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Abstract

The attenuation coefficient slope (ACS) has the potential to be used for tissue characterization and as
a diagnostic ultrasound tool, hence complementing B-mode images. The ACS can be valuable for esti-
mation of other ultrasound parameters such as the backscatter coefficient. There is a well-known trade-
off between the precision of the estimated ACS values and the data block size used in spectral-based
techniques such as the spectral log difference (SLD). This trade-off limits the practical usefulness of
spectral-based attenuation imaging techniques.

In this thesis work, the regularized spectral log difference (RSLD) technique is presented in detail
and evaluated with simulations and experiments with physical phantoms, ex vivo and in vivo. The ACS
values obtained when using the RSLD technique were compared to the ones obtained when using the
SLD technique, as well as the ground truth ACS values obtained with insertion loss techniques. The
results showed that the RSLD technique allowed significantly decreasing estimation variance when
using small data block sizes (i.e., standard deviation of percentage error reduced by more than an order
of magnitude in all cases when using 10λ × 10λ data blocks) without sacrificing estimation accuracy.
Therefore, the RSLD allows for the reconstruction of attenuation coefficient images with an improved
trade-off between spatial resolution and estimation precision.
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Chapter 1

Introduction

Ultrasound are mechanical waves with frequencies ( f ) above the human hearing limit (i.e., f > 20
KHz). Ultrasound has been applied extensively in last decades for medical tasks including the use of
pulse-echo techniques for imaging human body internal structures [1]. Quantitative ultrasound (QUS)
encompasses a set of techniques designed to provide numerical values of intrinsic tissue properties [2].
The attenuation coefficient is one of the QUS parameters widely explored for tissue characterization
purposes.

1.1 Attenuation coefficient

Ultrasonic attenuation is the progressive loss of ultrasound wave energy as the ultrasound passess
through a medium (e.g., human tissues). Attenuation is modeled as an exponential function of propa-
gation depth. For a 1-D ultrasound wave the pressure p(x, t) as a function of the time (t) and distance
(x) can be expressed as

p(x, t) = A0e−αxe j(ωt−krx), (1.1)

where e−αx act as an exponential damping term. Moreover, high frequencies of the ultrasound wave are
more attenuated than the low frequencies. This observation leads to the following expression for the
ultrasonic attenuation (α) as a function of frequency

α( f ) = β× f γ, (1.2)

where β and γ are experimentally estimated from a fit of the ultrasonic attenuation function dependence
of frequency ( f ). For several soft tissues, the power law exponent γ = 1 is a good approximation [1],
although some tissues might have larger values (e.g. γspleen = 1.3 and γbreast = 1.5). For γ = 1, the β

value is named attenuation coefficient slope.
The ultrasonic attenuation is produced by several types of interactions betweeen the ultrasound

wave and the medium, being the most important ones the absorption and scattering [3, 4].

1.1.1 Absorption

The mechanisms of ultrasound absorption can be grouped in two categories: classical absorption and
relaxational absorption. The total absorption coefficient depends on both mechanisms, being the latter
the dominant one.

1
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Classical absorption refers to losses produced by the viscosity and thermal conductivity as the
ultrasound wave passes across a medium. First, ultrasound wave energy losses are caused by dis-
placements of particles. Second, losses by thermal conductivity occur when the heat flows from high
temperature regions (i.e., compression regions) to low temperature regions (i.e., rarefaction regions).
The classical mechanisms are typically dependent on f 2. On the other hand, relaxational absorption
losses occur as the ultrasound energy is used for returning a distorted medium to the equilibrium. A
time constant τ is associated with the absorption mechanisms.

1.1.2 Scattering

Scattering is produced when the ultrasound wave encounters structures in the tissue. The type of ultra-
sound scattering depend on the scatterer size (e.g. radius = a) with respect to the ultrasound wavelength
(λ) defined as

λ =
cs

f
(1.3)

where cs is sound velocity in the medium and f is the frequency of the ultrasound wave. The ultrasound
scattering can be [1]

1. Specular scattering, if a� λ. The backscattered intensity does not change with the frequency.

2. Diffusive or Rayleigh scattering, if a� λ. In this case, the ultrasound scattering occurs in all
directions and the scattered intensity is proportional to the frequency to the fourth power and to
the sixth power of the radius.

3. Diffractive scattering, if a≈ λ.

The backscatter coefficient (BSC) is a property that quantifies the amount of energy that is reflected by
a material as function of the frequency of the ultrasound wave. Therefore, the backscatter coefficient
estimation habe been found useful for derive parameters of such material like the effective scatterer size
and concentration.

1.2 Studies on attenuation coefficient estimation

Several studies have performed attenuation estimation in liver [5, 6, 7, 8, 9], thyroid [10, 11], breast
[12, 13, 14], spleen [15], muscle [16], skin [17, 18], cervical and uterine tissues [19, 20] and small
plaques [21]. A related parameter is the total attenuation that an ultrasonic wave experiences from the
surface of the transducer to a region of analysis within a tissue of interest. The total attenuation along
the ultrasound path is required for the estimation of other QUS parameters such as the backscatter
coefficient [22] that might provide information of the effective size and density of scatterers in a region
of interest. The estimation of the total ultrasound attenuation has been explored using several methods
[23, 24], including an estimation derived directly from local attenuation coefficient maps [25].

The attenuation coefficient slope (ACS) can be estimated using techniques based on the spectral
information from the radiofrequency (RF) backscattered echoes analyzing either the amplitude change
(spectral difference, spectral log difference) or the downshift of the spectrum (centroid downshift, hy-
brid method) as a function of depth [26, 27, 28]. Samimi and Varghese [29] experimentally studied the
achievable variance of the spectral difference technique, and found that data block sizes of 30 lateral
lines by 10.5 axial wavelengths (λ) and 10 lateral lines by 72 axial wavelengths resulted in standard
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deviations errors of approximately 70% and 20%, respectively. Labyed and Bigelow [27] showed with
simulations that when using the spectral log difference technique, standard deviations lower than 20%
can be achieved when using data block sizes of 5 lateral lines by 70 axial wavelengths (28 pulse lengths)
or 40 lateral lines by 26.25 axial wavelengths (10.5 pulse lengths). Therefore, the spatial resolution of
the ACS estimation methods based on depth-dependent spectral amplitude changes is severely limited
for practical applications.

