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Abstract 

Amorphous wide bandgap semiconductor thin films of the pseudobinary compound 

(SiC)1-x(AlN)x were grown by radio frequency dual magnetron sputtering on CaF2, 

MgO, Al2O3 and glass substrates. In order to determine the optical bandgap versus 

composition of the film we performed spectroscopic transmission measurements from 

where the refractive index and absorption coefficient were calculated, and energy 

dispersion spectroscopy (EDS) measurements from where the composition was 

determined. The optical bandgap is determined for each composition from the 

absorption coefficient in two different ways: according to the Tauc plot and using the 

(αhν)
2
 plot. The dependence of the optical bandgap on the composition x can be 

described by Vegard’s empirical law for alloys. 

 

Resumen 

Películas delgadas amorfas semiconductoras de amplio ancho de banda del compuesto 

pseudobinario (SiC)1-x(AlN)x fueron depositadas por pulverización por un sistema de 

dos magnetrones de radio frecuencia sobre CaF2, MgO, Al2O3 y vidrio. Con el fin de 

determinar el ancho de banda óptico versus la composición de la película, se realizaron 

medidas espectroscópicas de la transmisión de donde el índice de refracción y el 

coeficiente de absorción fueron calculados y medidas espectroscópicas de la dispersión 

de energía (EDS) de donde la composición fue determinada. El ancho de banda óptico 

es determinado para cada composición a partir del coeficiente de absorción de dos 

maneras distintas: según el gráfico de  Tauc y utilizando el gráfico de (αhν)
2
. la 

dependencia del ancho de banda con la composición x puede ser descrita por la ley 

empírica de Vegard para aleaciones. 
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Chapter I 

Introduction 

Wide bandgap semiconductors have been of increasing interest for photonic 

applications in the last decade [1]. This is mainly due to properties like their high 

breakdown voltage and thermal conductivity. Their amorphous counterparts (i.e. a-SiC 

and a-AlN) have the advantage to be produced rather simply and inexpensively without 

the drawback of losing those important properties. In addition, there are further aspects 

which are missing in the crystalline state. For example, the indirect character for optical 

transitions in c-SiC is absent in the amorphous state, so that applications in 

optoelectronics seem promising. In the case of a-AlN even applications in the near 

ultraviolet region are possible, due to the wide optical bandgap of 5.61 eV [2]. In the 

framework of a research project running at the PUCP, Physics section, in collaboration 

with The University of Erlangen-Nürnberg, amorphous (SiC)1-x(AlN)x thin films were 

grown on glass, CaF2, MgO and Sapphire substrates. In principle a-(SiC)1-x(AlN)x has 

the same potentials of applications. However, the engineering of the bandgap by 

variation of the composition x opens the possibility to tailor physical properties in an 

essential way [3][4], e. g., the emission from rare earth doped a-(SiC)1-x(AlN)x can be 

optimized [5]. 

 

It is important to remark that the properties of the a-(SiC)1-x(AlN)x films behave as the 

properties of a compound and not as a composite in the sense that the solid solution has 

properties different from the properties of the constituent materials. I. e. the optical 

bandgap that determines the optical properties of the material will change 

fundamentally with the composition and not as a superposition of the optical bandgaps 

of SiC and AlN. 

 

An overview of the theory behind the covalent bonding will be presented at the first 

section of the chapter two, from this point the emergence of a bandgap without taking 

into account the structural arrangement of the atoms in a solid will be shown, closing 

this section an example of the similitude in the optical properties between amorphous 

and crystalline Silicon will be shown. In the second section of the chapter two, the 
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theory of the fundamental absorption of crystalline and amorphous solids will be 

presented because of the extent of the topic and its importance for the later experimental 

work this section will contain detailed calculations of the fundamental absorption 

divided in three main cases. First the fundamental absorption of a direct crystal at zero 

Kelvin temperature. Second the fundamental absorption of a direct crystal at a finite 

temperature and finally an approach to the fundamental absorption of amorphous solids. 

 

The details of the experiments performed will be presented in the chapter three, this will 

cover details of the film growing method, the composition measure, the annealing 

treatments and details of the transmission measurements. 

 

The optical constants determination method and therefore the bandgap determination 

will be presented in the chapter four. In this chapter the most common method to 

calculate the optical constants of a solid using a single transmission measurement will 

be presented and explained in detail. In the subsequent section a variation of the later 

method will be proposed and applied in the particular case of the films produced in our 

laboratories.  

 

In the last chapter, comprehensive measurements of the bandgap of thin 

a-(SiC)1-x(AlN)x films for the whole composition range are shown. The shift of the 

bandgap and the shift of the low energy absorption, the band tails due to annealing 

treatments are also investigated up to temperatures of 700°C. 
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Chapter II 

Theoretical background 

Amorphous materials have attracted attention in the last two decades [1-6]. As it was 

mentioned before in the first chapter the principal reason is their industrial potential of 

applications. At the same time there is a lack of understanding of their materials 

properties [6], which are different from those of crystalline state. Some properties vary 

even for samples of the same material. 

In this chapter the basic theory to understand the fundamentals of bandgap engineering 

with a-(SiC)1-x(AlN)x will be provided. First we will present the theory of the energy 

bands of solids, explaining how it is formed starting from the covalent bonding. Later 

on, the fundamental absorption for crystalline solids is presented and described at zero 

Kelvin temperature and for finite temperatures. We address the most common and well 

known approach for the fundamental absorption of amorphous solids developed by J. 

Tauc [7]. 

Energy bands in solids 

Before pretending to do bandgap engineering of an amorphous compound it is 

important to understand the differences of the fundamental absorption between 

crystalline and amorphous semiconductors materials. For this, it is necessary to 

understand the electronic energy bands and their structure. The origin of the bandgap 

does not lay in the material structure order but in the chemistry of their bonds [6]. That 

is why we first introduce the concept of covalent bonding in solids and molecules, 

starting with the simplest example, two atoms forming a covalent bond and then 

defining the so called bandgap in solids. 

The covalent bond in solids and molecules 

The interaction between the closest neighbors is the one of most importance in the 

covalent bonding. Let us take for example a diatomic molecule conformed by two 

atoms A and B separated by a distance R (see fig. 1). The characteristics of the bonding 

can be obtained from the quantum theory of chemical bonding [6][8]. 
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Figure 2.1.1: Schematic representation of a diatomic molecule where the atoms A and B are 

separated by a distance R and share one electron to form a covalent bond. 

 

To write the Hamiltonian let us name the wave functions that represent the state of one 

electron in the occupied valence state 𝜙𝐴  and 𝜙𝐵  for each atom, respectively. Therefore 

we can write the Hamiltonian as 

 𝐻 =  −
ℏ2

2𝑚𝑒
∇2 − 𝑘  −

𝑧𝑒2

𝑟𝐴
−

𝑧𝑒2

𝑟𝐵
+

𝑧2𝑒2

𝑅
  (2.1.1) 

 

Where 𝑘 = 1/4𝜋𝜖0 , 𝑧 is the number of electrons in the valence band and 𝑚𝑒  the 

electron mass. 

The solution of the Schrödinger equation 𝐸𝜓 = 𝐻𝜓, can  be written as equation (2.1.2). 

 𝐸 =
 𝜓 ∗ 𝐻𝜓𝑑3𝒓

 𝜓 ∗ 𝜓𝑑3𝒓
 (2.1.2) 

 

Now, we will follow the LCAO (Linear Combination of Atomic Orbitals) method, 

where we assume the molecular orbital 𝜓 as a linear combination of the electron wave 

functions of the individual atoms (i.e. 𝜙𝐴 , 𝜙𝐵 ). Replacing 

 𝜓 = 𝑐𝐴𝜙𝐴 + 𝑐𝐵𝜙𝐵 (2.1.3) 

 

into (2.1.2) we get for the energy, 

 𝐸 =
𝑐𝐴

2𝐻𝐴𝐴 + 𝑐𝐵
2𝐻𝐵𝐵 + 2𝑐𝐴𝑐𝐵𝐻𝐴𝐵

𝑐𝐴
2 + 𝑐𝐵

2 + 2𝑐𝐴𝑐𝐵𝑆
 (2.1.4) 

 



6 
 

With the abbreviations 

𝐻𝐴𝐴 = 𝐻𝐵𝐵 =  𝜙𝐴
∗𝐻𝜙𝐴𝑑3𝒓 =  𝜙𝐵

∗ 𝐻𝜙𝐵𝑑3𝒓 

𝐻𝐴𝐵 = 𝐻𝐴𝐵 =  𝜙𝐴
∗𝐻𝜙𝐵𝑑3𝒓 =  𝜙𝐵

∗ 𝐻𝜙𝐴𝑑3𝒓 

𝑆 =  𝜙𝐴
∗𝜙𝐵𝑑3𝒓 

Minimizing then the energy 𝐸 respect to the coefficients 𝑐𝐴 y 𝑐𝐵  we obtain two 

solutions, 𝐸+ y 𝐸− as energy auto values for the molecular orbital separated by Δ𝐸 =

𝐸− − 𝐸+. 

 𝐸± =
𝐻𝐴𝐴 ∓ 𝐻𝐴𝐵

1 ∓ 𝑆
 (2.1.5) 

 

The obtained result in the equation (2.1.5) is well known in quantum chemistry, it 

indicates that the energy state of an isolated atom is divided in two energy levels when 

two atoms are brought close together and interact. The lowest energy state is known as 

bonding orbital and its energy is lower than the energy of the state of isolated individual 

atoms. The higher energy is called anti-bonding orbital [6][8]. 

 

 

Figure 2.1.2: Representation of the bonding and anti-bonding of two atoms when they are 
brought together to form a covalent bond. When the bond is made two new energy levels are 
formed. 
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The electronic states can contain maximal two electrons. If both atoms contribute with 

one electron then both electrons will occupy the lower state and therefore will form a 

bond. However, it is not possible to identify which electron belongs to which atom, the 

orbital bonding state is a state of the diatomic system and not of an individual atom. The 

electrons are indistinguishable particles. The terms 𝐻𝐴𝐵  and 𝑆 depend on the inter-

atomic distance 𝑅 and if 𝑅 → ∞ both 𝐻𝐴𝐵  and 𝑆 became zero, thus the energy 

separation of the bonding and anti-bonding states is reduced when the distance 𝑅 

increases. 

The LCAO can be expanded to determine the electronic energy states in semiconductors 

that usually consist on a large number of atoms. In this case the LCAO is known as 

Tight Binding Model. The separation between the bonding orbital and anti-bonding 

orbital is filled with quite closed energy states, each one due to each atom in the solid. 

So in solids each atomic energy state is grouped in an energy band. In the next section 

we will develop this idea taking an example and we will define the energy bandgap and 

the kinds of solids from the shape of their energy bands. 

Electronic states in crystalline and amorphous materials 

Let us take a solid made by 𝑁 atoms, for example carbon atoms with the 2𝒔22𝒑2 

configuration of occupation. When the atoms are brought together, the overlap of their 

electronic wave functions causes that the 𝑠 and 𝑝 orbitals mix with each other and 

became one band with a capacity of 2𝑁 𝑠 + 6𝑁 𝑝 = 8𝑁 electrons, see the figure 

(2.2.1). The band is then not completely occupied, therefore a solid formed in this way 

should behave as a conductor because electrons of partially filled bands contribute to an 

electrical current [6][9]. 
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Fig. 2.2.2: Representation of the 2𝒔2  and 2𝒑2 overlapped orbitals (following LCAO). The 
orbitals are not completely occupied and therefore a solid formed in this way should behave 
as a conductor. 

