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RESUMEN EJECUTIVO 

The study of the yield curve has been a topic that interested economists for a long time since 
the term structure of interest rates is an important transmission channel of monetary policy to 

inflation and real activity. In this paper, following Ang and Piazzesi (2003), we study the 
relevance of macroeconomic factors on Peruvian sovereign yield curve through an Affine Term 

Structure model for the period from November 2005 to December 2015. We estimate a 
Gaussian model to understand the joint dynamics of macro variables -inflation and real activity 
factors- and Peruvian bond yields in a multifactor model of the term structure. Risk premia are 
modeled as time varying and depend on both observable and unobservable factors. A Vector 

Autoregressive (VAR) model is estimated considering no-arbitrage assumptions, which let us to 
derive Impulse Response Functions and Variance Decompositions. We find evidence that macro 

factors help to improve the fit of the model and explain a substantial amount of variation in 
bond yields. Variance decompositions show that macro factors explain a significant amount of 

the movements in the short and middle segments of the yield curve (up to 50%) while 
unobservable factors are the main drivers for most of the movements at the long end of the 

yield curve (up to 80%). Furthermore, we find that setting no-arbitrage restrictions improve the 
forecasting performance of a VAR and that models that include macro factors forecast better 

than models with only unobservable components. 
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Abstract

The study of the yield curve has been a topic that interested economists for a long time since
the term structure of interest rates is an important transmission channel of monetary policy
to in�ation and real activity. In this paper, following Ang and Piazzesi (2003), we study the
relevance of macroeconomic factors on Peruvian sovereign yield curve through an A¢ ne Term
Structure model for the period from November 2005 to December 2015. We estimate a Gaussian
model to understand the joint dynamics of macro variables -in�ation and real activity factors-
and Peruvian bond yields in a multifactor model of the term structure. Risk premia are modeled
as time varying and depend on both observable and unobservable factors. A Vector Autore-
gressive (VAR) model is estimated considering no-arbitrage assumptions, which let us to derive
Impulse Response Functions and Variance Decompositions. We �nd evidence that macro factors
help to improve the �t of the model and explained a substantial amount of variation in bond
yields. Variance decompositions show that macro factors explain a signi�cant amount of the
movements in the short and middle segments of the yield curve (up to 50%) while unobservable
factors are the main drivers for most of the movements at the long end of the yield curve (up
to 80%). Furthermore, we �nd that setting no-arbitrage restrictions improve the forecasting
performance of a VAR and that models that include macro factors forecast better than models
with only unobservable components.

JEL Classi�cation Number: C13, C32, E43, E44, E52, G12
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1 Introduction

The last international �nancial crisis has shown that open economies with underdeveloped domestic

debt markets are highly vulnerable to external capital �ows. Then, the development of the capital

markets in Peru is an essential task since it allows local investors to have an alternative source of

funding that improves domestic savings-investment ratio and protect the country against scenarios

of tight liquidity. Consequently, since the beginning of the Market Maker Program1, the Peruvian

government has shown a great e¤ort to promote the development of local �nancial markets and to

achieve the development of a sovereign yield curve.

With this in mind, the study of the joint behavior of the yield curve and macroeconomic variables

becomes relevant for various reasons. One of these reasons is forecasting, which is based on the

theory of rational expectations. According to this theory, the yield curve provides information on

the future behavior of the economy since yields of long-term bonds represent the expected value

of average future short yields. This means that the study of the yield curve is relevant because it

provides a support to the consumption and investment decisions of economic agents, from its ability

to predict the behavior of short term interest rates, real activity and in�ation; see Campbell and

Shiller (1991); Ang, Piazzesi and Wei (2006), Fama (1990). Furthermore, their study is important

for the measurement of �nancial instruments, which is necessary for the development of capital

markets. In particular, the yield curve is useful for derivative pricing and hedging, see Du¢ e et al

(2000).

Another important reason for studying the yield curve is its in�uence on Monetary Policy. The

study of the yield curve has been a topic that interested economists for a long time since the term

structure of interest rates is an important transmission channel of monetary policy to in�ation and

real activity. In fact, the impact of the reference interest rate in the short end of the yield curve

has an impact on other yields since long term yield dynamics are determined from short term rate

expectations and agents�aversion risk, see Evans and Marshall (1998, 2001). Thus, the yield curve

is a useful tool for monetary policy because it provides relevant information about the expectations

of macroeconomic variables. In addition, this study is relevant for the development of Fiscal Policy

since the yield curve in�uences the decisions of Debt Policy. In particular, the knowledge of its

behavior gives the government the ability to decide on its debt structure and on its �nancing costs,

through the implementation of debt management operations according to the economic situation.

Furthermore, the ine¤ectiveness of Fed monetary policy to change the long term yields in the

1The Market Maker Program in Peru was born as part of the "Strategy of Auctions and Public Debt Management
Operations", Working Paper published by the Ministry of Economy and Finance of Peru in 2003. (Resolución
Ministerial 106-2003-EF/75)
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US during the crisis reopened an old discussion about whether macro factors that determine short

term interest rates also in�uences the dynamics of long term interest rates to whether the factors

that determine interest rates on the short term are the same as those factors that determine the

long term yields. This is a very old debate, from models that assert the existence of a relationship

between short-term and long-term interest rates through macro factors to statistical models, that

deny any relationship and a¢ rm that only statistical factors help to determine the yield curve. In

the middle of this discussion, various methodologies that try to explain the peculiarities of the yield

curve have been developed. One of these methodologies was developed by Ang and Piazzesi (2003)

and is known as A¢ ne Term Structure Models. We apply this methodology to study the relevance

of macroeconomic factors on Peruvian sovereign yield curve for the period from November 2005 to

December 2015. In particular, we focus on the analysis of compliance of the hypothesis of rational

expectations in the framework of a macroeconomic model. Therefore, we estimate the variables that

in�uence the risk aversion of investors to di¤erent terms and we assess whether it is possible that

in addition to statistical factors, macro variables are relevant to determine the Peruvian sovereign

yield curve if the dynamics are properly modeled. In that sense, this research tries to answer the

following questions: What variables govern the whole term structure of interest rates and what

is their relationship with the state of the real economy and monetary policy that control interest

rates anytime soon? How the fundamental projections, incorporated in macroeconomic variables,

can be taken into account in the estimation of the bond yields, when they are well described by

unobservable variables or latent factors that determine the level, the slope and the curvature of

the yield curve?, among other questions of interest to the Peruvian macroeconomic and �nancial

literature.

In particular, we estimate a Gaussian model for the Peruvian Yield curve considering observable

macroeconomic variables and unobservable latent factors. In fact, we estimate and compare two

models. The �rst model presents only latent factors and is called the "Yields-Only Model". The

second model considers latent factors in interaction with a Taylor Rule, that includes macro factors,

and it is called the "Macro Model". Through Principal Component Analysis, we condensed our

macro variables from a set of time series in two variables: an in�ation factor and a real activity

factor. Risk premia are modeled as time varying and depend on both observable and unobservable

factors. The Vector Autorregressive (VAR) model is estimated considering no-arbitrage assump-

tions, so that Impulse Response Functions (IRFs) and Variance Decompositions can be derived.

We �nd evidence that macro factors help to improve the forecast errors of a VAR model and

explain a signi�cant amount of the variance presented in bond yields. In fact, positive shocks to

macro factors increases the yields. The response of yields to in�ation shocks is greater than the
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response to real activity shocks across all maturities. Variance decompositions show that macro

factors explain a signi�cant amount of the movements at the short and middle segments of the yield

curve (up to 50%) while unobservable factors are the main drivers for most of the movements at

the long end of the yield curve (up to 80%). Compared to the Yields-Only model, the �level�factor

e¤ect prevails when macro factors are incorporated. Finally, we �nd that no-arbitrage restrictions

with the incorporation of macro factors improve forecasts.

The paper is organized as follows. Section 2 presents a brief literature review of studies about

the dynamics of bond yields. Section 3 describes the methodology of A¢ ne Term Structure models.

Section 4 present the results and a brief discussion of the implied Impulse Response Functions and

Variance Decompositions. Finally, in Section 5 the conclusions are presented.

2 Literature Review

This document studies the e¤ects of macroeconomic variables on the Peruvian yield curve, and let

us to understand its movements based on the expectations of macroeconomic variables. Thus, this

section provides a review of studies about the dynamics of the bond yields, that includes models

that take into account macroeconomic variables. It should be noted that this literature has been

mainly applied to developed countries, especially in the USA.

