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Quantum Deletion: Photonic Simulation and
relevance as No-Go Theorem

Giancarlo Gatti Alvarez

Summary

This thesis discusses the No-Deleting Theorem in the context of quantum me-

chanics, and from an informational and thermodynamic point of view. The theorem

is proved, and distinction is made between deletion and erasure.

Erasure is further discussed through Maxwell’s Demon and Landauer’s principle,

which are linked to one another by the Second Law of Thermodynamics. This leads

to relate erasure with measurement and work.

A setup for deletion simulation is proposed by use of linear optics supplemented

by processes such as spontaneous parametric down-conversion.

Finally, the No-Deleting Theorem is compared to other No-Go Theorems, and

implication relations are proved (demonstrated) between it, the No-Signalling The-

orem and the Second Law of Thermodynamics.



Borrado Cuántico: Simulación Fotónica y
relevancia como Teorema de Imposibilidad

Giancarlo Gatti Alvarez

Resumen

Esta tesis discute el Teorema de No-Borrado en el contexto de la mecanica

cuántica, desde un punto de vista informacional y termodinámico. Se realiza la

prueba del teorema, y se hace distinción entre borrado cuántico (deletion) y bor-

rado (erasure).

Se discute el borrado (erasure) a mayor profundidad a través del Demonio de

Maxwell y el Principio de Landauer, vinculados entre śı por la Segunda Ley de la

Termodinámica. Esto conduce a relacionar el concepto de borrado (erasure) con

medición y trabajo.

Se propone un montaje experimental que sirve como simulación de un proceso

de borrado cuántico (deletion), a través del uso de óptica lineal suplementada por

procesos como la conversión paramétrica espontánea descendiente.

Finalmente, se compara al Teorema de No-Borrado con otros Teoremas de Im-

posibilidad, y se demuestran las relaciones de implicancia entre este teorema, el de

No-Comunicación y la Segunda Ley de la Termodinámica.
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Chapter 1

Introduction

There has been an increasing interest in the relation between Quantum Mechanics

and information. General theorems of QuantumMechanics directly address concepts

such as information deletion, cloning, and cryptography.

In fact, a reformulation of the quantum formalism in terms of a theory of infor-

mation has been considered [1–3]. It is in this context that we will be specifically

interested in the No-Deleting Theorem, a theorem implied by the unitarity condi-

tion of Quantum Mechanics. However, we will study this theorem alone, and not

as an implication of unitarity, as it is more easily related with information than the

unitarity condition.

For this matter, this thesis will approach Quantum Deletion in two ways. On

one hand, we will propose a photonic simulation of a deletion process, to study what

is the closest we can actually get to a quantum deletion evolution. On the other

hand, as has been done previously [3], we will promote the No-Deleting Theorem to

a principle, to pinpoint its relevance in relation with other No-Go Theorems.
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Chapter 2

Review

2.1 No-Deleting Theorem

In the context of classical information, erasure of a bit of information is a feasible

operation, albeit with a minimum kBT ln(2) heat released (kB is the Boltzmann

constant and T the temperature of the system in Kelvin), given by Landauer’s

Principle [4]. To erase means to reset an arbitrary bit in a system to a constant

(known) state, and it is considered an irreversible operation [5].

Upon entering the domain of Quantum Mechanics, however, when we refer to

two-level systems, we speak not only of systems that can take one out of two possible

states, but also any possible superposition of those states (which we write down

as normalized complex-coefficient linear combinations of the states). Still, despite

having an infinite number of possible states, when doing measurements on one of

these systems, the result will always be one out of two (and no more than two)

states.

Taking these superposition states into account, another kind of information can

be defined based on these physical systems: quantum information, with the qubit

–a two-level system with the possibility of superposition– as unit of measurement.

One may thus wonder if an arbitrary qubit can be reset to a constant state in an

irreversible manner (deleted), or if it can be copied.

We will now prove that Quantum Mechanics forbids arbitrary qubits from being

deleted, even against a copy. The general structure of our proof is taken from [6].

Let |ψ⟩ be an unknown quantum state in some Hilbert space. Then, we can

prove that there is no linear unitary transformation such that:

|ψ⟩A|ψ⟩B|A⟩C → |ψ⟩A|0⟩B|A′
ψ⟩C , (2.1)

where |A⟩ and |A′
ψ⟩ are ancillas, and |ψ⟩ can not be reconstructed from |A′

ψ⟩ by a
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constant (ψ-independent) transformation.

Without loss of generality, we will consider two-dimensional Hilbert spaces and

let |ψ⟩ = α|0⟩+ β|1⟩. Transformation (2.1) would require that:

|0⟩A|0⟩B|A⟩C → |0⟩A|0⟩B|A0⟩C
|1⟩A|1⟩B|A⟩C → |1⟩A|0⟩B|A1⟩C

(2.2)

By linearity, we would know how the span of |0⟩A|0⟩B|A⟩C and |1⟩A|1⟩B|A⟩C
transforms, but we would not know anything about how any other term transforms.

Since the transformation is linear, the result will always be a superposition of pure

states, so we can always write a (for now) unknown output state |ϕ⟩ABC . Thanks to
unitarity, we do know that the output will be normalized if the input is too. This

way, for a normalized vector |ψ⟩ = α|0⟩+ β|1⟩, we would have:

|ψ⟩A|ψ⟩B|A⟩C =
(
α2|0⟩A|0⟩B + β2|1⟩A|1⟩B + αβ(|0⟩A|1⟩B + |1⟩A|0⟩B)

)
|A⟩C

→ α2|0⟩A|0⟩B|A0⟩C + β2|1⟩A|0⟩B|A1⟩C +
√
2αβ|ϕ⟩ABC (2.3)

Here, we are writing |ϕ⟩ABC as the transformation of 1√
2
(|0⟩A|1⟩B+|1⟩A|0⟩B)|A⟩C .

Let us note that, if transformation (2.1) is to hold, the total output should be

equal to
(
α|0⟩A|0⟩B + β|1⟩A|0⟩B

)
|A′

ψ⟩C . We have, then:

|ϕ⟩ABC
!
=

1√
2

(
|0⟩A|0⟩B

1

β

(
|A′

ψ⟩C−α|A0⟩C
)
+|1⟩A|0⟩B

1

α

(
|A′

ψ⟩C−β|A1⟩C
))

(2.4)

But |ϕ⟩ABC is independent of α or β, since it is merely the evolution of a fixed

state. Thus, each linearly independent term of (2.4) should be equal to a (different)

constant state (we will name them |c1⟩C and |c2⟩C):

1

β

(
|A′

ψ⟩C − α|A0⟩C
)
= |c1⟩C

1

α

(
|A′

ψ⟩C − β|A1⟩C
)
= |c2⟩C

(2.5)

This is the same as:

|A′
ψ⟩C = α|A0⟩C + β|c1⟩C

|A′
ψ⟩C = α|c2⟩C + β|A1⟩C

(2.6)

It is now easy to note that |c1⟩C = |A1⟩C and |c2⟩C = |A0⟩C , which leads us to:
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|A′
ψ⟩C = α|A0⟩C + β|A1⟩C (2.7)

Since the evolution is unitary, this state must be normalized, so |A0⟩C and |A1⟩C
must be orthogonal and form a basis, because their amplitudes are normalized only in

that case. Let U be the transformation that maps the basis {|0⟩, |1⟩} to {|A0⟩, |A1⟩}.
Thus, linear and unitary transformations of the form (2.1) must also be of this

form:

|ψ⟩A|ψ⟩B|A⟩C → |ψ⟩A|0⟩BU |ψ⟩C (2.8)

This means that the information that was encoded through |ψ⟩ in the initial

state remains available in the transformed state. Thus, there can not be a linear

and unitary transformation in which quantum information is lost, that is, deletion

is forbidden by Quantum Mechanics.

Not only that. To (irreversibly) delete an arbitrary qubit would result in the

possibility of faster-than-light communication [3,7], something forbidden by relativ-

ity.

The question is now open: why is it that classical information can be irreversibly

erased –albeit with a heat-release cost– but quantum information can not be (irre-

versibly) deleted? We will address this question later on.

2.2 No-Cloning Theorem

The laws of Quantum Mechanics also forbid copying (cloning) an arbitrary qubit

[8, 9]. Consider the following proof:

Let |ψ⟩ be an unknown quantum state in some Hilbert space. Then, we can

prove that there is no linear unitary transformation such that:

|ψ⟩A|0⟩B|A⟩C → |ψ⟩A|ψ⟩B|A′
ψ⟩C , (2.9)

where |A⟩C must be independent of |ψ⟩.
Once again, without loss of generality, we consider two-dimensional Hilbert

spaces and let |ψ⟩ = α|0⟩+ β|1⟩. This time, transformation (2.9) requires that:

|0⟩A|0⟩B|A⟩C → |0⟩A|0⟩B|A0⟩C
|1⟩A|0⟩B|A⟩C → |1⟩A|1⟩B|A1⟩C

(2.10)

The input |ψ⟩A|0⟩B|A⟩C is equal to α|0⟩A|0⟩B|A⟩C + β|1⟩A|0⟩B|A⟩C . Applying

(2.10) and considering linearity, it should transform in the following way:
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|ψ⟩A|0⟩B|A⟩C → α|0⟩A|0⟩B|A0⟩C + β|1⟩A|1⟩B|A1⟩C (2.11)

Transformation (2.9) and (2.11) should be equivalent, so their outputs should be

the same.

|ψ⟩A|ψ⟩B|A′
ψ⟩C

!
= α|0⟩A|0⟩B|A0⟩C + β|1⟩A|1⟩B|A1⟩C (2.12)

Considering |ψ⟩ = α|0⟩+ β|1⟩ and reordering the terms, we get:

|0⟩A|0⟩B
(
α|A⟩C − α2|A′

ψ⟩C
)
+ |1⟩A|1⟩B

(
β|A⟩C − β2|A′

ψ⟩C
)

!
= αβ

(
|1⟩A|0⟩B + |0⟩A|1⟩B

)
|A′

ψ⟩C (2.13)

If we project this equation on –say– |1⟩A|0⟩B, we obtain 0
!
= αβ|1⟩A|0⟩B|A′

ψ⟩C ,
so we can note that this equation does not hold for arbitrary α and β, that is, for

an arbitrary |ψ⟩. Thus, –like deletion– cloning an arbitrary state is forbidden by

Quantum Mechanics.

Moreover, cloning also results in the possibility of faster-than-light communica-

tion [8].

2.3 Second Law of Thermodynamics

In a way, the founding formulation to the Second Law of Thermodynamics was done

by Carnot, without actually calling it a “law of thermodynamics” (as the Laws of

Thermodynamics did not exist yet), when deducing that the maximum efficiency a

heat engine can have is that given by what we nowadays call the Carnot cycle. His

deduction is based on the cycle’s feature of being reversible (a reversed engine is

when the transferred amount of both heat and work is the same, but going in the

opposite direction).

“Now if there existed any means of using heat preferable to those which we have

employed, that is, if it were possible by any method whatever to make the caloric

produce a quantity of motive power greater than we have made it produce by our

first series of operations, it would suffice to divert a portion of this power in order

by the method just indicated to make the caloric of the body B return to the body

A from the refrigerator to the furnace, to restore the initial conditions, and thus to

be ready to commence again an operation precisely similar to the former, and so

on: this would be not only perpetual motion, but an unlimited creation of motive
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power without consumption either of caloric or of any other agent whatever. Such

a creation is entirely contrary to ideas now accepted, to the laws of mechanics and

of sound physics. It is inadmissible. We should then conclude that the maximum

of motive power resulting from the employment of steam is also the maximum of

motive power realizable by any means whatever.” (Carnot [10]).

As we can see, the argument behind Carnot proposing his cycle’s efficiency as

the best possible efficiency for a heat engine is a notion of the Second Law of Ther-

modynamics, that is, that we can not have perpetual motion or “unlimited creation

of motive power”. This way, we may guess that Carnot’s cycle efficiency is the one

that can be achieved by any reversible heat engine, as noted in [11]. It is also worth

noting that Carnot also gave a more rigorous demonstration for his proposal, and

that our citation is what –in his words– he “considered only as an approximation”.

