

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

ESTUDIO DE COMPROBACIÓN DEL DISEÑO DE LA HÉLICE, LA TORRE Y LA GÓNDOLA DE UN AEROGENERADOR TRIPALA DE 20 kW MEDIANTE SIMULACIÓN NUMÉRICA COMPUTACIONAL

ANEXOS

Tesis para optar el Título de Ingeniero Mecánico, que presenta el bachiller:

Diego Fernando Flores Heredia

ASESOR: Dr. Rosendo Franco Rodríguez CO-ASESOR: Mg. Herbert Yépez Castillo

Lima, Mayo del 2016

ANEXOS

ANEXO 1. Información general del Aerogenerador propuesto por la empresa WAIRA.

Figura A1.1. Detalles de elementos de torre. A) Base. B) Segmento Base. C) Segmento Intermedio. D) Segmento Superior. Fuente: <u>Waira Energía SAC.</u>

rabia ///								
Elemento	Valor	Unidad						
Bocamasa	127	kg						
Eje principal	30	kg						
Soporte estator	66.4	kg						
Codo	59	kg						
Rueda generador	55.5	kg						

Tabla A1.1. Masa de los elementos del aerogenerador.

Figura A1.3. Elementos del ensamble de la turbina. Fuente: Waira Energía SAC.

ANEXO 2. Procedimiento de generación de la hélice del aerogenerador.

El proceso del diseño del modelo CAD de la hélice (palas y domo) el cual se realizó en el software SOLIDWORKS se detalla a continuación:

 Palas: Para el diseño de las palas se utilizaron perfiles WORTMANN FX 60-126 mostrados en la figura A2.1 y se dividieron en 23 estaciones cuyas características son detalladas en la tabla A2.1. En la figura A2.2, se puede apreciar que con ayuda del software SOLIDWORKS, se procede a realizar el barrido total sobre las estaciones y así se genera la pala.

http://airfoiltools.com/airfoil/details?airfoil=fx60126-il

	Resumen parámetros de diseño									
	PERFIL DE REFERENCIAL : WORTMANN FX-10-126									
	RADIO	cuerda lineal	Flecha/Cuerda	Flecha	Ángulo posición					
ESTACIÓN	r (mm)	c mod (mm)	%	(mm)	β mod					
0	500	BF	RIDA CUADRADA	200x20	0 mm					
1	720		TRANSIC	IÓN						
2	960	TRANSICIÓN								
3	1200	1000	18.0	180	18.8					
4	1440	930	17.5	163	16.0					
5	1680	840	16.0	134	13.6					
6	1920	760	15.5	118	11.6					
7	2160	700	15.0	105	10.1					
8	2400	644	14.5	93	8.8					
9	2640	585	14.0	82	7.6					
10	2880	535	13.5	72	6.6					
11	3120	500	13.0	65	5.9					

Tabla A2.1: Resumen de parámetros de diseño por estación de cada pala.

12	3360	465	12.5	58	5.1
13	3600	435	12.0	52	4.5
14	3840	410	12.0	49	4.0
15	4080	385	12.0	46	3.4
16	4320	370	12.0	44	3.2
17	4560	350	12.0	42	2.7
18	4800	327	12.0	39	2.2
19	5040	314	12.0	38	2.0
20	5280	291	11.5	33	1.4
21	5520	278	11.0	31	1.1
22	5760	260	10.5	27	0.7
23	6000	250	10.0	25	0.5

Figura A2.2: Estaciones de la pala y barrido en la modelación de la hélice.

- **Domo:** Para el domo de la hélice se realizaron medidas del modelo físico para aproximarlo al modelo diseñado en CAD, ver figura A2.3.

ANEXO 3. Resultados del estudio del fenómeno aerodinámico mediante simulación numérica.

En el presente anexo en la tabla A3.1 se detalla los valores obtenidos de fuerzas, torque y potencia para los diferentes casos de la simulación numérica del fenómeno aerodinámico de la hélice del aerogenerador.

Caso	Torque (N.m)	Potencia (kW)	Fuerza X (N)	Fuerza Y (N)	Fuerza Z (N)
1	1419.6	17.839	450.3	-384 840	-4 204.2
2	961.85	12.087	323.07	-384 810	-4 622.4
3	273.08	3.432	135.042	-384 780	-5 042.1
4	3 013.3	37.866	949.23	-384 810	-5 807.4
5 (Caso Nominal)	2 411.5	30.304	767.43	-384 810	-6 473.7
6	1 525	19.164	511.8	-384 780	-7 234.8
7	4 892.7	61.484	1537.95	-384 780	-7 313.4
8	4 358.7	54.773	1378.62	-384 780	-8 380.2
9	3 250	40.841	1036.35	-384 780	-9 506.4

Tabla A3.1. Torque.	potencia v	/ fuerzas	para los difer	rentes casos analizados	
	p = = = = = =				•

ANEXO 4. Resultados del estudio del fenómeno aerodinámico mediante procedimiento analítico.

En las tablas A4.1 y A4.2, se muestran los valores obtenidos, luego de realizar el cálculo aerodinámico en cada estación de la pala.