The severe trade-off between spatial resolution and precision in ACS estimation also plagues
methods that derive estimates from spectral downshifts. Samimi and Varghese [26] studied the per-
formance of the centroid downshift technique, and reported that estimates from a physical phantom
with ACS of 0.5 dB.cm−1.MHz−1 resulted in standard deviations of 270% and 90% when using data
blocks of 40 lines laterally by 18.5 and 30 wavelengths axially, respectively. Labyed and Bigelow [27]
reported that the precision of the hybrid method was comparable to the one obtained with the spectral
log difference technique, and therefore data blocks of several tens of wavelengths axially and laterally
are required for obtaining precise estimates. In another study, Samimi and Varghese [30] developed an
optimum frequency-shift estimator that enhances the hybrid method technique achieving for a physi-
cal phantom with ACS of 0.8 dB.cm−1.MHz−1 standard deviations of approximately 58.8% and 7.5%
when using data block sizes of 40 lateral lines by 38 and 140 axial wavelengths, respectively. Therefore,
research is still required to develop ACS estimators with a better trade-off between spatial resolution
and precision.

All the results discussed so far were obtained with homogeneous phantoms either in simulations
or experiments. Some results are also available when the assumptions required for deriving spectral-
based ACS estimation methods break down. For example, Labyed and Bigelow [27] evaluated the
spectral log difference technique with inhomogeneous simulations of data blocks with varying scatterer
number density in the axial dimension as a step function. It was reported that standard deviation errors
are higher than 25% even though using using data blocks with sizes of 5 lateral lines by 87.5 axial
wavelengths (35 pulse lengths) or 100 lateral lines by 26.25 axial wavelengths (10.5 pulse lengths).
Though, the hybrid method results were comparable to the spectral log difference technique, the spectral
difference in the aforementioned inhomogeneous medium fails resoundingly, as the accuracy error was
higher than 100%. Therefore, it is evident the lack of a more robust method for ACS estimation in
inhomogeneous media. In other study, Rubert and Varghese demonstrated that ACS precision with the
spectral difference technique deteriorates rapidly when speckle deviates from Rayleigh statistics [31].
In particular, the standard deviation of ACS estimates increased from 11.5% to 51% when the envelope
signal-to-noise ratio (SNR) decreases from 1.78 to 1.01 with a Siemens S2000 scanner equipped with
a 9L4 array (nominal center frequency of 6.5 MHz). The data block size was 16 mm axially by 15 mm
laterally, which roughly corresponds to 67 λ axially by 62 λ laterally. These results suggest that the
performance of available spectral-based ACS estimation techniques is expected to be worse in clinical
applications where simplified assumptions are not expected to hold.

Some spectral-based ACS estimation techniques have been used in tandem with compounding
approaches. Tu et al. [32] used the spectral difference technique in a uniform physical phantom of 0.5
dB.cm−1.MHz−1 using data blocks of approximately 23 λ axially by 23 λ laterally along with spatial
compounding and frequency compounding, respectively. It was reported that spatial compounding by
averaging ACS values of 15 angles with 3.75°steps decreased the standard deviation error from 84%
to 24%, whereas frequency compounding of ACS values resulted after applying the spectral difference
technique at five frequencies resulted in standard deviation error decrease of 84% to 40%. Whereas the
compounding approaches looks promising, the need of multiple acquisitions for spatial compounding
remains the most significant downside of this technique. In other study, Zenteno et al. [33] used a full
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angular spatial compounding (FASC) method by acquiring backscattered data of 30 angles (ranging
from 0°to 360°) with data block sizes of 29 λ axially by 29 λ laterally. The FASC technique application
on physical phantoms resulted in variance reduction rates higher than 88% while holding the bias below
8%. Unfortunately, the soft tissues where a full angular view can be achievable is limited mainly to
breast.

Some recent efforts towards developing improved ACS estimators in the time-domain can be
found in the literature. For example, Ghoshal and Oelze [34] enhance time-domain ACS estimation
methods by coupling diffraction effects and attenuation effects. It was reported in physical phantoms
a standard deviation error lower than 20% and 10% for a data block size of 22.5 λ axially by 43.8 λ

laterally and 45 λ axially by 43.8 λ laterally, respectively. However, more studies are required to assess
the performance. Other approaches such as the iterative reconstruction method proposed by Ilyina et
al. [35] aims to derive ultrasound parameters such as attenuation, nonlinear distortion, reflection and
scattering by minimizing the actual measured power spectra and the simulated power spectra that is
modified iteratively by varying the aforementioned ultrasound parameters. In spite of having mainly
ACS estimation bias less than 10%, there is no information of variance. In addition, the assumption
of a plane wave propagation model may be limited in clinical applications where diffraction effects of
transducers need to be taken into account.

1.3 Objectives

Currently, spectral-based techniques construct attenuation coefficient maps by estimating ACS values
from each data block at a time, therefore, requiring large sizes of data block to achieve reasonable values
of variance as detailed in the literature. Estimating ACS values from each data block at a time does not
exploit the two-dimensional nature of attenuation coefficient maps. Therefore, the present work aims
to extend the trade-off between the data block size and the precision when reconstructing attenuation
coefficients. As a result, relatively small data block sizes (i.e., 20 λ axially by 20 λ laterally or less) can
be used while obtaining attenuation coefficient maps with typical coefficients of variation of less than
25%. The specific objectives of this work are:

1. Develop a joint attenuation coefficient estimator that exploits the two dimensional nature of the
attenuation coefficient maps.

2. Acquire data from different sources: computer simulations, physical phantoms, as well as ex vivo
and in vivo tissues in order to have a large set of data for validating the proposed attenuation
coefficient estimator.

3. Obtain attenuation coefficient maps with better precision compared with current attenuation co-
efficient estimation techniques.

1.4 Overview of the document

Of the most widely studied attenuation estimation methods, the spectral log difference technique has
shown a more robust performance in inhomogeneous media than the spectral difference technique,
and techniques based on spectral shifts such as the hybrid method have not shown to significantly
outperform it. The spectral log difference technique has been used recently in many clinical studies
[11, 14, 18, 20, 21]. Therefore, this technique was chosen to introduce the new two-dimensional ACS
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estimation approach. The rest of this document is as follows:

Chapter 2, Attenuation estimation methods describes in detail the spectral log difference
(SLD) technique, as well as the proposed regularized spectral log difference technique (RSLD) [36]
for attenuation coefficient maps reconstruction. In addition, the procedure for implementing the algo-
rithm to solve the optimization problem in the RSLD technique is depicted.