 

However, in the case of the diamond this is not true, diamond is an insulator. This is 

caused by the 𝒔𝒑3 hybridization of the carbon atoms which increases the orbitals and 

therefore the overlap, lowering the energy. The orbitals are directed towards the corners 

of the tetrahedron. The band with a capacity of 8𝑁 electrons we describe earlier is 

divided in two separated bands each with a capacity of 4𝑁 electrons, the lower band is 

filled completely with the four available electrons per atom from the 𝒔𝒑3  hybridization 

and the upper energy band remains empty [6][10] (see fig. 2.2.3). Both bands get 

separated by an energy gap Δ𝐸 the bandgap that depends on the interatomic separation. 

 

Fig. 2.2.3 Representation of the energy levels formed by the 𝒔𝒑3  hybridization, i.e. the 
diamond, in this case due to the hybridization the behavior is that of an isolator 
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Depending on the size of the gap and the occupation grade (or Fermi level) a solid 

formed in this way will behave as an isolator (i.e. the diamond) or as a semiconductor 

(i.e. Si, Ge, etc.). It is important to remark that the above description is valid for 

crystalline and amorphous solids, since we didn’t use the translational symmetry of a 

crystal and therefore the formation of a bandgap in either crystalline or amorphous 

solids is justified. 

The electronic wave function of a solid can be written following the LCAO theory for 

many atoms as (2.2.1.1). 

 𝜓𝑖 𝑟 =  𝐶𝑛𝜙𝑖 𝑟 − 𝑟𝑛 

𝑛

 (2.2.1.1) 

 

Where 𝜙𝑖 𝑟 − 𝑟𝑛  represents the electronic wave function of the i-th state of an atom 

located at 𝑟𝑛  and with 𝐶𝑛  the linear combination coefficient. In principle the equation 

(2.2.1.1) is applicable to both a- and c- solids but it is only in the crystalline where the 

coefficient 𝐶𝑛  can be written by 𝐶𝑛 = 𝑁1/2𝑒𝑖𝒌∙𝒓𝑛  due to the translational symmetry, 

where 𝒌 is the electronic wave vector. As 𝐶𝑛  is a Bloch wave, the charge carrier is 

delocalized through the whole crystal. 

The electronic wave functions for a crystalline solid, these are the so called Bloch 

functions, and the electronic energy bands can be obtained as function of the wave 

vector 𝒌. The top higher energy band is known as conduction band (c.b.) and the bottom 

filled band is called valence band (v.b.), both separated by the energy gap Δ𝐸 = 𝐸𝑔  that 

depends also on the wave vector 𝒌. This gives arise to two kinds of crystalline solids, 

one in which the absolute maximum of the valence band and the absolute minimum of 

the conduction band are found to be at the same wave vector 𝒌, called direct bandgap 

solid, all other cases are called indirect bandgap solid. Every electronic transition 

between bands in these solids must obey the momentum conservation [6][9]. 
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Fig. 2.2.4 Schematic representation of the energy dispersion versus the wave vector k for 
direct and the indirect bandgaps. 

 

In the case of amorphous solids, the inexistence of long range order does not allow such 

distinction between solids based on the electron dispersion, because the wave vector is 

not a good quantum number. However the interaction of so many atoms allows the 

formation of quasi-continuum states and therefore as it was proved by Weaire and 

Thorpe (1971) through the tight binding model, a discontinuity in the electronic density 

of states of solids is found separating the valence and conduction bands and thus leading 

to the formation of a bandgap. These quasi-continuum states are known as valence and 

conduction extended states due to the fact that there is no long range order (and 𝒌 is not 

a good quantum number) for describing the bands in amorphous solids [6][11]. The 

description of the bands is an extension of the theory in the crystalline case. They are 

also called delocalized states, but this name can always be applied when an electronic 

wave function is not bounded and this happens in the crystalline and amorphous solids, 

in the first with the Bloch waves, and in the second the electronic waves are electronic 

waves with a wavelength much longer than the average crystal size and therefore it can 

be treated as if it is not bounded but delocalized. Thus amorphous solids have in many 

cases a similar behavior as their crystalline counterpart [12]. In fact this can be seen 

when we compare for example the absorption coefficient of a-Si:H at different 

Hydrogen concentrations and c-Si at different temperatures, see fig. (2.2.5). 
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Fig. 2.2.5: Left, absorption coefficient plotted versus energy of four different samples of 
a-Si:H differing on the hydrogen concentration. Right, absorption coefficient plotted versus 
energy of a c-Si sample measured at two different temperatures. (Demichellis et al., 1986) 

 

The similarities between crystalline and amorphous semiconductors suggest apply the 

band scheme of the former on the latter [12]. It can also be observed from the figure 

(2.2.5) that the increment of temperature produces and enhancement of the tail in the 

crystalline case, while in the amorphous case this tail is reduced with an increment in 

the concentration of the hydrogen in the lattice. In the next section we will need these 

observations. 

Fundamental absorption 

In amorphous semiconductors the optical properties are of great importance. This is 

mainly due to the fact that the optical properties are directly related to structural and 

electronic properties of any solid and therefore are very important in device 

development [6][11][12]. 

In the next subsections the theory of the fundamental absorption for crystals will be 

developed at zero Kelvin temperature and for higher temperatures. Finally, we close this 

section with an approach to the fundamental absorption of amorphous semiconductors 
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that only takes into account transitions between extended states developed by J. Tauc 

[7]. 

Fundamental absorption in direct crystals at zero Kelvin temperature 

The absorption coefficient in the fundamental absorption region is directly related to the 

optical bandgap of solids and its measuring is relatively simple using a 

spectrophotometer. In this section we will derivate an expression for the fundamental 

absorption in crystalline solids at cero Kelvin temperature. First we will start from a 

semi-classic approach to derivate the Hamiltonian that describes the electromagnetic 

interaction between the electromagnetic radiation and the Bloch electrons inside a 

semiconductor. Then, we will relate the transition rate between the valence and 

conduction bands with the absorbed energy by the solid. Finally using perturbation 

theory we derivate the fundamental absorption as a function of the photon energy. 

The electromagnetic field is treated classically while the electrons are described by the 

Bloch waves. 

 𝐻 =
1

2𝑚
 𝒑 + 𝑒𝑨 2 +  𝑉 𝑟  (2.2.1.1) 

 

Where 𝒑 is the free electron momentum, 𝑨 is the vector potential of the electromagnetic 

field, 𝑚 is the free electron mass and 𝑉 𝑟  is the periodic potential of the crystalline 

semiconductor. 

Developing the quadratic term in the equation (2.2.1.1) considering 𝒑 and 𝑨 quantum 

mechanic operators that is i.e. “𝒑 =  −𝑖ℏ𝛁”. 

  𝒑 + 𝑒𝑨 2 = 𝒑2 +  𝑒𝑨 ∙ 𝒑 + 𝑒𝒑 ∙ 𝑨 + 𝑒2𝑨2 (2.2.1.2) 

 

Using the Coulomb Gauge 𝛁 ∙ 𝐀 = 0 we see that  𝒑, 𝑨 = 0, where [, ] is the 

commutation operator, and therefore 𝑒𝑨 ∙ 𝒑 + 𝑒𝒑 ∙ 𝑨 = 2𝑒𝒑 ∙ 𝑨 in equation (2.2.1.2). 

We can also neglect the term that depends quadratically on the field, 𝑨2 ≈ 0 since we 

are dealing with small amplitudes. Under these assumptions we can rewrite the total 

Hamiltonian as 
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𝐻 =
𝒑2

2𝑚
+ 𝑉 𝑟 +

𝑒𝒑 ∙ 𝑨

𝑚
 

𝐻 = 𝐻0 +
𝑒𝒑 ∙ 𝑨

𝑚
 

(2.2.1.3) 

 

The term 𝑒𝒑 ∙ 𝑨/𝑚 is the perturbation due to the electromagnetic radiation on the solid. 

We call the former term 𝐻𝑒𝑅 = 𝑒𝒑 ∙ 𝑨/𝑚. 

In the light absorption process the energy is absorbed by the material through the 

electrons that are excited from the valence band to the conduction band. The energy 

density absorbed by the material must be equivalent to the energy density lost by the 

electromagnetic wave. Using the electronic transitions we can define the energy density 

rate as 𝑊𝑀 = 𝑅𝑐𝑣ℏ𝜔 with 𝑅𝑐𝑣  the transition rate per volume unit between the valence 

and conduction bands, and ℏ𝜔 the photon energy. The energy density rate per unit 

volume of the electromagnetic wave can be written as 𝑊𝑅 =  −𝑑 𝑈 /𝑑𝑡 with  𝑈  the 

energy density of the electromagnetic wave. 

Both rates must be equal 𝑊𝑀 = 𝑊𝑅  due to the energy conservation. We need to 

introduce the absorption coefficient in the equation to relate it to the photon energy. We 

know that the light intensity 𝐼 is related to the energy density of the electromagnetic 

wave by 𝐼 = 𝑐/𝑛  𝑈  with 𝑛 the refractive index of the media where the light travels. 

We also know that the light intensity can be written as function of the absorption 

coefficient by the Lambert-Beer law as 𝐼 = 𝐼0𝑒
−𝛼𝑥 . Thus we can then write 𝑊𝑅  as 

 𝑊𝑅 = −
𝑛

𝑐

𝑑𝐼

𝑑𝑡
=  −

𝑛

𝑐

𝑑𝐼

𝑑𝑥

𝑑𝑥

𝑑𝑡
 (2.2.1.4) 

 

We use the Lambert-Beer law to write 𝑑𝐼/𝑑𝑥 = −𝛼𝐼 and 𝑑𝑥/𝑑𝑡 = 𝑐/𝑛. Taking into 

account that the light intensity is 𝐼 = (𝑐𝑛𝜖0/2)𝐸0
2 where 𝜖0 is the electric permittivity 

constant in the vacuum and 𝐸0 is the electric field amplitude. Then we can relate 𝑊𝑅  

with the absorption coefficient (see equation 2.2.1.5). 

 𝑊𝑅 = 𝛼
𝑐𝑛𝜖0

2
𝐸0

2 (2.2.1.5) 
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From the energy balance between the energy loss by the electromagnetic wave 𝑊𝑅  and 

the energy absorbed by the material 𝑊𝑀 , we get a relation between the absorption 

coefficient and the transition rate per unit volume 𝑅𝑐𝑣  (see equation 2.2.1.6). 

 𝛼
𝑐 𝑛 𝜖0

2
 𝐸0 2 = 𝑅𝑐𝑣ℏ𝜔 (2.2.1.6) 

 

We know that 𝛼 = 𝜔𝜖𝑖/𝑛𝑐 with 𝜖𝑖  the imaginary part of the material electric 

permittivity coefficient (𝜖 = 𝜖𝑟 + 𝑖𝜖𝑖), replacing this into the equation (2.2.1.6) we 

obtain 𝜖𝑖  as function of the transition rate. 

 𝜖𝑖 =
2ℏ

𝜖0

𝑅𝑐𝑣

 𝐸0 2
 (2.2.1.7) 

 

The transition rate can be written as 𝑅𝑐𝑣 = 𝑑𝑃𝑐𝑣 /𝑑𝑡 with 𝑃𝑐𝑣  the transition probability 

between the valence and conduction bands. To find 𝑃𝑐𝑣  we appeal to the time dependent 

perturbation theory in quantum mechanics which gives the transition probability to first 

order correction [13] 

 𝑃𝑐𝑣 =
1

ℏ2
  𝑑𝑡 ′Η𝑐𝑣 𝑡 ′ 𝑒

𝑖 𝐸𝑐−𝐸𝑣 
ℏ

𝑡′
𝑡

0

 

2

 (2.2.1.8) 

 

Where H𝑐𝑣 =  𝑐 𝐻𝑒𝑅  𝑣  is the matrix element of the perturbative Hamiltonian, in this 

case the radiation interaction and  |v  and  |c  the stationary Bloch states of the valence 

and conduction bands, respectively. 