Estación	ho (kg/m ³)	R (m)	V _o (m/s)	a	a'	φ (°)	w (rpm)	V _{rel}	r (m)	α	β (°)	F	f	В	σ
3	1	6	10	0.9303	-0.0153	2.6868	120	12.5664	1.2	-16.1132	18.8	0.6366	127.9984	3	0.3979
4	1	6	10	0.9575	-0.0361	1.3965	120	11.6868	1.44	-14.6035	16	0.6366	194.9050	3	0.3084
5	1	6	10	0.9737	-0.0451	0.7466	120	10.5558	1.68	-12.8534	13.6	0.6366	296.0166	3	0.2387
6	1	6	10	0.9766	-0.0281	0.5709	120	9.5505	1.92	-11.0291	11.6	0.6366	319.8816	З	0.1890
7	1	6	10	0.9700	0.0068	0.6300	120	8.7965	2.16	-9.4700	10.1	0.6366	242.5400	3	0.1547
8	1	6	10	0.9390	0.0388	1.1152	120	8.0928	2.4	-7.6848	8.8	0.6366	115.6089	3	0.1281
9	1	6	10	0.8980	0.0389	1.6959	120	7.3513	2.64	-5.9041	7.6	0.6366	64.5069	3	0.1058
10	1	6	10	0.8570	0.0334	2.1893	120	6.7230	2.88	-4.4107	6.6	0.6366	42.5385	3	0.0887
11	1	6	10	0.7885	0.0302	2.9975	120	6.2832	3.12	-2.9025	5.9	0.6366	26.4782	3	0.0765
12	1	6	10	0.7675	0.0241	3.0776	120	5.8434	3.36	-2.0224	5.1	0.6366	21.9517	3	0.0661
13	1	6	10	0.6849	0.0204	3.9044	120	5.4664	3.6	-0.5956	4.5	0.6366	14.6861	3	0.0577
14	1	6	10	0.6565	0.0173	4.0027	120	5.1522	3.84	0.0027	4	0.6366	12.0876	3	0.0510
15	1	6	10	0.6247	0.0141	4.1284	120	4.8381	4.08	0.7284	3.4	0.6366	9.8050	3	0.0451
16	1	6	10	0.6251	0.0123	3.9028	120	4.6496	4.32	0.7028	3.2	0.6366	8.5704	3	0.0409
17	1	6	10	0.5801	0.0105	4.1479	120	4.3982	4.56	1.4479	2.7	0.6366	6.5488	3	0.0366
18	1	6	10	0.5266	0.0087	4.4491	120	4.1092	4.8	2.2491	2.2	0.6366	4.8341	3	0.0325
19	1	6	10	0.4978	0.0077	4.4989	120	3.9458	5.04	2.4989	2	0.6368	3.6425	3	0.0297
20	1	6	10	0.4457	0.0062	4.7456	120	3.6568	5.28	3.3456	1.4	0.6389	2.4724	3	0.0263
21	1	6	10	0.4053	0.0053	4.8742	120	3.4935	5.52	3.7742	1.1	0.6517	1.5351	3	0.0240
22	1	6	10	0.3158	0.0039	5.3789	120	3.2673	5.76	4.6789	0.7	0.7308	0.6667	3	0.0216
23	1	6	10	0.1674	0.0023	6.2876	120	3.1416	6	5.7876	0.5	1.1783	0.0000	3	0.0199

Tabla A4.1. Parámetros por estación en el caso nominal para el estudio analítico del análisis aerodinámico.