Chapter 3, Simulations and experiments describes the data sets evaluated in this work. In addi-
tion, this chapter provides information of the processing parameters and the metrics used for evaluation
of image quality enhancement.

Chapter 4, Testing and Validation shows the attenuation coefficient maps reconstructed for
each data set as well as a discussion of the results on a case by case basis.

Chapter 5, Conclusion summarizes the most important findings of this work.



Chapter 2

Attenuation estimation methods

2.1 Spectral log difference technique

The SLD technique estimates the attenuation coefficient of a data block by splitting the data block in
two sub-blocks (one proximal and one distal relative to the transducer) as depicted in Fig 2.1. The
centers of these windows are located at depths zp and zd , respectively (zd > zp). The backscattered
power spectrum Ss( f ,zp) (i.e, the power spectrum of the ultrasound signal that returns to the transducer
direction) corresponding to the proximal window in the sample can be modeled as [27]

Ss( f ,zp) = [P( f )Ds( f ,zp)BSCs( f ,zp)As( f ,z0)e−4αs( f )(zp−z0)], (2.1)

where P( f ) denotes the scanner transfer function, z0 is the depth at the beginning of the data block,
As( f ,z0) is the total ultrasound attenuation from the transducer to the beginning of the data block,
Ds( f ,zp) denotes the diffraction effects of the transducer, and BSCs( f ,zp) and α( f ) are the backscatter
and attenuation coefficients of the sub-block, respectively. Similarly, the power spectrum of the distal
window can be modeled as

Ss( f ,zd) = [P( f )Ds( f ,zd)BSCs( f ,zd)As( f ,z0)e−4αs( f )(zd−z0)]. (2.2)

Combining (2.1) and (2.2) results in

Y ( f ) = 4(zd− zp)αs( f )+ ln
[

BSCs( f ,zp)

BSCs( f ,zd)

]
, (2.3)

Y ( f ), ln
[(

Ss( f ,zp)

Ss( f ,zd)

)/(
Ds( f ,zp)

Ds( f ,zd)

)]
. (2.4)

The log ratio Y ( f ) can be computed since Ss( f ,zp) and Ss( f ,zd) were measured, whereas the
ratio [Ds( f ,zp)

/
Ds( f ,zd)] can be estimated either analytically or by using reference phantom method

(see section 2.2). In addition, the attenuation coefficient in soft tissues is approximated to have a linear
dependence with frequency, i.e. αs( f ) = β f , where β is the ACS of the data block. Therefore (2.3) can
be written as

Y ( f ) = 4Lβ f + c, (2.5)

where L = zd–zp, and c = ln[BSCs( f ,zp)]–ln[BSCs( f ,zd)]. The ACS is estimated from the linear fit
over the useful frequency range in (2.5). The useful frequency was selected as the frequency range that

6
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Figure 2.1: Data block beginning at depth z0, in dashed red are depicted both proximal (center at zp

depth) and distal (center at zd depth) windows.
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Figure 2.2: Spectral log ratio vs. frequency.

corresponds to the bandwidth of the power spectra using a −15 to −20 dB cutoff criterion and that is
above the noise floor (i.e., > 10 dB above the noise floor in this work). Figure 2.2 show an spectral log
ratio for a 70 λ data block. The attenuation coefficient map is constructed by positioning the estimated
ACS values in a 2D grid as shown in Fig. 2.3.

Kuc and Schwartz demonstrated that the noise in the Y ( f ) measurements can be very closely
approximated by a zero mean Gaussian PDF [5]. Therefore, a discretized form Yi, j,k of Y ( f ) values in
(2.5) for the data block corresponding to (i, j) indices with i ∈ [1,m] and j ∈ [1,n], and the frequency
component fk with k ∈ [1,r] leads to

Yi, j,k = 4Lβi, j fk + ci, j,k +ηi, j,k, (2.6)
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1 2 … n 1 2 … n

1 Y1,1 Y1,2 … Y1,n 1 1,1 1,2 … 1,n

2 Y2,1 Y2,2 … Y2,n 2 2,1 2,2 … 2,n

3 Y3,1 Y3,2 … Y3,n 3 3,1 3,2 … 3,n

… … … ... … … … … ... …

m Ym,1 Ym,2 … Ym,n m m,1 m,2 … m,n

Figure 2.3: Measured log ratios and attenuation coefficient slope β corresponding to the data blocks
within the total field of view allocated in a 2D grid.

where βi, j is the ACS of the data block, ci, j,k is a term dependent on backscatter coefficients differences
of proximal and distal windows, and ηi, j,k is the noise that has been approximated by a zero mean
Gaussian noise and were assumed to be independent and identical distributed. Following common
assumptions of the SLD method, here it is considered that ci, j,k = ci, j, ∀k ∈ [1,r].

2.2 Diffraction compensation functions for the spectral log difference

2.2.1 Spherically focused transducers

The ratio [Ds( f ,zp)/Ds( f ,zd)] in 2.4 when using a spherically focused transducer can be estimated by
computing both Ds( f ,zp) and Ds( f ,zd) with the diffraction compensation function developed in [37]
and used previously for the SLD technique in [38], i.e.,

Ds( f ,z) =


0.46

πa2

z2 exp

[
−0.46

π
G2

p

(
FL

z
−1
)2
]

,
(

1+π

Gp

)−1

<
z

FL
<

(
1−π

Gp

)−1

πa2

z2

[
Gp

(
FL

z
−1
)]2

, otherwise

(2.7)

where Gp is the pressure gain factor, z is the depth of either the proximal or distal window, a is the
transducer radius, and FL is the transducer focal length.