After Carnot’s, some other formulations of the Second Law were made in terms

of work, heat and temperature: the Clausius and Kelvin statements.

“Heat can never pass from a colder to a warmer body without some other change,

connected therewith, occurring at the same time” (Clausius statement [12]).

“It is impossible, by means of inanimate material agency, to derive mechanical

effect from any portion of matter by cooling it below the temperature of the coldest

of the surrounding objects” (Kelvin statement [13]).

These two statements are equivalent, as proved in [14].

It can also be shown that these statements are equivalent to forbidding extraction

of work from the heat of a single system in equilibrium (or moving said system out

of equilibrium without expense of work). We will now prove it, by considering the

relation between this equilibrium statement not holding and the Clausius statement

not holding:

• Let us have two systems, both in equilibrium, and one colder than the other.

Suppose that we extract work from the heat in the colder system. As stated

in [14], “the transformation of work into heat is accomplished with 100 percent

efficiency” and “can be continued indefinitely”, so we can freely convert this

work into heat in the hotter system. This way, we see that if this equilibrium

statement does not hold, neither does the Clausius statement (or the Kelvin

statement, since both are equivalent).

• To prove the equivalence between all the statements, we also need to prove the

reciprocal: that the equilibrium statement does not hold when the Clausius

7



(or Kelvin) statement does not hold. Considering again our two systems (one

colder than the other), if the Clausius statement did not hold, we would be able

to transfer heat from the cold system to the hot system, and then use Carnot’s

engine to obtain work from the temperature difference, taking as much heat

as was given to the hot system before, so that its net change is zero. The cold

system would not get back as much heat as it lost before, because we obtain

some of it as work. This way, the total effect is that we have obtained work

from the heat of a single system in equilibrium –the cold system–, breaking

the equilibrium statement.

These two implications are enough to conclude this statement to be equivalent to

the Clausius and Kelvin statements. A similar logic can be used to compare Carnot’s

maximum-efficiency statement with the others, and conclude their equivalence. We

will show this later on.

The Second Law of Thermodynamics has many equivalent statements, as we

may have noted, but we will be particularly interested in the statement in terms of

entropy, as it will open us the door to speak about information. Entropy is a quantity

such that its change is equal to the heat change in a system divided by its (absolute)

temperature. Like heat, we do not speak of total entropy, but of changes in entropy

instead (at least not until we consider the Third Law of Thermodynamics, where

crystals are said to have 0 entropy). If the system’s temperature is not constant,

diferentials are used in this definition.

The Second Law formulation that uses entropy is derived from Clausius’ work

[12], and states that the net entropy in a closed system can not decrease. This means

that it is constant in reversible processes.

We will be interested in viewing this formulation of the Second Law of Thermo-

dynamics through a more informational point of view. We will do this by refering

to Maxwell’s Demon.

2.3.1 Maxwell’s Demon

In 1867, J. C. Maxwell first proposed (albeit not publicly) a thought experiment of

how a “being” may be able to break the Second Law of Thermodynamics:

“... if we conceive of a being whose faculties are so sharpened that he can follow

every molecule in its course, such a being, whose attributes are as essentially finite

as our own, would be able to do what is impossible to us. For we have seen that

molecules in a vessel full of air at uniform temperature are moving with velocities by

no means uniform, though the mean velocity of any great number of them, arbitrarily

8



selected, is almost exactly uniform. Now let us suppose that such a vessel is divided

into two portions, A and B, by a division in which there is a small hole, and that

a being, who can see the individual molecules, opens and closes this hole, so as to

allow only the swifter molecules to pass from A to B, and only the slower molecules

to pass from B to A. He will thus, without expenditure of work, raise the temperature

of B and lower that of A, in contradiction to the second law of thermodynamics.”

In his argument, he proposes a closed system with two compartmens (A and

B) with gas molecules, initially in equilibrium. The compartments are separated

by a wall with a small sliding door between them. Inside of the system, there is

a“being” with fast-enough reflexes that slids open the door whenever a fast molecule

comes from A, or a slow molecule comes from B. The rest of the time, the door

remains closed. Temperature is related to the mean speed of gas molecules, thus the

temperature of B would rise while the temperature of A would diminish. Since the

door can be slid without the expenditure of work, it seems as if the Second Law of

Thermodynamics has been broken: a system in equilibrium has been moved out of

equilibrium without (seemingly) any expense of work.

In 1929, Leó Szilárd pointed out that the act of measuring the molecules (de-

termining whether they’re fast or slow) requires an expenditure of energy. Specifi-

cally,“production of kB ln(2) units of entropy” per measurement would be enough to

compensate the entropy decrease resulting from the Demon’s intervention [15]. Such

entropy is equivalent to a heat-release of kBT ln(2) units, the very same minimum-

heat-release required for the Landauer-erasure process. Szilárd would not have been

able to note it, since Landauer’s proposal was made in 1961, but surely this can not

be just a coincidence.

Measurement processes do not actually need to increase the entropy, as long as

they are reversible [4]. This implies that some sort of memory is used to store the

measurement information, or else the process would not be reversible. A Demon

should not be able to do this indefinitely without eventually running out of storage

space, or erasing some of the stored information, something that, as shown by Lan-

dauer, releases kBT ln(2) units of heat. We can also put it this way: it is possible

to make measurements without expending entropy (or releasing heat), so long as

the measuring apparatus has been previously set into a known state (which can be

achieved by measuring the initial state of the measuring apparatus).

Summarizing: To measure one bit of information from a system, a minimum

of kB ln(2) units of entropy must be taken from it, or those bits must be written

in another previously set system. The information we obtain from the system can

then be used to extract work from it, using the Maxwell-Demon method. This way,
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measurement, i.e, information obtained from a system, can be used to extract work,

and the same can be said for the erasure of information (which is something that

can be done without the requirement of work if the system is known, i.e, has been

measured). There is, then, some kind of equivalence between measuring, erasing

and extracting work.

2.3.2 Landauer’s Principle

In the first section we have already referred to Landauer’s Principle, which states

that a minimum heat (of kBT ln(2)) has to be released (into a reservoir at temper-

ature T ) in order to erase a bit of information from a system [4]. This Principle

can be considered an additional formulation of the Second Law of Thermodynam-

ics, but that is not sufficient reason to dedicate a complete section to it. Instead,

Landauer’s Principle will serve us to –in a way– link thermodynamical entropy (and

the Second Law of Thermodynamics) with information. We will not establish the

link here, but instead offer a proof of the Principle more rigorous than that given

by Landauer in the context of quantum theory. Our model and proof is taken from

Piechocinska [16], specifically for the “quantum case”.

In the erasure model, we consider a two level atom, such that it begins in the

following state:

ρ̂init =
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| (2.14)

This state is a completely arbitrary state. Our aim is for the erasure to turn it

into:

|0⟩⟨0| (2.15)

The atom is initially degenerated in energy, that is, there is no energy differ-

ence between state |0⟩ and state |1⟩. Let us consider that we momentarily break

degeneracy of the atom by turning “on and off” a magnetic field. During that time,

the system will be in (transitory) contact with a reservoir in thermal equilibrium,

which can be, for example, “a photon reservoir of harmonic oscillators”. This way,

if -after turning on the magnetic field- the energy difference between the two states

of the atom is so big that the photon reservoir can not excite the atom into the

higher-energy state, the atom would eventually find itself in the lower-energy state.

The magnetic field would then be turned off, and we would cease contact between

the atom and reservoir.

After this erasure, the reservoir weakly interacts with an unspecified environ-
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ment, which acts as a measurement device. This way, if the reservoir’s density

matrix (expressed in the energy eigenstate basis) has any non-diagonal elements

after the erasure, measurement makes it decohere, i.e, lose those elements.

Let us now write this explicitly. The reservoir is initially in thermal equilibrium,

such that its density matrix is:

ρ̂Ĥ =
e−βĤ

Tr[e−βĤ ]
, (2.16)

where Ĥ is its Hamiltonian and β = 1
kBT

(kB is the Boltzmann constant and T the

temperature of the reservoir).

We will consider this reservoir to be initially in a definite energy eigenstate, such

that the probability of finding it in the energy eigenstate |En⟩ (with energy En) is:

Pn =
e−βEn∑
m e

−βEm
=
e−βEn

Z
(2.17)

We now couple the atom and reservoir, and turn on the magnetic field. After

waiting a while, uncoupling them and turning off the magnetic field, the atom ends

up in state:

ρ̂fin = |0⟩⟨0|, (2.18)

where the atom’s states |0⟩ and |1⟩ are again degenerated in energy.

After the interaction, the reservoir decoheres and ends up in one of the energy

eigenstates |Em⟩ (of energy Em), with (unknown) probability Pm.

We will now prove that in this generic case, a minimum of kBT ln(2) average

heat has to be released into the reservoir.

We first define Pi as |⟨i|ρ̂init|i⟩|2 and Pf as |⟨f |ρ̂fin|f⟩|2, where i and f can be 0

or 1 (the states of the 2-level system). Note that we are using i and f both as index

and tag, so if we ever need to specify, for example, P0 for the initial atom state, we

will need to write P init
0 instead. This way, P init

0 = P init
1 = 1

2
, P fin

0 = 1 and P fin
1 = 0.

With that, let Γ = ln(Pi)− ln(Pf )−β(En−Em). We now calculate the expected

value of ⟨e−Γ⟩:

⟨e−Γ⟩ =
∑
n,m,i,f

PiPn|⟨f,m|U |i, n⟩|2e− ln(Pi)+ln(Pf )+β(En−Em), (2.19)

where |i, n⟩ is one of the possible starting states of the atom-reservoir system, |f,m⟩
a possible final state, and U the evolution performed on it.

We use (2.17) and show that:
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⟨e−Γ⟩ =
∑
n,m,i,f

Pi|⟨f,m|U |i, n⟩|2 e
−βEn

Z

Pf
Pi
eβ(En−Em), (2.20)

which is equivalent to:

⟨e−Γ⟩ = 1

Z

∑
f,m

Pfe
βEm

∑
i,n

|⟨f,m|U |i, n⟩|2 (2.21)

Due to unitarity of U , we note that
∑

i,n |⟨f,m|U |i, n⟩|2 = 1, and we have:

⟨e−Γ⟩ =
∑
f

Pf

∑
m e

βEm

Z
=

∑
f

Pf
Z

Z
=

∑
f

Pf = 1 (2.22)

Due to the convexity of the exponential function, ⟨e−Γ⟩ = 1 implies ⟨−Γ⟩ ≤ 0:

⟨− ln(Pi) + ln(Pf ) + β(En − Em)⟩ ≤ 0 (2.23)

We substitute the values of Pi and Pf

⟨− ln(Pi)⟩ = −⟨ln(Pi)⟩ = −
(1
2
ln(1/2) +

1

2
ln(1/2)

)
= ln(2), (2.24)

⟨ln(Pf )⟩ = ln(1) + lim
p→0

p ln(p) = 0, (2.25)

and also note that the heat released into the reservoir is equal to the difference in

energy due to the interaction

Q = Em − En (2.26)

This way, we obtain:

ln(2) ≤ ⟨βQ⟩, (2.27)

which leads us to:

kBT ln(2) ≤ ⟨Q⟩ (2.28)

Finally, using W = ∆EHeat + ∆ESys and considering that the atom is degen-

erated in energy, we have W = Q (recall that Q is the heat dissipated into the

reservoir):

kBT ln(2) ≤ ⟨W ⟩, (2.29)
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where W is the external work applied (and ⟨W ⟩ its expected value).

2.4 Parametric Down-Conversion

In the present work, we will address a specific setup whose central role is played by

a nonlinear process. We are referring to spontaneous parametric down-conversion

(SPDC), which occurs in some birefringent crystals where high energy pump photons

are converted into pairs of low energy signal and idler photons [17], commonly

referred to as “twins”.

Normally, the pump beam must be horizontally polarized (with respect to the

crystal) to be able to generate SPDC. On the other hand, it does not necessarily

have to be of high intensity in order for SPDC to occur, although it does make the

effect more notorious.