Estación	c(r) m	CL	CD	Re	υ (m²/s)	C _n	C _t	a	a'	a	K	F _N (N)	F _T (N)	M (N.m/m)
3	1	1.76	0.088	1130965.76	0.0000142	1.7622	-0.0054	0.9921	-0.0177	0.9309	0.0080	191.5305	-0.5906	-0.7087
4	0.93	1.764	0.052	1083180.49	0.0000142	1.7647	-0.0090	0.9972	-0.0428	0.9587	0.0028	236.2330	-1.2295	-1.7705
5	0.84	1.734	0.03	1023974.68	0.0000142	1.7342	-0.0074	0.9990	-0.0506	0.9745	0.0010	279.8546	-1.2217	-2.0525
6	0.76	1.645	0.021	973797.16	0.0000142	1.6451	-0.0046	0.9992	-0.0332	0.9774	0.0008	320.7462	-0.9251	-1.7762
7	0.7	1.56	0.017	937910.95	0.0000142	1.5601	0.0002	0.9987	0.0008	0.9718	0.0013	358.8983	0.0373	0.0805
8	0.644	1.449	0.015	905943.67	0.0000142	1.4490	0.0132	0.9948	0.0353	0.9439	0.0052	388.0474	3.8292	9.1902
9	0.585	1.342	0.014	874040.58	0.0000142	1.3418	0.0257	0.9845	0.0375	0.9043	0.0157	410.1486	8.3751	22.1102
10	0.535	1.251	0.013	848581.47	0.0000142	1.2506	0.0348	0.9676	0.0328	0.8633	0.0335	428.5186	12.4619	35.8903
11	0.5	1.171	0.011	831697.60	0.0000142	1.1700	0.0502	0.9278	0.0298	0.7990	0.0778	432.1408	19.5223	60.9096
12	0.465	1.087	0.01	815640.85	0.0000142	1.0860	0.0484	0.9072	0.0240	0.7730	0.1023	451.3984	20.5906	69.1843
13	0.435	1.022	0.01	802573.95	0.0000142	1.0203	0.0596	0.8329	0.0203	0.6969	0.2006	439.7990	26.7038	96.1338
14	0.41	0.969	0.009	792200.04	0.0000142	0.9673	0.0587	0.7990	0.0172	0.6672	0.2516	450.8584	28.2140	108.3419
15	0.385	0.905	0.009	782314.38	0.0000142	0.9033	0.0562	0.7551	0.0140	0.6314	0.3243	455.7258	28.8573	117.7379
16	0.37	0.883	0.009	776625.14	0.0000142	0.8816	0.0511	0.7534	0.0122	0.6301	0.3272	481.6213	28.3073	122.2877
17	0.35	0.828	0.008	769330.39	0.0000142	0.8264	0.0519	0.6945	0.0105	0.5852	0.4399	475.6063	30.2442	137.9136
18	0.327	0.773	0.008	761363.79	0.0000142	0.7713	0.0520	0.6208	0.0087	0.5317	0.6108	459.5657	31.3138	150.3063
19	0.314	0.751	0.008	757065.93	0.0000142	0.7493	0.0509	0.5871	0.0077	0.5077	0.7032	463.3475	32.1269	161.9193
20	0.291	0.684	0.007	749834.17	0.0000142	0.6822	0.0496	0.5065	0.0062	0.4503	0.9743	438.2711	32.1339	169.6671
21	0.278	0.65	0.007	745961.34	0.0000142	0.6482	0.0483	0.4530	0.0053	0.4115	1.2073	432.2865	32.5144	179.4797
22	0.26	0.606	0.007	740860.51	0.0000142	0.6040	0.0498	0.3363	0.0040	0.3218	1.9734	410.9886	34.2135	197.0697
23	0.25	0.584	0.006	738160.03	0.0000142	0.5811	0.0580	0.1698	0.0023	0.1688	4.8896	418.4074	41.8281	250.9688

Tabla A4.2 Parámetros por estación en el caso nominal para el estudio analítico del análisis aerodinámico.

A continuación, se muestran las gráficas, en la figura A4.1, de las fuerzas normales, tangenciales y torque en función de la longitud con respecto a la longitud.

Figura A4.1: Gráficas para el caso de velocidad 12 m/s y 120 rpm. A) Fuerza normal longitudinal vs longitud. B) Fuerza tangencial longitudinal vs longitud. C) Momento longitudinal vs longitud.

ANEXO 5. Procedimiento analítico para el análisis estructural estático de una pala de la hélice del aerogenerador.

Para el análisis estructural de una pala de la hélice se siguió los siguientes pasos:

a) Identificación de efectos actuantes sobre la pala

En primer lugar, se realizó el cálculo de las cargas debido a los diferentes efectos que actúan sobre cada pala, las cuales son las siguientes:

• Efecto aerodinámico:

En la tabla A5.1, se presentan las fuerzas y momentos en los diferentes ejes de coordenadas obtenidos con ayuda de la simulación aerodinámica antes realizada.

	Dirección						
-	X	Y	Z				
Fuerza (N)	348.935	128 260	-3 178.54				
Momento (N.m)	62 734.6	79.4475	-1 090.14				

Tabla A5.1. Cargas y momentos en los ejes de coordenadas

• Efecto gravitacional:

Según la geometría de la hélice, cada pala tiene una masa igual a m = 31.12 kg (305.27 N), este actúa sobre el centro de masa. Con ayuda del software se ubica el centro de masa, el cual está ubicado en las coordenadas x = 2257.8mm e y = 1329.4 mm, ver figura A5.1. Con esta información, se obtiene la distancia media o radio medio (R_m) en donde se ubica el centro de gravedad:

Figura A5.1: Ubicación del centroide.

$$R_m = \sqrt{(2\ 257.8)^2 + (1\ 329.4)^2} = 2\ 620\ mm\,.$$

• Efecto centrifugo:

Debido a que la hélice se encuentra en rotación se genera fuerza centrífuga, la cual es predominante en el estudio de palas de aerogeneradores. Luego, con ayuda de las ecuaciones (A5.1), (A5.2) y (A5.3) y la información de la tabla A5.2, se realizó el cálculo de esta fuerza.

$$w = 2 \cdot \pi \cdot \frac{N}{60}, \qquad (A5.1)$$

$$v = \omega \cdot R_{\rm m}$$
, (A5.2)

$$F_{cf} = M \cdot \frac{v^2}{R_m}.$$
 (A5.3)

Tabla A5.2. Parámetros necesarios en el cálculo de la fuerza centrífuga.

Radio medio (R _m)	2.62
Velocidad angular (rpm)	150
Masa (kg)	31.12
Velocidad angular (rad/s)	15.71
Velocidad lineal (m/s)	41.16

Con los datos de la tabla A5.2 y la ecuación A5.3 se calcula la fuerza centrífuga cuyo valor es:

$$F_{cf} = 20 \ 120 \ N$$
.

