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Resumen

La estimación de la prevalencia de una enfermedad, la cual es definida como el número

de casos con la enfermedad en una poblacion dividida por el numero de elementos en esta,

es realizado con gran precisión cuando existen pruebas 100% exactas, tambien llamadas gold

standard. Sin embargo, en muchos casos, debido a los altos costos de las pruebas de diagnós-

tico o limitaciones de tecnoloǵıa, la prueba gold standard no existe y debe ser reemplazada

por una o más pruebas diagnósticas no tan caras pero con bajos niveles de sensibilidad o

especificidad. Este estudio esta enfocado en el estudio de dos enfoques bayesianos para la

estimacion de prevalencia cuando no es factible tener resultados de una prueba 100% exacta.

El primero es un modelo con dos parametros que toman en cuenta la asociación entre los

resultados de las pruebas. El segundo es un enfoque que propone el uso del Bayesian Model

Averaging para combinar los resultados de cuatro modelos donde cada uno de estos tiene

suposiciones diferentes sobre la asociación entre los resultados de las pruebas diagnosticas.

Ambos enfoques son estudiados mediante simulaciones para evaluar el desempeño de estos

bajo diferentes escenarios. Finalmente estas tecnicas serán usadas para estimar la prevalencia

de enfermedad renal crónica en el Perú con datos de un estudio de cohortes de CRONICAS

(Francis et al., 2015).

Palabras-clave: Análisis Bayesiano, Prevalencia, Pruebas diagnosticas, Sensibilidad, Es-

pecificidad, Bayesian Model Averaging, Modelo de Efectos fijos.
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Abstract

The estimation of a disease prevalence, which is defined as the number of cases with

the disease in a population divided by the number of the elements in it, is done with high

precision when we have a 100% accuracy (also known as gold standard) test. However, in

many cases, due to the high cost of the diagnostic tests or limited technology, a gold standard

test can not be used and should be replaced by one or two non expensive ones with usually

a limited level of accuracy. (i.e. low levels of sensitivity or specificity). This study is focused

on two Bayesian approaches to estimate the prevalence of a disease when it is not possible

to have the results from a 100% accurate diagnostic test. The first approach is a model with

two parameters that account for the association between test results. The second approach

is a model that proposes the use of the Bayesian Model Averaging to combine four models

where each one of the four models has different assumptions on the association of test results.

Both approaches will be studied under different scenarios using simulated datasets to assess

their performance; and finally, based on the results of simulation study, we will be able to

use them to estimate the prevalence of chronic kidney disease in Peru using data from the

CRONICAS cohort study (Francis et al., 2015).

Keywords: Prevalence, Bayesian Approach, Diagnostic Tests, Sensitivity, Specificity, Bayesian

Model Averaging, Fixed Effects model.
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Chapter 1

Introduction

1.1 Preliminary Considerations

The estimation of a disease prevalence, which is defined as the number of cases with

the disease in a population divided by the number of the elements in it, is done with high

precision when we have a 100% accuracy (also known as gold standard) test. However, in

many cases, due to the high cost of the diagnostic tests or limited technology, a gold standard

test should be replaced by one or two non expensive tests which usually have a limited level

of accuracy, i.e. low levels of sensitivity or specificity.

The problem of prevalence estimation has followed different approaches. One is the fre-

quentist approach when only with two diagnostic tests the problem becomes not identifiable.

This has been managed by using a minimum of four diagnostic tests. Another way to manage

the identifiability problem has been by setting values to some of the parameters so that the

problem becomes identifiable. In this case, the problem that follows is to decide the param-

eters and the values that will be assumed. The answer is not always unique and give us the

freedom to chose which of the variables we want to make assumptions on. This could lead

to different estimations depending not only on the variable chosen but also on the values

assumed for those.

The other way to handle the problem of estimation is to consider a Bayesian approach.

Here, the identifiability in the model is handle by adding prior knowledge on some of the

parameters. This means the inclusion of probabilistic models for those parameters for which

we have some information on. Gustafson (2005) believe that in many cases models with some

prior information work better than simpler models or non identifiable models.

In the Bayesian approach, we found different ways of estimating the prevalence. Two of

them are studied here. Dendukuri and Lawrence (2001) proposed a model that takes into

account the association between the diagnostic tests given the true disease status. On the

other hand, Black and Craig (2002) proposed a procedure that combines four models where

those four models account for different assumptions on the association of the tests.

One of the challenges in the Bayesian approach is the specification of the model. The

association between the diagnostic tests by disease status sometimes is not clear and some

assumptions have to be made; however, Gustafson (2005) and Albert and Dodd (2004) show

that a misspecification of the model could lead to biased prevalence estimations. The two

models presented here do not make any assumptions on the association between test results

so that we do not have to make any assumption on the association between the test results.
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CHAPTER 1. INTRODUCTION 2

1.2 Objectives

The objective of this study is to compare two Bayesian models described in the literature.

The model proposed by Dendukuri and Lawrence (2001), which we will also name the FE

approach, is a general model that takes into account any association between the diagnostic

tests. while the BMA model proposed by Black and Craig (2002) takes into account different

cases of association to handle the specification uncertainty. Combining those four models, it

is expected to reduce the uncertainty of model specification and the estimation bias.

Understanding the assumptions and model properties allow us to understand the per-

formance of those models under different scenarios and find the best approach to estimate

the disease prevalence. The models will be studied using simulations of different scenarios of

association between the diagnostic tests results.

In particular, these models will be applied to the problem of estimating the prevalence

of chronic kidney disease (CKD) in Peru. The research on this disease has been studied at

the Cayetano Heredia University in Peru, centro de enfermedades cronicas (CRONICAS),

and recently, the researchers estimated the prevalence of this disease to be 16.8% [95% CI:

13.5-20.9%] (Francis et al., 2015). However, the diagnostic tests used have reduced levels of

accuracy which could have led to a biased estimation of the prevalence.

1.3 Organization of the thesis

This work is divided as follows: In chapter 2, we present the data structure, statisti-

cal models and inference. Chapter 3 is dedicated to present the implemented simulations.

Chapter 5 shows the application of the models to the estimation of the prevalence of Chronic

Kidney Disease in Peru and chapter 6 presents the conclusions and suggestions for further

research. Finally, we end with an appendix that describes technical developments in the

Gibbs algorithms that have been used in this work.



Chapter 2

Data Structure, Models and Inference

2.1 Data Structure

Let D be a latent variable which represents the real status of the disease. D = 1 means

that the subject has the disease, and D = 0 means that the subject does not have the disease.

The true prevalence is denoted by π (π = P (D = 1)). Let Tj be the result of test j, j ∈ {0, 1},
which could take two values: {0} if the test result is negative or {1} if the result is positive.

The sensitivity and specificity of test i will be denoted by Si and Ci, respectively and are

defined as follows: Si = P (Ti = 1|D = 1) and Ci = P (Ti = 0|D = 0).

Let N be the total number of observations (patients) we have in the sample, and let

n be a vector that contains the numbers of patients at each combination of the two test

results: (positive, positive), (positive, negative), (negative, positive) or (negative, negative)

respectively. Table 1 shows a 2× 2 contingency table that has the terminology of the count

of patients classified by their results in the tests.