In general, the literature that studies the movements in the yield curve can be classi�ed in

di¤erent ways. One classi�cation is by the number of factors, establishing that there are one-factor

models, see Vasicek (1997), and multi-factor models such as in Litterman and Sheinkman (1991).

Another classi�cation is by the nature of factors. According to this classi�cation, there are models

with observable factors, see Campbell and Shiller (1991) and Evans and Marshall (2001), and

latent factors, see Du¤ee (2002). Finally, in the last years there have been numerous studies that

describe the yield curve movements based on the behavior of certain macroeconomic variables and

unobservable factors.

2.1 Literature in Developed Countries

Vasicek (1977) and Cox, Ingersoll and Ross (1985) are the �rst works that impose the no-arbitrage

condition. In these studies, the short term interest rate is the only factor that determines the

movements of the term structure of interest rates. Since these type of models have a bad perfor-

mance explaining the movements in the yield curve, multi-factor models appeared. Litterman and

Scheinkman (1991) and Diebold and Li (2006) propose that three factors help to explain the term

structure of the interest rates: level, slope and curvature. These models became popular for the

reduction of the number of parameters, the ease of estimation and the accuracy of the obtained

3



factors.

On the other hand, there is an approach that pursues to explain the behavior of the yield

curve and its relationship with macroeconomic variables. Campbell and Shiller (1991) assess the

ful�llment of the expectations theory in determining the U.S. term structure postwar. They �nd

that for the majority of combinations of maturities between one month and ten years, higher spread

between long and short term interest rates forecasts an increase in the short end and long end of

the yield curve. Thus, the pattern found is inconsistent with the expectations theory of the term

structure of interest rates, but it is consistent with a model in which the spread between short

term and long term interest rates is proportional to the implied value of the theory of expectations.

They explain that this deviation could be generated because of time-varying risk premia, that are

correlated with expected increases in short term interest rates.

Evans and Marshall (2001) study the e¤ects of di¤erent types of macroeconomic impulses on

the nominal yield curve. They use di¤erent approaches to identify the economic shocks in the form

of a VAR model. The �rst approach applies a structural VAR following the identi�cation proposed

by Galí (1992), which includes the variables of industrial production, the benchmark of the United

States, the real interest rate and the real monetary levels. Under a second approach, the authors

identify fundamental Impulse Response Functions from di¤erent empirical measures of economic

shocks proposed in the literature. They �nd that macroeconomic impulses determine most of the

variability of long term interest rates for all maturities.

In recent years, a new methodology that tries to explain the joint behavior of bond yields and

macroeconomic variables has been developed. These models provide relevant information about

the way these macro variables a¤ect the shape of the term structure and vice versa. Most of these

models consider economic variables such as in�ation and real activity or employment and the policy

interest rate. They are based upon the reaction function of the monetary policy to shocks of these

two variables and the transmission of changes in the short end to the long end of the yield curve.

In fact, the use of the policy interest rate tries to cover any monetary shock unrelated to these

variables.

An example of this approach is Ang and Piazzesi (2003). They describe the joint behavior of the

yield curve and macroeconomic variables through the use of an A¢ ne Term Structure model. In

particular, they use a Taylor rule for the short term interest rate and an a¢ ne model for the rest of

the yield curve. Thus, the model is estimated in two steps. First, they estimate the macro dynamics

and the short rate equation treating latent variables as monetary policy shocks. In the second step,

the previous parameters calculated are hold �xed, and the other parameters of the term structure

model are estimated through the maximum likelihood. The authors �nd that the performance of
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a VAR improves when they introduce no-arbitrage restrictions and they show that models with

macro factors forecast better than models with only unobservable factors. Furthermore, Impulse

Response Functions and Variance Decomposition analysis show that macro factors (in�ation and

real activity) explain up to 85% of the variation in bond yields at the short end and middle of the

yield curve, but only 40% at the long end of the curve. Thus, they conclude that macro factors

mainly determine movements at the short end and middle end of the yield curve while unobservable

factors explain most of the movements at the long end of the yield curve.

Pericoli and Taboga (2008) develop a canonical representation for the no-arbitrage discrete-time

term structure models, that consider observable and unobservable state variables. They analyze

how di¤erent parameterization can a¤ect estimated risk premia, Impulse Response Functions and

Variance Decompositions. Thus, their speci�cation provides a better comprehension on the ad-

vantages and disadvantages of alternative modeling approaches. They identify a trade-o¤ between

the need to achieve parsimonious parameterizations and the e¤ectiveness of the models to match

observed patterns of variation in risk premia. Furthermore, they notice that an ample set of parame-

terizations are required to capture the empirical properties of bond returns and the autocorrelation

structure of the state variables that drive bond yields.

Halberstadt and Stapf (2012), analyze the dynamics of the German yield curve and the risk

premium for the period between 1999 and 2010. The authors estimate two model speci�cations.

While the �rst presents only latent factors, the other model consider latent factors and a Taylor

rule that includes a price factor and a real activity factor. These factors are derived from an

ample macroeconomic data set. Halberstadt and Stapf (2012) �nd that macroeconomic factors,

especially the real activity factor, help to improve the accuracy of the model. Furthermore, they

analyze the e¤ect of the macroeconomic factors on the risk aversion of market participants. The

authors also notice that, in the recent �nancial crisis, the market prices of risk for the macro factors

changed signi�cantly. In times of crisis, the increase in yield risk premia is fewer at the short end as

compared to longer maturities since o¤setting safe haven �ows a¤ects shorter maturities. Finally,

they include a liquidity stress factor in the macro model to show the in�uence of the slope during

times of crises, which is associated with the e¤ect of the safe haven �ows.

2.2 Literature in Emerging Countries

The �nancial markets of emerging countries are incipient and their debt instruments are illiquid.

However, there is little literature developed about the interaction of macroeconomic variables and

the term structure of interest rates.

In Mexico, Cortés and Ramos (2008) investigate the way that di¤erent macroeconomic shocks
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a¤ect the term structure of interest rates. In particular, they elaborate a model that includes a

no-arbitrage speci�cation for the term structure in a context of a small open economy. They �nd

that the level of the yield curve is a¤ected by persistent shocks on in�ation Furthermore, the notice

that increases in expected future short rates and the expansion of risk premia a¤ect the medium

and long term bond yields. Finally, the authors demonstrate that a positive demand shock cause

an upward �attening shift in the yield curve. This result is explained by both the monetary policy

response and the time varying term premia.

In Chile, Morales (2008) estimates a dynamic model for the yield curve incorporating latent

and macro factors. He uses the yield curve following Nelson and Siegel (1987), but considering a

dynamic interpretation based on Diebold and Li (2006). After assuming that the data generating

process for the latent and macro factors can be represented by a VAR process, he uses a state-space

representation and he estimates the yields-macro model by a Kalman Filter approach and by using

a simpli�ed two-step procedure proposed by Diebold and Li (2006). He �nds that the results are

not signi�cantly a¤ected by the use of the simpli�ed approach. Furthermore, he concludes that the

level and the slope seemed to be responsive to real activity and monetary policy shocks.

In Colombia, Melo and Castro (2010) apply the Diebold, Rudebusch and Arouba (2004) method-

ology to represent the term structure of interest rates. They model the yield curve with three latent

factors following Nelson and Siegel (1987) and macroeconomic variables. In particular, they use

a state-space representation and estimate a VAR with these factors. They conclude that there is

a bidirectional relationship between macro variables and latent factors. However, they �nd that

Granger causality is stronger from macro variables to latent factors.

2.3 Literature in Peru

The literature on yield curves in Peru is limited especially when this literature is linked to macro-

economic variables. However, there are some studies that should be mentioned. Rodriguez and

Villavicencio (2005) discuss the formation of the Peruvian yield curve and the evolution of its dif-

ferent sections as responses to di¤erent domestic policies and external events. They estimate the

structure of the zero coupon spot yields applying the method proposed by Nelson and Siegel (1987).

They �nd that the yield curve is very sensitive to internal events, such as the issuance of a new

long term bond, and to external events, such as changes in international interest rates.

