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ESCUELA DE POSGRADO

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ
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Abstract

The minimum variance (MV) beamformer is an adaptive beamforming method that has the poten-
tial to enhance the resolution and contrast of ultrasound images. Although the sensitivity of the MV
beamformer to steering vector errors and array calibration errors is well-documented in other fields, in
ultrasound it has been tested only under gross sound speed errors. Several robust MV beamformers
have been proposed, but have mainly reported robustness only in the presence of sound speed mis-
matches. Additionally the impact of PAC methods in mitigating the effects of phase aberration in MV
beamformed images has not been observed

Accordingly, this thesis report consists on two parts. On the first part, a more complete analysis
of the effects of different types of aberrators on conventional MV beamforming and on a robust MV
beamformer from the literature (Eigenspace-based Minimum Variance (ESMV) beamformer) is carried
out, and the effects of three PAC algorithms and their impact on the performance of the MV beamformer
are analyzed (MV-PC). The comparison is carried out on Field II simulations and phantom experiments
with electronic aberration and tissue aberrators. We conclude that the sensitivity to speed of sound
errors and aberration limit the use of the MV beamformer in clinical applications, and that the effect
of aberration is stronger than previously reported in the literature. Additionally it is shown that under
moderate and strong aberrating conditions, MV-PC is a preferable option to ESMV.

On the second part, we propose a new, locally-adaptive, phase aberration correction method (LAPAC)
able to improve both DAS and MV beamformers that integrates aberration correction for each point in
the image domain into the formulation of the MV beamformer. The new method is tested using full-
wave simulations of models of human abdominal wall, experiments with tissue aberrators, and in vivo
carotid images. The LAPAC method is compared with conventional phase aberration correction with
delay-and-sum beamforming (DAS-PC) and MV-PC. The proposed method showed between 1-4 dB
higher contrast than DAS-PC and MV-PC in all cases, and LAPAC-MV showed better performance
than LAPAC-DAS. We conclude that LAPAC may be a viable option to enhance ultrasound image
quality of both DAS and MV in the presence of clinically-relevant aberrating conditions.

Keywords
Adaptive beamforming, minimum variance beamformer, phase aberration correction, coherence
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Chapter 1

Introduction

Commercial ultrasound scanners implement the classical delay-and-sum (DAS) beamforming method
to form B-mode images. DAS beamforming is subject to the diffraction limit and so its performance
is tightly constrained by the physical characteristics of the system. Alternatively, adaptive beamform-
ing techniques have demonstrated that is possible to overcome the diffraction limit. In particular, the
Minimum Variance (MV) beamformer exhibits enhanced lateral resolution and contrast in ultrasound
images [1]. From other fields, it is known that the MV beamformer is sensitive to calibration and steer-
ing vector errors. However, the studies of the sensitivity of the MV beamformer in ultrasound literature
has been mainly limited to gross sound speed errors [1, 2].

Although there are several proposed robust minimum variance methods to cope with the problem
of sensitivity of the MV beamformer to gross sound speed errors, these approaches normally entail
trading-off robustness with a loss in resolution [2, 3, 4]. In the context of this thesis, robustness will be
considered as the ability to maintain performance in the presence of aberration. For example, Synevag
et al. [2] mention that by lowering the subarray smoothing parameter and augmenting the diagonal
loading term some robustness against gross sound speed errors can be obtained. This, in turn, causes
the MV beamformer to have a performance closer to that of DAS. Wang et al. [3] proposed a method
to allow the steering vector of the MV beamformer to vary inside an uncertainty ellipsoid. However,
this is equivalent to adding an automatically determined amount of diagonal loading, thus making the
MV closer to DAS and reducing the resolution [5]. Mehdizadeh et al. [4], used forward-backward
estimation and a lower rank eigenspace-based approximation are used to increase robustness, but de-
crease resolution. Xia et al. [6] proposed additional constraints to the original MV problem, but the
performance was not satisfactory in the presence of near field aberrators.

One key point in these approaches is that the parameters of the smoothing or the steering vector are
modified without taking into account potential information that can be estimated using existing phase
aberration methods. To the best of our knowledge, the only study of phase aberration correction (PAC)
methods in connection with the MV beamformer was presented by Ziksari et al. [7] using the nearest
neighbor correction method, but the effects of physical and distributed aberration in connection with
the MV beamformer were not described.

Giving the state-of-the-art, out contribution is two-fold. First, we do a more complete study of the
impact of second order phase aberration errors on the MV beamformer and how PAC correction methods
applied prior to the MV beamformer (precorrected MV, MV-PC) can mitigate these effects. We test the
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Introduction

effects of different types of aberration and basic PAC methods on the the original MV beamformer by
Synnevag et al. [2] we compare this combination with another robust minimum variance beamformer
from the literature, the Eigenspace-based minimum variance (ESMV) beamformer [4]. We present
results on simulations and experiments with electronic aberration and tissue-based aberrators, which
has not previously been reported for MV beamforming. We show that current MV beamforming and
robust MV beamforming techniques show great sensitivity to phase aberration and that MV+PAC is a
preferable option, even for tissue-based aberrators. This part of the thesis is presented in Chapter 2.

Second, building on the ideas of the first part, we propose a a novel locally adaptive phase aberration
correction (LAPAC) technique based on a synthetic aperture multistastic sequence that can correct
the arrival time distortions of distributed aberrator in both DAS and MV beamformers. Although the
algorithm is applied and compared with both DAS and MV, it enhances more the performance and
robustness of the latter.

The method performs an iterative estimation of the profiles at each point in the image domain and
performs a correction prior to applying either the DAS or the MV beamformer. A mechanism is included
for correction of points where low correlation of the received echoes do not allow a correct estimation of
the aberrating phases. We test the new algorithm in full-wave simulations of human abdominal layers,
ex vivo experiments with beef loin, and an in vivo experiment. This part of the thesis is presented in
Chapter 3. Finally, the general conclusions of the whole study are presented in 4.
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Chapter 2

Part I: Effects of phase aberration and
PAC on the MV beamformer

2.1 Methods

2.1.1 Minimum variance beamformers

The MV beamformer is an adaptive beamforming method that, for each point in the image domain,
computes the apodization that minimizes the variance of the beamformed signal while maintaining a
unitary gain in the presumed direction of arrival. This is done by computing the optimal weights w that
satisfy [2]

w =
R−1a

aHR−1a
, (1)

where R is the spatial covariance matrix of the signals received at the different array elements and a is
the steering vector. If signals are first pre-steered, as is necessary for the broadband signals in ultrasound
imaging, a reduces to a vector of ones. To estimate R, spatial and time averaging are often employed
[2]. Let N represent the number of channels and xn(k) be the values of the n-th channel corresponding
to time instant k after accounting for the time-of-flight delays. Spatial averaging consists on dividing
x(k) into overlapping subvectors xi(k), i = 1, . . . ,N−L+ 1, of length L and obtain an estimate of the
covariance matrix, R̂(k), as

R̂(k) =
1

N−L+1

N−L+1

∑
i=1

xi(k)xH
i (k). (2)

Finally, time averaging is applied by taking the mean of R̂(k) over a number of time snapshots.
In [2], it is stated that by decreasing L and adding a diagonal loading (DL) term, they can accomplish
robustness. However, this implementation will be referred as conventional MV beamformer in the
present study.

In [4], a new robust MV beamformer, i.e. the eigenspace-based minimum variance beamformer
(ESMV), was proposed. The ESMV incorporates two main changes with respect to the standard MV
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Part I: Effects of phase aberration and PAC on the MV beamformer

beamformer. First, a forward-backward averaging is added to the covariance matrix estimation. Sec-
ond, an eigenspace decomponsition is performed on the forward-backward averaged matrix and only a
certain number of eigenvalues are used to reconstruct it.

2.1.2 Phase aberration correction

Phase aberration is normally modelled as either a near-field phase screen (NFPS) aberrator or as a
distributed aberrator [8]. In the first model, aberration is approximated as a series of time-shifts that
occur at the face of the transducer. The NFPS can be a helpful abstraction when the aberration is
concentrated in a thin layer near the transducer, but is less accurate a model for most tissues. In contrast,
the distributed aberrator model considers that the source of aberration is distributed throughout the
tissue, causing both arrival time fluctuations and waveform distortions. Although it is more accurate
and close to real tissue, its complicated nature makes it very difficult to compensate. Most practical
implementations of phase aberration correction assume the NFPS model.

Three phase aberration correction methods representative of the literature, i.e., the multi-lag (ML)
cross-correlation method [9, 10], Rigby’s beamsum method [11], and the scaled covariance matrix
(SCM) method [12], were implemented and tested on the simulation and experimental data. The first
two were used because they are two common methods used in the phase aberration correction literature
[10, 12, 13]. The SCM was selected because it is based on the covariance matrix and it could possibly
integrate better with the MV beamforming calculations.

In the ML method, time-shifts between each channel and several neighbor channels are estimated
using cross-correlation. Then, these delays are used as the right hand side of an overdetermined system
of equations and the aberration profile is obtained from the least squares solution. Multilag cross-
correlation estimation was performed with five neighbor channels and an axial window of 2 mm.

In Rigby’s beamsum algorithm, the estimated aberrating delays are obtained by correlating each
channel signal with the beamsum signal (i.e., the sum of the signals over all channels of the array). The
correlation were calculated using a 2 mm length axial window centered at the correction depth.

The SCM algorithm is a modification of Rigby’s beamsum algorithm. In this approach, the covari-
ance matrix is formed, then the phase of each matrix element is extracted and these phases are summed
across the channels. For computing the covariance matrix, a 2 mm length axial window centered at the
correction depth was utilized.