Table 2.1: Contingency table showing all patients classified by their results on the two diagnostic tests
Test 2

Positive Negative Total

Test 1 Positive n11 n10 n11 + n10
Negative n01 n00 n01 + n00

Total n11 + n01 n10 + n00 N

Let Y be a latent variable that represents the number of patients that have the disease.

Y could also be distributed in a 2× 2 table depending on the two diagnostic test results. For

convenience, we will define the vector y, where y = (y11, y10, y01, y00), and it will be a vector

of patients with the disease at each cell of the 2× 2 table. Table 2 shows the terminology we

use for the patients with the disease in a 2× 2 table.

Table 2.2: Contingency table showing patients with the disease classified by their results on the two
diagnostic tests

Test 2
Positive Negative Total

Test 1 Positive y11 y10 y11 + y10
Negative y01 y00 y01 + y00

Total y11 + y01 y10 + y00 Y

Throughout this study, we will be also using the conjoint probabilities of test results

3



CHAPTER 2. DATA STRUCTURE, MODELS AND INFERENCE 4

conditional to the status of the disease: Ptitj |d = P (Ti = ti, Tj = tj |D = d). However,

in some cases, to simplify notation, we will be using the vector of probabilities p1 and p0,

which are vectors of probabilities for patients with and without the disease respectively.

p1 = (P11|1, P10|1, P01|1, P00|1) and p0 = (P11|0, P10|0, P01|0, P00|0).

As Y is the number of patients with the disease, it is easy to identify its distribution:

Y ∝ Binomial(N, π)

and similarly, for y, the vector of patients with the disease divided by the results in the two

diagnostic tests:

y ∝Multinomial(n,p1)

Those distributions are taken into account to define the augmented likelihood:

L(n; θ,y) ∝ πY P y1111|1P
y10
10|1P

y01
01|1P

y00
00|1(1− π)(N−Y )P

(n11−y11)
11|0 P

(n10−y10)
10|0 P

(n01−y01)
01|0 P

(n00−y00)
00|0 (2.1)

The models we present in the following section take as a starting point this augmented

likelihood. The models discussed here consider different parametrization and prior distribu-

tions of the parameters of interest to estimate the prevalence of a disease. In the following

section, we describe both approaches to estimate the prevalence.

2.2 Fixed Effects Approach

In this section, we describe a model proposed by Dendukuri and Lawrence (2001) which

takes into account the association between the test results and which we name also named

Fixed Effects approach (FE approach). In order to model this, it includes two parameters

that model the relationship that could exist between the results of two diagnostic tests. The

first parameter accounts for the relationship between test results among patients who have

the disease (covS) and the second for the relationship between test results among patients

without the disease (covC). The parameters are defined as follows:

covS = P11|1 − P1.|1P.1|1 = P11|1 − S1S2

covC = P00|0 − P.0|0P0.|0 = P00|0 − C1C2

where we could notice that (covS) and (covC) are defined as the difference between the

conjoint probability of test results and the conjoint probability as if the tests would be

independent, i.e. a multiplication of S1 and S2 or C1 and C2. Those parameter show the

association between the test results. The larger they are, the more association between the

test results exists.

By using the sensibility, specificity of both tests and the two additional parameters, it is

possible to rewrite p0 and p1 in terms of (Si, Ci, covS, covC):

P11|1 = S1S2 + covS (2.2)

P10|1 = S1(1− S2)− covS
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P01|1 = (1− S1)S2 − covS

P00|1 = (1− S1)(1− S2) + covS

Similarly, for patients without the disease:

P11|0 = (1− C1)(1− C2) + covC (2.3)

P10|0 = (1− C1)C2 − covC

P01|0 = C1(1− C2)− covC

P00|0 = C1C2 + covC

Replacing (2.2) and (2.3) in (2.1), the augmented likelihood can be rewritten as follows:

L(n; θ, Y,y) ∝ πY (S1S2 + covS)y11(S1(1− S2)− covS)y10

(S1(1− S2)− covS)y01((1− S1)(1− S2) + covS)y00

(1− π)(N−Y )((1− C1)(1− C2) + covC)(n11−y11)

((1− C1)C2 − covC)(n10−y10)(C1(1− C2)− covC)(n01−y01)

(C1C2 + covC)(n00−y00)

Given the new augmented likelihood, we assume some convenient prior distribution:

The prior distribution for the prevalence is supposed to follow a beta distribution: π ∼
beta(απ, βπ). The sensitivities and specificities of both tests also follow a beta distribution:

Si ∼ beta(αSi , βSi) and Ci ∼ beta(αCi , βCi), respectively. Finally, the prior distribution of

covS and covC are chosen to follow a generalized beta distribution of first kind, which are

distributions similar to the beta distribution with the only difference that this is restricted

to a certain range. This is due to the fact that the range of covS and covC are not between

0 and 1 but in a reduced space. More specifically, covS ∼ genbeta(αcovS , βcovS , µs), where

µs = min((S1, S2)−S1S2) and covC ∼ genbeta(αcovC , βcovC , µc), where µc = min((C1, C2)−
C1C2).

Finally, with the priors defined above, the posterior distribution is the following:

P ∝ (S1(1− S2)− covS)y01((1− S1)(1− S2) + covS)y00 (2.4)

(1− π)(N−Y )((1− C1)(1− C2) + covC)(n11−y11)

((1− C1)C2 − covC)(n10−y10)(C1(1− C2)− covC)(n01−y01)

(C1C2 + covC)(n00−y00)παπ−1(1− π)βπ−1

S
αS1−1
1 (1− S1)βS1−1S

αS2−1
2 (1− S2)βS2−1

C
αC1
−1

1 (1− C1)βC1
−1C

αC2
−1

2 (1− C2)βC2
−1

covSαcovS−1(us − covS)βcovS−1covCαcovC−1(uc − covC)βcovC−1 (2.5)

In order to estimate the prevalence, we need to get a sample of values from the pos-

terior distribution which is not so easy given that not all the conditional probabilities are

well known. It is easy to see that the posterior distribution of π, conditional on the rest of

parameters, follows a beta distribution; however, for the remaining parameters, it is not easy
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to recognize their conditional distributions. To draw samples from the parameters that do

not have a well known distribution, we will use a Sampling Importance Resampling (SIR)

(Gelman et al., 1995) and the Gibbs sampling algorithm will be used as always to sample

get a sample from the posterior distribution. The Gibbs and SIR algorithm is detailed in the

appendix A.2.

In this approach, we see that the parameter that account for the positive association be-

tween test results is a difference between two probabilities, similar to a distance to the case

of independence. Given the fact that this parameters(covS and covC) varies between 0 and

1 and is usually in a shorter interval, it is used a beta distribution as a prior distribution of

the parameter, which could allow any information that we could have about the association

between test results. For example, if we are not completely sure about the association be-

tween the test results, the parameters of the beta distribution could be assumed in order to

have high probability around zero for the distributions of covC or covS, which is the case

of independence, and less probability for values away from zero. In the applications of this

work, we have used the parameters alpha=1 and beta=1, so that the distribution is flat and

reflects the fact that we do not have much information about the association between test

results. In practice, it will be common to use a non informative prior because those param-

eters from which we need the information, covS and covC, are not easy to understand by

medical practitioner.

