A Desktop PC and dSPACE DS1104 Real Time system for data acquisition, saving and
processing (in Matlab).

Figure 7.5: Experiment setup.

The representation scheme with the main details is presented in Figure 7.6.

The profile is used as a guidance for the movement of the ball, so that the movement is restricted
only on the x-axis. Furthermore the following considerations are used:

• The laser/photoreceptor detection is faster than the screen and it is considered to be
instantaneous.
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Figure 7.6: Scheme of the test setup.

• The screen has uniform properties in the surface, therefore the delay is the same in any
direction of the screen.

• The delay generated for the data transmission from the circuit to the dSPACE real time
system and also the error for truncation time are considered negligible.

The sampling time for data acquisition is set to 1 ms and the detection time of the ball using the
laser/photoreceptor is obtained using external interrupt in the dSPACE Real Time System. The
idea of this experiment is to compare the time in which a designated position is detected by the
screen sensor with the time in which it is measured using laser/photoreceptor sensors.

The algorithm for calculating the delay of the touch screen is as follows:

Dynamic and Static Measurement. First, the position-time data is acquired and the corre-
sponding position of the ball triggering the laser is evaluated with a static measurement.

The experiments were performed with movements of the ball on the screen’s x-axis in forward
and backward direction, with different ball’s velocities. The experimental test in forward
direction is represented in Figure 7.7.

S1 S2

L1

R1

entry exit

L2 L3 L4 L5 L6

R2 R3 R4 R5 R6

S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

X

Y

Touch screenS : static measurement

Figure 7.7: Scheme of forward movement test.



7 Observer Design and Delay Compensation 86

There are two static measurements of the ball’s positions, for each laser/photoreceptor, that
correspond to the entry and exit of the ball. The static measurement is performed manually,
moving the ball until it is detected by the laser/photoreceptor entering and leaving, obtaining
the corresponding position values S1-S12 on the screen. The static measurements and the ball’s
x-position measured by the screen are presented in Figure 7.8.
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Figure 7.8: x-position of the ball in the forward movement.

The ball’s x-position measurement in backward direction, which is useful to have a more precise
estimation of the sensor delay, and the static measurement are presented in Figure 7.9.
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Figure 7.9: x-position of the ball in the backward movement.

Detection Time of the Lasers. From the acquired data, the detection times of the ball by the
laser/photoreceptor are obtained and presented in Figure 7.10 as a vertical segment.
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Figure 7.10: Detection times of the ball by the laser/photoreceptor.

Detection Time of the Screen Linear interpolation is used to reduce the sampling time error
of the measurement data of the screen sensor. In addition, for obtaining a more accurate
measurement linear interpolation between the closest discrete points is performed as shown in
Figure 7.11.
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Figure 7.11: Calculation of the time to reach the static position by the screen measurement.

Calculation of the Delay. The delay of the screen is calculated by considering the difference
between the trigger time of the laser and the detection time of the screen sensor. The time delay
is represented graphically by the length of the dashed segment in Figure 7.11. The calculated
values are listed in Table 7.1. The computation of the time difference mean between the twelve
discrete points is reasonable to find an average time delay. The experiment is conducted in
forward and backward direction to exclude systematic errors and increase the number of data
points.
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The mean of the delay value in each experiment is presented in Table 7.2. Finally, the overall
estimated mean of the delay in the screen’s measurement is calculated. It turns out to be
42,56 m sec± 1,87 m sec.

Table 7.1: Delay estimation in the fixed positions.

Forward direction, delay in ms
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

EX1 43.66 41.66 41.99 42.36 43.66 40.49 42.66 42.99 39.49 48.74 42.99 42.99
EX2 43.18 41.99 42.61 41.99 41.78 41.49 42.09 42.26 40.58 46.78 42.52 42.44
EX3 42.56 41.33 43.33 40.71 43.28 40.56 42.42 47.49 40.07 46.76 42.53 43.45

Backward direction, delay in ms
S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

EX4 40.99 42.99 42.18 41.90 41.20 43.68 42.08 42.28 43.49 45.21 41.33 40.49
EX5 41.82 42.70 42.40 42.82 41.36 46.88 42.99 42.73 43.21 37.78 41.52 41.15

Table 7.2: Mean and standard deviation of the delay estimation.

Experiment µx (ms) σ (ms)
EX1 42.80 2.24
EX2 42.47 1.50
EX3 42.87 2.29
EX4 42.31 1.33
EX5 42.28 2.05
Total 42.56 1.87

7.3.2 Smith Predictor for the Ball and Plate System

In order to compensate the delay τ , previously calculated, we proceed to design the Smith
predictor using the basic conceptual framework about Smith predictor explained in 2.6.1.

Adding the Smith predictor to the diagram of the ball and plate system with delayed outputs ??
the delay compensation scheme results in Figure 7.12.

The exact model of the ball and plate system (5.9a) is used. For the Smith predictor is given by

ẋm = f (xm) + g (xm)u

ym = X1m,
(7.18a)

and predicts the current output of the system X1m(t). However, to compensate small modeling
errors and noises in the output, is needed to add the correction term esp generated at t− τ time
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Figure 7.12: Diagram of the Smith predictor in the ball and plate system with delayed output.

as follows

esp = X1(t− τ)− X1m(t− τ) (7.18b)

X1sp(t) = X1m(t) + esp. (7.18c)

It can be seen that a good model of the system and the exact value of the delay τ are required
to obtain good prediction results.

However, through tests it was observed that when there are non-measurable disturbances in the
entrance of the real system,as noise, the output of the real system and the model deviate, which
means that correction term esp diverges and even more the estimated current output X1sp(t)
be not equal to the real output X1(t). Therefore the solution proposed is to use the observer,
previously designed, with the Smith predictor (cf. Figure 7.13), in such a way that the states of
the predictor xm are updated with the estimated states of the observer x̂ as follows

Observer

 ˙̂x(t) = f (x̂(t)) + g(x̂(t))u(t) + L

X1sp(t)

X2(t)

− h(x̂(t))

 , (7.19a)

Smith predictor



xm(t) = x̂(t)

ẋm(t) = f (xm(t)) + g (xm(t))u(t)

ym(t) = Cmxm(t) = X1m(t)

X1sp(t) = X1m(t) + X1(t− τ)− X1m(t− τ).

(7.19b)

This means that the dynamics of the Smith predictor will have a feedback component to reduce
the effect of the disturbances.
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Figure 7.13: Smith predictor diagram with the observer to reduce the effect of disturbance on
input of the system.

7.4 Controlled System Scheme

In order to perform simulation tests of the controlled system, the integration of the controller,
observer and predictor is performed. The observer and predictor are used as a single block
called observer-predictor since together they fulfill the states-feedback function in the current
time to the controller. In addition, real conditions are added, such as noise and delay in the
measurements, and disturbances in the input as shown in the general scheme Figure 7.14.
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Figure 7.14: Scheme of the controlled system.

The real ball and plate system, it was explained in 4.1, consists of an inner loop of angular
velocity of the motors that directly control the dynamics of the plate by means of the cams
(actuation unit). On the other hand, because the reference signal to the inner loop is angular
velocity, an integrator is used at the input to convert the angular acceleration signal as shown
in Figure 7.15. Also, as explained in [3], the conversion between the angles or angular velocities
of the plate and the motor are done by means of look up tables. All of the above is part of the
extended system and is presented in Figure 7.15.
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Figure 7.15: Scheme of extended plant [3].
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8 Simulation Tests

The simulation tests are performed using a hollow ball with the model parameters given in
Table A.2 and the physical constraints as well as the operating range presented in section 3.

First, the results will be presented for the linear controllers, see section 6.1, that only use
feedback action, then the nonlinear controllers, designed 6.2, that have feedforward components
in the control action will be presented. In addition, it is verified that the terms neglected to
obtain the approximate model do not affect the control of the exact model. Then the comparative
results of the closed-loop observer and the generation of the control action from the estimated
states are presented.