Una vez obtenidas estas cargas se procede a realizar el cálculo de las fuerzas y momentos internos en la sección de la pala.

b) Calculo de fuerzas internas en la pala

Para el cálculo de fuerzas internas, se consideraron todos los efectos (efecto aerodinámico, efecto gravitacional y efecto centrífugo) que se generan cuando la hélice opera en condiciones críticas en el centroide de cada pala, en la figura A5.2, se muestra la sección a la altura del centroide y sistema de coordenadas a usar. A continuación se detallara cuáles son las fuerzas internas por efecto:

Figura A5.2: Sección de la pala en el centroide.

• Efecto gravitacional:

Como se sabe debido al efecto gravitacional se tiene como carga al peso propio de la pala por lo que se realiza la descomposición de fuerzas mostrado en la figura A5.3, y tabla A5.3.

Figura A5.3: Descomposición de fuerzas debido al peso de la pala.

				-	
Tabla	AE O Magnifud	do fuorzoo	dahida al	ofooto	arouttopional
เลเมล	AO S WAODIDO	<i>de merzas</i>	oeoioo ai	elecio	oravnacionar
					9

Fuerza	Magnitud (N)
F _{m1}	152.63
F _{m2}	264.37

• Efecto aerodinámico:

En el caso de las fuerzas y momentos debido al efecto aerodinámico se tomaron en cuenta para el análisis aquellas que se encuentran en dirección del eje z, debido a que las que se encuentran en los otros ejes se anulan debido al equilibrio de la hélice. En la figura A5.4, y tabla A5.4 se muestran estas fuerzas.

Figura A5.4: Descomposición de fuerzas debido al peso de la pala.

Tabla A5.4.Magnitud de fuerzas debido al efecto aerodinámico.

Fuerza	Magnitud (N)
F _z (Fuerza)	3 178.54
F _m (Fuerza debido al Momento M)	$F_m = M/R_m = 416.07$

• Efecto centrifugo:

Debido al efecto centrifugo se tiene la fuerza equivalente a F_{cf} = 20 120 N mostrado en la figura A5.5.

Figura A5.5: Descomposición de fuerzas debido al peso de la pala.

En la tabla A5.5, las fuerzas y momentos según cada efecto sobre cada pala. Cabe resaltar, que los cálculos anteriores son para una de las palas inclinadas.

Tabla A5.5. Tuerzas por erecto en cada para en er centrolde.				
Efecto	Dirección y Magnitud			d
Electo	Fala	Normal (N)	Tangencial (N)	Axial (N)
	Pala 1	0	3 178.54	416.07
Efecto Aerodinámico	Pala 2	0	3 178.54	416.07
	Pala 3	0	3 178.54	416.07
Efecto gravitacional	Pala 1	-152.63	-264.37	0
	Pala 2	-152.63	264.37	0
	Pala 3	305.27	0	0
Efecto centrifugo	Pala 1	20 120	0	0
	Pala 2	20 120	0	0
	Pala 3	20 120	0	0

Tabla A5.5. Fuerzas por efecto en cada pala en el centroide.

En la tabla A5.6, se muestra las fuerzas resultantes en las respectivas direcciones en cada pala.

-	Dirección y Magnitud		
Pala	Normal (N)	Tangencial (N)	Axial (N)
1	19 970	2 914	416.07
2	19 970	3 443	416.07
3	20 430	3 178.54	416.07

Tabla A5.6. Resultante de fuerzas sobre cada pala en el centroide.

Una vez calculadas todas estas fuerzas, se procedió a realizar el cálculo de fuerzas internas sobre la estación (r = 800 mm), la cual se considera como sección critica según lo asumido en cuanto a que las pala se comportan como vigas empotradas. Esta zona, se ubica a una distancia d = 1.82 m del centroide, por lo que las fuerzas de la tabla A5.6 se debieron trasladar 1.82 m; así obteniéndose las fuerzas y momentos mostrados en la tabla A5.7 y figura A5.6.

La ecuación usada para hallar los momentos generados por el traslado de las diferentes fuerzas de la tabla A5.6 es la siguiente:

Μ	÷	F.	d
1.1			u

Tabla A5.7.Fuerzas actuantes sobre estación en analisis.		
	Magnitud	
Fuerza tangencial (F _t)	- 2 914 N	
Fuerza axial (F _a)	- 416.067 N	
Fuerza normal (F _n)	19 970	
Momento M _t	5 303 N.m	
Momento M _a	757.242 N.m	

Figura A5.6: Fuerzas y momentos resultantes sobre estación.

Una vez ya calculados las fuerzas y momentos actuantes sobre la estación en análisis se procede a calcular el área y las inercias de la sección mostradas en la tabla A4.8.

Tabla A5.8.Parametros geométricos de la sección.	
Parámetro Magnitud	
Área	11 642.98 mm ²
Inercia x (I _{xx})	97 814 432.36 mm ⁴
Inercia y (I _{vv})	259 578 110.91 mm ⁴

c) Calculo de esfuerzos sobre la pala

Con la información ya obtenida pasos atrás, se procedió a calcular los esfuerzos normales debido a los momentos flectores y fuerzas normales. En la figura A5.7, se muestra los puntos 1 y 2 los cuales se analizaran ya que en estos se darán los esfuerzos máximos de tracción y compresión, ver tabla A5.9. A Continuación, se presentará el cálculo:

Figura A5.7: Fuerzas y momentos resultantes sobre estación.