An estimated aberrating profile was obtained with each of these methods for every scanline and for
three depths spaced 1 mm above, below and at the transmission focus depth. The profiles obtained for
each scanline were laterally averaged. For simulations and electronic aberration, the profiles from all
scanlines were averaged to obtain a single profile. For the tissue-based aberrators, groups of five lateral
profiles were averaged. The corresponding time shifts were applied only in reception to the simulated
or experimental channel data before performing the beamforming process.

2.1.3 Simulations

Two types of simulations were performed using the Field II library[14] with a sampling frequency of
100 MHz. The first simulation consisted of a point target at an axial distance of 40 mm. The second
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Part I: Effects of phase aberration and PAC on the MV beamformer

Figure 1: Tissue sample of beef loin used for the tissue-based aberrator experiments

simulation consisted of an anechoic cyst of 4 mm diameter centered at an axial position of 40 mm. The
simulations were performed at a transmission frequency of 5 MHz, using a linear array of 128 elements
and a fixed focal number of 2 at 40 mm depth. In both simulations, pre-beamformed data was obtained.

A zero-mean near-field aberration profile of 4 mm correlation length was scaled to RMS strengths
of 20 ns, 40 ns, and 60 ns and applied on both transmission and reception. Dynamic focusing was
applied on reception with DAS beamforming using a boxcar window and the MV beamformer using a
constant spatial smoothing (L) subarray length of 32 elements and a time average of 41 samples [2]. A
diagonal loading (DL) term DL = 1

500L tr(R) was added to the covariance matrices in order to stabilize
the inversion of R. The ESMV beamformer used these same parameters and β values of 1% and 10%,
as in [4].

2.1.4 Experiments with electronic aberration

Experimental data was obtained from a multipurpose phantom model 539 (ATS Laboratories, Con-
necticut, USA) using a Verasonics V1 acquisition system (Verasonics Inc, Washington, USA) with a
128 element transducer at a central frequency of 5 MHZ and a sampling frequency of 20 MHz. Channel
data was acquired from both point targets and anechoic cyst targets of 2 mm radius of the phantom.
Aberration profiles of 4 mm correlation length and strengths of 0, 20, 40 and 60 ns were applied both in
transmission and reception. A single transmission focus was used (30 mm for the point targets and 35
mm for the cyst targets) and the focal number was set at 2. Dynamic focusing was applied on reception.
The parameters for the MV beamformer and the ESMV were the same as for the simulations.

2.1.5 Experiments with tissue aberrators

Two sections of beef loin were used as tissue aberrators. They had thicknesses of 2 cm (Aberrator A)
and 2.8 cm (Aberrator B), respectively.
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Part I: Effects of phase aberration and PAC on the MV beamformer

Each beef loin section was placed on top of the multipurpose ATS phantom and the transducer was
placed on top of beef loin. The experimental setup for aberrator A is shown in Figure 1. The same
system configuration and data acquisition procedure used with the electronic aberrators was used to
acquire channel data from the cyst target zones of the phantom. Control data at the same approximate
position but with no tissue between the transducer and the phantom were obtained to measure the effects
of aberration and PAC.

2.1.6 Comparison and metrics

For both simulated and experimental datasets, data is beamformed using DAS, DAS combined with
each of the three mentioned PAC methods, MV, MV with each of the three mentioned PAC methods
and ESMV with beta values of 1% and 10%.

For the dataset with point reflectors, the performance of the different beamforming methods are
assessed in terms of full width at half maximum (FWHM) and peak sidelobe level (PSL). For all datasets
containing anechoic inclusions, contrast and contrast-to-noise ratio (CNR) are computed according to
the following formulas

Contrast = 20log
(

µ1

µ0

)
CNR =

|µ1−µ0|√
0.5(σ2

1 +σ2
0)
,

where µ1 and µ0 are the mean values of the region of interest (ROI) and background, respectively and
σ2

1 and σ2
0 are the variances of the ROI and the background, respectively.

For simulations and experiments with electronic aberration, as the aberration profile applied to the
data is known, the residual error in the estimation of the aberration profiles was quantified by subtracting
the applied profile from the profiles estimated at every lateral position and computing the mean absolute
error. For the case of tissue aberrators, as the ground truth profile is not known, the aberrators were only
characterized in terms of aberration strength (in ns) and correlation length (in mm). Additionally, some
computational times are presented for the different PAC methods and beamforming methods. All tests
were performed using a standard portable computer with a Intel core i7 processor and 8 Gb of RAM.

For the electronic aberration and tissue aberrator cases, the experimental data was contaminated by
a gross speed error, which presented itself as geometric delays of parabolic shape. This error can be
attributed to variation in speed of sound of the phantom from the nominal phantom speed value of 1450
m/s. Therefore, the best-fit second order polynomial was subtracted from the estimated time-shifts to
obtain the final aberration profile for the error estimation or characterization.

2.2 Results

2.2.1 Simulations Results

B-mode images for the point target simulations are shown in Fig. 2 for the case of 60 ns of aberration.
The first row consists of the control image of DAS (no aberration), DAS at 60 ns with no correction,
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Part I: Effects of phase aberration and PAC on the MV beamformer
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Figure 2: B-mode images of the simulated point targets with 60 ns aberration and control data with
no aberration. The top row depicts DAS images for the no aberration, aberrated and corrected cases.
The second row shows the same but for conventional MV. The third row show the ESMV control and
aberrated images with two β values.

and DAS at 60 ns with the three correction methods. The second row depicts the same images for MV.
The third row shows control and aberrated images for ESMV. All images are shown at a dynamic range
of 50 dB. At this particular aberration strength, the aberrated MV images are degraded almost as much
as the DAS images.

The FWHM and PSL values are shown in Tables I and II, respectively. The percent change with
respect to the non-aberrated case are also shown in parentheses. From these results, it can be observed
that while DAS exhibited lost of a maximum of 28% in FWHM for the strongest aberration, MV had a
degradation of more than 400%. The ESMV had a resolution similar to that of DAS in the no aberration
case and showed more robustness than regular MV, as it presented degradations of around 30%. For the
case of PSL, DAS exhibited degradations of up to 99% while MV exhibited degradations of up to 96%.
ESMV was slightly more robust, with PSL increasing by around 90%. For the case of the simulations, it
is observed in Tables I and II that, in DAS, ML reduced degradation of FWHM from 28% to 22% and of
PSL from 99% to 43%. Meanwhile, this same method converted a degradation for the MV beamformer
of nearly 450% to a degradation of only 6% in FWHM, and of 96% to 24% in PSL.

The simulated cyst target images are shown in Fig. 3. The first row shows the control image for
DAS (no aberration), DAS at 60 ns with no correction, and DAS at 60 ns with the three correction
methods. The second row depicts the same but for MV. The third row shows control and aberrated
images for ESMV. All images are shown with a dynamic range of 50 dB. The ROI for the contrast and
CNR calculations was taken as circle of radius 1.8 mm centered at 0 mm lateral position and 40 mm
axial position that is inside the anechoic cyst. The background values corresponded to a circle of the
same radius but centered at a lateral position of -3 mm and at the same depth. Results for contrast and
CNR are displayed in Tables XXII and XXIII. It is observed that DAS contrast was reduced by up to
87% while MV contrast was reduced by up to 89%. Similar maximum degradations were observed
for the ESMV. Although MV and ESMV exhibited 5 or more dB higher contrast than DAS at 0 ns
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Part I: Effects of phase aberration and PAC on the MV beamformer

Table I: Full-width at half-maximum (in mm) for the simulated point targets at different aberration strengths
and beamforming methods. The percent change from the no aberration case is shown in parentheses.

Full-width at half-maximum (mm)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 0.61 0.63 (3%) 0.72 (18%) 0.78 (28%)
DAS + ML 0.61 0.63 (3%) 0.65 (8%) 0.74 (22%)

DAS + SCM 0.61 0.62 (1%) 0.65 (8%) 0.73 (20%)
DAS + Rigby 0.61 0.63 (3%) 0.65 (7%) 0.7 (15%)

MV 0.15 0.53 (255%) 0.72 (387%) 0.8 (441%)
MV + ML 0.15 0.16 (5%) 0.15 (2%) 0.16 (6%)

MV + SCM 0.15 0.18 (21%) 0.17 (17%) 0.19 (31%)
MV + Rigby 0.15 0.17 (18%) 0.21 (43%) 0.21 (42%)

ESMV (β = 1%) 0.59 0.67 (14%) 0.72 (23%) 0.8 (37%)
ESMV (β = 10%) 0.59 0.68 (16%) 0.74 (27%) 0.78 (33%)

Table II: Peak sidelobe level (in dB) for the simulated point targets at different aberration strengths and
beamforming methods. The percent change from the no aberration case is shown in parentheses.

Peak sidelobe level (dB)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS -30.6 -23 (24.8%) -8.5 (72.2%) -0.3 (99%)
DAS + ML -30.6 -25.9 (15.3%) -21.6 (29.5%) -17.3 (43.6%)

DAS + SCM -30.6 -26.8 (12.5%) -21.4 (30.3%) -17.5 (42.9%)
DAS + Rigby -30.6 -26.4 (13.6%) -21.4 (30.2%) -16.9 (44.8%)

MV -44.8 -20.8 (53.7%) -8.3 (81.6%) -2.1 (95.3%)
MV + ML -44.8 -40 (10.8%) -39.7 (11.5%) -34.2 (23.6%)

MV + SCM -44.8 -43.4 (3.2%) -37.5 (16.4%) -29.6 (33.9%)
MV + Rigby -44.8 -42.3 (5.6%) -32.5 (27.4%) -27.9 (37.8%)

ESMV (β = 1%) -59.2 -28.9 (51.1%) -9.3 (84.3%) -4.4 (92.5%)
ESMV (β = 10%) -42.8 -28.5 (33.4%) -9.7 (77.3%) -4.5 (89.4%)

of aberration, at 60 ns the performance of MV, ESMV and DAS were almost equivalent. This is also
reflected in the B-mode images where the cyst is difficult to identify. A similar effect was observed
for the CNR, where DAS degraded by 68%, MV degrades by 64% and ESMV degrades by 70%. The
application of ML reduced the degradation for DAS in constrast (from 87% to 52%) and CNR (from
67% to 24%). Meanwhile, for MV the reductions in degradations were more noticeable, i.e. from 89%
to 41% in contrast and from 69% to 3% in CNR.