Pereda (2009) estimates two models for the Peruvian yield curve using the methodologies devel-

oped by Nelson and Siegel (1987) and Svensson (1994), respectively. In particular, he compares the

performance of both models in terms of accuracy, �exibility and stability of parameters. Although

he �nds that the model of Svensson (1994) has a better performance, it is less stable while there is
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not enough data for the di¤erent term maturities estimated. This result is explained by the absence

of issues and the illiquidity of secondary market. Thus, he concludes that the use of the model of

Nelson and Siegel (1987) is recommended.

Jauregui and Valdivia (2012) study the behavior of Peruvian sovereign curve to predict levels and

movements in the term structure of interest rates through models based on condition "arbitrage"

and statistical models. They �nd that the Diebold-Li model presents a greater predictive power

than the CIR model since it forecasts with a lower minor deviation out of sample. They also develop

the estimation of the expanded model with macroeconomic variables and they �nd evidence in favor

of the interaction between the yield curve and macroeconomic variables.

Carrillo and Montes (2014) study also the relationship between macro variables and the Peruvian

yield curve. They use a dynamic version of Nelson and Siegel (1987) model that let them to

obtain the three dynamic factors of the yield curve: level, slope and curvature. They represent

the interaction of these factors with macroeconomic variables through a VAR. The state space-

representation measures the e¤ects of the state variables (latent factors and macro variables) on

the yields of di¤erent terms. Thus, they �nd evidence in favor of the dynamic interaction between

the yield curve and macroeconomic variables, such us in�ation, product and the interbank rates.

In this document, the Peruvian sovereign yield curve will be represented by a Gaussian Arbitrage-

free a¢ ne model. Therefore, we test the hypothesis of rational expectations based on a macroeco-

nomic model. In particular, macroeconomic variables are comprised in a price factor and a real

activity factor, which are incorporated into the yield curve model based on a representation of

pricing Kernel, that determines the prices for every existing bond. In that sense, this paper aims

to provide a contribution to the study of the joint behavior of macroeconomic factors and Peruvian

sovereign bonds.

3 Methodology

This section describes the methodology of A¢ ne Term Structure models that is used to estimate

bond yields. In particular, following the approach of Ang and Piazzesi (2003), we describe a

Gaussian a¢ ne model with two state vectors, one containing the latent factors and the second

containing macroeconomic variables. The model incorporates observable macroeconomic variables

with Unobservable Components or latent factors. Risk premia are modeled as time varying, because

they are consider to be a¢ ne in potentially all of the underlying factors. Our notation closely follows

that adopted in Ang and Piazzesi (2003).
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3.1 General Setup

3.1.1 State Dynamics

The model assumes the existence of k1 observable macro variables (fot ) and k2 latent factors (f
u
t )

In particular, the vector Ft = (fot ; f
u
t ) follows a Gaussian VAR (p) process:

Ft = �0 +�1Ft�1 +�2Ft�2 + ::::+�pFt�p + �ut; (1)

where ut � IIDN(O; I). The state of the economy is then described by a k-dimensional vector of
state variables Xt where k = k1p+k2 This vector is partitioned into k1p observable variables and k2

unobservable variables Xu
t : The observable vector consists of current and past levels of macroeco-

nomic variables Xo
t = (fo

0
t ; f

o0
t�1; ::::; f

o0
t�p�1)

0 where Xu
t = fut only incorporates contemporaneous

latent factors (Unobservable Components). Thus, latent factors fut follow an AR(1) process in

which the coe¢ cients �0::::�p of the equation corresponding to Xu
t = f

u
t are equal to 0.

There are two groups of macroeconomic variables: the group of in�ation measures and the group

that captures real activity. Following Ang and Piazzesi (2003) the dynamics of Xt = (Xo0
t ; X

u0
t ) is

set as a �rst order Gaussian VAR:

Xt = �t +�Xt +��t; (2)

with �t =
�
u0

0
t ; 0; :::::0; u

u0
t

�
where u0t and u

u
t are the shocks to the observable and unobservable

factors, respectively. In the �rst order companion form, the k�k matrix � contains blocks of zeros
to accommodate higher order lags in Ft.

3.1.2 The Short Rate Equation

The short rate rt is assumed to be an a¢ ne function of all state variables:

rt = 
0 + 

0
1Xt; (3)

where the three-month yield y3t is used as an observable short rate rt. In particular, we estimate

a model based on the policy rule recommended by Taylor (1993) and it is called the �Macro

Model�. According to this rule, the evolution of the short rate rt is circumscribed to movements

in contemporaneous macro variables fot and a component that is not explained by these variables,

an orthogonal shock �t:

rt = a0 + a
0
1f
o
t + �t; (4)

where �t can be interpreted as a monetary policy shock according to the assumptions considered

by Christiano et al. (1996). The original speci�cation for the Taylor Rule uses two macro variables
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as factors in fot : the annual in�ation rate, similar to our in�ation factor, and the output gap,

analogous to our real activity factor. Thus, the coe¢ cient 
1 is constrained to depend only on

contemporaneous factor values Xo
t = f

o
t .

In the case of A¢ ne term structure models, as Du¢ e and Kan (1996) mentioned, the short rate

is based on a equation similar to (4) with an assumption on risk premia. Thus, the short rate is

established to be an a¢ ne (constant and a linear term) function of underlying latent (unobservable)

factors:

rt = c0 + c
0
1X

u
t + �t; (5)

The unobserved components themselves follow a¢ ne processes so the VAR constitutes the

special Gaussian case. If pricing is risk neutral, prices of bonds of longer maturities depend upon

parameters of Xu
t . Nevertheless, in the general case, that is considered in this paper, the risk

adjustment must be speci�ed carefully to obtain closed-form solutions for bond yields.

We can combine (4) and (5) since the short rate is speci�ed in both equations as a¢ ne function

of factors. Considering that Xt = (Xo
t ; X

u
t ), we can rewrite (3) as:

rt = 
0 + 

0
11X

o
t + 


0
12X

u
t ; (6)

Following Ang and Piazzesi (2003), the latent factors Xu
t are speci�ed to be orthogonal to the

macro factors Xo
t . Thus, the short rate dynamics of the model can be explained as a Taylor rule

with the errors �t = 
012X
u
t being unobserved factors.

3.1.3 The Pricing Kernel

The model uses the assumption of no-arbitrage (Harrison and Kreps, 1979) that guarantees the

existence of an equivalent martingale measure Q, which is a risk-neutral measure. Therefore, the

price of any asset Vt that does not pay any dividends at time t+1 satis�es Vt = E
Q
t [exp(�rt)Vt+1)],

in which the expectation is taken under the measure Q. This assumption is equivalent to the

assumption of the existence of a stochastic discount factor �t+1, which allows us to price any asset

in the economy:

�t+1 = �t exp

�
1

2
�0t�t � �0t�t+1

�
; (7)

where �t parameters are the time-varying market prices of risk related to the sources of uncertainty

�t: Thus, �t is parameterized as an a¢ ne process:

�t = �0 + �1Xt; (8)
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for a k-dimensional vector �0 and a k�k matrix �1: Shocks in the underlying state variables (macro
and latent factors) are related to �t+1 through equations (7) and (8) and consequently determine

how factor shocks a¤ect all yields. To ensure that both the macro and unobservable factors are

priced, the parameters in �0 and �1 corresponding to lagged macro variables are established to be

zero. Again, following Ang and Piazzesi (2003), the pricing kernel mt+1 is de�ne as:

mt+1 = exp(�rt)
�t+1
�t
; (9)

mt+1 =

�
�1
2
�0t�t � 
0 � �01Xt � �0t�t+1

�
: (10)

3.1.4 The Bond Pricing

Once de�ned the nominal pricing kernel, which prices all nominal assets in the economy, we state

that the total gross return process Rt+1 for any asset satis�es:

Et(mt+1Rt+1) = 1: (11)

If pnt represents the price of an n period zero coupon bond, we can estimate bond prices recursively

through (11):

pnt = Et(mt+1p
n
t+1): (12)

With this in mind, the discrete-time Gaussian k factor model with k1p observable variables and

k2 unobservable factors is formed by: i) the state dynamics of Xt given by (2), ii) the dynamics of

the short rate equation rt, given by (3) and iii) the Radon-Nikodym derivative, given by (7), where

p is the number of lags in the autoregressive representation of the observable factors. Therefore,

we can de�ne an n-period bond price as:

pn+1t = exp
�
An +B

0
nXt

�
; (13)

where the coe¢ cients An and Bn are described by the following equations:

