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Abstract 

The handling of external operational loss data by individual banks is one of the long-

standing problems in risk management theory and practice. The extant literature has not 

provided a method to identify the best way to combine internal and external operational loss 

data to calculate operational risk capital. Hence, to improve the knowledge and understanding 

of internal-external data combination in operational risk management, this study applied a 

simulation-based evaluation of well-known data combination techniques such as the scaling, 

the Bayesian, and the covariate-base techniques. 

This research considered operational losses arising from internal fraud in retail 

banking within a group of international banks that share data through an operational loss data 

exchange. One of the key elements of the simulation-based statistical evaluation was the 

development of a dynamic internal fraud model for operational losses in retail banking. The 

internal fraud model incorporated human factors such as the number of employees per branch 

and the ethical quality of workers. It also included the extent of risk controls set by bank 

managers. 

There were two sets of findings. First, according to the simulation-based evaluation, 

the scaling technique was by far the less useful for estimating the appropriate operational risk 

capital. The Bayesian and the covariate-based techniques performed best. The Bayesian 

technique was the best for higher percentiles while the covariate-based technique was the best 

at not so extreme quantiles. The choice of technique therefore depends on the risk appetite of 

the financial institution. 

The second set of findings relates to the model validation with hard data. Losses 

generated by the model in the banks across the world were associated with GDP growth and 

the corruption perception of the country where banks were located. In general, internal fraud 

losses are pro-cyclical and the corruption perception in a country positively affects the 
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occurrence of internal fraud losses. When a country is perceived as more corrupt, retail 

banking in that country will feature more severe internal fraud losses. To the best of 

knowledge, it is the first time in the operational risk literature that this type of result is 

reported. 
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Chapter 1: Introduction 

The aim of this study was to contribute to the solution of one of the key problems in 

quantitative risk management. The problem is the lack of a method to identify the best way to 

integrate internal and external loss data for operational risk management purposes in financial 

institutions. Thus far, academic risk management literature has not addressed this specific but 

important problem. In general, the handling of external data by individual financial 

institutions is one of the less developed tasks in risk management, and this gap has hindered 

further advances in the practical endeavor of handling operational risks. 

The fact that banks have made insufficient progress in handling external data is 

evident, for example, in the review of principles of sound operational risk management made 

by the Basel Committee on Banking Supervision (BCBS, 2014). According to the review, 

only 26 out of 60 important banks had fully complied with the principle of using internal and 

external loss data.  In addition, a global risk management survey of 71 financial institutions in 

2014 showed that only a third of respondents felt that their financial institutions’ external loss 

event data were extremely or very well developed (Deloitte, 2015). 

In order to improve the knowledge and understanding of internal-external data 

integration in operational risk management, a simulation study is applied to determine the 

best data integration technique among well-known integration techniques proposed in the 

literature. A “simulation study” is a research method widely used in statistics. The theoretical 

basis for the simulation study is outlined in Greene (2012, Chapter 15) and Voss (2013, 

Chapter 3). No other rigorous attempts to compare capital risk-estimation techniques have 

been made. Only two studies in the operational risk literature resemble what is attempted in 

this study. Teker (2005) and Jiménez, Feria, and Martin (2009) compared three broad 

operational risk capital estimation methods: The basic indicator approach (BIA), the 

standardized method (SM), and a specific advanced method approach (AMA). The 



2 

conclusion in both studies was that the application of the AMA delivers much lower 

operational risk capital levels than those obtained by applying BIA or SM. In the current 

study, a simulation study was implemented to compare internal-external data integration 

techniques within the AMA framework. 

The evaluation method in the current study considered operational losses arising 

specifically from internal fraud in retail banking within a group of international banks that 

share data through an operational loss data exchange. One of the key elements of the 

simulation-based statistical evaluation is the development of an operational loss model for 

internal fraud losses in retail banking. So far, the operational risk management literature has 

not provided a quantitative model for describing internal fraud in the financial sector; this 

study is the first to contribute in this direction. The internal fraud model borrows insights 

from a number of disciplines such as corporate governance, behavioral economics, human 

resources, and operational risk. Some of the ideas in the field of people risk management 

(Blacker & McConnell, 2015) have also been incorporated. 

Operational risk, the study topic, has increased in importance since 2004 when the 

Basel Committee of Banking and Supervision (BCBS) published the Basel II Accord. One of 

the key issues of the Accord is that every bank must hold capital to afford operational risks. 

Operational risks are the risks of losses due to errors or failures related to personnel, internal 

processes, systems, or external events (BCBS, 2006). To calculate the amount of operational 

risk capital, Basel II allows the use of an AMA, but the institution must have the approval of 

a local regulator to implement an AMA. The approach refers to a variety of quantitative 

methods that reflect the specific characteristics of a bank. For that purpose, a bank can build 

its own empirical model to quantify its operational risk capital. A key feature of an AMA is 

that it relies on both internal and relevant external data, in other words, data from within the 

institution and from other institutions and even countries. 
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Many banks have adopted the loss distribution approach (LDA) as an AMA to build 

their own operational risk capital models. The LDA is an actuarial method that models the 

frequency and severity of operational losses separately and combines them to estimate a 

probability density function (PDF) for the aggregate losses for a given period.  The PDF 

provides valuable information to estimate the operational risk capital; in particular, it is used 

to extract a specific extreme quantile of aggregate losses (value at risk). In turn, this extreme 

quantile is used to set the operational risk capital to comply with Basel II. 

Within the LDA framework, various possible ways exist to combine and use internal 

as well as external data. In this study, the intention is to analyze three techniques: Scaling, the 

Bayesian technique, and a Covariate-based LDA. Specifically, the aim of the research is to 

devise an internal fraud model to be used as an operational loss simulator and then to evaluate 

the aforementioned data integration techniques in terms of derived operational risk capital. 

The assessment is relevant because the capital amounts held by financial institutions in order 

to afford operational risk losses could vary significantly according to the chosen technique 

and may distort competition in the financial sector. 

Operational losses due to internal fraud in the retail-banking segment of financial 

institutions that belong to the Operational Riskdata eXchange Association (ORX) are 

considered. The ORX is a global data sharing association whose members comprise the 

biggest banks in the world. The data gathered covers 52 member banks between 2006 and 

2010 that engaged in retail banking operations. The simulation-based evaluation of the data 

integration techniques requires the setup of a data generating process, namely, a model, for 

the outbreak of operational losses due to internal fraud events. 

In this chapter, the background to the problem, the problem motivating the research, 

the purpose of study, the significance of the problem, the nature of the study, the research 

http://www.orx.org/
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questions and hypothesis, the theoretical framework, the definition of terms, the assumptions, 

and the limitations and delimitations are presented. 

Background of the Problem 

In contrast to the quantification of other risks that affect financial institutions like 

credit or market risk, operational risk measurement lacks sufficient data. Data for market or 

credit risk are readily available and abundant. Asset price data are available on many private 

or public electronic platforms, and financial institutions usually maintain databases on credit 

defaults to manage their credit risk. In sharp contrast, operational losses are diverse, 

heterogeneous, and infrequently documented, so no record of an event may exist for many 

years within a financial institution; however, there are significant latent events. The 

occurrence of latent events may wreak havoc in a financial institution if the firm is not 

sufficiently prepared or insured. In fact, low frequency, high severity operational losses have 

caused many bankruptcies around the world (Chernobai, Rachev, & Fabozzi, 2007). 

Operational risk is not a small risk. For example, Ames, Schuermann, and Scott 

(2015) showed that economic capital requirements for operational risk increased, in terms of 

share of total capital, from an average of 9% to 13% between 2008 and 2012. In addition, The 

Banker Database (2015) reports that operational risk capital represented 12% of total risk 

capital among the five biggest UK banks in 2014. For big European, non-UK banks, 

Carmassi and Micossi (2012) reported that operational risk capital ranges between 10% and 

30%. 

Deloitte’s 2014 global risk management survey assessed the financial industry’s risk 

management practices. The survey included responses from 71 financial service institutions 

around the world.  According to the survey, all financial institutions calculate economic 

capital to assess their risk. From them, 72% calculate market risk capital, 68% calculate 

credit risk capital, and 62% calculate operational risk capital (Deloitte, 2015). 
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Financial institutions that are using the AMA have been urged to use five years of 

data (BCBS, 2011a). The amount of data that can be collected by one institution, however, is 

insufficient to account for the true nature of operational risk. Some operational risks may not 

have enough loss data within a five-year window precisely because of the low-probability, 

high-impact nature of operational risks. To estimate operational risk capital with the AMA 

properly, data about this type of loss are required. 

To circumvent the scarcity of data, as Chapter 2 describes, many database initiatives 

have been initiated since the onset of this century. These initiatives have been devoted to 

gathering operational loss data so that banks can anonymously share the data. The collection 

of this data is an ongoing but promising process. As the pace of improvements in data storage 

and management as well as advances in quantitative techniques continue, these shared 

databases will become more important. 

Many financial institutions worldwide have already started applying the AMA using 

these datasets despite the many unsolved methodological challenges (Chaudhury, 2010; 

Shevchenko, 2011). As suggested by Shevchenko (2011), “The development of a consistent 

mathematical framework for operational risk treatment, addressing all aspects required in 

practical implementation is a challenging task” (p. vii). One of the unresolved issues is the 

treatment of internal and external datasets. In this context, a key question arises: What is the 

best technique that a financial institution can use to combine or integrate both internal and 

external data to apply the AMA? 

In the operational risk literature, a number of techniques to integrate internal and 

external data in a financial institution have been proposed, but the literature is silent about 

which of these techniques performs best. Knowing which technique performs best is 

important because the estimate relates directly to the amount of capital a financial institution 

must hold to face operational risk. Excessive operational risk capital is costly to a financial 



6 

institution and harms its efficiency. Too little capital endangers the firm’s solvency if a low 

frequency, high-impact event occurs. This raises another important question: How is too 

little, too much, or just the right level of operational risk capital determined? 

Failure to answer these questions, namely, what is the best data integration technique, 

and how to determine the right level of operational risk capital, may hinder further progress 

in the implementation of the principles of sound operational risk management with respect to 

the treatment of external data (BCBS, 2014). The aim of this study is to shed light on the 

means to answer the above questions. 

Other unresolved issues in the AMA literature exist that are not a focus of this study.  

For example, the AMA relies on historical data, and therefore, it is backward looking.  The 

data do not reflect future risks like pending mergers, system integration, changing 

regulations, or the introduction of new products.  Aspects of the operational risk problem as 

depicted, for example, by Haubenstock and Harding (2003), are not the focus of this study. 

Statement of the Problem 

One of the AMA Basel II requirements is that any operational loss measurement 

system must include internal and relevant external data. In practice, many possible techniques 

to combine internal and external operational loss data to a financial institution are available. 

The current study includes the evaluation of three prominent data integration techniques: 

Scaling, the Bayesian technique, and a Covariate-based LDA. Each technique could lead to 

different quantitative results in terms of the operational risk capital required for a banking 

institution. Practical implementation of these techniques in financial institutions must 

consider that the respective costs can alter the efficiency and degree of competition in the 

financial sector. It is critical for financial institutions that apply AMA or are moving toward 

AMA for operational risk capital calculations to know whether one technique performs better 

than others do and under what circumstances. 



7 

In essence, the idea is to compare operational risk capital estimations based on three 

techniques documented in the literature. Each technique maps the operational loss data into 

specific numerical estimates (operational risk capital levels). The task is to compare these 

numerical estimates. Therefore, a suitable methodological approach for this problem is a 

simulation study, which is a well-known statistical procedure that allows identifying features 

of either estimators or methods. In general, a simulation study allows learning the properties 

of objects that are functions of the data. As Burton, Altman, Royston, and Holder (2006) put 

it: “Simulation studies use computer intensive procedures to assess the performance of a 

variety of statistical methods in relation to a known truth.  Such evaluation cannot be 

achieved with studies of real data alone” (p. 4279). Simulations are widely used in theoretical 

and applied statistics in a number of disciplines such as medicine, biology, psychology, 

physics, management, and economics. The simulation methodology is outlined in Greene 

(2012, Chapter 15) and Voss (2013, Chapter 3). 

An essential feature of a simulation is a data generating process or model based on a 

given theory. In the case of this study, an operational risk model capable of generating 

operational losses that bear the same features as real observed losses is applied. This model 

construction is a key contribution of the study. 

No other study in the operational risk literature has addressed the problem of 

evaluating data integration techniques in a rigorous way. Only two studies resemble the 

current study. Teker (2005) and Jiménez et al. (2009) compared three broad operational risk 

capital estimation methods but did not perform a simulation and therefore did not make 

inferential assessments. In this study, the simulation allows for making comparisons of 

internal-external data integration techniques. 
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Purpose of the Study 

The aim of this quantitative research is to determine which of three techniques, 

namely, Scaling, the Bayesian technique, and a Covariate-based LDA, to integrate internal 

and external operational loss data performs best in reflecting the true operational loss 

distribution of a financial institution as required by banking regulators around the world. 

Performance is measured by the comparison of estimates of operational risk capital 

associated with each technique. The estimation of operational risk capital is based on a 

specific extreme quantile of the cumulative density function of operational losses in a given 

institution estimated through an LDA associated with each technique. A dynamic internal 

fraud model for operational losses simulates the internal and external loss data necessary to 

perform these estimations. The purpose of the dynamic model is to capture the nature of 

internal fraud and the corresponding operational controls that would mitigate or avoid the 

monetary losses caused by insider fraud to the retail segment of banks. 

The key variable in the model is the level of operational losses that take place in a 

number of financial institutions that share operational loss data. Operational losses, in turn, 

depend on factors such as the level of operational risk controls, the propensity of workers to 

commit fraud, and other observable key risk indicators (e.g., the level of assets and the 

number of employees in each bank). In addition, operational losses are affected by 

macroeconomic factors such as country of location or the level of economic activity in the 

country of location. The financial institutions under study refer to banks that belonged to the 

ORX during the period 2005-2010. The banks that belong to this association are located 

mostly in Europe, USA, Canada, and Australia. 

Significance of the Problem 

Since the regulatory operational risk capital requirement first appeared in June 2004, 

many techniques and procedures have been developed to comply with the AMA quantitative 
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requisite to integrate internal and external data. The possibility of evaluating alternative 

integration techniques has been limited due to the lack of unique international data collection 

standard (BCBS, 2011). In the years that followed the publication of Operational Risk 

Supervisory Guidelines for the Advanced Measurement Approaches (BCBS, 2011), banks 

have been required to collect data with homogeneous criteria for a minimum of five years; it 

is likely that banks will revise their historic data to satisfy the new standard. A recent review 

of the principles for sound management of operational risk (BCBS, 2014) showed that banks 

have made good progress in the use of their own internal data but have not made much 

progress in the use of external data. 

This research provides an opportunity for a timely evaluation of the different data 

integration techniques with the aim of providing guidance for practitioners in the industry to 

face the task of external-internal data integration for operational risk management purposes. 

The study is important because the results may help clarify the benefits and costs of three 

common data integration techniques for operational risk management and operational risk 

capital. 

The results of this research may be important for risk managers of financial 

institutions as well as regulators. Both financial institutions and regulators are interested in 

the best possible quantification of risk; if the three data integration techniques affect the 

quantification of operational risk, it is important to know the most appropriate technique of 

the three in order to achieve efficiency. Failure to set a correct amount of operational risk 

capital is unlikely to be efficient. Financial institutions would fail to achieve the best income 

from their asset portfolio if too much capital has been allocated to operational risk. 

Conversely, they run the risk of huge losses that may jeopardize their solvency if too little 

capital is allocated to operational risk. 
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In terms of method, this study was also unique in the sense that it is the first time a 

comparison of different internal-external data integration technique has been performed using 

a rigorous, inference-based statistical procedure. As with any simulation study approach, the 

study required determining a data generating process. In the study, this process was achieved 

by means of a dynamic model for internal fraud losses. Internal fraud risk management is a 

field that has not been a focus of study in business management despite the strong human 

resource component of the risk. Therefore, the model sought to bridge the gap between the 

quantitative operational risk management literature and the business management literature 

that specializes in human resource management. 

Overall, the contribution of the study was twofold. First, the study provided a 

framework to improve the handling of external data by financial institutions. Incremental use 

of external data in financial institutions has been hindered by the lack of appropriate 

guidance. This study therefore contributed to the solution to one of the fundamental problems 

in applied operational risk management. Second, the study contributed to the understanding 

of internal fraud risk in retail banking by laying out a model for internal fraud outbreaks. This 

specific aspect of operational risk has been touched only scantly in the academic literature. 

Nature of the Study 

In the study, a simulation-based evaluation to compare different data combination 

techniques was performed.  Most research in this area of operational risk management is 

devoted to designing techniques for data combination. Examples of research on data 

combination techniques include Dahen and Dione (2010), Hassani and Renaudin (2013), 

Lambrigger, Shevchenko, and Wüthrich (2008) and Wei (2007). Whether one particular 

technique performs better than another has been overlooked in the literature. 

The research design applied simulation steps grounded on three parts. First, a dynamic 

model for internal fraud losses within a set of financial institutions that share their operational 
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loss data from the ORX data exchange as well as other key risk indicators was calibrated. 

Second, the dynamic model was used to simulate internal fraud loss data and the key risk 

indicators and then produce datasets that, at the aggregate, mimicked the ORX dataset. 

The Monte Carlo simulation exercise consisted first on selecting each bank in the 

ORX dataset for the period 2006-2010. Second, each bank’s own simulated data were 

combined with its external data. Third, the three data integration techniques under inspection 

were applied to each bank. Each technique produced a different level of estimated operational 

risk capital for each of the banks. The novelty of the research design was to compare these 

three estimates of operational risk capital in terms of the “true” operational risk capital 

implied by the dynamic model in each of the banks; more specifically, a data-generating 

process was simulated and the properties of estimators then studied. The dynamic model 

acted as the data-generating process and the estimators referred to extreme quantiles of the 

generated internal fraud loss data. This design is common in the econometric and statistics 

literature (Greene, 2012, Chapter 15). Therefore, the study belongs to the simulation-study 

approach widely used in the econometrics and statistics literature. 

The comparison of the three integration techniques in terms of the final operational 

risk capital estimates implied was a natural choice because operational risk capital is the final 

product of an AMA. For practical purposes, these estimates are of the most interest to 

regulators and managers of financial institutions. Other means of comparisons could have 

been used, such as the shape of the loss probability density functions (PDFs) obtained by 

each technique or the shape of the densities only at the extreme loss values. Overall, PDF 

comparisons are not satisfactory, however. For example, one technique may generate a 

density of losses very similar to the true density of the losses but only when losses are small; 

when losses are large enough, the fit may be poor. If the study had been used to compare the 

performance of the PDF for all losses small and large, it may have picked this technique as a 
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good technique even though the fit at the far end of the distribution was poor. For most 

operational loss types, what matters is the behavior of the PDF at the far right-end of the 

distribution. The estimated level of operational risk capital, being an extreme quantile of the 

cumulative density of losses, is one aspect of the shape of the distribution at the extreme 

right-end. 

Research Questions 

The focus of the study is on operational risk management. In particular, it is the first 

study to address the problem of choosing the best technique for internal-external data 

integration by financial institutions that share operational loss data. The selection problem 

outlined above relies on a well-defined simulation. In broad terms, any simulation steps apply 

the model-simulation-comparison sequence. Hence, a benchmark model is the starting point. 

A model for internal fraud outbreaks was built as a starting point. The model, in order 

to be used for simulations that mimic real world scenarios, needed to be contrasted with 

reality. This reality check proves problematic in the field of operational risk management 

because operational loss data are proprietary. There is no public data on operational losses; 

thus, studies based solely on proprietary data cannot be replicated. To contrast the model with 

reality is to check whether, taken together, the simulated model data agree with aggregate 

operational losses due to internal fraud in retail banking. In addition, the model results are 

deemed plausible if, at the same time, the simulated model data correlate with observed 

global variables as reported in the literature. 

This process of model building and broad reality check regarding operational losses 

due to internal fraud in retail banking raises important question about internal fraud processes 

in financial institutions. The main research questions (MRQs) can be stated as follows: 

MRQ1: If the model is capable of generating internal fraud losses that are similar to ones 

reported in the ORX database and produce correlations with macro environmental 
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variables that are similar to those reported in the literature, how are these losses 

related to the Global Financial Crisis that occurred in the middle of the period of 

study? 

This question has been the focus of studies about operational losses in general but not for 

internal fraud losses in retail banking. 

MRQ2: Given the same conditions as MRQ1, how are internal fraud losses related to 

perceptions of corruption in the country where the main headquarters of a bank is 

located? 

Internal fraud losses before and after the Global Financial Crisis and the correlation of those 

losses against corruption perception indices, have not been used in model building or the 

calibration of parameters. In this study, these outcomes are independent results of the model 

and provide valuable information about the nature of internal fraud losses in a financial 

institution. 

MRQ3: Regarding the selection of the best internal-external data integration technique, is 

there any technique that can be considered best practice to estimate a correct 

operational risk capital across all levels of risk tolerance? 

Hypotheses 

The research hypothesis is stated in terms of the differences between the operational 

risk capital estimates obtained using the three data integration techniques and the true 

operational risk capital implied by the dynamic model generating the data. In the study, the 

simulation approach documented in Voss (2013, Chapter 3) is applied. The operational risk 

capital is obtained by setting a high percentile value (risk tolerance), such as the 99.9 or 99.99 

percentile of the operational loss density function. These percentiles are called extreme 

values or value-at-risk estimators (VaR). 
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Let 𝑂𝑝𝑅𝐾𝑠, 𝑂𝑝𝑅𝐾𝐵 , and 𝑂𝑝𝑅𝐾𝐶 be the levels of operational risk capital estimated by 

Scaling, the Bayesian, and the Covariate-based LDA respectively, and let 𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒 be the 

true operational risk capital implied by the dynamic model for internal fraud. The intention is 

to know whether any of the objects, 𝑂𝑝𝑅𝐾𝑠, 𝑂𝑝𝑅𝐾𝐵, or 𝑂𝑝𝑅𝐾𝐶 , are systematically closer to 

the true capital 𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒, given the specific risk tolerance of the risk manager. The 

evaluation is performed by drawing a huge number 𝑆 of simulations of complete 5-year 

histories of operational risk events. Each simulation 𝑗 = 1, ⋯ , 𝑆 is used to generate 

operational risk capital levels(𝑂𝑝𝑅𝐾𝑆
𝑗
, 𝑂𝑝𝑅𝐾𝐵

𝑗
, 𝑂𝑝𝑅𝐾𝐶

𝑗
). For each technique, the simulation 

approach implies the estimation of the root mean square error (RMSE) relative to the true 

operational risk capital level. The lower the RMSE, the better is the technique. 

The working hypothesis can be stated in the following terms: 

H01: No change is evident in the pattern of operational losses before and after the Global 

Financial Crisis. 

H02: Neither the frequency nor the severity of internal fraud operational losses are correlated 

with the corruption perception index of the country where the main headquarters of the 

bank is located.   

H03: None of the three techniques is systematically better as compared to the others across 

possible risk tolerance values. 

Theoretical Framework 

The general framework for the study belongs to the simulation-study approach. This 

method is widely used in statistical theory and applied statistics in the fields of business, 

engineering, and the natural and social sciences. In general, two branches of simulation 

methodologies are of interest in this study. The first relates to process simulation 

methodologies pioneered by information system engineers (Banks, 1998; Zeigler, Praehofer, 
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& Kim; 1976). The second relates to simulation-based evaluation of estimators used by 

theoretical and applied statisticians as well as econometricians (Voss, 2013). 

Process simulation methods, favored mostly by information system engineers, are 

used to imitate the operation of a real-world process or system over time to generate artificial 

data for decision-making and management purposes (Banks, 1998). For example, in software 

engineering, many techniques exist to predict the features of software projects like duration 

or effort. It is of interest to identify the most accurate prediction techniques, and a usual 

avenue is to use a simulation-based methodology, as did Shepperd and Kadoda (2001) as well 

as Aranha and Borba (2008). On the other hand, simulation methods are used to infer the 

properties of estimators or statistics that depend on the data (Greene, 2012; Stern, 2000; 

Voss, 2013). Statisticians and econometricians mostly use this aspect of simulation both at 

the theoretical and empirical level. Studies that use this method are called simulation studies 

or Monte Carlo studies. 

The study conducted draws insights from both areas of the simulation literature. First, 

it set up and simulate a dynamic operational risk model capable of drawing internal fraud 

operational losses in the retail-banking segment of individual banks that share data through 

the ORX. The dynamic operational risk model shares some features of those described in 

Supatgiat, Kenyon, and Heusler (2006), Leippold and Vanini (2005), and Bardoscia and 

Bellotti (2011). Operational losses within financial institutions can be classified according to 

event type and business lines within a financial institution. Annex 8 and 9 of the BCBS 

(2006) provides the standard in the classification of business lines and operational loss event 

types. A summary of the classifications is found in Tables 1 and 2. There are seven types of 

operational loss events. All these events can potentially occur within eight business lines in a 

typical banking institution. 
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Table 1  

BCBS Loss Event Type Classification 

Event number Definition 

1 Internal fraud 

2 External fraud 

3 Employment practices & workplace safety 

4 Clients, products & business practices 

5 Damage to physical assets 

6 Business disruption and system failures 

7 Execution, delivery and process management 

 

Table 2  

BCBS Business Line Classification 

Event number Definition 

1 Corporate finance 

2 Trading and sales 

3 Retail banking 

4 Commercial banking 

5 Payment and settlement 

6 Agency services 

7 Asset management 

8 Retail brokerage 

 

A particular combination of event type and business line is called a cell.  The research 

was focused on just one cell: Operational losses due to internal fraud (event type) in retail 

banking (business line).  Internal fraud is defined as operational losses due to acts that 

involve at least one internal party aimed at defrauding, misappropriating property, or 

circumventing regulations, the law, or company policies (BCBS, 2006).  As Kochan (2013) 

suggests, internal fraud is one of the fastest-growing and most complex criminal threats to 

financial organizations.  This type of threat from insiders takes various forms because fraud 

can occur at any level of the administrative ladder, from junior employees up to chief 
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executives.  This specific operational event calls for a specific modeling setup that 

incorporates, for example, factors that shape the incentives of insiders to engage in fraud, like 

worker compensation, culture, or macroeconomic conditions (see also Jarrow, 2008).  