The mean and standard deviation of the profile estimation errors are reported in Table VI for the
point targets and in Table VII for the cyst targets. It is observed that as aberration strength increased
the error in the estimation increased and that error is on average higher for the case of speckle based
targets.

The speckle resolution obtained with the different techniques is showed in Table V. It can be
observed that resolution is not too different among DAS, MV and ESMV.

Additionally, some computational results for the estimation of a 128 element profile are presented in
tables VIII. The average time needed to compute the whole profile is specified in seconds. The average
time (in milliseconds) needed to compute one point in the image domain for each of the different
beamforming methods is shown in IX.
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Part I: Effects of phase aberration and PAC on the MV beamformer

Figure 3: B-mode images of the simulated cyst targets with 60 ns aberration and control data with
no aberration. The top row depicts DAS images for the no aberration, aberrated and corrected cases.
The second row shows the same but for conventional MV. The third row show the ESMV control and
aberrated images with two β values.

Table III: Contrast (in dB) for the simulated anechoic cyst at different aberration strengths and beamform-
ing methods. The percent change from the no aberration case is shown in parentheses.

Contrast (dB)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 36.1 19 (-47%) 7.4 (-79%) 4.6 (-87%)
DAS + ML 36.1 26.7 (-26%) 21.5 (-40%) 17.2 (-52%)

DAS + SCM 36.1 26.7 (-26%) 20.6 (-43%) 16.6 (-54%)
DAS + Rigby 36.1 26.5 (-26%) 19.4 (-46%) 16.2 (-55%)

MV 41.8 21.5 (-49%) 8.6 (-79%) 4.5 (-89%)
MV + ML 41.8 32.7 (-22%) 25.1 (-40%) 24.5 (-41%)

MV + SCM 41.8 33.8 (-19%) 26 (-38%) 21.5 (-49%)
MV + Rigby 41.8 34.1 (-18%) 22.6 (-46%) 19.1 (-54%)
ESMV (1%) 47 29 (-38%) 12.7 (-73%) 5.4 (-88%)

ESMV (10%) 44.7 26.7 (-40%) 11.2 (-75%) 4.9 (-89%)

Table IV: Contrast-to-noise ratio for the simulated anechoic cyst at different aberration strengths and
beamforming methods. The percent change from the no aberration case is shown in parentheses.

Contrast-to-noise Ratio
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 2.17 2.10 (-3.1%) 1.02 (-52.9%) 0.71 (-67.5%)
DAS + ML 2.17 2.29 (5.5%) 2.18 (.5%) 1.65 (-24.1%)

DAS + SCM 2.17 2.29 (5.4%) 2.16 (-.5%) 1.65 (-24.2%)
DAS + Rigby 2.17 2.29 (5.3%) 2.13 (-2.1%) 1.65 (-24.2%)

MV 1.85 2.14 (15.8%) 1.16 (-36.9%) 0.66 (-64.2%)
MV + ML 1.85 2.28 (23.5%) 2.28 (23.5%) 1.78 (-3.3%)

MV + SCM 1.85 2.28 (23.5%) 2.27 (23.1%) 1.72 (-6.5%)
MV + Rigby 1.85 2.28 (23.5%) 2.21 (19.8%) 1.67 (-9.3%)
ESMV (1%) 2.13 2.31 (8.5%) 1.34 (-36.8%) 0.62 (-70.9%)

ESMV (10%) 2.12 2.28 (7.5%) 1.29 (-39.4%) 0.59 (-72.4%)

11
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Table V: Speckle size for the simulations at different aberration strengths and beamforming methods.
Speckle size (mm)

Aberration strength 0 ns 20 ns 40 ns 60 ns
DAS 2.04 1.89 2.04 2.33

DAS + ML 2.04 1.89 2.04 2.33
DAS + SCM 2.04 1.89 1.89 2.33
DAS + Rigby 2.04 1.89 1.89 2.33

MV 1.89 1.89 2.18 2.47
MV + ML 1.89 1.89 2.04 2.33

MV + SCM 1.89 1.89 1.89 2.33
MV + Rigby 1.89 1.89 2.04 2.33
ESMV (1%) 2.04 1.89 2.04 2.33

ESMV (10%) 2.04 1.89 2.04 2.33

Table VI: Mean residual error of estimated profile for simulated point targets
Mean error ± standard deviation (ns)

Aberration ML SCM Rigby
20 ns 11.7 ± 0.3 12.9 ± 3.3 12.6 ± 1.6
40 ns 23.3 ± 0.2 23.7 ± 1.4 23.7 ± 1.4
60 ns 34.9 ± 0.2 35.5 ± 1.8 35.4 ± 1.1

2.2.2 Experiments with electronic aberration

B-mode images for the point targets with an electronic aberration of 40 ns are displayed in Fig. 4 and,
for the cyst targets, with the same aberration in Fig. 5.

The errors in the estimation of aberration profiles for both point target and cyst targets experiments
are shown in Tables X and XI, respectively.

The FWHM and PSL for the point target at 30 mm depth are shown in Tables XII and XIII. The
degradation from the 0 ns case is shown in parentheses. FWHM decreases by 5% for DAS and 147%
for MV. ESMV shows a higher degree of robustness in this case, degrading by only 70%. PSL degrades
by 70-90% in all cases.

With ML, the degradation in FWHM is reduced from 5% to 2% in DAS and from 147 % to 20%
for MV. Reductions in degradation of PSL from around 80% to around 30% for both DAS and MV are
also obtained.

The cyst located approximately at a lateral position of 0 mm and at an axial position of 40 mm was
analyzed in terms of contrast and CNR. The ROI was taken as a circle of radius 1.8 mm within the
cyst and in the background. The contrast (Table XIV) and CNR (Table XV) were calculated for these
regions. As seen on these tables, the degradation in contrast was around 83% for DAS and 90% for
both conventional MV and ESMV at the highest aberration strength. Similar trends were observed in

Table VII: Mean error of estimated profile for simulated cyst targets
Mean error± standard deviation (ns)

Aberration ML SCM Rigby
20 ns 13.1 ± 1.4 15.9 ± 4 14.9 ± 3.2
40 ns 24.2 ± 1.2 28.2 ± 4.5 27.6 ± 4
60 ns 36.7 ± 2.5 40.2 ± 5.4 40.5 ± 7

12
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Table VIII: Average time in seconds for the estimation of the aberration profile
ML SCM Rigby

Average Time (seconds) 10.2 1.56 1.52

Table IX: Average time in milliseconds for computing one point in the image domain using the different
beamforming methods

DAS MV ESMV
Average Time (ms) 0.0001 1.1288 1.468

CNR: DAS losses 70% of CNR at 60 ns while MV and ESMV loss between 83% and 90%. On the
other hand, contrast and CNR were greatly improved by ML in the case of MV. The degradations were
diminished from 92% to 24% for contrast and from 64% to 3% for CNR. Although ML conveyed the
highest improvements, the improvements of the other two PAC methods were quite similar.

2.2.3 Experiments with tissue aberrators

B-mode images for tissue aberrator A and tissue aberrator B are displayed in Figures 6 and 7, respec-
tively. The characterization of both tissue aberrators with the different PAC methods is shown in Table
XVI for aberrator A and in Table XVII for aberrator B as the mean value ± standard deviation. It is
observed that aberrator B was estimated to have almost double the strength of aberrator A.

For the quantitative comparison, the cysts located aproximately at an axial position of 40 mm and

Figure 4: B-mode images of the experimental point targets corrupted with electronic aberration of 40ns
strength. The top row depicts DAS images for the no aberration, aberrated and corrected cases. The
second row shows the same but for conventional MV. The third row shows the ESMV control and
aberrated images.
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Figure 5: B-mode images of the experimental cyst targets corrupted with electronic aberration of 40
ns strength. The top row depicts DAS images for the no aberration, aberrated and corrected cases.
The second row shows the same but for conventional MV. The third row shows the ESMV control and
aberrated images.

Table X: Mean error of estimated profile for the point targets with electronic aberration
Mean error ± standard deviation (ns)

Aberration ML SCM Rigby
20 ns 12.8 ± 3.9 25.4 ± 13.6 25.1 ± 13.9
40 ns 19.2 ± 5.1 29.2 ± 11.9 28.6 ± 0.11
60 ns 28.7 ± 7.5 34.5 ± 10.2 34.6 ± 10.8

lateral positions of 0 mm and 10 mm were analyzed. The ROIs were taken as a circle of radius 1.8 mm
within the cyst and in the background. For the cyst at 0 mm lateral position, the contrast is shown in
Table XVIII and the CNR is shown in Table XIX. As seen on these tables, contrast was reduced by
19% and 49% for DAS, by 37% and 65% for MV and by around 20% and 60% for ESMV for aberrator
A and B, respectively. For the cyst at a lateral position of 10 mm, the constrast is shown in Table XX
and the CNR is shown in Table XXI. In this case, contrast was reduced by 19% and 18% for DAS, by
31% and 42% for MV and by 43% and 48% for ESMV, for aberrators A and B, respectively.