2.2.2 Linear array transducers

The ratio [Ds( f ,zp)/Ds( f ,zd)] when using linear array cannot be determined with an analytic diffrac-
tion compensation function. Thus, additional power spectra Sr( f ,zp) and Sr( f ,zd) of a homogeneous
reference phantom with Dr( f ,z) ≈ Ds( f ,z) were acquired. The backscattered power spectra Sr( f ,zp)
and Sr( f ,zd) are given by

Sr( f ,zp) = [P( f )Dr( f ,zp)BSCr( f ,zp)Ar( f ,z0)e−4αr( f )(zp−z0)], (2.8)

Sr( f ,zd) = [P( f )Dr( f ,zd)BSCr( f ,zd)Ar( f ,z0)e−4αr( f )(zd−z0)]. (2.9)

Since the reference phantom used was homogeneous, BSCr( f ,zp) = BSCr( f ,zd). Therefore, the
ratio [Ds( f ,zp)/Ds( f ,zd)] can be estimated as

Ds( f ,zp)

Ds( f ,zd)
≈

Dr( f ,zp)

Dr( f ,zd)
=

Sr( f ,zp)

Sr( f ,zd)
e−4αr( f )(zp−zd), (2.10)
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where the power spectra Sr( f ,zp) and Sr( f ,zd) are experimentally measured and the attenuation coeffi-
cient of the reference phantom αr( f ), and the proximal and distal windows depths are all known.

2.3 Regularized spectral log difference technique

2.3.1 RSLD derivation

The RSLD technique solved the ACS estimation as a two-dimensional inverse problem. By using
the isotropic total variation regularization terms (assuming sparsity of spatial variations of attenuation
coefficients and backscatter coefficients in the medium).

The notation used in 2.6 allows writing the SLD technique as the matrix equation

y = Ax+η, (2.11)

where

A ,



4L f1 0 · · · 0 1 0 · · · 0
0 4L f1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 4L f1 0 0 · · · 1
...

...
. . .

...
...

...
. . .

...
4L fr 0 · · · 0 1 0 · · · 0

0 4L fr · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 4L fr 0 0 · · · 1


mnr×2mn

,

y ,



Y1,1,1
Y2,1,1

...
Ym,n,1

...
Y1,1,r
Y2,1,r

...
Ym,n,r


mnr×1

,x ,



β1,1
β2,1

...
βm,n

c1,1
c2,1

...
cm,n


2mn×1

,η ,



η1,1,1
η2,1,1

...
ηm,n,1

...
η1,1,r
η2,1,r

...
ηm,n,r


mnr×1

.

(2.12)

In addition the vectors B and C corresponding to the upper and down halves of x are defined as

B ,


β1,1
β2,1

...
βm,n


mn×1

,C ,


c1,1
c2,1

...
cm,n


mn×1

. (2.13)

The attenuation coefficient map is obtained by reshaping the vector B that groups the estimated
ACS values in a m× n grid. The expression in 2.11 corresponds to the SLD method written as a ma-
trix equation. Nevertheless, this formalism allows incorporating sparsity-driven constraints that allows
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regularizing the image reconstruction process [39]. In this work, the RSLD technique assumes physical
structures within the medium to be piecewise homogeneous. Under this assumption, the regularization
term chosen was the isotropic total variation [40, 41]. Hence, ACS maps can be estimated by solving

minimize
x

1
2
‖y−Ax‖2

2 +µ φ(x), (2.14)

φ(x), TV(B)+TV(C), (2.15)

where (1
/

2)‖y−Ax‖2
2 is the data fidelity term, µ is the regularization parameter, and φ(x) is the regu-

larization term. The TV(B) and TV(C) terms used in this work were

TV(B) = ∑
i, j

√
(βi+1, j−βi, j)2 +(βi, j+1−βi, j)2

TV(C) = ∑
i, j

√
(ci+1, j− ci, j)2 +(ci, j+1− ci, j)2

(2.16)

Moreover, it should be noticed that the problem in 2.16 can be rewritten as

minimize
B,C

1
2
‖y−A1B−A2C‖2

2 +µ (TV(B)+TV(C)) (2.17)

where A1 and A2 are left and right sub-matrixes of A that operate on B and C, respectively. By defining
D , y−A1B−A2C, (2.17) can be expressed as the constrained optimization problem

minimize
B,C,D

1
2
‖D‖2

2 +µ (TV(B)+TV(C))

subject to A1B+A2C+D = y.
(2.18)

2.3.2 RSLD implementation

The solution that minimizes (2.18) with two TV terms was achieved by using the scaled alternating
direction method of multipliers (ADMM) [42]. The following ADMM algorithm was implemented

1.Set q = 0,ρ = 1,B(0),C(0),D(0),V (0)

2.Repeat

3.B(q+1) = min
B

{
µ TV(B)+

ρ

2
‖A1B+A2C(q)+D(q)− y+V (q)‖2

2

}
4.C(q+1) = min

C

{
µ TV(C)+

ρ

2
‖A1B(q+1)+A2C+D(q)− y+V (q)‖2

2

}
5.D(q+1) = min

D

{
1
2
‖D‖2

2 +
ρ

2
‖A1B(q+1)+A2C(q+1)+D− y+V (q)‖2

2

}
6.V (q+1) =V (q)+A1B(q+1)+A2C(q+1)+D(q+1)− y

7.Until stopping criterion is reached.

The ADMM algorithm stops either when ∆
(

1/2‖D‖2
2 +µ (TV(B)+TV(C)

)
between consecutive

iterations is smaller than a tolerance value (i.e., 10−3 in this work) or the maximum number of iterations
is reached (i.e., 20 iterations in this work). The sub-problems 3 and 4 in the ADMM algorithm that
involve the minimization of a cost function with a single TV term were independently solved by using
the iterative reweighted least squares (IRLS) algorithm described in [40].



Chapter 3

Simulations and experiments

The quality of ACS maps when using the RSLD technique was numerically evaluated on numerical
phantoms, physical phantoms, and ex vivo and in vivo tissues. The data processing was performed
off-line using the software MATLAB v.8.3 (The MathWorks Inc., Natick, MA)

3.1 Data sets

3.1.1 Computer simulations

The computer simulations were performed using the k–Wave toolbox [43], which provides time-domain
simulations accounting for both linear and nonlinear wave propagation and arbitrary distributions of
material parameters. For all simulations, the simulated array transducer was composed by 128 elements
with a 0.3 mm element pitch. The focal number in transmit and receive was set to two. Fixed focusing
was used in transmission (focal depth of 2 cm, focal number of 2), and dynamic focusing was used
on reception. The excitation signal was a Gaussian pulse with 6.66 MHz central frequency and 50%
full width at half maximum (FWHM). For both computer simulations, the diffractive effects of the
transducers were compensated with a simulated homogeneous reference phantom with ACS of 0.30
dB.cm−1.MHz−1.