Therefore, the model developed departed from the traditional simulation models used by 

engineers in that human resource processes are modeled instead of machines or information 

systems processes.  The model applied borrows insights from the human resource and 

organizational literature, specifically from people risk management theory as shown, for 

example, in Blacker and McConnell (2015).   

Retail banking is a traditional, universal type of banking involving payment services 

(debit cards), short-term unsecured loans (credit cards), money management facilities (current 

accounts), savings, loans, and mortgages (Pond, 2014).  Retail banking provides services to 

the public or “retail customers.”  According to ORX (2012), retail banking experiences the 

larger number of operational loss events, 59% for the period 2006-2010, and increasing to 

65% in 2011.  In addition, the gross losses in retail banking are the most severe of losses 

across business lines, representing up to 37% of total losses by business line.   

Once the model was set up to simulate operational loss data in the internal fraud-retail 

banking cell for a window of five years for each bank belonging to the ORX Association, the 

data were ready to be recorded by each participating bank.  However, not all the operational 

loss data had been recorded due to collection standards and threshold rules of data exchange 

associations or due to measurement errors and delays in reporting protracted events 

(Chaudhury, 2010).  This reflects the information restrictions that characterize data recording 

and that make real loss data different from collected data.  The collected data in each bank 

were delivered to the shared database.  Therefore, after a simulation, each of the banks not 

only has access to its own five-year recorded operational loss dataset but can also use the 

entire ORX dataset.  Due to heterogeneous nature of the financial institutions in the dataset, 
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however, the external data to a bank cannot be used as it appears.  For example, a bank may 

be smaller, bigger, or in general, more or less risky than another bank. As such, the loss 

amounts or the frequency of losses may be different across banks (Shevchenko, 2011). 

Hence, like in the real world, external data had to be integrated properly into the 

internal data to be used in the AMA for operational risk capital estimation.  The focus of the 

study was on three techniques that can be used to integrate external data into the internal data 

for a specific bank: Scaling, the Bayesian technique, and a Covariate-based LDA. The 

application of each technique assumes, calibrates, or estimates parameters and values so that 

each technique is conditional to its own set of assumptions. All three techniques draw total 

operational loss forecasts for the year ahead in the specific internal fraud and retail-banking 

cell for a bank under study. The operational risk management problem of the bank is the 

identification of the level of losses deemed “catastrophic” in terms of a bank’s normal 

business operations. 

In contrast to what is common in the forecasting literature, the emphasis was not on the 

mean one-year ahead operational loss forecast but on the entire probability density of future 

outcomes.  In the standard forecasting literature, the probability of future outcomes usually 

shows a normal distribution, and in that case, only the mean and standard deviations are of 

interest for practical purposes. 

In the financial risk literature, the object of interest is the tail-risk, namely, the 

possibility that the outcome exceeds a given extreme level.  Furthermore, the shapes of 

probability densities of financial outcomes are not symmetric but tend to be strongly 

asymmetric and feature higher probabilities at the extremes of the distribution than does the 

normal distribution.  In the particular case of operational risk, the LDA permits drawing data 

from the probability density of operational losses and therefore estimates the VaR, which is 

the most extensively used tail-risk measure in operational risk. Each of the three techniques 
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that integrate internal and external data delivers a VaR estimate that could be compared.  The 

regulatory capital charge for operational risk is given by the difference between a given 

extreme percentile and the mean expected loss. 

With respect to the techniques evaluated, the Scaling technique is used to transform 

the external data to make it comparable to the internal data (Chaudhury, 2010; Cope & Labbi, 

2008; Na, van den Berg, Couto, & Leipoldt, 2006) based on observable factors pertaining to 

external companies.  Once external data were transformed and made comparable to the 

internal data, the pooled data could be used to apply the LDA approach.  Bayesian techniques 

combine the internal loss distribution information and external loss distribution information 

by means of the Bayesian theorem (Lambrigger et al., 2007; Shevchenko, 2011). The 

resulting loss distribution was used to extract the operational risk capital estimation.  A 

Covariate-based LDA estimated a parametric loss distribution for the entire data set, thus 

including internal and external data, but conditional on different factors across the financial 

institutions covered in the database.  Conditioning factors or causal dependence models have 

been depicted, for example, in Cruz (2002), Supatgiat et al. (2006), Kühn and Neu (2003, 

2004), Bardoscia and Bellotti (2011), and Leippold and Vanini (2005). 

The three techniques are used by individual banks because their own internal data, 

covering a window of five years, are insufficient for VaR estimations.  Ideally, a bank would 

want to replicate current five-year windows as many times as it could in order to have enough 

data to estimate tail-risk measures accurately, but that is impossible with real-time series data.  

However, the dynamic internal fraud loss model that draws the five-year window of data can 

simulate as many 5-year windows as necessary to replicate the current business conditions 

and therefore can mimic the true VaR specific to the conditions of the bank under study. 

With VaR estimators corresponding to each technique under evaluation and the 

knowledge of the true VaR, the research implemented standard procedures to determine 
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whether any technique performed better in terms of the root mean square error distance from 

the true VaR. This method is akin to applying statistical procedures to know which possible 

estimators of a given parameter are closer to the true parameter, where the modeler sets the 

true parameter through simulation assumptions (Matzkin, 2003; Chen & Pouzo, 2012; 

Greene, 2012). As in any simulation, the parameter under investigation was a function of the 

data, and the modeler’s choice of a true model generated the data. 

Definition of Terms 

Below some key terms are defined. Throughout this study, a number of abbreviations 

were also used. Appendix A describes all the abbreviations used in this study. 

Basel Committee on Banking Supervision (BCBS).  The BCBS is a forum that sets the 

guidelines for worldwide regulation of banks.  It agrees on international regulations 

for the conduct of the banking industry (Goodhart, 2011). 

Basel II is the set of standards proposed by the BCBS that lead to the capital adequacy of 

international active banks; the set of standards was published in June 2004 (BCBS, 

2006). 

Bayesian inference is a statistical technique used to incorporate expert opinions into data 

analysis and combine different data sources (Shevchenko, 2011). 

Monte Carlo simulation involves the simulation of random samples from a known population 

(an explicit parametric model) to track the behavior of a parameter that depends on the 

data (Robert & Casella, 2005). 

Probability density function (PDF) is a function that describes the relative likelihood of the 

occurrence of a random variable at a given point (Greene, 2012). 

Value at risk (VaR) is an extreme quantile of a distribution of financial outcomes.  It usually 

refers to the 99.9% or the 99.99% quantile (McNeil, Frey, & Embrechts, 2005). 



21 

Assumptions 

The dynamic model for operational risk is simple but strong enough to model the 

broad nature of internal fraud operational losses and their management. The model is general 

enough to explain the time series dynamics of loss occurrence in each financial institution 

under study, and therefore, it can be used to generate loss event simulations due to internal 

fraud in retail banking. 

The LDA assumes a set of parametric density functions for measuring the amount of 

loss and a set of parametric distribution functions for the frequency of losses. The choice of 

function depends on the risk type under consideration. In the research conducted, the standard 

functions used in the literature are assumed. 

For the calibration of parameters, a number of observable variables are used. These 

variables reflect each bank idiosyncratic features. Some of them reflect the scale of banks 

such as the level of retail assets or the number of employees in retail banking operations. All 

these scale figures are taken from bank’s annual reports. Most banks follow generally 

accepted accounting principles (GAAP). Therefore, the research assumed that all the 

information from bank’s annual reports reflect the true scale and risk exposure of banks and 

hence, they can be used to discriminate among banks. 

Another set of idiosyncratic variables refer to textual analysis also obtained from 

banks’ annual reports. These textual variables reflect the number of times a word or 

combination of words appear in the annual reports as proportion of the total page numbers. 

The chosen words reflect how concern, banks are about human resources and risk in their 

corporate environment. The key assumption therefore is that the more concern is a bank 

about risk or human resources, the more they write about risk or human resources. 
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Limitations 

A drawback of the research design is that a model is never as complex as reality. It is 

inevitable that there are aspects of reality that will be excluded from a model. Given that the 

purpose of the study was to compare data integration techniques, it is sufficient to know that 

the absent features of the internal fraud model were not correlated with the features of the 

techniques. Furthermore, the evaluation of models or statistical estimators using the Monte 

Carlo simulation of an assumed data generating process is an acceptable and standard 

practice in academia (see, for example, McNeil et al., 2005). Nevertheless, a limitation of any 

simulation study is that the comparisons are specific to model parameterizations. To achieve 

generality it would be necessary to vary the parameters in such a way that all the possible 

cases are taken into account. This is practically impossible in the model set up presented in 

the research because there are 52 internal fraud models with their own set of parameters. 

Taken together there are more than two hundred parameters. 

This limitation of simulation studies is however overcome by the fact that the 

simulations consider many different banks or many different cases. The different sets of 

parameters reflect different types of risk exposures and idiosyncratic characteristics. 

On the same vein, estimations of operational risk capital by applying the LDA 

approach also entails different possible choices of distribution functions either for the severity 

of operational losses or for the number of loss events in a given year. A general simulation-

based framework would entail the combination of all possible distribution functions. 

However, the space of these distribution functions is large and therefore it is not possible to 

apply the approach to all the cases. 

Model simulations are validated by contrasting the simulated internal fraud losses 

with macroeconomic variables such as GDP growth or other country level variables. These 

country-level variables are assigned to banks only considering the country where bank’s 
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headquarters are located. A specific bank can have branches in a variety of countries and a 

segment of these branches can perform retail banking so it might be possible to consider all 

the countries where these banks operate. However, the dataset used in the research does not 

have detailed bank data by country. 

Delimitations 

The internal fraud model developed did not capture specific details of the complex 

operational risk environment that surrounds internal fraud events. The usefulness of the 

model relies on it serving as a simulation platform to allow practical comparisons among 

competing data integration techniques. Moreover, the research only assessed the technical 

aspects of the techniques. Other aspects, such as the different costs associated with the 

implementation of each technique, were not the focus of the research. 

The results are specific to banks that belonged to the ORX within the 2006-2010 

window. They might not reflect the risk or loss behavior of ORX banks afterwards. This is so 

because the period under study in this research includes first a mayor global financial crisis 

that affected global banks in particular and second a corresponding global recession. The 

macro environment and the regulatory environment that banks face for the period after 2010 

is arguable different. 

In essence, the research method applied in the study is descriptive because it seeks to 

answer which internal-external data integration technique is best but it does not delve onto 

how or why. The explanatory research is the natural next step in this research agenda. 

Summary 

In this study, the aim was to contribute to the solution to one of the most challenging 

problems in the practical implementation of operational risk management: The selection of 

the appropriate internal-external data integration technique among a set of alternative 
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techniques laid out in the literature. For financial institutions, the data integration problem 

has hindered progress in the use of external data for assessing operational risk management. 

A novel procedure for the selection of the best data integration technique was used in 

this study. The procedure was based on a simulation study, which is a powerful method used 

in theoretical and applied statistics to study properties of objects that depend on data. 

Statistical comparisons about which of the data integration techniques produced estimators of 

operational risk capital closer to the true operational risk capital are made. 

A key step in the application of the simulation was the construction of a dynamic 

model of operational losses resulting from internal fraud in retail banking in a number of 

financial institutions. A set of parametric equations, based on the operational risk and human 

resource management literature, mapped conditioning factors pertaining to financial 

institutions to outbreaks of operational losses. The parameters of the dynamic model could 

not be estimated because detailed operational loss data for banks are not publicly available 

due to the sensitive nature of the data. Instead, the model was calibrated in such a way that 

simulated frequencies of losses and aggregate loss amounts were similar to those published in 

the ORX report. In addition, the calibration considered that the correlations of the simulated 

losses with aggregate macro environmental variables were the same as the correlations 

reported in the literature. 

The model developed in the study is the first that directly links human resource factors 

with operational losses due to internal fraud. The existing causal models in the operational 

risk literature are focused more on losses due to failures in information technology processes, 

and scant attention has been paid to the human aspect of operational risk. The model allowed 

uncovering two facts that have not been reported in the operational risk literature: The 

relationship between overall economic activity and operational losses due to fraud and the 

relationship between the corruption perceptions of countries and operational losses. 
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In summary, two important contributions to the risk management literature were made 

in the study. First, a rigorous statistical method was used to help select the best data 

integration technique and thus contribute to solving one of the key challenges that have 

deterred practical progress in external data handling by financial institutions. The second 

contribution was the development of a causal model of operational losses due to internal 

fraud in retail banking. The model developed shed new light on the nature of internal fraud 

losses in the context of operational risk management. 

In Chapter 2, the details of the theoretical and empirical underpinnings laid out in the 

literature about various aspects of the research are provided. The dynamic operational loss 

model is discussed in dialogue with the literature on dynamic systems. The literature about 

data integration techniques is covered and comparisons are made to published research in the 

same field. 
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Chapter 2: Literature Review 

Despite the financial importance of operational risk documented since the onset of the 

21st century, research on operational risk has not matured at the same pace as credit or 

market risk literature (Chaudhury, 2010; Medova & Berg-Yuen, 2009). To date, the 

operational risk literature has been silent about the evaluation of alternative data integration 

techniques within the AMA framework. Two factors may have hindered research on this 

topic. First, data for empirical research purposes are restricted; the focus of empirical 

research has been on robust estimation methods, data combination techniques, or other issues 

in the implementation of AMA. This is the case, for example, in Aue and Kalkbrener (2006), 

Guillen, Gustafsson, and Nielsen (2008), Wahlström (2013), and Guegan and Hassani (2013) 

among others. The second limitation is that the practical implementation of AMA in financial 

institutions has been focused on the details of implementing existing AMA approaches such 

as loss data classification or the specific parametric functional forms for the frequency and 

severity in each operational loss cell. This was the case, for example, in Aue and Kalkbrener 

(2006). Little theoretical or applied literature within financial institutions has been focused on 

the evaluation or comparison of distinct data integration techniques within AMA. 

Literature about the comparison of known approaches to calculate operational risk 

capital is scant but relevant to the research. Only two papers were located in a broad search of 

the literature, namely, Teker (2005) and Jiménez et al. (2009). In both studies, the operational 

risk capital delivered by applying the basic indicator approach (BIA), the standardized 

method (SM), and specific AMA approaches were compared. Teker (2005) performed the 

comparison with data for a Turkish bank while Jiménez et al. (2009) used data from a 

Spanish bank. The conclusions for both studies were that the application of the AMA delivers 

much lower operational risk capital levels than those obtained by applying BIA and SM.  The 

results, as explained in both papers, reflects the risk-sensitive nature of the AMA approach. 
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Two banks equal in size, measured by assets, for example, are deemed to have similar 

operational risk capital levels when measured with BIA or SM. If one of the banks is more 

exposed to operational risk or practices poor operational risk controls, however, it will have 

higher measured operational losses, and hence, it will endure a higher operational risk capital 

level as measured by the AMA. The evaluation exercise applied in this study goes beyond 

these earlier comparisons in two aspects. First, instead of comparing the AMA with non-

advanced approaches, distinct data integration techniques and their resulting operational risk 

capital levels under the AMA were compared. Second, the comparison was made through 

statistically robust tools; thus, the conclusions reached have broader validity. 

In this chapter, the research design steps are developed. First, issues related to the 

nature of operational loss data are reviewed. Second, a brief review of the literature on the 

modeling of operational losses is presented. Third, the current literature about how to 

integrate internal and external data in operational risk modeling is surveyed. Last, a summary 

and conclusions that arise from the literature are provided. 

Data in Operational Risk Modeling 

The use of external data is an essential step when applying the AMA to a firm, but 

direct use of external data is ill advised. External loss data comes from individual banks; each 

bank is likely to have its particular risk profile and characteristics, such as the size of its 

revenues, number of staff, quality of staff, and level of control systems once an event occurs 

(Chernobai, Jorion, & Yu, 2011). Moreover, each line of business of a bank is expected to be 

different in terms of risk profile and internal characteristics. 

As described by Baud, Frachot, and Roncalli (2002), Dahen and Dionne (2010), and 

Wei (2007), a number of drawbacks and biases in the use of external operational loss data can 

be listed. For instance, selection bias occurs because only very large losses are published. 

Control bias happens due to losses coming from heterogeneous banks with different control 
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environments. Reporting bias appears when data are drawn from different sources with 

variations in recording thresholds. Scale bias arises when losses come from banks of diverse 

scale (for example, assets, revenues, number of employees). Last, survival bias ensues 

because the losses of bankrupt firms are not recorded. In order to overcome these biases to 

some degree, it is necessary to rely on techniques that allow a financial institution to use 

available external data and combine them with its own data in order to perform a standard 

AMA. 

The evaluation of data integration techniques needs, in theory, a complete dataset of 

internal and external data for a firm.  Banks that perform the AMA generally share data 

through data exchange associations such as the ORX, Global Operational Loss Database 

(GOLD), or Operational Risk Consortium (ORIC), among others, but these datasets are not 

publicly available. To overcome this data limitation problem, a dynamic model for internal 

fraud event occurrences was used to simulate loss events that, in aggregate, look like real 

datasets. 

In this research, the ORX dataset was used as the basis for model calibration. In the 

next section, the relevant literature that supports the choice of a simulation model to perform 

the comparison exercise of data aggregation techniques is reviewed. 

Simulations of Operational Loss Events 

Researchers in many areas of scientific knowledge rely on simulations when data are 

unobserved and a need to learn about the behavior of a complex system exists (Banks, 1998). 

This is the case, for example, in the ORX database; the detailed data are proprietary, but data 

summaries are published regularly. In addition, other specific information about banks that 

participate in the ORX consortium is available from different outlets, for example, financial 

service authorities and their corporate Web pages. The question is how to simulate a model 

that can generate operational loss events that share the same statistical properties of the 
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published summaries of the reported data. A number of research papers feature models that 

simulate operational losses within firms in terms of their specific characteristics and industry-

wide features. This strand of the literature borrows heavily from both the business process 

simulation (BPS) and statistical mechanics literature. The unifying feature between these 

seemingly different fields is the use of network theory. 

The unifying characteristics of the papers reviewed are the interconnectedness among 

risk types, business lines, and external risk indicators. The features arising from networks are 

not crucial for the current study. The focus of the research is on one cell in the event type and 

business line matrix, namely internal fraud in retail banking, so all notions of 

interconnectedness among the other networks can be excluded. The theories on which 

network models are founded and their functional forms, however, provide rich alternatives 

for the model. 

Shepperd and Kadoda (2001) offered a first idea to motivate the research. Shepperd 

and Kadoda compared software prediction systems by using artificially generated data with 

known properties to explore software engineering dataset modeling techniques. Shepperd and 

Kadoda suggested the simulation of artificial data serves to provide researchers with the 

following: 

A great deal more control over the characteristics of a data set.  In particular, it 

enables the researcher to vary one property at a time, thereby allowing a more 

systematic exploration of the relationship between data set characteristics, type of 

prediction system, and accuracy.  By contrast, especially with smaller real data sets, 

the true properties may not be fully known.  (p. 1015) 

The research conducted followed the example of Shepperd and Kadoda (2001) but in 

an entirely different field: Operational loss events. The simulation-based approach stems 

from system dynamics simulation (SDS), a field developed by the computer engineer Jay 
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Forrester during the 1950s at Sloan School of Management at MIT. Primarily computer and 

engineering sciences use SDS, but it has also become important in business simulation. 

Kessler (2007), for instance, applied the approach to build a framework for operational risk 

management where banks behave as a dynamic system within interacting and complex 

domains. 

In general, SDS is parallel to business process management (BPM) in the field of 

management. Ideas within the field of BPM are also useful in the development of the 

simulation modeled applied. Although the aim of BPM is to support the design, enactment, 

control, and analysis of business processes, it could also serve as a platform for operational 

risk management as part of the business process itself. An important element of BPM is BPS, 

which relies on discrete event simulation models. In the research conducted, it is precisely 

this type of discrete event model that was used. Jansen-Vullers and Netjes (2006) provided a 

general overview of the use of BPS. A direct application to operational risk modeling is to 

find cause-to-effect relationships (Supatgiat et al., 2006). The idea of the approach is to 

provide the risk manager with a tool to reduce and control operational risk. 

Under the BPM approach, Cheng et al. (2007) proposed an approach to operational 

risk modeling based on the automatic development of a probabilistic network that mimics 

closely and in real time the operational business processes. This means that the parameters of 

the probabilistic network can vary in time as business processes adapt to new situations. 

Cheng et al. focused primarily on operational risk related to information technology. Aleksy, 

Seedorf, and Cuske (2008) tackled one important aspect of the BPS, the link between domain 

knowledge (what practical end-users need and know) and software development. Aleksy et 

al. proposed an approach for modeling that monitored and controlled operational risk in 

financial institutions based on an approach called JOntoRisk created by Cuske, Dickopp, and 

Seedorf (2005). Weiß and Winkelmann (2011) took a similar stance. Using the same BPM 
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approach, Cernauskas and Tarantino (2009) proposed linking BPM with engineering process 

control or statistical process control to perform the management of operational risk where 

both automated and personnel processes appear. The above models applied the BPM 

approach and focused on operational risk management within a business process. These 

models do not explicitly aim at generating operational loss statistics. 

The SDS approach in engineering is akin to causal models, Bayesian models, and 

reliability theory in the statistical science. These approaches are what Finke, Singh, and 

Rachev (2010) called process-based models. Process-based models are related to functional 

dependence and functional correlation in statistical physics. Kühn and Neu (2003, 2004) used 

this approach. Kühn and Neu studied models that generate operational losses in banks 

through network dynamics that lead to the occurrence of risk events in an environment where 

banks make efforts to mitigate operational losses.  Leippold and Vanini (2005) used 

functional dependence modeling to extend the work of Kühn and Neu (2003, 2004) in two 

dimensions. First, Leippold and Vanini (2005) explicitly used a networked process through 

graphs. Second, Leippold and Vanini included fixed and stochastic costs that arise in case of 

operational risk events. 

Based on the aforementioned strand of the literature, Bardoscia and Bellotti (2011) 

modeled the amount of operational losses recorded at a certain time in a certain process. The 

approach of Bardoscia and Bellotti was an effort to model some general mechanisms behind 

the generation of operational losses. This set of models in the statistical mechanics tradition 

focuses more explicitly on the generation of operational losses; consequently, they proved 

useful for developing the methodology for the research strategy next chapter. 

The research conducted took into account ideas from Fragnière, Gondzio, and Yang 

(2010) and Yang (2010) who claimed that the treatment of operational risks must also follow 

a managerial approach whereby the quality and quantity of the workforce represent a source 
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of risk. This idea is similar to that of Hatzakis, Nair, and Pinedo (2010). The importance of 

human capital in the operational loss process of financial institutions accords with the idea 

that the key process of a bank is the handling of information; banking is known to be a 

knowledge-intensive business process (Weiß & Winkelmann, 2011). This calls for a 

modeling approach that takes the quantity and quality of employees into account. This is for 

example the case of Blacker and McConnell (2015). 

Therefore, in contrast to the simulation approaches applied in engineering and 

computing systems or the bulk of BPS applied for modeling operational loss events related to 

failure of processes and machines, this research was focused on simulations applied to human 

behavior and operational risk controls that generate internal fraud events. The idea is similar 

to the managerial approach in Fragnière et al. (2010) and Yang (2010); however, these two 

studies are focused on the optimal planning of workforce capacity and do not touch on factors 

that generate operational losses due to internal fraud. 

The originality of the approach applied is that the study conducted relied on the 

specific modeling of factors that bring about internal fraud events, such as the ethical quality 

of workers, the workplace environment, and other elements pertaining to human resource 

management. 

Quantitative Techniques to Combine Internal and External Data Sources 

Due to the potential biases in the use of external data, sound techniques are required in 

order to integrate external and internal data. The aim of the techniques is to allow a specific 

financial intermediary the use of the combined datasets to implement the AMA for 

operational risk capital. As internal and external data collection have become more 

widespread over the course of a decade, and as the AMA is ever more used across banks, a 

number of techniques have been presented to the operational risk community. This literature 

review is focused on three broad techniques to be further expounded in Chapter 3: (a) 
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techniques based on scaling losses to make the data comparable, (b) techniques based on the 

Bayesian inference, and (c) techniques based on a covariate-based LDA. 

Scaling technique research. With the onset of the last decade, financial firms started 

gathering operational loss data. In this environment, earlier research about the use of internal 

and external data maintained the assumption of data homogeneity across internal and external 

data. This is the case for Baud et al. (2002, 2003) as well as Frachot and Roncalli (2002). In 

these three studies, the reporting bias was considered the most important issue at the time of 

combining the data, and therefore, the authors concentrated on dealing with that bias. For 

example, Baud et al. (2003) applied a fair mixing assumption by which external data were 

treated as homogeneous. A model for the data generating process focused on incorporating 

external data was developed. In the model, the bias came simply from the fact that external 

data were truncated above a specific threshold. Frachot and Roncalli (2002) augmented Baud 

et al. (2003) in the sense that the internal and external data combination was used both for the 

estimation of the severity of losses and for the estimation of the frequency of losses. 

The idea of scaling external data to make it comparable to internal data first appeared 

in Shih, Samad-Khan, and Medapa (2000). Once transformed and made comparable to the 

internal data, external data can be pooled and the LDA approach applied. The technique relies 

on the existence of a power law relationship between losses incurred in business units and 

their gross revenue. Shih et al. showed that the size of a firm is related to the magnitude of its 

operational losses; however, this relationship was not linear but logarithmic, and there is 

evidence of a decreasing relationship between firm size and observed operational loss 

severity. 