Using the most suitable observer of section 7 incorporated in the closed-loop with the nonlinear
controllers designed and are tested with the sensor delay. Then is compared the control results
without and with compensation of the delay using the Smith predictor 7.3.2 for different
frequencies of the reference trajectories.

8.1 Full State Feedback Controllers

The simulation of the designed controllers is performed assuming that all the states are
measurable. Linear controllers are tested for stabilization and also a sinusoidal signal tracking
test is performed to demonstrate that the feedback alone is not sufficient to track medium and
high frequency trajectories. On the other hand, the nonlinear controllers are tested for the
case of sinusoidal reference trajectories in both axis, using the feedforward component in their
control action.

8.1.1 Stabilization Controllers

The stabilization control is performed using the control scheme presented in Figure 6.1 with
references x∗ = 0.15 m and y∗ = 0.15 m. We consider the following performance indicators in
order to be able to compare the controllers in the stabilization case: overshooting, the settling
time tss, the approximate settling error during the simulation time ess, the maximum value
of the control action umax and the maximum value of the plate’s angle ϕmax , ϑmax. It takes
into account the control action and the plate’s angle as performance indicators since they are
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variables that represent the physical limits and determine a greater margin of safety in the
operation of the system avoiding the influence of vibration.

We only compare the results regarding the x−axis since the behavior on the y−axis is very
similar, however the graphs of all states of the ball and plate system are shown during the
simulations.

8.1.1.1 Pole Placement

As mentioned in the design process of the pole placement controller 6.1.1, the desired poles of
the closed-loop system are chosen pure real in LHP, so that it is stable and there is no overshoot;
however, in order to obtain suitable poles there are infinite options. Therefore, the comparison
is made in 3 cases of desired poles presented in Table 8.1 and the performance characteristics
are compared. The results of the controller simulation in the presented cases are shown in
Figure 8.1.

Table 8.1: Performance and results using pole placement approach.

cases desired poles exss [m] overshoot% tss[s] ϕmax[degrees] u1max [rad/s2]

case 1 {−1,−1.5,−2,−2.5} 8.4e− 3 0 5.0 0.482 0.191

case 2 {−2,−2.5,−3.5,−4} 1.29e− 4 0 3.0 1.517 1.7839

case 3 {−1,−2,−5,−6} 3.0e− 3 0 4 1.0602 1.5291

According to the summary performance indicators Table 8.1, it can be seen that while the poles
are more negative, the settling time is reduced but the control action and the plate’s angles
increase. However, it is proceeded to select the desired poles of case 2 since a fast response is
obtained with a reasonable control action.

8.1.1.2 LQR

To determine the suitable weights for the calculation of the control action, we proceed to
compare three cases presented in Table 8.2, obtaining the simulation results in the Figure 8.2.
The main idea is to obtain the weights for a response with minimum overshoot, fast response
and that does not require high control effort.
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Figure 8.1: Control result using the pole placement approach.

Table 8.2: Performance summary using LQR approach for stabilization.

cases weights exss [m] overshoot% tss[s] ϕmax[degrees] u1max [rad/s2]

case 1 ρ = 100 , κ = 0.1 5.29e− 05 2.72 3.60 1.94 1.50

case 2 ρ = 300 , κ = 0.1 5.16e− 05 2.25 3.50 2.21 2.59

case 3 ρ = 1000 , κ = 0.1 4.87e− 05 2.07 3.40 2.46 4.74

According to the summary of performance indicators in Table 8.2, it can be seen that while
increasing the weight ρ of the state error variable, the control action increases and when the
weight κ of the error in angle is increased, the required maximum plate’s angle value is reduced
but the response becomes slower. Therefore we choose the weights of case 2 for the design of
the LQR controller as an intermediate solution.
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Figure 8.2: Control result using the LQR approach.

The controllers designed for stabilization can not operate well for trajectory tracking since
their response is not based on the error dynamics. To verify it is proceeded to test using the
LQR controller with a sinusoidal trajectory reference A sin(ωt) of three different frequencies
presented in Table 8.3. In addition, this table presents the performance indicators referred to
the maximum tracking error, the maximum angle and control effort required.

Table 8.3: Performance summary using LQR for tracking sinusoidal references.

frequency [rad/s] max. steady track. error [m] ϕmax[degrees] u1max [rad/s2]

ω = 0.5 0.0238 1.3382 1.4405

ω = 0.75 0.0511 1.9855 2.4303

ω = 1 0.0852 2.5955 3.2431
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The results of the tracking errors, plate’s angles and control efforts are presented in Figure 8.3.
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Figure 8.3: Tracking errors and control results for sinusoidal references using LQR.

As shown in Figure 8.3, the tracking error and plate angles increases when the frequency of the
reference signal ω increases, in addition to also increasing the plate’s angles.

8.1.2 Nonlinear Controllers

8.1.2.1 Tracking Control based on Approximate Feedback Linearization

As detailed in the controller design using feedback linearization for tracking 6.2.2, it is required
to select four desired poles, the same poles per each subsystem, to stabilize the tracking error.
There are three representative cases of desired pole selection in Table 8.4. In addition, the
performance indicators referred to the average tracking error during the simulation time (see
appendix C), the maximum angle and control effort required are presented in this table.
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Table 8.4: Performance results for sinusoidal reference with A = 0.15 m, w = 0.5 rad/s using
tracking control based on AFL.

cases desired poles average error [m] ϕmax[degrees] u1max [rad/s2]

case 1 {−1,−1.5,−2,−2.5} 0.0176 0.6064 0.2230

case 2 {−2,−2.5,−3.5,−4} 0.0076 1.2667 1.2424

case 3 {−3,−4,−5,−6} 0.0040 2.2477 4.3005

The resulting states values and the control efforts are presented in Figure 8.4.
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Figure 8.4: Control results using tracking control based on AFL.

It is observed that the initial control action is much greater than the control action when the
reference trajectory is reached. When the reference is reached the control action is oscillating of
very small value and therefore due to the scale of the graph is not appreciated.
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From the results in Table 8.4, it is concluded that while the poles are more negative, the required
maximum angle and control action increase considerably. Therefore, the desired poles of case 2
are chosen as an intermediate solution. Then, using these desired poles, proceed to perform
tests of tracking sinusoidal signals of different frequencies presented in Table 8.5, obtaining the
control results in Figure 8.5.
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Figure 8.5: Tracking errors and control results for sinusoidal references using tracking control
based on AFL.

Table 8.5: Performance summary using tracking control based on AFL for sinusoidal references
of different frequencies.

frequency [rad/s] max. steady track. error [m] ϕmax[degrees] u1max [rad/s2]

ω = 0.5 1.03e− 04 1.2667 1.2424

ω = 0.75 4.75e− 04 1.7337 1.7919

ω = 1 1.30e− 03 2.0609 2.2554
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In the result summary Table 8.5, it is shown that as long as the frequency of the reference signal
increases, the maximum steady tracking error is increased and also requires a higher plate’s
angles and control efforts.

On the other hand, using the results Figure 8.5 we proceed to validate the use of the approximate
model (6.44) to design the controller for the exact model (5.9a). As explained in 6.2.2, the
neglected term must be much less than the main term, which according to the result in
Figure 8.6 can be validated.

time [s]
0 5 10 15

-0.1

0

0.1

0.2
main term c̄1 sin(x3)

time [s]
0 5 10 15

×10-4

0

1

2

3

neglected term

ω = 0.5
ω = 0.75
ω = 1

Figure 8.6: Comparison between main and neglected term to apply feedback linearization using
the approximate model.

In addition it can be seen in Figure 8.6 that the maximum value of neglected terms depends
on the frequency of the reference signal to track, and also on the amplitude that has not been
studied because the workspace limits the amplitude. The higher the frequency and amplitude,
the greater the neglected term and can make the approach of using the approximate model is not
valid; however, according to the results for the considered operation range the approximation is
valid.