“Parametric” means that the process does not change the crystal [17]. Thus,

energy and momentum of the destroyed photon must equal the total energy and

momentum of the created photons. There are also correlations in polarization: type

I crystals create photons with the same polarization; type II crystals create photons

with perpendicular polarization. In general the twins are highly entangled.

An useful feature of SPDC is that the pump beam can be a coherent laser, and

the twin photons will still be strongly-entangled single photons, which is useful for

fundamental tests of quantum mechanics.

Twins are not necessarily created with the same energy, but we will post-select

twins created in paths symmetrical to the pump beam path, so that they have the

same frequency. Also, we will be using type-I crystals in the following sections.

In this thesis, we propose the use of BBO (β-barium borate) nonlinear crystals

not only for SPDC, but also for the inverse process, where twin photons are destroyed

and a higher-energy photon is created on the pump beam. We will use this on a

special kind of second-order interferometer [18] that will serve as a simulation of a

deletion process.
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Chapter 3

Simulation

“Both simulators and computers are physical devices that reveal information about a

mathematical function.(...) If the function is interpreted as part of a physical model

then we are likely to call the device a simulator. (...) a simulation is usually the

first step in a two-step process, with the second being the comparison of the physical

model with a real physical system.” (Johnson, [19])

Simulation can be done not only on physical processes, but also on processes

forbidden by the laws of physics. A physical system can -through a function- map

a process that is not physical. For instance, conjugation of a qubit (unphysical

process) can be simulated by mapping a 2-qubit system into a single qubit through

a function, something called an embedding quantum simulation [20].

Some unphysical simulations can even find application in real-world physical

phenomena. The qubit-conjugation simulation, for example, allows to make theo-

retical predictions for the Majorana equation, which -along with the Dirac equation-

is considered a possible model for neutrinos [20].

We will be interested in the simulation of a quantum deletion process, but not

with any kind of simulation. Through our simulation, we will actually realize a

coherent erasure process which will be effectively irreversible.

We will start by making a model for deletion.

3.1 Modelling a Deleter

To adequately model a quantum deletion, which is an unphysical process, special

care must be taken to avoid generating more unphysicalities than necessary. We

want to avoid losing normalization of the input states, as this can lead to states for

which quantum mechanics has no clear interpretation. Moreover, even the single-
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valuedness of the evolution can be lost, leading to mathematical ambiguities.

A reasonable formulation of a deleter for a single qubit is to project an arbitrary

state |ψ⟩ into a constant state |c⟩. This is usually done against a copy [3, 6, 7],

presumably to make deletion the inverse of cloning, but we do not find any advantage

in such a thing. Thus, we will dispense with the copy, but want to first know whether

this choice generates a different kind of unphysicality. We will be more specific on

the matter:

Let A and B be arbitrary unphysical phenomena (unphysicalities). The laws

broken by A will be all the physical laws that can be proved to be broken by a single

use of A in an otherwise physical setup. We will deem A to be stronger than B (and

B weaker than A) if A breaks all the laws B breaks, but B does not break all the

laws A breaks. Using this criteria, not all phenomena will be comparable, but it will

be useful for similar unphysicalities. The weaker the unphysicality is, the closer it

is to being physical.

The possibility of deleting implies that deleting against a copy is possible. The

inverse is not true, so deleting against a copy can not be a stronger unphysicality

than simply deleting (because one is implied by the other). It is not necessarily

weaker, either, but deleting against a copy is guaranteed to not-be stronger than

simply deleting. Deleting against two copies is guaranteed to not-be stronger than

any of the two other choices, and so on. This way, we have defined a “family”

of unphysicalities, all of which can be implied by the Deletion unphysicality. If we

chose Deletion against a copy, we may get a weaker unphysicality, albeit not simpler,

and certainly not the best unphysicality to represent the family. We will thus choose

the simplest option, and consider deletion without the need of a copy:

|ψ⟩ → |c⟩, (3.1)

where |ψ⟩ stands for any unentangled state.

Our model has not yet stated what happens if we apply deletion on one member

(qubit) of an entangled state. A simple solution is to assume that this evolution

behaves linearly. If we simply do so, however, we will break the single-valuedness of

the evolution in some cases. As a proof, let |ψ⟩ be the following entangled state:

|ψ⟩ = 1√
2

(
|+⟩|+⟩+ |−⟩|−⟩

)
, (3.2)

where |+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩).

The first qubit is given to Alice, and the second to Bob. Alice then, hypothet-

ically, applies a deletion evolution on her qubit. According to (3.1), any arbitrary
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qubit is evolved into |c⟩, and (assuming linearity) the output of the deletion is:

|ψ⟩ = 1√
2

(
|c⟩|+⟩+ |c⟩|−⟩

)
, (3.3)

which is equivalent to:

|ψ⟩ = |c⟩|0⟩ (3.4)

As we know, (3.2) can also be written in the following form:

|ψ⟩ = 1

2

((
|0⟩+ |1⟩

)
|+⟩+

(
|0⟩ − |1⟩

)
|−⟩

)
(3.5)

and, if our deletion evolution is linear, it maps |0⟩ and |1⟩ in the first qubit into |c⟩:

|ψ⟩ = 1

2

(
(|c⟩+ |c⟩)|+⟩+ (|c⟩ − |c⟩)|−⟩

)
(3.6)

Thus, we have that the output is:

|ψ⟩ = |c⟩|+⟩, (3.7)

which directly contradicts the result obtained in (3.4). We have shown that if we

just assume linearity of (3.1), the evolution loses single-valuedness.

We will propose an extended model to avoid the loss of single-valuedness in a

systematic way, while also allowing deletion evolutions on entangled states, by ex-

tending our model with the advantages of linearity, albeit with some considerations.

Thus, we will make a second model, that will serve as extension of the first,

where we choose a preferred basis, and write (3.1) only for the states of that basis

(we chose the canonical basis):

|0⟩ → |c⟩

|1⟩ → |c⟩
(3.8)

This expression will be assumed linear unless normalization is broken due to the

evolution. This allows for the systematic preservation of single-valuedness. As we

note, the same can not be said about normalization: we only study cases where it

is preserved, but our criteria for that are not systematic.

This way, we will use both (3.1) and (3.8). The first one is not linear, and is

used for all pure states; the second one is linear, and can be used for some pure

and entangled states, as long as the output is normalized. On the cases when both

expressions can be used, they output the same result. This way, our extended

16



deleter-model works for all unentangled input states and some entangled states.

Predictions for any other kind of states will not be part of the model.

In the path degree of freedom of a single qubit, our Deleter model would look

like a “path-merger” Beam-Splitter, a device in which the output is always a specific

path (we choose |c⟩ = |0⟩ for simplicity; see Fig. 3.1).

(0)

(1) (0)

Figure 3.1: For all input states considered by the model, which includes all unentangled
states and some entangled states, the output is always path (0). Predictions
where normalization would be lost are intentionally avoided by the model.

3.2 Modelling a BBO

Most setups that use a BBO do not require a complete model for it, since they need

only consider spontaneous parametric down-conversion. Our setup, on the other

hand, requires to also consider the inverse process, where photons are destroyed in

the single photon paths and created back in the pump beam.

SPDC and inverse SPDC ocurr with the same amplitude of probability. However,

for the latter to happen, two single-photons must meet each other inside of the BBO

at the same time. That is sufficient reason to neglect the process in most cases. In

our setup, we will align the paths of the single photons created in one BBO into a

second BBO, making this process important.

We propose the following Hamiltonian for the BBO:

H = g′(âb̂†ĉ† + â†b̂ĉ), (3.9)

where the operators â and â† are annihilation and creation (respectively) for the

pump beam, b̂ and b̂† for single photons in path (1), and ĉ and ĉ† for single photons

in path (2) (see Fig. 3.2). Also, g′ is a constant dependent only on the material of

the BBO.

Single photons in paths (1) and (2) are always created and destroyed in vertical

polarization, while a photon in the pump beam is always created or destroyed in

horizontal polarization.
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Solving the Schrödinger equation (H|ψ⟩ = i~∂|ψ⟩
∂t

), we calculate the evolution

e−
i
~Ht up to second order in g = −g′t

~ :

U = 1+ ig(âb̂†ĉ† + â†b̂ĉ)− g2

2

(
(âb̂†ĉ†)2 + (â†b̂ĉ)2 + ââ† b̂†b̂ ĉ†ĉ+ â†â b̂b̂† ĉĉ†

)
(3.10)

The g we have defined depends only on the material of the BBO, the wavelength

of the pump laser and the interaction time. The material determines g′, and ~ is a

universal constant. The time t, on the other hand, is a little bit trickier: we may be

tempted to say that t is the time it takes for a given wavelength of light (the pump

wavelength) to traverse the size of the BBO, but it is not so. In our setup, we are

assuming a given path for each one of the photons created, so t is actually the time

it takes for the pump wavelength to traverse a distance equal to the single photons’

coherence length (photons that have double the wavelength of the pump laser), so

that they can be created on exactly the chosen paths. The coherence length of single

photons is very small, and the speed of light very high, so t is very small and we

can easily neglect g on higher orders.

Also, we can assume g to be real without loss of generality, because its argument

is but a global phase in the setup.

We want to approximate up to second order on g, but on probability, not prob-

ability amplitude. For that matter, we can neglect the terms with double creation

and double annihilation of a mode, as they will be related to terms of fourth order

on g.

This way, our BBO evolution is now:

U = 1+ ig(âb̂†ĉ† + â†b̂ĉ)− g2

2
(ââ† b̂†b̂ ĉ†ĉ+ â†â b̂b̂† ĉĉ†) (3.11)

We will consider this as model for a BBO evolution in the sections to come.

3.3 Simulating a Deleter without postselection

A polarization-deleter can be simulated trivially by means of postselection of an

unknown polarization state after a polarizing-beam-splitter (PBS). That basically

means to send the state through the PBS and ignore (dump) one of the output

paths. We are not interested in these kind of trivial postselection-simulations.

Instead, to simulate a quantum deletion, we are interested in “hiding” informa-

tion with a process that will not allow it to be retrieved easily. The process we will

show hides information so well that the system in which it is hidden is normally

considered parametric (invariant) during the evolution. Also, we will not require a
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classical channel of postselection for that matter.

We are referring to SPDC, in which the pump beam is normally considered

parametric. The following experiment is no longer a thought experiment, but instead

a fully realizable linear optics setup, based on previous setups that exploit second-

order interference using two BBOs [18,21–23].

BBO1

M

D2

D1

M

ф

L

BBO2

(1)Q
Q

H

(2)

(1)

(2)

P

Figure 3.2: A coherent laser pump traverses two type-1 β-barium-borate crystals (BBO),
which, with probability amplitude g, emit pairs of single photons with po-
larization |V ⟩. The paths of the photons emitted by BBO1 are aligned so
that they match with the paths that BBO2 emissions would follow. “Q”
and “H” are quarter and half wave plates, respectively. ϕ is a retarder, P a
horizontal polarizer, M are mirrors, and D1 and D2 are detectors.

Two BBOs are pumped with the same coherent laser. The setup is aligned in

such a way that when D1 and D2 detect a pair of photons, it is indistinguishable

whether BBO1 or BBO2 made the emission, and the uncertainty of the time of

emission is big enough to allow interference between the two possibilities.

Also, in a noiseless media, it is unnecessary to record coincidences between D1

and D2, as single counts in one detector are sufficient to notice the interference.

The constructiveness or destructiveness of the interference can be controlled with

the ϕ retarder, and its visibility can be controlled by rotating the polarization of

one of the photons with the two quarter-wave plates (QWP), as that would make it

partially distinguishable from emissions inBBO2 (which are in vertical polarization).

It is worth noting that two QWP are enough to produce any polarization state from

a given input (without control over its global phase) [24].