The numerical phantom in Simulation #1 consisted of a homogeneous medium with ACS of
0.50 dB.cm-1.MHz-1, which is typically considered as a representative value for soft tissues [44]. The
numerical phantom in Simulation #2 was a homogeneous background with a 2 cm diameter circular
inclusion. The ACS values in the background and inclusion were 0.5 and 1 dB.cm−1.MHz−1. Figure 3.1
shows the inhomogeneous attenuation coefficient map used for simulation radiofrequency backscattered
echoes.

3.1.2 Tissue-mimicking phantom

Two agar-based tissue-mimicking phantoms were used in this study. Phantom #1 was an agar-based
phantom designed with a cylindrical shape consisting of a 70 mm diameter background with a 25
mm inclusion. Attenuation properties of background and inclusion regions were set by using different
concentrations of graphite powder [45]. The ground truth ACS values were found to be 0.54 and 1.04
dB.cm−1.MHz−1 in the background and inclusion regions, respectively, using insertion loss techniques.
Phantom #2 was constructed with the same dimensions as the Phantom #1 with ACS that were found to
be 0.41 and 0.75 dB.cm−1.MHz−1 in the background and inclusion regions, respectively, using insertion

11
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Figure 3.1: Inhomogeneous attenuation coefficient map in dB.cm−1.MHz−1 used for simulating ra-
diofrequency backscattered echoes.

loss techniques.
Data acquisition was performed using a micro-positioning system controlled by custom LabVIEW

software (National Instruments, Austin, TX). A 7.5 MHz (f/4) single element transducer driven by a
Olympus Panametrics 5900 pulser/receiver (Olympus Corporation, Waltham, MA) as well as a UF3-
4121 14-bit digitizer PCI-X card with a 250 MHz sampling frequency (Strategic Test Corporation,
Woburn, MA) was used to collect the data. The transducer was moved along the lateral axis with a
0.5 mm step. The diffractive effects of the single element transducer were computed analytically using
(2.7).

(a) (b)

Figure 3.2: B-mode images of Phantom #1 (a) and Phantom #2 (b).

3.1.3 Ex vivo tissue

A piece of ex vivo chicken breast tissue was embedded into an agar, 70 mm diameter cylindrical back-
ground. The procedure for data acquisition for ex vivo tissue was the same used for the physical phantom
in Section 3.1.2. Figure 3.3 shows the procedure for the data acquistion from the ex vivo chicken breast
tissue embedded into an agar background. The ground truth ACS value of the chicken breast sample
estimated using insertion loss techniques was found to be 1.24 dB.cm−1.MHz−1.
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Figure 3.3: Procedure for the data acquistion from the ex vivo chicken breast tissue embedded into an
agar background.

3.1.4 In vivo tissue

The in vivo data of a breast tumor was acquired in an oncology clinic (Oncosalud, Lima, Peru) following
procedures of informed consent. The data acquisition was performed using a SonixTouch ultrasound
scanner (Analogic Ultrasound, Peabody, MA) with an L14-5 linear array transducer (nominal center
frequency of 10 MHz). The diffractive effects of the transducer were compensated using a reference
phantom [46] containing embedded 18.2± 1 µm diameter spherical glass beads randomly distributed in
an mboxagar-based matrix at a concentration of 78.12 spheres per mm3. A polynomial regression was
employed to fit the experimentally estimated attenuation coefficient of the reference phantom between 1
and 20 MHz, αre f ( f ) = 0.0057 f 2+0.4432 f−0.1, where f is the ultrasonic frequency in MHz and αre f

is the attenuation coefficient of the reference phantom in dB.cm−1. In a mammographic examination
conducted prior to the ultrasound data acquisition, the mammary density of the breast was found to be
heterogeneously dense (i.e., both fibroglandular and fat tissues are present but fibroglandular tissue is
more prevalent). The results from a biopsy performed after ultrasound data acquisition determined the
tumor to be a fibroadenoma. Figure 3.4 shows the B-mode image of the itin vivo breast sample used.

Figure 3.4: B-mode image of in vivo breast tumor.
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3.2 Construction of attenuation coefficient maps

The field of view was selected so that it contained the inclusion region and part of the background
region. Several square data blocks with 80% overlap in both lateral and axial directions were outlined
in the field of view. Up to five data block sizes were evaluated (50λ× 50λ, 40λ× 40λ, 30λ× 30λ,
20λ× 20λ and 10λ× 10λ) for reconstructing attenuation coefficient maps with both the SLD and the
RSLD techniques. Table 3.1 presents the useful frequency range and wavelength sizes used for each
data set.

Table 3.1: Frequency range and wavelength size of the data sets used in this work for testing the SLD
and RSLD techniques.

Data set
ACS estimation parameters

Freq. range (MHz) Wavelength (mm)
Simulation #1 3.3 – 8.7 0.26
Simulation #2 3.3 – 8.7 0.26
Phantom #1 2 – 9 0.27
Phantom #2 3 – 10 0.23

Ex vivo tissue 2 – 9 0.27
In vivo tissue 4 – 11 0.21

The regularization parameter used for constructing all attenuation coefficient maps presented in
this work using the RSLD technique was µ = 102.5. This value was found to provide a good balance
between accuracy (i.e., comparable levels of bias) and precision (i.e., the spatial variance is reduced
significantly) of the ACS values. For both SLD and RSLD techniques, the attenuation coefficient images
were generated using bilinear interpolation of the ACS values estimated for each data block and overlaid
on top of the corresponding B-mode images.

3.3 Evaluation of attenuation coefficient maps

3.3.1 Mean and standard deviation

The mean and standard deviation (SD) of the estimated ACS values were estimated for regions manually
selected within the inclusion (Ωin) and background (Ωbg) regions of the attenuation coefficient maps.

3.3.2 Percentage error

The mean and standard deviation of the percentage error was used to evaluate the accuracy and precision
of estimated ACS values in the attenuation coefficient maps, respectively. The mean percentage error
(MPE) and the standard deviation of the percentage error (SDPE) were computed as

MPE =
1
Q
×

Q

∑
(i, j)∈Ω

βi, j−β∗i, j
β∗i, j

, (3.1)

SDPE =

√√√√ 1
Q
×

Q

∑
(i, j)∈Ω

(
βi, j−β∗i, j

β∗i, j
−MPE

)2

, (3.2)
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where βi, j and β∗i, j are the estimated and ground truth ACSs, respectively, in the ACS image pixel with
index (i, j) inside the region Ω, and Q is the total number of pixels in the ACS image used in the
computation of the MPE and SDPE.