2.3 Bayesian Model Averaging Approach (BMA model)

This approach was proposed by Black and Craig (2002) and it was motivated by the idea

that we usually do not know whether there is or not association between the test results. This

approach proposes to ensemble four models where each one of the models considers different

scenarios of association between the test results. Using the technique of Bayesian Model

Averaging, the four models are combined in order to get better estimates of the prevalence

and to reduce the uncertainty about the association of test results.

The first model (Model 1) makes the assumption that the test results are independent

from each other. The second one (Model 2) considers the association of the test results only

for patients with the disease. The third model (Model 3) considers the association of test

results only for patients who do not have the disease; and, fourth model (Model 4) considers

the association between test results for all patients (patients who do not have the disease and

patients who do have the disease).

Model 1: Independence of the test results.

In this first model we assume independence between test results. It means, the result

of test 1 does not affect in any way the result of test 2 and vice versa. This, in terms of

probability, means we can express the conjoint probability of test results by multiplying the

marginal probabilities of test results, i.e.: Pij|k = Pi.|kP.j|k. As a consequence, the elements

of p1 and p0 could be written in terms of: S1, S2, C1, and C2. For patients with the disease,
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the probabilities are written as follows:

P11|1 = P1.|1P.1|1 = S1S2

P10|1 = P1.|1(1− P.1|1) = S1(1− S2)

P01|1 = (1− P1.|1)P.1|1 = (1− S1)S2
P00|1 = (1− P1.|1)(1− P.1|1) = (1− S1)(1− S2) (2.6)

similarly, for patients without the disease:

P11|0 = P1.|0P.1|0 = (1− C1)(1− C2)

P10|0 = P1.|0(1− P.1|0) = (1− C1)C2

P01|0 = P0.|0P.1|0 = C1(1− C2)

P00|0 = P0.|0P.0|0 = C1C2 (2.7)

Replacing p1 and p0 from (2.6) and (2.7) in (2.1), the likelihood is written as follows:

L(n; θM1 , T ) ∝ πY [S1
(y11+y10)(1− S1)(y01+y00)][S2(y11+y01)(1− S2)(y10+y00)]

(1− π)(N−Y )[C1
((n10−y10)+(n00+y00))(1− C1)

(n11−y11)+(n10−y10)]

[C2
(n10−y10)+n00−y00(1− C2)

(n11−y11)+n01−y01 ],

where θM1 = (S1, S2, C1, C2)

Once we have the model, the prior distribution are conveniently assumed to follow the

distributions below:

S1 ∼ Beta(αS1 , βS1) , S2 ∼ Beta(αS2 , βS2)

C1 ∼ Beta(αC1 , βC1) , C2 ∼ Beta(αC2 , βC2)

π ∼ Beta(απ, βπ) (2.8)

And, finally, it is easy to combine the prior distributions and the model to obtain the

posterior distribution:

P (θM1 , T |n) ∝ [π(απ+Y−1)(1− π)βπ+N−Y−1]

[S1
αS1+y11+y10−1(1− S1)βS1+y01+y00−1]

[S2
αS2+y11+y01−1(1− S2)βS1+y10+y00−1]

[C1
αC1

+n01+n00−y01−y00−1(1− C1)
βC1

+n11+n10−y11−y10−1]

[C2
αC2

+n10+n00−y10−y00−1(1− C2)
βC2

+n11+n01−y11−y01−1] (2.9)

This model was initially studied by Lawrence et al. (1995). The prior distribution are

chosen as beta distribution for two reasons. The first one is the flexibility of modeling any

prior information with a beta distribution, and the second reason is that by using beta

distributions, the posterior probability are easy-to-recognize so that it is possible to use a
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Gibbs sampling to get samples from there. The Gibbs sampling algorithm is described in

Appendix A.2.

Model 2: Positive association between test results in patients with the disease

In this case, one assumes a positive association between the test results for patients with

the disease. That means, it is more likely to have the same results in both tests in patients

with the disease. In this case, besides S1, S2, C1 and C2, the model add an additional

parameter (P11|1) which model the association between the test results of patients with the

disease. Furthermore, to make sure that there is a positive association between the test

results, the following restriction will be forced:

S1S2 < P11|1 < min(S1, S2) (2.10)

Now, p1, defined by 2.2 in the first model, can be rewritten adding the new parameter P11|1:

P10|1 = P+.|1 − P11|1 = S1 − P11|1

P01|1 = P.+|1 − P11|1 = S2 − P11|1

P00|1 = 1− P10|1 − P01|1 − P11|1 = 1− S1 − S2 + P11|1 (2.11)

On the other hand, for patients without the disease, one assumes independence between

the test results (2.7).

Replacing p1 from (2.11), and p0 from (2.7), the likelihood is written now in terms of

θM2 = (S1, S2, C1, C2, P11|1):

L(n; θM2 ,y, Y ) ∝
(
πY (1− π)N−Y

)(
P y1111|1(S1 − P11|1)

y10(S2 − P11|1)
y01(1− S1 − S2 + P11|1)

y00
)

(
C1

(n01−y01)+(n00−y00)(1− C1)
(n11−y11)+(n10−y10)

)
(
C2

(n10−y10)+(n00−y00)(1− C2)
(n11−y11)+(n01−y01)

)
For this model we will assume the same priors than in the previous model and additionally

a prior distribution for P11|1. Assuming that we do not know much about P11|1, it will be used

a uniform distribution to model this parameter: P11|1 ∼ Unif(S1S2,min(S1, S2)). Then, the

posterior distribution is written as follows:

P (θM2 , T |n) ∝
(
π(απ+Y−1)(1− π)βπ+N−Y−1

)
(
P y1111|1(S1 − P11|1)

y10(S2 − P11|1)
y01(1− S1 − S2 + P11|1)

y00
)

(
S1

αS1−1(1− S1)βS1−1
)(

S2
αS2−1(1− S2)βS1−1

)( 1

min(S1, S2)− S1S2

)
(
C1

αC1
+(n01−y01)+(n00−y00)−1(1− C1)

βC1
+(n11−y11)+(n10−y10)−1

)
(
C2

αC2
+(n10−y10)+(n00−y00)−1(1− C2)

βC2
+(n11−y11)+(n01−y01)−1

)
(2.12)

It can be easily seen that the conditional distribution of π, C1, and C2 are known distribu-
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tions (beta distributions) but the conditional distributions of S1, S2 and S00|0 are unknown.

For those unknown distributions, we will use the Metropolis-Hastings algorithm. To draw

samples from the posterior distribution, one will use a Gibbs Sampling algorithm with a

Metropolis Hasting algorithm to draw samples from (S1, S2, P11|1) as they do not have an

easy-to-identify distribution. (See Appendix A.3)

Model 3: Positive association of test results for patients without the disease

In this model one assumes a positive association between tests results of patients who do

not have the disease. In other words, the results in test 1 and test 2 are likely to be the same

for patients who do not have the disease.