We will prepare a transformation that will change the polarization state of any

BBO1 photon that goes through path (1) into a state |ψ⟩ of our choice, using the

two QWP. We also set the HWP (half-wave plate) so that the polarization of the
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coherent laser is rotated into the linear-polarization projection of X̂|ψ⟩, where X̂ is

the (flip) Pauli operator. This polarization is then projected back into horizontal

by the polarizer (which is set to horizontal polarization), so the only change in the

coherent laser is intensity. Finally, we set the retarder so that the state in which

BBO1 photons reach BBO2 has phase π with respect to the coherent laser.

This way, if there were no BBO2, any photon coming from path (1) would reach

the detector D1 with polarization |ψ⟩. However, here we add BBO2, making a

parametric evolution on the state, so that the studied system is still approximately

closed. After BBO2, we should not be able to reconstruct the state |ψ⟩ encoded

through ordinary means. The action of BBO2 will thus be considered a simulation

of a deleter-device.

Now we will make the calculations for the setup step by step:

Before the coherent laser |α⟩ enters the first BBO, it is horizontally polar-

ized and there are no photons on path (1) or path (2). We will write this as

|α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V . The pump laser path is designated with the num-

ber tag 0, and the single photon paths are designated with 1 and 2; also, H and

V designate horizontal or vertical polarization (e.g, |2⟩1V designates two vertically

polarized photons on path 1).

Each term in evolution U (made by the first BBO) maps the initial state

|α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V in the following way:

|α⟩0H|0⟩0V|0⟩1H|0⟩1V|0⟩2H|0⟩2V
1−−−−−−−−→ |α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V

igâb̂†ĉ†−−−−−−−−→ igα|α⟩0H |0⟩0V |0⟩1H |1⟩1V |0⟩2H |1⟩2V
igâ†b̂ĉ−−−−−−−−→ 0

− g2

2
ââ† b̂†b̂ ĉ†ĉ

−−−−−−−−→ 0

− g2

2
â†â b̂b̂† ĉĉ†

−−−−−−−−→ −g
2|α|2

2
(|α⟩+ |ϕα⟩)|0⟩|0⟩1H |0⟩1V |0⟩2H |0⟩2V

(3.12)

Before continuing, some relations have to be remarked regarding |α⟩ and |ϕα⟩.
Let’s first recall that:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
|n⟩ (3.13)

Now, for |α| ≫ 0, â†â applied on |α⟩ is approximately |α|2|α⟩, but we will not

assume |α| ≫ 0. Instead, on (3.12) we are using the exact value:
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â†â|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
n|n⟩, (3.14)

which can be separated into two terms like this:

â†â|α⟩ = |α|2|α⟩+ |α|2|ϕα⟩, (3.15)

such that |ϕα⟩ is defined as:

|ϕα⟩ =
â†â|α⟩
|α|2

− |α⟩ = 1

|α|2
e−

|α|2
2

∞∑
n=0

αn√
n!
(n− |α|2)|n⟩ (3.16)

Now, we will show that |ϕα⟩ is orthogonal to |α⟩. For that, the following scalar

should be 0:

⟨α|ϕα⟩ =
⟨α|â†â|α⟩

|α|2
− ⟨α|α⟩ (3.17)

We know that â|α⟩ = α|α⟩ and thus ⟨α|â† = ⟨α|α∗:

⟨α|ϕα⟩ =
⟨α|α∗α|α⟩

|α|2
− ⟨α|α⟩ = |α|2

|α|2
⟨α|α⟩ − ⟨α|α⟩ = 0 (3.18)

Thus, we see that |ϕα⟩ is orthogonal to |α⟩, for any arbitrary coherent state |α⟩.
This will be useful in a moment.

The total output after the first BBO is:

|α⟩0H |0⟩0V
(
(1− g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V + igα|0⟩1H |1⟩1V |0⟩2H |1⟩2V

)
+
g2|α|2

2
|ϕα⟩|0⟩|0⟩1H |0⟩1V |0⟩2H |0⟩2V (3.19)

We are interested in approximating up to order g3 on probability (not amplitude).

Since we have proven that |ϕα⟩ is orthogonal to |α⟩, the last term in (3.19) is of order

g4 on probability, so it is eliminated (if they were not orthogonal, |ϕα⟩ would have

a contribution of order g2 on |α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V ).
We do not eliminate the g2|α|2

2
in the amplitude of |α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V ,

because it still contributes in order g2 (to the probability) when squaring the com-

plete amplitude.

This way, the state after the first BBO, up to order g3 on probability, is:

|α⟩0H |0⟩0V
(
(1− g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V + igα|0⟩1H |1⟩1V |0⟩2H |1⟩2V

)
(3.20)
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Then, we rotate the photon on path (1) with vertical polarization into |ψ⟩1 =

a|1⟩1H |0⟩1V + b|0⟩1H |1⟩1V , using the two QWP. We choose b to be real without loss

of generality (this can be controlled with the retarder later on):

|α⟩0H |0⟩0V
(
(1− g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V

+ igα(a|1⟩1H |0⟩1V |0⟩2H |1⟩2V + b|0⟩1H |1⟩1V |0⟩2H |1⟩2V )
)

(3.21)

Then, the coherent laser is changed into |bα⟩0H |0⟩0V by means of the H waveplate

and polarizer (note that we have partially included the information of |ψ⟩ here,

through the real parameter b). Also, the retarder sets the phase of the single photons

to be π (additional to the phase of i), and compensates the necessary phase for b to

be real (a is still complex):

|bα⟩0H |0⟩0V
(
(1− g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V

+ igαeiπ(a|1⟩1H |0⟩1V |0⟩2H |1⟩2V + b|0⟩1H |1⟩1V |0⟩2H |1⟩2V )
)

(3.22)

If there were no BBO2, we would obtain |ψ⟩ when measuring the polarization

of photons coming from path (1) (that is, if we postselect (3.22) for cases in which

there is a photon in path (1), those photons would have polarization |ψ⟩). However,
we will now consider the BBO2 transformation.

The state |bα⟩0H |0⟩0V |1⟩1H |0⟩1V |0⟩2H |1⟩2V is mapped by the terms of U in an

analogous way to how |α⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V transformed in (3.12) (note

that |ϕbα⟩ is the same state defined before):

|bα⟩0H|0⟩0V|1⟩1H|0⟩1V|0⟩2H|1⟩2V
1−−−−−−−−→ |bα⟩0H |0⟩0V |1⟩1H |0⟩1V |0⟩2H |1⟩2V

igâb̂†ĉ†−−−−−−−−→
√
2ibgα|bα⟩0H |0⟩0V |1⟩1H |1⟩1V |0⟩2H |2⟩2V

igâ†b̂ĉ−−−−−−−−→ 0

− g2

2
ââ† b̂†b̂ ĉ†ĉ

−−−−−−−−→ 0

− g2

2
â†â b̂b̂† ĉĉ†

−−−−−−−−→ −b2g2|α|2
(
|bα⟩+ |ϕbα⟩

)
|0⟩|1⟩1H |0⟩1V |0⟩2H |1⟩2V

(3.23)

On the other hand, |bα⟩0H |0⟩0V |0⟩1H |1⟩1V |0⟩2H |1⟩2V is mapped differently, since

it can produce inverse SPDC. Each of the terms of U maps it the following way:
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|bα⟩0H|0⟩0V|0⟩1H|1⟩1V|0⟩2H|1⟩2V
1−−−−−−−−→ |bα⟩0H |0⟩0V |0⟩1H |1⟩1V |0⟩2H |1⟩2V

igâb̂†ĉ†−−−−−−−−→ igbα|bα⟩0H |0⟩0V |0⟩1H |2⟩1V |0⟩2H |2⟩2V
igâ†b̂ĉ−−−−−−−−→ igb∗α∗

(
|bα⟩+ |ϕbα⟩

)
|0⟩|0⟩1H |0⟩1V |0⟩2H |0⟩2V

− g2

2
ââ† b̂†b̂ ĉ†ĉ

−−−−−−−−→ −g
2

2

((
1 + b2|α|2

)
|bα⟩+ b2|α|2|ϕbα⟩

)
|0⟩|0⟩1H |1⟩1V |0⟩2H |1⟩2V

− g2

2
â†â b̂b̂† ĉĉ†

−−−−−−−−→ −2b2g2|α|2
(
|bα⟩+ |ϕbα⟩

)
|0⟩|0⟩1H |1⟩1V |0⟩2H |1⟩2V

(3.24)

To obtain this, we have used (3.15), and considered that coherent states are

eigenvectors of â (â|α⟩ = α|α⟩), so as to note that â†|α⟩ = α∗(|α⟩+ |ϕα⟩).
Also, to obtain ââ†|α⟩, we have used the commutation relation [â, â†] = 1 and

written ââ† = 1+ â†â. The result was:

ââ†|α⟩ = (1+ â†â)|α⟩ = (1 + |α|2)|α⟩+ |α|2|ϕα⟩ (3.25)

Each term of (3.22) is, thus, mapped in the following way:

|bα⟩0H|0⟩0V|0⟩1H|0⟩1V|0⟩2H|0⟩2V
U−→(

1−b
2g2|α|2

2

)
|bα⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V+ibgα|bα⟩0H |0⟩0V |0⟩1H |1⟩1V |0⟩2H |1⟩2V

− b2g2|α|2

2
|ϕbα⟩|0⟩|0⟩1H |0⟩1V |0⟩2H |0⟩2V (3.26)

|bα⟩0H|0⟩0V|1⟩1H|0⟩1V|0⟩2H|1⟩2V
U−→

|bα⟩0H |0⟩0V
((

1− b2g2|α|2
)
|1⟩1H |0⟩1V |0⟩2H |1⟩2V +

√
2ibgα|1⟩1H |1⟩1V |0⟩2H |2⟩2V

)
− b2g2|α|2|ϕbα⟩|0⟩|1⟩1H |0⟩1V |0⟩2H |1⟩2V (3.27)

|bα⟩0H|0⟩0V|0⟩1H|1⟩1V|0⟩2H|1⟩2V
U−→(

1− g2

2

(
1 + b2|α|2

)
− 2b2g2|α|2

)
|bα⟩0H |0⟩0V |0⟩1H |1⟩1V |0⟩2H |1⟩2V

+ igbα|bα⟩0H |0⟩0V |0⟩1H |2⟩1V |0⟩2H |2⟩2V + igb∗α∗|bα⟩0H |0⟩0V |0⟩1H |0⟩1V |0⟩2H |0⟩2V
+ igb∗α∗|ϕbα⟩|0⟩|0⟩1H |0⟩1V |0⟩2H |0⟩2V

−
(g2
2
b2|α|2 + 2b2g2|α|2

)
|ϕbα⟩|0⟩|0⟩1H |1⟩1V |0⟩2H |1⟩2V (3.28)
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Before continuing, we can notice that -in the total output- all terms with |ϕbα⟩
make contributions of order g4 or higher (g5 or g6) in probability. To conclude that,

we have considered the amplitude of each term in (3.22) (and the fact that |ϕbα⟩ is
orthogonal to |bα⟩). This way, we can neglect these terms to simplify calculations.

|bα⟩0H|0⟩0V|0⟩1H|0⟩1V|0⟩2H|0⟩2V
U−→

|bα⟩0H |0⟩0V
(
(1− b2g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V + ibgα|0⟩1H |1⟩1V |0⟩2H |1⟩2V

)
(3.29)

|bα⟩0H|0⟩0V|1⟩1H|0⟩1V|0⟩2H|1⟩2V
U−→

|bα⟩0H |0⟩0V
(
(1− b2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V +

√
2ibgα|1⟩1H |1⟩1V |0⟩2H |2⟩2V

)
(3.30)

|bα⟩0H|0⟩0V|0⟩1H|1⟩1V|0⟩2H|1⟩2V
U−→

|bα⟩0H |0⟩0V
((

1− g2

2
(1 + 5b2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V

+ ibgα|0⟩1H |2⟩1V |0⟩2H |2⟩2V + igb∗α∗|0⟩1H |0⟩1V |0⟩2H |0⟩2V
)

(3.31)

That way, we obtain the following output right after BBO2 (we apply (3.29),

(3.30) and (3.31) on (3.22)):

|bα⟩0H |0⟩0V
(
(1− g2|α|2

2
)
(
(1− b2g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V

+ ibgα|0⟩1H |1⟩1V |0⟩2H |1⟩2V
)