3.3.3 Contrast-to-noise ratio

The contrast-to-noise ratio (CNR) for the attenuation coefficient maps in was computed similar to the
expression used in shear wave speed imaging [47], given by

CNR =
|X in−Xbg|√

σ2
in +σ2

bg

, (3.3)

where X ans σ are the mean and standard deviation of the ACS values within the inclusion (Ωin) and
background (Ωbg).



Chapter 4

Testing and Validation

4.1 Computer simulations

4.1.1 Homogeneous simulation

The ACS maps of Simulation # 1 with a homogeneous phantom obtained when using the SLD and the
RSLD (µ = 102.5) techniques for data block sizes of 50λ× 50λ, 30λ× 30λ and 20λ× 20λ are shown
in Fig. 4.1. Table 4.1 presents the mean, standard deviation, MPE and SDPE calculated within a
115λ×145λ region.

As it can be observed in Fig. 4.1, the ACS maps reconstructed using the SLD suffered a dramatic
increase in variance as the data block size was reduced. When using SLD, standard deviations of the
percentage error less than 20% were only obtained for data blocks of size 50λ×50λ. Considering that
the pulse duration was 0.67 µs, the pulse length was 1.03 mm and therefore the axial extent of the data
block was approximately 11.25 pulse lengths. Also, the number of effective uncorrelated lines Neff
within a data block can be calculated with [48]

Neff = N

[
1+

2
N

N−1

∑
∆=1

(N−∆)(γ(∆))

]−1

, (4.1)

where N is the total number of lines inside the block, and γ(∆) is the correlation coefficient between rf
data segments that are separated by ∆ lines. Using 4.1, Ne f f was found to be 32 lines for the 50λ×50λ

data block size. Therefore, the SDPE found in this simulation is consistent with the results in [27],
where a SDPE < 20% could be achieved when using a data block size of 40 uncorrelated lines laterally
by 10.5 pulse lengths axially. In contrast, when using the RSLD technique the SDPE was less than 20%
for data block sizes of down to 30λ×30λ (6.75 pulse lengths axially by 16 uncorrelated lines laterally),
and only increased to 22% when considering a data block size of 20λ×20λ (4.5 pulse lengths axially
by 9 uncorrelated lines laterally). Therefore, the proposed method provided a dramatic performance
improvement when estimating ACSs in homogeneous media.

4.1.2 Inhomogeneous simulation

The ACS maps of Simulation #2 with an inhomogeneous phantom obtained when using the SLD and
the RSLD (µ = 102.5) techniques for data block sizes 40λ×40λ, 30λ×30λ and 20λ×20λ are shown in
Fig. 4.2. Table 4.2 presents the mean, standard deviation, MPE and SDPE calculated within a 50λ×50λ

region inside the inclusion.

16
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(a)

(b) (c)

 

(d)

(e) (f) (g)

Figure 4.1: B-mode image for Simulation #1 (a) and ACS maps when using the SLD (b)-(d) and RSLD
(e)-(g) techniques for data block sizes of 50λ×50λ, 30λ×30λ and 20λ×20λ, respectively.

Table 4.1: Estimated ACS mean, standard deviation, MPE and SDPE for Simulation #1 obtained when
using the SLD and the RSLD techniques. The ground truth ACS value was 0.50 db.cm−1.MHz−1.

Data block
size (λ)

Mean ± SD (db.cm−1.MHz−1) MPE SDPE
SLD RSLD SLD RSLD SLD RSLD

50×50 0.47 ± 0.07 0.48 ± 0.02 6% 3% 14% 5%
40×40 0.48 ± 0.16 0.49 ± 0.05 5% 2% 31% 9%
30×30 0.50 ± 0.34 0.52 ± 0.08 0% 3% 67% 16%
20×20 0.51 ± 0.98 0.51 ± 0.15 2% 2% 197% 30%
10×10 0.48 ± 2.15 0.48 ± 0.16 3% 4% 429% 33%

The drawbacks of ACS imaging with the SLD technique can be more clearly observed in the
inhomogeneous Simulation #2. Using small data block sizes such as 20λ×20λ or 10λ×10λ resulted
in large spatial variance of the ACS maps (i.e., SDPE > 70%), which complicated the detection of
the inclusion. The results show that the RSLD technique yielded comparable accuracy levels than the
SLD technique when using large data blocks. However, the RSLD technique generated ACS maps with
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Figure 4.2: B-mode image for Simulation #2 (a) and ACS maps when using the SLD (b)-(d) and RSLD
(e)-(g) techniques, respectively, for data block sizes of 40λ×40λ, 30λ×30λ and 20λ×20λ. The dashed
and solid lines outline the inclusion and regions for the calculation of performance metrics, respectively.

both MPE and SDPE below 15% for data block sizes of 30λ× 30λ or smaller. Therefore, the RSLD
technique allowed better identification of inclusions in simulations.

Table 4.2: Estimated ACS mean, standard deviation, MPE and SDPE for Simulation #2 obtained when
using the SLD and the RSLD techniques. The ground truth ACS value was 1.0 db.cm−1.MHz−1.

Data block
size (λ)

Mean ± SD (db.cm−1.MHz−1) MPE SDPE
SLD RSLD SLD RSLD SLD RSLD

50×50 0.86 ± 0.11 0.84 ± 0.04 14% 16% 11% 4%
40×40 0.96 ± 0.23 0.92 ± 0.04 4% 8% 23% 4%
30×30 0.81 ± 0.60 0.94 ± 0.06 19% 6% 60% 6%
20×20 0.75 ± 1.24 0.92 ± 0.13 25% 8% 124% 13%
10×10 0.69 ± 2.20 0.96 ± 0.14 31% 4% 220% 14%
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4.2 Tissue-mimicking phantom

4.2.1 Physical phantom #1

The ACS maps of the Phantom #1 obtained with the SLD and the RSLD (µ = 102.5) techniques for data
block sizes 40λ× 40λ, 30λ× 30λ and 20λ× 20λ are shown in Fig. 4.3. Table 4.3 presents the mean
and standard deviation, MPE and SDPE calculated within a 60λ×60λ region inside the inclusion.