To account for a positive association between test results of patients without the disease,

we will be using the parameter P00|0 and will impose a restriction which is the following:

C1C2 ≤ P00|0 ≤ min(C1, C2) (2.13)

Then, the probabilities of test results for patients without the disease (elements of p0)

can be written in terms of C1, C2, and P00|0:

P10|0 = P.−|0 − P00|0 = C2 − P00|0

P01|0 = P−.|0 − P00|0 = C1 − P00|0

P11|0 = 1− P10|1 − P01|0 − P00|0 = 1− C1 − C2 + P00|0 (2.14)

On the other hand, the test results in patients with the disease (p1) are assumed to be

independent, just as in model 1.

Then, replacing p0 from (2.14), and p1 from (2.6), the likelihood is written in terms of a

set of parameters θM3 = (S1, S2, C1, C2, P00|0):

L(n; θM3 ,y) ∝
(
πY (1− π)N−Y

)(
S1

(y11+y10)(1− S1)(y01+y00)
)(

S2
(y11+y01)(1− S2)(y10+y00)

)
(1− C1 − C2 + P00|0)

(n11−y11)(C2 − P00|0)
(n10−y10)

(C1 − P00|0)
(n01−y01)P

(n00−y00)
00|0

The prior distribution are chosen to be the same as in the independent model(2.8) and for

P00|0, assuming that we don’t know much about P00|0, it will follow a uniform distribution:

P00|0 ∼ Unif(C1C2,min(C1, C2)) (2.15)

Then, the posterior distribution is written as:

P (θM3 |n) ∝
(
π(απ+Y−1)(1− π)(βπ+N−Y−1)

)
(
S1

αS1+y11+y10−1(1− S1)βS1+y01+y00−1
)
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S2

αS2+y11+y01−1(1− S2)βS1+y10+y00−1
)

(
C1

αC1
−1(1− C1)

βC1
−1
)(

C2
αC2
−1(1− C2)

βC2
−1
)

(1− C1 − C2 + P00|0)
(n11−y11)(C2 − P00|0)

(n10−y10)

(C1 − P00|0)
(n01−y01)P

(n00−y00)
00|0

(
1

min(C1, C2)− C1C2

)
(2.16)

It is easy to see that the conditional distribution of π, S1, and S2 are beta distributions.

However, the conditional distributions of C1, C2 and P00|0 are unknown. For those, we will

use the Metropolis-Hastings algorithm. To draw samples from this posterior distribution,

one will use a Gibbs Sampling algorithm that uses a Metropolis-Hastings algorithm inside

similar to the one described in Model 2. This time, the Metropolis-Hastings algorithm will

draw samples from the set (C1, C2, P00|0). More details are given in appendix A.4.

Model 4: Positive association of test results for all patients

In this model, we assume there is a positive association between the test results of all

patients, with and without the disease. In order to add this information to the model, we

will add the restrictions from Model 2 (2.10) and Model 3 (2.13). Therefore, p1 and p0 are

now in terms of (S1, S2, P11|1) and (C1, C2, P00|0) respectively as shown in (2.11) and (2.14).
Then, the likelihood function can be written in terms of θM4 = (S1, S2, P11|1, C1, C2, P00|0):

L(n; θM4 ,y) ∝
(
πY (1− π)N−Y

)
P y1111|1(S1 − P11|1)

y10(S2 − P11|1)
y01(1− S1 − S2 + P11|1)

y00

(1− C1 − C2 + P00|0)
(n11−y11)(C2 − P00|0)

(n10−y10)(C1 − P00|0)
(n01−y01)P

(n00−y00)
00|0

As this model is similar to the rest of the models, we would assume the prior distribution
from (2.8) and the prior distribution of p11|1 and p00|0 as in model 2 and 3, respectively:

P11|1 ∼ Unif(S1S2,min(S1, S2))

P00|0 ∼ Unif(C1C2,min(C1, C2))

Then, the posterior distribution can be written as:

P (θM4 |n) ∝
(
π(απ+Y−1)(1− π)βπ+N−Y−1

)
P y1111|1(S1 − P11|1)

y10(S2 − P11|1)
y01(1− S1 − S2 + P11|1)

y00

(1− C1 − C2 + P00|0)
(n11−y11)(C2 − P00|0)

(n10−y10)(C1 − P00|0)
(n01−y01)P

(n00−y00)
00|0(

S1
αS1−1(1− S1)

βS1−1
)(

S2
αS2−1(1− S2)

βS2−1
)( 1

min(S1, S2)− S1S2

)
(
C1

αC1
−1(1− C1)

βC1
−1
)(

C2
αC2
−1(1− C2)

βC2
−1
)( 1

min(C1, C2)− C1C2

)
To sample from this posterior distribution we need to use a Gibbs Sampling and the

Metropolis-Hastings algorithm. This time, only the prevalence(π) has known distribution.

We use the Metropolis-Hastings algorithm twice to sample from the rest of parameters. First

to sample {S1, S2, P11|1} and then to sample {C1, C2, P00|0}. Details are given in appendix

A.5.
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Bayesian Model Averaging (BMA)

The Bayesian model Averaging (BMA) is a technique that will be useful to combine the

four initial models described above and which will be useful to get better estimation of the

prevalence. Bayesian Model Averaging (BMA)(Hoeting et al., 1999) starts from the following

idea:

P (π|n) =
4∑
i=1

P (π|Mk, n)P (Mk|n)

where we see that the posterior distribution of the parameter of interest (π) given the data(n)

is written as a weighted average of the posterior distribution of π given each model.

As it is not easy to get samples only from P (π|n), we will get samples from the vector

(θk,Mk), where θk are all the parameters within the model k. Then, the marginal distribution

of π will be obtained from that chain.

Since we need to sample from (θk,Mk), which has different parameter for each of the

models, we will use the Reversible Jump MCMC (RJMCMC) algorithm to generate the

chain. The steps are detailed in appendix A.6.

The BMA approach, compared to the FE model, considers the conjoin probability of test

results, p11|1 and p00|0, as parameters that accounts for the association of test results. In

this approach they are assumed to follow a uniform distribution because it is based on the

assumption that, in practice, it is difficult to obtain information on the prior distribution of

the conjoint probabilities.

Furthermore, the BMA approach, in contrast to the FE approach, allows to defines prior

information about the probability of the models. For example, if we are not completely sure

about whether or not there is an association between test results, we could incorporate that

information into the model by defining the prior probability of model 1 to be higher than the

rest.

In summary, both models have their differences in terms of the parameters used in the

model and their algorithms. FE approach is simply a generalization of all the scenarios in

the BMA approach and needs SIR to sample from the complex posterior distributions. The

BMA approach on the other hand, is a kind of expansion of the FE approach, where 4 simpler

models have emerged in order to account for the uncertainty of the association between test

results, and expecting to have better estimates of the prevalence. We will see later, in the

simulation, whether BMA approach could have better estimations of the prevalence or not.
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Simulations

Six different scenarios were simulated in this section. In this simulations, for each one of

the scenarios, we have used a prevalence of 30%. Sensitivity of test 1 and 2 were assumed to

be 0.90 and 0.75 respectively while the specificities of test 1 and test 2 were 0.65 and 0.80

respectively.