On the other hand, the application of PAC methods reduce the degradation effects of the physical
aberrators, more noticeably in the highly aberrating layer (aberrator B). For instance, degradations of
65% in contrast and 43% in CNR were reduced to 38% and 10%, respectively. These enhancements
allowed MV+PAC to have better contrast and CNR than DAS+PAC and ESMV for the cyst at 0 mm

Table XI: Mean error of estimated profile for the cyst targets with electronic aberration
Mean error ± standard deviation (ns)

Aberration ML SCM Rigby
20 ns 11.6 ± 2.1 17.3 ± 5 16.76 ± 4.3
40 ns 18.8 ± 2.9 25.9 ± 5.4 25.6 ± 5.6
60 ns 30.51 ± 6.5 34.6 ± 7.3 34.7 ± 7
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Table XII: FWHM for the experimental point target at 30 mm depth with different electronic aberration
strengths and beamforming methods. The percent change from the no aberration case is shown in
parentheses.

Full-width at half-maximum (mm)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 0.54 0.55 (0.9%) 0.55 (2.0%) 0.57 (5.5%)
DAS + ML 0.54 0.54 (-0.6%) 0.53 (-1.0%) 0.53 (-2.1%)

DAS + SCM 0.54 0.52 (-3.0%) 0.52 (-3.8%) 0.53 (-2.5%)
DAS + Rigby 0.54 0.53 (-2.5%) 0.52 (-3.2%) 0.52 (-3.4%)

MV 0.29 0.38 (33.6%) 0.59 (105.5%) 0.71 (147.1%)
MV + ML 0.29 0.31 (6.9%) 0.31 (9.3%) 0.52 (80.4%)

MV + SCM 0.29 0.32 (13.0%) 0.29 (1.1%) 0.35 (20.4%)
MV + Rigby 0.29 0.34 (18.3%) 0.33 (15.1%) 0.40 (38.1%)
ESMV (1%) 0.36 0.36 (.2%) 0.57 (57.8%) 0.61 (69.2%)

ESMV (10%) 0.36 0.36 (.2%) 0.57 (57.8%) 0.61 (69.2%)

Table XIII: PSL for experimental point target at 30 mm depth with different electronic aberration strengths
and beamforming methods. The percent change from the no aberration case is shown in parentheses.

Peak sidelobe level (PSL)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS -28.0 -19.9 (29%) -12.2 (56.4%) -5.8 (79.3%)
DAS + ML -28.0 -24.2 (13.8%) -20.6 (26.7%) -14.7 (47.6%)

DAS + SCM -28.0 -24.8 (11.5%) -21.1 (24.9%) -18.7 (33.2%)
DAS + Rigby -28.0 -23 (18%) -21 (25%) -17.4 (38.1%)

MV -31.0 -21.8 (29.7%) -12.3 (60.4%) -5.1 (83.6%)
MV + ML -31.0 -27.3 (11.9%) -24.3 (21.7%) -14.2 (54.2%)

MV + SCM -31.0 -28.7 (7.4%) -27.5 (11.4%) -21.4 (31.1%)
MV + Rigby -31.0 -27.4 (11.5%) -26.7 (13.9%) -20.3 (34.5%)
ESMV (1%) -30.1 -23.9 (20.5%) -11.7 (61.2%) -3.1 (89.6%)

ESMV (10%) -30.1 -23.9 (20.5%) -11.7 (61.2%) -3.1 (89.6%)

lateral position.

Table XIV: Contrast (in dB) for the experimental cyst target at 40 mm depth at different electronic aber-
ration strengths and beamforming methods. The percent change from the no aberration case is shown
in parentheses.

Contrast of cyst at 40 mm (dB)
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 17.3 15.2 (-12%) 8.9 (-49%) 3.0 (-83%)
DAS + ML 17.3 18 (4%) 17.8 (3%) 15.0 (-13%)

DAS + SCM 17.3 18 (4%) 17.0 (-1%) 14.7 (-15%)
DAS + Rigby 17.3 17.8 (3%) 16.1 (-7%) 13.1 (-24%)

MV 24 17.1 (-29%) 8.3 (-65%) 1.9 (-92%)
MV + ML 24.0 23.5 (-2%) 22.0 (-8%) 18.3 (-24%)

MV + SCM 24.0 23 (-4%) 19.7 (-18%) 16.5 (-31%)
MV + Rigby 24.0 22.7 (-6%) 18.2 (-24%) 14.7 (-39%)
ESMV (1%) 29.4 24.3 (-17%) 15.7 (-47%) 1.6 (-94%)

ESMV (10%) 25.9 20.6 (-20%) 9.8 (-62%) 1.7 (-93%)

15



Part I: Effects of phase aberration and PAC on the MV beamformer

Table XV: Contrast-to-noise ratio for the experimental cyst target located at 40 mm depth with different
electronic aberration strengths and beamforming methods. The percent change from the no aberration
case is shown in parentheses.

CNR of cyst at 40 mm
Aberration strength 0 ns 20 ns 40 ns 60 ns

DAS 2.17 2.09 (-3.7%) 1.60 (-26.2%) 0.66 (-69.6%)
DAS + ML 2.17 2.29 (5.2%) 2.36 (8.4%) 2.35 (8.3%)

DAS + SCM 2.17 2.28 (4.9%) 2.34 (7.8%) 2.37 (9.2%)
DAS + Rigby 2.17 2.27 (4.3%) 2.28 (4.7%) 2.25 (3.5%)

MV 2.49 2.35 (-5.5%) 1.65 (-33.7%) 0.40 (-83.9%)
MV + ML 2.49 2.51 (.7%) 2.49 (.1%) 2.60 (4.2%)

MV + SCM 2.49 2.52 (1.3%) 2.51 (.8%) 2.65 (6.4%)
MV + Rigby 2.49 2.51 (1%) 2.51 (.7%) 2.60 (4.6%)
ESMV (1%) 2.13 2.24 (4.9%) 1.61 (-24.5%) 0.21 (-90.2%)

ESMV (10%) 2.10 2.16 (3%) 1.45 (-30.9%) 0.26 (-87.7%)

2.3 Discussion

2.3.1 Degradation caused by phase aberration

The simulations and experiments verify that MV is much more sensitive to aberration than DAS than
previously indicated [1, 2]. For instance, the resolution of MV starts four times better than DAS’s

Figure 6: B-mode images of the experimental cyst targets corrupted with aberrator A. The top row
depicts DAS images for the no aberration, aberrated and corrected cases. The second row shows the
same but for conventional MV. The third row show the ESMV control and aberrated images with two β

values.
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Figure 7: B-mode images of the experimental cyst targets corrupted aberrator B. The top row depicts
DAS images for the no aberration, aberrated and corrected cases. The second row shows the same but
for conventional MV. The third row show the ESMV control and aberrated images with two β values.

Table XVI: Characterization of estimated profile for the tissue aberrator A.
Method Aberration strength(ns) correlation length (mm)

ML 22 ± 2.7 2.47 ± 0.58
SCM 28 ± 8.3 2.53 ± 0.94
Rigby 27 ± 9.4 2.47 ± 1.08

but for the case of the strongest aberration, i.e. 60 ns, the lateral resolution of MV is worse than that
of DAS. In the case of PSL, the sidelobes in MV beamforming with no aberration are around 15 dB
lower than those of DAS, but even at low aberration values the sidelobes are almost equivalent to DAS.
ESMV had an initial FWHM closer than that of DAS and also presented some degree of robustness
in this regard but the PSL of ESMV degraded almost as quickly as that of regular MV. This behavior
was also reflected in the anechoic inclusion simulations. The contrast of simulated cysts for MV and
DAS were the same at the strongest aberration value, even though MV had 5 dB more contrast at 0

Table XVII: Characterization of estimated profile for the tissue aberrator B.
Method Aberration strength(ns) correlation length (mm)

ML 45 ± 9.7 7.2 ± 1.1
SCM 68 ± 20.0 6.0 ± 1.9
Rigby 63 ± 25.3 5.9 ± 1.4
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Table XVIII: Contrast (in dB) for the experimental cyst target at 40 mm depth and 0 mm lateral position
with tissue aberrator A and B. The percent change from the no aberration case is shown in parentheses.

Contrast(dB)
Aberration strength Control Aberrator A Aberrator B

DAS 17.3 14.1 (-19%) 8.9 (-49%)
DAS + ML 17.3 15.6 (-10%) 13.6 (-21%)

DAS + SCM 17.3 16.5 (-4%) 9.2 (-47%)
DAS + Rigby 17.3 16 (-8%) 11.3 (-34%)

MV 24.0 15.3 (-36%) 8.5 (-65%)
MV + ML 24.0 17.5 (-27%) 15 (-38%)

MV + SCM 24.0 17.4 (-27%) 9.5 (-60%)
MV + Rigby 24.0 17.1 (-29%) 12.0 (-50%)
ESMV (1%) 29.4 22.6 (-23%) 11.3 (-62%)
ESMV (10%) 25.9 19.3 (-26%) 9.5 (-63%)

Table XIX: Contrast-to-noise ratio for the experimental cyst target at 40 mm depth and 0 mm lateral
position with tissue aberrator A and B. The percent change from the no aberration case is shown in
parentheses.