An+1 = An +B
0
n (�� ��0) +

1

2
Bn��

0Bn � 
0; (14)

B
0
n+1 = B

0
n(q � ��1)� 
01; (15)

with A1 = �
0 and B1 = �
1: Thus, the continuously compounded yield ynt of an n-period zero
coupon bond is given by:

ynt =
log(pnt )

n
; (16)

ynt = An +B
0
nXt; (17)
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where An = �An=n and Bn = � �Bn=n From (17), we see that the expected excess return comprises

three terms: (i) a Jensen�s inequality term �1
2B

0
n�1��Bn�1, (ii) a constant risk premium B

0
n�1��0,

and (iii) a time-varying risk premium B
0
n�1��1. The parameters in the matrix �1 govern the time

variation while the term premium is determined by the vector �. Considering a positive shock at

�t+1 in a state variable. This shock a¤ects all bond prices and alters bond returns according to

(13), (14) and (15) . When � is negative, the shock also drives up the log value of the pricing kernel

(10), which involves a negative correlation between bond returns and the pricing kernel. Since this

correlation has a hedge value, the risk premia on bonds are positive. Therefore, when � is negative

a positive shock determines a positive bond risk premium.

The variance decompositions can be computed following standard methods because both bond

yields and the expected holding period returns of bonds are a¢ ne functions of Xt. In this model,

the dynamics of the term structure rely on the risk premia parameters �0 and �1. This means that

a non-zero vector �0 impacts the long-run mean of yields since this parameter impacts the constant

term in (16). On the other hand, a non-zero matrix �1 impacts the time-variation of risk-premia,

because it impacts the slope coe¢ cients in (16). Thus, a model that presents a non-zero �0 and

zero matrix �1, lets the average yield curve to be upward sloping. However, the risk premia in this

model cannot be time-varying. In fact, if investors are risk neutral, �0 = 0 and �1 = 0 we are in the

well-known case called Expectations Hypothesis. In general, the main drivers of the zero coupon

bond yields are: i) the expected future path of short term interest rates and ii) the extra returns

that investors require as compensation for the risk of holding longer-term instruments; see Cortés

and Ramos (2008).

3.1.5 Assumptions on Model Parameters

Following Ang and Piazzesi (2003), the model consists of three latent factor and two macro factors

In fact, we assume the existence of three latent factors that follow AR(1) processes. In particular,

we estimate:

fut = �f
u
t�1 + u

u
t ; (18)

with 3-dimensional shock vector uut s IIDN(0; I) and a lower-triangular 3� 3 companion matrix
�. Furthermore, we assume that latent factors are independent of macro factors. This implies

that the upper-right 2 � 3 corner and the lower-left corner 3 � 2 of � and � in the compact form
in (2) include only zeros. According to this approach, the pricing kernel that includes observed

macro factors speci�es all uncertainties setting in the latent factors as orthogonal to the macro

variables. This means that there is not a bi-directional relationship between latent factors and macro
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factors. Besides there is empirical evidence that there is a feedback e¤ect between unobservable

and observable factors for developed countries, such us Rudebusch and Wu (2008) and Diebold and

Li (2006) for the USA and Hordahl et al (2006) for Germany, García and Montes (2014), shows

that there is no a signi�cant e¤ect of latent factors on macro variables in the case of Peru.

As we mentioned before, risk premia are represented through parameters �0 and �1. When

risk neutral measure and the data-generating coincide, �t = 0 for all t, and this case is well known

as �Local Expectations Hypothesis�. In our model, while a non-zero vector �0 impacts the long-

run mean of yields since it impacts the constant term in (8), a non-zero matrix �1 in�uences the

time-variation of risk premia, because it in�uences the slope coe¢ cients in (17).

The number of parameters to estimate in � is very large since �0 has K1 +K2 = 5 parameters

and �1 has (K1 + K2)2 = 25 parameters in the Macro model. Thus, following Ang and Piazzesi

(2003), �1 matrix is speci�ed to be block-diagonal, setting zero restrictions on the upper-right 2o3
and lower-left 3o 2 corner blocks. This parameterization assumption implies the orthogonalization
of macro and latent variables. Consequently, time variation in the compensation for shocks to

unobservable components is only driven by the unobservable components themselves. We can

apply the same argument for the payment for shocks in observable macro factors.

In summary, there are 5 parameters estimated in �0 and 4+ 9 parameters in �1. On one hand,

the parameters in �0 are related to the current observable macro variables and latent variables.

On the other hand, the parameters in �1 are comprised in two non-zero matrices on the diagonal:

a lower-right matrix 3 o 3 for the unobservable components and the upper-left 2 o 2 matrix for
current macro variables.

3.2 Estimation Method

The assumption that yields are analytical functions of the state variables implies the transforma-

tion of the system of yields and observable variables (Y 0t ; X
o0
t ) into a system of observables and

unobservables Xt = (Xo0
t ; X

u0
t ). Thus, the unobservable factors can be inferred from yields. The

estimation method is based on the maximum likelihood derived by Ang and Piazzesi (2003). In this

case, the likelihood for the VAR is a function of (Y 0t ; X
o0
t ) that let us to to draw inferences about

yield curve movements and macro shocks from the parameters in � coe¢ cients and covariance

terms. Thus, we estimate a VAR of (Y 0t ; X
o0
t ) with assumptions that guarantee no arbitrage and

identify unobservable components orthogonal to macro shocks.

The estimation consists of a two-steps procedure, which let us avoid the issues related to the

estimation of a model with many factors using maximum likelihood with highly persistent yields.

In the �rst step, the macro dynamics and the coe¢ cients of the macro factors in the short rate
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equation are estimated. Then, in the second step, holding all pre-estimated parameters �xed, the

rest of the parameters of the term structure model are estimated. This procedure also eludes the

problem of calculating an extensive number of lag coe¢ cients in the bivariate VAR for the macro

variables in the term structure model.

In the �rst step, the short rate equation coe¢ cients of the macro variables in (6) and the macro

dynamics are estimated treating latent variables as monetary policy shocks. In particular, they are

computed by ordinary least squares, as informed in Table 4. Because the macro factors constructed

have zero mean, the constant 
0 in the short rate equation portrays the unconditional mean of

the 3 month yield, which reaches 3.75% on an annualized basis. To obtain an estimate 
0 at a

monthly frequency, this number obtained must be divided by 12. The coe¢ cients 
11 of the short

rate equation represents the greatest magnitude of short rate movements explained by the macro

factors, with all remaining orthogonal factors being unobservables. Then, we use the no- arbitrage

assumptions to distinguish the unexplained proportion.

In the second step, we hold the previous estimates �xed and derive a likelihood function of

observables (Y 0t ; X
o0
t ) from that of Xt = (Xo0

t ; X
u0
t ). In order to achieve convergence, we need

to �nd good starting values since the model is a highly non-linear system. Given the di¢ culty to

estimate unconditional means of persistent series, we estimate the model in several iterative rounds.

In fact, the likelihood surface, which determines the mean of long yields, is very �at in �0, see Ang

and Piazzesi (2003).

The estimation begin with starting values for � in (18) obtained from the estimation of the

model under the Expectations Hypothesis, with �0 and �1 equal to zero. Then, starting values

for �1 are computed holding �0 at zero. Next, �0 is estimated setting any insigni�cant parameters

in �1 at 10% level equal to zero. After that, the insigni�cant �0 parameters are set to zero and

re-estimate. This procedure generates the zero of � and �1 matrices reported in Table 6 and 7.

The majority of the non-zero parameters in � and �1 are signi�cant, and it is expected that their

e¤ects remain in other iterative estimation structures. Since this procedure could be considered

path dependent, future research should be developed to get feasible alternatives that calculates

unconditional means for long yields close to those in the data.

Finally, following Chenn and Scott (1993) the likelihood construction proposed by Ang and

Piazzesi (2003) is solved for the unobservable factors from the joint dynamics of the zero coupon

bond yields and the macro factors. This implies to assume that there are as many yields measured

without error as unobservable factors, and there are yields that are measured with error. In

particular, we assume the 1 year and 9 year yields are measured with error.
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4 Estimation Results

4.1 The Data

To study the joint behavior of the yield curve and macroeconomic factors, we use monthly infor-

mation on yields and variables associated with the performance of the output and the price level,

which are obtained from the Superintendency of Banking and Insurance (SBS) and the Central

Reserve Bank (BCRP), respectively.