Tabla AS.9. Estuerzos en los puntos T y 2 debido a las cargas actuantes.		
Carga	Punto 1	Punto 2
Momento M _t	Tracción	Compresión
Momento M _a	Tracción	Compresión
Fuerza Normal	Tracción	Tracción

Table A5.0. Estuerzos en los nuntos 1 y 2 debido a las cargas actuantes

Con la información ya ordenada se procede a realizar el cálculo de los correspondientes esfuerzos sobre los puntos antes mencionados con las ecuaciones (A5.4), (A5.5) y (A5.6).

$$\sigma_1 = M_t \cdot \frac{X}{I_{yy}}, \tag{A5.4}$$

$$\sigma_2 = M_a \cdot \frac{y}{I_{XX}}, \tag{A5.5}$$

$$\sigma_n = \frac{F_n}{A} . \tag{A5.6}$$

En la tabla A5.10, se muestra la distancia de los puntos 1 y 2 al centroide de la sección.

Tabla AS. 10. Distancia del Centrolde a los puntos 1 y 2.				
Dato	Punto 1		Punto 2	
	X ₁ (mm)	Y ₁ (mm)	X ₂ (mm)	Y ₂ (mm)
σ 1	304.39	-	180.65	-
σ_2	-	147.67	-	111.19

Tabla A5.10. Distancia del centroide a los nuntos 1 v 2

Por otra parte, en la tabla A5.11, se muestran los esfuerzos calculados sobre los puntos 1 y 2 debido a las fuerzas y momentos.

Tabla A5.11. Esfuerzos sobre los puntos 1 y 2.		
Esfuerzo	Punto 1 (MPa)	Punto 2 (MPa)
σ ₁	6.78	- 4.03
σ2	1.14	- 0.86
σ	1.72	1.72

Con respecto a los signos negativos de los esfuerzos, indican que la zona en análisis está sometida a compresión; además no se toman en cuenta los esfuerzos cortantes ya que estos en comparación con los ya calculados son de menor magnitud. Luego, se realizó el cálculo del esfuerzo total en cada punto con la siguiente ecuación y los resultados son mostrados en la tabla A5.12.

$$\sigma_{total} = \sigma_1 + \sigma_2 + \sigma_n \,.$$

Tabla A5 12 Esfuerzo total sobre los puntos 1 v 2

Punto	σ _{Total} (MPa)	
1 (Tracción)	9.64	
2 (Compresión)	- 3.17	

Con los valores ya obtenidos se procedió a aplicar la teoría de falla de Von Mises; en la cual se halló el esfuerzo equivalente en los puntos mencionados mediante la ecuación (A5.7).

$$\sigma_{equivalente} = \sqrt{\sigma_{total}^2 + 3 \cdot \tau c^2} .$$
 (A5.7)

Finalmente, se obtiene lo mostrado en la tabla A5.13.

Tabla A5.13. Esfuerzo equivalente sobre los puntos 1 y 2.

Punto	σ _{equivalente} (MPa)
1 (Tracción)	9.64
2 (Compresión)	3.17

ANEXO 6. Procedimiento analítico para el análisis modal de la hélice del aerogenerador.

A) Calculo de las frecuencias naturales para el modo de flexión

En la figura A6.1, se muestra el sistema sometido a la fuerza que provoca la vibración por flexión.

Figura A6.1: Sistema sometido a fuerza provocadora de la vibración por flexión.

Para el sistema en análisis la ecuación gobernante es la siguiente:

$$m \cdot \ddot{\mathbf{x}} + k \cdot x = 0$$

Por lo que la frecuencia natural se calcula con la ecuación (A6.1).

$$\omega_{n} = \sqrt{\frac{k_{p}}{m_{p}}} \begin{cases} k_{p}: Rigidez \ de \ flexion \ de \ la \ pala \ de \ la \ helice, \frac{N}{m}. \\ m_{p}: , masa \ total \ de \ la \ pala \ involucrada \ en \ el \ analisis, kg. \end{cases}$$
(A6.1)

Considerando que según la teoría de vibraciones por flexión de vigas, se sabe lo siguiente:

$$k_p = \frac{F}{\delta} \left\{ \begin{array}{c} F: Fuerza \ inicial, N.\\ \delta: \text{Desplzamiento en el punto de aplicación de la fuerza, mm.} \end{array} \right.$$
(A6.2)

Por otro lado, para calcular el desplazamiento en el punto de aplicación ubicado en la figura A6.2, se aplica la ecuación (A6.3):

$$\delta = F \cdot \frac{L_{pa}^{3}}{3 \cdot E \cdot I} \begin{cases} L_{pa}: Longitud \ de \ la \ pala, mm. \\ F: Fuerza \ inicial, N. \\ E: Modulo \ de \ elasticidad \ de \ la \ fibra \ de \ vidrio, MPa. \\ I: Momento \ de \ inercia \ de \ la \ sección \ transversal, mm^{4}. \end{cases}$$
(A6.3)

A las ecuaciones antes mencionadas, se les puede realizar las siguientes simplificaciones obteniéndose las ecuaciones (A6.4) y (A6.5).

$$k_p = \frac{F}{\delta} = \frac{3 \cdot E \cdot I}{L_{pa}{}^3},\tag{A6.4}$$

$$f_n = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k_p}{m_p}} \,. \tag{A6.5}$$

La longitud de la pala es de L = 6 m y cabe resaltar que la sección varia en toda la longitud. Para fines de simplificación del análisis, se consideró los valores promedios de las sección de la pala por lo que se usa la estación intermedia, la número 12 mostrada en la figura A6.2, cuyas características se presentan en la tabla A6.1.