+ iagαeiπ
(
(1− b2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V +

√
2ibgα|1⟩1H |1⟩1V |0⟩2H |2⟩2V

)
+ ibgαeiπ

((
1− g2

2
(1 + 5b2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V

+ ibgα|0⟩1H |2⟩1V |0⟩2H |2⟩2V + igb∗α∗|0⟩1H |0⟩1V |0⟩2H |0⟩2V
))

, (3.32)

which is equivalent to:
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|bα⟩0H |0⟩0V
((

1− g2|α|2

2
(1− b2) +

b2g4|α|4

4

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V

− iagα(1− b2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V

+ ibgα
(
(1 + eiπ) +

g2

2
(1 + 5b2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V

+
√
2abg2α2|1⟩1H |1⟩1V |0⟩2H |2⟩2V + b2g2α2|0⟩1H |2⟩1V |0⟩2H |2⟩2V

)
(3.33)

Let us note that the single-photon term |0⟩1H |1⟩1V |0⟩2H |1⟩2V has interfered de-

structively up to order g5 in probability. Now, we will retain only those terms that

contribute up to order g3 in probability:

|bα⟩0H |0⟩0V
((

1− g2|α|2

2
(1− b2)

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V − iagα|1⟩1H |0⟩1V |0⟩2H |1⟩2V

)
(3.34)

Since the |0⟩1H |1⟩1V |0⟩2H |1⟩2V terms have disappeared in destructive interference,

when we measure single photons (in D1 or D2), we will always find them on constant

polarization states (path (1) on horizontal polarization and path (2) on vertical

polarization). This way, for single-photon detectors, it will be as if the state |ψ⟩
had been mapped to a constant state in all detections. Thus, we can consider that

BBO2 has simulated a deletion of the polarization information (|ψ⟩).
It is also worth noting that the inverse SPDC is not responsible for the simulated

deletion. It is simply necessary for the state to be normalized at all times. Also,

depending on the value of ϕ, this setup can be used to suppress or amplify SPDC

between 0 and 4 times its probability in a single BBO.

As we may have noted, the quantum information of the state |ψ⟩ is actually

classically encoded information, since an observer can look at the wave plates that

rotate the single photon in path (1) and deduce the state into which it was rotated.

Would it be possible to make this simulation with a single, unknown copy of |ψ⟩?
We will see this in the following section.

3.4 Simulating a Deleter for an unknown state

Let us have the same setup given in the previous section, but without any QWP.

Instead, we will encode the unknown state |ψ⟩ into one of the photons that passes

through path (1), by use of an external state in interaction with that mode (right

where the QWP were located).
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To do that, we would have to do a Swap-like transformation between the states.

For that, our external state will be in a 2-Fock space. Also, we will use the number

tag 3 for it. We are referring to the same |ψ⟩ of last section, so it will be:

|ψ⟩3 = a|1⟩3H |0⟩3V + b|0⟩3H |1⟩3V , (3.35)

where we choose b to be real without loss of generality.

We will write the Swap-like transformation in terms of creation and annihilation

operators for the external state and for path-(1) photon mode. For the latter, our

operators will be âH and â†H (creation and annihilation, respectively) for horizontally

polarized photons, and âV and â†V for vertically polarized photons. For the external

2-Fock state, our operators are ĉH and ĉ†H for the first Fock state and ĉV and ĉ†V for

the second (we are using the tags “H” and “V” for convenience, even though the

system is not necessarily made of photons).

We submit our external and path-(1) Fock states to hamiltonian H2 (for the

purposes of our analysis, it is not important how to implement this Hamiltonian, as

this will be a thought experiment):

H2 = −κ′
(
â†H âH ĉ

†
H ĉH + â†V âV ĉ

†
V ĉV + â†H âV ĉ

†
V ĉH + â†V âH ĉ

†
H ĉV

)
= −κ′M (3.36)

This Hamiltonian will act only on photons within a localized part of path-(1).

For that matter, we choose the creation and annihilation operators â and â† to act

on a specific location of path (1), right after the first BBO.

This way, the highest probability amplitude at a given time is for the photonic

state |0⟩1H |0⟩1V to be within the location where our operators â and â† act. For

that state, the system is invariant (under Hamiltonian H2).

There is a low probability amplitude that at a given time a single photon is

within the localized area of the Hamiltonian. Such a photon would stay during time

t, which is of the order of the decoherence length of the single photon (which is very

small) divided by the speed of light in that medium (which is very high). This way,

if we consider κ′ to be a real constant, and define κ = κ′t
~ , we note that κ is a small

real constant for single photon states (and also for higher Fock states).

The evolution is unitary. Indeed, M = â†H âH ĉ
†
H ĉH + â†V âV ĉ

†
V ĉV + â†H âV ĉ

†
V ĉH +

â†V âH ĉ
†
H ĉV =M † and, as κ is real, the evolution V = eiκM is unitary.

We will now show the Swap-like property of our evolution. Let us approximate

V up to second order in κ:

V = 1+ iκM − κ2

2
M2 +O(κ3) (3.37)
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Also, let |ϕ1⟩1 and |ϕ3⟩3 be arbitrary qubits spanned from {|1⟩1H |0⟩1V , |0⟩1H |1⟩1V }
and from {|1⟩3H |0⟩3V , |0⟩3H |1⟩3V }, respectively.

We can trivially show that they transform under V as follows (up to second order

in κ):

|ϕ1⟩1|ϕ3⟩3
V−→

(
1− κ2

2

)
|ϕ1⟩1|ϕ3⟩3 + iκ|ϕ3⟩1|ϕ1⟩3 (3.38)

That is, there is a probability amplitude of iκ for a Swap between the two states.

Now let us include this result in the context of our Deletion simulation. Right

after the first BBO, the total state is given by (3.20) and the external state |ψ⟩3 =
a|1⟩3H |0⟩3V + b|0⟩3H |1⟩3V (with unknown complex a and unknown real b):

|α⟩0H |0⟩0V
(
(1− g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V + igα|0⟩1H |1⟩1V |0⟩2H |1⟩2V

)
|ψ⟩3 (3.39)

Then comes our V interaction, in which the first term of (3.39) is invariant, while

the second term transforms as given in (3.38):

V−→ |α⟩0H |0⟩0V
((

1− g2|α|2

2

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |ψ⟩3

+ igα
(
1− κ2

2

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3

− gακ|ψ⟩1|0⟩2H |1⟩2V |0⟩3H |1⟩3V
)

(3.40)

Then, we would include the retarder with ϕ = π to make the single photons

emitted from BBO1 have a relative phase of eiπ = −1 with respect to the ones that

could be emitted from BBO2. In (3.40) (after compensating for path difference)

ϕ = π
2
is the phase we need instead. We include this retarder.

Also, we would rotate and project the coherent laser so as to get |bα⟩0H |0⟩0V .
This time, we will rotate and project it to obtain |κα⟩0H |0⟩0V instead. Note that

we are not required to know b this time (we did need to know it in the previous

section).

After these two changes, we have:

|κα⟩0H |0⟩0V
((

1− g2|α|2

2

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |ψ⟩3

+ ieiϕgα
(
1− κ2

2

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3

− eiϕgακ|ψ⟩1|0⟩2H |1⟩2V |0⟩3H |1⟩3V
)

(3.41)
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This way, if there were no BBO2, for each single photon that we receive from

path (1), there is a chance of |κ|2 probability that we are receiving the state |ψ⟩1 =
a|1⟩1H |0⟩1V + b|0⟩1H |1⟩1V , and a chance of 1− |κ|2 that it is vertically polarized and

the state |ψ⟩ remains encoded in the external system. This means that after many

iterations of the experiment, we would eventually receive the state |ψ⟩1.
We will now include BBO2, which performs evolution U on the system. This

maps the terms of (3.41) in an analogous way to (3.29), (3.30) and (3.31) (we only

substitute all b with κ):

|κα⟩0H|0⟩0V|0⟩1H|0⟩1V|0⟩2H|0⟩2V
U−→

|κα⟩0H |0⟩0V
(
(1− κ2g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V + iκgα|0⟩1H |1⟩1V |0⟩2H |1⟩2V

)
(3.42)

|κα⟩0H|0⟩0V|1⟩1H|0⟩1V|0⟩2H|1⟩2V
U−→

|κα⟩0H |0⟩0V
(
(1− κ2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V +

√
2iκgα|1⟩1H |1⟩1V |0⟩2H |2⟩2V

)
(3.43)

|κα⟩0H|0⟩0V|0⟩1H|1⟩1V|0⟩2H|1⟩2V
U−→

|κα⟩0H |0⟩0V
((

1− g2

2
(1 + 5κ2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V

+ iκgα|0⟩1H |2⟩1V |0⟩2H |2⟩2V + igκ∗α∗|0⟩1H |0⟩1V |0⟩2H |0⟩2V
)

(3.44)

The output right after BBO2 is:
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|κα⟩0H |0⟩0V
(
(1− g2|α|2

2
)(1− κ2g2|α|2

2
)|0⟩1H |0⟩1V |0⟩2H |0⟩2V |ψ⟩3

+ iκgα(1− g2|α|2

2
)|0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3

+ ieiϕgα
(
1− κ2

2

)(
1− g2

2
(1 + 5κ2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3

− κg2α2eiϕ
(
1− κ2

2

)
|0⟩1H |2⟩1V |0⟩2H |2⟩2V |ψ⟩3

− g2κ∗|α|2eiϕ
(
1− κ2

2

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |ψ⟩3

− eiϕgaακ(1− κ2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V
−

√
2ieiϕg2aκ2α2|1⟩1H |1⟩1V |0⟩2H |2⟩2V |0⟩3H |1⟩3V

− eiϕgbακ
(
1− g2

2
(1 + 5κ2|α|2)

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V

− ieiϕg2bκ2α2|0⟩1H |2⟩1V |0⟩2H |2⟩2V |0⟩3H |1⟩3V

− ieiϕg2b|κ|2|α|2|0⟩1H |0⟩1V |0⟩2H |0⟩2V |0⟩3H |1⟩3V
)

(3.45)

We now group the states and neglect those of order g4 or higher (in probability):

|κα⟩0H |0⟩0V(
a
(
(1− g2|α|2

2
)(1− κ2g2|α|2

2
)− eiϕg2|α|2κ(1− κ2

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |1⟩3H |0⟩3V

+b
(
(1−g

2|α|2

2
)(1−κ

2g2|α|2

2
)−eiϕg2|α|2κ(1−κ

2

2
+iκ)

)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |0⟩3H |1⟩3V

+igaα
(
κ(1−g

2|α|2

2
)+eiϕ(1−κ

2

2
)
(
1−g

2

2
(1+5κ2|α|2)

))
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |1⟩3H |0⟩3V

+gbα
(
iκ(1− g2|α|2

2
)+ ieiϕ(1− κ2

2
)
(
1− g2

2
(1+5κ2|α|2)

)
−eiϕκ

(
1− g2

2
(1+5κ2|α|2)

))
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V

− eiϕgaακ(1− κ2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V
)

(3.46)

We recall that we chose ϕ = π
2
, so that eiϕ = i. Then, we simplify and neglect

terms that do not contribute in order g3 or less (in probability):
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|κα⟩0H |0⟩0V(
a
(
1− g2|α|2

2
− ig2|α|2κ(1− iκ

2
− κ2

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |1⟩3H |0⟩3V

+ b
(
1− g2|α|2

2
− ig2|α|2κ(1 + iκ

2
− κ2

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |0⟩3H |1⟩3V

+igaα
(
κ(1−g

2|α|2

2
)+eiϕ(1−κ

2

2
)
(
1−g

2

2
(1+5κ2|α|2)

))
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |1⟩3H |0⟩3V

+ igbα
(
κ
g2

2

(
1− |α|2 + 5κ2|α|2

)
+ i(1− κ2

2
)
(
1− g2

2
(1 + 5κ2|α|2)

))
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V

− eiϕgaακ(1− κ2g2|α|2)|1⟩1H |0⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V
)

(3.47)

Now, for simplicity, we consider that κ is of the order of
√
g, so that we can

neglect the terms where their total g-order is higher than 3 (in probability):

|κα⟩0H |0⟩0V(
a
(
1− g2|α|2

2
− ig2|α|2κ(1− iκ

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |1⟩3H |0⟩3V

+ b
(
1− g2|α|2

2
− ig2|α|2κ(1 + iκ

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |0⟩3H |1⟩3V

+ gaα
(
iκ− (1− κ2

2
)
)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |1⟩3H |0⟩3V

− gbα
(
1− κ2

2

)
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V

− igaακ|1⟩1H |0⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V
)

(3.48)

To interpret this, we will group the terms where there are single photons, so that

we can postselect them:
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|κα⟩0H |0⟩0V(
a
(
1− g2|α|2

2
− ig2|α|2κ(1− iκ

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |1⟩3H |0⟩3V

+ b
(
1− g2|α|2

2
− ig2|α|2κ(1 + iκ

2
)
)
|0⟩1H |0⟩1V |0⟩2H |0⟩2V |0⟩3H |1⟩3V

− gα
(
(1− κ2

2
)|0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3

− iaκ
(
|0⟩1H |1⟩1V |0⟩2H |1⟩2V |1⟩3H |0⟩3V

− |1⟩1H |0⟩1V |0⟩2H |1⟩2V |0⟩3H |1⟩3V
)))

(3.49)

This means the following:

• The coherent state always ends up in |κα⟩0H |0⟩0V .