8.1.2.2 Tracking control with Integral Action

The integral action is added with the intention of obtaining zero tracking error, so the integral of
the tracking error is added in the control action. The test process is very similar to the previous
tracking control case but now five poles are used as shown in the Table 8.6.
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Table 8.6: Performance results for sinusoidal reference with A = 0.15 m, w = 0.5 rad/s using
tracking control based on AFL with integral action.

cases desired poles average error [m] ϕmax[degrees] u1max [rad/s2]

case 1 {−0.5,−1,−1.5,−2,−2.5} 0.0136 0.8290 0.3345

case 2 {−1,−1.5,−2,−2.5,−3} 0.0082 1.3124 0.8919

case 3 {−2,−2.5,−3.5,−4,−5} 0.0035 2.8502 4.5872

The resulting states values and the control efforts are presented in Figure 8.7.
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Figure 8.7: Control results using tracking control with integral action based on AFL.

From the results in Table 8.6, it is concluded that while the poles are more negative, the required
maximum angle and control action is increased considerably. Therefore, the desired poles of
case 2 are chosen as an intermediate solution. Then, using these desired poles, we proceed
to perform tests of tracking sinusoidal signals of different frequencies presented in Table 8.7,
obtaining the control results shown in Figure 8.8.
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Figure 8.8: Tracking errors and control results for sinusoidal references using tracking control
with integral action based on AFL.

Table 8.7: Performance summary using tracking control based on approximate feedback lin-
earization with integral action for sinusoidal references with different frequencies.

frequency [rad/s] max. steady track. error [m] ϕmax[degrees] u1max [rad/s2]

ω = 0.5 1.01e− 04 1.3124 0.8919

ω = 0.75 5.88e− 04 1.8011 1.2782

ω = 1 1.80e− 03 2.0781 1.5928

It can be seen in the result summary Table 8.7, that as long as the frequency of the reference
signal increases, the maximum steady tracking error is increased and also requires a higher
plate’s angles and control efforts. In addition, the results of the steady error are very similar
to the case of tracking without integral action but requires less maximum value of the control
efforts and plate’s angles; however, a greater initial overshoot in the ball’s position is required
due to the integral term.
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8.1.2.3 Backstepping

As was explained in 6.2.3, the backstepping control has the gains {c1, c2, c3, c4} real positive.
These gains are varied to obtain the desired performance and also stability. Because it was
designed based on the approximate model (6.44), the global stability for the exact system (5.9a)
is not satisfied, but only local stability. There are three representative cases of controller gain
selection in Table 8.8.

Table 8.8: Performance results for sinusoidal reference with A = 0.15 m, w = 0.5 rad/s using
backstepping control.

cases controller gains average error [m] ϕmax[degrees] u1max [rad/s2]

case 1 {0.1, 1, 1.5, 2} 0.0109 1.1104 0.5888

case 2 {1, 2, 2.5, 3} 0.0052 2.0174 1.8452

case 3 {1, 4, 5, 6} 0.0040 2.5533 4.8576

The resulting states values and the control efforts are presented in Figure 8.9.
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Figure 8.9: Control result using backstepping control.
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From the results in Table 8.8, it is concluded that while increasing the value of the controller
gains, the average tracking error is reduced but the required maximum plate’s angle and control
effort increase considerably. Therefore, the controller gains of the case 2 are chosen as an
intermediate solution. Then, using these controller gains, proceed to perform tests of tracking
sinusoidal signals of different frequencies presented in Table 8.9, obtaining the control results
in Figure 8.10.

Table 8.9: Performance summary using backstepping for tracking sinusoidal references.

frequency [rad/s] max. steady track. error [m] ϕmax[degrees] u1max [rad/s2]

ω = 0.5 6.6967e− 05 2.0174 1.8452

ω = 0.75 3.1891e− 04 2.9485 2.7170

ω = 1 9.1574e− 04 3.6874 3.5279

0 3 6 9 12 15

er
ro
r
x
[m

]

-0.05

0

0.05

0.1

ω = 0.5 ω = 0.75 ω = 1

0 3 6 9 12 15

er
ro
r
y
[m

]

-0.05

0

0.05

0.1

0 3 6 9 12 15

φ
[d
eg
re
es
]

-4

-2

0

2

4

0 3 6 9 12 15

θ
[d
eg
re
es
]

-4

-2

0

2

4

time [s]
0 3 6 9 12 15

u
1
[r
ad

/s
2
]

-2

0

2

4

time [s]
0 3 6 9 12 15

u
2
[r
ad

/s
2
]

-4

-2

0

2

Figure 8.10: Tracking errors and control results for sinusoidal references using backstepping
control.
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The results in Table 8.7, show that for higher frequency of the reference signal, the maximum
value of the steady tracking errors increases and also requires a higher plate’s angles and
control efforts. In addition, the results of the steady tracking errors are slightly better than in
the methods based on feedback linearization but at the cost of the highest value of the control
efforts and plate’s angles.

8.1.2.4 Sliding Mode Control

As explained in 6.2.4, the sliding mode controller has the gains α, β1, β2, β3 with these last three
of positive value. These gains are varied to obtain the desired performance and also stability.
Only local stability can be expected, because the controller was designed using the approximate
model. A sigmoidal function with ε = 0.1 is used to reduce the chattering since through tests it
delivers better trade-off between performance and smoothness of the control action.

In this approach varying the gains α and β1 does not significantly alter the performance, varying
β2 and β3 changes the performance but when they are far away from β1 the stability is lost.
Therefore, according to the above, three representative cases of controller gains selection are
presented in Table 8.10.

Table 8.10: Performance results for reference A = 0.15 m, w = 0.5 rad/s using sliding mode
control.

cases controller gains average error [m] ϕmax[degrees] u1max [rad/s2]

case 1 {−1.5, 0.5, 1, 3} 0.0164 0.6327 1.2613

case 2 {−1.5, 0.5, 2, 3} 0.01162 1.2258 1.3225

case 3 {−1.5, 0.5, 2, 5} 0.0106 1.7125 1.3893

The resulting states values and the control efforts are shown in Figure 8.11. It is appreciated
that for greater gain β3 the chattering takes place and a reaching phase is presented.

From the results in Table 8.10, it is concluded that while increasing the value of the controller
gains β2 and β3, keeping the stability of the system, the maximum required plate’s angle
increase considerably and control effort just a little. Using the controller gains of the second case
further simulations tracking sinusoidal signals of different frequencies presented in Table 8.11
are performed, obtaining the control results in Figure 8.12.
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Figure 8.11: Control results using sliding mode control approach.

Table 8.11: Performance summary using sliding mode control for tracking sinusoidal references.

frequency [rad/s] max. steady track. error [m] ϕmax[degrees] u1max [rad/s2]

ω = 0.5 0.0031 0.6327 1.2613

ω = 0.75 0.0052 0.9508 1.3207

ω = 1 0.0053 1.4631 1.3425

The results in Table 8.11, show that while the frequency of the reference signal increases, the
maximum steady tracking errors increases only slightly, but already represents a considerable
error and not comparable with the previous cases; however, less maximum plate’s angles are
used.
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Figure 8.12: Tracking errors and control results for sinusoidal references using sliding mode
control.

8.2 Observers

For the real implementation of the full-state feedback controllers presented above, it is necessary
to use the state estimator operating correctly. For this, we proceed to the simulation of the
linear and nonlinear observers designed in section 7, and to compare characteristics such as the
estimation errors and the reduction of the noise that leads to a better generation of the control
action.

The observers are applied to the nonlinear model of the system and also the delay in the
measurement is not considered in this section.
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8.2.1 Linear Observers

The design of the linear observer as was explained in 7.1, consists in calculating the constant
gain L of the observer through the pole location method, Luenberger observer, or optimal
estimation, Kalman filter, based on Jacobi’s linearized model. In addition all the available
measurements are used, i.e. the ball’s position and plate’s angles.