Shih et al. (2000) split the nature of operational risk into two components: Global and 

idiosyncratic. The idiosyncratic component is supposed to relate to bank and business line-
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specific factors such as the size and volume of business, and their effect might be modeled 

using a specific power law that takes the form of 

𝐿 = 𝑅𝛼 × 𝐹(𝜃) 
(1) 

 

where 𝐿 is the loss amount; 𝑅 represents the total income of the firm where the loss 

took place; α is a scaling factor (to be estimated), and θ is a vector representing all the risk 

factors not explained by R. 𝐹(𝜽) is a multiplicative residual term that is not explained by 

changes in revenue (firm size). Shi et al. (2000) reported heteroscedasticity, the presence of 

which reduces the relationship between firm size and loss severities. Na et al. (2006) also 

analyzed the power law relationship between losses and business revenue. Na et al. used 

internal data from the ABN AMRO Bank and external data from ORX to extend Baud et al.’s 

(2002) work. Na et al. (2006) applied direct scaling of variables according to a power law 

regression for the aggregation of data originating from different sources. Dahen and Dionne 

(2010) used the Fitch’s OpVar database to extend the power law regressions by incorporating 

geographical differences and specific lines of business. Dahen and Dionne’s model allowed 

for comparing internal data within a firm in different lines of business. 

Cope and Labbi (2008) provided a further development within the branch of scaling 

techniques for operational loss data. Cope and Labbi used ORX data and applied the scaling 

techniques introduced in Shih et al. (2000), Na et al. (2006), and Dahen and Dionne (2010) to 

model not the mean losses but the different quantiles of losses using quantile regressions. 

Cope and Labbi (2008) concluded that frequently large losses scale differently to small 

losses. Because of the regulatory focus on large losses, it is essential that scaling relations for 

extreme events be appropriately characterized. 

Overall, the scaling technique assumes that a relationship between the scale of a bank 

and the severity of operational losses exists. This relationship may not be apparent due to the 

presence of heteroscedasticity and must be extracted with techniques that control for 
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heterogeneity across banks; one such technique is quantile regression. In some applications, 

such as in Aue and Kalkbrener (2006) and Wahlström (2013), this type of scaling is not 

relevant, but Wei (2007), Cope and Labbi (2008), and Ganegoda and Evans (2013) posited 

that scaling, if properly identified, is important. 

Bayesian techniques research. Bayesian techniques combine internal and external 

data as well as expert opinions by means of the Bayesian theorem. Besides a brief mention by 

Cruz (2002), practitioners and researchers seldom use the Bayesian technique to combine 

expert opinions to assess the severity and frequency distribution for operational risk. 

Lambrigger et al. (2007), Peters and Sisson (2006), Shevchenko (2011), and 

Shevchenko and Peters (2013) documented the Bayesian technique. This technique relies on 

estimating posterior predictive density functions for losses. The combination of prior 

information and data summarized in a likelihood function allows posterior predictive density 

functions to be calculated. It is always the case in Bayesian estimation that the posterior does 

not have a known form; therefore, it is necessary to use sampling algorithms to sample loss 

data from the implied posterior. 

For data combination, Bühlmann, Shevchenko, and Wüthrich (2007) provided a 

method that relies on a full hierarchical credibility theory approach to estimate frequency and 

severity distributions of operational losses by taking into account internal data, expert 

opinions, and external data. However, the model can be too sensitive to the expert opinions 

used to estimate scaling factors for distribution parameters. To improve upon this feature, 

Lambrigger et al. (2007, 2008) extended the approach developed in Bühlmann et al. (2007) to 

provide a more robust inference to expert opinions. Shevchenko and Wüthrich (2006) 

presented further examples of the Bayesian inference technique for operational risk 

quantification. 

http://www.math.ethz.ch/~wueth
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In the literature on Bayesian techniques to perform LDA, Bühlmann and Gisler (2005) 

and Bolancé, Guillén, Gustafsson, and Nielsen (2012) considered the input of expert opinions 

to elicit Bayesian priors or to calibrate credibility models. This is also the case for Agostini, 

Talamo, and Vecchione (2010). Agostini et al. set up a model that integrates the operational 

VaR obtained from historical data with the VaR drawn from expert estimations. Agostini et 

al. performed the integration by using credibility theory. Along the same lines, Figini, Gao, 

and Giudici (2013) proposed using self-risk assessment questionnaires to elicit suitable priors 

for the parameters that govern the distribution of loss frequencies and the density of loss 

severities. They suggested that once prior distributions are combined with the density of the 

data, it is straightforward to perform predictive densities of frequency and severities that 

allow the LDA to be performed. Agostini et al. (2010) and Figini et al. (2013), however, did 

not integrate internal and external data in their research. 

Two recent papers combine the three sources of information, namely, internal data, 

external data, and scenario analysis, which is akin to expert opinion. Hassani and Renaudin 

(2013) proposed a Bayesian cascade methodology that works in two steps; in the first step, 

scenario analysis serves to elicit prior distributions and external data inform the likelihood 

component of the posterior function. In the second step, the posterior thus obtained plays the 

role of prior distribution while the internal loss data inform the likelihood component of the 

final posterior. The latter posterior allows for generating the predictive density of the severity 

of losses to apply the LDA. 

Ergashev, Mittnik, and Sekeris (2013) proposed a Bayesian estimation method for 

loss severities using the generalized Pareto distribution common in extreme value theory 

(EVT) to tackle the integration of alternative sources of information such as scenario analysis 

and external data. Ergashev et al. focused on the extreme values of loss severities because the 

shape of the distribution on the right-end extreme drives operational risk capital. In the 
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elaboration of the Bayesian technique in Chapter 3, the research applied the example of 

Lambrigger et al. (2007, 2008). 

Covariate-based technique research. In general, the covariate-based technique deals 

with the incorporation of covariates in the estimation of parameters of the loss frequency and 

severity distributions. Paredes (2006) offered an early attempt to introduce covariates in the 

estimation of the parameters that govern the frequency and density of losses. Within the 

LDA, Paredes showed that the data determine the shape of the loss density and frequency 

distributions. Research that is more recent showed the importance of covariates to shape the 

frequency and severity distributions. Chernobai et al. (2011) used the conditional Poisson 

regression applied by Paredes (2006) to model the parameter that drives the frequency of 

losses. Chernobai et al. (2011) found that internal control improvements and management 

oversight mitigate loss event frequencies. Chernobai et al. also found that macroeconomic 

factors are not that important. Hemrit and Ben Arab (2012) used the same approach as 

Chernobai et al. (2011) to identify the determinants of the frequency and the severity of 

losses in the Tunisian insurance industry. One key result of that research is that the frequency 

of losses increases with the number of employees, but none of these studies integrated 

internal and external data. 

Wei (2007) first explored the data integration idea by using credibility theory for the 

combination of internal and external data about the frequency of losses and proposed a 

method to consider heterogeneity in the treatment of severity data. The idea was to 

incorporate covariates to pin down mean severity density parameters that describe the mean 

of operational loss data. Following the example of Shih et al. (2000) and Na et al. (2002), 

Wei (2007) assumed power law forms. The use of covariates to shape density functions can 

be traced back to Smith and Shively (1995) and Rootzen and Tajvidi (1997). 
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Ganegoda and Evans (2013) modeled the severity of operational losses by using 

generalized additive models for location, scale, and shape (GAMLSS) developed by 

Stasinopoulos and Rigby (2007). Like Ergashev et al. (2013), Ganegoda and Evans (2013) 

placed emphasis on the scaling properties of the tail of the loss distribution. In the 

implementation of the covariate-based LDA, the study followed the example of Ganegoda 

and Evans. 

Summary 

The review of the literature was focused on the techniques and methodologies that 

might prove useful for answering the research question. The first part dealt with the literature 

about simulation-based tools that would allow operational loss datasets to be generated across 

financial institutions. The simulations to be performed in the research applied ideas to model 

operational loss events from Kühn and Neu (2003, 2004), Leippold and Vanini (2005), and 

Bardoscia and Bellotti (2011) and the ideas of incorporating human factors from Fragnière et 

al. (2010) and Yang (2010). 

The model developed was used to evaluate different data integration techniques. For 

the most part, the literature has been silent about evaluating the worth of data integration 

techniques that have appeared in the operational risk literature. This research is the first 

documented attempt to provide such an evaluation using statistical tools. Achieving the aim 

involved followed a simulation study approach that allowed robust testing of the data 

integration techniques as suggested by Voss (2013) and Greene (2012). 

Based on the review of the integration techniques, Chapter 3 includes the work of 

Shih et al. (2000) and Na et al. (2006) for setting up the scaling method. It will also 

incorporate the contribution of Lambrigger et al. (2007, 2008) for implementing the Bayesian 

data integration technique and apply Ganegoda and Evans (2013) for implementing the 

covariate-based data integration. 
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Conclusion 

The literature reviewed in this chapter has shown that this research constitutes the first 

documented attempt to model internal fraud losses in a dynamic environment with a direct 

application to operational risk management. There are a number of models used for 

simulating operational risk that are focused on internal business processes and systems. These 

models draw from the literature on systems dynamics pioneered at the Sloan School of 

Management at MIT during the 1950s. In this research, the aim was to fill this gap in the 

literature by building a dynamic internal fraud model based on the systems dynamics 

tradition and incorporate distinct aspects of human resource behavior and management. 

In this research, an internal fraud model is applied in a simulation to assess the merits 

of different data integration techniques. The operational risk literature shows various 

procedures for integrating internal and external operational risk data in financial institutions, 

but there is an absence of studies to determine which techniques perform best given a 

specified criterion. This research is therefore the first documented attempt to perform an 

evaluation of different data integration techniques. 
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Chapter 3: Methodology 

The aim of this research was to develop a model to be used as an internal fraud loss 

generating process in order to perform a simulation study. The simulations allow to generate 

the true operational risk capital level as well as three capital levels associated to three 

internal-external data integration techniques. These three operational risk capital levels are 

compared to the true capital level. The methodology involved two main parts; first, build an 

internal fraud model to describe the occurrence of internal fraud events within financial 

institutions and second, determine which of three existing techniques to integrate internal and 

external operational loss data performs best in reflecting the true operational loss capital level 

as required by regulators. 

The three data integration techniques under scrutiny within the LDA were Scaling, the 

Bayesian technique, and a Covariate-based LDA. These techniques deliver different VaR 

measures as operational risk capital indicators. The assessment relied on the comparison of 

each VaR measure against the VaR implied by the true data generation process. 

The focus of this chapter is on the details of the research design required to carry out 

the study. In addition, the appropriateness of the design is described and the research 

questions and hypothesis stated. 

Research Design 

The research design has three key steps: (a) Data simulation through an internal fraud 

model, (b) technique implementation, and (c) statistical comparison of the results. A dynamic 

model for operational loss events simulates the internal fraud loss data as well as the key risk 

indicators and other factors associated with the loss event. The model calibration aims to 

mimic the first moments of total severity and the frequency of operational losses observed in 

the ORX database. The dynamic model draws on Kühn and Neu (2003, 2004), Leippold and 

Vanini (2005), Bardoscia and Bellotti (2011), Fragnière et al. (2010), and Yang (2010). 
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The step to implement the data integration techniques used the simulated loss data and 

loss event-associated risk indicators as inputs into the specific techniques. The Scaling 

technique implementation is based on the work of Shih et al. (2000) and Na et al. (2006). In 

turn, Lambrigger et al. (2007, 2008) informed the application of the Bayesian technique and 

Ganegoda and Evans (2013) the Covariate-based technique. The evaluation or comparison 

step follows the simulation-based procedure described in Green (2012) and Voss (2013). 

The idea hinges on comparing the three data integration techniques by applying them 

to simulated data obtained with the dynamic internal fraud model of operational losses. The 

dynamic model is in fact a true data-generating process. The three techniques deliver 

statistical objects that depend on the data. These objects are the VaR loss levels, which are 

considered operational risk capital estimators. 

In standard applications of simulation-based comparisons of estimators, the estimators 

are relatively direct functions of the data. In the operational risk context described in this 

study, the estimators refer to extreme quantiles, for example the 99.9 percentile, conditional 

on each technique. The estimators are compared to each other by means of the root mean 

square error relative to the true operational risk capital. 

Elaboration of the Research Design 

Figure 1 depicts the three steps carried out in order to accomplish the objective of the 

simulation study. The steps comprised the following: 

1. Generation of data 

2. Application of data integration techniques 

3. Comparison and evaluation of data integration techniques. 

Generation of data. The objective of the data-generation process was to simulate 

operational loss data and associated risk indicators for five years in a number (N) of financial 

institutions. In Figure 1, the simulated data for each bank is characterized by parallelograms 
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marked from A to N, representing each bank. Note that these parallelograms vary in size, 

reflecting the fact that data across banks are heterogeneous because some banks are bigger or 

riskier than are others are. Data simulations allow sampling two types of data as shown in 

Figure 1. The left-hand column of sampled data represents the data comparable to a shared 

internal and external data to a specific bank (e.g., bank A). The sampled data were 

comparable to a real existing dataset such as the ORX dataset. The right-hand column 

represents repeated hypothetical five-year loss samples in a specific financial institution or, 

alternatively, the losses in a span of sufficiently many years conditional on current financial 

institution indicators remaining similar.

 

Note: Numbered rectangles define the three main processes, parallelograms denote data; 𝐎𝐩𝐑𝐊𝒊 denotes the 

level of operational risk capital obtained by each technique i. 

 

Figure 1.  Research framework.   

The BCBS (2011) suggested financial institutions use five years of data because this 

period is long enough for some rare operational losses to appear but short enough to reflect 
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the current situation and exposure to risk for a financial institution. The simulation on the 

right column of Figure 1 assumes that the current conditions and exposure to risk of a specific 

financial institution are valid for a sufficient number of years for the true nature of 

operational risk to reveal itself. The left-hand data simulation column represents only five 

years of operational loss events for bank A (internal data) as well as for a number of banks 

(external data). Bank A cannot pool the external data directly into its internal data to perform 

operational loss calculations. 

The data generation process was implemented through a dynamic model of 

operational loss occurrence due to internal fraud in the retail banking segment of financial 

institutions in the vein of Kühn and Neu (2004), Leippold and Vanini (2005), and Bardoscia 

and Bellotti (2011). The model took into account the specific factors that trigger internal 

fraud losses in each of N banks that take part of the dataset pool. The possible dependencies 

that exist across time and banks also needed to be considered. Given that a key purpose of the 

research was to compare data integration techniques, the model, in the absence of specific 

operational loss data, was used to simulate the data to apply the integration techniques and 

perform the techniques comparison by means of a simulation study. As Figure 2 shows, once 

operational losses are drawn, it was also necessary to consider the loss recording processes by 

firms that take account of threshold levels (losses not recorded below a certain level) or 

measurement errors. 

As explained above, the simulation process generated two types of data: The Type-1 

simulation generated five years of data for a group of heterogeneous firms that share their 

data. The Type-2 simulation drew data for a specific firm along many years. The first 

simulation type is closer to reality, and the data generated needed a further data integration 

process. The second simulation type is referential. Firms, in theory, would want data for a 

huge number of years to be able to record even the rarest of operational losses, but such a 
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long period entails changes in the internal and external environments that banks face. This 

referential data simulation permitted uncovering the true nature of operational risk 

conditional on the current and specific bank environment. The operational risk capital 

estimated from this referential simulation is straightforward. There was no need for a data 

integration process because all the loss data come from the same bank. The Type 1 simulated 

data illustrated in Figure 2 are heterogeneous. These data need a further process of data 

integration. 

 
Figure 2.  Components and outputs of the data generation process. 

 Application of data integration techniques. This was the second step in the research 

design. Data integration techniques allowed for appropriate incorporation of external data of 

bank A to estimate the operational risk capital level. The approach was consistent with the 

LDA framework. The simulated data were entered as input in the joint data integration and 

the LDA process. The output of this joint process was the PDF of operational losses that 

occurred for a given planning year. The PDF summarized the entire operational risk profile 

because it revealed the expected amount of losses, the variability of these losses, and more 

importantly, the loss amount above which there was a very small probability (e.g., 0.1%) of 

having an even larger loss. This extreme loss amount is called VaR. The VaR is a widespread 

risk measure to calculate the operational risk capital of a financial institution. There are a 

number of other related risk measures with better theoretical properties (McNeil et al., 2005), 
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such as the tail value at risk (TVaR) or conditional value at risk (CVaR), that, potentially, 

could have been used. In this study, the VaR, namely, the 99.9 or the 99.99 percentile, was 

used to obtain operational loss capital levels for each technique. Financial institutions have to 

report to their respective financial service authority on the level of operational risk capital 

they set aside to mitigate the impact of latent operational losses in a financial planning year. 

The LDA process involves estimating the probability distribution of the frequency of 

losses that will occur during a planning year together with the estimation of the probability 

density of loss severities whenever they occur. Chernobai et al. (2007) and Shevchenko 

(2011) have detailed the implementation of the LDA framework. 

The key idea in using the LDA is to estimate known parametric distribution functions 

for loss frequencies such as the Poisson or the Negative Binomial and parametric density 

functions for loss amounts. Estimation of loss amount densities is crucial in this framework 

because these loss amounts end up determining the overall operational risk capital. In other 

words, the estimation of operational risk capital levels is more sensitive to the loss amount 

PDF estimation than to the distribution of loss frequencies. This is the reason the current 

LDA literature has emphasized the estimation of the loss severity PDFs. 

After estimation of both the loss frequency distribution and the severity density, the 

LDA hinges on applying a convolution operator to arrive at the PDF of the total operational 

losses expected over the course of the planning year. This convolution operator took into 

account that total annual losses, given by variable 𝑆𝑡, result from summing up the many 

losses that occur on a specified horizon. There are 𝑛𝑡 losses in year 𝑡 and let 𝑧𝑡,𝑖 denote the 

severity of each loss in year 𝑡, then 

𝑆𝑡 =  ∑ 𝑧𝑡,𝑖

𝑛𝑡

𝑖=1

 (2) 
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The loss frequency distribution draws the random variable 𝑛𝑡 while the loss severity 

density draws each 𝑧𝑡,𝑖. Panjer (2006) and Shevchenko (2011) described the convolution 

operator. Formally, the frequency of events 𝑛𝑡 has a distribution function 𝑝𝑛 = 𝑃𝑟(𝑁 = 𝑛) 

while the loss severity 𝑧𝑡,𝑖 has a density distribution and cumulative density functions denoted 

by 𝑓𝑍  and 𝐹𝑍 , respectively. Then, the cumulative density function of 𝑆𝑡 is 

𝐹(𝑆)    =  𝑃𝑟(𝑤 ≤ 𝑆) 

               = ∑ 𝑝𝑛𝑃𝑟(𝑤|𝑁 = 𝑛)∞
𝑛=0  

                             = ∑ 𝑝𝑛𝐹𝑍
𝑛(𝑆)∞

𝑛=0 , 

(3) 

where 𝐹𝑍
𝑛(𝑆) is the n-fold convolution of the cumulative density function of 𝑆. Figure 

3 shows the overall implementation of the LDA based on operational loss data.

 

Note: The distribution and density functions are estimated with the raw data.   

Figure 3.  The standard LDA approach. 

In this research design, this standard LDA approach worked only with Type-2 

simulated data. Type-1 simulated data required a data integration process within the LDA. 

The different data integration techniques relate to different forms the LDA could be applied 

to heterogeneous data. 

The Scaling technique. The Scaling technique transforms the external data to make 

them comparable to the internal data by means of some observable factors pertaining to 

external firms. After external data transformation by scaling, the pooled data enters the LDA 
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approach as depicted in Figure 4, where the Scaling technique process receives the raw data 

as input and generates scaled data as output. Papers like Shih et al. (2000) and Na et al. 

(2006) provided the Scaling technique framework. The LDA in this technique operates once 

the external data are scaled. In essence, the Scaling technique and the LDA are two separate 

processes. More details on the implementation of this technique are elaborated upon later in 

this chapter. 

 
Note: The scaling technique modifies the raw data and obtains the scaled data as output.   

Figure 4.  The LDA approach with the Scaling technique. 

The Bayesian technique. The Bayesian technique elicits a prior distribution of 

parameters that govern the loss frequency distribution and the loss severity PDFs as Figure 5 

shows. Prior elicitation usually is based on subjective criteria such as expert judgments. In 

this study, the raw data were used to obtain empirical or objective priors distribution of 

parameters as in Lambrigger et al. (2007, 2008) and Hassani and Renaudin (2013). Next, the 

Bayesian framework combines the priors with the specific bank-level likelihood function of 

raw data to generate posterior densities of parameters via the Bayesian theorem. 

The next step hinges on obtaining the posterior predictive distributions of the number 

of loss events for the next calendar year. Then, given the number of events expected to occur, 

the severities of each loss event are computed to obtain the total aggregate loss. 
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Note: The raw data were entered to elicit priors and obtain posteriors via the Bayesian theorem. 

Figure 5.  The LDA approach with the Bayesian technique.   

Generally, only sampling techniques permit obtaining the posterior predictive density of 

aggregate losses for next calendar year. In a sense, the Bayesian technique affects the shape 

of the loss frequency distributions and loss severity densities in an informed way, disciplined 

by the Bayesian theorem. In this setup, there is no need to transform or scale the data. 

The Covariate-based technique. The Covariate-based technique involves the 

modeling of the loss frequency distribution and the loss severity density in such a way that 

the shape and scale of these functions are affected by a set of covariates within the shared 

dataset. Ganegoda and Evans (2013) described a novel application of the technique; they used 

generalized additive models for location, scale, and shape (GAMLSS) as developed in 

Stasinopoulos and Rigby (2007). 

Figure 6 shows that the Covariate-based technique modifies the shape of the loss 

frequency distribution and loss severity density to be used in the convolution. As in the 

Bayesian case, using this technique does not require transformation of the original external 

data. 
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Note: The set of loss data and covariates are used in models that affect the scale, shape, and location of the 

distributions and densities that enter the convolution operator.   

Figure 6.  The LDA approach with the covariate-based technique.   

Comparison and evaluation of data integration techniques. The third and final 

step in the research design was the simulation study. In this step, a process was used to 

evaluate and compare techniques as depicted in Process 3 of Figure 1. After estimating the 

PDF of total losses under the three data integration techniques, it was straightforward to 

obtain VaR indicators or extreme quantiles (99%, 99.9%, or 99.99%). This step, statistically, 

compared these VaR measures associated with the Type-1 simulated data with the true VaR 

measure stemming from Type-2 simulated data. 

For example, let 𝑂𝑝𝑅𝐾𝑠, 𝑂𝑝𝑅𝐾𝐵 and 𝑂𝑝𝑅𝐾𝐶  be the levels of operational risk capital 

estimated by the Scaling, Bayesian, and Covariate-based techniques respectively, and let 

𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒 be the true operational risk capital. The purpose of the research is to know whether 

any of the objects (𝑂𝑝𝑅𝐾𝑠, 𝑂𝑝𝑅𝐾𝐵 , or 𝑂𝑝𝑅𝐾𝐶) was systematically closer to the true capital 

𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒 given a specific percentile chosen by the risk manager. To perform the evaluation, 

a huge number 𝑆 of simulations of complete 5-year histories of operational risk events are 

Distribution of 

loss frequency

PDF of each 

loss severity

Convolution 

operatorRaw

Data

Covariates

Covariates

Covariate-based 

technique



50 

drawn. Each simulation 𝑗 = 1, ⋯ , 𝑆 were used to generate capital levels 

(𝑂𝑝𝑅𝐾𝑆
𝑗 , 𝑂𝑝𝑅𝐾𝐵

𝑗
,𝑂𝑝𝑅𝐾𝐶

𝑗).   

Next, the root mean square errors (RMSE) can be computed according to 

𝑅𝑀𝑆𝐸𝑘 = √1

𝑆
∑ (𝑂𝑝𝑅𝐾𝑘

𝑗
− 𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒)

2
𝑆
𝑗=1 , for k = 𝑆, 𝐵, 𝐶 (4) 

The RMSE is the distance of the capital levels associated to each technique from the 

true capital level. In Equation (4), the lower the level of 𝑅𝑀𝑆𝐸𝑘 , the better the results; 

furthermore, given that the mean square error can be decomposed into the squared bias and 

the variance of the estimators, it was straightforward to know the origin of systematic 

discrepancies among the techniques. In terms of formulas, the bias is defined by 

𝐵𝐼𝐴𝑆𝑘 = 𝑂𝑝𝑅𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑘 − 𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒, for k = 𝑆, 𝐵, 𝐶 (5) 

where 𝑂𝑝𝑅𝐾̅̅ ̅̅ ̅̅ ̅̅
𝑘 =

1

𝑆
∑ 𝑂𝑝𝑅𝐾𝑘

𝑗𝑆
𝑗=1  is the mean operational risk capital level or technique 

k across simulated samples. A positive bias meant that the operational risk level estimated 

with a given technique was systematically larger than the true exposure to risk. The standard 

deviation of the estimator is 

𝑆𝐷𝑘 = √ 1

𝑆−1
∑ (𝑂𝑝𝑅𝐾𝑘

𝑗
− 𝑂𝑝𝑅𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑘 )
2

𝑆
𝑗=1 , for k = 𝑆, 𝐵, 𝐶 (6) 

A high standard deviation meant that the estimator of the operational risk capital level 

obtained by a technique was too uncertain. According to Voss (2013), the following 

approximation holds for the mean square error: 

𝑅𝑀𝑆𝐸𝑘
2 ≅ 𝐵𝐼𝐴𝑆𝑘

2 + 𝑆𝐷𝑘
2
, for k = 𝑆, 𝐵, 𝐶 

(7) 

This implied that the sources of the RMSE variation across techniques could be 

decomposed as bias and variability of the implied operational risk capital levels. 

It is important to mention that this type of simulation-based comparison is widely 

used in academia to compare estimators. Estimators are statistical procedures that map data to 
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parameter estimates. The study carried out in this thesis is about the comparison of data 

integration techniques which are also estimators because they map data to VaR estimates. 

Traditional hypothesis testing cannot be done here in the sense that inferences from an 

observed sample to population statements are not possible because there are no observed 

samples. 