• When twin-photon emission occurs, there is a 1−κ2/2
|1−κ2/2|2+|a|2κ2 probability ampli-

tude that |0⟩1H |1⟩1V |0⟩2H |1⟩2V |ψ⟩3 is the state of the twin photons and external

system, i.e, that there has been no change on the external system (and the

single photons are in vertical polarization).

• The rest of the times (when twin photon emission has occurred), the path-(2)

photon is vertically polarized, and the state of the path-(1) photon and external

system is 1√
2
(|0⟩1H |1⟩1V |1⟩3H |0⟩3V − |1⟩1H |0⟩1V |0⟩3H |1⟩3V ), which means that

they are entangled: if the photon is horizontally polarized, the external state

is |0⟩3H |1⟩3V , and if it is vertically polarized, the external state is |1⟩3H |0⟩3V .
This, however, does not yield any information about |ψ⟩, which has been

hidden.

We conclude that, whenever there is a twin emission, either nothing happens

to the external state, or the state is hidden, so that none of its information can

be accessed through normal polarization measurement on the single photons. This

means that we can iterate the experiment until the latter case happens at least once,

such that we have successfully hidden |ψ⟩, and thus simulated a deletion. This time,

however, |ψ⟩ is a completely unknown state, seeing as we did not encode it classicaly,

and we did not require to encode the parameter b in the coherent beam.

After many iterations of this process, there will be a high probability amplitude

that we have realized an erasure of the information. We say “erasure” because

the information of |ψ⟩ should be accessible somewhere, but is no longer encoded in

polarization. What is more, this erasure is a coherent process, since we have not
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done anything that could potentially decohere (measure) the encoded information

(an argument can be made about the polarizer on the coherent beam, but that can

not possibly affect the single photon paths where |ψ⟩ is encoded). Nevertheless,

despite being a coherent erasure, the state |ψ⟩ is not recoverable in a trivial manner.
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Chapter 4

Relevance as No-Go Theorem

The No-Deleting Theorem can be viewed as a consequence of unitarity of quan-

tum operators. An operator U is unitary if it yields the Identity operator when

multiplying it by its conjugate transpose (on any order).

U †U = UU † = 1 (4.1)

This means that any arbitrary quantum operator must have an inverse, which

is its conjugate transpose, and which is also a quantum evolution. This is why

irreversible evolutions are deemed unphysical in quantum mechanics, because every

evolution in quantum mechanics must be reversible.

The unitarity condition of operators is sufficient to forbid evolutions of the kind:

|ψ⟩ → |c⟩ (4.2)

or

|0⟩ → |c⟩

|1⟩ → |c⟩,
(4.3)

which accounts for our Deleter model, and the No-Deleting Theorem in general.

We will now consider the No-Deleting Theorem without refering to the unitarity

condition, to determine its relevance with respect to other No-Go Theorems.

4.1 Deleter and Signalling

The No-Signalling Theorem states that no instantaneous information transfer can

result from a distant intervention [25]. This theorem forbids any instantaneous

communication by means of an entangled state, solving the EPR paradox [26]. In
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other words (taking relativity into account), no faster-than-light communication is

possible.

We have already stated that Deletion would allow instantaneous communication

by means of an entangled state. We will now propose a thought experiment to prove

it. The result is not new, but our thought experiment is simpler than previous

proofs [7].

Our experiment will be based on a biphoton state traversing a Franson interfer-

ometer [27], in which the time of creation of the two-photon state is uncertain (by

an amount ∆temission) , a feature which will be explicitly exploited. Each one of

the photons travels to different (eventually far-apart) regions of space, one of them

heading towards Alice and the other one towards Bob (see Fig.4.1).

M

A2

A1

M ф

BSBS
Alice

M

B2

B1

M

BS BS
Bob

Single
photon
source

Figure 4.1: Two photons are emitted simultaneously in a single photon source. Each
one of them can go through a long path L (in green) or a short path S (in
red). M are mirrors, BS are beam-splitters, ϕ is a retarder, and A1, A2,
B1, B2 are detectors.

Each one of the photons then traverses a Mach-Zehnder array that is sufficiently

unbalanced so as to suppress first-order coherence (that is, interference of each

photon with itself, irrespective of the other). At the output ports of each array are

Alice’s and Bob’s detectors: A1, A2, B1 and B2 (A and B refer to Alice and Bob,

and 1 and 2 to the output port of the Mach-Zender).

The biphoton state just before the photons go through the final beamsplitter of

each array can be described by the following four possibilities: Alice’s and Bob’s

photons go both through the short arm of each array (Eq. 4.4a), both go through

the long arms (Eq.4.4b) or one goes through the short arm and the other through
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the long one (Eqs. 4.4c and 4.4d).

|S⟩A|S⟩B (4.4a)

|L⟩A|L⟩B (4.4b)

|S⟩A|L⟩B (4.4c)

|L⟩A|S⟩B (4.4d)

By doing coincidence detections, Alice and Bob can distinguish states (4.4d) and

(4.4c) from (4.4b) and (4.4a). This can be easily seen when Alice’s and Bob’s setups

are symmetrical. If the state were SS or LL, detections would occur simultaneously.

However, LS and SL events produce detections at different times, something that

Alice and Bob can check afterwards, and then conveniently postselect SS and LL

events. Thus, LS and SL do not interfere with LL and SS. On the other hand, SS

and LL events are indistinguishable because both generate simultaneous detection

events. Furthermore, when the length difference between long and short arms (∆l)

is such that ∆l/c << ∆temission, interference between them can be observed. This

joint state is given by (4.5).

|S⟩A|S⟩B + eiϕ|L⟩A|L⟩B√
2

(4.5)

Note that we have already included the phase ϕ (Fig. 4.1). This phase is

something that can only be determined by computing correlations between Alice’s

and Bob’s measurements. Local measurements do not give any phase information

whatsoever, as can be seen by calculating either Alice’s or Bob’s reduced density

matrix (which is proportional to unity in this case). Even more, local operations

(such as the beamsplitters’) cannot change this situation. Alice and Bob would have

to communicate through a classical channel to obtain the phase.

If Alice were to use a path-Deleter instead of her last beam-splitter, this situation

would drastically change. The action of our deleter-model on this system is given

by:

|S⟩A → |1⟩A
|L⟩A → |1⟩A

(4.6)

The action on state (4.5) is given by:

|S⟩A|S⟩B + eiϕ|L⟩A|L⟩B√
2

→ |1⟩A(|S⟩B + eiϕ|L⟩B)√
2

(4.7)
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Alice’s state is now separable and Bob can obtain ϕ with only local measure-

ments, even if ϕ is controlled by Alice, whose setting of the phase could be causally

disconnected from Bob’s measurements. By choosing ϕ = 0 or ϕ = π, Alice can

decide whether Bob receives 1√
2
(|S⟩B + |L⟩B) or 1√

2
(|S⟩B − |L⟩B). Then, Bob’s last

beam-splitter effects the following transformation:

1√
2
(|S⟩B + |L⟩B) → |1⟩B

1√
2
(|S⟩B − |L⟩B) → |2⟩B,

(4.8)

where |1⟩B is the path that leads to detector B1, and |2⟩B is the path that leads to

detector B2. This way, Alice can decide whether Bob’s photon reaches detector B1

or B2, thereby establishing a superluminal communication protocol.

We remark that no communication between Alice and Bob is needed to sort out

LS and SL events aparts. They just contribute a constant background of detections

for Bob (the same for both detectors).

This way, we have shown that a violation of the No-Deleting Theorem implies

a violation of the No-Signalling Theorem in the context of Quantum Mechanics.

Thus, (in the context of Quantum Mechanics) the No-Signalling theorem implies

the No-Deleting Theorem.

4.2 Deleter and Second Law

To determine the relation between Deletion and the Second Law of Thermodynam-

ics, we must determine the change in entropy after a deletion process. For this,

we will consider the von Neumann entropy, defined as −Tr(ρ ln ρ), where ρ is the

density matrix of the state of interest. We will, however, use the alternate defini-

tion made by Shannon for information theory [28], where log2 is used instead of ln

(this is the Shannon or bit entropy). This is done for convenience and to provide

consistency with other articles on this topic [3]. Still, we could instead use the von

Neumann entropy for anything done in this chapter.

4.2.1 Entropy in a Deleter

It is relatively easy to prove that a deletion evolution can affect the Shannon entropy

of a state in a closed system. As a rule of thumb, the higher the entropy, the bigger

the space spanned by the possible values of the state.

Consider the following deletion evolution:
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|ψ⟩ → |c⟩ (4.9)

|ψ⟩ is an arbitrary qubit and |c⟩ a constant, known qubit (for simplicity, all

states will be two-level systems). The input spans the complete two-dimensional

Hilbert space of one qubit, since it is arbitrary, whereas the output is a known

(pure) state, so it only spans a point in the one-dimensional Hilbert space. The

(Shannon) entropy decreases from log2 2 to 0.

Let us note that an arbitrary state |ψ⟩ is treated as a mixed state of all the

possible |ψ⟩, i.e., half the identity operator (1/2), the fullly random state in the

space of one qubit. Because of this reason, an arbitrary state |ψ⟩ has Shannon

entropy of 1.

The Shannon entropy decreases also in deletion evolutions against a copy:

|ψ⟩|ψ⟩ → |ψ⟩|c⟩ (4.10)

In this example, taken from [3], |ψ⟩|ψ⟩ spans a three-dimensional subspace of the

Hilbert space of two qubits. This is because an arbitrary |ψ⟩|ψ⟩ can be expressed

as linear combinations of |0⟩|0⟩, |1⟩|1⟩ and (|0⟩|1⟩ + |1⟩|0⟩), which spans a three-

dimensional Hilbert space. On the other hand, |ψ⟩|c⟩ spans only a two-dimensional

subspace. This way, this change from identity in three-dimensional Hilbert space to

identity in two-dimensional Hilbert space decreases Shannon entropy from log2 3 to

log2 2.

We can conclude that the Shannon entropy is decreased in a closed system when

we perform a deletion (with or without a copy), something that will be useful to

relate it to the Second Law of Thermodynamics. However, before proceeding we

must note that we have proven this only for parametric evolutions, i.e, evolutions in

which the state of the “deleter-device” is invariant and does not need to be taken

into account.

Does this hold when we use a more general model for a deleter, including a state

for the deleter-device? We will now write the device as a prepared (known) ancilla

state |ϕ⟩ (and get back to deletion without a copy):

|ψ⟩|ϕ⟩ → |c⟩|ϕψ⟩ (4.11)

If this device is to be a Deleter, the information of |ψ⟩ must not be recoverable

from |ϕψ⟩. This means that there should not be a function that maps |ϕψ⟩ to |ψ⟩
for all |ψ⟩.