CNR
Aberration strength Control Aberrator A Aberrator B

DAS 2.17 2.25 (3.6%) 1.58 (-27%)
DAS + ML 2.17 2.42 (11.4%) 1.98 (-9%)

DAS + SCM 2.17 2.51 (15.5%) 1.57 (-28%)
DAS + Rigby 2.17 2.46 (13.3%) 1.80 (-17%)

MV 2.49 2.38 (-4.5%) 1.41 (-43%)
MV + ML 2.49 2.27 (-8.8%) 2.24 (-10%)

MV + SCM 2.49 2.35 (-5.7%) 1.66 (-33%)
MV + Rigby 2.49 2.34 (-6.2%) 2.03 (-19%)
ESMV (1%) 2.13 2.35 (10.0%) 1.38 (-35%)
ESMV (10%) 2.10 2.26 (7.9%) 1.29 (-38%)

ns. ESMV showed a little more robustness than regular MV at low aberration values. However, this
algorithm breaks down at 40 ns, and by 60 ns its degradation was equivalent (or even worse) than that
suffered by conventional MV.

Similar trends can be inferred from the experiments with electronic aberration. ESMV again showed
better contrast at low aberration values (about 1 dB higher) but its degradation at 40 and 60 ns was
comparable to that of conventional MV. For these experimentes, the CNR values showed a slightly
peculiar behavior at low aberration values, where in some cases aberration caused the CNR to increase.
The explanation for this is that aberrated images seem to have brighter speckle due to speckle smearing,
which reduces the variance of the background [15].

For the case of the tissue-based aberrator, MV exhibited again higher degradation of contrast when
compared to DAS on both cysts. It is noted that even though the estimated aberration was around 20
ns for aberrator A, the effects seemed much worse than the corresponding case in electronic aberration.
This can be attributed to the fact that in tissue, other degrading effects are present (diffuse reverberation
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Table XX: Contrast (in dB) for the experimental cyst target at 40 mm depth and 10 mm lateral position
with tissue aberrator A and B. The percent change from the no aberration case is shown in parentheses.

Contrast(dB)
Aberration strength Control Aberrator A Aberrator B

DAS 19.0 15.5 (-19%) 15.6 (-18%)
DAS + ML 19.0 18.1 (-5%) 18.6 (-2%)

DAS + SCM 19.0 17 (-10%) 16.4 (-14%)
DAS + Rigby 19.0 16.2 (-15%) 16.7 (-12%)

MV 25.7 17.8 (-31%) 14.8 (-42%)
MV + ML 25.7 20.4 (-21%) 18 (-30%)

MV + SCM 25.7 21.5 (-16%) 16.6 (-36%)
MV + Rigby 25.7 20.6 (-20%) 17.3 (-33%)
ESMV (1%) 38.7 39.4 (2%) 20 (-48%)
ESMV (10%) 32.7 18.6 (-43%) 17.2 (-48%)

Table XXI: Contrast-to-noise ratio for the experimental cyst target at 40 mm depth and 10 mm lateral
position with tissue aberrator A and B. The percent change from the no aberration case is shown in
parentheses.

CNR
Aberration strength Control Aberrator A Aberrator B

DAS 2.48 2.44 (-1.5%) 2.42 (-2%)
DAS + ML 2.48 2.46 (-0.9%) 2.74 (11%)

DAS + SCM 2.48 2.52 (1.6%) 2.24 (-9%)
DAS + Rigby 2.48 2.61 (5.2%) 2.86 (16%)

MV 2.27 1.93 (-15.0%) 2.31 (2%)
MV + ML 2.27 1.97 (-13.2%) 2.57 (13%)

MV + SCM 2.27 1.94 (-14.3%) 2.77 (22%)
MV + Rigby 2.27 2.07 (-8.9%) 2.65 (17%)
ESMV (1%) 1.99 1.82 (-8.6%) 2.18 (9%)

ESMV (10%) 1.96 1.61 (-17.9%) 2.09 (7%)

[16] and lower SNR due to the attenuation of the tissue). For both aberrators, the degradation of ESMV
was slightly lower.

These results suggest that in the presence of a moderate or strong aberrator, the performance gain
of MV is completely lost and is no better than DAS. Additionally, although ESMV can show a better
degree of robustness at low aberrations, at higher aberration values it is no better than conventional
MV and thus its robustness improvement is limited. ESMV also showed “black box” artifacts where
speckle disappears in some zones of the image [4]. The artifact is especially noticeable around bright
point targets as shown in Figure 4.

2.3.2 Effects of phase aberration correction

The simulations and experimental data presented here show that basic PAC methods are useful in de-
creasing the detrimental effects of phase aberrations on the MV beamformer. It is observed that the ML
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method produced the estimation with lowest mean absolute error. This observation is statistically sig-
nificant for the simulations at 20 ns (p-value < 0.02) and for all the electronic aberration cases (p-value
< 0.001) but not for the 40 and 60 ns simulation cases (p-value > 0.08). The error in the estimation for
point targets was slightly lower than for cyst targets because of the high coherence of the point target.
Additionally, the obtained errors are consistent with the literature [17].

In terms of image quality and metrics, the ML method tended to outperform the other two methods
in correcting the images for the the cyst target simulations and experiments. There are two possible
reasons for this situation. First, by estimating the delays through a least-squares inverse problem, ML
can produce estimated profiles that are fitted in a global way to every element. The other reason is
that in speckle based targets there exists a fundamental spatial decorrelation predicted by the Van Cit-
tert–Zernike theorem and so distant elements in the aperture show little to no correlation. As ML only
takes a limited number of channel lags in forming the system of equations, it is less sensitive to this
decorrelation of distant elements. In accordance with these observations, the following discussion will
focus on the results with ML as it is the PAC method that carried the best improvements overall.

In contrast with the higher sensitivity of MV, PAC methods applied before beamforming showed
a greater impact on MV than in DAS, mitigating considerably the deleterious effects of aberration.
For example, in the results for the simulations the gains after application of ML on the MV were six
times (in FWHM) and two times (in PSL) the gains obtained for DAS. These improvements allowed
the MV+ML beamformer to outperform DAS in the case of higher aberration in all metrics: gains of
0.5 mm in FWHM, 17 dB in PSL, 7 dB in contrast and 0.3 in CNR. The performance of the ESMV
was more robust than that of conventional MV at low aberrations but at medium to high aberrations
MV+ML was better by around 0.6 mm in FWHM, 30 dB in PSL, 20 dB in contrast and 1.1 in CNR.

Similar results are obtained for case of electronic aberration in phantom experiments. The trends
present int the simulations are the same, but the improvements have a lower magnitude. This can be
explained in the fact that experiments presented other degradation sources, such as noise, and that,
while simulations consisted on a single point target, experimental phantoms consisted of a point target
embedded in speckle. As observed on the results section, the improvements obtained with DAS allowed
the MV+ML beamformer to outperform DAS in FWHM (by 0.15 - 0.20 mm), PSL (by 3 dB), constrast
(by 3 dB) and CNR (by 0.25) and also ESMV in these four metrics (by 0.03 - 0.20 mm in FWHM, by
18 dB in PSL, by 16 dB in contrast and by 2.4 in CNR at the highest aberration value).

Similarly, improvements of up to 3 dB were obtained with PAC in DAS and MV for cyst targets
with aberrator A. MV+PAC had a contrast that was about 2 dB higher when compared to DAS. At this
aberration strength (estimated at around 20 ns), ESMV is still a viable option, having around 4-20 dB
more contrast. The reduction in the effects of PAC in both DAS and MV are attributed to the other
degrading effects, i.e. reverberation and low SNR. These effects not only degrade the quality of the
images but also produce a less accurate estimation of profiles. For the aberrator B case (around 45 ns),
the results are consistent with those obtained for simulations and electronic aberration in the sense that
ESMV started to break down and MV+PAC was a better option at this moderate-high aberration value.
MV+PAC has around 1.4 dB higher contrast 0.25 higher CNR than DAS+PAC and is also superior to
ESMV by 3 dB in contrast 0.8 in CNR for the central cyst. The contrast of ESMV with β = 1% in the
cyst at 10 mm lateral position was higher than MV+PAC by around 2 dB but the CNR is lower by 0.4.
Additionally, due to the artifacts that appear in the ESMV images at this aberration strengths, MV+PAC
might be preferable in these situations.
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In summary, the use of PAC methods (particularly ML) showed both qualitative and quantitative
enhancements on both DAS and MV for different aberration levels. However, the biggest effects were
observed for MV. The combination of MV+ML improved results with respect to DAS+ML in lateral
resolution, PSL and contrast. Additionally, ESMV is a viable option for low aberration levels, especially
due to its improved contrast. However, the simulations and experimental data show that at moderate
and high levels of aberration it degrades quickly and MV with PAC shows better performance and less
artifacts.

It should also be noted that, although correction was only performed on reception, the images
showed quantitative and qualitative recoveries. However, a scheme with correction on both transmission
and reception should produce better improvements. This analysis demonstrates the impact of clinic
strength aberrator on the MV beamformer, as PAC methods have shown to work for experimental data
corrupted with aberration values of up to 60 ns, which are values normally encountered in the human
body [18]. Indeed, PAC is necessary for in vivo imaging with MV because it is sensitive to even
small second order aberrations. All of these methods are based on the assumption of a phase screen
model and therefore this precorrection step is limited in its adaptive correction capability. Despite this
situation, some modest improvements (around 1-2 dB) were obtained with the tissue-based aberrators
(which are distributed aberrators). Further analysis should be considered as a locally adaptive correction
method integrated into the MV beamformer will be needed for stronger distributed aberrators and in vivo
situations.
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Chapter 3

Part II: Proposed LAPAC method

3.1 LAPAC Beamformers

3.1.1 Iterative aberration correction in synthetic aperture data

Iterative aberration correction normally consists on estimating the aberration profile in reception and
then using this profile to correct the transmission focus and re-fire the whole sequence [19]. However,
by using synthetic aperture data the correction in transmission can be performed by the appropriate
delays applied to each transmission index instead of having to refire an acquisition sequence again.
The channel data is first focused on reception. The compounding is necessary to yield high spatial
correlation from the speckle signals. These estimations are performed in the transmission aperture, due
to acoustic reciprocity [20]. The aberration profiles are estimated using a certain numbers iterations by
repeatedly correcting on reception only and estimating on transmission, i.e. after a first estimation of
the aberration profiles is obtained, it is used to correct on reception only (thus improving the reception
focus and the exploitable correlation between channels), then a second estimation of the aberration in
transmission is performed and this estimation is is used to correct again in reception, with this process
iterated four times. The final correction is performed on reception and transmission. It is noted that, due
to computational reasons, all the iterative estimation process is implemented in the frequency domain.