Examples of applications of simulation or Monte Carlo studies abound in the 

literature. For example a quick search at top econometrics and statistical journals suffice to 

find research that apply simulation studies: Matzkin (2003) proposes a non-parametric 

estimation of random functions and compare the estimator with other estimators via bias, 

variance and mean square errors relative to true data generating processes. Chen & Pouzo 

(2012) propose estimators in the context of a conditional moment instrumental variable set up 

and compare the estimators also by using bias, variance and mean square errors. 

More recently, Wang and Zhao (2016) propose a semi-parametric estimator of CVaR 

and compare this estimator with many alternative CVaR estimators by using a measure of 

relative integrated mean square error. Sarafidis (2016) proposes a new estimator of 

parameters in the context of dynamic panel data models where the errors are spatially 

correlated. Safaridis compares the proposed estimator against popular dynamic panel 

estimators by means of root mean square errors. 

The research strategy used in this study is akin to the above papers because it 

compares techniques that deliver VaR levels and therefore a RMSE performance is the tool to 

be used. 

Appropriateness of Research Design 

The design outlined was appropriate to accomplish the goal of this research because a 

well-defined statistical procedure to answer the research question directly is applied to 
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discover if one particular data integration technique is better than the others for revealing the 

true operational risk profile. 

The design was the optimum choice for this specific research. Following the example of 

statisticians and econometricians (Matzkin, 2003; Chen & Pouzo, 2012; Sarafidis, 2016; 

Wang and Zhao, 2016), simulation-based evaluation of estimators is optimal to infer the 

properties of estimators or statistics that depend on the data (Greene, 2012; Stern, 2000). In 

this study, the estimators were operational risk capital levels obtained with the data 

integration techniques, and the data referred to the operational losses. 

Research Questions 

The process of model building and broad reality checking with respect to operational 

losses due to internal fraud in retail banking raises important questions about internal fraud 

processes in financial institutions. The MRQs can be stated as follows: 

MRQ1: If the model is capable of generating internal fraud losses that are similar to ones 

reported in the ORX database and produce correlations with macro environmental 

variables that are similar to those reported in the literature, how are these losses 

related to the Global Financial Crisis that occurred in the middle of the period of 

study? 

This question has been studied for operational losses in general, but not for internal fraud 

losses in retail banking. 

MRQ2: Given the same conditions as MRQ1, how are internal fraud losses related to 

perceptions about corruption in the country where the main headquarters of a bank is 

located?  

Both the behavior of internal fraud losses before and after the 2007-2009 Global Financial 

Crisis and the correlation of those losses against corruption perception indices are not used in 

the model building or the calibration of parameters. Instead, these outcomes are independent 
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results of the model and provide valuable information about the nature of internal fraud losses 

in a financial institution. 

MRQ3: Regarding the selection of the best internal-external data integration technique, is 

there any technique that can be considered best practice to estimate a correct 

operational risk capital across all levels of risk tolerance? 

The simulated data generated by internal fraud model and the application of the three 

described data integration techniques allowed for testing the following key hypotheses: 

H01: No change is evident in the pattern of operational losses before and after the Global 

Financial Crisis. 

H02: Neither the frequency nor the severity of internal fraud operational losses are correlated 

with the corruption perception index of the country where the main headquarters of the 

bank is located. 

H03: None of the three techniques is systematically better as compared to the others across 

possible risk tolerance values. 

A Model for Internal Fraud Events 

An essential element of the research design was the introduction of a dynamic 

simulation model for the occurrence of operational losses due to internal fraud within the 

retail-banking segment of a financial institution. In this section, the model is described in 

more detail. The aim of the model is to explain operational losses due to internal or insider 

fraud in the retail-banking context within each financial institution in terms of a set of 

conditioning factors. The main equation in the model is given by  

𝑙𝑖,𝜏 = 𝛼𝑖,0 𝑟𝑎𝑚𝑝(𝛼𝑖,1 + 𝛼𝑖,𝑐𝑐𝑖,𝜏 + 𝛼𝑖,𝑦𝑦𝑖,𝜏  + 𝛼𝑖,𝑞𝑞𝑖,𝜏  + 𝜉𝑖,𝜏) (8) 

where 𝑙𝑖,𝜏 stands for an internal fraud loss in retail banking at bank i at moment τ. In 

the subscript, the Greek letter τ (tau) denotes moments of time during a given year 𝑡. In 

practice, it can represent days or hours within a year. The variable 𝑐𝑖,𝜏 is the investment or 
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effort made by the bank to avoid the operational loss, or it can measure the level of internal 

controls. This variable can be measured as the share of monetary resources devoted to risk 

management and control and can be expressed as a percentage of operating costs. Higher 

standards of internal risk controls (𝑐𝑖,𝜏 high) imply that the likelihood of operational loss 

events is reduced. Internal fraud events are somewhat more controllable than losses 

originating from external sources (Chernobai et al., 2011). This control aspect of operational 

losses is outlined, for example, in Kochan (2013). The variable 𝑐𝑖,𝜏 is also a measure of the 

control environment set by the organization in their people risk management effort (Blacker 

& McConnell, 2015). 

The amount 𝑦𝑖,𝜏 represents the scale of production in the business line; for retail 

banking, it can represent the number of transactions with bank clients, or it can represent the 

gross retail income. A higher number of transactions imply that the likelihood of operational 

losses increases. In the theory of people risk management, this scale 𝑦𝑖,𝜏 level is a proxy of 

internal and external interactions, which give rise to operation loss risks due to fraud (Blacker 

& McConnell, 2015): The bigger the scale of the business, the higher the number of 

interactions. In an environment of increased employee interaction, fraud risks rise. 

Variable 𝑞𝑖,𝜏 measures the ethical quality of employees. High internal ethical 

standards mean that losses due to internal fraud are less likely to occur. The ethical quality of 

workers is different from the technical quality of workers, which is measured directly by 

worker productivity (e.g., gross income per worker). Therefore, the quantity and quality of 

human capital proposed by Fragnière et al. (2010) and Yang (2010) are key determinants of 

operational losses in the retail-banking segment of any bank. 

From the variables explained so far, the volume of retail loans 𝑦𝑖,𝜏 is directly 

observable. Information about this variable can be gathered from the annual reports of each 

of the banks in the ORX dataset. On the other hand, the level of controls 𝑐𝑖,𝜏 and the quality 
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of employees 𝑞𝑖,𝜏 are not directly observable. Specific feedback equations are required to 

model both variables to elicit their unobserved values and see how they quantitatively affect 

the generation of losses through Equation (8) above. 

The last variable left to be explained in Equation 8 is 𝜉𝑖,𝜏. This variable represents 

unknown factors or shocks that can potentially trigger losses. This random variable is 

assumed to be autocorrelated and heteroskedastic. The idea that loss shocks are 

autocorrelated and may exhibit volatility clustering is similar to what Chernobai and Yildirim 

(2008) and Guegan and Hassani (2013) suggested. In particular 

𝜉𝑖,𝜏 = 𝜌𝑖𝜉𝑖,𝜏−1 + 𝜎𝑖,𝜏𝜇𝑖,𝜏, 𝜇𝑖,𝜏~ 𝑁(0,1), 𝜎𝑖,𝜏
2 =   𝛽0,𝑖 + 𝛽1𝜉𝑖,𝜏−1

2 + 𝛽2𝜎𝑖,𝜏−1
2  (9) 

The coefficient 𝜌𝑖 ∈ [0,1] measures the level of autocorrelation or the persistent 

nature of shocks that may trigger losses. The error term 𝜎𝑖,𝜏𝜇𝑖,𝜏 is heteroskedastic by virtue of 

the time-varying nature of the variance term. The variance term 𝜎𝑖,𝜏
2 , also known as 

conditional variance, depends on past shock realizations as well as past variance itself. The 

way conditional variance behaves is called generalized autoregressive conditional 

heteroscedasticity (GARCH), as proposed in Bollerslev (1986). 

Equation 8 also calls the function 𝑟𝑎𝑚𝑝(. ), which represents the mapping from 

operational loss factors to loss severities. This function has the feature of generating zero 

losses most of the time and positive loss severities at other times. The loss severities are 

correlated with the factors described in Equation 8. Kühn and Neu (2004) and Bardoscia and 

Bellotti (2011) used the same type of function. Formally, the ramp function is defined by 

𝑟𝑎𝑚𝑝(𝑥) = {
𝑥, 𝑥 ≥ 0

0, 𝑥 < 0
 (10) 

To finish the description of Equation 8, all the coefficients (𝛼𝑖,0, 𝛼𝑖,1, 𝛼𝑖,𝑐, 𝛼𝑖,𝑦, 𝛼𝑖,𝑞) 

vary across banks, but they are constant through time. This reflected the fact that operational 
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loss occurrences were sensitive to each of the factors described, which are idiosyncratic for 

each bank. 

The levels of operational risk control, 𝑐𝑖,𝜏, and the ethical quality of the workforce, 

𝑞𝑖,𝜏, need to be simulated due to their unobservable nature. The simulation of these variables 

was achieved by setting up model equations that captured their behavior. 

First, the level of operational risk controls can be modeled by a feedback equation 

whereby the controls or efforts by risk managers to prevent or mitigate operational losses 

depend on the observable state of the system. Control is a fundamental aspect of risk 

management, the actual ISO standard defines risk management as “coordinated activities to 

direct and control an organization with regards to risk” (ISO, 2009). 

The feedback from the observable state of the system to the level of controls is found 

in studies spanning a number of disciplines. For example, in the human resource literature, 

Lukic, Margaryan, and Littlejohn (2013) emphasized the process of learning from incidents 

as a key mechanism for improving management. In the management literature, AlHussaini 

and Karkoulian (2015) emphasized knowledge management in the efforts to mitigate risk in 

the banking industry. In the field of operational research, controls can be associated with 

process improvement (Mizgier, Hora, Wagner, & Jüttner, 2015). A comprehensive 

assessment of risk controls in organizations, as regards to people risk, is found in Blacker and 

McConnell (2015, Chapter 8) where the control process emphasizes the assignment of 

responsibilities at various levels of the organization. 

In this study, the levels of controls are represented by a sufficient statistic denoted by 

𝑐𝑖,𝜏. The learning or improved control process depends on the level of risk. This idea is 

common in stochastic control environments and follows the example of Cooke and Rohleder 

(2005) who proposed a very general feedback model of operational risk. The study 
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incorporated this idea but was explicit about the level of risk that feeds back onto the control 

level. The feedback control equation can be expressed as 

𝑐𝑖,𝜏 =
𝜌𝑐(2𝑐𝑖

∗)

1 + 𝑒
𝛾𝑖(

𝐿̂𝑖,𝜏−1
𝑌𝑖,𝜏−1

−𝜆𝑖)

+ (1 − 𝜌𝑐)𝑐𝑖,𝜏−1 (11) 

where 𝑐𝑖
∗ stands for the optimal level of controls associated with a benchmark loss 

ratio 𝜆𝑖 when the actual loss ratio is given by 
𝐿̂𝑖,𝜏−1

𝑌𝑖,𝜏−1
. The control level at bank 𝑖 depends on the 

observed key risk performance given by the ratio of cumulative average observed losses over 

the stock of retail loans. If the observed loss ratio is beyond the desired level, with 𝛾𝑖 < 0, 

control levels need to be adjusted upward. The degree of the actual adjustment depends on 

the parameter 𝜌𝑐 ∈ [0,1]. The higher 𝜌𝑐, the quicker the control response is. In the opposite 

case, when 𝜌𝑐 is small, the control level is governed by its previous value. 

In Equation 11, 𝐿̂𝑖,𝜏−1 stands for the cumulative average observed losses up to the 

previous time, while 𝑌𝑖,𝜏−1 corresponds to the stock of retail loans granted in the same period. 

Capital letters stand for average quantities, while the circumflex ( ̂ ) denotes that the variable 

is the observable counterpart of an unobservable underlying variable. In the case of 

operational losses, this distinction is important. An observed loss amount in a bank 𝑖 at time τ 

is 𝑙𝑖,𝜏 whereas the true loss is 𝑙𝑖,𝜏. Equation 11 means that banks, which experience a history 

of large losses relative to other banks, will learn from the incidents and therefore increase 

their controls to levels above average. This idea is also suggested in Lukic et al. (2013). 

The second key variable that needs modeling is the quality of the workforce (𝑞𝑖,𝜏), 

which refers to ethical traits that drive worker behavior toward the bank. It measures the 

propensity of workers to commit fraud. For example, an employee can be extremely 

knowledgeable of internal processes at the bank and so be highly productive, but good 

knowledge of internal processes may make it easy to commit fraud (Cummings et al., 2012).  
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The equation that describes the ethical quality of workers is 

𝑞𝑖,𝜏 =
𝜌𝑞(2𝑄̅)

1 + 𝑒𝛿𝑖(𝑎𝑖,𝜏−𝐴̅𝜏)(𝑒𝑏𝑖,𝜏−𝐸𝐵̅̅̅̅̅𝜏)
+ (1 − 𝜌𝑞)𝑞𝑖,𝜏−1 (12) 

where 𝑎𝑖,𝑡 stands for measured technical quality (labor productivity), 𝐴̅  is the cross-

bank average labor productivity, 𝑒𝑏𝑖,𝜏 is the number of employees per branch at bank 𝑖, and 

𝐸𝐵̅̅ ̅̅  is the cross-bank average of employees per branch. Given that 𝛿𝑖 > 0, the sign of the 

impact effect of an increase in technical quality is given by 

𝜕𝑞𝑖,𝜏

𝜕𝑎𝑖,𝜏
= {

< 0 𝑖𝑓 𝑒𝑏𝑖,𝜏 > 𝐸𝐵̅̅ ̅̅
𝜏

≥ 0 𝑖𝑓 𝑒𝑏𝑖,𝜏 ≤ 𝐸𝐵̅̅ ̅̅
𝜏

 (13) 

When there are few workers, increasing productivity is more likely associated with 

high ethical quality because it is easier for banks to screen workers before and after 

recruitment. When the number of workers is high, the workforce screening process is weaker. 

Due to the symmetry of Equation 12, it is also true that 

𝜕𝑞𝑖,𝜏

𝜕𝑒𝑏𝑖,𝜏
= {

< 0 𝑖𝑓 𝑎𝑖,𝜏 > 𝐴̅
𝜏

≥ 0 𝑖𝑓 𝑎𝑖,𝜏 ≤ 𝐴̅
𝜏

 (14) 

which means that an increase in the number of workers harms the ethical quality of 

workers when the average technical productivity of workers is already high. 

Equation 12 incorporates, in an explicit way, two concepts in the theory of people risk 

management. First, the basic fraud model based on the Cressey’s fraud triangle (see Figure 7) 

asserted that fraud has three elements: Motivation or pressure to commit fraud, the 

opportunity to commit fraud, and the rationalization or justification that a fraudster makes to 

him or herself to commit fraud. An employee, often in dire financial straits, using its insider 

information about the firm’s control system, redirects funds to other sources. 
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The insider information about the control environment is possible if the employee 

possesses knowledge about many processes in the bank. In this study, this knowledge is 

approximated by the technical productivity of workers in firm 𝑖 at time 𝑡: 𝑎𝑖,𝜏 

 

Note: Adapted from Other People’s Money: A Study in the Social Psychology of Embezzlement by D. R. 

Cressey. Copyright 1953 by Free Press. 

Figure 7.  Cressey’s fraud triangle.  

The second key fraud theory concept embedded in Equation 12 refers to interactions 

in the firm. In the words of Blacker and McConnell (2015): “Inappropriate interactions 

between individuals inside and outside of the firm give rise to People Risk” (p. 121). Blacker 

and McConnell underscore the qualitative nature of employee interactions. In this study, it is 

argued that the qualitative level of interactions (inappropriate or bad) is increased with the 

quantitative number of interactions that should be proportional to the number of employees 

scaled per branch 𝑒𝑏𝑖,𝜏 at bank 𝑖 during period 𝑡. 

Therefore, Equation 12 shows that the ethical quality of employees (inverse of the 

propensity to commit fraud) falls when both opportunities for fraud and the number of 

inappropriate interaction rise as suggested by the theory of people risk. 

After losses {𝑙𝑖,𝜏} for the set of banks 𝑖 = {1, ⋯ , 𝑁} at high frequencies 𝜏 = {1, ⋯ , 𝑇} 

are generated by the stochastic dynamic system given by Equations 8 to 12, the loss data have 

to be recorded and submitted to the pooled database. In practice, pooled operational loss data 
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in the financial system are gathered in various ways. The main form of data sharing is 

provided by consortium databases collected by multilateral interbank agreements. The data 

are dependent on participating banks that commit themselves to sharing their internal data. 

These consortium databases ensure that confidential data stay protected. The benefits for 

participating banks are the availability and usability of the data. The research was based on 

the summary statistics of the only publically available information disclosed, the ORX 

database (ORX, 2012). 

Of note is that data recorded to build the loss datasets were not the same as the 

original loss data {𝑙𝑖,𝜏} for a number of reasons. For example, the existence of recording 

thresholds indicated that only losses greater than a threshold level 𝑙𝑖
𝑚𝑖𝑛 were submitted to the 

dataset. Moreover, when a loss event occurred, banks did not necessarily know the exact loss 

amount incurred. There is a natural lag between occurrence of an event that involves loss and 

knowledge of the severity of the event. The lag depends on the specific nature of the event. 

For the purposes of this research, it was assumed that the severity of the event was known at 

the same time as the occurrence but that the knowledge was imperfect and subject to 

measurement errors. Therefore, the observed dataset process implies 

𝑙𝑖,𝜏 = 𝑙𝑖,𝜏 + 𝜂𝑖,𝜏 (15) 

where 𝑙𝑖,𝜏 is the observed loss severity, 𝑙𝑖,𝜏 is the true unobserved loss severity 

(underlying loss) and 𝜂𝑖,𝜏 is an unbiased, white noise measurement error distributed normally 

𝜂𝑖,𝜏~𝑁(0, 𝜎𝜂𝑖
2 ).  The measurement errors are independent over time and across banks, but 

heterogeneity across banks is allowed. The losses submitted to the pooled dataset and used 

for internal purposes are described by 

𝐷𝑖 = {𝑙𝑖,𝜏 │ 𝑙𝑖,𝜏 > 𝑙𝑖
𝑚𝑖𝑛} 𝑓𝑜𝑟 𝜏 = 1, ⋯ , 𝑇 

(16) 
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In the data collection process, both 𝜎𝜂𝑖
2  and 𝑙𝑖

𝑚𝑖𝑛 were assumed to be exogenous. In 

fact, the value of 𝑙𝑖
𝑚𝑖𝑛 determined for all member banks of the ORX association is €20,000. 

Once the internal fraud loss simulation model was established, the second aim of this 

study was to use the simulated data to compare three techniques that combine internal data to 

a bank 𝑖 given by 𝐷𝑖 and the external data available from the data exchange given with 

{𝐷𝑗 │𝑗 ≠ 𝑖}.  Before detailing the data integration techniques, it is important to explain the 

parameter calibration procedure to be applied to the simulation model. 

Calibration procedure.  The parameters that specify the dynamic operational loss 

model described above are not free. It was necessary to restrict the parameters to specific 

values. Standard estimation techniques such as linear regression cannot be conducted because 

there was no hard data and the model exhibited unobservable variables like control and 

quality of workers. This implied that the model parameters needed to be calibrated, not 

estimated. Calibration means that each of the parameter values have been chosen following 

heuristic principles. The simulation process was conditional on the value of these parameters. 

The parameters were divided in four subsets. First are parameters that define the main 

equation for internal fraud loss events in Equation 8. Second are parameters that affect the 

feedback equation from operational loss performance to risk controls given by Equation 11, 

third are parameters that describe the evolution of workforce ethical quality given by 

Equation 12, and finally, a single parameter that defines the measurement error in observed 

losses is identified. 

Some parameters are specific to banks (idiosyncratic), so they have the subscript 𝑖 in 

their notation. Other parameters are common to all banks. The procedure for calibration of all 

parameters, general and specific, is described below. There are 13 parameters idiosyncratic to 

each bank (see Table 3). Given that there are up to 52 banks, it would be necessary to pin-

down about 672 idiosyncratic parameters. Given the vast number of parameters to be 
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calibrated, a very simple shrinkage method was introduced to reduce the number of 

parameters to be calibrated based on the available information, the period of analysis, and the 

specific banks under study. 

Table 3  

Parameters of the Dynamic Model for Operational Losses 

Parameter Equation Definition 

𝛼𝑖,0 Internal fraud losses Overall scale of losses 

𝛼𝑖,1 Internal fraud losses Constant within ramp function 

𝛼𝑖,𝑐 Internal fraud losses Impact of controls on losses 

𝛼𝑖,𝑦  Internal fraud losses Impact of gross operating income on losses 

𝛼𝑖,𝑞 Internal fraud losses Impact of quality of workers on losses 

𝜌𝑖 Internal fraud losses Autocorrelation of operational loss shocks 

𝛽0,𝑖  Internal fraud losses Constant in conditional variance of operational loss shocks 

𝛽1 Internal fraud losses Influence of past shocks on conditional variance of operational loss 

shocks 

𝛽2 Internal fraud losses Influence of past variance on conditional variance of operational loss 

shocks 

𝜌𝑐 Loss control Weight of new conditions to affect current controls 

𝑐𝑖
∗ Loss control Control level associated to desired operational loss ratio 

𝛾𝑖 Loss control Controls de sensitivity of control to the loss ratio gap from the desired 

ratio 

𝜆𝑖 Loss control Desired loss ratio 

𝜌𝑞 Ethical quality Weight of new conditions to affect current ethical quality levels 

𝛿𝑖 Ethical quality Determines the sign of impacts from factors 

𝑄̅ Ethical quality Level of average ethical quality across banks 

𝐴̅  Ethical quality Average labor productivity across banks 

𝐸𝐵̅̅ ̅̅  Ethical quality Average number of employees by branch across banks 

𝜎𝜂𝑖
2  Measurement error Variance of measurement errors 

 

In essence, the shrinkage method used in this study took into account the idiosyncratic 

data that were collected for each bank. These data proxy the degree of riskiness and 

heterogeneity of each bank and are used to map the heterogeneous values of the model 

parameters. 
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The starting point for model calibration is the operational loss summary report 

presented in the ORX database (ORX, 2012) for the period 2006-2010. In this report, there 

are 4,357 internal fraud loss events recorded in the retail-banking segment; the gross amount 

of losses measured reaches €880 million. The summary pertains to losses reported to ORX 

during the years 2006-2010 by a number of active member banks during that period. 

Table 4  

Member Banks of the ORX Data Exchange by Country and Selected Dates 

 
Note: Adapted from “Use of External Data for Operational Risk Management” by J. Sabatini and S. Wills, 

presentation at the Use of External Data for Op Risk Management Workshop, Bank of Japan.  Retrieved from 

https://www.boj.or.jp/en/announcements/release_2008/data/fsc0804a4.pdf.  Copyright 2008. “Profile of ORX 

and a Case Study in the Use of Consortium Loss Data” presentation made by J. Sabatini at the First International 

Conference on External Data for Operational Risk, Associazione Bancaria Italiana.  Retrieved from 

http://www.abieventi.it/documenti/2973/Sabatini-JPMorgan-Chase-ORX.pdf.  Copyright 2009.  “Quantifying 

operational risk,” paper presented by S. Patel in the 2010 Seminar on Reinsurance, Casualty Actuarial Society.  

Retrieved from http://www.casact.org/education/reinsure/2010/handouts/CS14-PatelAppendix.pdf.  Copyright 

2010. 

 

Table 4 shows the banks that reported losses to the ORX data exchange during the 

period 2006-2010. The table shows three benchmark dates where membership data were 

publicly available from ORX officials. New members constantly enter the association, and 

some members quit due to bankruptcies, mergers, or acquisitions. For example, Wachovia 

was a member of the association until acquired by Wells Fargo in 2008. 

Bank name Country jun-08 sep-09 may-10 Bank name Country jun-08 sep-09 may-10

1 Commonwealth Bank of Australia (CBA) AUS no no yes 27 Banc Sabadell ESP yes yes yes

2 National Australia Bank AUS no yes yes 28 Banco Bilbao Vizcaya Argentaria (BBVA) ESP yes yes yes

3 Westpac Banking Corporation AUS no no yes 29 Banco Pastor ESP yes yes yes

4 Bank Austria – Creditanstalt AUT yes yes yes 30 Banco Popular ESP yes yes yes

5 Erste Group Bank AG AUT yes yes yes 31 Banco Santander ESP yes yes yes

6 Fortis BEL yes yes yes 32 Banesto ESP yes yes yes

7 Banco Bradesco S/A BRA no yes yes 33 Caixa Catalunya ESP yes yes yes

8 Bank of Nova Scotia CAN yes yes yes 34 Caixanova ESP no yes yes

9 Bank of Montreal (BMO Financial Group) CAN yes yes yes 35 Caja Laboral ESP yes yes yes

10 Royal Bank of Canada (RBC) CAN yes yes yes 36 Cajamar ESP yes yes yes

11 Toronto Dominion Bank Group (TD BG) CAN yes yes yes 37 Skandinaviska Enskilda Banken (SEB) SWE yes yes yes

12 Danske Bank A/S DNK yes yes yes 38 Standard Chartered Bank GBR no yes yes

13 BNP Paribas FRA yes yes yes 39 Barclays Bank GBR yes yes yes

14 Credit Agricole SA FRA yes yes yes 40 HBOS PLC GBR yes no no

15 Société Générale FRA no no yes 41 HSBC Holdings plc GBR yes yes yes

16 Commerzbank AG DEU yes yes yes 42 Lloyds Banking Group GBR yes yes yes

17 Deutsche Bank AG DEU yes yes yes 43 Royal Bank of Scotland Group GBR yes yes yes

18 Deutsche Postbank AG DEU no yes yes 44 Bank of America USA yes yes yes

19 Bank of Ireland Group IRL yes yes yes 45 Capital One USA no yes yes

20 Intesa SanPaolo ITA yes yes yes 46 JPMorgan Chase & Co. USA yes yes yes

21 ABN AMRO NLD yes yes yes 47 National City USA yes no no

22 ING Group NLD yes yes yes 48 PNC Bank USA no yes yes

23 Rabobank Nederland NLD no yes yes 49 US Bancorp USA yes yes yes

24 Banco Portugues de Negocios PRT yes yes yes 50 Wachovia Corporation USA yes no no

25 First Rand ZAF no yes yes 51 Washington Mutual USA yes no no

26 Hana Bank KOR yes yes yes 52 Wells Fargo & Co USA no yes yes

https://www.boj.or.jp/en/announcements/release_2008/data/fsc0804a4.pdf
http://www.casact.org/education/reinsure/2010/handouts/CS14-PatelAppendix.pdf
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As Table 4 shows, member banks are gathered all over the world but belong mainly to 

advanced economies (Appendix B contains the full names of banks and their countries). One 

important feature of the period under study is the Global Financial Crisis of 2007-2009 that 

was particularly acute in some of the member banks in the dataset. 