For this, there are two alternatives:

37



• either there is no function f that maps |ψ⟩ to |ϕψ⟩, and the evolution is in-

trinsically random

• or there is such a function f (so that the evolution is deterministic), and it is

not a one-to-one function, i.e, two or more values of |ψ⟩ are (always) mapped

into the same |ϕψ⟩.

Intrinsically Random Deletion

If there can not possibly be a function that maps all |ψ⟩ to their respective |ϕψ⟩ (given
that |ϕ⟩ is known), and there is no other hidden variable that can be a parameter

of the function (because this is a closed system), it means that any mapping done

between |ψ⟩ and |ϕψ⟩ is intrinsically random.

This may remind us of a measurement process, but there is an important differ-

ence: we speak of measurements (and their intrinsic randomness) only when we refer

to open systems, because the measuring apparatus, observer or environment which

get entangled with the system are never completely described. This deletion process

is intrinsically random, but in a closed system: everything described is all there is

to it. Before continuing, we will go a little deeper on this comparison, and try to

answer the question formulated in the first chapter, regarding the irreversibility of

classical erasure.

A measurement is considered irreversible only within the limits of the open

system of interest. To reverse a measurement, everything about it would have to be

reversed, including changes in the measuring apparatus, environment and memory

storing processes of the observer (if there is one). If we consider all of this within the

system, a measurement is irreversible only in that it is very impractical. The same

can be said about erasure, because classical information erasure can be achieved

reversibly only if the system is known (has been measured). We are reminded that

-as we stated before- erasure is somehow equivalent to measurement.

This way, to answer the question on the first chapter, erasure can be effectively

irreversible, but only in an open system, whereas the word “deletion” is used when

referring to closed systems -frequently in the context of quantum mechanics-, and

it means an actually irreversible process. Classical and quantum information are

treated differently because quantum systems decohere only in open systems (some-

thing that is not an issue for classical systems), and are thus better depicted in

closed systems.

Now that we have partially addressed the question, we will continue with the

analysis of the Shannon Entropy in an Intrinsically Random Deletion.
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First of all, if the deletion is intrinsically random, we should not express the

output with the term |ϕψ⟩, which is a pure state, but with a mixed state ρψ. This

mixed state can have a Shannon entropy between 0 and log2 2 (0 when it is closest

to being a pure state, and log2 2 when it is the maximally mixed state).

This way, for this deletion evolution:

|ψ⟩|ϕ⟩ → |c⟩ρψ (4.12)

The Shannon entropy is decreased unless ρψ is the maximally mixed state. In

that case, it remains constant (log2 2). We note that entropy can be conserved

despite the fact that there has been a Deletion evolution.

A way to see this entropy invariance is that an “intrinsically random” evolution in

a closed system creates new information in it (even if it is closed), since the outcome

of the evolution is information that can not be determined before the evolution but

can be known after it (if -within a system- something can not be known before time

t, but can be known after time t, it means that some information has entered the

system at that time).

However, entropy can not be conserved for all systems. We will consider again

the case in which ρψ is the maximally mixed state. Let’s say that we have another

copy of |ψ⟩ during the evolution, which remains unchanged, such that (4.12) is still

a valid description. We now have:

|ψ⟩|ψ⟩|ϕ⟩ → |ψ⟩|c⟩ρψ (4.13)

This time the input has an entropy of log2 3, while the output has an entropy of

2 log2 2. The entropy in this new system has increased despite being constant from

the other point of view (we have just added a parametric state).

We can say that in some cases an intrinsically random deletion evolution can

leave the Shannon entropy invariant, but that no longer holds when we extend the

system with a parametric copy of the state (to be deleted). This way, -in general-

entropy is not conserved in intrinsically random deletions.

Deterministic Deletion

In the latter kind of deletion, there exists a function that maps |ψ⟩ to |ϕψ⟩ (given

|ϕ⟩), but it is not a one-to-one function. As we said, this means that at least two

inputs of the function (say |ψ1⟩ and |ψ2⟩) are mapped into the same output (|ϕc⟩).
We now write the related deletion process:
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|ψ1⟩|ϕ⟩ → |c⟩|ϕc⟩

|ψ2⟩|ϕ⟩ → |c⟩|ϕc⟩
(4.14)

Let’s say we send a state into the deleter-device with one of two different (linearly

independent) states: |ψ1⟩ or |ψ2⟩ (a mixed state). The deleter is set into |ϕ⟩, a known
state, so our total Shannon entropy for the input (deleter included) will be higher

than 0 (the Shannon entropy measures the departure of the system from a pure

state). The output (deleter included), on the other hand, is completely determined

(|c⟩|ϕc⟩), and a pure state, so it has a Shannon entropy of 0.

This way, we can conclude that a Deterministic Deletion entails a decrease in

Shannon entropy. Note that Deletion with a parametric deleter-device is a particular

case of Deterministic Deletion.

Deletion with Cloning

There is one additional case we need to consider regarding the relation of a deleter

process with the loss of (Shannon) entropy in a closed system, even though it is

rather specific. Let |ψ⟩ and |ϕ⟩ be both arbitrary states in the following deletion

and cloning evolution:

|ψ⟩|ψ⟩|ϕ⟩ → |ψ⟩|ϕ⟩|ϕ⟩ (4.15)

This does not directly violate the formulations for the No-Deleting and No-

Cloning theorem, but –in a way– the state |ψ⟩ has been deleted, and the state |ϕ⟩
cloned, so this is an unphysical evolution. Proof of it is that Signalling is possible

under transformation (4.15).

The (Shannon) entropy, on the other hand, is constant (and equal to log2 3+1).

Regarding the entropy, deletion and cloning can cancel each other out, even if we

delete and clone different states.

From here onward, we will consider the No-Deleting and No-Cloning Theorems

to include the forbiddance of this case. Specifically, we will consider No-Deleting

and No-Cloning Theorems in which not only does total information matter, but also

partial information. As we have seen, total information can be conserved when there

is a partial information cloning and a partial information deleting.

4.2.2 From Second Law to No-Deleting

To conclude that there is implication between Deleting and breaking the Second

Law of Thermodynamics, we must treat the Shannon entropy and the thermody-
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namic entropy as different expressions for the same concept. This is a reasonable

agreement, because we can exchange Shannon’s entropy with von Neumann’s en-

tropy for all proofs in this chapter, and von Neuman’s work was an approach from

thermodynamics (the only difference is the lack of Boltzmann constant), not from

information theory [29]. Other recent formulations of the von Neumann entropy do

start from information theory, though, such as Asher Peres’ [25].

This way, in closed systems, all deletion evolutions decrease thermodynamic en-

tropy, and thus break the Second Law of Thermodynamics, so long as we consider

the evolution parametric (or non intrinsically random in general) and forbid simul-

taneous partial deletion and cloning.

As we pointed out before, intrinsic randomness in a closed system can be inter-

preted as the creation of new information. This is also true for the (unphysical)

cloning process, in which information can increase in a closed system. Deletion

without intrinsic randomness, on the other hand, can be interpreted as a decrease

of information in a closed system.

We can say the following: If information can not be simultaneously partially

increased and decreased in a closed system (for example, by simultaneously deleting

and cloning different unknown states, as in (4.15)), the Second Law of Thermody-

namics implies the No-Deleting Theorem. Here, we have reached a similar conclusion

to the one obtained in [3], albeit with a consideration.

In an analogous way, we could prove that: if there can not be simultaneous

partial information increase and decrease (SPIID) in a closed system, the Second

Law of Thermodynamics (stated as no-increase of thermodynamic entropy in a closed

system) implies the No-Cloning Theorem. The argument will -again- be the same

one used in [3], with the mentioned consideration.

Thus, we have the following, regarding a closed system:(
No-SPIID ∧ Second Law (no decrease of entropy)

)
=⇒ No-Deleting(

No-SPIID ∧ Second Law (no increase of entropy)
)

=⇒ No-Cloning
(4.16)

Here, we state the Second-Law both as no-increase and no-decrease of thermo-

dynamic entropy.

The assertions in (4.16) are equivalent to:

No-SPIID =⇒
(
Second Law (no decrease of entropy) =⇒ No-Deleting

)
No-SPIID =⇒

(
Second Law (no increase of entropy) =⇒ No-Cloning

) (4.17)

We now join the two assertions:
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No-SPIID =⇒(
Second Law (conservation of entropy) =⇒

(
No-Deleting ∧ No-Cloning

))
(4.18)

This way, we conclude that, unless we consider the possibility of a simultaneous

double-unphysicality (SPIID), the Second Law of Thermodynamics (stated as both

no increase and no decrease of entropy) implies the No-Deleting and No-Cloning

Theorem. This is a statement that relates the conservation of thermodynamic en-

tropy with the conservation of information.

We are mostly interested, however, in the standard “no-decrease of entropy in a

closed system” Second Law. So far, we have shown that this implies the No-Deleting

Theorem (assuming no SPIID). Can we prove the reciprocal?

4.2.3 From No-Deleting to Second Law

We will now start with a violation of the Second Law (“no-decrease of entropy”),

from a thermodynamic point of view.

A violation of the second law implies that we could extract heat from a reservoir

and convert it all into work. This will be the first thing we will prove, starting with

a violation of the Second Law, as formulated in terms of Carnot’s Heat Engine. We

will then show that this can be used to delete quantum information.

Carnot’s Cycle

QC

W=Q -QH C

TC
QH

TH

Figure 4.2: A heat engine is made with two systems at different temperatures (TH for
the hotter system, and TC for the colder one), such that heat flows from the
hot system to the cold system. This process can be used to extract work,
and the Carnot cycle holds the maximum work (W) that can be extracted
per unit of heat that is taken from the hot system (efficiency).
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The Carnot cycle holds the maximum efficiency for a Heat Engine (work per unit

of heat taken from the hot system), with a value of η = 1 − TC
TH

[30], where TC is

the (absolute) temperature of the cold system, and TH the temperature of the hot

system. The heat received by the cold system is the heat taken from the hot system

minus the work extracted, so even if we considered the efficiencies past Carnot’s

(but still less than 1), energy would be conserved.

For a Carnot cycle, given the temperatures of the systems (TH and TC) and the

heat extracted from the hot system (QH), we determine the extracted work to be:

W = QH(1−
TC
TH

) (4.19)

and the heat released on the cold system is:

QC = QH
TC
TH

(4.20)

Now suppose we have a heat engine that allows a slight violation of the Second

Law, that is, an engine slightly more efficient than the Carnot cycle [30]:

η =
W

QH

= 1− TC
TH

+
∆W

QH

(4.21)

This way, given the temperatures of the systems (TH and TC) and the heat

extracted from the hot system (QH), we determine the extracted work to be:

W = QH(1−
TC
TH

) + ∆W (4.22)

and the heat released on the cold system to be:

QC = QH
TC
TH

−∆W (4.23)

The Carnot cycle is reversible, so it is possible to have a Carnot refrigerator. Its

efficiency is usually stated as “heat extracted from the cold system per unit of work

used on the engine”, but we do not actually need to write it down. We can obtain

the desired quantities for the reversed Carnot cycle simply by considering that it

should cancel out an applied Carnot cycle.

Given the temperatures of the systems (TH and TC) and the heat received by

the hot system (QH), the necessary work for a Carnot refrigerator is:

WCarnot = QH(1−
TC
TH

) (4.24)

and the heat extracted from the cold system is:
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QCarnot = QH
TC
TH

(4.25)

We now couple our Second-Law violating Heat Engine with the reversed Carnot

cycle.

Q =Q -∆WC Carnot

W=W +∆WCarnot

TC

QH

TH

Q =QC Carnot

W=WCarnot

QH

TH

TC

Figure 4.3: We couple a heat engine with a slight violation of the Second Law with a
reversed Carnot cycle (a Carnot refrigerator).