 

 |𝑐 = 𝑢𝑐,𝑘𝑐
𝑒𝑖 𝒌𝒄∙𝒓  

 |𝑣 = 𝑢𝑣,𝑘𝑣
𝑒𝑖 𝒌𝒗∙𝒓  

(2.2.1.9) 

 

To calculate the integral in equation (2.2.1.8) let us proceed in the following way. First 

we write the vector potential as a function of the electric field according to reference [9] 

and then we will develop explicitly H𝑐𝑣 . The vector potential of the interaction term can 

be written as the equation (2.2.1.10) with 𝑨 = 𝐴ê , ê is a unit vector in the direction of 

the radiation. 
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 𝐴 =  −
𝐸0

2𝑖𝜔
  𝑒𝑖(𝒒∙𝒓−𝜔𝑡 ) − 𝑐. 𝑐.   (2.2.1.10) 

 

With the equations (2.2.1.9) the matrix element 𝐻𝑐𝑣  is written in equation (2.2.1.11) 

where Ω is the volume of the unit cell. 

Η𝑐𝑣 = −
𝐸0

2𝑖𝜔

𝑒

𝑚

1

Ω
  𝑑𝒓 𝑢𝑐,𝑘𝑐

∗  𝑒−𝑖𝒌𝒄∙𝒓 𝑒𝑖(𝒒∙𝒓−𝜔𝑡 ) − 𝑐. 𝑐.   ê ∙ 𝒑 𝑢𝑣,𝑘𝑣
𝑒−𝑖𝒌𝒗 ∙𝒓 (2.2.1.11) 

 

The transition probability in equation (2.2.1.8) presents two similar terms when 

inserting the expression (2.2.1.11) resulting in (2.2.1.12). 

𝑃𝑐𝑣 = 

 
𝐸0

2𝜔

𝑒

𝑚
 

2

   
1

Ω
 𝑑𝒓  𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖(𝒒−𝒌𝒄).𝒓 ê. 𝒑 𝑢𝑣,𝑘𝑣
𝑒+𝑖𝒌𝒗 .𝒓 𝑑𝑡′𝑒𝑖(𝜔𝑐𝑣−𝜔𝑡 ′ ) 

𝑡

0

  

 − 
1

Ω
 𝑑𝒓 𝑢𝑐,𝑘𝑐

∗ 𝑒−𝑖 𝒒+𝒌𝒄 .𝒓 ê. 𝒑 𝑢𝑣,𝑘𝑣
𝑒+𝑖𝒌𝒗 .𝒓  𝑑𝑡 ′ 𝑒𝑖 𝜔𝑐𝑣 +𝜔𝑡 ′  

𝑡

0

 

2

 

(2.2.1.12) 

 

To have a better understanding let us reorder the matrix elements in (2.2.1.12) in the 

following way. We arrange in the first integral the argument in 𝒓, that is 

 𝑑𝒓 𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖(𝒒−𝒌𝒄)∙𝒓 ê ∙ 𝒑 𝑢𝑣,𝑘𝑣
𝑒𝑖𝒌𝒗 ∙𝒓. The 𝒑 operator acts only on terms of the right site 

i.e. 𝒑  𝑢𝑣,𝑘𝑣
𝑒𝑖 𝒌𝒗 ∙𝒓  = 𝑒𝑖 𝒌𝒗 .𝒓 𝒑 𝑢𝑣,𝑘𝑣

+ ℏ 𝑘𝑣𝑢𝑣,𝑘𝑣
 𝑒𝑖(𝒌𝒗.𝒓). Applying this in (2.2.1.12) 

and taking into account the orthogonally of the Bloch states we see that the second term 

of the expansion of 𝒑  𝑢𝑣,𝑘𝑣
𝑒𝑖 𝒌𝒗 ∙𝒓   does not contribute. 

 

Where 𝜔𝑐𝑣 = 𝜔𝑐 − 𝜔𝑣  is the Bohr frequency. We can split the r-integration in two parts 

by replacing 𝒓 = 𝑹𝒋 + 𝒓′ where 𝒓′  lies within a unit cell and 𝑹𝒋 is a lattice vector. 

𝑃𝑐𝑣 =  
𝐸0

2𝜔

𝑒

𝑚
 

2

   
1

Ω
 𝑑𝒓  𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖(𝒒−𝒌𝒄+𝒌𝒗).𝒓 ê. 𝒑 𝑢𝑣,𝑘𝑣
 𝑑𝑡′𝑒𝑖(𝜔𝑐𝑣−𝜔𝑡 ′ ) 

𝑡

0

−  
1

Ω
 𝑑𝒓 𝑢𝑐,𝑘𝑐

∗ 𝑒−𝑖(𝒒+𝒌𝒄−𝒌𝒗).𝒓 ê. 𝒑 𝑢𝑣,𝑘𝑣
  𝑑𝑡′ 𝑒𝑖(𝜔𝑐𝑣 +𝜔𝑡 ′ )

𝑡

0

 

2

 

(2.2.1.13) 
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Because of the periodicity of the functions 𝑢𝑐,𝑘𝑐
 and 𝑢𝑣,𝑘𝑣

 we find the following 

expression (2.2.1.14) for the first integral in 𝒓 [9]. 

1

Ω
 𝑑𝒓  𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖 𝒒−𝒌𝒄+𝒌𝒗 .𝒓 ê. 𝒑 𝑢𝑣,𝑘𝑣
 =  

   𝑒𝑖 𝒒−𝒌𝒄+𝒌𝒗 .𝑹𝒋

𝑗

  
1

Ω
 𝑑𝒓′  𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖(𝒒−𝒌𝒄+𝒌𝒗).𝒓′ ê. 𝒑 𝑢𝑣,𝑘𝑣
 

Ω

 

(2.2.1.14) 

 

The summation in equation (2.2.1.14) is the integral representation of the Kronecker 

Delta which ensures the momentum conservation. This can be done for both integrals in 

𝒓 of the equation (2.2.1.13). To reduce the terms further it is convenient to make the 

following definition: 𝑀𝑐𝑣 ≔
1

Ω
 𝑑𝒓  𝑢𝑐,𝑘𝑐

∗ 𝑒𝑖 𝒒−𝒌𝒄+𝒌𝒗 .𝒓′ ê. 𝒑 𝑢𝑣,𝑘𝑣
 

Ω
 and 𝑀′

𝑐𝑣

≔
1

Ω
 𝑑𝒓  𝑢𝑐,𝑘𝑐

∗ 𝑒−𝑖(𝒒+𝒌𝒄−𝒌𝒗).𝒓′ ê. 𝒑 𝑢𝑣,𝑘𝑣
 

Ω
 and then we can rewrite the equation 

(2.2.1.13) in a reduced form shown in equation (2.2.1.15): 

𝑃𝑐𝑣= 

 
𝐸0

2𝜔

𝑒

𝑚
 

2

 𝛿𝑞+𝑘𝑣 ,𝑘𝑐
𝑀𝑐𝑣  𝑑𝑡′ 𝑒𝑖(𝜔𝑐𝑣 − 𝜔𝑡 ′ ) 

𝑡

0

– 𝛿𝑞+𝑘𝑐 ,𝑘𝑣
𝑀𝑐𝑣

′  𝑑𝑡′ 𝑒𝑖(𝜔𝑐𝑣 +𝜔𝑡 ′ )
𝑡

0

 

2

 
(2.2.1.15) 

 

We will later show that 𝛿𝑞+𝑘𝑣 ,𝑘𝑐
𝑀𝑐𝑣  and 𝛿𝑞+𝑘𝑐 ,𝑘𝑣

𝑀𝑐𝑣
′  are actually equal terms after a 

proper approximation. Now let us concentrate in the time integral and later we will 

come back to the r-integration. The integrals  𝑑𝑡′ 𝑒𝑖(𝜔𝑐𝑣 ±𝜔𝑡 ′ )𝑡

0
 can be solved explicitly, 

see the equation (2.2.1.16), 

   𝑑𝑡 ′ 𝑒𝑖 𝜔𝑐𝑣 ±𝜔𝑡 ′  
𝑡

0

 

2

=  
𝑒𝑖 𝜔𝑐𝑣 ±𝜔 𝑡 − 1

𝑖 𝜔𝑐𝑣 ± 𝜔 
 

2

 (2.2.1.16) 

 

The expression with the plus sign, the so called resonance term is attributed to the 

absorption process where an electron is excited from the valence band to the conduction 

band and a photon with energy ℏ𝜔 is absorbed. The second term with the minus sign is 

called anti-resonance due to the fact that when 𝜔 = −𝜔𝑐𝑣  we have a singularity too. 

This is attributed to the stimulated emission where an excited electron in the conduction 
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band falls into the valence band by emitting a photon with energy ℏ𝜔 induced by a 

photon with the same energy. The Bohr frequency is related to the necessary energy to 

excite an electron between the bands. Because we want to describe the fundamental 

absorption of solids, the last process of stimulated emission will not be taken into 

account for the absorption coefficient in crystalline solids at zero Kelvin temperature 

due to the fact that at this temperature all the electrons are in the valence state. 

To solve the equation (2.2.1.16) we can use the following relations (2.2.1.17) and 

(2.2.1.18), taking into account that the elapsed time is large enough. 

  1 − 𝑒𝑖𝜃  
2

=  4 sen2  
𝜃𝑡

2
   (2.2.1.17) 

 

 lim
t→∞

1

𝑡
 

sen2 𝑥𝑡/2 

𝑥2
  =

𝜋

2
𝛿 𝑥  (2.2.1.18) 

 

Using these relations into equation (2.2.1.16) we find the equation (2.2.1.20) where we 

have defined 𝐸𝑐𝑣 = ℏ𝜔𝑐𝑣 . 

   𝑑𝑡 ′ 𝑒𝑖 𝜔𝑐𝑣 ±𝜔𝑡 ′  
𝑡

0

 

2

=  
2𝜋𝑡

ℏ
𝛿(𝐸𝑐𝑣 ± 𝐸) (2.2.1.20) 

 

The result of equation (2.2.1.20) is obviously related to the energy conservation in the 

respective process of absorption and stimulated emission. And it let us write the 

equation (2.2.1.15) of the probability in a more compact form (see equation 2.2.1.21). 

The momentum conservation corresponds to the absorption as 𝑘𝑐 = 𝑞 + 𝑘𝑣 and for the 

stimulated emission as 𝑘𝑣 = 𝑞 + 𝑘𝑐 . This can easily be seen in equation (2.2.1.21) 

where we make the summation through all possible wave vectors 𝒌, because all 

processes with any 𝒌𝒄 and 𝒌𝒗 contribute to the total probability 𝑃𝑐𝑣  for a transition 

between the valence band and conduction band. 

𝑃𝑐𝑣 =
2𝜋𝑡

ℏ
 
𝐸0

2𝜔

𝑒

𝑚
 

2

   𝑀𝑐𝑣  
2
𝛿(𝐸𝑐𝑣 − 𝐸)𝛿𝑞+𝑘𝑣 ,𝑘𝑐

 

𝑘𝑐 ,𝑘𝑣

 

 –  𝑀𝑐𝑣
′  

2
𝛿(𝐸𝑐𝑣 + 𝐸)𝛿𝑞+𝑘𝑐 ,𝑘𝑣

  

(2.2.1.21) 
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At this point it is convenient to make the following approximation. The effect of the 

photon momentum 𝒒 in the transitions can be neglected always as we work with visible 

light. To apply this on the matrix elements let us first take into account the momentum 

conservation for each process. The exponential term in the matrix elements 𝑀𝑐𝑣  and 

𝑀𝑐𝑣
′  becomes the value one and the functions 𝑢𝑐,𝑘𝑐

 and 𝑢𝑣,𝑘𝑣
 are therefore related by the 

photon momentum. 