3.1.2 Estimation of the aberration profile

The method used for the estimation of the aberration profiles is a hybrid method that combines the scaled
covariance matrix (SCM) formulation [12] and the multilag (ML) least squares algorithm [21, 22].
This new method, from here on referred as SCM-ML method, was developed as original ML needs a
high sampling rate and is computationally expensive, while the original SCM formulation is fast and
convenient but its performance is inferior to that of ML as shown in the previous chapter. The method
uses the estimated covariance matrix R = [R(m,n)] of the data compounded on reception. Following
the formulation by Silverstein and Ceperley [12], each entry of the covariance matrix can be expressed
as

R(m,n)∼= |R(m,n)|e j[φ(m)−φ(n)], (1)
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where φ(m) is the corrupting phase for channel m, and thus, the phase of R(m,n) correspond to the rela-
tive phase difference between channels m and n. Accordingly, the relative phases of channels separated
up to a certain lag M correspond to the phase of the elements of the M first off-diagonals of the covari-
ance matrix. Using the phase closure property, an overdetermined system of equations can be casted as
in conventional ML [10] but using the phase differences instead of the time shifts obtained from cor-
relations. The system is solved using the method of least squares and the time delays are determined.
The obtained profile is used to correct in transmission and reception the channel data by multiplying
element-wise the Fourier transform F (ω) of the channel data window ω described in 3.1.5 with an array
of phase shifts Φ( f ,m,k) = exp [j2π f (P (m)+P (k))], where P (m) is the estimated aberrant phase for
the m-th element, f is the discrete frequency value, m is the receive channel index, and k is the transmit
channel index. This multiplication is done before doing the weight calculation and apodization. Note
that, for the case of MV, this is mathematically equivalent, although more computationally efficient,
to correcting the steering vector a of a particular frequency bin f0 with a diagonal the phase matrix
Ψ f0(m,k) = Φ( f0,m,k), i.e., a new corrected steering vector is computes as ā = Ψ f0a, or to using this
same Ψ f0 for correcting the channel data and the original MV apodization expressed in (3), i.e. applying
the corrected weights

w̄ =
(Ψ f0RΨ∗f0

)−1a
aH(Ψ f0RΨ∗f0

)−1a
, (2)

during the apodization stage.

3.1.3 Profile decision logic

For estimation of phase aberration profiles, it is necessary to have high correlation between the different
reception (or transmission) channels. According to the van Cittert–Zernike theorem [23], if the imaged
zone consists of diffuse scatterers, the normalized spatial covariance is approximated as a triangular
function that decreases from 1 at zero lag to 0 at a lag equal to the size of the array. Because ultrasound
imaging targets normally consist of diffuse scatterers, it is necessary to have a tight transmission or
reception focus in order to have enough correlaation for aberration profile estimation.

However, there exist zones in the image where the signals do not possess enough spatial correlation
to estimate a reliable profile (e.g. the areas inside anechoic cysts, where the signals consist mainly on
off-axis echoes and noise). To provide a local estimate of the coherence of the channel signals, the
short-lag spatial coherence (SLSC) value [24] of the reception-focused data is calculated as a surrogate
for the reliability of the profile estimation. SLSC values are obtained for every point in the image
domain. Aberration profiles are computed for all points in a region Ω centered around a point (x,z) in
the discretized image domain. This size was chosen because it corresponds to the isoplanatic patch size
for human tissues [8]. The profiles in Ω that correspond to points whose SLSC values is below a certain
threshold are discarded, and the remaining profiles are averaged to obtain a final profile. However, if
one of those given regions Ω has less than a certain percentage of usable profiles, the final profile from
the whole region Ω is discarded and the latest previously computed profile for that particular lateral
position is utilized.
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3.1.4 Conventional MV beamformer

The standard MV beamformer seeks to find, for each point, the apodization that minimizes the variance
of the beamformed output signal while maintaining a unitary gain in the presumed direction of arrival.
This is done by computing the optimal weights w that satisfy [2]

w =
R−1a

aHR−1a
, (3)

where R is the spatial covariance matrix of the signals received at the different array elements and
a is the steering vector. If signals are first pre-steered, as is necessary for the broadband signals in
ultrasound imaging, a reduces to a vector of ones. To take into account the coherence of the signal
and handle ill conditioning of the spatial covariance matrix, spatial smoothing is used [2]. Spatial
smoothing divides the array channel data into subarrays of size L and averages the covariance matrices
of each subarray.

Holfort et al. [1] adapted the minimum variance beamformer to the frequency domain by calcu-
lating the Fourier transform of continuous axial windows and applying the MV beamformer to each
of the frequency bins. Weight calculation for each frequency bin also uses spatial smoothing in the
computation of the covariance matrix. A beamformed value is obtained for each frequency bin and thus
a complete beamformed spectrum is obtain. The inverse Fourier transform of this spectrum is obtained
and the center value of the resulting time domain signal is the final value of that particular point. The
proposed method is based on this beamformer because the subdivision into narrowband beamformers
allow the application of phase shifts to correct the signals during the beamforming process. Hereby,
this approach will be referred to as conventional MV.

3.1.5 Proposed LAPAC beamformer

The method requires multistastic synthetic aperture data. For each point (x,z) in the discretized image
domain, the channel data is focused on transmission and reception at (x,z) and a window of ω(n,m,k)
cented at this point is obtained from the multistastic channel data. Here, the axial dimension index is
given by n = z−W, . . . ,z+W , where 2W + 1 is the window axial length, the receive element index
is given by m = 1, . . . ,M, where M is the number of channels, and the transmission element index is
given by k = 1, . . . ,M. The analytic channel signals corresponding to window W are then coherently
compounded in reception in order to synthetically form a receive beam, i.e. C(n,k) = ∑mW (n,m,k).
C(n,k) is used to estimate both the aberration profile in transmission and a short-lag spatial coherence
(SLSC) value, which is used for profile decision logic (Section 3.1.3). The aberration is done in an
iterative fashion as explained in Section 3.1.3, and after a final correction profile is obtained for the
current point, the original window of channel data, is corrected in the frequency domain in both trans-
mission and reception. The final beamformed value is obtained from W by either the DAS or the MV
beamformer.

The general scheme of the Locally Adaptive Phase Aberration Correction (LAPAC) beamformer is
shown in Figure 8. The additional blocks corresponding to LAPAC, i.e. local PAC estimator, correction
of signals and SLSC-based decision logic, are shown with a solid blue border.
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Figure 8: General scheme of the proposed beamformer. The blocks corresponding to estimation and
correction used in LAPAC are shown with a solid blue border and light blue background

3.2 Methods

3.2.1 Fullwave simulations

Two isoimpedance simulations were generated using a full wave simulator [25]. An isoimpedance
simulation is one where the impedance map is constant and thus reverberation effects are supressed.
The isoimpedance simulations allowed direct calculation of aberration without confounding effects of
reverberation for this study analysis. In order to generate isoimpedance data, simulations of the phantom
with the aberrator and for the aberrator alone are performed. Afterwards, the aberrator alone RF data
were subtracted from the phantom with the aberrator RF data in order to eliminate reverberation effects
and isolate the RF dataa with phase aberration. For each simulation, a different human abdominal
wall model [26] was placed between the transducer and the phantoms. The first model was a 22 mm
thick abdominal wall and the second model was a 25 mm thick abdominal wall. These two abdominal
aberrator models will be referred as aberrators A and B, respectively. In both simulation sets, the
phantom consisted of four 2.2 mm radius anechoic cyst targets located at axial depths of 45, 50, 55
and 60 mm for aberrator A, and 40, 45, 50 and 55 mm for aberrator B, and at -5 mm and 5 mm lateral
positions. Four different realizations of the speckle map were simulated for each dataset and multistastic
synthetic aperture data was recorded. Matched simulations with no tissue were also generated in order
to produce control data. The simulated array consisted of 128 elements with a central frequency of 5
MHz and a sampling frequency of 40 MHz.

3.2.2 Experiments with tissue aberrators

Channel data was acquired using a multistastic synthetic aperture sequence and a multipurpose phantom
model 539 (ATS Laboratories, Connecticut, USA) using a Verasonics V1 acquisition system (Verason-
ics Inc, Washington, USA). A 128 element L11-4V linear transducer with a central frequency of 5 MHc
was used and the data was sampled at 20 MHz, which was interpolated to 40 MHz offline. The phantom
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consisted of three 2 mm radius cysts separated by 10 mm axially. A 28 mm section of beef loin was
used placed between the transducer and the phantom in order to induce aberration.

3.2.3 In vivo experiments

The same experimental parameters and data acquisition sequence described in the previous section were
used to obtain channel data from a cross section of the internal (ICA) and external carotid arteries (ECA)
of a 24-year-old healthy male volunteer. Written informed consent was obtained before performing the
scan.