Figura A6.2: Sección de la estación número 12.

Tabla A6.1. Características	de la sección de la estación 12.

Característica	Magnitud	
Inercia (I)	2 543 309.66 mm ⁴	
Área	2 720.64 mm ²	
M _{pala}	31.12 kg	
E	13 300 MPa	

Con respecto la masa a usar; según recomendaciones para vibraciones por flexión de vigas se considera tan solo el 30% de la masa total.

 $M_{Total} = M_{Participante(pala)}$,

 $M_{Participante(pala)} = 0.3 \cdot m_{pala}$.

Al realizar el cálculo, según las ecuaciones (A6.3), (A6.4) y (A6.5) se obtiene lo siguiente:

 $M_{Participante(pala)} = 9.335 \ kg$,

$$k = 12.172 \frac{N}{mm},$$

$$f_n = 5.747 \ Hz$$
.

B) Calculo de las frecuencias naturales para el modo de torsión:

En la figura A6.3, se muestra el sistema sometido al momento torsor que provoca la vibración por torsión.

Figura A6.3: Sistema sometido a momento torsor.

Para el sistema en análisis la ecuación gobernante es la siguiente:

$$J\cdot\theta+k_t=0.$$

Por lo que la frecuencia natural se calcula de la siguiente manera:

$$\omega_n = \sqrt{\frac{k_t}{J_{Total}}} \begin{cases} k_t: Rigidez \ torsional \ del \ eje \ del \ rotor. \\ J_{Total}: Momento \ de \ inercia \ de \ masa \ del \ sistema. \end{cases}$$
(A6.6)

Por teoría de vibraciones para torsión de vigas se sabe que:

$$k_t = G \cdot \frac{I_p}{L}.$$
 (A6.7)

Para el cálculo de la inercia polar, se toma en cuenta el uso de la sección de la estación 12 de la pala como en el caso de cálculo de modos de vibración por flexión; por lo que se tiene las siguientes características mostradas en la tabla A6.2.

$$I_p = I_x + I_Y$$

Tabla A6.2. Características de la sección de la estación 12.

Característica	Magnitud
Inercia polar (I _p)	68 440 000 mm ⁴
r	2 277.9 mm
M _{pala}	31.12 kg
G	6 157.4 MPa
Longitud de pala	6 m

El momento de inercia de masa de la pala, se obtiene de con la ecuación (A6.8).

$$J_{total} = J_{pala}$$
 ,

$$J_{Total} = m \cdot r^2 = 0.3 \cdot m_{Pala} \cdot r^2 , \qquad (A6.8)$$

$$J_{Total} = 48\;440\;000\;kg\cdot mm^2$$

Al realizar los respectivos cálculos, se obtiene lo siguiente:

$$k_t = G \cdot \frac{I_P}{L} = 70\ 230\ 000\ N.\ mm,$$

$$f_n = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k_t}{J_{total}}} = 6.06\ Hz.$$

ANEXO 7. Información de cargas utilizadas para estudio de torre y góndola.

En el presente anexo se detalla en la tabla A6.1 las cargas obtenidas gracias a la simulación numérica computacional del efecto aerodinámico sobre la hélice para el caso crítico de 12 m/s y 150 rpm, las cuales serán utilizadas en los análisis de la torre y góndola del aerogenerador. Además se detallan las cargas debido a los pesos de los componentes que conforman el aerogenerador las cuales fueron proporcionadas por la empresa WAIRA.

Tipo de Carga	Magnitud	Unidad
Fuerza de empuje aerodinámico (F)	9 506.4	N
Torque en el rotor (M _r)	3 250	N.m
Peso de hélice y góndola (P)	12 263	N
Peso de Torre (W)	9 270.5	Ν

Tabla A7.1: Cargas para estudio de la torre y	y la góndola.
---	---------------

Por otra parte, las propiedades del acero que conforman los elementos de la torre se detallan en la tabla A7.2.

Tabla A7.2. Propiedades del acero estructural.						
Acero Estructural						
Propiedad Magnitud Unidades						
Módulo de elasticidad (E)	2.1 x 10 ⁵	N/mm ²				
Módulo de Poisson (µ)	0.3	- /				
Densidad (p)	7 850	kg/m ³				
Esfuerzo de Fluencia (σ_F)	250	MPa				

Densidad (ρ)7 850kg/m³Esfuerzo de Fluencia (σ_F)250MPa

Además en la tabla A7.3 se detallan las cargas a las cuales está sometido el eje principal.

Parámetro	Magnitud	Unidad		
Masa del eje principal (H)	30	kg		
Masa del soporte estator (Q ₁)	66.4	kg		
Masa de la rueda generador (F _r)	63.5	Kg		
Reacciones en A (A_x , A_y , M_a)	-	-		
Fuerza de empuje aerodinámico (F)	9 506.4	N		
Momento debidos al giro de la hélice (M _r)	3 250	N.m		

Tabla A7.3. Cargas actuantes en el eje principal.