When we do this, we get an engine that extracts work from the heat of a single

system in equilibrium (see Fig. 4.4), which is what we wanted to prove.

W=∆W

TH TCQC=∆W

Figure 4.4: The coupled engines are equivalent to an engine that extracts heat from a
single system and turns it into work. We will not dispense with the hot
system yet, as it still interacts with the cold engine in ways that are not
taken into account by thermodynamics.

Note that we are potentially violating the Kelvin statement of the Second Law,

and also note that we can directly violate the Clausius statement by releasing the

extracted work on the hot system (and thus moving heat from the cold to hot system

without expending any work).
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We may be tempted to remove the system at temperature TH from our descrip-

tion of the coupled engine, but thermodynamics describes only macrostates, whereas

if we are to relate this with the No-Deleting Theorem, which belongs to quantum

mechanics, we need to take the microstates into account too.

Since our two systems have interacted with each other on each part of the engine,

if we want to consider the microstates, we can not dispense with any of the systems,

even if the thermodynamic macrostates indicate that there is no net change in one

of the systems.

In our thought experiment, these two systems will interact with other systems

only when we state so, so they will be closed from everything else, and we need not

worry for more microstates “spilling out”.

To prove that this can be used to perform quantum deletion, we will use the ∆W

work obtained from each iteration of our engine to make Landauer erasure processes.

The Landauer erasure process is -however- for bits of classical information, not

for qubits of quantum information, and we are not interested in erasing classical

information, but in erasing quantum information. We will solve this issue with the

quantum teleportation protocol [5].

Quantum teleportation

In the normal teleportation protocol, Alice posseses an arbitrary state |ψ⟩ = α|0⟩A+
β|1⟩A and wants to send its information to Bob. To do so, they share beforehand a

maximally entangled pair 1√
2
(|0′⟩A|0⟩B + |1′⟩A|1⟩B) (Alice keeps the first qubit and

Bob keeps the second).

Then, Alice performs a C-NOT gate between her arbitrary state and her part

(qubit) of the entangled pair, where the arbitrary state is the control qubit. The

complete system is now:

1√
2

(
α|0⟩A|0′⟩A|0⟩B + α|0⟩A|1′⟩A|1⟩B + β|1⟩A|1′⟩A|0⟩B + β|1⟩A|0′⟩A|1⟩B

)
, (4.26)

where the first qubit corresponds to the originally arbitrary state, and the second

and third to Alice’s and Bob’s entangled pairs, respectively.

Now, Alice applies a Hadamard transform on her first qubit, obtaining:
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1

2

(
|00′⟩A

(
α|0⟩B + β|1⟩B

)
+ |01′⟩A

(
α|1⟩B + β|0⟩B

)
+ |10′⟩A

(
α|0⟩B − β|1⟩B

)
+ |11′⟩A

(
α|1⟩B − β|0⟩B

))
, (4.27)

which we can write in terms of |ψ⟩ and the pauli matrices (X̂, Ŷ and Ẑ):

1

2

(
|00′⟩A

(
|ψ⟩B

)
+ |01′⟩A

(
X̂|ψ⟩B

)
+ |10′⟩A

(
Ẑ|ψ⟩B

)
+ |11′⟩A

(
X̂Ẑ|ψ⟩B

))
(4.28)

We can easily note that, if Bob were to measure his qubit without considering

his correlations with Alice, he would obtain a maximally mixed state, because an

equiprobabilistic ensemble of the identity and pauli evolutions on any arbitrary state

is a maximally mixed state (X̂Ẑ is -save for global phase- equal to Ŷ ). This means

that such an ensemble does not provide any information about the arbitrary state,

and that Bob can not find anything about |ψ⟩ by single counts only (also, if he

could, we would have a problem with instantaneous messaging).

The next step in the protocol is for Alice to measure the first two qubits in the

canonical basis and, depending on the result, tell Bob which gate (Identity or Pauli

gate) he has to apply on his qubit to reconstruct |ψ⟩. Basically, Alice needs to send

the two bits of her measurements to Bob.

This is where we will depart from the normal teleportation protocol. We now

have two qubits that, when measured, will give us two bits, which are enough in-

formation to reconstruct our initial arbitrary state on a third qubit. Our arbitrary

qubit can be reconstructed as long as those two bits are knowable. If we erase any

of those bits, the information of the qubit will be erased too (partially erased if we

erase one; completely erased if we erase both).

However, there is a trick in that, when performing the measurements we should

not be able to retrieve the information of the bit (or bits) we are to erase. Otherwise,

the qubit information would be accessible. This is specially sensible because bit

information can be copied, so even if we are sure a bit has arrived safely at an

otherwise closed system, we can not be certain that its classic information was not

copied and is accessible to an observer outside of that system.

For simplicity, let’s say we will erase only one of the two bits, as partial erasure

of |ψ⟩ is enough for us. To avoid the possibility of retrieving the bit information, we

will let the respective qubit (the one that yields the bit in question when measured)

arrive at our “safe”, closed (unless when stated otherwise) system: the system at
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Figure 4.5: In the teleportation protocol, Alice (first and second qubit in the circuit)
attempts to send an arbitrary state |ψ⟩ to Bob (third qubit in the circuit).
She does this by entangling her qubit with one of the qubits of a pre-shared
EPR state (between herself and Bob). If (after applying a Hadamard) she
then measured her qubits and sent the results to Bob (classical information),
this would be enough for him to reconstruct state |ψ⟩. In our tweak of the
quantum teleportation protocol, Alice will instead measure and (Landauer)
erase one of her qubits inside of a closed system, so that the bit’s information
is hidden (only accessible in the closed system), and the arbitrary state |ψ⟩
is as well.

temperature TC , from last section. Here we will do a Landauer erasure process for

those qubits (which causes loss of coherence, equivalent to measuring) using the work

we obtained in our coupled engine (see Fig. 4.5 and 4.6). We consider the system

at temperature TC as a reservoir so large that it is also considered an environment

(so that it decoheres into energy eigenstates).

We set ∆W to be equal to the maximum possible cost for erasure, for conve-

nience. This way, we measure the qubit, reset it to |0⟩, release a heat in average

equal to kBTC ln(2), and send the rest of the work as heat into the cold system. In

total, it receives ∆W heat, which compensates the heat lost when we first applied

the coupled engine. We then release the -now blank- qubit out of the system.

The net effect is to leave the two systems thermodynamically invariant (we do not

state anything about their microstates yet) and dump the bit information required

to reconstruct |ψ⟩ into one of the systems.

It would apparently seem that this bit information is stored on the two (or one

of the two) systems of the engine, in the form of heat, making |ψ⟩ recoverable, and
this would be true in normal scenarios. However, we can repeat this process as

many times as we want, with different arbitrary states. If the classical bit storage

capacity of a finite system at certain temperature is finite too -something that is

very reasonable-, after many iterations we can prove that not all bits can be possibly

written on the systems. Eventually some of those bits will be unknowable, and so

will be their respective qubit, thus deleting it.
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Figure 4.6: To erase the classical information from the first qubit of the circuit in 4.5, so
that |ψ⟩ is partially erased, we send that qubit (qubit 1) into the cold system
used in our unphysical heat-to-work engine (Fig. 4.4). Using the ∆W work
obtained from our unphysical engine, which was directly converted from
heat extracted from the cold system, we perform inside of it a Landauer
erasure process of qubit 1. The cold system is so big, it is considered an
environment and decoheres (measures) the system into energy eigenstates
after the erasure. The qubit is reset to |0⟩ and a heat of kBTC ln(2) (in
average) is released back into the cold system. Then, the rest of the work
is dissipated in the form of heat into the environment, so that a total of
∆W heat has been released. After that, the qubit |0⟩ is released from the
system. This way, we have erased qubit 1 into the cold system (that is, we
left its information as heat in the system) without any work expenditure,
heat increase on the system, or heat release outside of it. This allows for the
process to be repeated as many times as we want, for different |ψ⟩.

This does not mean that the deletion occurs only after that many tries. We

propose that the deletion actually occurs when the heat released by a Landauer

erasure process of one of the bits is converted into work due to a subsequencial

application of our coupled (unphysical) engine. This would be explained by the

possibility of extracting work by measuring and erasing that we mentioned before.

We could say that useful work can be obtained from erased heat, and also from

measured heat. Our engine freely (without additional costs or emissions) converts

heat into work, which would mean that it erases the information hidden in the heat,

but without any cost or emission, thus deleting its information.

This way, we conclude that if the Second Law of Thermodynamics (of no decrease

of entropy in a closed system) is broken, so will be the No-Deleting Theorem (given

the reasonable assumption that finite systems with finite temperature can only hold

finite information). This means that the No-Deleting Theorem implies the Second

Law of Thermodynamics.

Since we already proved the reciprocal for cases in which there is no simultaneous
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partial information increase and decrease (e.g, deleting and cloning at the same time

like (4.15)), this means that, given those considerations, the Second Law and the

No-Deleting Theorem are equivalent No-Go Theorems.

a
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Chapter 5

Conclusions

In this thesis, we have centered our atention in the No-Deleting Theorem, a theorem

that comes from the unitarity condition in quantum mechanics. We have reviewed

its statement and proof, as well as those of the No-Cloning Theorem, where cloning

is the time-inverse of deletion (against a copy).

We have also reviewed a thermodynamic No-Go Theorem: the Second Law of

Thermodynamics. We have resorted to Maxwell’s Demon and Landauer’s Principle

to consider thermodynamics in the context of information. This leads us to the

notion of an equivalence between measurement and erasure, in that they both can

be used to extract the same amount of useful work from a system, and also require

the same amount of work in order to be performed.

We have also proposed a photonic setup that realizes a Deletion simulation by

use of spontaneous parametric down-conversion (and its inverse process) in a BBO

crystal. This setup transfers the information of an unknown qubit encoded in a

2-Fock space of an arbitrary system into another 2-Fock space: one of the two

single photons emitted by a BBO (horizontal and vertical polarization being each a

photon-number Fock space). After that, the two single-photons and coherent beam

(which originally pumped the BBO) are joined again, into a second BBO, in such a

way that the encoded qubit information is partially hidden in the no-photon states.

This way, we will not be able to measure the qubit by measuring the twin photons

alone, since -when measured- they correspond to 1-photon states (either vertically

or horizontally polarized). Besides being a deletion simulation, this proves to be a

coherent erasure process.

Finally, to pinpoint the relevance of the No-Deleting Theorem, we have compared

it to other No-Go Theorems.

We have shown -with a thought experiment- that the No-Signalling Theorem

implies the No-Deleting Theorem in the context of quantum mechanics, as proved
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in [7].

Then, we linked the No-Deleting Theorem to the Second Law of Thermodynam-

ics:

• Following a similar logic to [3], we conclude that the Second Law of Thermody-

namics implies the No-Deleting Theorem (and also the No-Cloning Theorem).

This is the same conclusion obtained in [3], albeit with a consideration: Si-

multaneous partial information increase and decrease in a closed system is the

exception to this rule, as it can actually break the No-Deleting Theorem with-

out breaking the Second Law of Thermodynamics. This consideration works

under the logic that if we Delete an arbitrary state and clone another arbitrary

state, we are still breaking the No-Deleting and No-Cloning theorem, despite

the fact that total information is conserved (as well as total entropy).

• We also show the reciprocal with a thought experiment: that the No-Deleting

Theorem implies the Second Law of Thermodynamics. For this, we only use

the reasonable assumption that a finite system with finite temperature can

only hold finite information.

With these two points, and under the stated considerations, we prove that the

No-Deleting Theorem is an equivalent No-Go Theorem to the Second Law of Ther-

modynamics.

This way, we have attained a coherent erasure whilst simulating Deletion, and we

have shown the high relevance of the No-Deleting Theorem. The latter was done by

showing that its violation could be used for instantaneous signalling, and by proving

its equivalence (given our considerations) with the Second Law of Thermodynamics.

Of particular interest is the fact that the Second Law, which was considered to

be emergent from pure statistics -something that may make us dismiss it as non

fundamental-, is equivalent to a fundamental forbiddance in nature: the No-Deleting

Theorem.
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