Given the information in Table 4, the model calibration implied a varying number of 

total banks in the sample. For example, up to end of 2008, there are 𝑁 = 39 banks. In year 

2009, 10 banks entered the data exchange association, and four banks quit the association, 

making 𝑁 = 45 banks participating in the data exchange. By the end of 2010, one more 

banks entered the association, making 𝑁 = 48 active banks. We track 52 banks in total and 

35 banks that belongs to ORX the entire five-year period. The key workable assumption is 

that arrivals and departures from the association are set at the beginning of each year. In 

addition, the database contained only banks that operated a retail-banking segment. 

Therefore, some banks that belong to the ORX association but only perform investment 

banking or other lines of business were omitted from the database. 

For each of the N banks and years under analysis, a set of variables categorized as key 

risk indicators or conditioning factors were gathered. These variables condition the 

occurrence of losses in the model or are useful devices to calibrate idiosyncratic parameters. 

The set of conditioning variables is described in Table 5. All the variables indicate 

idiosyncratic factors to each bank that proxy risk exposure such as number of employees or 

size of retail loans. These variables are useful devices to apply the shrinkage procedure 

because they discriminate among banks. For example, according to Cressey’s fraud triangle 

explained before, banks that have higher employees per branch relative to the mean among 

banks might be deemed riskier than those that have lower employees per branch. Therefore, 

the dispersion of employees per branch across banks is useful to calibrate parameters across 

banks. 
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Table 5  

Observable Variables that Condition the Simulation of Losses in Each Bank 

Nomenclature Description Type 

𝑒𝑖,𝑡 Number of employees Idiosyncratic 

𝑏𝑖,𝑡 Number of branches and offices Idiosyncratic 

𝑎𝑖,𝑡 Retail assets (millions of Euros) Idiosyncratic 

𝑦𝑖,𝑡 Retail loans (millions of Euros) Idiosyncratic 

𝑚𝑖,𝑡 Proxy for operational risk management awareness Idiosyncratic 

ℎ𝑖,𝑡 Proxy for human resource awareness Idiosyncratic 

In contrast to the model specification in the preceding subsection, the observed 

variables are indexed by time (𝑡), where 𝑡 stands for end-of year variables. Idiosyncratic 

variables for the years 2006 through 2010 were obtained from annual reports that member 

banks published on their Web pages. The values of interest were extracted from the 

descriptive information, balance sheets, and income statements contained in the 

aforementioned reports. These reports are publicly available as part of the information 

disclosure by banks directed to investors. The financial statements in these reports are 

compatible with sound regulatory and accounting practices and, on the majority of cases, they 

accord to GAAP. 

An example of the information recovered from these annual reports is given in Figure 

8. The figure shows that the size of banks in the ORX dataset is heterogeneous. Each dot 

refers to a specific bank. The number of employees ranges from 10 to about 140,000, while 

the number of branches varies from 300 to about 10,000. In addition, both the number of 

employees and number of branches show some degree of correlation. 



66 

 
Note: Information extracted from bank’s annual reports as of December 2006.   

 

Figure 8. Number of branches and employees for banks in the ORX dataset. 

In addition to the objective information included in the annual reports, proxy variables 

related to operational risk controls and the quality of human resources at each bank were 

constructed. Thus, variable 𝑚𝑖,𝑡 measures operational risk management awareness implicit in 

the information shared with the public. This awareness proxy was obtained from textual 

analysis of annual reports; for example, the number of times a word or a phrase occurred 

within each report divided by the number of pages. An example of this type of textual 

information is given with Figure 9, which depicts the ratio of word counts of the expression 

“operational risk” as a percentage of the total number of pages. This variable could arguably 

reflect the extent of awareness of each bank toward operational risk management. The idea of 

extracting information from textual sources is not new in finance (Kearney & Liu; 2014). 

Textual information, also known as textual sentiment, reflects objective conditions within 

banks. 
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Note: For each bank, average percentages are reported.   

 

Figure 9.  Word counts of the expression “operational risk” as percentage of page counts in 

each report. 

 

Other textual expressions that reflect operational risk awareness can be analyzed, for 

example, the use of the acronym AMA. To assess the validity of this type of proxy 

information, the textual indicators can be contrasted to objective measures like realized 

amount of total operational losses, as reported in Benyon (2008), for an important subset of 

banks in the ORX dataset in 2008. 

The variable ℎ𝑖,𝑡 is intended to measure the awareness of banks about human 

resources. The annual reports also contain information about policies geared to improve the 

management and quality of human resources. So, human resource awareness could be 

obtained from textual analysis by extracting word counts of expressions such as “employees” 

or “human resources.” The assumption was that these indicators reflect the quality of the 

workforce and are related inversely to the occurrence of internal fraud. 
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All the extracted information from bank’s disclosures reflects the state of banks at 

calendar year-ends. Therefore, in order for these variables to be entered into the simulation 

model, it is necessary to perform simple linear interpolations to complete data for all 

moments of time 𝜏 between any consecutive years 𝑡 and 𝑡 + 1. It is assumed that time 𝜏 will 

refer to business days within years. The existence of holidays was excluded in these 

calculations. 

Five parameters affect the outbreak of operational losses in Equation 8. All these 

parameters are idiosyncratic; therefore, it was necessary to devise a way to calibrate all of 

them in a simple form. Let 𝛼𝑖,𝑗 be a parameter in Equation 8 for 𝑖 = 1, ⋯ 𝑁, and 𝑗 =

{0,1, 𝑐, 𝑦, 𝑞}. Then for each 𝑗, there is a mean parameter value taken from the cross section of 

banks. 𝛼̅𝑗 = ∑ 𝛼𝑖,𝑗
𝑁
𝑖=1 . The parameters of interest were the 𝛼𝑖,𝑗 for each bank 𝑖. The idea is 

that by pinning down the value of 𝛼̅𝑗, it is possible to pin down the idiosyncratic variables 𝛼𝑖,𝑗 

as well. 

To complete the process, it was necessary to work with risk exposure indicators 

calculated from the data depicted in Table 5. This indicators are defined by 𝑥𝑖,𝑡. This key 

variable can be given, for example, by the ratio of employees per branch or the technical 

quality of workers (labor productivity) measured as the ratio of total retail loans to the 

number of employees. These measures can be calculated for each financial institution and for 

each calendar year in the sample. For example, Figure 10 depicts a histogram of the number 

of employees per branch at the end of 2006 in all banks belonging to the dataset by the end of 

that year. 
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Figure 10.  Histogram of the number of employees per branch across banks in the ORX 

database as of December 2006. 

 

Next, let 𝑥̅ = 1

𝑇𝑁
∑ ∑ 𝑥𝑖,𝑡

𝑁
𝑖=1

𝑇
𝑡=1  be the overall average level of the risk indicator and 

𝑥̅𝑖 = 1

𝑇
∑ 𝑥𝑖,𝑡

𝑇
𝑡=1  the average level of each indicator for bank 𝑖. If there are grounds to postulate 

direct proportionality between the coefficient 𝛼𝑖,𝑗 and the indicator  𝑥̅𝑖, then each parameter 

can be pinned down according to  

𝛼𝑖,𝑗 = (
𝑥̅𝑖

𝑥̅
) 𝛼̅𝑗 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝑁 

(17) 

For example, for parameters 𝛼𝑖,0, 𝛼𝑖,1, and 𝛼𝑖,𝑦, the choice of 𝑥𝑖,𝑡 =
𝑒𝑖,𝑡

𝑏𝑖,𝑡
 is a reasonable 

option. This means that loss event sensitivities are correlated with the ratio of employees to 

banks. In this case, only the parameter 𝛼̅𝑗 need be calibrated. Once its value is determined, 

Equation 17 fixes the distribution of 𝛼𝑖,𝑗 parameters across banks. The parameters 𝛼𝑖,𝑐 and 

𝛼𝑖,𝑞 are likely to be inversely proportional to the ratio 𝑥𝑖,𝑡 =
𝑒𝑖,𝑡

𝑏𝑖,𝑡
. For example, controls are 

more effective when there are fewer people working at branches. 

The adjustment can be made according to 

𝛼𝑖,𝑗 = (
𝑥̅

𝑥̅𝑖
) 𝛼̅𝑗 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝑁  (18) 
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Parameters 𝜌𝑖 and 𝛽0,𝑖 can be adjusted in the same fashion. In the case of the 

autocorrelation of shocks 𝜌𝑖, it is necessary to set bounds 𝜌𝑚𝑖𝑛 > 0 and 𝜌𝑚𝑎𝑥 < 1, such that 

the resulting operation 𝜌′𝑖 = (
𝑥̅𝑖

𝑥̅
) 𝜌 can be further modified to become bounded within the 

range [𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥]. To do so, it is first necessary to calculate 𝜌′𝑚𝑖𝑛 and 𝜌′𝑚𝑎𝑥 with the 

parameters obtained given 𝜌 and then to apply 

𝜌𝑖 = 𝜌𝑚𝑖𝑛 + (
𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛

𝜌′𝑚𝑎𝑥 − 𝜌′𝑚𝑖𝑛
) (𝜌′𝑖 − 𝜌′𝑚𝑖𝑛) 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝑁 (19) 

The parameter 𝛽0,𝑖 controls for the unconditional variance of operational loss shocks 

in each bank, as shown in Equation 9. The dispersion of this parameter across banks can also 

apply the principle underlying Equation 17. 

Three idiosyncratic parameters affect the level of controls (𝑐𝑖
∗, 𝜆𝑖 , 𝛾𝑖). The first 

parameter measures the long-run value of control levels. Current control levels may be 

stricter or easier than this long-run benchmark, which also needs to be on the range [0,1]. To 

calibrate the dispersion of this parameter, the indicator 𝑚𝑖,𝑡 that measures operational risk 

management awareness can be used in the same fashion as the calibration of the dispersion of 

parameter 𝜌𝑖. Parameter 𝜆𝑖 reflects the operational loss level as a ratio of operating income 

that banks are ready to accept. Operational loss ratios larger than this benchmark 𝜆𝑖 prompt 

banks to increase their controls. Calibration of this parameter for each bank is problematic 

because the available information does not provide reasonable proxies for this ratio. 

Therefore, it was assumed that this ratio is similar across all banks in the sample. Its level 

was determined by the median ratio of cumulative operational losses to gross operating 

income for 2008 provided by Benyon (2008). 

Parameter 𝛾𝑖 is a feedback adjusting parameter. From Equation 11, it is easy to note 

that for controls to tighten whenever the operational loss ratio increases, the parameter 𝛾𝑖 has 

to be negative. The greater 𝛾𝑖 is in absolute value, the greater the impact on control levels. 
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Again, it is reasonable to assume that the absolute value of 𝛾𝑖 is directly proportional to the 

level of operational risk awareness 𝑚𝑖,𝑡 and thus, the calibration of the dispersion in 𝛾𝑖 will 

apply the same steps outlined above. 

In terms of the ethical quality of human resources in a bank, the parameter 𝛿𝑖 

measures how sensitive each bank’s workforce quality is to the bank’s size and labor 

productivity. Equation 12 assumes that size and labor productivity may be detrimental to 

workers ethical quality. Therefore, parameter 𝛿𝑖 is positive, and the higher it is, the more 

sensitive ethical quality becomes. The sensitivity may be related inversely to the human 

resource awareness proxy ℎ𝑖,𝑡 extracted from the data. Human resource awareness is related 

to degree of importance of the workforce in terms of well-being, compensations, and on-the-

job training, for example. 

The last idiosyncratic parameter calibration that needs a shrinkage procedure is the 

variance 𝜎𝜂𝑖
2  of the measurement error in recording the severity of operational losses. It is 

reasonable to assume that higher severity levels are associated with higher measurement error 

variances.  To reflect this feature, the study used the aggregate operational loss figures 

reported in Benyon (2008). The losses reported by Benyon refer to the aggregate of all types 

of operational losses, not just retail banking.  A summary of this data is depicted in Figure 11. 

The figure shows the existence of an extreme asymmetry of operational loss severities; in 

fact, two important modes appear for losses less than €10 million and for losses larger than 

€100 million. It is assumed that banks that face large loss severities are likely to have large 

variances in their measurement errors when they record operational losses. Therefore, the 

dispersion in 𝜎𝜂𝑖
2  will be calibrated by the dispersion of loss severities documented in Benyon 

(2008). 
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Note: For each bank, average percentages are reported. Ranges of losses are expressed in millions of Euros.  The 

continuous line is the histogram; the dashed line is a polynomial smoothing of the original histogram. Data were 

obtained from “Top 100 banks—A new dawn for disclosure” by D. Benyon in OpRisk & Compliance, 9(10), 

22-29.  Copyright 2008. 

 

Figure 11.  Histogram of aggregate 12-month cumulative operational losses for October 2008 

in banks in the ORX database. 

 

After the shrinkage procedure is executed, the space of parameters to calibrate shrinks 

to 20. The mean value 𝛼̅𝑗 of the parameters in the operational loss (Equation 8) was calibrated 

to generate loss severities compatible with the 2012 summary of the database for retail-

banking losses due to internal fraud (ORX, 2012). The mean value of the parameter 𝛽̅𝑜 was 

set to pin down the frequency of losses documented in the ORX summary. Parameters 𝜌̅, 𝛽1, 

and 𝛽2 determined the clustering pattern of operational loss shocks. According to Chernobai 

and Yildirim (2008), internal fraud losses exhibit low clustering as opposed to other type of 

losses. Hence, the calibration assigned relatively low values to these parameters in the range 

0.01 and 0.1. 
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Two parameters measure speed of response. First, 𝜌𝑐 measures how quickly internal 

controls are implemented to achieve a new level after new conditions arise and are expected 

to persist. Second 𝜌𝑞 measures how fast the average ethical workforce achieves a new level 

when conditioning factors change with the expectation that they last. With respect to 𝜌𝑐, in 

broad terms, control levels do not change from one day to another, and some changes 

necessary to implement control adjustments may require budgeting, planning, and extra 

human resources. In a given year, the average worst scenario would be to wait half a year to 

implement full changes. Thus, if the number of business days in a year is about 260 and the 

number of working days to implement a new long-run control level is 130, approximately 65 

days are necessary for implementing half the changes. Due to the auto-correlated nature of 

controls in Equation 11 and a half-life of 𝜏′ = 65 days, the parameter 𝜌𝑐 is then set to the 

value 𝜌𝑐 = 1 − (1

2
)

1 𝜏′⁄
≅ 0,011. Half-life properties of autoregressive models have been 

outlined in Andrews (1993). Changes in the average level of ethical quality of the workforce 

may take even more time, and therefore, the parameter 𝜌𝑞 would have to be lower than the 

benchmark of 0.011. 

Two parameters need to be determined in the control Equation 11, namely the mean 

value of long run control levels 𝑐̅∗ and the the mean sensitivity of control to loss ratio 𝛾̅. In 

ethical quality (Equation 12), there are four parameters to be set, two of them being the 

average labor productivity 𝐴̅  across banks and the average number of employees per branch 

across banks 𝐸𝐵̅̅ ̅̅ , which are readily estimable from the data. The other two variables, the 

average ethical quality sensitivity to factors 𝛿̅ and the average level of ethical quality across 

banks 𝑄̅, as well as the average variance of measurement errors in the data recording process 

𝜎̅𝜂
2, are explained below. 
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All the variables yet to be explained, grouped with the vector (𝑐̅∗, 𝛾̅ , 𝛿̅, 𝑄̅, 𝜎̅𝜂
2), can be 

set in a way to generate sequences of loss severities and frequencies that have realistic 

properties documented in the literature. For example, Cope, Piche, and Walter (2012) studied 

how operational loss severities are associated with macroeconomic variables. In particular, 

Cope et al. found that internal fraud losses occur in countries where ORX member banks 

work are strongly and positively associated with the countries’ legal frameworks that favor 

insider trading and are negatively associated with country-specific constraints on executive 

power in banks. Therefore, the sequence of loss severities generated in the simulation model, 

conditional on the parameters chosen, have to mimic a good association with these 

macroeconomic factors. Data for these macroeconomic factors are available in Cope et al. 

In terms of the frequency of losses and their possible determinants, Chernobai et al. 

(2011) found that there is a strong and robust association between monthly frequency of 

losses and firm specific variables related to broad risk management conditions. In particular, 

there is a positive association between frequency of losses and equity volatility and a negative 

association between frequencies and Tier 1 capital ratios. Therefore, the frequency of losses 

generated in the simulation was contrasted with these indicators. The data for Tier 1 capital 

ratios are available from annual reports. 

Finally, Moosa (2011) reported a strong association between average severities in the 

USA and the unemployment ratio to show that operational losses may be linked to the overall 

state of the economy. Thus, another important aspect in the calibration procedure was letting 

the average loss severities identified for countries in the simulated dataset be negatively 

associated with each country’s GDP. 

Overall, the procedure described helped calibrate the entire set of parameters in a 

meaningful and realistic way. The data simulated with the model was found to be compatible 

with micro and macroeconomic features and comparable with real datasets. 
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Data Integration Techniques 

The key contribution of this research is the comparison of the three data integration 

techniques. This section elaborates on the techniques under evaluation. 

Scaling technique. Following the example of Shi et al. (2000) and Na et al. (2006), 

operational losses depend on idiosyncratic and common factors 

𝑙𝑖,𝜏 = (𝑦𝑖,𝜏)
𝜓

𝐻(𝑋𝜏) (20) 

The common component 𝑋𝑡 refers to the statistical influence on losses caused by 

general factors such as macroeconomic, geopolitical, and cultural environments, and general 

human nature, among others. The idiosyncratic component 𝑦𝑖,𝑡 is assumed to be deterministic 

and refers to more specific factors such as the size, income, or number of transactions in 

Bank 𝑖. Bank 𝑖 cannot use losses 𝑙𝑗,𝑡 directly, but given the proportionality between losses 

given by 
𝑙𝑗,𝜏

(𝑦𝑗,𝜏)
𝜓 =

𝑙𝑖,𝜏

(𝑦𝑖,𝜏)
𝜓 , it has to modify external lossess via the formula 

𝑙𝑗,𝜏
𝑠 = (

𝑦𝑖,𝜏

𝑦𝑗,𝜏
)

𝜓

𝑙𝑗,𝜏 (21) 

The parameter 𝜓 can be estimated through simple OLS regression. Once the data were 

scaled, it could be used in the LDA process as described in Equations 2 and 3. To illustrate 

the process, Table 6 shows a hypothetical data matrix for an individual bank. Events are 

dated to the day and comprise the recording of the amount of losses in Euro in each event and 

the value of risk exposure indicators at the time of each event. 

If the bank were to use only the data as outlined in Table 6, it would have only five 

observations for the frequency of events per year to estimate the parametric distribution of 

loss frequencies needed in the LDA. In addition, it would only have 12 loss severity events to 

estimate a loss severity PDF. With so few observations, the estimation of the densities and 

distributions to apply the LDA would be highly unreliable. 
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Table 6  

Example of an Operational Loss Data Matrix in an Individual Bank 

Year 1 Year 2 Year 3 Year 4 Year 5 

Event 1 Event 1 Event 1 Event 1 Event 1 

Event 2  Event 2 Event 2 Event 2 

  Event 3  Event 3 

  Event 4   

2 1 4 2 3 

Note: All events are dated on the day of recognition and imply a severity amount.  The last row provides the 

count of events per year.   

 

With the Scaling technique, pooling the loss frequency information of N banks over a 

span of five years permitted up to 5×N data points to estimate the distribution function of 

counts. For example, with N = 41, the data sample reaches 205 and thus the estimation of a 

Poisson or Negative Binomial distribution for the frequency of losses is more reliable. The 

estimated distribution of loss event frequencies is denoted by 𝑝̂𝑛. Moreover, all loss 

severities, previously scaled according to formula in Equation 12, could be pooled to have a 

larger dataset to estimate a PDF severity, which can be a Weibull, Lognormal, or other 

plausible known density. The estimated density of loss severities is denoted by 𝑓𝑧. 

Once both the frequency distribution 𝑝̂𝑛 and the severity density 𝑓𝑧 were estimated, 

the following Monte Carlo steps were in place to generate draws from the total loss per year: 

1. Draw the random variable 𝑛 for the number of times a loss occurs in a year from the 

distribution 𝑝̂𝑛.   

2. Draw 𝑛 number of loss severities from 𝑓𝑧: 𝑧1, 𝑧2, ⋯ , 𝑧𝑛. 

3. Calculate the total loss per year according to Equation 2: 𝑆(1) = ∑ 𝑧𝑖
𝑛
𝑖=1 . 

4. Repeat steps 1 to 3 until reaching a sufficient number 𝐽 of simulated aggregate 

losses: 𝑆(1), 𝑆(2), ⋯ , 𝑆(𝐽). 

5. Order the simulated aggregate losses from lowest to highest and obtain extreme 

percentiles from the simulated aggregate losses; for example, 𝑂𝑝𝑅𝐾𝑠
99.9 used the 99.9 

percentile for aggregate losses in applying the scaling technique.   
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Bayesian technique. Consider a random vector of internal data to a bank given by 

𝛸 = (𝛸1, 𝛸2, ⋯ , 𝛸𝐷) with conditional joint density ℎ(𝑥│𝜙), where 𝜙 is a vector of random 

parameters and 𝑥 is a realization of 𝛸. ℎ(. │𝜙) can represent either severity or loss frequency 

data. Both 𝑥 and 𝜙 are considered to be random variables with joint density, so if 

ℎ(𝑥, 𝜙) = ℎ(𝑥│ 𝜙)𝜋(𝜙) = 𝜋(𝜙│ 𝑥)ℎ(𝑥) (22) 

then, the Bayesian theorem implies: 

𝜋(𝜙│ 𝑥) ∝ 𝜋(𝜙)ℎ(𝑥│ 𝜙), (23) 

where the symbol ∝ means the left-hand side of the equation is proportional to the 

right-hand side. 𝜋(𝜙│ 𝑥) is the posterior density of parameters given the data, and ℎ(𝑥│ 𝜙) 

is interpreted as the likelihood of the data, and thus, it is a function of 𝜙. This likelihood 

ℎ(𝑥│ 𝜙) typically refers to the Poisson or negative binomial distribution in the case of 

frequencies and to the Lognormal, Weibull, Pareto, or other densities in the case of severities.  

𝜋(𝜙) is the prior density of the parameters. This prior density conveys all the information 

prior to the use of internal data; this information may be comprised of expert opinions about 

parameters, by external data to a firm, or by both. 

The determination of prior densities means that it was necessary to elicit or estimate 

hyperparameters that defined the shape of these densities. Studies such as Lambrigger et al. 

(2007), Shevchenko (2011), and Shevchenko and Peters (2013) applied an empirical 

Bayesian approach to estimate prior densities based on external data, expert opinions, or both. 

Sub-Section 4.4 in Shevchenko (2011) provided a detailed explanation of the procedure to 

obtain the required prior. 

Once the prior density was available, the Bayesian LDA necessitated building 

predictive densities for the planned year (𝑇 + 1), based on the available internal data up to 

year 𝑇.  The predictive densities are given by 
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ℎ(𝑥𝑇+1│ 𝑋𝑇) = ∫ ℎ(𝑥𝑇+1│ 𝜙)𝜋(𝜙│ 𝑋𝑇) 𝑑𝜙, (24) 

where ℎ(𝑥𝑇+1│ 𝑋𝑇) is the density of future values 𝑥𝑇+1 conditional on the available 

internal data 𝑋𝑇 up to time 𝑇. In the case of event frequencies in this study, this predictive 

density is denoted with 𝑝𝑛(𝑛𝑇+1│ 𝑁𝑇), with 𝑁𝑇 comprising the counts of events observed in 

all past years up to year 𝑇.  Likewise, in the case of severities, the notation for the predictive 

density is 𝑓𝑧(𝑧′│ 𝑍), with 𝑧′ representing the size of the next severity and 𝑍 the history of all 

severity levels observed in the bank.  In practical terms, the Bayesian LDA could be 

implemented with the following steps: 

1. Draw the relevant frequency parameter 𝜙𝑛 according to Equation 23. A sampling 

algorithm called the Gibbs sampler is necessary to perform this task, as detailed in 

Shevchenko (2011). 

2. Draw the random variable 𝑛 for the number of times a loss event will occur in the next 

year by using the likelihood 𝑝𝑛(𝑛𝑇+1│ 𝜙𝑛). Shevchenko (2011) and Lambrigger et al. 

(2007) have provided details of how to draw random samples from 𝑝𝑛(𝑛𝑇+1│ 𝜙𝑛).   

3. Draw the relevant severity parameter 𝜙𝑧 according to Equation 23 and using the Gibbs 

sampler outlined in Shevchenko (2011).   

4. Draw 𝑛 random variables for the severity of losses from 𝑓𝑧(𝑧′│ 𝜙𝑧).  Shevchenko (2011) 

and Lambrigger et al. (2007) provided details of how to draw random samples from 

𝑓𝑧(𝑧′│ 𝜙𝑧).  The n random variables are 𝑧′1, 𝑧′2, ⋯ , 𝑧′𝑛 

5. Calculate the total loss per year according to 𝑆(1) = ∑ 𝑧′𝑖
𝑛
𝑖=1 .   

6. Repeat steps 1 to 5 until reaching a sufficient number 𝐽 of simulated aggregate losses with 

𝑆(1), 𝑆(2), ⋯ , 𝑆(𝐽).   
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7. Order the simulated aggregate losses from lowest to highest and obtain extreme 

percentiles from the simulated aggregate losses.  For example, 𝑂𝑝𝑅𝐾𝐵
99.9 uses the 99.9 

percentile for aggregate losses by applying the Bayesian technique. 