Table 3.1: Parameters used in the simulations
Prior Parameters

Parameter Value α β

π 0.30 1 1
S1 0.90 90 10
C1 0.65 65 35
S2 0.75 60 20
C2 0.80 80 20

Except for the parameters that account for the association between test results (covS and

covC), all parameters are the same between scenarios. The parameters considered for the

simulations are shown in the table 3.2.

Table 3.2: Simulated parameters of association (covS and covC) for each simulated scenario

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

covS 0 0.065 0 0.065 0 0.065
covC 0 0 0.120 0.120 0.050 0.050

At each simulated scenario, the same prior distributions were considered for the parame-

ters of interest. The parameters used in each scenario alongside to the prior parameters that

were used in the simulations are specified in table 3.1. We can see that for the prevalence, a

non informative prior distribution was used (Beta(α = 1, β = 1)).

At each simulation, a chain of 20,500 observations was drawn, and after the removal of

the first 500, and sampling each 20 observations, we ended up with a chain of 1,000 not

correlated observations.

The performance of the models was assessed by looking at the length and coverage of the

95% high posterior density (HPD) interval and the RMSE for the median estimation (3.3).

These results show that the FE model has good coverage in all the simulated cases with more

than 95% coverage except in scenario 1 where there is a slightly reduced coverage (94.8%).

The BMA approach, on the other hand, has good coverage (more than 95%) in scenario 1

12
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and scenario 2; however, the coverage of the BMA for scenario 3 and 4 are both less than

80% which suggests that this approach does not have good coverage in scenarios where the

association between tests are significatively high.

In scenario 5 and 6, the real value of covC was set to an smaller value, and in those cases,

the BMA approach reached better coverage.

Table 3.3: Performance indicators for both models at different simulated scenarios
Scenario covS covC Model Coverage HPD(%) Length HPD(%) RMSE.Median

1 0 0 BMA 95.80 23.05 1.19
FE 94.80 26.22 1.35

2 0.065 0 BMA 96.00 21.92 1.16
FE 97.00 26.12 1.23

3 0 0.120 BMA 78.60 19.23 1.72
FE 97.80 27.72 1.28

4 0.065 0.120 BMA 78.20 18.89 1.68
FE 96.20 29.66 1.42

5 0 0.050 BMA 94.20 20.96 1.21
FE 98.80 26.30 1.16

6 0.065 0.050 BMA 88.20 20.18 1.42
FE 98.20 26.74 1.20

The results also show that BMA results show smaller HDP intervals than FE model and

RMSE. The problem with the BMA approach appears when the association between tests

for non disease subject is somewhat higher. As we could see, in scenario 3.2 the covC has

been reduced on purpose and the result is that BMA model get good coverage in that case.

Furthermore, we analyzed the distribution of posterior weights for the simulation of the

BMA approach. At each one of the simulations, the posterior weights of the four models

were calculated. In each scenario, a boxplot shows the distribution of the posterior weights

by model in the 1000 simulations (Figure 3.1). At each scenario, we expected high weight

in the model that represents the true association in the simulated data (i.e., for scenario 1,

it is expected to find high weight in model 1 and small weights in the rest of the models as

it is represents the real structure of association between tests). However, in scenario 1, even

though there is a high weight in model 1, the remaining models also have significant weights.

In scenario 2, the weights are well distributed between the four models which is not what we

expected based on how we simulated the data. In scenario 3 and scenario 4, the weights are

not distributed as we expected (i.e. high weights in model 3 for scenario 3 and high weight in

model 4 for scenario 4). In those scenarios, the weights are high in both model 3 and model

4 which is not totally consistent with the data we simulated.

The results on the distribution of the model weights show that the BMA model is not

always adequate to identify the case of association between diagnostic tests. Therefore,

it could lead to inappropriate results if it is used to identify the underlying structure of

association between diagnostic tests.
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Figure 3.1: Distribution of posterior weights by model for each simulated scenario
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Applications

Strongyloides Infection

In this section, we will study the case of the Strongyloides infection which was first studied

by Lawrence et al. (1995). In this problem the prevalence is estimated by using two standard

diagnostic tests: Stool examination and Sereologic test. Both tests were applied to 162

Cambodian refugees arriving in Montreal, Canada, between July 1982 and February 1983.

The parameters for the prior distributions are from Lawrence et al. (1995). They are

summarized in table 4.1. It was assumed a non informative prior for the prevalence (where

the parameters α and β are both equal to one), and the prior parameters for the sensitivity

and specificity are based on prior knowledge.

Table 4.1: Prior parameters α and β alongside with their mean and precision.
Parameter Mean Precision Alpha Beta

µ φ α β

π 0.5 2 1 1
S1 0.8 27.45 21.96 5.49
C1 0.7 5.86 4.1 1.76
S2 0.25 17.75 4.44 13.31
C2 0.95 75 71.25 3.75

With the priors specified above, the BMA and FE models were used to estimate the preva-

lence. The results are described in tables 4.2 and 4.3:

Table 4.2: Estimation of the prevalence of Strongyloides by using the BMA and FE approach

BMA Approach Fixed Effects Approach

Median 95% C.I. Median 95% C.I.

P50% P2.5% P97.5% P50% P2.5% P97.5%

π 0.817 0.559 0.978 0.874 0.561 0.992
S1 0.880 0.770 0.955 0.820 0.729 0.918
C1 0.759 0.358 0.980 0.700 0.312 0.942
S2 0.295 0.227 0.403 0.275 0.200 0.381
C2 0.963 0.898 0.991 0.933 0.853 0.979

CovS 0.018 0.000 0.048 0.031 0.005 0.060
CovC 0.000 0.000 0.042 0.019 0.001 0.074

C.I.: Credible Interval

The estimation of the prevalence using the BMA approach is 81.7% while using the FE

approach, the estimate of the prevalence was 87.4%, a difference of 5.7% between them. On

15
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Table 4.3: Details of the estimation of Strongyloides infection prevalence using the BMA approach
Model 1 Model 2 Model 3 Model 4

Median P2.5% P97.5% Median P2.5% P97.5% Median P2.5% P97.5% Median P2.5% P97.5%

π 0.781 0.545 0.899 0.834 0.561 0.976 0.775 0.512 0.892 0.840 0.564 0.986
S1 0.907 0.828 0.958 0.872 0.762 0.952 0.908 0.827 0.958 0.865 0.763 0.952
C1 0.766 0.403 0.977 0.759 0.367 0.983 0.745 0.374 0.982 0.758 0.348 0.979
S2 0.310 0.245 0.432 0.292 0.216 0.396 0.309 0.242 0.419 0.288 0.226 0.394
C2 0.970 0.921 0.992 0.963 0.900 0.992 0.966 0.907 0.989 0.958 0.898 0.991

Covs - - - 0.023 0.003 0.049 - - - 0.023 0.002 0.051
Covc - - - - - - 0.011 0.000 0.050 0.011 0.000 0.053

P (M |n) 0.114 0.375 0.139 0.371

the other hand, the length of the credible interval for the BMA approach is 0.987− 0.559 =

0.419 while the length for the FE approach is 0.992− 0.561 = 0.431.

Based on the results of our simulations in the previous section, we expected the BMA

approach to have more error in its estimates and less coverage for some scenarios. Therefore,

in this case, we consider that the FE approach is a better estimation for the prevalence of

strongyloides disease, which is estimated to be around 87.4% with a 95% credible interval of

56.1% - 99.2%.