Table 4.3: Estimated ACS mean, standard deviation, MPE and SDPE of inclusion for Phantom #1
obtained when using the SLD and the RSLD techniques. The ground truth ACS value was 1.04
db.cm−1.MHz−1.

Data block
size (λ)

Mean ± SD (db.cm−1.MHz−1) MPE SDPE
SLD RSLD SLD RSLD SLD RSLD

50×50 0.85 ± 0.19 0.87 ± 0.03 18% 16% 18% 3%
40×40 0.87 ± 0.27 0.87 ± 0.04 16% 16% 26% 4%
30×30 0.90 ± 0.37 0.86 ± 0.07 14% 17% 35% 7%
20×20 0.87 ± 0.07 0.87 ± 0.10 17% 17% 67% 9%
10×10 0.69 ± 2.20 0.74 ± 0.11 34% 29% 212% 10%

4.2.2 Physical phantom #2

The ACS maps of the Phantom #2 obtained with the SLD and the RSLD (µ = 102.5) techniques for data
block sizes 40λ× 40λ, 30λ× 30λ and 20λ× 20λ are shown in Fig. 4.4. Table 4.4 presents the mean
and standard deviation, MPE and SDPE calculated within a 60λ×60λ region inside the inclusion.

Table 4.4: Estimated ACS mean, standard deviation, MPE and SDPE of inclusion for Phantom #2
obtained when using the SLD and the RSLD techniques. The ground truth ACS value was 0.75
db.cm−1.MHz−1.

Data block
size (λ)

Mean ± SD (db.cm−1.MHz−1) MPE SDPE
SLD RSLD SLD RSLD SLD RSLD

50×50 0.7 ± 0.1 0.67 ± 0.03 6% 11% 13% 4%
40×40 0.72 ± 0.15 0.67 ± 0.04 4% 10% 20% 5%
30×30 0.74 ± 0.24 0.68 ± 0.07 1% 10% 32% 10%
20×20 0.7 ± 0.54 0.66 ± 0.12 7% 12% 72% 16%
10×10 0.71 ± 1.81 0.64 ± 0.15 5% 14% 241% 21%

Results obtained with the physical phantoms follow similar trends to the ones observed in Simu-
lation #2, i.e., when using the SLD technique very large estimation variance was observed when using
small data block sizes. The use of RSLD allowed reconstructing ACS maps with improved precision and
accuracy. Data set from Phantom #1 has previously been used for attenuation imaging using full angular
spatial compounding (FASC) of ACS maps produced using the SLD technique with a data block size of
approximately 30λ×30λ [33]. The use of SLD+FASC with 30 incidence angles uniformly distributed
over 360°resulted in a variance reduction of 88% in the inclusion region when compared to SLD alone,
with an estimation bias of 8%. In this work, the use of RSLD with 30λ×30λ data blocks resulted in a
larger variance reduction (i.e., 96%) at the expense of a slightly larger bias (i.e., 17%). Therefore, the
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Figure 4.3: B-mode image for Phantom#1 (a) and ACS maps when using the SLD (b)-(d) and RSLD
(e)-(g) techniques, respectively, for data block sizes of 40λ×40λ, 30λ×30λ and 20λ×20λ. The dashed
and solid lines outline the inclusion and regions for the calculation of performance metrics, respectively.

RSLD technique has the potential to provide comparable improvements in ACS estimation precision
than FASC without being limited to use with scanners capable of full angular acquisitions.

4.3 Ex vivo tissue

Further results were obtained using an ex vivo chicken breast sample embedded in an agar matrix. The
ACS maps of the ex vivo chicken breast tissue obtained when using the SLD and the RSLD (µ = 102.5)
techniques for data block sizes 40λ×40λ, 30λ×30λ and 20λ×20λ are shown in Fig. 4.5. Table 4.5
presents the mean, standard deviation, MPE and SDPE calculated within a 26λ×52λ region inside the
inclusion.

The ground truth ACS value obtained for the chicken breast tissue using insertion loss methods
was 1.24 dB.cm−1.MHz−1. Plots of attenuation coefficients vs. frequency in chicken breast muscle
were reported by Hete and Shung [49] in the range of 5-12 MHz. The data points in the range of
5-9 MHz (i.e., the common analysis frequency band between this work and [49]) were mined using
the DataThief III software and fitted to a linear function, resulting in an ACS value of 1.24 ± 0.10
dB.cm−1.MHz−1. Therefore, the ground truth value was in good agreement with previous reports in the
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Figure 4.4: B-mode image for Phantom#2 (a) and ACS maps when using the SLD (b)-(d) and RSLD
(e)-(g) techniques, respectively, for data block sizes of 40λ×40λ, 30λ×30λ and 20λ×20λ. The dashed
and solid lines outline the inclusion and regions for the calculation of performance metrics, respectively.

Table 4.5: Estimated ACS mean, standard deviation, MPE and SDPE of ex vivo chicken breast tis-
sue obtained when using the SLD and the RSLD techniques. The ground truth ACS value was 1.24
db.cm−1.MHz−1.

Data block
size (λ)

Mean ± SD (db.cm−1.MHz−1) MPE SDPE
SLD RSLD SLD RSLD SLD RSLD

50×50 1.35 ± 0.17 1.23 ± 0.03 9% 1% 13% 3%
40×40 1.23 ± 0.21 1.29 ± 0.08 1% 4% 17% 7%
30×30 1.13 ± 0.43 1.29 ± 0.18 9% 4% 34% 14%
20×20 0.91 ± 0.75 1.24 ± 0.20 26% 0% 60% 16%
10×10 0.63 ± 2.56 0.99 ± 0.22 49% 20% 206% 18%

literature. Results with the ex vivo sample in Table 4.5 showed that when using the RSLD technique
with 20λ×20λ data blocks the ACS estimation bias (i.e., MPE = 0%) and precision (i.e., SDPE = 16%)
were comparable to the results obtained when using the SLD technique with 40λ× 40λ data blocks
(MPE = 1%, SDPE = 17%). The results with the ex vivo tissue experiment suggest the RSLD technique
is applicable beyond numerical and physical phantoms.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.5: B-mode image for ex vivo chicken breast tissue (a) and ACS maps when using the SLD
(b)-(d) and RSLD (e)-(g) techniques for data block sizes of 40λ× 40λ, 30λ× 30λ and 20λ× 20λ,
respectively. The arrows and solid lines outline the inclusion and regions for the calculation of perfor-
mance metrics, respectively.