Covariate-based Technique. This technique relied on estimating the distribution for 

the frequency of loss events and the density of severities using the entire internal and external 

data and conditioning the parameters on observed covariates. 

If observations {𝑛̂𝑖,𝑇∗} are counts of occurrence of loss events {𝑙𝑖,𝑡} during a series of 

years 𝑇∗ for all banks 𝑖, the assumption was that all these counts originated from the same 

parametric distribution 𝑓𝑛 with parameters varying as functions of observed covariates.  A 

possible form of this function was the Poisson distribution: 

 𝑓𝑛(𝑛̂𝑖,𝑇∗) =
(𝜆𝑖)

𝑛̂𝑖,𝑇∗ exp (−𝜆𝑖)

𝑛̂𝑖,𝑇∗!
, (25) 

where the key assumption was that 𝜆𝑖 depends on observable covariates 

𝜆𝑖 = 𝜆(𝑦̅𝑖,𝑇∗ , 𝑒𝑖̅,𝑇∗), (26) 

where the variables on the right-hand side of Equation 26 represented averages of the 

observed covariates for years 𝑇∗ and by bank.   

In this study, the advice of Ganegoda and Evans (2013) was followed.  Each loss 

event 𝑙𝑖,𝑇∗ comes from a density function 𝑓(𝑙𝑖,𝑇∗; 𝛩𝑖) conditional on the set of parameters 𝛩𝑖.  

Ganegoda and Evans focused on a vector of two parameters 𝛩𝑖 = (𝜇𝑖 𝜎𝑖)′.  Each of these 

parameters was linked to covariates through link functions 

𝑔1(𝜇𝑖) = 𝑍1𝜔1  
 

and 

 

 

𝑔2(𝜎𝑖) = 𝑍2𝜔2,  

where 𝑍1 and 𝑍2 denoted the covariates that affect the distributional parameters and 

the 𝜔′s were the corresponding sensitiveness coefficients.  The covariates included internal 
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and external data.  The idea was to estimate the maximum likelihood estimator of parameters 

𝜔1 and 𝜔2 through 

max
𝜔1,𝜔2

∑ 𝑓(𝑙𝑗,𝑇∗; 𝜔1, 𝜔2)

𝑗=1

 (27) 

After estimating 𝜔1 and 𝜔2, it was straightforward to condition the severity density 

function to the specific covariates of the financial institution under study and perform the 

LDA to obtain the quantity of interest 𝑂𝑝𝑅𝐾𝐶
99.9.   

Summary 

In this chapter, the design for the research was elaborated upon by describing the steps 

taken in the implementation of the equation calibrations applied in Chapter 4. The research 

design applied a simulation-based approach common in the statistics literature (Greene, 2012; 

Stern, 2000; Voss, 2013). The approach involved three main implementation steps: (a) Data 

simulation through an internal fraud model, (b) application of data integration techniques, and 

(c) a simulation-study evaluation about which data integration technique delivered a level of 

operational risk capital closer to the true operational risk implied by the data simulation 

model. 

Each of the steps implemented was covered in some detail. The data simulation model 

resembles work on dynamic operational risk modeling developed in Kühn and Neu (2004), 

Leippold and Vanini (2005), and Bardoscia and Bellotti (2011), but for the most part, 

incorporated innovative ideas to model internal fraud losses that have not yet been studied in 

the literature. A relevant element of the process was the calibration of model parameters to 

simulate operational loss data that looked like real data in terms of statistical correlations with 

observable variables. The data integration techniques applied the techniques discussed in the 

literature review. The Scaling technique was based on the work of Shih et al. (2000) and Na 

et al. (2006), the Bayesian technique on the work of Lambrigger et al. (2007, 2008), and the 
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Covariate-based technique on the work of Ganegoda and Evans (2013). 

In the next chapter, the full implementation of the research design is documented. 

Being a quantitative design, the implementation relied upon software codes developed in the 

R programming language to carry out all the design steps described in this chapter. The R 

language is a free software environment for statistical computing and graphics (R Core Team, 

2016). 

The database of key operational risk indicators, as outlined in Table 5, for banks listed 

in Table 4 was used to test the model developed. All necessary data described in the 

calibration procedure were gathered in order to apply the calibration design outlined. The 

calibrated model was used to simulate operational loss data across all member banks for the 

years 2006 to 2010 and to simulate data for a specific bank. The five-year data across all 

banks were used in the data integration techniques outlined in this chapter to produce 

operational risk capital levels 𝑂𝑝𝑅𝐾𝑖, for 𝑖 = 𝑆, 𝐵, 𝐶. The simulation of a large enough 

operational loss data sequence for a specific bank helped to determine the true operational 

risk profile for that bank and thus helped determine the true 𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒. 

Last, in Chapter 4, a simulation study to determine which of the data integration 

techniques are the most valid and reliable was applied. Justification for this step was 

explained in detail. The final step and the focus of the next chapter was answering to the 

research questions motivating this study. In particular, how are operational losses related to 

the 2007-2009 Global Financial Crisis? (MRQ1), how are internal fraud losses related to 

perceptions about corruption in the country where the main headquarters of a bank is located? 

(MRQ2), and is there any technique that can be considered best practice to estimate a correct 

operational risk capital across all levels of risk tolerance? (MRQ3).  
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Chapter 4: Results 

In this chapter, the set of results obtained by applying the quantitative procedure 

outlined in the previous chapter is described. First, a thorough description of the dataset is 

given. Second, the results of the calibration procedure to set up the model to make 

operational loss simulations for internal fraud in retail banking are reported. Third, 

simulations that capture the loss profile are performed, given the environment and conditions 

that banks faced during the period 2006-2010 (See Table 4). These conditions are both 

idiosyncratic and global. Fourth, with the simulated data for each bank and their 

corresponding conditioning factors, the data combination techniques defined in Chapter 3 are 

implemented. Fifth, the most important results of the study, the comparison of the different 

techniques with reference to the benchmark simulation, is presented. Last, the questions are 

answered and a conclusion to the analysis reached. 

The Data 

Because the thesis is concerned about operational losses due to internal fraud in retail 

banking for a set of banks belonging to the ORX data exchange, it was necessary to work 

with quantitative data on this particular operational loss as well as all the possible risk 

indicators per bank and per country of each bank. These key risk indicators refer to 

idiosyncratic and macroeconomic or other factors that affect the particular type of loss under 

study. 

Most but not all the data necessary to perform the analysis belongs to the ORX data 

exchange (Appendix C contains a full list of the data and their sources). Access to this dataset 

is not possible unless the research is conducted from within one of the banks that belong to 

the ORX exchange. The dataset is proprietary, which means that a researcher cannot make it 

public for scrutiny or replication. 
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Instead, the data gathered for the analysis performed relied entirely on public 

information. Specifically, the analysis was based on data downloaded from websites of each 

of the banks belonging to the ORX exchange that perform retail operations. All banks publish 

their annual reports and financial statements each year and sometimes more often. These 

reports do not contain information about operational losses but contain most of the 

idiosyncratic data needed to infer operational losses. In Table 7, the type of data collected 

from each of the reports or financial statements is summarized. 

Table 7  

Data Gathered from Public Sources about Banks in the ORX Exchange 

Key Concept Measure 

No Number of bank index 

bname Bank name index 

country Bank headquarters' country index 

code Country and Bank Code index 

year Year index 

ccy Report's Currency Code text 

branches Number of branches and offices (Retail) count 

staff Number of staff (total) count 

staff_r Number of staff (Retail) count 

loans Total loans to customers Currency millions 

loans_r Total loans to customers in retail banking Currency millions 

assets Consolidated assets Currency millions 

assets_r Assets in retail banking Currency millions 

tier1 Tier 1 capital Percent 

nic Net interest income (total) Currency millions 

nic_r Net interest income (retail) Currency millions 

Note: The main sources are the public annual reports and financial statements posted on banks web pages; also, 

in some cases, Form 10K of SEC filings (EDGAR database) for banks that operate in the USA were used. 

 

Figure 12 provides a brief description of the dataset. The figure shows pairs of 

scatterplots between the numbers of branches, the number of staff related to retail banking 

https://en.wikipedia.org/wiki/EDGAR
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operations, the level of retail loans, and the value of retail assets. All currency amounts were 

converted to millions of Euros. Data comprised five years for all 52 banks considered. 

 
Figure 12.  Scatter plot of bank data per year. 

All variables considered in Figure 12 are indicators of the scale of operations in the 

retail banking segments of each bank. This explains the remarkable positive correlation that 

emerges (between 0.62 and 0.82). These scale indicators belong to the set of risk indicators 

that likely induce the appearance and severity of internal fraud losses (Appendix D provides 

more graphical description of these indicators). This idea is made operational later in the 

chapter through applying a quantitative model that mapped these scale indicators towards the 

outbreak of losses. 

The calibration procedure needed more specific risk indicators. Therefore, the analysis 
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relied on other forms of risk indicators that could be collected from annual reports. Textual 

content was useful to calibrate sensitivity parameters in the operational risk model outlined in 

the previous chapter. Table 8 shows the textual context variables extracted from the annual 

reports. The variables refer to the number of instances a descriptive key word or phrase 

appeared within the entire text; also, the total number of report pages is recorded in order to 

calculate the ratio of instances to number of pages. These ratios give an indication about the 

relative importance of a key word that banks use in their public reports. 

Table 8  

Variables Contained in the Textual Database 

Key Concept 

nbank Number of bank in database 

bname Bank name 

country Country of bank headquarters 

code Bank Code = country code.bank 

year Year 

orisk "Operational risk" instances in annual reports 

risk "Risk" instances in annual reports 

rman "Risk management" instances in annual report 

ama "AMA" (Advanced Measurement Approach) instances in annual reports 

hres "Human resource" instances in annual reports 

emp "employee" instances in annual reports 

Col "colleague" instances in annual reports 

workers Sum of "employee" and "colleague" instances 

npag Number of pages in the Annual Report 

 

Both panels in Figure 13 show scatter plots of textual variables. Panel A shows 

scatterplots of “human resource” paired with the sum of “employee” and “colleague” 

instances in annual report texts as a proportion of total number of pages in each report. 
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Panel A: 

 
Panel B: 

 
Figure 13.  Scatter plot of textual context variables.   

Panel A contains variables related to human resource management while Panel B 

contains variables related to risk management.   
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Panel B shows the paired scatter plot of the triplet of risk, risk management, and 

AMA instances as a proportion to total pages. All plots show positive correlations. This 

means that the calibration procedure worked with one variable from each panel. From panel 

A for example, the human resource ratio is useful to signal how important the concept of 

human resource management is for the bank. From Panel B, the calibration can use the risk 

management ratio, which proxies banks’ awareness of risk management in the company. 

These two variables allowed the calibration of a number of parameters in the model. 

In terms of global variables that affect all banks or groups of banks, the analysis 

incorporates variables such as growth rates of gross domestic products (GDP) of the countries 

to which banks belong. The dataset also contained a number of variables that could affect the 

outbreak of losses due to internal fraud such as the rule of law in a country or its corruption 

perception index. 

Table 9  

Variables Contained in the Macroeconomic Database 

Key Indicator name 

country_name Country Name 

country_code Country Code 

year Year 2006-2010 

gdp_growth GDP growth (annual %) 

crisis Financial crisis dummy variable for 2007 and 2008 

gover_effective Government Effectiveness 

reg_quality Regulatory Quality 

rule_law Rule of Law 

cont_corrup Control of Corruption 

cpi Corruption Perceptions Index (CPI) score (2006-2010) 

 

Figures 14 and 15 summarize the data for GDP growth and the corruption perception 

index. Figure 14 shows the corruption perception index (CPI) for each of the relevant 

countries during the years of analysis. In the data, Brazil and Italy are shown to have higher 
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corruption perceptions while countries like Denmark, Sweden, Netherlands, and Canada are 

seen to be less likely to be corrupt. The perception of corruption is possibly associated with 

real corruption levels, and the extent of corruption can affect the occurrence of fraud internal 

or external to banks because they are related to the cultural environment that rationalizes 

frauds according to Cressey’s triangle. 

 
Note: The lower the index, the more a country is perceived to be corrupt. The data were based on figures 

released by Transparency International. 

 

Figure 14. Corruption perception index (CPI) for countries where banks have their main 

headquarters. 

Figure 15 shows GDP growth rates for the relevant countries and years under analysis. 

The association between the growth rate of economic activity as a whole and the occurrence 

of fraud events is not clear. Stewart (2016) shows evidence that fraud losses in US banks 

increase with the economic cycle while Abdymomunov, Curti and Mihov (2015), using 

operational loss data in US banks find that internal fraud operational loses are negatively 

associated with GDP growth. As will be seen in the development of the Scaling and the 
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Covariate-base technique, the association between economic activity and the outbreak of loss 

events is positive according to the simulations. This means that banks located in countries 

where there is strong growth are marginally more prone to have internal fraud losses, and 

those losses are likely to be more severe. Macro-level data do not explicitly help to calibrate 

the model for internal fraud loss outbreaks. Instead, the information provided by macro-level 

data is used in the second part of the simulation process, to condition the different data 

combination techniques to macro-level risk indicators. 

 
Note: Data based on figures released by the World Bank. 

 

Figure 15.  GDP growth in countries where banks have their headquarters. 

A good measure of the fitness of the operational risk model to generate internal fraud 

losses is whether those losses are associated to the macro-risk indicators in the same fashion 

as documented in empirical research as shown for example in Chernobai et al. (2011), Moosa 

(2011), Cope et al. (2012), Abdymomunov et al. (2015) and Stewart (2016). 
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Calibration Results 

Table 10 shows the value of the general parameters that set the behavior of the 

equations in the operational loss model. The setting of these parameters applied the 

calibration procedure outlined in Chapter 3. The target of the calibration was to allow the 

model to simulate losses as close to reality as is possible. The only reality check available 

was to mimic the mean frequency and severity of losses due to internal fraud in the retail 

segment across the banks belonging to the ORX data exchange for the period 2006-2010. 

Therefore, the calibration procedure used an optimizing framework to pin down the mean 

parameters of the loss equation described in Table 10. 

Table 10  

Calibration of Parameters 

 Definition Value Equation 

𝛼̅0 Mean scale parameter 0.400 Loss outbreaks 

𝛼̅1 Mean constant within ramp function 16.810 Loss outbreaks 

𝛼̅𝑐 Mean impact of controls -275.291 Loss outbreaks 

𝛼̅𝑦 Mean impact of gross operating income -1.587 Loss outbreaks 

𝛼̅𝑞 Mean impact of quality of workers on losses 0.052 Loss outbreaks 

𝜌̅ Mean autocorrelation of loss shocks 0.70 Loss shocks 

𝜌𝑚𝑖𝑛 Lower threshold for loss shocks autocorrelation 0.50 Loss shocks 

𝜌𝑚𝑎𝑥 Upper threshold for loss shocks autocorrelation 0.90 Loss shocks 

𝛽̅0 Mean constant term 0.20 Shock variance 

𝛽1 Influence of past quadratic shocks 0.01 Shock variance 

𝛽2 Influence of past variance 0.70 Shock variance 

𝜌𝑐 Weight of new conditions to affect controls 0.10 Loss control 

𝑐̅∗ Mean long run value of control level 0.5 Loss control 

𝑐𝑚̅𝑖𝑛 Lower threshold for long run control level 0.3 Loss control 

𝑐𝑚̅𝑎𝑥 Upper threshold for long run control level 0.7 Loss control 

𝛾̅ Sensitivity of controls to the losses -0.5 Loss control 

𝜆 Desired loss ratio 0.0003 Loss control 

𝜌𝑞 Sensitivity to recent ethical quality 0.05 Ethical quality 

𝛿̅ Determines the sign of impacts from factors 0.2 Ethical quality 

𝑄̅ Level of average ethical quality across banks 0.7 Ethical quality 

𝜎̅𝜂
2 Variance of measurement errors 0.012 Measurement error 

𝑙𝑖
𝑚𝑖𝑛 Threshold level for operational loss reporting 20 Reporting 

Note: The shrinkage procedure uses the parameters denoted with overbars. An optimizing search procedure 

determines the 𝛼 parameters. 
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The optimizing framework hinged on minimizing the quadratic distance between the 

observed mean loss severity and the simulated mean loss severity. In addition, the 

optimization puts weight on the fact that almost all banks in the dataset must face losses. In 

reality, a bank with no operational losses in the pace of five years is rare. The parameters that 

affect banks in an idiosyncratic way were determined by the shrinkage procedure described in 

Chapter 3. Figures C1 and C2 in Appendix E depict the distribution of these parameters 

across banks. The idiosyncratic parameters calibrated through this procedure therefore serve 

as a useful device to control for the heterogeneity observed in the banks in the ORX sample. 

Simulation Results 

The analysis proceeded with the simulation of both operational losses and the rest of 

the risk indicators considered in the operational risk model outlined in Chapter 3. The 

simulation was performed with programs in the R software (R Core Team, 2016) written 

specifically for this study. The simulation hinged on generating 500 alternative histories of 

operational losses for the years 2006-2010 within the banks in the ORX database. The 

simulations considered the specific conditions banks have confronted during the five-year 

period in terms of their own risk exposure and the macroeconomic environment surrounding 

them.  After the simulation, it was possible to calculate the gross amount of operational losses 

as well as the number of losses across banks. The 500 data points are drawn in Figure 16, 

where the straight lines mark the values reported in ORX (2012). 

Each point in Figure 16 summarizes a possible five-year history of data in each of the 

52 banks. Each bank has 500 possible histories of operational losses conditional to the 

circumstances in effect during those five years. Ideally, each bank can take their own 500 

histories and combine them directly to estimate their true risk exposure. This type of exercise 

delivers the true operational risk capital for each bank as depicted on the right hand side of 

Figure 1. 
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Figure 16.  Summary of simulations and comparison to ORX report.   

 

True operational loss. This step applied the AMA procedure described in Chapter 3. 

The analysis uses the fitdistrplus package in R described in Delignette-Muller and Dutang 

(2015). This R package allows for the estimation of frequency and severity distributions 

through maximum likelihood methods. Thereafter, this study will provide a detailed report of 

the results for the Commonwealth Bank of Australia (AUS.CBA) but the simulation-study 

exercise is performed for each possible bank in the ORX dataset. For all banks, the estimation 

of the true risk profile pools their 500 simulated internal histories and estimates the best 

distribution for the frequency of losses and the best density for the severity of losses. 

For the frequency distribution, the Negative Binomial turns out to perform best in all 

the cases against the Poisson. Figure 17 depicts, on the left panel, the negative binomial 

density and CDF and the empirical distribution obtained for AUS.CBA. 
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Figure 17.  Estimation of the distribution of frequency 

 

The right panel shows the cumulative probability distribution. The Negative Binomial 

distribution provides a good fit to the frequency data. The mean parameter is rounded to 23, 

which means that for AUS.CBA, there were 23 loss events due to internal fraud in retail 

banking in a typical year. The Negative Binomial distribution is a better fit than the Poisson 

distribution because the Poisson parameterizes the shape of the distribution with only one 

parameter. Table 11 shows the maximum likelihood estimation of the parameters of both 

distribution functions: the Negative Binomial and the Poisson. 

Table 11  

Maximum Likelihood Estimation of Frequency Distributions 

 Estimate Standard error 

Parameters of the negative binomial distribution 

𝑟 (size) 5.042 0.176 

𝜇 (mean) 22.963 0.226 

Parameters of the Poisson distribution 

𝜆 (mean = variance) 22.964 0.096 
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The Weibull density better described the probability density for the severity of 

operational losses. Figure 18 shows the comparison between the Weibull, the Lognormal, and 

the Gamma densities. From the Q-Q plot and the other plots, it is observed that the Gamma 

density performs worst at the right extreme of the distribution. The Gamma density assigns 

too much probability at medium levels of severity and less probability at the extreme right. 

Both the Lognormal and Weibull behave similarly; they are closer to the empirical 

distribution than the Gamma is, even for extreme values. Overall, there is a marginal 

advantage for the Weibull as seen in the Q-Q plot. 

 
Figure 18.  Estimation of the PDF for the severity of losses. 

 

Table 12 depicts the parameters of the three density estimations. The analysis that 

follows used the shape and scale parameter of the Weibull density. The mean of the Weibull 

distribution is 𝜇 = 𝑠𝑐𝑎𝑙𝑒 × 𝛤(1 + 1 𝑠ℎ𝑎𝑝𝑒⁄ ) where 𝛤( ) is the Gamma function. This 

means that if there was a loss event, its expected severity was 0,06 millions of Euros. 
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The implementation of the LDA considered the best performing models for both the 

frequency and severity of losses. In particular, the LDA used the estimated Negative 

Binomial distribution to model the frequency and the estimated Weibull density to model the 

severity of internal fraud losses. 

Table 12  

Parameters of the Severity Density Estimations 

 Estimate Standard error 

Parameters of the Weibull density 

Shape 1.103 0.0036 

Scale 0.066 0.0003 

Parameters of the Gamma density 

Shape 1.138 0.0060 

Rate 17.777 0.1165 

Parameters of the Lognormal density 

Meanlog -3.249 0.0050 

Sdlog 1.210 0.0036 

 

Implementation of the LDA was straightforward in the R software environment. The 

procedure consisted on applying the convolution operation explained in Chapter 3 by means 

of a Monte Carlo simulation. Figure 19 shows the graph of the empirical PDF and CDF of 

total annual losses obtained from the Monte Carlo procedure for 10,000 hypothetical cases. In 

fact, the procedure is used to obtain the entire forecast distribution of annual losses for 

planning year 2011 based on historical information of the last five years (2006-2010). 

The calculation of operational risk capital always needs a huge number of simulations 

because risk management assumes a very high percentile of the distribution. To be able to 

obtain accurate estimates of extreme percentiles, the number of simulations needed is in the 

order of thousands. The forecast of interest for risk management is not the expected annual 

loss but an extreme value according to the risk tolerance of the risk manager. 
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Figure 19.  Empirical PDF and CDF of total annual losses. 

 

The loss density estimated has implications for the operational risk capital because the 

procedure allowed extracting the least likely losses. For example, according to Table 13, a 

gross annual loss larger than €3.8 million is only 1% probable and a loss larger than 5.45 

million is only 0.01 % probable. If a €5.45 million or larger loss actually occurs, it would be 

catastrophic for the bank, unless it has enough capital to cover up the losses. Risk managers 

at banks face a dilemma: If they hold low capital levels to face operational risk losses, they 

may improve their current profits because holding liquid capital is costly. However, a 

catastrophic event may hit the bank and make it insolvent due to lack of sufficient capital. On 

the other hand, if the bank holds high capital levels, it is prepared to face large but unlikely 

losses, but if the loss event does not materialize, current profitability is damaged. 

Table 13  

Operational Risk Capital Levels at Different Percentiles (Bank AUS.CBA) 

Percentile Value (millions of Euros) 

99.00 3.77 

99.50 4.08  

99.90 4.87 

99.99 5.45 
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The optimal operational risk capital level depends on the proper weighing of the 

above dilemma, which in turn, depends on the degree of risk tolerance in the organization.  

Therefore, Table 13 provides the possible choices risk managers could make. 

This same exercise is performed for all the banks in the ORX dataset. Figure 20 shows 

the ratio of true operational risk capital levels or VaR at the 99.9 percentile as a percentage of 

total assets in each of the banks. The resulting percentages are small ranging from almost 0 to 

0.06 percent. Bank IRL.BIG is not in the graph because its operational loss capital ratio 

reached up to 0.7 percent. Still, this operational risk capital levels are small because the 

present study only considers internal fraud losses in retail banking. It does not consider the 

entire operational loss spectrum. 

 
Figure 20: VaR levels at 99,9 percentile as a percentage of total bank assets. 
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Data sharing procedure. As explained in Chapter 3, simulations for one bank across 

possible histories are homogenous but simulations across bank for a specific five-year history 

are heterogeneous because each bank faces different risk exposures. 

As noted in Chapter 3, banks need to share their data in order to process and use the 

data in their operational risk capital level calculations. The ORX data exchange is one of 

these sharing schemes for banks. Therefore, given the loss simulations and their associated 

risk exposures, the analysis applied Equation 15 as determined in Chapter 3 and gathered the 

value of all conditioning idiosyncratic factors as well as observed macro variables at the time 

of each loss event for all the banks. 

Data Aggregation Techniques 

As described in Chapter 3, there are three data aggregation techniques. This section 

deals with the implementation of these three techniques based on the shared simulated 

database generated in the previous section. For comparison purposes, this section will 

describe the procedure in bank AUS.CBA but at the end, summary results for all the banks 

will be shown. In each bank, the three techniques deliver operational risk capital levels which 

were compared to their true operational capital levels found in the previous section. 

Scaling technique. In applying this technique, a regression equation as discussed in 

Chapter 3 first needs to be estimated. The technique follows the example of Shi et al. (2000) 

and Na et al. (2006). Table 14 shows the baseline regression results (see Equation 20) 

performed with data taken to the annual frequency. This means that before performing the 

regressions, it was necessary to calculate mean severity of losses, mean operational control 

levels, and mean values of the risk ratios, like employees per branch, for each year. 

Results show that the ratio of employees per branch has a statistically significant 

effect on operational losses due to internal fraud in retail banking. The number of employees 

per branch does not directly affect losses in the model specification (Equation 8). The effect 
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of the number of employees per branch on the severity of losses may be due to the indirect 

effect that comes from the effect of the number of employees in the calibration of the 

parameters. 

Table 14  

Dependent Variable: Log of Operational Losses 

Regressors Estimates Std. error t-value p-value 

Intercept -5.06 0.22 -23.37 0.00 *** 

Log(employees per branch) 1.32 0.06 22.18 0.00 *** 

Corruption perception index -0.01 0.03 -0.26 0.79 
 

GDP growth 0.04 0.02 2.35 0.02 * 

Dummy for crisis (2008-2009) 0.17 0.10 1.80 0.07 . 