 

𝑀𝑐𝑣 =  𝑑𝒓 𝑢𝑐,𝑘𝑣+𝑞
∗  ê. 𝒑 𝑢𝑣,𝑘𝑣

 

𝑀′𝑐𝑣 =  𝑑𝒓 𝑢𝑐,𝑘𝑐

∗  ê. 𝒑 𝑢𝑣,𝑘𝑐 +𝑞  

(2.2.1.22) 

 

For a small photon momentum 𝒒, the functions 𝑢𝑐,𝑘𝑣+𝑞  and 𝑢𝑣,𝑘𝑐 +𝑞  can be expanded in 

Taylor series [9]. 

 
𝑢𝑐,𝑘𝑣+𝑞  =  𝑢𝑐,𝑘𝑣

+  𝒒. ∇𝑢𝑐,𝑘𝑣
+ . . . ≈  𝑢𝑐,𝑘𝑣

 

𝑢𝑣,𝑘𝑐 +𝑞  =  𝑢𝑣,𝑘𝑐
+  𝒒. ∇𝑢𝑣,𝑘𝑐

+ . . . ≈  𝑢𝑣,𝑘𝑐
 

(2.2.1.23) 

 

By neglecting the photon momentum, using the equations (2.2.1.22) and (2.2.1.23) the 

matrix elements 𝑀𝑐𝑣  and 𝑀𝑐𝑣
′  become identical. See equation (2.2.1.24), where we 

renamed 𝒌 = 𝒌𝑐 = 𝒌𝑣 . 

 𝑀𝑐𝑣 =  𝑀′𝑐𝑣  =  𝑑𝒓 𝑢𝑐,𝑘
∗  ê. 𝒑 𝑢𝑣,𝑘  (2.2.1.24) 

 

Finally, the probability 𝑃𝑐𝑣  has its final form shown in equation (2.2.1.25). 

𝑃𝑐𝑣 =
2𝜋𝑡

ℏ
 

𝐸0𝑒

2𝜔𝑚
 

2

  𝑀𝑐𝑣  2{𝛿 𝐸𝑐𝑣 − ℏ𝜔 − 𝛿(𝐸𝑐𝑣 + ℏ𝜔)} 𝛿𝑘𝑣 ,𝑘𝑐

𝑘𝑐 ,𝑘𝑣

 (2.2.1.25) 

 

The transition rate per volume unit 𝑅𝑐𝑣  as it was mentioned at the beginning of this 

section is defined by the transition probability by 𝑅𝑐𝑣 = 𝑑𝑃𝑐𝑣 /𝑑𝑡 (see equation 

2.2.1.26). 
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𝑅𝑐𝑣 =
2𝜋

ℏ
 

𝐸0𝑒

2𝜔𝑚
 

2

  𝑀𝑐𝑣  2{𝛿 𝐸𝑐𝑣 − ℏ𝜔 − 𝛿(𝐸𝑐𝑣 + ℏ𝜔)}𝛿𝑘𝑣 ,𝑘𝑐

𝑘𝑐 ,𝑘𝑣

 (2.2.1.26) 

 

The equation (2.2.1.26) it is known as Fermi’s Golden Rule, in this case for Bloch 

electrons with transitions between the valence and conduction bands in a crystal. From 

the equation (2.2.1.6) and (2.2.1.26) we can obtain the absorption coefficient. We 

consider only the absorption term and not the stimulated emission term (see equation 

2.2.1.27). 

 𝛼 =
ℏ

4𝜋𝜖0𝑛𝑐
 

2𝜋𝑒

𝑚
 

2 1

ℏ𝜔
  𝑀𝑐𝑣  2𝛿 𝐸𝑐 − 𝐸𝑣 − ℏ𝜔 

𝑘𝑐 ,𝑘𝑣

𝛿𝑘𝑣 ,𝑘𝑐
 (2.2.1.27) 

 

The equation (2.2.1.27) matches the equation (8.9) in the reference [12] (chapter 8, page 

139). The summation over the vector 𝒌 of equation (2.2.1.27) can be written as a 

summation over the energy due to the relation between the energy bands and the vector 

𝒌 when we use the free electron approximation. These summations can be calculated by 

using the density of electronic states (see equation 2.2.1.28). 

  

𝑘

=  

𝐸

→  𝐷(𝐸)𝑑𝐸 (2.2.1.28) 

 

The density of electronic states can be calculated by several ways, one of them used in 

reference [9] is shown in equation (2.2.1.29), where 𝑑𝑆𝑘  is the surface differential 

element in the 𝒌 space, ∇𝑘𝐸 is the gradient in 𝒌 of the energy 𝐸(𝑘), and the number two 

in the equation is because of the spin electron degeneracy. 

 𝐷 𝐸 =
2

 2𝜋 3
 

𝑑𝑆𝑘

 ∇𝑘𝐸 
   (2.2.1.29) 

 

Our goal is now to reduce the equation (2.2.1.27) in a simple analytical expression that 

depends on the photon energy which we are able to fit with a measured absorption 

coefficient by optical means. For this, let us expand the band energies 𝐸𝑐  and 𝐸𝑣  around 
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𝒌 = 𝟎 till the second order term assuming for simplicity that the effective mass is 

uniform in the 𝒌 space, see the equations (2.2.1.30). 

 

𝐸𝑐  =  𝐸𝑐 0  +
ℏ

2𝑚𝑒
∗
𝑘2    . . . 

𝐸𝑣  =  𝐸𝑣 0 −
ℏ

2𝑚𝑕
∗  𝑘2  . .. 

(2.2.1.30) 

 

Choosing the energy reference frame in a way that 𝐸𝑐 0 =  𝐸𝑔  and 𝐸𝑣 0 = 0, with 𝐸𝑔  

the optical bandgap, we can define the energy band of combined states according to the 

equation (2.2.1.31), where we introduce the reduced mass 𝜇−1 = 𝑚∗
𝑒
−1 + 𝑚∗

𝑕
−1

 [9]. 

 𝐸𝑐𝑣 ≡ 𝐸𝑐 − 𝐸𝑣 = 𝐸𝑔 +
ℏ

2𝜇
𝑘2  (2.2.1.31) 

 

It is important to remark that the definition of the energy band of combined states 𝐸𝑐𝑣  

only has sense in direct solids, because the functions 𝐸𝑐  and 𝐸𝑣  share the same vector 𝒌 

as their argument for direct transitions. Now, from the equations (2.2.1.31) and 

(2.2.1.29) we find the electronic density of combined states (see equation 2.2.1.32). 

 𝐷𝑐𝑣  =  2
𝜇3/2

𝜋2ℏ3
 𝐸𝑐𝑣 − 𝐸𝑔 

1/2
, Ecv >  Eg  (2.2.1.32) 

 

Finally, from equations (2.2.1.32), (2.2.1.28), (2.2.1.27), assuming that the matrix 

element 𝑀𝑐𝑣  changes slowly with 𝒌 [6][9] and solving the trivial integral we find an 

analytical expression for the absorption coefficient as a function of the photon energy 

ℏ𝜔 and the optical bandgap 𝐸𝑔  shown in equation (2.2.1.33). 

 𝛼 =
 2𝜇3/2

4𝜋𝜖0  𝑛𝑐 ℏ2
 

2𝑒

𝑚𝑒 
 

2

 𝑀𝑐𝑣  2
 ℏ𝜔 − 𝐸𝑔 

1/2

ℏ𝜔
  (2.2.1.33) 

 

The obtained result in equation (2.2.1.33) is known as the fundamental absorption of 

direct semiconductors (i.e. c-AlN), due to the fact that only direct transitions between 

the valence and conduction bands are considered, that is with the same vector 𝒌 
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neglecting the photon momentum 𝒒, and it contains explicit information of the solid’s 

optical bandgap. 

 

Figure: 2.2.1.1: Representation of the fundamental absorption for an ideal direct 
semiconductor at zero Kelvin temperature using the equation (2.2.1.33). 

 

A common representation of the absorption coefficient to evaluate the optical bandgap 

is the  𝛼𝑕𝜈𝑛 2 plot shown in the figure (2.2.1.1) where the linear behavior allows 

reading directly the bandgap energy. It is important to remark that the refractive index 

usually varies between 1 and 3 in most of the spectral range and therefore it is usually 

taken as constant not affecting the energy dependency of the absorption coefficient. 

Fundamental absorption in direct crystals at finite temperatures 

In the last sub-section we found an analytical expression for the absorption coefficient 

as a function of the photon energy and the optical bandgap valid only for direct 

transitions and for a completely filled valence band by electrons and conduction band 

by holes. However, the behavior described in the last section only has validity when the 

temperature is zero degree Kelvin. In the reality we deal with temperatures much higher 

than zero degree Kelvin and therefore the valence and conduction bands do not meet the 

conditions mentioned above. In this section we will derivate an expression for the 

absorption coefficient taking into account finite temperatures. 
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For this it is necessary to consider the term associated to the stimulated emission found 

in the last section, because for temperatures higher than zero degree Kelvin the valence 

band is not completely filled and the conduction band is not completely free of 

electrons. Therefore the few electrons in the conduction band will fall into the valence 

band due to the stimulated emission and this effect should be taken into account. 

𝑅𝑐𝑣 =
2𝜋

ℏ
 

𝐸0𝑒

2𝜔𝑚
 

2

  𝑀𝑐𝑣  2{𝛿 𝐸𝑐𝑣 − ℏ𝜔 − 𝛿(𝐸𝑐𝑣 + ℏ𝜔)}𝛿𝑘𝑣 ,𝑘𝑐

𝑘𝑐 ,𝑘𝑣

 (2.2.2.1) 

 

We will start from the equation (2.2.1.26) found in the last section here numbered 

(2.2.2.1). Before we continue it is important to make some remarks. First, the absorption 

term in the equation (2.2.2.1) represents a transition from the valence band state | 𝑣  to 

the conduction band sate | 𝑐  while the stimulated emission term represents a transition 

from the state | 𝑐  to the state | 𝑣 . Second, the equation (2.2.2.1) gives us the transition 

rate of one electron, but in real systems we deal with an ensemble of electrons. The 

Fermi distribution 𝑓(𝐸) determines the occupation grade of the electrons for each band; 

it is shown in equation (2.2.2.2) where 𝛽 = 1/𝜅𝑇 with 𝑇 the temperature, 𝐸𝑓  the Fermi 

level, and 𝜅 the Boltzman constant. 