4.4 In vivo tissue

Finally, the RSLD technique performance was evaluated with an in vivo breast sample. The ACS maps
of the breast tissue sample obtained when using the SLD and the RSLD (µ = 102.5) techniques for data
block sizes 30λ×30λ, 20λ×20λ and 10λ×10λ are shown in Fig. 4.6. Table 4.6 presents the mean and
standard deviation of estimated ACS values for 20λ×20λ regions within the tumor and normal tissue.
The MPE and SDPE were not computed for this case because ground truth values were not available.

In [2] ACS values for normal (fat and fibroglandular) tissues and both benign (fibroadenoma)
and malignant (carcinoma) tumors in breast estimated in vivo using ultrasonic tomography were re-
ported. These results were mined using the DataThief III software. The ACS of fibroadenoma tumors,
fat and fibroglandular tissues in breast were found to be 1.71± 0.49 dB.cm−1.MHz−1, 0.80± 0.79
dB.cm−1.MHz−1 and 1.00±0.70 dB.cm−1.MHz−1, respectively. These values were in very good agree-
ment with ACS estimates using RSLD both for the fibroadenoma (1.80 dB.cm−1.MHz−1 considering
the average of values in Table 4.6) and normal surrounding tissues (0.88 dB.cm−1.MHz−1 considering
the average of values in Table 4.6). As in previous cases, the RSLD technique improved the trade-off
between data block size and ACS estimation precision. Moreover, this result suggests that RSLD can
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.6: B-mode image for in vivo breast tissue (a) and ACS maps when using the SLD (b)-(d) and
RSLD (e)-(g) techniques for data block sizes of 30λ× 30λ, 20λ× 20λ and 10λ× 10λ, respectively.
The arrows and solid lines outline the tumor and regions for the calculation of performance metrics,
respectively.

Table 4.6: Estimated ACS mean and standard deviation of tumor and normal tissue for in vivo tissue
obtained when using the SLD and the RSLD techniques.

Breast
Data block

size (λ)
Mean ± SD (db.cm−1.MHz−1)

SLD RSLD

Tumor
30×30 1.76 ± 0.32 1.73 ± 0.11
20×20 2.29 ± 0.96 1.97 ± 0.17
10×10 1.26 ± 3.48 1.71 ± 0.11

Normal
tissue

30×30 0.82 ± 0.21 0.78 ± 0.13
20×20 0.81 ± 0.44 0.95 ± 0.12
10×10 0.61 ± 2.73 0.9 ± 0.14

be readily used for in vivo imaging, although further studies are required for validating its usefulness in
clinical applications.
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4.5 Contrast-to-noise ratio

The improvements in visualization of inclusions when using the RSLD method was quantified using
the CNR for all inhomogeneous media imaging cases. Figure 4.7 shows the CNR of the SLD (a),
RSLD (b) and gain of the RSLD (µ = 102.5) with respect to the SLD technique (c) for the ACS maps
from Simulation #2, the physical phantoms, and ex vivo and in vivo tissues. The values of CNR when
using the RSLD were always higher than the CNR values when using the SLD, except for the ex vivo
tissue sample at data block sizes of 50λ×50λ and 40λ×40λ. Typically, gains in CNR were higher for
smaller data blocks. For example, the median gains in CNR were 30.7 and 8.3 when using 10λ×10λ

and 20λ×20λ data blocks, respectively.

(a) (b)

(c)

Figure 4.7: CNR of the SLD (a), RSLD (b) and the gain in CNR of the RSLD with respect to the SLD
technique (c) of ACS maps for different data block sizes.

It can be observed that for both Simulation #2 and experiments with the physical phantom, the
use of RSLD provided improvements of one and two orders of magnitude in CNR when compared to
the use of SLD for data block sizes of 20λ×20λ and 10λ×10λ, respectively. Gains in CNR were also
observed when imaging the ex vivo and in vivo tissues, although a relatively more modest CNR gain
was observed (i.e., an order of magnitude when using a data block size of 10λ× 10λ). However, the
trends consistently demonstrated that RSLD provides advantages when imaging inhomogeneous media.
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4.6 Impact of the regularization parameter value

As with any regularized inversion method, a significant issue is the proper choice of regularization
parameter. In this study, all reconstructions using the RSLD technique were obtained using µ = 102.5.
The impact of the choice of regularization parameter was briefly explored using the inhomogeneous
physical phantom data set described in Section 3.1.2. The mean, standard deviation and MPE of both
inclusion and background regions, as well as the CNR, were calculated when using the RSLD technique
for different µ values and a fixed data block size of 30λ× 30λ. The results are shown in Fig. 4.8. It
can be observed that for µ < 101.25 no significant improvements in standard deviation reduction or CNR
were observed. For 101.25 < µ < 103.75 the CNR and standard deviation of ACS maps were improved
while keeping the estimation bias below 20%. Finally, for µ > 103.75 the CNR started to decrease and
approach zero, which is an expected result as the total variation term in 2.14 will strongly penalize the
spatial variations in ACS, therefore merging the background and inclusion in the reconstructed ACS
maps. These results suggest that gains in image quality can be obtained for reasonably large ranges of
µ, but the use of techniques for adaptively choosing the regularization parameter should be studied.

(b) (c)

(a)

Figure 4.8: Effects of the regularization parameter in the reconstruction of ACS maps using the Phan-
tom #1. (a) Mean and standard deviation of the inclusion (square markers) and background (diamond
markers). The horizontal lines indicate the ground truth values for each region. (b) CNR. (c) MPE of
the inclusion (square markers) and background (diamond markers). The horizontal dashed lines mark
10% and 20% bias levels.



Chapter 5

Conclusion

Throughout this work, the regularized spectral log difference technique for ultrasonic attenuation imag-
ing has been evaluated using numerical phantoms produced with the k-Wave toolbox and with several
types of experimental data including physical phantoms, and ex vivo and in vivo tissues.

The results presented in this work suggest that the regularized spectral log difference technique
significantly extends the trade-off between estimation precision and data block size when constructing
images of attenuation coefficient slope. Data blocks as small as 20λ× 20λ were shown to provide
both accurate and precise attenuation estimates in simulations and experiments with physical phantoms
and ex vivo and in vivo tissues, therefore outperforming currently available methods for attenuation
coefficient estimation using backscattered ultrasound data.
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