The Luenberger observer is designed considering the poles of the observer in such a way
that they give a dynamic four times faster than the controlled system designed in 8.1.1.1, as
follows

so = 4 (−2,−2.5,−3.5,−4) , (8.1)

then the closed-loop state estimation test is performed, since it is the way it will operate in
reality, obtaining the states shown in Figure 8.13.
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Figure 8.13: Estimates states using Luenberger observer.

Using the estimated states by the Luenberger observer and the pole placement controller 8.1.1.1,
the control efforts shown in Figure 8.14 are obtained.
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Figure 8.14: Control effort using the Luenberger observer.

The Kalman Bucy filter is designed considering the variance of the measurement noise and the
process disturbances, calculated from experimental data shown in appendix B. In this way the
covariance matrices Q and R, calculated as explain in 7.1.2, are

Q = 10−3

(
0.1075 0

0 0.0277

)
, R = 10−6


0.7254 0 0 0

0 0.1772 0 0
0 0 0.0002 0
0 0 0 0.0001

 , (8.2)

and are used to obtain the observer gain L. Then applying the closed loop observation gives
the states shown in Figure 8.16.
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Figure 8.15: Control effort using Kalman Bucy filter.
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Figure 8.16: Estimates states using Kalman Bucy filter.

Using the estimated states by the Kalman Bucy filter in the calculation of the control action,
also the LQR controller 8.1.1.1, the control efforts shown in Figure 8.15 are obtained.

Finally the state estimation errors (see appendix C) and the control effort are compared for both
methods in Table 8.12, where it can be seen that the average estimation errors are similar but
using Kalman Bucy filter the control effort is smaller and less noisy.

Table 8.12: Comparison performance of Kalman Bucy filter and Luenberger observer.

observer x̃1average [m] x̃2average [m/s] x̃3average [rad] x̃4average [rad/s] u1max

Luenberger 8.32e− 04 4.60e− 03 1.35e− 05 6.20e− 04 8.0471

Kalman filter 4.38e− 04 7.34e− 04 1.96e− 04 1.80e− 03 2.7291

8.2.2 Nonlinear Observers

The design of the nonlinear observer, as explained in 7.2, consists of calculating the observer
gain L(x̂) through the nonlinear Luenberger-like observer or extended Kalman filter.
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The nonlinear Luenberger-like observer only uses the ball’s position to estimate all the states
and is based on the approximate model (6.44) for the calculation of the gain L(x̂) and structure
of the observer. Applying this observer in closed loop, to a stabilization case with the LQR
controller 8.1.1.2, the estimated states shown in Figure 8.17 are obtained.
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Figure 8.17: Estimated states using nonlinear Luenberger-like observer.

The control efforts calculated from the estimated states by the nonlinear Luenberger-like
observer are shown in Figure 8.18.
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Figure 8.18: Control effort using nonlinear Luenberger-like observer.

The EKF uses all available measurements to estimate all states. The same covariance matrices
are used as in the Kalman filter case (8.2) to calculate the observer gain L(x̂). This gain is
variant and calculated in each Jacobi linearization of the system around the estimated states.

Applying the EKF in closed-loop, to a stabilization case with the controller LQR 8.1.1.2, the
estimated states shown in Figure 8.19 are obtained.
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Figure 8.19: Estimates states using the EKF.
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The control efforts calculated from the estimated states by the EKF observer are shown in
Figure 8.20.
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Figure 8.20: Control effort using the EKF.

Finally the state estimation errors (see appendix C) and the generated control action are
compared for both methods in Table 8.13, where it can be seen that using the EKF results much
lower state estimation errors because it uses all available measurements and the exact structure
of the nonlinear observer. Also the required control by the EKF is smaller. However, the
nonlinear Luenberger-like observer provides acceptable results respect to the linear Luenberger
observer only using the ball’s position.

Table 8.13: Comparison performance between nonlinear Luenberger-like observer and EKF.

observer x̃1average [m] x̃2average [m/s] x̃3average [rad] x̃4average [rad/s] u1max [rad/s2]

nonlinear Luenberger 8.06e− 04 1.10e− 02 4.30e− 03 0.0066 5.1962

EKF 4.38e− 04 7.34e− 04 1.96e− 04 0.0018 2.7281

8.3 Tracking Control

Simulation of trajectory tracking is performed using the nonlinear controllers with feedforward
component in the control action, also using the EKF to estimate the states. EKF was selected
since as shown in Table 8.13 it gives better results.

The control scheme Figure 7.14 is used for the simulation, considering two main cases, in the
first it is used the measurement of the ball’s position with delay towards the observer and the
second one considers the compensation of the measurement delay of τ = 42 ms.
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Tests are performed using sinusoidal reference trajectories of amplitude A = 0.15 m and
frequencies ω ∈ {0.5, 0.75, 1} rad/s, so that the influence of the delay on medium and high
frequencies is observed. The performance indicators used are the trajectory tracking error (see
appendix C), the maximum plate angles and control efforts.

8.3.1 Tracking Control based on Approximate Feedback Linearization with

Extended Kalman Filter

Tracking control based on approximate feedback linearization is studied with the desired poles
used in the case 2 of Table 8.4 and the estimation of states with EKF, also considering the
measurement delay.

The control results are shown in Figure 8.21 and summarized in Table 8.14.
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Figure 8.21: Tracking errors and control results for sinusoidal references using tracking control
based on AFL and EKF without delay compensation.

It can be seen in Figure 8.21 and the result summary Table 8.7, that as long as the reference
signal frequency increases, the maximum steady tracking error increases more than in the case
without delay in the measurement presented in 8.1.2.1.
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Table 8.14: Performance summary using tracking control based on AFL with EKF for sinusoidal
references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 3.5381 1.3002 1.2424 1.1893 1.4494

0.75 6.4775 1.7880 1.7919 0.9945 1.0358

1 9.5683 2.1024 2.2554 1.5558 0.4651

To verify the compensation of the delay in the measurement by the Smith predictor, tracking
tests are performed, obtaining the control results shown in Figure 8.22.

0 3 6 9 12 15

er
ro
r
x
[m

]

-0.05

0

0.05

0.1

ω = 0.5 rad/s ω = 0.75 rad/s ω = 1 rad/s

0 3 6 9 12 15

er
ro
r
y
[m

]

-0.05

0

0.05

0.1

0.15

0 3 6 9 12 15

φ
[d
eg
re
es
]

-3

-1.5

0

1.5

3

0 3 6 9 12 15

θ
[d
eg
re
es
]

-3

-1.5

0

1.5

3

time [s]
0 3 6 9 12 15

u
1
[r
ad

/s
2
]

-1.5

0

1.5

3

time [s]
0 3 6 9 12 15

u
2
[r
ad

/s
2
]

-1.5

0

1.5

Figure 8.22: Tracking errors and control results for sinusoidal references using tracking control
based on AFL, EKF and Smith predictor.

Finally, as shown in Figure 8.22 and referring to Table 8.15, the compensation of the delay in
the measurement eliminates its influence even for trajectories of higher frequencies.
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Table 8.15: Performance summary using tracking control base on AFL, EKF and Smith predictor
for sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 0.7529 1.3013 1.2424 1.1731 1.4494

0.75 0.8893 1.7937 1.7919 0.961 1.0358

1 0.9491 2.0599 2.2554 1.4824 0.4651

8.3.2 Tracking Control with Integral Action with Extended Kalman Filter

Tracking control based on approximate feedback linearization with integral action is studied
with the desired poles used in the case 2 of Table 8.6 and the estimation of states with EKF, also
considering the measurement delay.

The tests are carried out for sinusoidal reference trajectories of different frequencies presented
in Table 8.16 obtaining the control results shown in Figure 8.23.
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Figure 8.23: Tracking errors and control results for sinusoidal references using tracking control
with integral action based on AFL and EKF without delay compensation.
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It can be seen in Figure 8.23 and the result summary Table 8.16, that as long as the reference
signal frequency increases, the maximum steady tracking error increases more than in the case
without delay in the measurement presented in 8.1.2.2.