Note: Significance codes: 0=***, 0.001=**, 0.01=*, 0.05=.; Residual standard error: 0.4866 on 217 degrees 

of freedom.  Multiple R-squared: 0.725, Adjusted R-squared:  0.720, F-statistic: 142.8 on 4 and 217 DF, p-

value: < 2.2e-16. 

 

Other country-specific variables affected average annual losses per bank like the 

control of corruption perception index and GDP growth. Although it is not significant, the 

CPI has the correct sign: The larger the value of the index (the less corrupt a country is), the 

lower the size of average losses due to internal fraud. 

When a country to which a bank belongs grows faster, it induces more internal fraud 

losses in the bank. Both results linked to country-specific variables supported the simulation 

model for internal losses. Results were compatible with Povel, Singh, and Winton (2007) and 

Stewart (2016) who posited that fraud is more likely to occur in good macroeconomic 

contexts. 

Another relevant result is that a period of financial crisis implies more internal fraud 

losses. According to Hess (2011), the 2007-2009 Global Financial Crisis increased the risks 

for loss severity for two business lines in banking: Trading and sales as well as retail 

brokerage. This is another indication that the internal fraud simulation model produces loss 

features that are compatible with existing evidence. This result is also important for 
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answering the first research question (MRQ1) about the effect of the financial crisis on 

losses. 

Once the regression equation was estimated, the next step was to scale the external 

losses as noted by Dahen and Dionne (2010). The regression equation is 

log(𝑙𝑜𝑠𝑠𝑖𝑡) = 𝑎0 + 𝑎1 log(𝑒𝑏𝑖𝑡) + 𝑎2CPI𝑖𝑡 + 𝑎3𝐺𝑅𝑂𝑊𝑇𝐻𝑖𝑡 + 𝑎4CRISIS𝑖𝑡 (28) 

Where 𝑒𝑏𝑖𝑡 is the employee per branch ratio; CPI𝑖𝑡 is the Corruption Perception Index 

in the country to which Bank 𝑖 belongs; 𝐺𝑅𝑂𝑊𝑇𝐻𝑖𝑡 is the GDP growth rate of the country to 

which Bank 𝑖 belongs; and CRISISit is the dummy for the crisis period, which is common for 

all banks and countries.  Let 𝑎0 = log (𝐶𝑜𝑚𝑚𝑜𝑛) be the common component and let 

log(𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑖𝑡) = 𝑎1 log(𝑒𝑏𝑖𝑡) + 𝑎2CPI𝑖𝑡 + 𝑎3𝐺𝑅𝑂𝑊𝑇𝐻𝑖𝑡 + 𝑎4CRISIS𝑖𝑡 the idiosyncratic 

part, which varies across banks and over time. 

To compare any two banks, the analysis considered that the common component is 

𝐶𝑜𝑚𝑚𝑜𝑛 =
𝑙𝑜𝑠𝑠𝑖𝑡

𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑖𝑡
=

𝑙𝑜𝑠𝑠𝑗𝑡

𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑗𝑡
  

(29) 

This proportionality between any two losses at different banks allowed scaling losses 

at any bank 𝑗 to be comparable to losses at bank 𝑖. The scaling follows directly from Equation 

29 

𝑙𝑜𝑠𝑠𝑖𝑡 = (
𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑖𝑡

𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑗𝑡
) 𝑙𝑜𝑠𝑠𝑗𝑡,  

(30) 

which means that losses at bank 𝑗 are multiplied by the factor 
𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑖𝑡

𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑗𝑡
 to be 

comparable to losses at bank 𝑖. Upon scaling all banks’ losses against losses at bank 𝑖 

(AUS.CBA), it is possible to use all loss data to perform the LDA to calculate the operational 

risk capital. 
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Figure 21.  Bank AUS.CBA: Original losses (horizontal axis) vs. scaled losses (vertical axis). 

Figure 21 provides an overview of the scaling procedure; original losses at all banks 

can go up to a little less than €6 million. Scaled losses that are comparable to bank AUS.CBA 

have a range of between €0 and €1.4 million. 

Regarding the frequency of losses, there are two alternative procedures. The first 

alternative is to scale the frequency of operational losses in all banks to be comparable to the 

frequency at bank AUS.CBA. A similar regression procedure and scaling factors could be 

applied with this option. The second alternative is to follow the example of Dahen and Dione 

(2010) to fit Truncated Negative Binomial or Truncated Poisson regressions and determine 

the parameters of the frequency distributions conditional on certain types of covariates. 

Because the second alternative bears more resemblance to the Covariate-based technique, the 

first alternative of scaling the frequency with a new regression was applied. 

The best frequency regression considers the level of operational risk controls and 

GDP growth as covariates following the line of Povel et al. (2007) and Stewart (2016): 

log(𝑛𝑖𝑡) = 𝑏0 + 𝑏1 log(𝑐𝑖𝑡) + 𝑏2𝐺𝑅𝑂𝑊𝑇𝐻𝑖𝑡 (31) 
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The estimated parameters are shown in Table 15. The interpretation is simple. More 

levels of control reduce the frequency of losses, and a higher macroeconomic activity in the 

country where banks headquarters are located increases the risk of event outbreaks. 

Table 15  

Dependent Variable: Log of Number of Loss Events 

Regressors Estimates Std. error t-value p-value 

Intercept 0.98 0.25 3.88 0.00 *** 

Log(controls) -1.54 0.33 -4.61 0.00 *** 

GDP growth 0.13 0.02 5.19 0.02 *** 

Note: Significance codes: 0=***, 0.001=**, 0.01=*, 0.05=*; Residual standard error: 0.99 on 219 degrees 

of freedom.  Multiple R-squared: 0.18, Adjusted R-squared: 0.17, F-statistic: 24.3 on 2 and 219 DF, p-

value: < 3.04e-10.   

 

Both regression results are the outcome of a process of searching for the best fit using 

a number of covariates. Tables 14 and 15 summarize these regressions and then show the best 

results according to the Akaike information criterion (AIC), which is a standard method to 

select among models. 

The Scaling technique shows that operational risk controls reduce the possibility of 

loss events outbreaks, but the occurrence of loss events do not per se determine the severity 

of losses. Economic growth affects both, the severity of losses as well as the frequency of 

losses, a result compatible with Povel et al. (2007) and Stewart (2016). The number of 

employees per branch affects the severity of losses but does not affect the frequency of 

losses. As shown in Chapter 3, the number of employees per branch approximates the number 

of inappropriate employee interactions within a firm that give rise to fraud risk. Last, 

financial crisis does increase the size of the severity of losses but does not affect the 

frequency of losses. Of course, the effects of controls and the number of employees per 

branch on the severity and frequency of losses are embedded already, directly or indirectly, in 

the model.  The regression results are just a confirmation of what is assumed in the first 
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place, but the new result in the regressions is the importance of macro-environmental 

variables that were not used to build the model nor to calibrate it. The effect of economic 

growth on the severity and frequency of losses is a clean result in the analysis and confirms 

previous findings noted by Povel et al. (2007) and Stewart (2016). The effect of the Global 

Financial Crisis on the frequency of losses is also an important result that confirms the 

findings of Hess (2011). 

When applying the LDA in the scaling technique, the frequency data of banks can be 

scaled in the same fashion as loss severities are scaled. Table 16 shows an example result of 

the operational risk levels with the scaling technique under possible specification alternatives 

of the frequency regression equation and the probability density of loss severities. 

Table 16  

Operational Risk Capital Levels in AUS.CBA bank at Different Percentiles (Millions of 

Euros) 

Percentile True Scaling 1 Scaling 2 Scaling 3 

99.00 3.77 10.23 9.02 8.81 

99.50 4.08 11.66 10.30 9.66 

99.90 4.87 15.19 12.87 11.60 

99.99 5.45 17.80 15.30 15.11 

Note: Scaling 1 = Frequency regression equation contains more covariates and gamma severity density in LDA, 

Scaling 2 = Frequency regression equation only contains control levels and GDP growth.  Gamma severity 

density in LDA, Scaling 3 = Frequency regression equation only contains control levels and GDP growth.  

Weibull severity density in LDA.   

 

Table 16 shows that under different alternatives, the operational risk capital levels are 

more than twice the true capital levels estimated in the previous section for AUS.CBA. This 

is an early indication that the scaling technique may be exaggerating the losses for this 

specific bank. The possible reason of this result is that the scaling technique was based on 

mean losses and mean severities and does not take account of extreme behavior. In addition, 

the linear regression model used in this technique ignored extreme cases. In other words, the 

scaling technique does not properly consider extreme losses. The technique could be helpful 
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for studying mean losses but not extreme losses. This fact is important because operational 

risk capital levels need to take into account helpful models of extreme behavior. It is also 

important to note that, as documented in Shi et al. (2000), if there is too much 

heteroscedasticity in the data, the scaling regression may not be extracting the correct 

relationships. 

Figure 22 depicts the VaR levels at the 99.9 percentile for all the dataset. The figure 

shows the extent of VaR variability among banks and the dispersion within each bank for 100 

VaR calculations. It also shows the true operational VaR levels for all banks. It is 

straightforward to note that the true VaR levels are usually outside the interquartile ranges. 

Almost all the median values of the Scaling technique estimation of VaR at 99.9 percentile 

over-predict the true value. This is an indication that the simple Scaling technique 

implemented in this study does poorly in approximating to the true operational risk in each 

bank. 

  
Note: The solid dots are median values, the boxes represent the interquartile range and the crosses stand for the 

true VaR level at 99.99 percentile for each bank. 

Figure 22: Scaling technique VaR levels at 99.9 percentile for all the banks in the ORX. 
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Bayesian technique. This technique relies on the estimation of the parameters that 

define the probability distribution of loss event counts per year as well as the parameters that 

govern the severity density of loss events. 

The estimations were performed with the help of a specialized R package called 

Laplacesdemons (Statisticat, 2015) with the distributions defined in the R package GAMLSS 

(Stasinopoulos & Rigby, 2007). In the GAMLSS environment, distributions may have up to 

four parameters. The study worked with distributions defined for one (mean) or two (mean 

and scale) parameters. A number of distributions to fit the parameters of frequency and 

severity distributions were tried from the distribution families defined in the GAMLSS 

package. 

Following the example of Shevchenko (2011), priors were elicited empirically from 

the data, as permitted by the external data. In all cases, the prior chosen was the Gamma 

density, which allows only positive values for a parameter. To perform the elicitation, the 

external data about the number of losses in each bank or the loss per event in each bank 

permitted finding means and standard deviations for each bank. The cross section of means 

and standard deviations per bank are the data used to fit Gamma densities. In other words, the 

estimated Gamma densities describe the behavior of the parameters of location (mean) and 

scale (standard deviation) of the losses. These densities are called empirical or objective 

priors densities because they are elicited directly from data by estimating simple maximum 

likelihood estimations. 

The prior densities were then combined with the likelihood of the data pertaining to 

each bank, namely, the likelihood functions of corresponding severities and frequencies. 

Table 17 shows the distinct distributional assumptions about the likelihood functions for both 

the frequency and severity. 
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Table 17  

Distributions Used to Model Likelihood Functions of Operational Loss Data 

Likelihood Parameters 

Frequency distributions  

Truncated Poisson 1 

Truncated negative binomial 2 

Severity densities  

Truncated Gamma 2 

Truncated inverse Gaussian 2 

Truncated Gumbel 2 

Truncated Weibull 2 

Truncated log normal 2 

Truncated generalized Pareto 2 

Note: Frequency distributions are left truncated (from zero); severity densities are left truncated from 0.02 

(€20,000). 

 

Figure 23 shows the estimated shapes of the posterior densities for the case of the 

annual frequency of loss events in internal fraud and retail banking for bank AUS.CBA. The 

Negative Binomial is better than the Poisson model because the Poisson model has higher 

standard deviation (equal to the mean), which does not fit frequency data well. In all the 

banks in the dataset, the Negative Binomial distribution was chosen to apply the Bayesian 

Technique. Given that the prior distributions of parameters are defined by Gamma 

distributions. The frequency model is defined as the Gamma-Negative Binomial model. 

  
 

Figure 23.  Posterior densities of mean and sigma parameters that govern frequency behavior. 

 

Figure 24 shows the estimated posterior densities for the parameters that control the 

severity distributions in bank AUS.CBA. The four different types of densities show some 
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disparities. The gamma and Weibull are somewhat closer. Upon performing Bayes factor 

analysis to choose from these densities, the Weibull turns out to be the best. For example, it 

has the highest posterior probability. Bayes factor analysis is the preferred method for model 

choice under the Bayesian paradigm, in contrast to information criteria used in classical 

regression analysis. In all the banks, the Weibull was chosen to perform the Bayesian 

technique. Given that the prior distributions of severities are defined by Gamma distributions. 

The severity model is called as the Gamma-Weibull model. 

  
Figure 24.  Posteriors for parameters governing severity. 

 

With these results, the LDA used the Gamma-Negative Binominal model to set the 

number of losses and the Gamma-Weibull model to set the severity of each loss. The 

Bayesian LDA was performed for all banks using the above combination of models for 

frequency and severity via simulation from the posterior predictive distributions as shown 

before in Chapter 3. 

One important feature of Bayesian modeling is that the entire shape of the 

distributions of parameters, losses, and frequencies are modeled at once. The technique does 

not rely on mean behavior. Therefore, it is suited to capture possible extreme responses. 

Figure 25 summarizes the estimation of operational risk levels for each bank under the 

Bayesian technique considering only the 99,9 percentile. For each bank, 100 operational risk 

levels at different percentiles were estimated. The solid blue dots are the median operational 

risk level, the boxes represent the interquartile range, the whiskers proxy for extreme values 
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and circles represent isolated extreme points. In the Figure, the crosses represent the true 

operational risk capital. As opposed to the Scaling technique results in Figure 22, the 

Bayesian technique results are closer to the true operational risk capital levels. In this case, 

more dots are inside the whisker ranges. 

It is important to note that Figure 25 only shows 44 banks and not the original 52 

banks considered in the sample. This is because eight banks have a very small number of 

losses and therefore it is not possible to estimate severity or frequency likelihoods based on 

the internal data and hence, it is not possible to obtain posterior distribution of parameters and 

perform the LDA. 

  
Note: The solid dots are median values, the boxes represent the interquartile range (25 

percentile to 75 percentile) 

Figure 25: Bayesian technique VaR levels at 99.9 percentile for all the banks in the ORX. 
 

Covariate-based technique. Following from Chapter 3, this technique models the 

parameters of severity and frequency distributions as functions of variables specific and 

common to each bank. These types of generalized regressions were performed with the 

GAMLSS R package as done in Ganegoda and Evans (2013). In particular, the regressions 

comprised the mean and the scale parameters using a number of distributional assumptions 

and specifications about the behavior of the mean or the scale of the distributions as functions 

of the covariates. The possible set of covariates used is the same as the Scaling technique. In 
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contrast to the simple Scaling technique, the advantage of the generalized regression in 

location and scale allows modeling the heteroscedasticity problem in the data, and hence, the 

Covariate-based technique with the generalized model has an important advantage over the 

simple Scaling technique with linear regression. 

Tables 18 and 19 show the results for the best performing model for the severity of 

loss events in retail banking associated with internal fraud. This model is the truncated 

Weibull with mean and scale parameter. Given that losses smaller than €20,000 are not 

considered in the data, all loss data is truncated from below and therefore, truncated 

distribution functions needed to be estimated (Greene, 2012). Results in Table 18 show how 

the mean is affected by covariates. In particular, when a country to which a bank belongs to 

grows, the average size of losses increases. This result is similar to findings in the Scaling 

technique regressions and compatible with findings reported in Povel et al. (2007) and 

Stewart (2016). This positive impact has to do with the opportunistic behavior of workers 

stressed by Blacker and McConnell (2015). Arguably, in general macroeconomic boom 

periods more fraud opportunities arise. 

In addition, when a country is perceived as more corrupt (lower value of CPI), the 

average losses are higher. The link between corruption perception in a given country and the 

size of losses due to internal fraud are stressed in the analytical framework outlined in 

Chapter 3. In the section about the model, the study highlighted the Cressey’s triangle and 

pointed out that the level of bad interactions inside and outside banks bring about a 

rationalization for fraud. The corruption perception of a country is a proxy for outside bad 

interactions. In this sense, if criminal or corrupted behavior of citizens is broadly accepted in 

a society, then workers find more rationale for stealing from banks. 

The regressions also considers idiosyncratic variables. For example, higher levels of 

operational risk controls reduce the severity of losses, higher employees per branch increase 
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the severity of losses and higher assets per employee reduce the severity of losses. These 

three effects are embedded in the loss model calibration or specifications. Therefore, these 

results are expected. 

Nevertheless, the remarkable finding is that neither the GDP growth nor the CPI were 

used to calibrate the loss model or as causal variables in the model specification in the 

previous chapter, yet they show a significant association with fraud losses. Furthermore, 

these associations conform well with existing theory of how internal fraud losses occur. 

Table 18  

Estimates of the Regression in the Mean (Truncated Weibull) 

 Estimate Std. error t-value p-value  

Intercept -2.80 0.098 -28.43 0.0000 *** 

GDP growth 0.01 0.006 2.09 0.0369 * 

CPI -0.05 0.012 -4.06 0.0000 *** 

Control -0.40 0.184 -2.17 0.0304 * 

Employees per branch 0.13 0.003 51.57 0.000 *** 

Assets per employee -0.01 0.005 -1.95 0.0510 . 

Note: Signifiance codes: 0 = ***, 0.001=‘**’, 0.01=‘*’, 0.05=‘.’, 0.1=‘ ’ 

 

As shown, there is a fundamental difference between this regression result and that 

obtained under the Scaling technique. The Scaling technique was a model only of the mean 

losses or frequencies under the standard linear regression assumption. The generalized linear 

model of mean, shape, and scale assumes general distributional assumptions, and not only the 

mean is modeled, but also, the scale and shape of the response variable. In other words, the 

GAMLSS procedure in Rigby, Stasinopoulos, Heller, and Voudouris (2014) allows non-

linear behavior and controls for heteroscedasticity, which is more suited to extreme losses. 

Table 19 shows the results for the regression that explains the scale parameter of the 

truncated Weibull distribution. This means that the GAMLSS set up allows modeling not 

only the mean of the severity of fraud losses but also its variance. The results suggest that a 
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higher corruption perception (lower index) implies higher fraud loss volatility, but more 

employees per branch diminish the fraud loss volatility. These results are not straightforward 

to justify in terms of theory but provides an interesting starting point for further research. For 

now, this is beyond the scope of the present research. 

The regression in the scale parameter also includes smoothed GDP growth, controls, 

and assets per employee. The only smoothed variable with some individual significance is 

assets per employee. 

Table 19  

Estimates of the Regression in the Scale Parameter (Truncated Weibull) 

 Estimate Std. error t-value p-value  

Intercept 0.733 0.085 8.612 0.0000 *** 

CPI -0.068 0.011 -6.321 0.0000 *** 

Employees per branch -0.012 0.002 -5.843 0.000 *** 

GDP growth (a) 0.002 0.005 0.452 0.6510  

Control (a) -0.015 0.153 -0.095 0.9242  

Assets per employee (a) 0.009 0.005 1.848 0.0646 . 

Note: (a) Smoothing is performed with p splines and significance codes are 0 = ***, 0.001=‘**’, 0.01=‘*’, 

0.05=‘.’, 0.1=‘ ’. 

 

Tables 18 and 19 report the baseline regression. The number of models that can be 

explored is vast. Models in the GAMLSS setup may differ in the underlying distribution of 

the error terms. In the standard OLS setup the only distribution modelled is the Normal. In 

the GAMLSS there are families of distributions from which to choose. Once a distribution is 

chosen, models still differ because they may have different covariates. 

The approach taken in this research considered first choosing the distributions given a 

benchmark set of covariates. Table 20 shows the Akaike information criteria (AIC) statistics 

for the estimated models and specifications for the underlying distributions of the errors. The 

AIC supports the truncated Weibull model with mean and scale. This is the distribution that 

supports the regressions shown in Tables 18 and 19. 
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Other covariates apart from those considered in Tables 18 and 19 were considered. 

Table F-1 in Appendix F shows a set of models that are estimated. The key findings about the 

effect of GDP growth rates and the CPI are robust across models. When the dummy for the 

financial crisis is included, the GDP growth rate becomes an insignificant regressor. 

Therefore, we have a model that only considers the crisis dummy instead of GDP growth but 

the model is inferior in terms of the AIC. 

Table 20  

Severity Model Selection 

Distributions AIC 

Truncated Weibull (mean and scale with smoothing in regression) -6,581.01 

Truncated generalized Pareto (mean and scale with smoothing in regression) -6,503.15 

Truncated Weibull (mean and scale regression) -6,362.03 

Truncated generalized Gamma (mean and scale regression) -6,361.38 

Truncated Weibull (only mean regression) -6,298.77 

Truncated generalized Gamma (only mean regression) -6,296.86 

 

The same general procedure was used to estimate the frequency regressions. Variants 

of the Poisson, Negative Binomial Type I, and Negative Binomial Type II (see Rigby et al. 

2014) were estimated with GAMLSS. The chosen model, according to the AIC (see Table 

21) was the Negative Binomial regression with regressions in the mean and scale. 

Table 21  

Frequency Model Selection 

Distributions AIC 

Negative binomial (mean and scale with smoothing in regression) 1,611.76 

Negative binomial II (mean and scale with smoothing in regression) 1,623.96 

Negative binomial (mean and scale regression) 1,631.98 

Negative binomial II (mean and scale regression) 1,635.26 

Negative binomial (only mean regression) 1,637.36 

Negative binomial II (only mean regression) 1,658.48 
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Regression results are shown in Table 22. GDP growth affects the number of annual 

loss events positively; more controls and more retail assets per employee reduce the number 

of losses. In the case of frequency, the CPI is not a significant regressor, neither a group of 

regressors such as government effectiveness, regulatory quality, rule of Law, control of 

corruption; all taken from the World Bank Worldwide Governance Indicators. See Table F-2 

in Appendix F for the details of the alternative regressions. 

Across all regressions performed, GDP growth stands robustly significant with a 

parameter value of 0.13. This means that there is a strong evidence that the opportunistic 

behavior described in Cressey’s triangle also affects the number of fraud events. Hence, GDP 

growth affects both the number of events and the severity of those events. This is in line with 

the theory of opportunistic behavior of fraudsters when good aggregate economic times 

arrive. 

In addition, the regression in the scale or the variance of the number of losses shown 

in Table 22 confirms that more employees per branch increase the variance in the number of 

annual losses and more operational risk controls reduce it. 

Table 22  

Regression Results in the Frequency Model 

 Estimate Std. error t-value p-value  

Regression in the mean      

Intercept 4.33 0.298 14.528 0.000 *** 

GDP growth 0.13 0.019 7.020 0.000 *** 

Controls -3.50 0.575 -6.096 0.000 *** 

Assets per employee -0.03 0.016 -1.969 0.050 . 

Regression in the scale      

Intercept -0.14 0.507 -0.272 0.786  

Employees per branch 0.05 0.015 3.019 0.003 ** 

Controls (a) -2.18 1.057 -2.064 0.040 * 

Note: Smoothing is performed with p splines and significance codes are 0 = ***, 0.001=‘**’, 0.01=‘*’, 0.05=‘.’, 

0.1=‘ ’. 
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Discussion of Covariate-based regression results. These generalized linear regression 

results are new because they uncover one important determinant of fraud losses not 

previously documented in the literature: The corruption perception index of a country. The 

results imply that higher corruption perception indices at the national level have a direct 

effect on the size of losses due to internal fraud events. These results are compatible with the 

theory outlined in Chapter 3 about the rationale for committing fraud. According to Cressey’s 

triangle described in Blacker and McConnell, the level of bad interactions inside and outside 

the firms shape fraudster’s rationality. The corruption perception at the corporate or country 

level is a proxy variable for the level of interactions outside the bank. The regression results 

also bear some resemblance to ideas in organizational behavior such as Ashforth and Anand 

(2003) who noted that values and beliefs evolve to rationalize fraud in ways that neutralize 

the stigma of corruption. Societal-level pressures as described in Zahra, Priem, and Rasheed 

(2007) drive these values and beliefs. 

The findings show that it is the yearly average size of losses that are affected by 

national corruption perceptions, not the frequency of losses within a year. More specifically, 

it is the extensive, not the intensive, margin of losses that can be explained by corruption 

perceptions. These results are also compatible with a recent global survey by KPMG about 

the profile of 75 fraudsters. According to the survey (KPMG, 2016), 66% of fraudsters 

mentioned that their main motive for committing fraud was personal financial gain or greed 

but an important 13% also said that the motives were also culturally driven. This last element 

is likely to be related to the overall corruption perception environment. 

LDA within the Covariate-based technique. The LDA under the Covariate-based 

technique was applied with the truncated Weibull model for severity and the Negative 

Binominal model for the number of loss events per year. Both distributions were conditioned 

by the particular value of the covariates each bank had at the end of 2010. The LDA helped 
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forecast the distribution of total losses in 2011; therefore, the value of the covariates in 2010 

are good approximation of the state of each bank when they perform such forecasts. 

Figure 26 shows the estimations in all the 52 banks in the database, notwithstanding 

the fact that they may have few or no internal losses at all. At first sight, the results are closer 

to those obtained by Bayesian technique. 

  
Note: The solid dots are median values; the boxes represent the interquartile range (25 

percentile to 75 percentile) 

Figure 26: Covariate-based technique VaR levels at 99.9 percentile for all the banks in the 

ORX 

 

Comparison of Techniques 

Based on the arguments presented in Chapter 3, a simulation-based comparison was 

performed. The application of the LDA for each technique and for each bank relies on 10,000 

simulations each. This huge number of simulations is necessary to extract accurate extreme 

percentiles because then it is possible to extract the shape of the distribution at the tails more 

accurately. This process delivered operational risk capital levels for each technique, but in 

order to make proper comparisons, the procedure repeated the same process a number of 

times to be able to make comparisons among operational risk capital levels. 