 𝑓 𝐸 =
1

1 − 𝑒−𝛽 𝐸−𝐸𝑓  
 (2.2.2.2) 

 

Our goal is to find the mean absorption coefficient by averaging all the initial states 

taking into account the Pauli’s exclusion principle [14][15]. This can be done by using 

the Fermi distribution properly in each of the two processes, absorption and stimulated 

emission. Thus we consider all the occupied states by electrons in the valence band by 

multiplying the density of states of the valence band by 𝑓(𝐸𝑣), and we consider all de 

unoccupied states by electrons or occupied by holes by multiplying the density of states 

of the conduction band by  1 − 𝑓 𝐸𝑐  . As it was suggested in the reference [15] these 

products can be applied on the equation (2.2.2.1) in the sense that this equation contains 

the mentioned density of states in its argument when is expressed in its integral form 

following what was done in the equation (2.2.1.28). The exclusion principle is taken 

into account by dividing the transition rate by two, (see the equation 2.2.2.3). 
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 𝑅𝑐𝑣  =
𝜋

ℏ
 
𝐸0𝑒

𝜔𝑚
 

2

  𝑀𝑐𝑣  2𝑓 𝐸𝑣 {𝛿 𝐸𝑐 − 𝐸𝑣 − ℏ𝜔 

𝑘𝑐 ,𝑘𝑣

 

−𝛿 𝐸𝑐 − 𝐸𝑣 + ℏ𝜔 } 1 −  𝑓 𝐸𝑐  𝛿𝑘𝑣 ,𝑘𝑐
 

(2.2.2.3) 

 

At this point it is convenient to write the matrix element in the following notation 

|𝑀𝑐𝑣 |  =   𝑐 |𝑀𝑐𝑣
′ | 𝑣  and 𝐶 =   𝜋/ℏ (𝐸0𝑒/𝜔𝑚)2. Let us split the equation (2.2.2.3) in 

two similar terms shown in equation (2.2.2.4). 

 𝑅𝑐𝑣  = 𝐶     𝑐 𝑀′
𝑐𝑣  𝑣  

2
   𝑓 𝐸𝑣 𝛿 𝐸𝑐 − 𝐸𝑣 − ℏ𝜔  1 − 𝑓 𝐸𝑐   

𝑘𝑐 ,𝑘𝑣

  

 −    𝑐 𝑀′
𝑐𝑣  𝑣  

2
 𝑓 𝐸𝑣 𝛿 𝐸𝑐 − 𝐸𝑣 + ℏ𝜔  1 − 𝑓 𝐸𝑐   

𝑘𝑐 ,𝑘𝑣

  

(2.2.2.4) 

 

As we know, the Dirac’s delta factors ensure the energy conservation in each process. 

Following the reference [15] we can effectuate one of the summations by using its 

integral form i.e.  →  → 1/Δ𝐸𝑐   𝑑𝐸𝑐𝐸𝑐𝑘𝑐
, thus we get a factor of 1/Δ𝐸𝑐 , see the 

equation (2.2.2.5). 

 𝑅𝑐𝑣  = 𝐶
1

Δ𝐸𝑐

    𝑣 + ℏ𝜔 𝑀′
𝑐𝑣  𝑣  

2
   𝑓 𝐸𝑣 − 𝑓 𝐸𝑣 𝑓(𝐸𝑣 + ℏ𝜔) 

𝑘𝑐

  

 −   𝑣 − ℏ𝜔 𝑀′
𝑐𝑣  𝑣  

2
 𝑓 𝐸𝑣 − 𝑓 𝐸𝑣 𝑓(𝐸𝑣 − ℏ𝜔) 

𝑘𝑐

  

(2.2.2.5) 

 

Let us concentrate on the second term in the equation (2.2.2.5) that corresponds to the 

stimulated emission. In this term we can rename the initial state in the following way 

| 𝑣 − ℏ𝜔 =  |𝑣′  and therefore the final state by | 𝑣 =  |𝑣′ + ℏ𝜔 , in terms of the energy 

𝐸𝑐 = 𝐸𝑣 − ℏ𝜔 = 𝐸𝑣′ . The second term can be written as shown in equation (2.2.2.6) 

where we have only renamed the variables maintaining the energy conservation valid. 
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−    𝑣′ 𝑀′
𝑐𝑣  𝑣′ + ℏ𝜔  2 𝑓 𝐸𝑣 ′ + ℏ𝜔 − 𝑓 𝐸𝑣 ′  𝑓 𝐸𝑣 ′ + ℏ𝜔  

𝑘𝑣′  

 (2.2.2.6) 

 

The index of the summation in the equation (2.2.2.6) is mute, and thus both summations 

in the equation (2.2.2.5)  are reduced to one, the resulting formula shown in the equation 

(2.2.2.7) is known as Kubo-Greenwood formula [14][15]. 

  𝑅𝑐𝑣  =
𝐶

ΔEc
  𝑀𝑐𝑣  2 𝑓 𝐸𝑣 − 𝑓 𝐸𝑣 + ℏ𝜔  

𝑘𝑣

 (2.2.2.7) 

 

However, the equation (2.2.2.7) can be reduced further. We derivate an expression for 

the absorption coefficient similar to the one found in the previous section starting from 

the equation (2.2.2.7) to include the temperature dependence. According to reference 

[15] we rewrite the equation (2.2.2.7) as it is shown in equation (2.2.2.8) where 

𝐸 = ℏ𝜔 is the photon energy. 

  𝑅𝑐𝑣  = 𝐶   𝑀𝑐𝑣  2 𝑓 𝐸𝑣 − 𝑓 𝐸𝑐  𝛿 𝐸𝑐 − 𝐸𝑣 − 𝐸 

𝑘𝑐 ,𝑘𝑣

 (2.2.2.8) 

 

From equation (2.2.2.8) we will solve the summation over 𝑘𝑐  using the density of states 

to replace the mentioned summation into an integral as it was done in the last section, 

that is  𝑘𝑐
=  𝐸𝑐

→   𝐷𝑐 𝐸𝑐  𝑑𝐸𝑐 , and then we will write the summation over 𝑘𝑣  

in its integral form. The integral in 𝐸𝑐  is trivial and absorbing the constants into the 

coefficient 𝐶 we get the form shown in the equation (2.2.2.9). 

  𝑅𝑐𝑣  = 𝐶   𝑀𝑐𝑣  2 𝐸𝑣 + 𝐸 − 𝐸𝑔   𝑓 𝐸𝑣 − 𝑓 𝐸𝑣 + 𝐸  

𝑘𝑣

   (2.2.2.9) 

 

As it was mentioned above, the summation in the equation (2.2.2.9) can be replaced by 

its integral form, that is  =  =  limΔ𝐸𝑣→0
1

Δ𝐸𝑣
 𝑑𝐸𝑣𝐸𝑣𝑘𝑣

. Rewriting the equation 

(2.2.2.9) into its integral form (see equation 2.2.2.10) it is possible to note the definition 

of the derivative of the Fermi distribution with Δ𝐸𝑣 ≡ ℏ𝜔 the change in energy, 

properly as the photon energy, this is easily seen as the difference in energy between the 
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bands or states | 𝑣  and | 𝑐 , that is 𝐸 = 𝐸𝑐 − 𝐸𝑣  the photon energy. Thus we can write 

the definition of the derivative as shown in the equation (2.2.2.11). 

 𝑅𝑐𝑣  = 𝐶   𝑀𝑐𝑣  2 𝐸𝑣  +  𝐸 − 𝐸𝑔   lim
Δ𝐸𝑣→0

𝑓 𝐸𝑣 − 𝑓 𝐸𝑣 + 𝐸 

Δ𝐸𝑣
  𝑑𝐸𝑣

𝐸𝑔

𝐸𝑔−𝐸

 (2.2.2.10) 

 

 
𝑑𝑓 𝐸𝑣 

𝑑𝐸𝑣
=  lim

Δ𝐸𝑣→0

𝑓 𝐸𝑣 + 𝐸 − 𝑓 𝐸𝑣 

Δ𝐸𝑣
 (2.2.2.11) 

 

Finally using the equations (2.2.2.10) and (2.2.2.11) we find an expression for the 

average transition rate between bands shown in the equation (2.2.2.12). This equation 

unfortunately has no analytical solution. The average absorption coefficient follows to 

be related to the average transition rate along with the equation (2.2.1.6). The integral 

limits in the equation (2.2.2.12) are 𝐸𝑔 − 𝐸 for the lower limit and 𝐸𝑔  for the upper 

limit. 

  𝑅𝑐𝑣  = 𝐶   𝑀𝑐𝑣 
2 𝐸𝑣 + 𝐸 − 𝐸𝑔  −

𝑑𝑓 𝐸𝑣 

𝑑𝐸𝑣
 𝑑𝐸𝑣

𝐸𝑔

𝐸𝑔−𝐸

 (2.2.2.12) 

 

It is also possible to write the equation (2.2.2.12) in an equivalent form, see the equation 

(2.2.2.13) but with a more familiar shape by adding 𝐸 to the integral limits and therefore 

subtracting 𝐸 from the integral’s argument and renaming the mute variable 𝐸𝑣  by 𝐸𝑐𝑣 . 

  𝑅𝑐𝑣  = 𝐶   𝑀𝑐𝑣  2 𝐸𝑐𝑣 − 𝐸𝑔  −
𝑑𝑓 𝐸𝑐𝑣 − 𝐸 

𝑑𝐸𝑐𝑣
 𝑑𝐸𝑐𝑣

𝐸𝑔 +𝐸

𝐸𝑔

 (2.2.2.13) 

 

The equations (2.2.2.12) and (2.2.2.13) are equivalent but the second has a similar form 

to the result found in the last section, except that instead of a Dirac’s delta we have 

minus the derivative of the Fermi distribution with the argument (𝐸𝑐𝑣 − 𝐸). The 

derivative of the Fermi function in the limit case of 𝑇 = 0 behaves like a Dirac’s delta 

around the Fermi level 𝐸𝑓 . The discontinuities of the shape of the Fermi distribution at 
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𝑇 = 0 and its derivative are smeared out for temperatures larger than zero (see fig. 

2.2.2.1). Thus for direct transitions at a finite temperature it is enough to replace the 

Dirac’s delta function associated to the energy conservation by minus the derivative of 

the Fermi distribution evaluated in the same argument. 

 

Fig. 2.2.2.1: Fermi distribution (left) and minus the derivative of the Fermi distribution (right) 
versus the energy in the cases of zero Kelvin temperature and for a higher temperature. In 
this graphs the Fermi energy was taken as zero. 

 

Finally the absorption coefficient can be calculated, see the equation (2.2.2.14), leaving 

all the constants in the coefficient 𝐶. The integral in these equations has no analytical 

solution but it can be solved by numerical methods. 

  𝛼 =
𝐶

𝐸
  𝐸𝑐𝑣 − 𝐸𝑔  −

𝑑𝑓 𝐸𝑐𝑣 − 𝐸 

𝑑𝐸𝑐𝑣
 𝑑𝐸𝑐𝑣

𝐸𝑔+𝐸

𝐸𝑔

 (2.2.2.14) 
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Figure 2.2.2.2: Fundamental absorption for an ideal direct semiconductor at zero Kelvin 
temperature (dashed red curve) and at a finite temperature (continue blue curve). The 
simulation was made using the equations (2.2.1.31) and (2.2.2.14) with a zero Fermi energy. 

 

If we plot the function  𝛼𝐸 2 for both cases at zero Kelvin temperature and for a higher 

temperature we will be able to observe (see fig. 2.2.2.2) the formation of a tail due to 

the thermal vibrations or thermal disorder in the lattice crystal. One is able to see the 

characteristic line that allows us to find the optical bandgap by the intersection of its 

prolongation to the x-axis. From the comparison shown in the figure (2.2.2.2) and the 

comparison of the equations (2.2.2.14) and (2.2.1.33) we can say that the integral term 

of the equation (2.2.2.14) is similar to the term  ℏ𝜔 − 𝐸𝑔 
1/2

 of the equation (2.2.1.33). 

Therefore it is possible to consider this term as from an effective electronic density of 

combined states (see figure 2.2.2.3). 

In this sense, the tail of states below the bandgap is the result of the extra energy the 

electrons gain from the thermal vibrations or absorbing phonons. The reduction of states 

over the bandgap region is the result of the energy loss due to the same thermal 

vibrations or emitting phonons. 
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Figure 2.2.2.3: Schematic representation of the electronic density of combined states at zero 
Kelvin temperature and the effective electronic density of combined states for a higher 
temperature in a crystal lattice. 𝐸𝑒  is the electron energy, 𝑕𝜈 the photon energy, 𝐸𝑇 the 
thermal energy. 