ANEXO 8. Estudio de convergencia del modelo solido de la torre a analizar mediante simulación numérica computacional.

Para poder lograr y obtener un tiempo de simulación más reducido en los análisis, se procedió a realizar 8 diferentes simulaciones, en las que se varió la calidad del mallado en cada uno de los casos; en los cuales se fue progresivamente aumentando el número de nodos y elementos. En la tabla A8.1, se puede apreciar la variación de dos datos importantes (el esfuerzo y desplazamiento), con respecto al incremento del número de nodos; además se presentan las gráficas A8.1 y A8.2 en las que se muestra la tendencia de la variación del desplazamiento y el esfuerzo con respecto a los números de nodos.

Con lo que se logra concluir que, por ejemplo al comparar los casos 1 y 8 se obtiene que la variación o porcentaje de error es de 1.16% para el caso de los desplazamientos y un 1.73% para el caso de los esfuerzos por lo que no sería necesario trabajar con una malla tan fina para poder obtener resultados más precisos, lo que provocaría que la simulación tarde más tiempo del debido a que el software necesita analizar un mayor número casos, para poder llegar a la respuesta correcta.

Caso	Desplazamiento (mm)	N° nodos	Esfuerzo (MPa)
1	223.02	537 656	120.12
2	223.30	583 301	120.23
3	223.4	604 769	120.17
4	224.21	804 934	120.89
5	224.21	805 133	121.15
6	224.25	825 531	121.45
7	224.24	950 096	121.32
8	224.64	1 243 868	121.33

Tabla A8.1: Variación de la desplazamiento y esfuerzo de la torre con el aumento del número de nodos.

Figura A8.1: Grafica de desplazamiento vs N° de nodos.

Figura A8.2: Grafica de esfuerzos vs N° de nodos.

ANEXO 9. Calculo de la fuerza del viento sobre la torre del aerogenerador en base a la norma E.020.

En primer lugar, en base a la norma E.020, se procede a calcular la presión sobre la torre mediante las siguientes ecuaciones que la norma proporciona:

$$P_h = 0.005 \cdot \mathrm{C} \cdot V_h^{0.22}$$
,

$$V_h = \mathbf{V} \cdot \left(\frac{\mathbf{h}}{10}\right)^{0.22}$$

En donde:

- P_{h:} Presión o succión del viento a una altura h en kgf/m².
- C: Factor de forma adimensional indicado en norma E.020, ver imagen A9.1.
- V_h: Velocidad de diseño a la altura h en km/h.
- V: Velocidad de diseño hasta 10 m de altura en km/h.
- h: Altura sobre el terreno en metros.

CONSTRUCCIÓN	BARLOVENTO	SOTAVENTO
Superficies verticales de edificios	+0,8	-0,6
Anuncios, muros aislados, elementos con una dimensión corta en la dirección del viento	+1,5	
Tanques de agua, chimeneas y otros de sección circular o elíptica	+0,7	
Tanques de agua, chimeneas, y otros de sección cuadrada o rectangular	+2,0	
Arcos y cubiertas cilíndricas con un ángulo de inclinación que no exceda 45°	+0,8	-0,5
Superficies inclinadas a 15° o menos	+0,3-0,7	-0,6
Superficies inclinadas entre 15° y 60°	+0,7-0,3	-0,6
Superficies inclinadas entre 60° y la vertical	+0,8	-0,6
Superficies verticales ó inclinadas (planas ó curvas) paralelas a la dirección del viento	-0,7	-0,7

* El signo positivo indica presión y el negativo succión.

Figura A9.1: Tabla de factores de forma, C. [12]

En base a estas, se procedió al cálculo de las fuerzas de viento sobre la longitud de la torre. En la que la fuerza será dependiente de la altura y diámetro de la torre y estará definida por la siguiente ecuación:

$$\begin{split} F &= P_{h} \cdot D(y) \cdot y \text{,} \\ D(y) &= \left(d_{max} - y \cdot \frac{d_{min}}{h_{total}} \right) \cdot y \end{split}$$

En donde:

- F es la fuerza a una altura y.
- P_h es la presión del viento en función de la altura.
- D(y) es el diámetro de la torre en función de la altura.
- d_{max}, d_{min} y h_{total} son dimensiones de la torre del aerogenerador.

Con las ecuaciones antes mencionadas, se procedió a realizar el cálculo de las fuerzas sobre las cuatro partes que conforman la torre y se obtuvo las fuerzas mostradas en la tabla A9.1 y su distribución se muestra en la figura A9.2.

Base (b1)	22.67 N
Segmento Base (b2)	204.43 N
Segmento Intermedio (b3)	791.178 N
Segmento Superior (b4)	1 570 N

Tabla A9.1. Valores de las fuerzas sobre la torre

Figura A9.2: Distribución de fuerzas debido a la carga del viento sobre la torre.

ANEXO 10. Calculo de la cortante basal sobre la torre del aerogenerador en base a la norma E.030.