Table 8.16: Performance summary using tracking control with integral action based on AFL
action and EKF for sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 3.7548 1.3595 0.8919 1.7592 1.4176

0.75 8.1605 1.8474 1.2782 1.3499 1.1154

1 13.5785 2.1344 1.5928 1.592 0.7008

To verify the compensation of the delay in the measurement by the Smith predictor, tracking
tests are performed with the same sinusoidal reference trajectories, obtaining the control results
shown in Figure 8.24.
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Figure 8.24: Tracking errors and control results for sinusoidal references using tracking control
with integral action based on AFL, EKF and Smith predictor.

Finally, as shown in Figure 8.24 and referring to Table 8.17, the compensation of the delay in
the measurement eliminates its influence even for trajectories of higher frequencies.
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Table 8.17: Performance summary using tracking control with integral action based on AFL,
EKF and Smith predictor for sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 0.2722 1.3595 0.8919 1.7592 1.4176

0.75 0.548 1.8474 1.2782 1.3529 1.1154

1 1.4149 2.1346 1.5928 1.4318 0.7008

8.3.3 Backstepping Controller with Extended Kalman Filter

In the same way as in previous approaches, using the backstepping control with the controller
gains used in the case 2 of Table 8.8 and the estimation of states with EKF, also considering
the delay in the measurement proceed to perform tests for sinusoidal trajectories of different
frequencies presented in Table 8.18 obtaining the control results in Figure 8.25.
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Figure 8.25: Tracking errors and control results for sinusoidal references using backstepping
and EKF without delay compensation.
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It can be seen in Figure 8.25 and the result summary Table 8.18, that as long as the reference
signal frequency increases, the maximum steady tracking error increases more than in the case
without delay in the measurement presented in 8.1.2.3.

Table 8.18: Performance summary using backstepping control and EKF for sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 3.3052 2.0635 1.8452 2.6421 2.901

0.75 5.9395 2.9514 2.7170 1.9761 2.4086

1 8.9694 3.6775 3.5279 1.9139 1.7276

To verify the compensation of the delay in the measurement by the Smith predictor, tracking
tests are performed with the same sinusoidal reference trajectories, obtaining the control results
shown in Figure 8.26.
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Figure 8.26: Tracking sinusoidal references with delayed output measurement using approxi-
mate backstepping controller, EKF and Smith predictor.

Finally, as shown in Figure 8.26 and referring to Table 8.19, the compensation of the delay in
the measurement eliminates its influence even for trajectories of higher frequencies.
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Table 8.19: Performance summary using backstepping control, EKF and Smith predictor for
sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 0.464 2.0507 1.8452 2.6023 2.901

0.75 0.4779 2.9374 2.7170 1.9495 2.4086

1 0.7934 3.5752 3.5279 1.9485 1.7276

8.3.4 Sliding Mode Control with Extended Kalman Filter

In the same way as in previous approaches, the sliding mode control is studied with the
controller gains used in the case 2 of Table 8.10 and the estimation of states with EKF, also
considering the delay in the measurement.

The control results are shown in Figure 8.27 and summarized in Table 8.20.
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Figure 8.27: Tracking sinusoidal references with delayed output measurement using sliding
mode control and EKF
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It can be seen in Figure 8.27 and the result summary Table 8.20, that as long as the reference
signal frequency increases, the tracking error increases more than in the case without delay in
the measurement presented in 8.1.2.4, but not significantly as in the other approaches.

Table 8.20: Performance summary using sliding mode control and EKF for sinusoidal references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 2.8149 0.6348 1.2613 1.1738 1.3681

0.75 4.1877 0.9535 1.3207 0.8558 1.3368

1 4.7941 1.5100 1.3425 1.4975 1.0129

To verify the compensation of the delay in the measurement by the Smith predictor, tracking
tests are performed, obtaining the control results shown in Figure 8.28.
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Figure 8.28: Tracking sinusoidal references with delayed output measurement using sliding
mode control, EKF and Smith predictor.

Finally, as shown in Figure 8.28 and referring to Table 8.21, the compensation of the delay in
the measurement eliminates its influence even for trajectories of higher frequencies.
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Table 8.21: Performance summary using sliding mode control, EKF and Smith predictor for
tracking references.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 3.9101 0.6361 1.2613 1.1687 1.3681

0.75 4.1695 0.9582 1.3207 0.826 1.3368

1 4.5401 1.4720 1.3425 1.4653 1.0129



122

9 Experimental Tests

Experimental tests are performed using the software ControlDesk v5.1 with the DS1104 RD
controller board, presented in 3.1.4, configured with sample time of 2 ms and implementing the
control scheme presented in Figure 7.14. In addition, the components presented in the extended
plant shown in Figure 7.15 are added.

First, the validation of the mathematical model and the observer is performed. The performance
of the Luenberger observer result better, in the experimental tests, than the others studied with
respect to their greater speed of convergence and good estimation of the states. This is justified
since the variance of the noises of measurement and input disturbance, as seen in appendix
B, are quite small in such a way that the Kalman filter does not give a great advantage. The
estimated states are compared with the states obtained using offline derivation with filter of the
ball’s position and plate’s angles states. The stabilization and tracking tests presented below
were then performed.

9.1 Stabilization

After performing several tests with different weights of the LQR controller for the stabilization
case, and also according to the conclusions presented in [7], it was concluded that the friction
between the ball and the surface of the screen and the ball deformation considerably affects the
performance of the controller. At low ball velocities and small plate angles the friction effect is
greater. Therefore, in order to overcome the static friction at the beginning of the movement, it
was necessary to increase the initial acceleration and adopt the weights to generate closed-loop
poles with an imaginary part.

Using the LQR controller with the weights ρ = 100 , κ = 0.1, the ball initially placed at the
origin (0, 0) and set points x∗ = y∗ = 0.15 m yields the evolution of the states presented in
Figure 9.1 and control efforts in Figure 9.2.

Table 9.1: Performance result using LQR for stabilization.

weights exss [m] overshoot% tss[s] ϕmax[degrees] u1max [rad/s2]

ρ = 100 , κ = 0.1 0.015 0 3 2.95 1.41
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Figure 9.1: States in the stabilization test using LQR controller.

As it is shown in Figure 9.1 and Figure 9.2 the stabilization time and the control efforts ,
respectively, are close to the value obtained in the simulation. However, the steady error is
higher due to friction not considered in the model. The results of the control performance for
the x−axis are presented in Table 9.1.

The experimental results using a solid steel ball are presented in appendix E. The tests was
done using the the same closed-loop poles as with the hollow ball. The overshoot was greater
and the stationary error less because the friction was less. However, was not possible to use the
solid steel ball because it damages the screen surface.
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Figure 9.2: Control efforts in the stabilization test using LQR controller.

9.2 Tracking Control

Tracking tests are performed with the ball initially placed at the origin (0, 0) and using circular
trajectories references with polynomial initialization (see appendix D), i.e. sinusoidal reference
signals for the x−axis and co-sinusoidal for the y−axis, with amplitude A = 0.15 m and
frequencies ω ∈ {0.5, 0.75, 1} rad/s to compare the performance of the controllers.

In addition, the cases are presented without compensation of the delay in the measurement and
with compensation of the delay by means of the Smith predictor.

9.2.1 Tracking Control Based on Approximate Feedback Linearization

Without Delay Compensation Better results were obtained using poles with imaginary part
of the linearized system in Brunovsky form. With these poles we obtain the controller gain
Kbr = [180, 162, 66, 13] . Tests are performed with sinusoidal reference signals of different
frequencies obtaining control results presented in Figure 9.3, Figure 9.4 and Figure 9.5. Also,
the observer has initial states values equal to zero.