4.1.1 The Yield Data

We use monthly data on zero coupon bond yields of maturities of 3 months, 1, 2, 9 and 10 years

from November 2005 to December 2015. The bond yields are obtained from SBS Price Vector.

Regarding the choice of maturity to explain the behavior of the long end of the yield curve, in line

with the proposal of Halberstadt and Stapf (2012) we take as reference the yield of the 10-year bond

since bonds with longer maturities have not signi�cantly di¤erent trading frequencies. Therefore,

the estimation with longer yields almost does not a¤ect results. On the other hand, at the short

term of the curve, the 3 month yield is chosen as the risk-free rate since it is the smallest term

available.

Figure 1 plots the yields that are considered to be measured without error while Table 1 presents

the main sample statistics and some stylized facts. The average yield curve is upward sloping; the

standard deviation of yields mostly decrease with maturity; and yields are remarkably autocor-

related, with declining autocorrelation at longer maturities. The yield levels exhibit mild excess

kurtosis at short maturities which increases with maturity. Overall, the distribution observed in

the Figure 1 and the evidence from the statistics of the series of monthly yields seems to not reject

a Normal distribution. In fact, the Jarque-Bera normality test does not reject Gaussianity for

yields. Thus, since we are interested in modelling the joint behavior of yields and macroeconomic

variables, the Gaussian assumption that we made in later sections is a su¢ cient approximation to

the dynamics of the yield curve.

An important stylized fact is that yields at near maturity are highly correlated. We can observe

that the correlation between 9 and 10 years yield is 99%. In the estimation developed, the �ve

yields are used to estimate the model. We set that the 3-month yield, 2-year and 10-year yields are

measured without errors and they represent the short, medium and long ends of the yield curve in

the model with 3 unknown factors. The 1 year yield has a 96% correlation with the 2-year yield

and the 9-year yield has 99% correlation with the 10-year yield.
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4.1.2 Macro Variables

Following Ang and Piazzesi (2003), macro variables are sorted in two groups. The �rst group

comprises various in�ation measures which are based on Consumer Price Index (CPI), the CPI of

Food and Energy (CPI-FE) and Imported In�ation (CPI-M). The second group consists of variables

that capture real activity: the index of Primary Gross Domestic Product (PRIM-GDP), the Non

Primary Gross Domestic Product index (NO PRIM-GDP) and the Urban Employment Index for

�rms with 10 and more employees (EMP). This list of variables includes most variables that have

been used in monthly VARs in the macro literature. All growth rates are measured as the di¤erence

in logs of the index at time t and t� 12.
The main sample statistics of macro variables are presented in Table 1. In the �rst group,

we observe that the average of in�ation is around the target limit (3%) with a low standard

deviation. This average is greater in the case of the CPI-FE and lower in the case of CPI-M,

with higher volatility in both cases. An important stylized fact is that all in�ation measures are

highly autocorrelated (up to 90%). With respect to the variables associated with real activity,

as we expect, we observe that the growth rate of NO PRIM-GDP has a higher mean than the

PRIM-GDP and a lower standard deviation, while the growth rate of EMP presents the lowest

standard deviation and the highest autocorrelation. The autocorrelation is lower for the growth of

PRIM-GDP, which can be explained by the volatility of this sector.

The dimensionality of the system is reduced through by extracting the �rst principal component

of each group of variables independently. In particular, we extract the �rst principal component

from the in�ation measures group, and we extract the �rst principal component from the real

activity measures group. Thus, we keep with two variables which, in line with Ang and Piazzesi

(2003), are called �in�ation� and �real activity�. In particular, we �rst normalize each series

independently to have zero mean and unit variance. We then assemble the three variables associated

with in�ation (real activity) into a vector Z1t (Z
2
t ). For each group i, the vector Z

i
t can be represented

as:

Zit = Cf
o;i
t + �it; (19)

where Z1t = (CPIt; CPI � FEt; CPI � Mt) for the group �in�ation� and Z2t = (PRIM �
GDPt; NOPRIM�GDP;EMPt) for the group �real activity�. The error term �it satis�es E(�it) = 0
and V ar(�it) = �; where � is diagonal. The matrices C and � are 3� 1 and 3� 3; respectively, for
each group. The extracted macro factor fo;it inherits the zero mean from Zit (E(f

o;i
t ) = 0) and has

unit variance (V ar(fo;it ) = 1):
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Table 2 presents the loadings of the �rst three principal components for the two groups. The

factor loadings shows that the �rst principal component can explain the variation in each group

up to 50%. More precisely, over 75% (60%) of the variance of nominal variables (real variables)

is explained by just the �rst principal component of the group. The �rst principal component of

the in�ation and real activity measures loads positively on CPI, CPI-FE, and CPI-M and PRIM-

GDP, NO PRIM-GDP and EMP, respectively. We plot these macro factors in Figure 2. The �gure

indicates that some conditional correlations between the in�ation factor and real activity factor

might be important.

Table 3 shows the correlation between the original macro series in each group and the extracted

principal components. These correlations demonstrate that the in�ation factor is most closely

correlated with CPI and CPI-FE (92% and 98% respectively) and less correlated with imported

in�ation (70%). The real activity factor is most closely correlated with NO PRIM-GDP growth

(91%) and EMP (91%).

Furthermore, we can infer from correlation matrix in Table 3 some pioneer information about

the relationship between the macro factors and the yield curve. The correlation between yields at

longer maturities and real activity factor is higher than the correlation between these yields and

in�ation. In fact, the correlation of in�ation is highest for short yields (56% correlation between

in�ation and the 3-month yield), and somewhat smaller for long yields (26% correlation between

in�ation and the 10-year yield). Real activity correlation increases with maturity (53% correlation

between real activity and 2-year yield) and then declines at the longest maturity (28%).

The unconditional correlation between the two macro factors is small (0.35), as reported in

Table 3. Although the unconditional correlation is weak, based on the Figure 2, we estimate a

VAR for the macro factors and we �nd that the conditional correlation is signi�cant. Speci�cally,

we estimate a bivariate process with 1 lag for the macro factors: fo;it = (fo;1t ; fo;2t )0 :

fot = �1f
o
t�1 +
u

o
t ; (20)

where �1 and 
 are 2�2 matrices with uot � IIDN(0; 1). Figure 32 presents the Impulse Response
Functions (IRFs) from a VAR(1) �tted to the macro factors. The response of in�ation to shocks

in real activity is positive and hump-shaped, while the response of real activity to in�ation shocks

is also positive, and then turns negative before dying out.

2The IRFs are computed using a Cholesky orthogonalization. There is no signi�cant di¤erence reversing the order
of the variables.
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4.2 Short Rate Dynamics

Based on the independence assumption on Xo
t and X

u
t ; we estimate the coe¢ cients on in�ation and

real activity in the short rate equation by ordinary least squares. Table 4 reports the estimation

results from two regressions: the original Taylor rule and the forward-looking version of the Taylor

rule, that includes lags of the macro variables3. The R2 of the estimated Taylor rule is 36%,

while the forward looking version is 44%. These results indicate that macro factors should have

explanatory power for the movements of the yield curve.

The performance of the residuals provides some knowledge about what to expect from a model

with unobservable components. In particular, we can infer some preliminary information from

Figure 4, which plots the residuals and the demeaned short rate The residuals from both versions

of the Taylor rule are highly autocorrelated. While the autocorrelation of residuals from the short

rate equation with only contemporaneous macro factors is 0.914, the autocorrelation from the

equation that incorporates lagged macro factors is slightly lower, 0.847. The short rate itself has an

autocorrelation of 0.943, which indicates that macro variables could explain some of the persistent

shocks to the short rate. In addition, unless a variable that replicates the short rate itself is set on

the right hand side of the Taylor Rule Equation, the residuals will follow the same broad pattern

as that of the short rate. Thus, we can infer that the �level� factor found in �rst term structure

research, see Vasicek (1977), prevails when macro variables are included in a linear version of the

short rate in a term structure model.