The simulation-based comparison relied on replicating all operational risk capital 

calculations 100 times for each of the banks. With this number of calculations, key statistics 
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were gathered. First, for each bank, squared errors against their operational risk capital level 

for a given percentile were calculated. Therefore, there were 100 squared errors for each bank 

and for each percentile of interest. The calculations considered the 50, 99, 99.5, 99.9 and 

99.99 percentiles. Figures 27, 28 and 29 show the distributions of the squared errors for 44 

banks. The closer to cero are these distributions the better. The graphs compare both the 

Bayesian and the Covariate-based technique calculations of the squared errors. Graphs show 

box and whisker plots as a way to summarizing the distributions of the squared errors. The 

boxes comprise the interquartile range and the whiskers plus or minus 1.5 times the 

interquartile range. A technique is strongly superior to another if the range of the whiskers is 

completely below the range of the other distribution. A technique is weakly superior if most 

part of its whiskers range is below the other distribution though there is some overlap 

between the two distributions. There is no winner if boxes overlap or one box contains the 

other box. 

Table 23  

Summary of the mean squared error comparison between the Bayesian and Covariate-based 

techniques at the 99.9 percentile 

Bank Winner Degree Bank Winner Degree Bank Winner Degree 

AUS.CBA Bayesian weak ESP.BBV Bayesian strong ITA.ISP Bayesian strong 

AUS.NAB - - ESP.BNS - - KOR.HBK Bayesian strong 

AUS.WBC Covariate strong ESP.BPO Bayesian strong NLD.ABN Bayesian strong 

AUT.BAC Covariate strong ESP.BPS Covariate weak NLD.RBN Bayesian strong 

AUT.EGB Covariate strong ESP.BSB Bayesian strong PRT.BPN Bayesian strong 

BEL.FTS Bayesian strong ESP.CCT Bayesian strong SWE.SEB Bayesian strong 

BRA.BSC Bayesian strong ESP.CLB Covariate weak USA.COF - - 

CAN.BMO Covariate strong ESP.CMR Covariate weak USA.JPM Bayesian strong 

CAN.BNS Bayesian weak ESP.CNV Covariate strong USA.NAT Bayesian weak 

CAN.RBC - - FRA.CAS Bayesian weak USA.PNC Bayesian strong 

CAN.TDB Bayesian strong FRA.SGL Covariate strong USA.USB Bayesian strong 

DEU.CBA Bayesian strong GBR.BLB Bayesian strong USA.WAM Bayesian strong 

DEU.DBA Covariate strong GBR.HBO Bayesian strong USA.WCR Bayesian strong 

DEU.DPB Covariate strong GBR.STA Bayesian strong ZAF.FRD Covariate weak 

DNK.DBA Bayesian weak IRL.BIG Bayesian strong - - - 
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Table 23 summarizes the comparison. In the 44 banks considered, the Bayesian 

technique strongly dominates the Covariate-based technique in 23 cases and weakly 

dominates in five more times. The Covariate-based strongly dominates the Bayesian 

technique in eight cases and does it weakly in four more cases. In four banks there is a tie. 

Therefore, the simulation study methodology performed in the thesis, akin to 

stablished statistical research (Matzkin, 2003; Chen & Pouzo, 2012; Sarafidis, 2016; Wang 

and Zhao, 2016) allows to conclude that the Bayesian technique is clearly better than the 

Covariate-based technique at the 99.9 percentile in 64 percent of the cases. It remains to see 

what type of idiosyncratic factors turn a technique appropriate in each bank but this 

interesting avenue is not the scope of the present research. 
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Figure 27: Distributions of squared errors of operational risk capitals (banks 1-15) 

Obtained by the Bayesian or Covariate-based technique against the true operational risk 

capital in each bank at the 99.9 percentile. 
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Figure 28: Distributions of squared errors of operational risk capitals (banks 16-30) 

Obtained by the Bayesian or Covariate-based technique against the true operational risk 

capital in each bank at the 99.9 percentile. 
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Figure 29: Distributions of squared errors of operational risk capitals (banks 31-44) 

Obtained by the Bayesian or Covariate-based technique against the true operational risk 

capital in each bank at the 99.9 percentile. 
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Findings 

The quantitative results described in this chapter relate to the research questions laid 

out in Chapter 3. By construction, the model generated internal fraud losses that were close to 

reality, as shown in Figure 16, and that were associated with operational risk control levels in 

banks and with the observed number of employees per branch. The true empirical test of the 

operational risk model presented is to know whether those losses were correlated with macro 

environmental variables. In particular, MRQ1 is focused how the losses are related to the 

2007-2009 Global Financial Crisis. The answer is that there is indeed some evidence that the 

Global Financial Crisis increased the severity of internal fraud losses. The simple ordinary 

least squares regression used in the scaling technique captured the aforementioned effect, but 

the generalized linear regression used in the covariate-based technique suggested that the 

Global Financial Crisis was not important, not for the severity nor the frequency of internal 

fraud losses. 

As regards to the MRQ2, given the same conditions as MRQ1, namely, how are 

internal fraud losses related to the perception about corruption in the country where the main 

headquarters of a bank is located, in general, the answer was that there is some evidence that 

the corruption perception index affects internal fraud severities. This is the result of the 

generalized linear regression model used in the covariate-based technique. However, the 

simple liner regression model used in the implementation of the scaling technique did not 

capture the effect of the corruption perception over internal fraud losses. The size of 

macroeconomic activity, given by GDP growth, was present in both the linear and the 

generalized linear regression models, always with a positive sign. This suggested that 

economic growth is a strong predictor of internal fraud losses. 

Nevertheless, it is critical to note that the relationships stemming from the covariate-

based regression results were more reliable. The covariate-based technique relied on the 
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generalized linear regression in location and scale while the scaling technique relied on the 

simple linear regression model. The generalized regression is a more flexible representation 

of the data and can control for heteroscedasticity. Therefore, there is indeed evidence that the 

corruption perception index affects internal fraud severities. 

MRQ3 was focused on the selection of the best internal-external data integration 

technique: Is there any technique that can be considered best practice to estimate a correct 

operational risk capital across all levels of risk tolerance? Here the answer is simple. There is 

no a best technique that delivers superior outcomes across all levels of risk appetite, but it is 

possible to rule out the simple scaling technique as an approach to perform internal-external 

data integration. The resulting operational risk capital levels in the scaling technique are far 

larger than are those obtained from the other two techniques whereas the Bayesian technique 

dominates the Covariate-based technique. Table 23 shows that the Bayesian technique 

performs better than the Covariate-base technique in 64 percent of the banks in the sample. 

Therefore, results outlined here show that all three research hypothesis outlined in chapter 

1 are rejected. Namely, H01, which stated that there is no change in the pattern of operational 

losses before and after the Global Financial Crisis, H02, which states that neither the 

frequency nor the severity of internal fraud operational losses are correlated with the 

corruption perception index of the country where the main headquarters of the bank is located 

is also rejected. Last, H03: One of the three techniques is systematically better than the others 

across possible risk tolerance values. 

Summary 

The results provided in this chapter were two-fold. First, the model set up in Chapter 3 

was calibrated and simulated to generate operational losses due to internal fraud in retail 

banking. The calibration used data extracted from all banks in the ORX consortium that run a 

retail-banking segment as well as textual data from banks’ annual reports publicly posted on 
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their Web pages. An important part of the process was to collect data for the 52 banks under 

analysis. All data were publicly available and could be used for replication purposes. 

The second part of the results deals with the implementation of three data aggregation 

techniques to deal with the problem of operational risk capital estimation. A fundamental 

element of operational risk management is the estimation of capital level associated with the 

risk exposure. The problem, as described in previous chapters, is that banks cannot rely on 

their own data to perform operational risk capital estimations; instead, they must use data 

from other banks. The data integration techniques allowed for the pooling of internal and 

external data appropriately to perform risk management. The implementation of the three 

data integration techniques relied on the existing literature and was conducted with the 

simulated data generated in the first part of this chapter. 

Both the scaling and the covariate-based technique rely on regressions that take into 

account idiosyncratic and common data to banks. Macroeconomic and political data were 

introduced into the analysis, for example the GDP growth of the country, where a bank’s 

headquarters are located, or the corruption perception index. One remarkable result in these 

regressions is that GDP growth and the corruption perception index are associated with the 

outbreak of losses and their severity. In general, when a bank is located in a country where 

there is high macroeconomic growth, the average size of operational losses increases. In 

addition, when a country is perceived as more corruption prone, average loss amounts and the 

number of losses per year tend to increase. These results are new in the operational risk 

literature for internal fraud and support the internal fraud model developed. 

Once the data integration techniques were implemented, a comparison exercise was 

conducted through a simulation study in accordance to standard practice in the statistical 

literature (Matzkin, 2003; Chen & Pouzo, 2012; Sarafidis, 2016; Wang and Zhao, 2016). The 

aim of the study is to shed light about the best-performing technique. The results favored both 
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the Bayesian and the covariate-based technique. Taken at the most used quantile (99,99%), 

the Bayesian technique performs better than the Covariate-based technique in 64 percent of 

the cases. These results led to the rejection of H03 because no technique was shown to be 

superior always.    
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Chapter 5: Conclusions and Recommendations 

In operational risk management, one of the AMA Basel II requirements is that any 

operational loss measurement system must include internal and relevant external data. This 

study included the evaluation of three prominent data integration techniques: The Scaling, 

Bayesian, and the Covariate-based techniques. Each technique led to different quantitative 

results for the operational risk capital required for a banking institution. Financial institutions 

that apply AMA for operational risk calculations need to know whether there are some 

circumstances in which one technique would perform better than do the others. 

The purpose of this research was to apply a simulation study to determine which of 

three techniques performed best in reflecting the true operational loss distribution of the 

financial institution as required by regulators around the world. Performance was measured 

by the comparison of estimates of operational risk capital associated with each technique. The 

estimation of operational risk capital was based on a specific extreme quantile of the 

cumulative density function of operational losses in a given institution estimated through an 

LDA associated with each technique. A dynamic internal fraud model for operational losses 

was used to simulate the internal and external loss data necessary to perform these 

estimations. The purpose of the dynamic model was to capture the nature of internal fraud 

and the operational controls to mitigate or avoid the monetary losses caused by internal 

fraudsters to the retail segment of banks. 

The research method applied to resolve the research problem is called a simulation 

study or simulation-based evaluation. This method is common in the statistics literature 

(Greene, 2012; Stern, 2000; Voss, 2013) and has been applied in many fields of research such 

as medicine, biology, psychology, physics, management, and economics. The approach 

included three main implementation steps: (a) Data simulation through an internal fraud 

model, (b) implementation of each data integration technique, and (c) a simulation study 



126 

evaluation to discover which data integration technique delivered a level of operational risk 

capital closer to the true operational risk implied by the data simulation model. 

A limitation of the research design was that a model is never as complex as reality is. 

It is inevitable that aspects of reality would be excluded from a model. Given that the purpose 

of the study was to compare data integration techniques, it was sufficient to know that the 

absent features of the internal fraud model were not correlated with the features of the 

techniques. Furthermore, the evaluation of models or statistical estimators using the Monte 

Carlo simulation of an assumed data generating process is an acceptable and standard 

practice in academia (see, for example, McNeil et al., 2005). 

This chapter is organized as follows: First some concluding remarks are made, then 

implications for operational risk management are drawn, and last, the chapter ends up with 

some recommendations. 

Conclusions 

This study contributes to the operational risk management literature in two important 

ways. The first contribution of the study is that it sheds light on a long-standing problem in 

operational risk management that in practice has hindered further development in the use of 

external data for risk management in financial institutions. Recent surveys such as BCBS 

(2014) and Deloitte (2015) have pointed out that the handling of external data by banks to 

perform risk management analysis is a long-standing problem and only slow progress has 

been made in recent years. The study served to tackle the internal-external data combination 

problem with the hope of contributing to the solution of this real business problem. 

The existing literature about internal-external data aggregation in operational risk has 

proposed a number of techniques to perform the aggregation. In particular, there are three 

prominent techniques: The Scaling, the Bayesian, and the Covariate-base techniques. 

However, practitioners that seek to implement these techniques in real contexts do not have a 
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clear idea about the advantages or disadvantages of the techniques or simply do not know 

which technique they should use. This is because there is no study that provides hints about 

which technique is best. 

This study is the first in the literature to compare the three techniques. The 

comparison is made by using a rigorous statistical procedure. The findings are that the 

standard Scaling technique is by far the less useful for estimating operational risk capital. The 

Bayesian and the Covariate-based techniques perform best. For the ORX banks during the 

period 2006-2010, and for the 99,9% quantile the Bayesian technique is best in 64 percent of 

banks while the Covariate-based technique dominates in 36 percent of the sample. 

An important element of the simulation-study approach of the study is that it needs to 

set up a quantitative model for internal fraud in the retail business line of financial 

institutions. Hence, the study contributed in a second way by building and validating a 

quantitative model that can be used for exploratory analysis about the nature of internal fraud 

losses. 

In contrast to models of operational loss events such as Kühn and Neu (2003, 2004), 

Leippold and Vanini (2005), and Bardoscia and Bellotti (2011), the study delved into internal 

fraud losses. The existing literature has been focused more on losses associated with 

information technology. The closest papers to the study are Fragnière et al. (2010) and Yang 

(2010), which incorporated human factors in the outbreak of losses. Those two papers do not 

directly tackle internal fraud losses, however. 

The dynamic internal fraud model described in this study incorporates human factors 

such as the level of employees per branch as well as the ethical quality of workers. It also 

incorporates the extent of the endogenous risk controls driven by risk managers. The model is 

based on theories about people risk management, human resources, auditing, and 

organizational literature. The model has been validated with hard data. It turns out that losses 
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generated by the model in the heterogeneous banks across the world are, in general, 

associated with the GDP growth and the corruption perception of the country where banks are 

located. This result is captured in Povel et al. (2007) who stated that losses are higher during 

good macroeconomic times. This result, to the best of knowledge, is the first time that the 

corruption perception in a country has been associated with internal fraud losses empirically. 

When a country is perceived as more corrupt, retail banking in that country will feature more 

severe internal fraud losses. 

Implications 

The findings in this study apply specifically to operational risk management in 

financial institutions and in particular, to operational risk management associated with losses 

attributed to people within organizations. Human factors such as the number of employees in 

retail banking units or the ethical quality of workers have an effect on the frequency and 

severity of operational losses due to internal fraud. These results have implications for hiring 

policies at banks as well as the type of controls that need to be instituted to reduce internal 

fraud events. In essence, the findings have implications for organization leadership because 

sound leadership implies sound employees in an efficiency and ethical sense. Sound 

employees, in turn, would mean lower internal fraud loss events. 

In a more technical sense, the results of the study have implications for the 

quantitative application of the AMA. When calculating operational risk, the Bayesian or the 

covariate-based technique should be chosen. If a bank were very concerned about operational 

risk losses, it would prefer the extreme quantiles and therefore should choose the Bayesian 

technique for data integration. 

Recommendations 

A number of recommendations are made based on the findings outlined above: 
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1. Regulators should standardize the criteria to integrate internal and external operational 

risk capital because the quantitative results could be very different depending on the 

technique applied. Competition in the financial system can be distorted otherwise, thus 

affecting the efficiency of the market. 

2. In a financial institution authorized to apply an AMA, data integration is essential to 

perform operational risk capital estimations. The Bayesian as well as the covariate-based 

technique should be evaluated and implemented carefully. The scaling technique is not 

recommended. 

3. The dynamic internal fraud model and the simulation-based evaluation of data integration 

techniques can be extended to other lines of business apart from retail banking. 

4. An avenue for future research is to validate the model with actual data, be it the ORX 

dataset or other database consortiums. 
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Appendix A: Abbreviations Used in the Thesis 

Abbreviation Meaning 

AIC Akaike Information Criterion 

AMA Advanced Measurement Approach (for operational risk capital calculation) 

BCBS Basel Committee of Banking Supervision 

BIA Basic Indicator Approach (for operational risk capital calculation) 

BPS Business Process Simulation 

BPM Business Process Management 

CDF Cumulative Density Function 

CVaR Conditional Value at Risk 

GAAP Generally Accepted Accounting Principles 

GAMLSS Generalized Additive Model for Location Scale and Shape 

GARCH Generalized Autoregressive Conditional Heteroscedasticity 

LDA Loss Distribution Approach (for operational risk capital calculation) 

OpRK Operational Risk Capital 

𝑂𝑝𝑅𝐾𝑐  Operational risk capital estimated by the scaling technique 

𝑂𝑝𝑅𝐾𝐵  Operational risk capital estimated by the Bayesian technique 

𝑂𝑝𝑅𝐾𝐶  Operational risk capital estimated by the covariate-based technique 

𝑂𝑝𝑅𝐾𝑡𝑟𝑢𝑒  True operational risk capital 

ORX Operational Riskdata eXchange Association 

PDF Probability Density Function 

SM Standardized Method (for operational risk capital calculation) 

SDS System Dynamics Simulation 

TVaR Tail Value at Risk 

VaR Value at Risk 
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Appendix B: Country Codes and Bank Codes 

No. Bank Code Bank Name Country Country Code 

1 AUS.CBA Commonwealth Bank of Australia Australia AUS 

2 AUS.NAB National Australia Bank  Australia AUS 

3 AUS.WBC Westpac Banking Corporation  Australia AUS 

4 AUT.BAC Bank Austria – Creditanstalt Austria AUT 

5 AUT.EGB Erste Group Bank AG  Austria AUT 

6 BEL.FTS Fortis Belgium BEL 

7 BRA.BSC Banco Bradesco S/A  Brazil BRA 

8 CAN.BNS Bank of Nova Scotia  Canada CAN 

9 CAN.BMO Bank of Montreal  Canada CAN 

10 CAN.RBC Royal Bank of Canada (RBC) Canada CAN 

11 CAN.TDB Toronto Dominion Bank Group Canada CAN 

12 DNK.DBA Danske Bank A/S Denmark DNK 

13 FRA.BNP BNP Paribas  France FRA 

14 FRA.CAS Credit Agricole SA  France FRA 

15 FRA.SGL Société Générale  France FRA 

16 DEU.CBA Commerzbank AG  Germany DEU 

17 DEU.DBA Deutsche Bank AG  Germany DEU 

18 DEU.DPB Deutsche Postbank AG  Germany DEU 

19 IRL.BIG Bank of Ireland Group Ireland IRL 

20 ITA.ISP Intesa SanPaolo  Italy ITA 

21 NLD.ABN ABN AMRO  Netherlands NLD 

22 NLD.ING ING Group  Netherlands NLD 

23 NLD.RBN Rabobank Nederland Netherlands NLD 

24 PRT.BPN Banco Portugues de Negocios Portugal PRT 

25 ZAF.FRD First Rand  South Africa ZAF 

26 KOR.HBK Hana Bank South Korea KOR 

27 ESP.BSB Banc Sabadell Spain ESP 

28 ESP.BBV Banco Bilbao Vizcaya Argentaria Spain ESP 

29 ESP.BPS Banco Pastor Spain ESP 

30 ESP.BPO Banco Popular Spain ESP 
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31 ESP.BST Banco Santander Spain ESP 

32 ESP.BNS Banesto Spain ESP 

33 ESP.CCT Caixa Catalunya Spain ESP 

34 ESP.CNV Caixanova Spain ESP 

35 ESP.CLB Caja Laboral Spain ESP 

36 ESP.CMR Cajamar Spain ESP 

37 SWE.SEB Skandinaviska Enskilda Banken Sweden SWE 

38 GBR.STA Standard Chartered Bank UK GBR 

39 GBR.BLB Barclays Bank UK GBR 

40 GRB.HBO HBOS PLC UK GBR 

41 GRB.HSB HSBC Holdings plc UK GBR 

42 GRB.LBG Lloyds Banking Group UK GBR 

43 GRB.RBS Royal Bank of Scotland Group UK GBR 

44 USA.BOA Bank of America USA USA 

45 USA.COF Capital One USA USA 

46 USA.JPM JPMorgan Chase & Co. USA USA 

47 USA.NAT National City USA USA 

48 USA.PNC PNC Bank USA USA 

49 USA.USB US Bancorp USA USA 

50 USA.WCR Wachovia Corporation USA USA 

51 USA.WAM Washington Mutual USA USA 

52 USA.WFC Wells Fargo & Co USA USA 
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Appendix C: Data Sources 

Table C-1  

Data Sources about Macro Variables 

Key Variable name Data source 

country_name Country Name 
 

country_code Country Code 
 

year Year 2006-2010 
 

gdp_growth GDP growth (annual %) World Development Indicators 

gover_effective Government Effectiveness The Worldwide Governance Indicators  

reg_quality Regulatory Quality The Worldwide Governance Indicators  

rule_law Rule of Law The Worldwide Governance Indicators  

cont_corrup Control of Corruption The Worldwide Governance Indicators  

enforce_act 
Enforcement actions taken over the 

past 5 years (2006-2010) 
Bank Regulation and Supervision 

sp_rem_bd 

Remuneration of the board directors as 

part of the supervisory process of risk-

taking 

Bank Regulation and Supervision 

sp_rem_sbm 

Remuneration of senior bank 

management as part of the supervisory 

process of risk-taking 

Bank Regulation and Supervision 

sp_rem_bs 

Remuneration of other bank staff as 

part of the supervisory process of risk-

taking 

Bank Regulation and Supervision 

reg_act 

Authority of the supervisory agency to 

take regulatory action when it 

considers that the remuneration or 

compensation is excessive 

Bank Regulation and Supervision 

cpi 
Corruption Perceptions Index (CPI) 

score (2006-2010) 
Transparency International 
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Appendix D: Data 

 
Figure D1.  Banks by retail assets.   

 
Figure D2.  Banks by number of branches.  
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Figure D3.  Banks by retail loans.   

 
Figure D4.  Banks by retail staff.  
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Appendix E: Distribution of idiosyncratic parameters 

  

  

 

 

Figure E1.  Distribution of parameters of the ramp function that defines the outbreak of 

operational losses in each bank.   
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Figure E2.  Distribution of other idiosyncratic parameters in the operational loss model.   
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Appendix F: Covariate-based technique regressions 

Table F1  

Severity regressions with GAMLSS 

Mean regression Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Intercept -2.80 -2.78 -2.43 -2.65 -2.47 -2.59 

 (***) (***) (***) (***) (***) (***) 

GDP growth 0.01  0.01 0.01 0.01 0.01 

 (*)  (*) (*) (*) (*) 

Crisis  -0.08     

  (**)     

CPI -0.05 -0.05 -0.17 -0.12 -0.16 -0.10 

 (***) (***) (***) (***) (***) (.) 

Government Effectiveness   0.33    

   (***)    

Regulatory Quality    0.21   

    (*)   

Rule of Law     0.29  

     (***)  

Control of Corruption      0.10 

       

Control -0.40 -0.63 -0.26 -0.44 -0.42 -0.42 

 (*) (***)  (*) (*) (*) 

Employees per branch 0.13 0.14 0.13 0.14 0.14 0.13 

 (***) (***) (***) (***) (***) (***) 

Assets per employee -0.01 -0.01 -0.01 -0.00 -0.00 -0.01 

 (.) (*) (*)   (***) 

Scale regression       

Intercept 0.73 0.56 1.12 0.83 1.12 0.92 

 (***) (***) (***) (***) (***) (***) 

GDP growth 0.01 -0.02     

 (*)      

CPI -0.07 -0.02 -0.20 -0.15 -0.21 -0.11 

 (***) (.) (***) (***) (***) (***) 

Employees per branch -0.01 -0.01 -0.02 -0.02 -0.02 -0.01 

 (***) (***) (***) (***) (***) (***) 

Diagnostics       

Global Deviance -6657.35 -6633.58 -6677.04 -6718.08 -6732.36 -6658.17 

AIC -6581.01 -6553.02 -6598.11 -6610.79 -6624.83 -6577.47 

SBC -6344.62 -6303.55 -6353.68 -6278.53 -6291.84 -6327.55 
Notes: 

1)  All models include additional repressors that are defined in terms of smoothed terms. They are not reported 

here because they are used as additional controls. Smoothing is performed with p-splines. 

2)  Significance codes are 0 = ***, 0.001=‘**’, 0.01=‘*’, 0.05=‘.’, 0.1=‘ ’. 
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Table F2  

Frequency regressions with GAMLSS 

Mean regression Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Intercept 4.33 4.32 4.28 4.23 4.22 4.24 4.40 

 (***) (***) (***) (***) (***) (***) (***) 

GDP growth 0.13 0.13 0.13 0.13 0.14 0.14 0.12 

 (***) (***) (***) (***) (***) (***) (***) 

Dummy for crisis  0.04      

        

CPI   0.02     

        

Gov. effectiveness    0.12    

        

Regulatory Quality     0.13   

        

Rule of Law      0.17  

        

Control of Corruption       0.00 

        

Control -3.50 -3.51 -3.68 -3.70 -3.69 -3.83 -3.69 

 (***) (***) (***) (***) (***) (***) (***) 

Assets per employee -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 

 (.) (*) (*) (*) (*) (*) (*) 

Scale regression        

Intercept -0.14 -0.14 -0.11 -0.10 -0.07 -0.07 -0.47 

        

Employees per branch 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 (**) (**) (**) (**) (**) (**) (**) 

Diagnostics        

Global Deviance 1581.63 1581.58 1570.44 1581.11 1570.75 1562.64 1535.25 

AIC 1611.76 1613.72 1606.82 1612.27 1609.40 1604.36 1584.57 

SBC 1663.01 1668.40 1668.74 1665.30 1675.15 1675.34 1668.48 
Notes: 

1)  All models include additional repressors that are defined in terms of smoothed terms. They are not reported 

here because they are used as additional controls. Smoothing is performed with p-splines. 

2)  Significance codes are 0 = ***, 0.001=‘**’, 0.01=‘*’, 0.05=‘.’, 0.1=‘ ’. 

 