Table 9.2: Performance using tracking control based on AFL for sinusoidal references with
A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 18.01 1.1953 0.6734 1.6494 0.5214

0.75 19.54 2.0874 0.5893 2.2236 0.2862

1 17.44 3.3882 0.5708 4.1060 0.59783
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Figure 9.3: Tracking with A = 0.15 m , ω = 0.5 rad/s using tracking control based on AFL.
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Figure 9.4: Tracking with A = 0.15 m , ω = 0.75 rad/s using tracking control based on AFL.
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Figure 9.5: Tracking with A = 0.15 m , ω = 1 rad/s using tracking control based on AFL.

The controller performance summary presented in Table 9.2 shows that due to the effect of
friction the average tracking error does not increase as the frequency of the reference signal
increases as it did in the simulation. This effect is because the friction was not considered in the
simulations. The friction is reduced when the ball speed is higher, and this occurs when the
frequency of the reference signal is greater.

On the other hand, it was observed that the spring generates an oscillatory movement to the
plate of greater frequency than the reference trajectory visualized in the plate’s angles graphs.

Considering Delay Compensation Including the Smith predictor to compensate the sensor
delay and using the same controller gain as the previous case, the tracking control tests are
performed for different frequencies of the reference signals, with the control results presented
in Figure 9.6, Figure 9.7 and Figure 9.8.

Table 9.3: Performance using tracking control based on AFL and Smith predictor for sinusoidal
references with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 17.98 2.2397 0.801 2.2134 0.3348

0.75 17.98 1.6992 1.3757 1.1909 0.6399

1 16.67 1.8267 0.8787 1.6099 0.4774
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Figure 9.6: Tracking with A = 0.15 m , ω = 0.5 rad/s using tracking control based on AFL and
SP.
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Figure 9.7: Tracking with A = 0.15 m , ω = 0.75 rad/s using tracking control based on AFL and
SP.



9 Experimental Tests 128

0 5 10 15 20 25

x
[m

]

-0.2

-0.1

0

0.1

0.2
measured estimated reference

0 5 10 15 20 25

y
[m

]

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25

φ
[d
eg
re
es
]

-3

-1.5

0

1.5

3

0 5 10 15 20 25

θ
[d
eg
re
es
]

-3

-1.5

0

1.5

3

time [s]
0 5 10 15 20 25

u
1
[r
ad

/s
2
]

-1

-0.5

0

0.5

1

time [s]
0 5 10 15 20 25

u
2
[r
ad

/s
2
]

-1

-0.5

0

0.5

1

Figure 9.8: Tracking with ω = 1 rad/s using tracking control based on AFL and SP.

The controller performance summary presented in Table 9.3, shows that including the com-
pensation of the delay the average tracking error was reduced, however the benefit is not
very appreciable because friction and other characteristics not modeled (e.g. ball deformation,
non-uniform distribution of ball mass, rotation of the ball around its vertical axis, etc.) affect in
greater proportion.

9.2.2 Tracking Control with Integral Action Based on AFL

Without Delay Compensation Integral action was added in the control action in order to
reduce the tracking error. The controller gain considering desired poles with an imaginary part
to overcome static friction is [Kbr, KI ] = [200, 132, 51, 12, 4]. Tests without delay compensation for
sinusoidal signals of different frequency are shown in Figure 9.9, Figure 9.10 and Figure 9.11.

Table 9.4: Performance using tracking control with integral action based on AFL for sinusoidal
references with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 17.09 1.8472 1.2136 1.9058 0.6329

0.75 14.93 1.9204 0.5065 1.7534 0.3582

1 18.03 1.8721 0.442 2.0479 0.3472
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Figure 9.9: Tracking with A = 0.15 m , ω = 0.5 rad/s using tracking control with integral action.
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Figure 9.10: Tracking with A = 0.15 m , ω = 0.75 rad/s using tracking control with integral
action.
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Figure 9.11: Tracking with A = 0.15 m , ω = 1 rad/s using tracking control with integral action.

Considering Delay Compensation Including the Smith predictor to compensate the sensor
delay and using the same controller gain as the previous case, tracking control tests are
performed for different frequencies of the reference signals, with the control results presented
in Figure 9.12, Figure 9.13 and Figure 9.14.

Furthermore the ball trajectories during the tracking control using this approach is presented in
appendix F .

Table 9.5: Performance using tracking control with integral action based on AFL and Smith
predictor for sinusoidal references with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 12.7737 1.2363 0.5614 1.0928 0.6001

0.75 13.634 2.5283 0.3934 2.335 0.2978

1 16.8383 2.6235 0.8906 1.5425 0.41

During the tests, it was observed that the spring generates an oscillatory movement to the plate
of greater frequency than the reference trajectory and that can be easily visualized in the plate’s
angles graphs. This effect could be considered as an external disturbance that also alters the
control effort making it more oscillatory.
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Figure 9.12: Tracking with A = 0.15 m , ω = 0.5 rad/s using tracking control with integral
action and SP.
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Figure 9.13: Tracking with A = 0.15 m , ω = 0.75 rad/s using tracking control with integral
action and SP.
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Figure 9.14: Tracking with A = 0.15 m , ω = 1 rad/s using tracking control with integral action
and SP.

The controller performance summary presented in Table 9.5, shows that including the delay
compensation the average error of tracking was reduced, however the benefit is not very appre-
ciable because the friction and other characteristics not modeled affect in greater proportion.
On the other hand, adding the integral action increases the performance.

9.2.3 Backstepping Control

Without Delay Compensation Tests are performed using backstepping controller with the
controller gains {c1, c2, c3, c4} = {2, 3, 4, 5.5} . The control results without delay compensa-
tion for sinusoidal signals of different frequency are shown in Figure 9.15, Figure 9.16 and
Figure 9.17.

Table 9.6: Performance using backstepping controller for sinusoidal references with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 19.5507 1.9307 1.0095 2.1738 1.0871

0.75 17.6480 2.5254 1.5416 2.3701 1.3295

1 15.8435 2.2778 1.1623 3.0791 1.2593
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Figure 9.15: Tracking with A = 0.15 m , ω = 0.5 rad/s using backstepping controller.
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Figure 9.16: Tracking with A = 0.15 m , ω = 0.75 rad/s using backstepping controller.
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Figure 9.17: Tracking with A = 0.15 m , ω = 1 rad/s using backstepping controller.

As in the previous cases, the spring generates an oscillatory movement to the plate of greater
frequency than the reference trajectory and alters the control effort making it more oscillatory.

Considering Delay Compensation Including the Smith predictor to compensate the sensor
delay and using the same controller gain as the previous case, tracking control tests are
performed for different frequencies of the reference signals, with the control results presented
in Figure 9.18, Figure 9.19 and Figure 9.20.

Table 9.7: Performance using backstepping controller and Smith predictor for sinusoidal refer-
ences with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 15.6275 1.1279 1.3816 1.1279 0.9421

0.75 13.4502 1.2744 1.0573 1.3989 0.9536

1 13.637 1.4077 0.9119 3.0952 0.6988



9 Experimental Tests 135

0 5 10 15 20 25

x
[m

]

-0.2

-0.1

0

0.1

0.2

measured estimated reference

0 5 10 15 20 25

y
[m

]

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25

φ
[d
eg
re
es
]

-2

-1

0

1

2

0 5 10 15 20 25

θ
[d
eg
re
es
]

-2

-1

0

1

2

time [s]
0 5 10 15 20 25

u
1
[r
ad

/s
2
]

-1.5

-0.5

0.5

1.5

time [s]
0 5 10 15 20 25

u
2
[r
ad

/s
2
]

-1.5

-0.5

0.5

1.5

Figure 9.18: Tracking with A = 0.15 m , ω = 0.5 rad/s using backstepping controller and SP.
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Figure 9.19: Tracking with A = 0.15 m , ω = 0.75 rad/s using backstepping controller and SP.
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Figure 9.20: Tracking with A = 0.15 m , ω = 1 rad/s using backstepping controller and SP.