Finally, the coe¢ cients of in�ation and real activity in the simple Taylor rule are positive and

signi�cant, which is consistent with previous estimates found in the literature. In contrast to

the simple Taylor rule estimation, Table 4- Panel B reports that most parameter estimates for

the forward-looking version of the Taylor rule are not signi�cant, except for the 11th lag on real

activity. This suggests that using many lags in the Taylor rule may lead to an over-parameterized

and potentially poorly behaved system. Moreover, the optimal Schwartz (BIC) choice rejects the

forward-looking Taylor rule (-1.21) in favor of the original Taylor rule (-1.83).

4.3 A Term Structure Model without and with Macro Factors

We compare the yields estimates resulting from the Yields-only model and the Macro model to asses

the relevance of macroeconomic information for the yield estimation. We �nd that the root mean
3Since one of the speci�cations establishes that latent variables are orthogonal to macro variables, following Ang

and Piazzesi (2003), we modi¤y the implementation of the forward-looking Taylor rule proposed by Clarida et al.
(2000). In particular, we add lagged macro variables as arguments in (6) instead of rede�ne vt to include forecast
errors fot+1 � E(fot+1): We do this procedure because following Clarida et al (2000) implies to include forecast errors
into some latent variables and, consequently, to drop the assumption of independence between macro variables and
latent factors.
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squared error (RMSE) of the yield estimates is indeed smaller for the macro model (RMSEmf =

0:06) compared to the Yields-only model (RMSElat = 0:17). The maturity-speci�c RMSEs are

provided in Table 5. We can see that RMSEs are lower for the shortest and the longest maturities

in both models. Thus, the macroeconomic factors have some relevance for the yield estimation.

These results are in line with many papers that include macro factors as sources of risk, such as

Ang and Piazzesi (2003), Pericoli and Taboga (2006), Rudebusch and Wu (2008) and Halberstadt

and Stapf (2012). Furthermore, we are avoiding the detection of structural breaks -that lead to

changes in the in�uence of macro factors- since we have estimated over the whole sample period,

this constitutes a �rst approach to check for the explanatory power of our macro factors over yield

curve estimation.

4.3.1 The Yields-Only Model

Table 6 shows the estimation results for the Yields-Only Model. The estimation results are pre-

sented by ordering the latent factors by decreasing autocorrelation. The model has one very persis-

tent factor, one less persistent but still strongly, and one last factor that is strongly mean-reverting.

This is consistent with previous multi-factor estimates for other countries such as the USA or Ger-

many.

These unobservable factors are known in the literature such as �level�, �slope�and �curvature�,

respectively because of the e¤ects of these factors on the yield curve (Litterman and Cheinkman,

1991). The level factor is related to the long end of the yield curve and therefore may be associated

with y120t as empirical proxy. In turn, the slope factor is associated with the behavior of the short

end of the curve and his empirical proxy can be de�ned as y120t � y3t . Finally, the empirical proxy
for the curvature factor, related to the mid end, can be represented as y120t � 2y24t + y3t since is

related to the middle end of the yield curve.

Then, we assess how closely the Unobservable Components (UC) obtained in the model are

related to the empirical factors through the analysis of the correlation between them. We �nd that

the �rst latent variable, UC 1, has an 83% correlation with the �level�transformation of the yield

curve while the correlation between UC 2 and the �slope�transformation is 85%. Finally, the UC

3 has a 94% correlation with the �curvature� transformation. Thus, we can infer that the model

represents the di¤erent sections of the Peruvian yield curve very well.

Furthermore, the estimated vector �0 has one signi�cant negative parameter that corresponds

to the most highly autocorrelated factor. Negative parameters in �0 imply that long yields have to

be on average higher than short yields, because bond prices are estimated under the risk neutral

measure. Therefore, the unconditional mean of the short rate under the risk-neutral measure results
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higher than under the data-generating measure. According to this result, the average Peruvian yield

curve is upward sloping. Furthermore, the model also shows that time-variation in risk premia,

associated with the elements of �1 primarily depend on the the �level�and the �curvature�of the

yield curve, the �rst and third unobservable factor, respectively.

4.3.2 The Model with Yields and Macro Variables

We present the estimation results of the Macro Model in Table 7. We can observe that the auto-

correlation of the UC 1 is almost the same as the one found in the Yields-Only model. Thus, the

�rst latent factor has a similar persistent e¤ect across the models considered. However, the same

does not occur with UC 2 and UC 3 variables since they vary more across the models. On the other

hand, the risk premia estimate in Table 7 �0 is signi�cant, which means that long term yields are

on average higher than short yields.

Furthermore, we �nd that the observable macro factors also a¤ects time-variation in risk pre-

mia since market price of risk coe¢ cients of these observable variables are highly signi�cant. In

particular, the elements corresponding to in�ation, �1;11 and real activity �1;22 are both negative

in the Macro model (where �1;ij refers to the �1 element of the ith row and the jth column). This

means that a positive shock at �t+1�on state variables leads to a positive risk premium, and con-

sequently higher returns for long end yields, which is consistent with the economy theory. While

the in�ation expectations increase, investors demand more compensation for the risk of holding

longer-term instruments. Similarly, expectations of high economic growth lead to higher yields

because it implies an increase in in�ation expectations. Finally, the in�ation-real activity cross

terms, �1;12 and �1;12, are also signi�cant but positive. This can be explained for the undetermined

e¤ect of positive shocks of economic growth expectations and in�ation expectations on investor�s

decisions

4.3.3 Impulse Response Functions

The e¤ect of each factor on the yield curve is determined by the weights of Bn from equation (17).

These e¤ects represent the initial response of yields to movements in the various factors. Thus, the

weights of Bn are plotted as a function of yield maturity for the Yields Only model in Figure 4 and

for the Macro Model in Figure 5. The Bn coe¢ cients are related to movements of one standard

deviation of the factors and are presented in an annualized way.

In the Yields-Only model, the �level�factor can be linked to the weight on the most persistent

factor (UC 1) since it is almost horizontal and a¤ects yields of all maturities the same way. The

�slope�factor could be related to the coe¢ cient of the second factor (UC 2) because it is upward
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sloping and it mainly a¤ects the short end of the yield curve relative to the long end. Finally, the

coe¢ cient on the least persistent factor (UC 3) can correspond to the �curvature�factor since it is

hump-shaped and thus has a twisting e¤ect on the yield curve.

In the Macro model, the coe¢ cients look very similar. The coe¢ cients from UC 1 through

UC 3 represent �level�, �slope� and �curvature� factors. On the other hand, the Bn coe¢ cients

corresponding to in�ation and real activity, are represented as stars and circles, respectively. We

�nd that the e¤ects of in�ation and real activity mostly a¤ect short and middle yields and less

so long yields. In particular, we observe that the magnitude of the in�ation and real activity

weights are higher than the level factor weights at short and middle maturities. Thus, macro

factors would have an explanatory power for yield curve dynamics. These results are in harmony

with the estimates obtained of the Taylor rule in Table 4. The in�ation and real activity have a

signi�cant e¤ect on the short rate, so we get a strong initial e¤ect on yields. In particular, the real

activity factor seems to have a stronger initial e¤ect than the in�ation factor at short yields while

this di¤erence disappear at the middle and long end of the yield curve.

With respect to the time variation of prices of risk, it should be noted that these prices control

the way that yields at the long end respond relative to the short rate. In the Macro model, as we

mentioned before, the time varying prices of risk of macro factors are both negative. The more

negative terms the more positively yields of the long end react to positive factor shocks. Therefore,

the initial e¤ect of in�ation is larger than real activity across the yield curve.

Impulse Response functions (IRFs), which show how a shock on a macro factor a¤ects the yields,

are also derived. Figure 6 shows the IRFs of 3 month, 2 and 10 year yields from the Macro model

and from an unrestricted VAR (1), with macro factors and 5 yields. A one-standard deviation shock

to the in�ation factor seems to have stronger and more persistent e¤ects compared to innovations in

the real activity factor across all maturities in both models. This can be explained by the fact that

the loading on real activity (0.029) in the Taylor rule is smaller than the in�ation (0.054). IRFs

of macro shocks for the unrestricted VAR are hump shaped while the IRFs derived from Macro

model do not follow the same pattern. Furthermore, the magnitudes of IRFs di¤er across models.

Turning to the �rst column of Figure 6, we can observe that the hump in the unrestricted

responses to in�ation takes place after an average of 5 months, while the hump in the responses

of real activity shocks is greater and occurs later, after 9 months approximately. In particular, a

one-standard deviation shock to in�ation increases the 3-month yield about 10 basis points (bps)

at the beginning. The response peaks after about 6 months at 15 bps and then dies out slowly.