Chronic Kidney Disease

Estimation of chronic kidney disease (CKD) prevalence is performed using data from the

CRONICAS cohort study group, which was previously used for an estimation of CKD by

Francis et al. (2015). The dataset has test results from 404 adults in Peru where the mean

age was 55 years (sd=12.972); fifty percent were males, and they came from two cities in

Peru: 50.2% from Lima and 49.8% from Tumbes.

To define CKD, we used the definition given by KDIGO 2012, Clinical Practice Guideline for

the Evaluation and Managment of Chronic Kidney Disease (2013) that states that a patient

has CKD when either of these conditions are met:

1. The Protein Excretion Rate (proteinuria) is more than 150 mg/24h, or

2. The Glomerular Filtration Rate is less than 60 ml/min/1.73 m2.

Francis et al. used the protein-to creatinine ratio (PCR) and the estimated Glomerular

Rate(eGFR), both measured from a sample of early morning urine. The two used test were:

(1) the PCR ≥ 15 mg/mol and (2) eGFR < 60 ml/min/1.73 m2. These authors took into

account a ’worst case’ scenario, where a patient was considered to have the disease when

either one of the test resulted positive.

In this study, however, we are taking into account the sensitivity and specificity of the

tests to have a better estimation of the CKD prevalence. In addition, we are using a variation

of the first test which is considered to be the optimal test to detect when the proteinuria is

more than 150 mg/24h.

An study of the PCR and the optimal cut-offs for detecting more than 150mg/24h of

proteinuria is described by Guy et al. (2009) in which they considered that a cut-off of 23

mg/mmol (or 230 mg/g) in PCR is an optimal cut-off to identify patients with proteinuria

≥ 150 mg/24h. We used this test instead of the one used by Francis et. al. where the cut-off
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was 15 mg/mmol (or 150 mg/g). The associated sensitivity and specificity for this optimal

test are 78% and 79%, respectively. On the other hand, the second evidence of CKD is a

Glomerular Filtration Rate greater than 60 ml/min/1.73 m2 which is estimated by using

a second test, the same that was use by Francis et al., which is the estimated Glomerular

Filtration Rate (eGFR) with a cutoff of 60, i.e. eGFR< 60 ml/min/1.73 m2. The accuracy of

this tests was studied by Murata et al. (2011) where they found this test has 50% sensitivity

and 98% specificity.

The results of both tests for this study are showed in Table 4.4 (using the cutoff points

described by Francis et al., 2015) and Table 4.5 (using a different cutoff point for test 1,

described by Guy et al., 2009).

Table 4.4: Test results used in this study to estimate CKD prevalence
eGFR< 60 ml/min/1.73 m2

Positive Negative Total

PCR ≥ 23 mg/mmol Positive 2 26 28
Negative 6 370 376

Total 8 396 404

Table 4.5: Test results used in Francis et al. (2015) to estimate CKD prevalence

eGFR< 60 ml/min/1.73 m2

Positive Negative Total

PCR ≥ 15 mg/mmol Positive 4 60 64
Negative 4 336 340

Total 8 396 404

Due to the fact that we only know the mean estimations for sensitivities and specificities,

we specify the priors in terms of the mean (µ = α
α+β ) and precision (the inverse of the

variance, and for this case φ = µ(1−µ)). Assuming a precision equals to 5 for all parameters

(Table 4.6). In this case, we choose a non informative prior for the prevalence due to the fact

that we do not have reliable information about the prevalence of this disease in Peru.

Table 4.6: Prior parameters and their quantiles.
Parameters Quantiles

Mean α β P2.5% P97.5%

π 0.500 1.00 1.00 0.02 0.98
S1 0.780 3.90 1.10 0.40 0.99
C1 0.790 3.95 1.05 0.40 0.99
S2 0.500 2.50 2.50 0.12 0.88
C2 0.980 4.90 0.10 0.83 1.00

To obtain a sample from the posterior distribution, it was simulated 1,000 data points

from the posterior density. In order to get the 1,000 observations, we run a chain with 20,500

iterations from which we discard the first 500 and select one sample every 10 observations.

Table 4.7 shows the estimation of CKD prevalence by combining the four models using

the Bayesian Model Averaging described in the previous section, and the estimation using

the FE approach.

The results show that the estimation based on BMA an FE approach of the CKD preva-

lence is far less than the estimation described by Francis et al. (2015). The BMA estimation
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Table 4.7: Estimation using BMA and Fixed Effect Approach
BMA Approach Fixed Effects Approach

Median 95% C.I. Median 95% C.I.

P50% P2.5% P97.5% P50% P2.5% P97.5%

π 0.015 0.001 0.112 0.010 0.000 0.072
S1 0.695 0.243 0.985 0.667 0.266 0.936
C1 0.939 0.917 0.985 0.931 0.894 0.965
S2 0.437 0.066 0.906 0.450 0.108 0.823
C2 0.985 0.972 1.000 0.975 0.926 0.994

CovS 0.000 0.000 0.151 0.046 0.002 0.178
CovC 0.000 0.000 0.007 0.004 0.000 0.021

C.I.: Credible Interval

Table 4.8: Details of the estimation of CKD prevalence by using the BMA Approach.
Model 1 Model 2 Model 3 Model 4

Mean P2.5% P97.5% Mean P2.5% P97.5% Mean P2.5% P97.5% Mean P2.5% P97.5%

π 0.017 0.002 0.113 0.017 0.002 0.121 0.011 0.000 0.107 0.012 0.000 0.099
S1 0.771 0.249 0.993 0.615 0.243 0.948 0.788 0.245 0.993 0.638 0.238 0.949
C1 0.940 0.919 0.980 0.939 0.919 0.990 0.936 0.916 0.982 0.937 0.915 0.981
S2 0.421 0.087 0.877 0.441 0.064 0.934 0.438 0.060 0.873 0.453 0.045 0.903
C2 0.986 0.974 1.000 0.986 0.975 1.000 0.982 0.970 0.997 0.982 0.970 0.999
Covs - - - 0.027 0.000 0.170 - - - 0.026 0.000 0.190
Covc - - - - - - 0.002 0.000 0.009 0.002 0.000 0.008

P (M |n) 0.276 0.305 0.211 0.208

was 1.5% while using the FE approach was 1%. In this case, similar to the first application,

the length of the credible interval for the BMA is bigger than the one for the FE approach.

They considered a cutoff of 15 mg/mmol, this cutoff is used to detect patients that are

at some risk of having the CKD disease (KDIGO (2012)). As this is a cutoff that detects the

risk of having the disease, the estimation of the real prevalence could be overestimated.

They used a worst case scenario to estimate the prevalence, which means that they

consider a subject as having the disease if at least it has been positive in one of the two

diagnostic tests. In addition, the sensibility and specificity were not considered at any point

in the estimation, while on the present study, both information, related to the sensibility and

specificity, were taken into account.

Finally, our application considered a more restrictive cutoff point for the diagnostic test:

To detect the proteinuria ≥ 150mg/24h, we are using now PCR ≥ 23mg/mmol instead of

PCR ≥ 15mg/mmol which was used in Francis et al. (2015).