The controller performance summary presented in Table 9.7, shows that including the delay
compensation the average tracking error was reduced; however, the benefit is not very appre-
ciable because the friction and other characteristics not modeled affect in greater proportion.
On the other hand, the average tracking error obtained is close to that obtained using tracking
control with integral action based on AFL Table 9.5, but uses a greater control effort.

9.2.4 Sliding Mode Control

Without Delay Compensation Tests are performed using sliding mode control with the
controller parameters {α, ε, β1, β2, β3} = {−1.5, 0.3, 1.5, 3, 5} presented in Table 9.8. The control
results without delay compensation for sinusoidal signals of different frequency are shown in
Figure 9.21, Figure 9.22 and Figure 9.23.

Table 9.8: Performance using sliding mode control for sinusoidal references with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 38.2362 1.9219 0.8235 1.8706 0.4819

0.75 29.112 1.1016 0.7092 2.6777 0.8503

1 24.6551 1.708 1.5494 1.4517 1.1511
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Figure 9.21: Tracking with A = 0.15 m , ω = 0.5 rad/s using sliding mode control.
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Figure 9.22: Tracking with A = 0.15 m , ω = 0.75 rad/s using sliding mode control.
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Figure 9.23: Tracking with A = 0.15 m , ω = 1 rad/s using sliding mode control.

As in the previous cases, the spring generates an oscillatory movement to the plate of greater
frequency than the reference trajectory and alters the control effort making it more oscillatory.

Considering Delay Compensation Including the Smith predictor to compensate the sensor
delay and using the same controller gain as the previous case, tracking control tests are
performed for different frequencies of the reference signals, with the control results presented
in Figure 9.24, Figure 9.25 and Figure 9.26.

Table 9.9: Performance using sliding mode control and Smith predictor for sinusoidal references
with A = 0.15 m.

ω [rad/s] tracking error[%] ϕmax[degrees] u1max [rad/s2] ϑmax[degrees] u2max [rad/s2]

0.5 35.2914 2.1357 1.1305 1.8457 0.6548

0.75 25.9086 1.2422 1.4972 2.6968 1.3951

1 21.5796 1.7021 1.308 1.4253 0.988
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Figure 9.24: Tracking with A = 0.15 m , ω = 0.5 rad/s using sliding mode control and SP.
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Figure 9.25: Tracking with A = 0.15 m , ω = 0.75 rad/s using sliding mode control and SP.
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Figure 9.26: Tracking with A = 0.15 m , ω = 1 rad/s using sliding mode control and SP.

The controller performance summary presented in Table 9.9, shows that including the com-
pensation of the delay the average tracking error was reduced; however, the benefit is not
very appreciable because the friction and other characteristics not modeled affect in greater
proportion. On the other hand, the average tracking error obtained is higher than the other
methods and therefore does not have a good performance for the ball and plate system under
study. The reason for this is because this approach requires high control activity so also requires
that the inner loop dynamics be quite fast. However, the maximum angular velocity of the plate
was limited, for safety reasons, to avoid vibrations and because the screen has a considerable
mass.

To summarize, the Figure 9.27 presents the comparison of the tracking control for A = 0.15 m ,
ω = 0.75 rad/s using the approaches studied. The approaches : tracking control with integral
action based on AFL and backstepping provide less tracking error, using the latter greater
control action. On the other hand, tracking control based on AFL amplifies the vibratory effect of
the spring to the plate angles and control action, and does not achieve good performance either.
The sliding mode controller delivers greater tracking error and generates a more oscillatory
behavior of the system requiring rapid changes of the control action.
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Figure 9.27: Comparing approaches for A = 0.15 m , ω = 0.75 rad/s, using SP
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10 Conclusions and Future Work

10.1 Conclusions

This thesis presents some important contributions regarding the modeling, analysis, and design
of the control system for the ball and plate system developed Control Engineering Group of
TU Ilmenau. The main objective was to perform the tracking control to the ball; however, this
led to the design of the full state observer and the Smith predictor in order to provide the
estimated states to the controller. In addition, the comparison of different control approaches
was performed.

After modeling the system and analyzing the model, we conclude that the system is globally
weak observable and locally controllable for the considered operation range, and therefore the
controller and observer can be designed. Also, the Jacobi linearization results in two decoupled
linear systems, and this means that near the equilibrium point it is possible to neglect the
coupling terms.

On the other hand, when calculating the relative degree of the system with the exact model
and analyzing the internal dynamics, we conclude that the system is non-minimum phase,
so that the feedback linearization approach can not be applied. Also, perfect tracking can
not be done based on the exact model, since the dynamic inversion is unstable. Therefore,
an approximate flat model is used to design controllers based on the approaches: feedback
linearization, backstepping, and sliding mode. However, by applying these controllers to the
ball and plate system, they only guarantee local stability in function to the operating range and
its gains, since they are not designed with the exact model.

According to the results in simulation, it was verified that for the considered operation range
and frequencies no greater than ω = 1 it is ensured that the neglected terms are very small
in comparison to the main terms that belong to the approximate model, then it is a valid
approximation. In addition, the delay in the measurement affects more when the reference
signal has high frequency. However, using the Smith predictor, the delay is compensated to
be able to use the ball position in the estimation of states by the observer. From the studied
observers, it was possible to appreciate that the EKF delivers better results since it better filters
the noise for the estimation of states but its speed of convergence is slower than that of the
Luenberger linear observer.
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Furthermore, after performing the simulation tests for each control approach, considering the
EKF observer, within the operating range, and verifying that the results satisfy the physical
constraints, we conclude that:

• The controllers based only in feedback action has a big error for tracking trajectories, so
the controllers with feedforward component in its control action are used.

• The controllers based on AFL provide good performance. Also, for frequencies smaller
than ω = 1, adding integral action reduces the tracking error and control action required
but at the cost of initial overshoot.

• The backstepping controller provides less tracking error than the previous controllers
but uses higher values of the plate angle and control action, however within the physical
restrictions.

• The sliding mode control provides a greater tracking error; however, the tracking error
varied in smaller proportion according to the frequency of the reference signal respect to
the other controllers.

In the experimental tests, the Luenberger observer delivered a faster estimation dynamics than
the Kalman Bucy filter, whereby the response of the controlled system was better and therefore
was chosen. In addition, because noise measurements and input disturbances were small the
effectiveness of the Kalman Bucy filter was not appreciated.

According to the experimental tests, the spring influences as an external disturbance that adds
high frequency oscillations to the plate’s angles and is amplified in the control action. Also, the
friction (between the ball and the surface of the screen) and other characteristics not modeled
(e.g. ball deformation, non-uniform distribution of ball mass, rotation of the ball around its
vertical axis, etc.) affect in greater proportion the performance of the controllers. At low ball
velocities and small plate angles, its effect is greater. Therefore, in order to reduce it, in the
case of control approaches based on AFL, poles with an imaginary part were used, while in
the backstepping and sliding mode control the controller gains were increased. This generates
a greater plate angle and acceleration to overcome the friction. However, by increasing the
imaginary part of the closed-loop poles or the controllers gain, a greater vibration is generated
in the behavior of the controlled system.

The delay in the measurement causes the system response to be delayed with respect to the
reference signal and also that the tracking error increases directly proportional to the frequency
of the reference. However, due to friction this effect degenerates because for greater frequencies
the speed of the ball is increased reducing the effect of friction.

The inner loop dynamic generates that the system is slower in comparison to the simulations,
therefore reduces the bandwidth of the controlled system. Also, this alters the performance of
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the controller based on the sliding mode approach, as it requires a fast system response for the
switching of the sliding variables.

After performing the experimental tests using each control approach together with the Luen-
berger observer, we conclude:

• Tracking controllers based on AFL provided good performance and stability.

• The backstepping controller provides a good performance with respect to the tracking
error for higher frequencies of the reference signal, however during the tests it was
observed that for large position errors the controlled system becomes unstable. This is
because the control action has abrupt changes but is saturated in the control scheme
implemented.