 

Summarizing, there is a tail of states below the bandgap due to the thermal disorder, the 

main transitions are between the valence and conduction band sates and therefore the 

optical bandgap is maintained. These states can be represented in an effective electronic 

density of combined states shown in the figure (2.2.2.3), where 𝐸𝑔  is the bandgap. 

Fundamental absorption in amorphous solids 

In the amorphous case, the absorption coefficient calculation can be developed in the 

same way as in the crystalline case. However, it is not possible to define an energy band 

of combined states like before because the vector 𝒌 is not a good quantum number in 

the amorphous case [6][11][12]. It is always possible to define quasi-continuum states 

that are called extended states [6]. Besides of these extended states there exist the so 

called tail states (see fig. 2.2.3.1) similar to the states found due to the thermal 

vibrations in the last section. These localized states are mainly caused by the lattice 

disorder of the amorphous solid, defects, dangling bonds and as it was shown in the last 

section by thermal vibrations. 
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Figure 2.2.3.1: Representation of the electronic density of states for the crystalline and 
amorphous cases. Notice that the valence and conduction band edges in the amorphous case 
are inside of the band tails or Urbach tails. The states inside the gap are due to the dangling 
bonds.  

 

So far we haven’t defined properly what amorphousness or disorder is, therefore before 

we continue into the fundamental absorption in amorphous materials let us clarify this 

issue. Disorder must be compared to a standard. In this case the standard is a perfect 

crystal. A perfect crystal is that in which the atoms are arranged in a pattern that repeats 

periodically to an infinite extent [9][11][12][16]. From this point, we will define three 

main types of disorder. The first one is the topological or geometrical disorder where 

the atoms are arranged completely randomly and there is no translational periodicity 

(see fig. 2.2.3.2.a). All amorphous solids are distinguished by their lack of periodicity; 

however, certain amorphous materials have considerable short-range or local order 

while others have little, but both cases have no long-range order. The second kind of 

disorder is the substitutional disorder. I. e. in alloys where while the crystalline lattice is 

preserve the compound has one type of atom substituting randomly for the other in the 

lattice (see fig. 2.2.3.2.b). The third type of disorder of interest is the vibrational 

disorder of a crystalline lattice, this starts from the concept of perfect crystal that is only 
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possible at zero Kelvin temperature, and for a finite temperature the motion of atoms 

around their equilibrium positions ruins the perfect periodicity (see fig. 2.2.3.2(c)). 

 

Figure 2.2.3.2: Representation of the types of randomness or disorder in solids. a) topological 
disorder, the atoms are completely randomly arranged in the space, b) substitutional 
disorder, the atoms in the compound are randomly arranged on the crystalline lattice c) 
vibrational disorder, the atoms vibrate about their equilibrium crystalline positions. 

 

It is possible to define disorder energy or fictive temperature that represents the disorder 

degree. This disorder energy would be closely related to the tail in the absorption 

coefficient. This topic will be treated in detail in the chapter four. 

In principle in amorphous solids we have transitions of the type extended-extended, 

localized-localized and extended-localized [12][17]. To determine the shape of these 

states have been and is yet a difficult problem [18-20], thus it have been only possible to 

give empirical representations of them to determine the optical bandgap trough the 

measure of the absorption coefficient [7][18][19]. The simplest case is the transitions 

between extended sates or extended-extended type transitions. This was developed by J. 

Tauc (1968) [7]. We will continue in this section developing the approach made by J. 

Tauc for transitions between the conduction and valence extended states assuming a 

quadratic form for their energy bands. 

The extended to extended transitions can be develop in the same way as in the 

crystalline after assuming a shape for the energy bands or for the density of states. The 

absorption coefficient can then be written as the equation (2.2.3.1). 

 𝛼 =
ℏ

4𝜋𝜖0𝑛𝑐
 

2𝜋𝑒

𝑚
 

2 1

ℏ𝜔
  𝑀𝑐𝑣  2𝛿 𝐸𝑐 − 𝐸𝑣 − ℏ𝜔 

𝐸𝑐 ,𝐸𝑣

 (2.2.3.1) 
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From the equation (2.2.3.1) the formulation for the crystalline case can be completely 

adopted and the double summation becomes a double integral using the density of 

electronic states and assuming again that the matrix element 𝑀𝑐𝑣  changes slowly with 

the energy and therefore it is assumed constant. The equation (2.2.3.1) can be written as 

shown in the equation (2.2.3.2) where all the constants have been putted in the 

coefficient 𝐶. 

𝛼 =
𝐶

𝐸
   𝐷𝑐 𝐸𝑐 𝐷𝑣 𝐸𝑣 𝛿 𝐸𝑐 − 𝐸𝑣 − 𝐸 𝑑𝐸𝑣𝑑𝐸𝑐

0

𝐸𝑔 – 𝐸

 
𝐸𝑐−𝐸𝑣

𝐸𝑔

 (2.2.3.2) 

 

Assuming a quadratic form for the energy bands (see equation 2.2.1.30) it follows from 

the equation (2.2.1.29) that the electronic density of states has a square root 

dependency, 𝐷𝑐 = ( 2𝑚∗
𝑒
3/2/𝜋2ℏ3) 𝐸𝑐 − 𝐸𝑔 

1/2
 and 𝐷𝑐 = ( 2𝑚∗

𝑕
3/2

/𝜋2ℏ3). Thus 

the equation (2.2.3.2) is an analytical integral by making the variable change of 

𝑥 =  𝐸𝑐 − 𝐸𝑔 / 𝐸 − 𝐸𝑔  the integral’s argument changes in a tabulated one which 

value is a constant and is absorbed in the coefficient 𝐶, see the equations (2.2.3.3) and 

(2.2.3.4). The resulting absorption coefficient shown in equation (2.2.3.4) is the result of 

J. Tauc, and the optical bandgap obtained from it is known as Tauc-gap 𝐸𝑇𝑎𝑢𝑐 . The 

chosen density of states is not the best one to describe every amorphous solid. But it is 

well known and used in the materials science scientific community. 

 𝛼 =
𝐶

𝐸
 𝐸 − 𝐸𝑔 

2
 𝑥1/2 1 − 𝑥 1/2

1

0

𝑑𝑥 (2.2.3.3) 

 

 𝛼 = 𝐶
 𝐸 − 𝐸𝑔 

2

𝐸
 (2.2.3.4) 

 

The main problem with the result (2.2.3.4) is obviously that it has only been taken into 

account the extended-extended type transitions and it follows that these transitions not 

always are the predominant ones and thus the relation (2.2.3.4) is not sufficient to 

describe the fundamental absorption in amorphous solids. Also the fact of assuming a 

square rooted shape of the density of states can result in mistakes when calculating the 

bandgap. However, in the literature different exponents are used for describing the 
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density of states and therefore the fundamental absorption [2][17] in amorphous solids, 

arguing that the experimental data fits better with the theoretical curve [21] [22]. The 

truth is that there is no convincing argument for the election of an exponent or a 

particular shape for the fundamental absorption in amorphous solids, in general this 

depends on the data and therefore (2.2.3.5) is a phenomenological ansatz [6][12][23]. 

 𝛼 =
𝐶

𝐸
  𝐸𝑐 − 𝐸𝑔 

𝑟
 𝐸𝑐 − 𝐸 𝑟𝑑𝐸𝑐

𝐸

𝐸𝑔

 (2.2.3.5) 

 

A way to generalize the result of equation (2.2.3.4) might be through the generalization 

of the shape of the density of states used in the equation (2.2.3.3). Thus if we leave the 

exponents as variables we can rewrite the equation (2.2.3.3) as the equation (2.2.3.5) 

and by making the variable change of 𝑥 =  𝐸𝑐 − 𝐸𝑔 
𝑟
/ 𝐸 − 𝐸𝑐 

𝑟  we obtain the integral 

shown in the equation (2.2.3.6). 

 𝛼 = 𝐶
 𝐸 − 𝐸𝑔 

2 𝑟 + 1

𝐸
  𝑥𝑟 1 − 𝑥 𝑟𝑑𝑥

1

0

 (2.2.3.6) 

 

By solving the integral in equation (2.2.3.6) we find the equation (2.2.3.7) with the 

gamma function Γ(𝑛), where 𝑟 are natural numbers and therefore the exponent can only 

have the odd numbers values. Nevertheless, according to the reference [12] for any 

representation of the absorption coefficient, the coefficient 𝐶 is a measure of the 

disorder in the way that for more disordered systems the slope is gentle and for less 

disordered systems it is higher. This approach of a measure of the disorder by the slope 

𝐶1/2  comes from the idea that for more disordered systems the tail is bigger and 

therefore it overlaps over the rest of the absorption coefficient making the slope gentler 

and for less disordered systems the tail is smaller an therefore the slope is higher.  

 𝛼 = 𝐶
 𝐸 − 𝐸𝑔 

2 𝑟 + 1

𝐸
 
Γ

2(𝑟 + 1 )

Γ(2𝑟 + 2 )
 (2.2.3.7) 

 

It is well known that by annealing treatments on amorphous semiconductors the tail 

states are reduced and therefore a reduction in the disorder is expected (see fig. 
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2.2.3.3.a). Effectively the tail is reduced in the case shown in the figure (2.2.3.3.a) but 

the slope does not change as suggested by reference [12], (see figures 2.2.3.3.c and 

2.2.3.3.d) where the two common representations are used. This disagreement might be 

attributed to the fact that when we compare the absorption coefficient of the a-AlN with 

c-AlN we see that for the case shown in the figure (2.2.3.3) we are still far from the 

fundamental absorption. That is for example assuming the right representation for the 

fundamental absorption as  𝛼𝐸 2 after 900 °C of annealing treatment (see fig. 2.2.3.3.d) 

no slope is possible to observe. Results concerning measurements of the absorption 

coefficient of a-AlN are shown in the last chapter showing the proper behavior in 

agreement with reference [12]. 

 

Figure 2.2.3.3: a) Absorption coefficient of a-AlN thin film produced by RF-reactive sputtering 

using an Aluminum target in an atmosphere of Nitrogen [17], b) Absorption coefficient of c-

AlN ( Matthias Bickerman from the group of AlN WW6, Technische Fakultät of Erlangen-

Nürnebrg University), c) Tauc-representation of the absorption coefficient of a-AlN, d)  𝛼𝐸 2-

representation, of the absorption coefficient of a-AlN. 
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Summarizing, we have found plenty of difficulties in the calculation of the fundamental 

absorption in the amorphous semiconductors. To describe the fundamental absorption 

we can always use an empirical representation that fits better the measurements. To 

describe the degree of randomness in an amorphous solid is better to treat it directly 

with the exponential tail. Nevertheless, the Tauc-representation is the most common 

used representation for determining the optical bandgap, and therefore we will take it 

into account in the next chapters of this thesis. 
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Chapter III 

Experimental details 

This chapter describes details of the experiments. That is the sample preparation, 

composition measurements, the annealing treatment and the transmission spectrum 

measurements. 

Sample preparation 

The a-(SiC)1-x(AlN)x thin films were deposited on CaF2, MgO, Al2O3 and glass 

substrates,  by rf dual magnetron sputtering using AlN and SiC wafers (Ø 51mm) of 

high purity as targets. A schematic figure of the magnetron can be seen in figure (3.1.1). 

The two targets were mounted below the substrate holder which was cooled at 10°C 

with a water cooling system to enforce the films in the amorphous state. The sputtering 

process took place in an argon atmosphere of purity 5N at 8×10
-3

 mbar and argon flow 

rates of 50 sccm. Each target could be adjusted in position and power independently. 