Based on the results of the simulations, we consider that the estimations found in the FE

approach are more accurate than with the BMA approach. Therefore, we consider that the

prevalence of CKD is around 1% with a credible interval between 0% and 7.2%.



Chapter 5

Conclusions

5.1 Conclusions

� This work describes two Bayesian approaches to estimate the prevalence of a disease in

the case of outcome misclassification due to the use of two imperfect diagnostic tests.

� For both of these approaches, there is no need to make assumptions about the associa-

tion of test results between patients. Therefore, both models can be used even if there

is uncertainty about the type of association between the available tests.

� Based on our simulations results, we found that the BMA approach, in some cases,

could lead to inadequate credible intervals of the disease prevalence. On the other

hand, the FE approach shows robustness under different cases of association ( i.e.

credible intervals show good coverage under different scenarios).

� In the application of both approaches to the estimation of the prevalence of chronic

kidney disease prevalence, we found that the estimated prevalence was around 1% (95%

CI: 0%− 7.2%) which differs from the estimations described by Francis et al. (2015).

5.2 Further research

� . Our results on the credible intervals still have wide credible intervals. Dendukuri

et al. (2004) showed the importance of sample size to achieve smaller intervals whenever

the independence assumption is met. We are testing that hypothesis under different

scenarios of association between the test results.

� Gustafson (2005) observed that sample size was important in order to identify the

underline association. In our simulations, we consider a sample size of 200 individuals

for all scenarios. A step forward can be to compare our results with other scenarios with

a larger sample size. For example, in our simulations, we found that the BMA approach

had limitations to identify the association between the test results and therefore, it

would be interesting to study whether a larger sample size could help us in this problem.

� Gustafson (2005) and Berkvens et al. (2006) agree that prior information is important

when considering a Bayesian approach to estimate the prevalence of a disease. In

this article, we used the same prior information for the BMA and FE approach in

order to make a fair comparison between them. However, each approach has a different
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parametrization of the association. We are currently working on the re-parametrization

of our models in order to make a proper comparison.

� Our program has been written in R and therefore we are currently working on moving

all our code to C in order to drastically reduce the computation time and also to be

able to develop an R package.

� Our collaborators at the Centro de Excelencia en Enfermedades Cronicas (CRONICAS)

are interesting in extending this problem to the case of combining multiple studies. This

new problem has multiple challenges that are we are currently exploring.



Appendix A

Algorithms

A.1 Gibbs Sampling and SIR algorithm for Fixed Effect Model

Given the posterior distribution, the conditional distributions are recognized:

P (Si|S3−i, covS,y, us) ∝
1∏

t1=0

1∏
t2=0

(
S1
t1(1− S1)

1−t1S2
t2(1− S2)

1−t2 + (−1)t1+t2covS
)yt1t2

S
αSi−1

i (1− Si)βSi−1(us − covS)βcovS−1

P (Ci|C3−i, covC,n,y, uc) ∝
1∏

t1=0

1∏
t2=0

(
C1

1−t1(1− C1)
t1C2

1−t2(1− C2)
t2 + (−1)t1+t2covC

)(nt1t2−yt1t2 )

C
αCi−1

i (1− Ci)βCi−1(uc − covC)βcovC−1

P (CovS|S1, S2,y, us) ∝
1∏

t1=0

1∏
t2=0

(
S1
t1(1− S1)

1−t1S2
t2(1− S2)

1−t2 + (−1)t1+t2covS
)yt1t2

(us − covS)βcovS−1

P (covC|C1, C2,n,y, uc) ∝
1∏

t1=0

1∏
t2=0

(
C1

1−t1(1− C1)
t1C2

1−t2(1− C2)
t2 + (−1)t1+t2covC

)(nt1t2−yt1t2 )

C
αCi−1

i (1− Ci)βCi−1(uc − covC)βcovC−1

yi|n, π, S1, S2, C1, C2 ∼ Bin(ni, posi)

where:

pos1 =
πP00|1

πP00|1 + (1− π)P00|0
; pos2 =

πP10|1

πP10|1 + (1− π)P10|0

pos3 =
πP01|1

πP01|1 + (1− π)P01|0
; pos4 =

πP11|1

πP11|1 + (1− π)P11|0

and Pij|d could be obtained from 2.2 and 2.3.

The Gibbs sampling algorithm consists of sampling from each one of the conditional distributions. However,

as the distributions are not easy to recognize in this case, it will be used a sapling importance resampling

algorithm(SIR) to sample from each one of the unknown distributions.

The algorithm of sapling importance resampling (SIR) consists on:

1. Draw samples from a proposal distribution g(.)

2. Compute the importance weighting for each one of the samples.

3. Re-sample from the new set of samples considering the weights calculated in 2.
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A.2 Gibbs Sampling algorithm for Model 1 of BMA approach

First, start by identifying the conditional distribution of each parameter by looking at the posterior

distribution. In this case, we could identify the following conditional distributions:

S1|y ∼ Beta(αS1 + y11 + y10, βS1 + y01 + y00)

S2|y ∼ Beta(αS2 + y11 + y01, βS1 + y10 + y00)

C1|n,y ∼ Beta(αC1 + n01 + n00 − y01 − y00, βC1 + n11 + n10 − y11 − y10)

C2|n,y ∼ Beta(αC2 + n10 + n00 − y10 − y00, βC2 + n11 + n01 − y11 − y01)

yi|n, π, S1, S2, C1, C2 ∼ Bin(ni, posi) (A.1)

where

pos1 =
πP00|1

πP00|1 + (1− π)P00|0
; pos2 =

πP10|1

πP10|1 + (1− π)P10|0

pos3 =
πP01|1

πP01|1 + (1− π)P01|0
; pos4 =

πP11|1

πP11|1 + (1− π)P11|0
(A.2)

Finally, the conditional distribution of the prevalence is :

π|n, Y, S1, S2, C1, C2 ∼ Beta(απ + Y, βπ +N − Y )

Having identified the conditional distributions, it is easy to describe the Gibbs Sampling

algorithm as follows:

1. Start with arbitrary values for the parameters and latent variables: y, π, S1, S2, C1, C2

2. Draw samples from each one of the conditional distribution defined in (A.1).

3. Repeat step 2 a large number of times.

The algorithm creates a chain of simulated values from the posterior distributions. After

creating the chain, it is recommended to burn the first ones and just take observations

jumping between observations to avoid having an autocorrelated sample.
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A.3 Gibbs Sampling algorithm for Model 2

If we try to use the Gibbs Sampling algoritm to draw samples from 2.12, it is easy to

define the conditional distribution for π, C1, and C2, but not so easy for S1, S2 or P11|1 alone.