The responses of longer yields are smaller but follow the same pattern. The initial response of the

2-year yield (10-year yield) is only 8 bps (7.5 bps). The response increases to around 12 bps (9 bps)
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after 5 months (4 months), and then slowly levels o¤. On the other hand, the response of yields

to real activity shocks is smaller at the beginning than the response to in�ation shocks but with a

bigger hump occurring after 9 months or more.

The IRFs for the Macro Model are plotted in the second column of Figure 6. The IRFs derived

do not present a hump-shaped, but are much larger and persistent. For example, one standard-

deviation shock to in�ation factor (real activity factor) generates an initial response of the 3-month

yield of 65 bps (35 bps), which is approximately seven times (ten times) the e¤ect of the IRFs from

the unrestricted VAR (1). For the 2 year yield, the initial response to in�ation (real activity factor)

is about 60 bps (32 bps), compared to a move of 8 bps (7.5 bps) founded before. Finally, for the

long-term yield the initial responses to in�ation factor and real activity factor are also greater and

persistent (42 bps and 23 bps, respectively).

These results are in line with the �ndings from Halberstadt and Stapf (2012) derived for German

data and Ang and Piazzesi (2003) derived for US data. Reactions to innovations in the price factor

and the real activity shocks declined very slowly across all maturities. This is due primarily to the

estimates of the time-varying price of risk. The diagonal elements of �1 in the Macro model are

negative. As we mentioned before, negative prices of risk have higher positive impacts from the

macro factors to long yields.

4.3.4 Variance Decompositions

We construct variance decompositions to determine the relative contributions of the macro factors

and latent factors to forecast variances. These show the proportion of the forecast variance at-

tributable to each observable and unobservable factor. Table 8 lists variance decompositions for

the 3-month, 2-year and 10-year yield at di¤erent forecast horizons derived from the Yields-Only

model and the Macro model while Table 9 provides a summary of the proportion of the forecast

variance explained by macro factors.

The results show that the proportion of unconditional variance explained by macro factors

decrease with the maturity of the yields. The 3-month yield presents the largest e¤ect since macro

factors explained the 69% of the unconditional variance for the Macro model. This e¤ect decreases

for the 2-year yield (59%) and results very much smaller for the 10-year yield (17%). Thus, after

the removal of the e¤ects of in�ation and real activity, the latent factors explain the residuals in

the Taylor rule considered for the Macro Model. In general, the proportion of the forecast variance

explained by the latent factors increases as the yield maturity increases. As we can deduct from

Table 9, the latent factors account for 83% of the unconditional variance for the 10-year yield in

the Macro model. This result is supported on the dominance of persistent unobserved factors (the
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near unit-root factor), which lead to a low variance decomposition of long-term yield attributable

to macro factors. Since the highest autocorrelation corresponds to the level factor, its in�uence is

highest for long maturities.

Turning now to the Macro model, we observe that the explanatory power of the in�ation is

greater than the real activity across the maturities and for all the horizons. The macro factors

explain a signi�cant proportion (up to 50%) of the unconditional at long-horizons variances for

the short and medium segments of the yield curve. With the exception of the 3-month yield, the

proportion of the variance explained by in�ation generally decreases with the forecast interval h.

In contrast, the explanatory power of real activity generally increases with the forecast interval h:

at short horizons, real activity has a little explanatory power for the forecast variance across the

yield curve; however as the horizon raises, the proportion due to real activity shocks raises to 31%

of the 3-month and 27% of the 2-year yield. Nevertheless, at long end yields, the higher persistence

of the latent factor dominates and the e¤ect of macro factors decreases (17% of the unconditional

variance for the 10-year yield).

In particular, the most persistent latent factor is the Unobs 1 variable and corresponds to the

level e¤ect (see Table 8). For the Yields-Only model, this factor explains a signi�cant part of the

variance at the long end of the yield curve at all horizons and at the short and middle ranges of the

yield curve at long horizons. However, its in�uence decreases at the short end of the yield curve,

where the slope factor explains much of the variance. With regard to the Macro model, the level

factor e¤ect is signi�cantly reduced for the 3-month yield, where the macro factors -especially the

in�ation factor- play a major role due to the e¤ects they have in the Taylor rule. For the 2-year

yield, macro factors still dominate the variance decomposition, but in a smaller way. Finally, for the

10-year yield, Unobs 1 has the greatest in�uence, explaining the 80% of the unconditional variance

for the Macro model. Thus, as maturity increases, the explanatory power of macro factors becomes

smaller.

5 Conclusions

We use and estimate an A¢ ne Term Structure model that characterizes the dynamics of Peru-

vian yield curve using monthly information for the period 2005 to 2015. The model follows the

methodology proposed by Ang and Piazzesi (2003).

In particular, we estimate a model to understand the joint dynamics of macro variables and

bond prices in a multifactor model of the term structure. Through Principal Component Analysis,

we condensed our macro variables from a set of time series in two factors: an in�ation factor and a

real activity factor. Risk premia are modeled as time varying and depend on both observable and
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unobservable factors. The VAR model is estimated considering no-arbitrage assumptions.

We �nd evidence that our macro factors help to improve the �t of the model and explain a sig-

ni�cant amount of variation in bond yields. Positive shocks to macro factors raises the yields, while

the response to in�ation shocks are greater than the real activity across all maturities. Variance

decompositions demonstrate that macro factors mainly explain movements in the short and middle

segments of the yield curve (up to 50%) while unobservable components are the main drivers of

the majority of the movements at the long end of the yield curve (up to 80%). Comparing to the

Yields-Only model, the �level�factor e¤ect prevails when macro factors are incorporated. Finally,

we �nd that no-arbitrage restrictions with the incorporation of macro factors improve forecasts.
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Table 1: Summary statistics of data: 2005:11 to 2015:12

Central Moments Autocorrelations

Mean Median Std Dev. Skew Kurt Lag 1 Lag 2 Lag 3

3 mth 3.7546 3.9061 1.3870 -0.2589 2.9928 0.9410 0.8512 0.7521

1 year 3.9700 3.9359 1.4320 0.0427 3.0676 0.9530 0.8720 0.7720

2 years 4.3276 4.0174 1.3820 0.2610 3.2779 0.9454 0.8671 0.7679

9 years 6.2112 6.0402 0.9991 0.4050 3.7072 0.9120 0.8100 0.7130

10 years 6.3630 6.2403 0.9724 0.3367 3.6864 0.9070 0.8010 0.7040

CPI 2.9844 2.9815 1.4435 0.2834 3.0064 0.9532 0.8854 0.8059

CPI-FE 3.7924 3.7686 2.2706 0.1901 2.8609 0.9432 0.8625 0.7767

CPI-M 2.0724 2.5712 4.2486 -0.5107 4.0585 0.9710 0.9030 0.8110

PRIM-GDP 2.9132 3.0452 5.4527 -0.0022 3.3372 0.3613 0.2701 0.3175

NO PRIM-GDP 6.5881 6.7354 3.4917 -0.0651 2.3196 0.8586 0.8473 0.7697

EMP 4.3133 4.1623 2.6659 0.1638 1.8891 0.9723 0.9375 0.8990

The 3 month, 2 and 10 year yields are annual zero coupon bond yields from Price Vector of SBS The

in�ation measures CPI, CPI - FE and CPI-M correspond to Core In�ation, Non Core In�ation and Price

Index of Imports, respectively. The in�ation measure at time t is calculated using log(Pt=Pt�12) where Pt

is the price index. The real activity measures NO PRIM - GDP, PRIM-GDP and EMP refer to the growth

rate of the Index of Non Primary GDP, the growth rate of the Index of Primary GDP and the growth rate

of Urban Employement Index for �rms with 10 or more workers. The growth rate of the Non Primary

GDP, the Primary GDP and the Employement Index are calculated using log (It=It�12) where It is the

employment or production index.
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Table 2. Principal component Analysis. 2005:11 to 2015:12

Principal Components: In�ation

1st 2nd 3rd

CPI 0.6324 -0.2955 -0.7161

CPI-FE 0.6244 -0.3527 0.6969

CPI-M 0.4585 0.8878 0.0386

% variance

explained 0.7674 0.9856 1.0000

Principal Components: Real activity

1st 2nd 3rd

PRIM-GDP 0.6701 -0.2366 0.7036

NO PRIM-GDP 0.6751 -0.1998 -0.7102

EMP 0.3085 0.9509 0.0258

% variance

explained 0.6122 0.9163 1.0000
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Table 3. Selected correlations. 2005:11 to 2015:12

CPI CPI-FE CPI-M

In�ation 0.9222 0.9827 0.7007

PRIM-GDP NO PRIM-GDP EMP

Real Activity 0.4181 0.9081 0.9149

In�ation Real Activity 3 mth 2 year

Real Activity 0.3479

3 mth 0.5588 0.4159

2 year 0.4519 0.5314 0.9230

10 year 0.2557 0.2808 0.5776 0.7477
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Table 4. The dependence of the short rate on macro variables. 2005:11 to 2015:12.