3.2.4 Comparisons and metrics

The proposed LAPAC-MV and LAPAC-DAS methods are compared on all datasets with DAS, precor-
rected DAS (DAS-PC, i.e. a precalculated profile is applied for each lateral position before applying
DAS beamforming), conventional MV and precorrected MV (MV-PC, i.e. a precalculated profile is
applied for each lateral position before applying conventional MV beamforming). All DAS, MV and
LAPAC-MV images were reconstructed on a rectangular grid of 0.08 mm lateral spacing and 0.03 mm
axial spacing. For MV-based beamformers, the length of the axial window was 121 samples, the FFT
was performed using 128 frequency bins and the spatial smoothing parameters was 32. For the aber-
ration correction, the region Ω had a size equal to 0.4 mm × 0.4 mm. This size was chosen because
it corresponds to the isoplanatic patch size for human tissues [8]. Four iterations were used for the
iterative procedure. For LAPAC-MV, the SLSC was computed using 30 lags, i.e. 23% of the aperture
size, and a threshold value of 6 was used (These values are consistent with the values uses in SLSC
imaging [24, 27]). The percentage threshold under which the profile of a region Ω is discarded was set
to 25 %.

In the DAS and MV precorrected cases, PAC is applied as it is typically done in the literature [8];
profiles corresponding to each lateral position and a number of axial positions below and above a user-
selected depth are computed before the beamforming process. The profiles were obtained using four
iterations of the SCM-ML method. The profiles are averaged laterally and axially within the same
isoplanatic patch sizes uses for LAPAC-DAS and LAPAC-MV the final profiles are applied on both
transmission and reception in the time-domain before the beamforming process. The beamforming
methods are compared in terms of contrast and contrast-to-noise ratio (CNR) defined by

Contrast = 20log
(

µ1

µ0

)
CNR =

|µ1−µ0|√
0.5(σ2

1 +σ2
0)
,

where µ1 and µ0 are the mean values of the region of interest (ROI) and background, respectively, and
σ2

1 and σ2
0 are the variances of the ROI and the background, respectively.

Additionally, some computational times are presented for DAS, MV and LAPAC-MV. All tests were
performed using a standard portable computer with a Intel core i7 processor and 8 Gb of RAM.
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Figure 9: B-mode images of the simulated cyst targets with aberrator A and with different beamforming
methods. On the first image, an example of a ROI image (red) and a background region (blue) used for
the calculation of metrics are shown.

Table XXII: Contrast (in dB) for the fullwave simulations with aberrator A and aberrator B and different
beamforming methods with and without aberration calculated at the cyst targets at different depths.

Aberrator A Aberrator B
Cyst depth (mm) Cyst depth (mm)

45 50 55 60 40 45 50 55
DAS – Control 16.8 ± 3.3 16.2 ± 2.5 15.1 ± 4.3 15.3 ± 3.6 28.4 ± 1.2 27.9 ± 0.9 26.5 ± 0.7 27.4 ± 0.2

DAS – Aberrated 8.7 ± 0.1 7.6 ± 1.6 8.4 ± 0.5 6.9 ± 0.3 8.1 ± 1.3 9.7 ± 0.7 7.0 ± 1.2 11.2 ± 0.6
DAS – PC 11.8 ± 1.3 9.1 ± 2.2 10.9 ± 0.9 8.3 ± 1.4 13.9 ± 1.9 12.3 ± 1.4 13.2 ± 1.9 11.7 ± 1.5

LAPAC – DAS 12.7 ± 0.8 10.6 ± 2.5 13.6 ± 0.7 9.5 ± 1.2 14.2 ± 2.4 13.4 ± 1.7 12.6 ± 2.2 13.1 ± 2.4
MV – Control 16.2 ± 2.4 15.5 ± 3.1 14.4 ± 3.5 14.1 ± 3.0 33.5 ± 0.0 32.1 ± 1.0 30.1 ± 0.6 29.4 ± 0.2

MV – Aberrated 10.5 ± 0.3 9.3 ± 1.6 9.5 ± 0.6 8.8 ± 0.4 9.9 ± 1.8 11.6 ± 0.6 8.6 ± 1.3 13.5 ± 0.7
MV – PC 12.1 ± 0.8 9.4 ± 1.6 11.6 ± 1.2 8.8 ± 1.1 14.7 ± 2.4 14.1 ± 1.7 14.5 ± 1.8 13.9 ± 1.5

LAPAC – MV 13.3 ± 1.1 11.2 ± 2.6 13.4 ± .8 10.6 ± 1.4 15.9 ± 2.5 15.2 ± 1.7 14.5 ± 2.5 15.0 ± 2.9

3.3 Results

3.3.1 Fullwave Simulations

B-mode images of one the realizations of the full-wave cyst target simulations with the different beam-
forming methods are shown in Figure 9 for aberrator A and in Figure 10 for aberrator B (All images are
displayed with a dynamic range of 50 dB). Control images with no aberration are included for compar-
ison. Circular regions of 2 mm radius corresponding to the cysts and background were used for all cyst
targets in order to compute contrast and CNR. An example of these regions is shown in the first image
of figure 9 and the average and standard deviation of the metrics for the four realizations are displayed
in Tables XXII and XXIII.

It is observed that aberration degrades the contrast of both DAS and MV by approximately 5-8 dB
and the CNR by approximately 0.1-0.5 for aberrator A. The degradation is higher with aberrator B,
with losses of 16-24 dB or more in contrast and 0.1-0.5 in CNR. Accordingly, the cysts are difficult to
distinguish in any of the aberrated images. For aberrator A, the application of precorrection increases
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Figure 10: B-mode images of the simulated cyst targets with aberrator B and with different beamform-
ing methods. On the first image, an example of a ROI image (red) and a background region (blue) used
for the calculation of metrics are shown.

Table XXIII: CNR for the fullwave simulations with aberrator A and aberrator B and different beam-
forming methods with and without aberration calculated at the cyst targets at different depths.

Aberrator A Aberrator B
Cyst depth (mm) Cyst depth (mm)

45 50 55 60 40 45 50 55
DAS – Control 1.25 ± 0.21 1.42 ± 0.21 1.35 ± 0.36 1.42 ± 0.25 1.52 ± 0.06 1.55 ± 0.15 1.59 ± 0.03 1.79 ± 0.04

DAS – Aberrated 1.04 ± 0.06 1.06 ± 0.22 1.07 ± 0.08 .91 ± 0.05 0.99 ± 0.09 1.20 ± 0.08 0.90 ± 0.11 1.37 ± 0.06
DAS – PC 1.14 ± 0.16 1.10 ± 0.22 1.24 ± 0.15 .94 ± 0.14 1.29 ± 0.10 1.34 ± 0.15 1.37 ± 0.19 1.35 ± 0.17

LAPAC – DAS 1.13 ± 0.08 1.16 ± 0.24 1.28 ± 0.13 1.03 ± 0.13 1.29 ± 0.13 1.35 ± 0.08 1.27 ± 0.18 1.36 ± 0.14
MV – Control 1.23 ± 0.14 1.38 ± 0.28 1.31 ± 0.25 1.34 ± 0.22 1.57 ± 0.07 1.59 ± 0.20 1.60 ± 0.01 1.80 ± 0.06

MV – Aberrated 1.16 ± 0.07 1.26 ± 0.18 1.14 ± 0.14 1.09 ± 0.07 1.13 ± 0.15 1.33 ± 0.08 1.02 ± 0.12 1.47 ± 0.12
MV – PC 1.15 ± 0.13 1.18 ± 0.16 1.27 ± 0.14 1.01 ± 0.09 1.34 ± 0.15 1.42 ± 0.17 1.40 ± 0.18 1.49 ± 0.14

LAPAC – MV 1.18 ± 0.10 1.23 ± 0.26 1.26 ± 0.19 1.11 ± 0.15 1.36 ± 0.14 1.45 ± 0.14 1.36 ± 0.15 1.46 ± 0.09

contrast by 2-3 dB for DAS and 0.1-2 dB for MV, and CNR by 0.01-0.2 for DAS, but it does not
increase, or even lowers, the CNR in MV. On the other hand, both LAPAC-DAS and LAPAC-MV show
increments of 2-3 dB in contrast and 0.04-0.15 with respect to the uncorrected case. In accordance with
the highest degradation with aberrator B, higher improvements are also obtained with the correction.
Precorrection increases 3-6 dB in contrast for both DAS and MV, while LAPAC-DAS and LAPAC-MV
show increases of 4-6 dB in contrast. The time in seconds needed to calculate a point in the image
domain is shown in XXIV. It is noted that LAPAC-MV takes more than twice the time of MV and is
more than three orders of magnitude slower than DAS.

Table XXIV: Time in seconds for the calculation of a point with the different beamforming methods
DAS MV LAPAC-MV

Average Time (seconds) 0.004352 7.1 16.248
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Figure 11: B-mode images of the experimental cyst target and tissue aberrator with different beamform-
ing methods. On the first image, an example of a ROI image (red) and a background region (blue) used
for the calculation of metrics are shown.

3.3.2 Tissue Aberrator

B-mode images of the experimental cyst targets with the physical aberrator with the different beamform-
ing methods are shown in Figure 11. Control images with no aberration are included for comparison but
do not have a direct match to the aberrated corrected images due to the removal of the aberrating tissue
and the subsequent repositioning of the transducer. Circular regions of 1.8 mm radius corresponding to
the cysts and background were used for all cyst targets in order to compute contrast and CNR. These
metrics are shown in Table XXV.

It is observed that aberration degrades the contrast of both DAS and MV by approximately 6-10 dB
and the CNR by approximately 0.4-0.5. The quality of the cysts as well as the texture of the speckle
background are greatly degraded. The application of precorrection increases contrast by 6-7 dB in both
DAS and MV. Both LAPAC methods increases contrast by 7-9 dB compared to the uncorrected case.