They do not have an easy-to-identify conditional distribution function. Then, in this case,

we can sample from the conditional distribution of the set {S1, S2, P11|1} instead of each one

alone; and to do so we need to use the Metropolis Hasting algorithm.
The very first step is to identify the conditional distribution of each parameter and the

conjoin conditional distribution for {S1, S2, P11|1} from 2.12. The distributions we identified
are shown below.
First, the conditional distribution of the set {S1, S2, P11|1}:

f(S1, S2, P11|1|y) ∝
(
P y1111|1(S1 − P11|1)

y10(S2 − P11|1)
y01(1− S1 − S2 + P11|1)

y00
)

(
S1
αS1−1(1− S1)

βS1−1
)(

S2
αS2−1(1− S2)

βS1−1
)( 1

min(S1, S2)− S1S2

)
equivalent to the folowing, which is the one we will use for the MH algorithm:

f(S1, S2, P11|1|y) ∝ P y1111|1P
y10
10|1P

y01
01|1P

y00
00|1

[S1
αS1−1(1− S1)

βS1−1][S2
αS2−1(1− S2)

βS1−1]
1

min(S1, S2)− S1S2

And the conditional distribution of the rest of parameters:

C1|n,y ∼ Beta(αC1 + n01 + n00 − y01 − y00, βC1 + n11 + n10 − y11 − y10)

C2|n,y ∼ Beta(αC2 + n10 + n00 − y10 − y00, βC2 + n11 + n01 − y11 − y01)

ai|n, S1, S2, C1, C2 ∼ Bin(ni, posi)

π|n, Y, S1, S2, C1, C2 ∼ Beta(απ + Y, βπ +N − Y )

where posi was specified in (A.2).

The algorithm to use is a Gibbs Sampling similar to the one described in Model 1;

however, this time, we have one of the distribution to be the distribution of a set of variables

S1, S2, P11|1, which needs to be sampled by using a Metropolis Hasting algorithm. The MH

algotithm is described in the following steps:

1. Choose a proposal distribution. Conveniently, it is proposed a Dirichlet: p1 ∼ Dirichlet(1+

y11, 1 + y10, 1 + y01, 1 + y00). Then, the probability distribution (pd) for p1 is:

g(p1) ∝ P y1111|1P
y10
10|1P

y01
01|1P

y00
00|1

2. Draw a sample from the proposal distribution: p1
∗, and verify if it satisfies the restric-

tion: p∗11|1 > S∗1S
∗
2 , where S∗1 = (P ∗11|1 + P ∗10|1) and S∗2 = (P ∗11|1 + P ∗01|1).

If p1
∗ does not satisfy the restriction, we continue drawing samples of p1

∗ until finding

one that satisfies the restriction. Once we find a sample p1
∗ that satisfies the restriction,

we can continue to the next step.

3. Update p1 with p1
∗ with a probability of update defined as PUpd = min

(
1, f(x

∗)g(x|x∗)
f(x)g(x∗|x)

)
;

where f is the pd which we want to sample from (pd of the set S1, S2, P11|1), and g is

the pd of the proposal distribution (pd of p1).
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Note that g and f could be written as follows:

g(x) ∝ P y1111|1P
y10
10|1P

y01
01|1P

y00
00|1

f(x) ∝ P y1111|1P
y10
10|1P

y01
01|1P

y00
00|1[S1

αS1−1(1− S1)βS1−1]

[S2
αS2−1(1− S2)βS1101]

1

min(S1, S2)− S1S2

Then, replacing f and g in PUpd, the probability of updating p1 with p∗1 is summarized
in:

PUpd = min

(
1,

2∏
i=1

((
S∗i
Si

)αSi−1(
1− S∗i
1− Si

)βSi−1
)(

min(S1, S2)− S1S2

min(S∗1 , S
∗
2 )− S∗1S∗2

))
(A.3)

4. Repeat steps 2 and 3 a large number of times.
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A.4 Gibbs Sampling algorithm for Model 3

The algorithm is similar as in Appendix A.3 except that now we use the Metropolis

Hasting (MH) algorithm to sample the set of variables (C1, C2, P00|0).

The poposed distribution for the MH algorithm will be

g(p0) ∝
(
Pn11−y11
11|0 Pn10−y10

10|0 Pn01−y01
01|0 Pn00−y00

00|0

)
and the probability to update will be:

PUpd = min

(
1,

2∏
i=1

((
C∗i
Ci

)αCi−1(
1− C∗i
1− Ci

)βCi−1
)(

min(C1, C2)− C1C2

min(C∗1 , C
∗
2 )− C∗1C∗2

))
(A.4)

A.5 Gibbs Sampling algorithm for Model 4

This algorithm is also similar as in Appendix A.3 except that we use the Metropolis

Hasting (MH) algorithm to sample two set of variables (S1, S2, P11|1) and (C1, C2, P00|0).

Their proposals will be:

g(p0) ∝
(
Pn11−y11
11|0 Pn10−y10

10|0 Pn01−y01
01|0 Pn00−y00

00|0

)
g(p1) ∝ P y1111|1P

y10
10|1P

y01
01|1P

y00
00|1 (A.5)

At each of the MH algorithms, the probility of update (PUpd) is the same as in Model

2(A.4) and Model 3(A.4).
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A.6 Algorithm for Bayesian Model Averaging (BMA)

Starting in a random initial state, say (θk,M), the algorithm for BMA is described below:

1. Propose a new model, say M∗ with probability j(M∗|M) given the current model.

2. Generate a vector u from a continuous distribution q(u|θM ,M,M∗), which conveniently

will be chosen to be the posterior distribution of P (θ∗M |M∗). The convenience to choose

this distribution will be seen in step 4.

3. Set a funcion, gM.M∗ that is bijective and converts from (θM ,M) to (θM∗ ,M
∗). This

is: gM.M∗(θM ,M) = (θM∗ ,M
∗).

4. Accept the proposal move to (θM∗ ,M
∗) with probability:

α = min

(
1,
P (n|θM∗ ,M∗)P (θM∗ |M∗)P (M∗)

P (n|θM ,M)P (θM |M)P (M)

j(M |M∗)
j(M∗|M)

q(u∗|θM∗ ,M∗,M)

q(u|θM ,M,M∗)

∣∣∣∣δgM.M∗(θM ,M)

δθM ,M

∣∣∣∣)

Having chosen the convenient ditribution in step 2. The probability of move can be

simplified to the following expression:

α = min

(
1,
P (n|M∗)P (M∗)

P (n|M)P (M)

j(M |M∗)
j(M∗|M)

)
Now, if we specify the prior distribution of each model to be the same for each model,

then P (M) = 1
4 . Also, if we take the same probability to jump to other models from whatever

model we are, then j(M∗|M) = j(M |M∗). Replacing it to the equation, the probability to

move is even more simplified to the following:

α = min

(
1,
P (n|M∗)
P (n|M)

)
(A.6)

where P (n|M) is the likelihood of the current model, and P (n|M∗) the likelihood of

proposed model.

For example, if we jump from Model 1 to Model 2. The only parameters that change

are p1 = (P11|1, P10|1, P01|1, P00|1). They move from being in terms of (S1, S2) in model 1 to

being in terms of (S∗1, S
∗
2, P11|1) in model 2. As a result, the probability to move simplifies

to:

α = min

(
1,
P (n|M∗)
P (n|M)

)
= min

(
1,
Ka∗1 [P

∗y11
11|1 P

∗y10
10|1 P

∗y01
01|1 P

∗y00
00|1 ]

Ky11 [P
y11
11|1P

y10
10|1P

y01
01|1P

y00
00|1]

)

= min

(
1,
P (a|S1, S2, P11|1)

P (a|S1, S2)

)
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