Coe¤. Constant In�ation Real Activity Adj. R2

Panel A: y3t on constant, in�ation and real activity

t 0.3129a 0.0462a 0.0478a 0.3341

(0.0086) (0.0086) (0.0086)

Panel B: y3t on constant, 12 lags of in�ation and real activity

t 0.2911a 0.0324 -0.0389 0.5949

(0.0086) (0.0442) (0.0279)

t� 1 0.0205 -0.0131

(0.0686) (0.0296)

t� 2 0.0141 0.0181

(0.069) (0.0348)

t� 3 -0.0271 0.0356

(0.0697) (0.0343)

t� 4 0.0317 -0.0038

(0.0694) (0.0344)

t� 5 -0.0334 -0.0002

(0.0702) (0.0343)

t� 6 0.0273 0.0003

(0.0681) (0.0346)

t� 7 -0.0216 0.0124

(0.066) (0.032)

t� 8 -0.0314 -0.0131

(0.0647) (0.0321)

t� 9 0.0032 -0.0013

(0.0641) (0.0321)

t� 10 -0.0152 0.0192

(0.0645) (0.0288)

t� 11 0.003 0.0413

(0.0427) (0.0271)

Panel A presents the regression results of the 3 month yield y3t on a constant, the in�ation factor and the

real activity factor. Panel B presents the regress of y3t on a constant, in�ation, real activity and 11 lags of

in�ation and real activity. The OLS standard errors are reported in parenthesis. Standard errors signi�cant

at the 10%, 5% and 1% level are denoted by (a); (b); (c), respectively.
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Table 5. Forecast Comparisons. RMSE (2005:11 - 2015:12)

Yields Only Macro Model

3 months 0.16 0.10

1 year 0.13 0.13

2 years 0.12 0.02

9 years 0.21 0.06

10 years 0.25 0.01
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Table 6. Yields-only model estimates. 2005:11 to 2015:12.

Companion from �

0.9997 0.0000 0.0000

(0.0000)

0.0000 0.9707 0.0000

(0.0012)

0.0000 -0.0029 0.8457

(0.0023) ( 0.0082)

Short rate parameters 
1 (x100)

UC 1 UC 2 UC 3

0.0258 -0.0298 0.0158

(0.0000) (0.0000) (0.0000)

Prices of risk �0 and �1 �1 matrix

�0 UC 1 UC 2 UC 3

UC 1 -0.2431 -0.0008 0.0000 0.0000

(0.0274) (0.0000)

UC 2 0.0000 -0.0002 0.0000 -0.0191

(0.0000) (0.0024)

UC 3 0.0000 0.0002 0.0000 0.0153

(0.0001) (0.0023)

Loglike -2,297.706

The table reports parameter estimates and standard errors in parenthesis for the 3-factor Yields-Only

Model: Xt = �Xt�1 + "t; con "t � N(0; I);� lower triangular and the short rate equation given
by.rt = 
0 + 
1Xt. All factor Xt = f

u
t are unobservable. The coe¢ cient 
0 is set to the sample

unconditional mean of the short rate. Market prices of risk �t = �0 + �1Xt are restricted to be block

diagonal.
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Tabla 7. Macro Model estimates. 2005:11 to 2015:12

Companion from �

0.9937 0.0000 0.0000

( 0.0001)

0.0000 0.9707 0.0000

( 0.0000)

0.0000 0.0043 0.8689

( 0.0002) ( 0.0000)

Short rate parameters 
1 (x100)

UC 1 UC 2 UC 3

0.0145 -0.05834 0.09965

(0.0000) (0.0000) (0.0000)

Prices of risk �0 and �1 �1 matrix

�0 In�ation Real activity UC 1 UC 2 UC 3

In�ation 0.0000 -0.8803 0.2548 0.0000 0.0000 0.0000

( 0.0000) (0.0000)

Real activity 0.0000 0.5959 -0.1103 0.0000 0.0000 0.0000

( 0.0000) (0.0000)

UC 1 -0.0775 0.0000 0.0000 -0.0023 0.0000 0.0000

(0.0029) (0.0003)

UC 2 0.0000 0.0000 0.0000 0.0069 0.0000 -0.0239

(0.0001) (0.0000)

UC 3 0.0000 0.0000 0.0000 -0.0010 0.0000 -0.0016

(0.0010) (0.0006)

Loglike -3,723.31

The table reports parameter estimates and standard errors in parenthesis for the Macro Model with the short rate equation

speci�ed with 1 lags of in�ation and current real activity. The short rate equation is given by rt = 
0 + 
1Xt; where 

0
1

only picks up current in�ation, current real activity and the latent factors. The dynamics of the in�ation and real activity are

given by VAR(1). The model is Xt = �Xt�1 + "t; with "t � N(0; I); Xt contains 1 lag of in�ation and real activity
and three latent variables, which are independent at all lags to the macro variables. The coe¢ cient 
0 is set to the sample

unconditional mean of the short rate. Market prices of risk �t = �0 + �1Xt are restricted to be block diagonal.
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Table 8. Variance Decompositions

Macro factors Latent factors

h In�ation Real activity UC 1 UC 2 UC 3

3 month yield 3 0.43 0.50 0.06

Yields-Only 12 0.58 0.40 0.02

60 0.84 0.16 0.01

1 0.99 0.01 0.00

Macro 3 0.32 0.09 0.00 0.49 0.10

12 0.34 0.12 0.00 0.51 0.03

60 0.36 0.22 0.00 0.40 0.01

1 0.38 0.31 0.03 0.27 0.01

2 year yield 3 0.52 0.47 0.01

Yields-Only 12 0.65 0.35 0.00

60 0.87 0.13 0.00

1 0.99 0.01 0.00

Macro 3 0.38 0.11 0.02 0.49 0.01

12 0.37 0.14 0.02 0.47 0.00

60 0.38 0.23 0.04 0.35 0.00

1 0.32 0.27 0.22 0.19 0.00

10 year yield 3 0.60 0.40 0.00

Yields-Only 12 0.72 0.28 0.00

60 0.90 0.10 0.00

1 0.99 0.01 0.00

Macro 3 0.41 0.12 0.21 0.26 0.00

12 0.37 0.13 0.26 0.23 0.00

60 0.29 0.17 0.40 0.14 0.00

1 0.10 0.08 0.80 0.03 0.00

Contribution of the factor i to the h-step ahead forecast variance of the 3 month yield (short end), 2 year

yield (middle) and 10 year yield (long end) for the Macro Model.
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Table 9. Proportion of variance explained by macro factors

Forecast horizon h

3 mth 2 year 10 year 1

Short end 41% 46% 58% 69%

Middle 49% 51% 61% 59%

Long end 52% 51% 46% 17%

Contribution of the macro factors to the h-step ahead forecast variance of the 3 month yield (short end), 2

year yield (middle) and 10 year yield (long end) for the Macro Model. These are the sum of the variance

decompositions from the macro factors in Table 8.
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Figure 1. Monthly Zero Coupon Bond Yields
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Figure 3. Impulse Response Functions (IRFs) from the VAR (1) on macro factors. The VAR(1) is �tted to the in�ation and
real activity macro factors, where in�ation is ordered �rst.
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Figure 6. Impulse Response Functions. IRFs for 3 month (top row), 24 month (middle row) and 120 month (bottom row)

yields. (The �rst column presents IRFs from an unrestricted VAR(1) �tted to macro variables and yields; the right column

presents IRFs from the Macro model. The IRFs from in�ation (real activity) are drawn as stars (circles). All IRFs are from a

one standard deviation shock.)
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