3.3.3 Results of in vivo carotid

B-mode images of the in vivo images with the different beamforming methods are shown in Figure 12.
Circular regions of 1.5 mm radius inside the ECA and ICA and in the sorrounding tissue where selected
to compute contrast and CNR. These metrics are shown in Tables XXVI.

It can be observed that both the ICA and ECA present some clutter inside. In this case, the ap-
plication of classical precorrection does not improve much the quality of the images. However, it is
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Table XXV: Contrast and CNR of the experimental cyst target and tissue aberrator with different beam-
forming methods

Contrast (dB) CNR
Cyst depth (mm) Cyst depth (mm)
45 50 55 45 50 55

DAS – Control 18.8 18.2 13.8 1.58 1.65 1.33
DAS – Aberrated 10.0 8.6 7.6 1.17 1.07 0.97

DAS – PC 17.0 16.2 13.1 1.59 1.60 1.41
LAPAC – DAS 19.4 16.0 14.5 1.62 1.63 1.42
MV – Control 20.3 17.8 14.1 1.60 1.60 1.37

MV – Aberrated 10.4 8.6 7.7 1.18 1.07 0.98
MV – PC 17.7 16.3 13.2 1.63 1.64 1.41

LAPAC – MV 19.7 16.4 14.6 1.63 1.67 1.44

Table XXVI: Contrast and CNR of the in vivo carotid image with different beamforming methods
Contrast (dB) CNR
ECA ICA ECA ICA

DAS – Aberrated 20.0 24.8 1.74 1.74
DAS – PC 19.4 24.4 1.74 1.74

LAPAC – DAS 20.9 25.9 1.45 1.45
MV – Aberrated 22.7 27.8 1.8 1.8

MV – PC 21.6 27.3 1.8 1.8
LAPAC – MV 24.3 29.1 1.49 1.49
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Figure 12: B-mode images of the in vivo carotid with different beamforming methods. The blue and
green circles represent the regions taken inside the ECA and ICA. The red circle is the one taken in the
sorrounding tissue and considered as background.
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observed that LAPAC-DAS does show some improvement (around 1 dB) with respect to the uncom-
pensated case and LAPAC-MV presents contrast 2-3 dB higher than all the other methods. Although
the CNR decreases for both LAPAC methods, the images look visually enhanced.

3.4 Discusion

As seen in the previous chapter, it is noted that after the application of a moderate or strong aberrator,
the performance of MV is comparable to that of DAS. The results of the fullwave simulation show that
common precorrection can improve the contrast of MV by around 2 dB but LAPAC-DAS and LAPAC-
MV had on average 1.5-3 dB higher contrast than their precorrected counterparts, and thus conveyed
increases of around 3-6 dB with respect to the uncorrected case. The enhanced performance of LAPAC
is especially noticeable for the rightmost cysts in Figure 9. Aside from having a better contrast on
average, it should be noted that LAPAC-MV showed better contrast than all the other methods for all
realizations and cyst depths. Overall, LAPAC-MV benefited more from the adaptive correction and
showed higher contrast than LAPAC-DAS for almost all cases.

However, the CNR values of the LAPAC methods are comparable to PC because LAPAC-DAS
and LAPAC-MV had a higher variance in the background that might be caused for the variance of the
profiles applied in the continuous correction. The variance of the applied profiles can be diminished by
averaging profiles on a larger region thought this may incur in a higher bias. In any situation, the size
of the averaging region cannot be enlarged too much as it has to respect the isoplanatic patch size [22].

The same trends are observed in the tissue aberrator results. With the tissue aberrator, the contrast
and visibility of the cysts in both MV and DAS images are greatly reduced. Precorrection increases
contrast in both DAS and MV by about 7 dB. The higher impact of precorrection compared to the
fullwave simulations might be due to the different configuration of the tissue layers that make the
physical aberrator be closer to a near field phase screen than the tissue used for simulations. LAPAC-
DAS and LAPAC-MV presented contrast values that were around 2 dB higher than MV-PC. In this case,
these two methods perform almost equivalently.

Additionally, the in vivo results of the carotid suggest that LAPAC-MV might be of clinical impor-
tance, augmenting the contrast and edge definition of certain regions. While DAS-PC and MV-PC do
not improve contrast or CNR, LAPAC methods increase contrast by 2-3 dB in both the ECA and ICA.
LAPAC-MV shows 4 dB higher contrast than LAPAC-DAS and enhancements are noticeable inside
the ICA, where less clutter is present. Although there are contrast and visual improvements, the CNR
metric goes down in LAPAC methods due to the variance that may be caused in the tissue zone. This
can be partially be caused by the small region that has to be selected for the CNR calculation due to the
size of the sorrounding tissue.

The improved performance of LAPAC stems from two particular reasons. First, correction is adap-
tive and is performed continuosly over the image domain, while normal precorrection assumes an infi-
nite isoplanatic axial extension, i.e. a single profile is used for the whole lateral position. The design of
LAPAC-MV allows it to seamlessly integrate the correction to all axial positions by using a synthetic
aperture sequence and acoustic reciprocity. Second, the logic of the profiles to apply at any given point
are based on a quantitative measure, e.g., SLSC, instead of a manually selected depth that may depend
on the expertise of the user, as is the case of normal precorrection.
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Part II: Proposed LAPAC method

Although LAPAC-MV has not yet been tested against other robust MV beamformers present in the
literature, results of the previous chapter showed that MV-PC can be a preferable alternative to other
robust MV beamformers in the presence of moderate-strong aberrators and distributed aberrator. As
we have shown here that LAPAC-MV showed increased performance when compared to MV-PC, it
is considered that LAPAC-MV might be a preferable option when compared to previous robust MV
beamformers.

It should be noted that the tissue aberrator and in vivo experiments present other degrading effects
aside from aberration, i.e., reverberation and reduced signal-to-noise ratio, which were not present in
the isoimpedance simulations. These affect the quality of the image and create bias and jitter in the aber-
ration estimation. Therefore, the enhancements obtained with precorrection and the LAPAC method in
experimental datasets is lower than that of fullwave simulations. The presence of reverberation will also
degrade MV performance and push it toward DAS beamforming. To solve this problem, the MV might
be combined with reverberation clutter filters such as ADMIRE [28] or F-X[29] or direction of arrival
filters [30].

Although there are some artifacts present in the simulation images, the correct performance of the
algorithm in the different tested dataset suggest that the SLSC value is a good measure of realiability
of profiles, allowing LAPAC to automatically determine if signal coherence is high enough to compute
the aberration profile and adjust the beamformer accordingly without operator intervention. A key
advantage of SLSC values is that it is a normalized correlation measure and so it is independent of the
transmit power, thus making the selection of the thresholds easier and more globally applicable. Other
coherence measures such as the generalized coherence factor (GCF) [31] or the phase coherence factor
(PCF) [32] might also be used to implement the decision logic.

Additionally, it is possible to modify the single-element sequence to other synthetic aperture se-
quences. In particular, there might be a need to implement other synthetic aperture techniques (e.g.
virtual source sequences [33]) for stronger aberrator or other in vivo scenarios, where the signal-to-
noise ratio of the single element sequence is not sufficient. In fact, it has been shown that is possible
to adapt spatial correlation based techniques to this kind of synthetic aperture emissions [27]. It would
be straightforward to extend the MV beamformer to these sequences as it only acts on the reception
channel data after the data is focused on tranmission and reception and so it is not affected by the actual
tranmission sequence. It should also be mentioned that LAPAC has been applied to both DAS and MV
but it may be possible to extend it to other adaptive beamforming methods.

A possible concern with the proposed algorithm is that the computational cost of the LAPAC-MV is
considerably higher than conventional MV beamformer, as, for each point in the image, it is necessary to
perform a calculation of the SLSC value for the descion logic and, in case the decision logic indicates
so, an estimation of an aberration profile with a predefined number of iterations. The time of these
operations add up to the naturally higher cost associated with the MV beamformer. However, the
advent of parallel processing and GPU enabled computing might permit the real-time implementation
of the current technique, as there has already been real-time implementations of the conventional MV
beamformer [34].
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Chapter 4

Conclusions

In the first part of this thesis work, we have shown the effects of different strengths and types of aberra-
tion on MV and have compared them with conventional DAS. These results suggest that aberration has
a stronger impact on the MV beamformer than previously reported, primarily because previous litera-
ture only examined the degradation by gross velocity errors or basic simulated phase screen aberrators.
These results suggest that the application of PAC methods is needed to improve the MV beamformer
resolution and contrast in clinically relevant scenarios.

The robust MV beamformer tested (ESMV) showed improved robustness at low aberration val-
ues but its performance is, in general, no better than that of conventional MV at moderate and high
aberrations. MV combined with PAC methods was preferable in these cases. This suggested that the
development of a robust MV beamformer algorithm that integrates PAC methods is necessary for clin-
ical use. This situation motivated the work, presented on the second part, where we have presented a
new adaptive correction method and showed that it can be applied to both DAS and MV beamformers.

The design of the method permits the estimation of the profiles at all points in the image domain
and automatically determines the application of the best profile to apply based on the SLSC value. The
tests of the new methods in simulations, experiments with tissue aberrators and in vivo carotid images,
show that LAPAC-DAS and LAPAC-MV has higher contrast when compared to DAS-PC and MV-PC.
Additionally, LAPAC-MV showed on average better performance than LAPAC-DAS. The increased
performance of the proposed method with distributed aberrators and the in vivo images suggest that
LAPAC-MV might be a more clinically viable option to MV-PC to enhance the quality of ultrasonic
images.
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