Para poder realizar el análisis de la torre bajo carga de sismo, se procedió a realizar el cálculo de la fuerza (cortante basal) sobre la torre, por lo que se hizo uso la norma E.030 del Reglamento Nacional de Edificaciones. En primer lugar, en base a esta norma, se procede a calcular las variables que definen las siguientes ecuaciones que la norma proporciona:

$$V = \frac{ZUCS}{R} \cdot P,$$
$$C = 2.5 \cdot \left(\frac{T_p}{T}\right),$$

$$T=\frac{h_n}{C_T}.$$

En donde:

- V: Fuerza cortante en sobre la estructura, N.
- Z: Factor de zona, ver tabla A10.1.
- U: Factor de uso, ver tabla A10.2.
- C: Coeficiente de ampliación sísmica.
- T_p: Periodo que define la plataforma del espectro para cada tipo de suelo, ver tabla A10.3.
- T: Periodo fundamental de la estructura para el análisis estático.
- h_n: Altura total de la edificación en metros.
- C_T: Coeficiente para estimar el periodo predominante de un edificio, ver imagen A10.2.
- S: Factor de suelo, ver tabla A10.3.
- R: Coeficiente de reducción de solicitaciones sísmicas, ver tabla A10.4.
- P: Peso total de la edificación.

Tabla A10.1. Factores de zona, Z [13].

Tabla N°1 FACTORES DE ZONA				
ZONA	Z			
3	0,4			
2	0,3			
1	0,15			

C	Tabla N° 3 ATEGORÍA DE LAS EDIFICACIONES	s
CATEGORÍA	DESCRIPCIÓN	FACTOR
A Edificaciones Esenciales	Edificaciones esenciales cuya función no debería interrumpirse inmediatamente después que ocurra un sismo, como hospitales, centrales de comunicaciones, cuarteles de bomberos y policía, subestaciones eléctricas, reservorios de agua. Centros educativos y edificaciones que puedan servir de refugio después de un desastre. También se incluyen edificaciones cuyo colapso puede representar un riesgo adicional, como grandes hornos, depósitos de materiales inflamables o tóxicos.	1,5
B Edificaciones Importantes	Edificaciones donde se reúnen gran cantidad de personas como teatros, estadios, centros comerciales, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos, bibliotecas y archivos especiales. También se considerarán depósitos de granos y otros almacenes importantes para el abastecimiento	1,3
C Edificaciones Comunes	Edificaciones comunes, cuya falla ocasionaria pérdidas de cuantía intermedia como viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios, fugas de contaminantes, etc.	1,0
D Edificaciones Menores	Edificaciones cuyas fallas causan pérdidas de menor cuantia y normalmente la probabilidad de causar víctimas es baja, como cercos de menos de 1,50m de altura, depósitos temporales, pequeñas viviendas temporales y construcciones similares.	(*)

Tabla A10.2. Tabla de categoría de edificaciones, U [13].

(*) En estas edificaciones, a criterio del proyectista, se podrá omitir el análisis por fuerzas sísmicas, pero deberá proveerse de la resistencia y rigidez adecuadas para acciones laterales.

Tabla A10.3.	Tabla	de	factores	de	suelo,	S	[13]].
--------------	-------	----	----------	----	--------	---	------	----

	Tabla Nº2 Parámetros del Suelo				
Tipo	Tipo Descripción T _p (s) S				
S ₁	Roca o suelos muy rígidos	0,4	1,0		
S ₂	Suelos intermedios	0,6	1,2		
S	Suelos flexibles o con estratos de gran espesor	0,9	1,4		
3 C	Condiciones excepcionales	*	*		

(*) Los valores de $T_p y S$ para este caso serán establecidos por el especialista, pero en ningún caso serán menores que los especificados para el perfil tipo S_3 .

Tabla N° 6 SISTEMAS ESTRUCTURALES				
Sistema Estructural	Para estructuras regulares (*) (**)			
Acero				
Pórticos dúctiles con uniones				
resistentes a momentos	95			
Otras estructuras de acero:	0,0			
Arriostres Excéntricos	65			
Arriostres en Cruz.	6.0			
Concreto Armado	-1-			
Pórticos ⁽¹⁾	8			
Dual ⁽²⁾	7			
De muros estructurales (3)	6			
Muros de ductilidad limitada (4).	Ă Ă			
Albañilería Armada o Confinada ⁽⁵⁾ .	3			
Madera (Por esfuerzos admisibles)	7			

Tabla A10.4.	Tabla de	coeficientes d	de reducción,	R [13].
--------------	----------	----------------	---------------	---------

 C_{τ} = 35 para edificios cuyos elementos resistentes en la dirección considerada sean únicamente pórticos.

 C_{T} = 45 para edificios de concreto armado cuyos elementos sismorresistentes sean pórticos y las cajas de ascensores y escaleras.

 C_{τ} = 60 para estructuras de mampostería y para todos los edificios de concreto armado cuyos elementos sismorresistentes sean fundamentalmente muros de corte.

b. También podrá usarse un procedimiento de análisis dinámico que considere las características de rigidez y distribución de masas en la estructura. Como una forma sencilla de este procedimiento puede usarse la siguiente expresión:

Figura A10.1: Criterios para seleccionar el valor del coeficiente de periodo fundamental, C_T [13].

Con las ecuaciones antes mencionadas, se procedió a realizar el cálculo de la cortante basal (V) cuyo valor es igual a 5 355 N, la cual será aplicada en la parte superior de la torre para su análisis.