Typical rf powers were between 85 W and 140 W. Further details of our sample 

preparation can be found in [24][25]. The system configuration is shown in the figure 

(3.1.2). 
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Fig. 3.1.1: Left, Schematic assembly of one magnetron. Two substrate positions with 
distances at 25 and 30 mm from the target are shown. The expected film thickness 
distribution is indicated. Right, typical emission pattern of the magnetron with the SiC target 
at 150 W [24]. 
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Figure 3.1.2: Schematic of the film production system. The main chamber can reach a 
pressure of 10×10-6 mbar in about one hour. This is the base pressure for the film production. 
The parameters, power, pressure, gas flow and time are monitored by a computer. 

 

Energy Dispersion Spectroscopy (EDS) 

The composition x of the a-(SiC)1-x(AlN)x films was determined by an EDS system 

coupled to a scanning electron microscope using the digital X-ray processor DXP-X10P 

and the multi-channel analyzer NumeriX by Fondis Electronic. Silicon and aluminum 

peaks in the EDS spectra were well resolved. In the case of CaF2 substrates, their purity 

ensures that there is no EDS contribution from the substrate to silicon and aluminum 

peaks. From the resulting atomic weight percentage of the silicon and aluminum peaks 

the composition can be determined assuming that the silicon to carbon and the 

aluminum to nitrogen ratios are 1:1 as it is in the respective targets. Typical EDS 

spectrum is shown in the figure (3.2.1). The corresponding values are shown in the table 

(3.2.1). 
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Table 3.2.1: EDS values corresponding to the spectrum shown in the figure (3.2.1), x = 0.47. 

 

Elt XRay Int Error K Kratio W% A% 

C Ka 711.1 3.4420 0.1653 0.1140 26.93 40.32 

N Ka 285.1 2.1794 0.1019 0.0703 14.50 18.61 

O Ka 288.0 2.1905 0.0536 0.0370 6.09 6.84 

Al Ka 2122.1 5.9459 0.3150 0.2172 24.07 16.04 

Si Ka 2067.3 5.8686 0.3643 0.2512 28.41 18.19 

Total    1.0000 0.6897 100.00 100.00 

 

 

Figure 3.2.1: Typical EDS spectrum of a sample grown on CaF2. The typical parameters are: 
magnification x430, voltage of 6kV, measuring time 60 sec. This sample was sputtered with 
gold to improve the surface conductivity. 
 

Annealing treatment 

The annealing treatment of the samples took place in a quartz tube inside an oven tube 

with three heating stages which can be heated up to 1200°C. The quartz tube was 

evacuated down to 4×10
-5

 mbar. After the operating temperature was reached, the 

quartz tube with the samples under treatment was moved rapidly inside the oven (shock 

tempering). The annealing time for each annealing step was 30 min and the same 

samples were used for the next annealing steps (isochronal annealing). 
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Transmission measurements 

The transmission spectra of our samples were measured using the double beam photo-

spectrometers models Lambda 2 UV/VIS/NIR and Lambda 19 UV/VIS/NIR of Perkin 

Elmer in the ranges of 190-1100 nm and 200-3000 nm, respectively with a spectral 

resolution of 1 nm. Absorption coefficients up to 240000 cm
-1

 were recorded. 

Typical transmission of our samples is shown in the figure (3.3.1), as we will see in the 

next chapter this kind of transmission is not suitable to be used with the common 

methods for the calculation of the optical constants. Details of the methods will be 

presented in the next chapter. 

 

Figure 3.3.1: Typical transmission spectrum of our samples with a thickness of 356.14 ± 0.13 
nm and composition of x = 47%. The measure was made using the spectro-photometer 
Lambda 19 UV/VIS/NIR of the company Perkin Elmer, in the University of Erlangen-Nürnberg 
in Germany. The thickness was extracted from the transmission spectra with a modified 
method proposed in the next chapter. 
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Chapter IV 

Bandgap determination 

In this chapter we will expend effort in develop our characterization method. The goal is 

to determine the optical bandgap accurately for different compositions of 

a-(SiC)1-x(AlN)x thin films. Therefore the determination of the absorption coefficient 

especially for the high energy range is necessary. For this a common method will be 

presented, discussed and modify for our aims. It is important to remark that in the 

second section of the chapter two (Fundamental absorption) we have already seen some 

of the problems in the determination of the optical bandgap. In the following sections 

this issue will be also treated. 

Optical constants determination for solids (polished bulk) 

In the case of a polished bulk material i.e. Si, SiC, AlN, etc., the determination of the 

absorption coefficient can be easily perform by using a spectrophotometer. The light 

passes through the material and a transmission spectrum is recorded, from this spectrum 

it is always possible to use the Lambert’s law 𝐼 𝜆 = 𝐼0(𝜆)𝑒−𝛼(𝜆) 𝑑  to obtain the 

absorption coefficient. The transmission 𝑇 𝜆  is obviously associated to the light 

intensity by 𝑇 = 𝐼/𝐼0 and therefore we can write the absorption coefficient as a function 

of the transmission spectra by 𝛼 = − ln 𝑇 /𝑑, the thickness 𝑑 can be measured by any 

physical method available. 

If we would like to obtain the refractive index 𝑛 of the material directly from a 

transmission spectrum measurement 𝑇 we can use the equation (4.1.1) obtained from 

the electromagnetism theory [26], it relates the refractive index with the transmission 

spectrum, and therefore the refractive index can be written as a function of the 

transmission according to the equation (4.1.2). 

 𝑇 =
 1 − 𝑅 2

1 − 𝑅2
 (4.1.1) 

 

With 𝑅 =  𝑛 − 1 2/ 𝑛 + 1 2 
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 𝑛 =
1

𝑇
+  

1

𝑇2
− 1 

1/2

 (4.1.2) 

 

We have shown that it is possible to find the absorption coefficient and the refractive 

index from a single transmission spectra measurement. However, in the present case we 

have thin films of 200 to 1000 nm thickness deposited on a 0.5 to 1 mm thick 

transparent substrate. The procedure to obtain the optical constants is far more 

complicated than the case presented above. 

Optical constants determination for thin films on transparent substrates 

In the case of a thin film deposited on a transparent substrate the procedure above is 

different. It is not possible to obtain the absorption coefficient directly from the 

transmission spectrum using the Lambert’s law, because there is an interference pattern 

due to the refractive behavior of the light when it passes through the film and the 

substrate (see figures 4.2.1 and 3.3.1). The equation that relates the transmission with 

the rest of the optical constants and therefore describes the curve in the figure (4.2.1) is 

much more complicated than the ones presented in the later section (see equation 4.2.1). 

 

500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

 

 

T
ra

n
s

m
is

s
io

n

wavelength (nm)

 Simulation



41 
 

Figure 4.2.1: Typical transmission spectrum of a thin film-substrate system. The curve was 
simulated using a substrate with a refractive index 𝑠 = 1.51, a film thickness 𝑑 = 1000 nm 

and refractive index and absorption coefficient 𝑛 = 3 × 105/𝜆2  + 2.6, log 𝛼 = 1.5 ×
106/𝜆2  − 8 nm−1, typical values of a-Si:H, values obtained from reference [27]. 

 

 𝑇 =
𝐴𝑥

𝐵 − 𝐶𝑥 + 𝐷𝑥2
 (4.2.1) 

 

 

𝐴 = 16𝑠(𝑛2 + 𝜅2) 

𝐵 =   𝑛 + 1 2 + 𝜅2   𝑛 + 1  𝑛 + 𝑠2 + 𝜅2  

𝐶 =   𝑛2 − 1 + 𝜅2  𝑛2 − 𝑠2 + 𝜅2 − 2𝜅2 𝑠2 + 1   2 cos 𝜙 

      −𝜅 2 𝑛2 − 𝑠2 + 𝜅2 +  𝑠2 + 1   𝑛2 − 1 + 𝜅2  2 sin 𝜙 

𝐷 =    𝑛 − 1 2 + 𝜅2 [ 𝑛 − 1  𝑛 − 𝑠2 + 𝜅2] 

𝑥 = 𝑒−𝛼𝑑  

(4.2.1.a) 

 

 
𝜅 =

𝜆𝛼

4𝜋
 

𝜙 = 4𝜋𝑛𝑑/𝜆 

(4.2.1.b) 

 

Where 𝜅 is the extinction coefficient, 𝑠 the refractive index of the substrate and 𝜙 is 

related to the basic interference equation 2𝑛𝑑 = 𝑚𝜆 by 𝜙 = 2𝜋𝑚, for the integers 

values of 𝑚, 𝜙 is an integer multiple of 2𝜋. This relation is used later to calculate the 

thickness of the films, and will be explained in more detail. 

Swanepoel method 

To overcome the problem of calculating the optical constants from a single transmission 

measurement a straight forward method was proposed by R. Swanepoel (1983) [27] 

developing the previous work of Manifacier et al (1976) [28]. In this section the 

Swanepoel method (also known as envelope method) to determine the optical constants 

and the thickness of thin films by using a single transmission measurement will be 

developed, explained and discussed in detail. 
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Swanepoel’s idea was first to reduce the equation (4.2.1) in a less complicated equation 

by the approximation of 𝜅/𝑛 ≪ 1 (see equation 4.2.1.1). This approximation can be 

used in most of the range of study. Secondly, the resulting maximums and minimums 

due to the interference effect of the transmission spectrum can be described by the 

equation (4.2.1.1) for the special cases of cos 𝜙 = ±1 and therefore two new equations 

(4.2.1.2) that only describe the maximums and minimums are found. Swanepoel had the 

idea to consider these equations as continuous functions of the wavelength. These 

functions 𝑇𝑀 and 𝑇𝑚  are the envelopes of the transmission spectrum and in principle it 

is possible to construct them by using the extremes of interference (see figure 4.2.1.1). 

The interference pattern far from being an annoying effect that doesn’t allow us to 

measure the absorption of the material properly, it becomes an important tool that 

provide us with the necessary information to obtain the optical constants. 

 

Figure 4.2.1.1: Tm and TM curves plotted along with the transmission spectrum. It is possible 
to construct the envelopes properly as long as there are well defined interference fringes. 

 

 𝑇 =
𝐴𝑥

𝐵 − 𝐶𝑥 cos 𝜙 + 𝐷𝑥2
 (4.2.1.1) 
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𝐴 = 16𝑠𝑛2 

𝐵 =  𝑛 + 1 2 𝑛 + 1  𝑛 + 𝑠2  

𝐶 = 2 𝑛2 − 1  𝑛2 − 𝑠2  

𝐷 =   𝑛 − 1 2 𝑛 − 1  𝑛 − 𝑠2  

𝑥 = 𝑒−𝛼𝑑  

(4.2.1.1.a) 

 

 𝑇𝑀 =
𝐴𝑥

𝐵 − 𝐶𝑥 + 𝐷𝑥2
 (4.2.1.2.a) 

 

 𝑇𝑚 =
𝐴𝑥

𝐵 + 𝐶𝑥 + 𝐷𝑥2
 (4.2.1.2.b) 

 

Swanepoel decided to divide the spectrum in three regions, a transparent region, a weak 

and medium absorbing region and one of strong absorption. He did this in order to 

establish a set of equations obtained from the equations (4.2.1.1) and (4.2.1.2) in each 

region for the calculation of the optical constants. We will see later that one set of 

equations is enough to treat the whole spectrum. 