• The tracking controller with integral action and the backstepping controller offer better
results, however the first one uses less control action.

• The controller based on sliding mode has worse performance than the other methods,
since the tracking error is greater. In addition, the friction and speed of the inner loop
dynamics affect it in greater proportion. On the other hand, to greater amplitudes and
frequencies of the reference signal its performance improves.

It was also noticed that the coupling effect was greater than the one of the model since when
turning the plate in a single axis, the ball moved in both axes, due to mechanical problems that
were compensated by the controller.

10.2 Future Work

The work done is a starting point to experiment with other control approaches in order to obtain
better performance and robustness for tracking trajectories in non-minimum phase systems,
considering the exact model of the ball and plate system in the design of the control system.

Some proposed approaches are the control based on linearized systems about the trajectory
obtaining LTV systems, the method based on stable dynamic inversion and the Byrnes Isidori
regulator that uses exosystemas to generate the trajectories in such a way as to guarantee the
stability of the internal dynamics. However, it is necessary to clarify that as long as the friction
is not considered in the model will not be able to have a good performance of the controller,
therefore it is recommended to add the effect of the friction to the obtained model.
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Appendix A � Variables and Parameters of the Ball

and Plate System

Table A.1: Variables in the modeling and control system design for the ball and plate system.

Description Symbol SI Unit

Ball position respect to the plate in x-coordinate x m

Ball position respect to the plate in y-coordinate y m

Ball velocity respect to the plate in x-coordinate ẋ m/s

Ball velocity respect to the plate in y-coordinate ẏ m/s

Ball acceleration respect to the plate in x-coordinate ẍ m/s2

Ball acceleration respect to the plate in y-coordinate ÿ m/s2

Ball position respect to the fixed coordinates in X-coordinate X m

Ball position respect to the fixed coordinates in Y-coordinate Y m

Ball position respect to the fixed coordinates in Z-coordinate Z m

Angle of the plate about x-axis ϑ rad

Angle of the plate about y-axis ϕ rad

Angular velocity of the plate about x-axis ϑ̇ rad/s

Angular velocity of the plate about y-axis ϕ̇ rad/s

Angular acceleration of the plate about x-axis ϑ̈ rad/s2

Angular acceleration of the plate about y-axis ϕ̈ rad/s2

Angular velocity of the plate in the X-coordinate wpx rad/s

Angular velocity of the plate in the Y-coordinate wpy rad/s

Angular velocity of the plate in the Z-coordinate wpz rad/s

Angle of the motor shaft about X-axis Θ rad

Angle of the motor shaft Y-axis Φ rad
Angular velocity of motor shaft about X-axis Θ̇ rad/s

Angular velocity of motor shaft about Y-axis Φ̇ rad/s

Angular acceleration of motor shaft about X-axis Θ̈ rad/s2

Angular acceleration of motor shaft about Y-axis Φ̈ rad/s2
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Table A.2: Main parameters of the ball and plate system.

Parameter Symbol Value Unit (SI)

Mass of the ball mb 0.024 Kg

Radius of the ball rb 0.02 m

Moment of inertia of the ball Jb 6.4e-06 Kg.m2

Gravitational acceleration g 9.81 m.sec2

Distance beetwen the plate and the cardan dcs 0.122 m

Dead time of the touch screen sensor τ 0.042 sec2

Material of the ball polypropylen
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Appendix B � Variance of the Measurement Noises

and the Process Disturbances
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Figure B.1: Measurement of the ball’s position in a static location.
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Figure B.2: Measurement of the plate’s angles in a static location.
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Figure B.3: Measurement of the control efforts in a static state.

Table B.1: Variance of the measurement errors and input disturbances.

σ2
ηx

σ2
ηy

σ2
ηφ

σ2
ηθ

σ2
ω1

σ2
ω2

7.2538e-07 1.7721e-07 1.5433e-10 1.1580e-10 1.0816e-04 2.8090e-05
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Appendix C � Performance Indicators

Average estimation error (x̃kaverage)

x̃k(t) = xk(t)− x̂k(t) (C.1)

x̃kaverage =
∑

t f
t=ti
|x̃k(t)|

t f − ti
, k = 1, . . . , 8 (C.2)

Average tracking error (exaverage)

ex(t) = x∗(t)− x(t) (C.3)

exaverage =
∑

t f
t=ti
|ex(t)|

t f − ti
(C.4)

Trajectory tracking error (ett)

ex(t) = x∗(t)− x(t) (C.5)

ey(t) = y∗(t)− y(t) (C.6)

ett (%) =

√√√√√ ∑
t f
t=ti

(
e2

x(t) + e2
y(t)

)
∑

t f
t=ti

(
x∗2(t) + y∗2(t)

)100% (C.7)
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Appendix D � Circular Trajectory Reference with

Polynomial Initialization

The reference trajectory starts with the polynomial function P(t) and at time t = T is changed
to the sinusoidal function.

Trajectory reference for t < T

y∗1(t)
ẏ∗1(t)
ÿ∗1(t)

y∗(3)1 (t)

y∗(4)1 (t)
y∗2(t)
ẏ∗2(t)
ÿ∗2(t)

y∗(3)2 (t)

y∗(4)2 (t)



=



P (t)
Ṗx (t)
P̈x (t)

P(3)
x (t)

P(4)
x (t)
Py (t)
Ṗy (t)
P̈y (t)

P(3)
y (t)

P(4)
y (t)



(D.1a)

Trajectory reference for t >= T

y∗1(t)
ẏ∗1(t)
ÿ∗1(t)

y∗(3)1 (t)

y∗(4)1 (t)
y∗2(t)
ẏ∗2(t)
ÿ∗2(t)

y∗(3)2 (t)

y∗(4)2 (t)



=



A sin (ωt)
Aω cos (ωt)
−Aω2 sin (ωt)
−Aω3 cos (ωt)
Aω4 sin (ωt)
A cos (ωt)
−Aω sin (ωt)
−Aω2 cos (ωt)
Aω3 sin (ωt)
Aω4 cos (ωt)



(D.1b)

For a soft initialization, the trajectory reference and its derivatives at t = 0 must satisfy:

Px (0) = Ṗx (0) = P̈x (0) = P(3)
x (0) = P(4)

x (0) = 0, (D.2)

Py (0) = Ṗy (0) = P̈y (0) = P(3)
y (0) = P(4)

y (0) = 0, (D.3)

and also by the continuity condition at time t = T the following relations must be satisfied


Px (T)
Ṗx (T)
P̈x (T)

P(3)
x (T)

P(4)
x (T)

 =


A sin (ωT)
Aω cos (ωT)
−Aω2 sin (ωT)
−Aω3 cos (ωT)
Aω4 sin (ωT)

 (D.4a)


Py (T)
Ṗy (T)
P̈y (T)

P(3)
y (T)

P(4)
y (T)

 =


A cos (ωT)
−Aω sin (ωT)
−Aω2 cos (ωT)
Aω3 sin (ωT)
Aω4 cos (ωT) .

 (D.4b)
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Appendix E � Stabilization Control for the Solid Steel

Ball

0 5 10 15 20 25 30 35

x
[m

]

-0.3

-0.15

0

0.15

0.3

measured estimated using observer reference estimated using derivative with filter

0 5 10 15 20 25 30 35

y
[m

]

-0.3

-0.15

0

0.15

0.3

0 5 10 15 20 25 30 35

ẋ
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Figure E.1: States in the stabilization test using LQR controller.
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Figure E.2: Control efforts in the stabilization test using LQR controller.
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Appendix F � Ball Trajectory during Tracking Control
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(a) Tracking control for A = 0.15 , ω = 0.5.
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(b) Tracking control for A = 0.15 , ω = 0.75.
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Figure F.1: Trajectory of the ball using tracking control with integral action based on AFL.
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