The transparent region is characterized by the fact that the absorption coefficient in this 

region can be approximated to zero 𝛼 ≈ 0, therefore the equations (4.2.1.2) can be 

reduced to the following equations (4.2.1.3). From the equation (4.2.1.3.a) the refractive 

index of the substrate 𝑠 is obtained in the same way as the refractive index of polished 

bulk in the equation (4.1.2), and from the equation (4.2.1.4.b) the refractive index of the 

film is found according to its equivalent form shown in the equation (4.2.1.3.c) with 

𝑀 = 2𝑠/𝑇𝑚 − (𝑠2 + 1)/2. 

 𝑇𝑀 =
2𝑠

𝑠2 + 1
 (4.2.1.3.a) 

 

 𝑇𝑚 =
4𝑛2𝑠

𝑛4 + 𝑛2 𝑠2 + 1 + 𝑠2
 (4.2.1.3.b) 
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 𝑛 =  𝑀 +  𝑀2 − 𝑠2 1/2 
1/2

 (4.2.1.3.c) 

 

In the weak and medium absorption region the absorption coefficient has to be taken 

into account 𝛼 ≠ 0, 𝑥 < 1. Following the Swanepoel method [27], the equations 

(4.2.1.1) and (4.2.1.2) are used to find an expression for the refractive index as a 

function of the envelopes and then solve the equations for the absorption coefficient. 

Let us subtract the reciprocals of the equations (4.2.1.2). The result is shown in the 

equation (4.2.1.4) below. 

 
1

𝑇𝑚
−

1

𝑇𝑀
=

2𝐶

𝐴
 (4.2.1.4) 

 

By substituting the equations (4.2.1.1.a) into the equation (4.2.1.4) and solving for the 

refractive index 𝑛 we find a relation between the envelopes 𝑇𝑚 , 𝑇𝑀, the refractive index 

of the substrate 𝑠 and the refractive index of the film 𝑛 in the equation (4.2.1.5) with 

𝑁 = 2𝑠 𝑇𝑀 − 𝑇𝑚   /(𝑇𝑚  𝑇𝑀  )  +  𝑠2 + 1 /2, this result is equivalent to the result of  the 

reference [28]. 

 𝑛 =  𝑁 +  𝑁2 − 𝑠2 1/2 
1/2

 (4.2.1.5) 

 

Once 𝑛(𝜆) is known, all the constants of equation (4.2.1.1.a) are known and therefore 

the equation (4.2.1.1) can be used to solve 𝑥. There are many ways to solve 𝑥, it is not 

our aim to show each of the possible equivalent solutions for 𝑥 that Swanepoel 

developed, but here we will show one of those ways that Swanepoel developed in his 

paper and that is equivalent to a well known expression usually used in similar studies. 

Let us start with the free interference transmission 𝑇𝛼 , this curve can be calculated from 

the interference fringes by integrating the equation (4.2.1.1) between a maximum and an 

adjacent minimum that is for 𝜙 between 0 and 𝜋. 

 𝑇𝛼 =
1

𝜋
 

𝐴𝑥

𝐵 − 𝐶𝑥 cos 𝜙 + 𝐷𝑥2
𝑑𝜙

𝜋

0

 (4.2.1.6) 
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As suggested by Swanepoel, a narrow integration region where all the parameters are 

taken as constants, the solution of the integral in equation (4.2.1.6) yields to the 

equation (4.2.1.7). 

 𝑇𝛼 =
𝐴𝑥

  𝐵 − 𝐶𝑥 + 𝐷𝑥2  𝐵 + 𝐶𝑥 + 𝐷𝑥2  1/2 
 (4.2.1.7) 

 

Using the equations (4.2.1.2) into the equation (4.2.1.7) we find that the free 

interference transmission is just the geometric mean of the envelopes 𝑇𝑀 and 𝑇𝑚  (see 

equation 4.2.1.8). 

 𝑇𝛼 =  𝑇𝑚𝑇𝑀 (4.2.1.8) 

 

The equation (4.2.1.8) is a useful result in the sense that we can solve the equation 

(4.2.1.7) for 𝑥 as function of the free interference transmission and obtain the free 

interference transmission directly from the constructed envelopes. By solving 𝑥 with the 

equation (4.2.1.7) we obtain, following the notation of Swanepoel, the equation 

(4.2.1.9). 

 𝑥 =
 𝐺 −  𝐺2 −  𝑛2 − 1 6 𝑛2 − 𝑠4 2 1/2 

1/2

 𝑛 − 1 3 𝑛 − 𝑠2 
 (4.2.1.9) 

 

with 

𝐺 =
128𝑛4𝑠2

𝑇𝛼
2

+ 𝑛2 𝑛2 − 1 2 𝑠2 − 1 2 +  𝑛2 − 1 2 𝑛2 − 𝑠2 2  

The equation (4.2.1.9) is equivalent to an expression found earlier by Connel and Lewis 

(1973) [29] (see equations 4.2.1.10) and used in several works related to this kind of 

study [30-33]. 

  𝑥 =
 𝑃 +  𝑃2 + 2𝑄𝑇𝛼 1 − 𝑅2𝑅3  

1/2 

𝑄
 (4.2.1.10.a) 

 

 𝑃 =  𝑅1 − 1  𝑅2 − 1  𝑅3 − 1  (4.2.1.10.b) 



46 
 

𝑄 = 2𝑇𝛼 (𝑅1𝑅2 + 𝑅1𝑅3 − 2𝑅1𝑅2𝑅3) 

𝑅1 =  
1 − 𝑛

1 + 𝑛
 

2

 

𝑅2 =  
𝑛 − 𝑠

𝑛 + 𝑠
 

2

 

𝑅3 =  
𝑠 − 1

𝑠 + 1
 

2

 

 

From the equations (4.2.1.10) and having the free interference transmission 𝑇𝛼 , 𝑥 can be 

calculated, and then to obtain the absorption coefficient from 𝑥 we can use the 

expression in equation (4.2.1.1.a), that is 𝑥 = 𝑒−𝛼𝑑 . Now, for this we need the thickness 

𝑑. It can be calculated from the basic equation of interference fringes, the equation 

(4.2.1.11). 

 2𝑛𝑑 = 𝑚𝜆 (4.2.1.11) 

 

For two adjacent maximums we have two values of the refractive index for the 

corresponding wavelength, and then the equation (4.2.1.11) can be written as the 

equations (4.2.1.12). 

 
2𝑛1𝑑 = 𝑚𝜆1 

2𝑛2𝑑 =  𝑚 + 1 𝜆2 
(4.2.1.12) 

 

Where 𝑛1 is the refractive index for the wavelength 𝜆1 that corresponds to the position 

of one maxima and 𝑛2, 𝜆2  to the adjacent one. By solving the equations (4.2.1.12) for 

the thickness 𝑑 we find the equation (4.2.1.13). 

 𝑑 =
1

2
 

𝜆1𝜆2

𝜆1𝑛2 − 𝜆2𝑛1
  (4.2.1.13) 

 

It is important to remark that the transmission is a function of the wavelength, the 

absorption coefficient, the refractive index, and the thickness 𝑇(𝜆, 𝛼, 𝑛, 𝑑) and also are 

the envelopes 𝑇𝑚 (𝜆, 𝛼, 𝑛, 𝑑) and 𝑇𝑀 𝜆, 𝛼, 𝑛, 𝑑 . In this sense the envelopes complete the 
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system of equations necessary to solve 𝑛, 𝛼 and 𝑑 as functions of the wavelength (the 

thickness is of course a constant). 

In the strong absorbing region the interference pattern disappears and therefore is not 

possible to calculate 𝑛 and 𝑥 separately. Swanepoel suggest to extrapolate the refractive 

index using the values found earlier and therefore calculate the corresponding 

function 𝑥. 

Another useful result of Swanepoel is the curve that passes through the inflexion points 

of the transmission spectrum 𝑇𝑖 , it was found by Swanepoel as a function of the 

envelopes, that is 𝑇𝑖 = 2𝑇𝑚𝑇𝑀/(𝑇𝑚 + 𝑇𝑀). 

In principle, from the envelopes it is possible to use the equations corresponding to the 

weak absorbing region to calculate the optical constants in the whole range as long as 

the envelopes do not become equal, which is in the region where an interference pattern 

is still found. 

 After presenting the Swanepoel’s method, in the following paragraphs we will review 

some problems with it. It is important to note that the Swanepoel’s method cannot be 

applied to every transmission spectrum, although the equations (4.2.1.1) and (4.2.1.10) 

are always valid. 

There are two main problems with the Swanepoel’s method. The first one, the 

envelopes are constructed using the maximums and minimums of the transmission 

spectrum and these extremes are shifted due to the absorption effect in the high energy 

region (see figure 4.2.1.2) and therefore the envelopes constructed will not match the 

true envelopes. The second problem, the envelopes can only be constructed when a 

considerable number of fringes are present in the transmission. This is not the case for 

films with a thickness around 300 nm where the number of extremes is very low and 

therefore there is much space between extremes and the construction of the envelopes 

becomes a difficult matter, (see figure 4.2.1.3). These problems where noted by D. 

Pelman and P. Frederic (2003) [34]. “There is not a 'right' way to construct the 

envelopes between interference fringes. ...”, “The envelopes should ideally be 

constructed from the tangent points touching the transmission curve, not from the 

interference extremes: it is easy to see that, especially in a region where the 



48 
 

transmission is changing fast...”. This issue will be treated in the next section and an 

alternative will be proposed to overcome part of these problems. 

 

Figure 4.2.1.2: Rescaled Tm and TM curves plotted along with the transmission spectrum for a 
film with a thickness of 300 nm. Note how due to the absorption effect the extremes of the 
transmission does not belong to the envelopes, this shift in the extremes does not allow a 
proper construction of the envelopes because the envelope pass through a tangent point. 

 

An important remark is that for applying the Swanepoel method a considerable number 

of interference fringes must appear in the transmission spectrum and this implies at the 

same time a thicker sample (see figure 4.2.1.3), but for thicker samples it is more 

difficult to measure the optical bandgap in the sense that less data of the absorption 

coefficient in the high energy region will be available. As we will see later this 

compromise limits the use of the Swanepoel’s method in our samples. 
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Figure 4.2.1.3: Simulation using two different thicknesses. The thinner film with low number of 
interference fringes will not allow the proper construction of the envelopes, contrary to the 
thicker film. 
 

Manipulation method 

As it was mentioned in the last section, there are two main problems with the 

Swanepoel method. The aim of this section is to propose a solution to overcome part of 

these problems, especially to find the optical bandgap. First we will give an approach of 

how to find a better value of the extremes for building the envelopes in the high 

absorption region. Then we will use a set of equations and propose a recursive routine 

to find the right values of thickness, absorption coefficient and refractive index. 

As we know, in the region of strong absorption it is not possible to use the extremes of 

the transmission to build the envelopes since the extremes do not lay in the envelopes 

(see figure 4.2.1.2), but we can get closer to the right values with the following idea: the 

tangent points or right extremes values that belong for example to the envelope 𝑇𝑀 are 

the extremes of the curve defined by 𝑇/𝑇𝑀. Of course we do not know 𝑇𝑀 yet, but in the 

strong absorption region a curve closer to this one is the curve defined by the inflexion 

points 𝑇𝑖 . To illustrate this idea see the figure (4.2.2.1). 
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Figure 4.2.2.1: In this graph we show the position of the extreme at 550 nm that belongs to 
the transmission but no to the envelope. From the curve defined by 𝑇/𝑇𝑀  the position of the 
extreme at 543 nm that belongs to the envelope is shown, and the extreme from the curve 

defined by 𝑇/𝑇𝑖  at 545 nm is also shown. 

 

In the case shown in the figure (4.2.2.1) for three apparent maximums we have six 

inflexion points to build the 𝑇𝑖  curve and to use it for finding close values of the 

positions of the extremes. 

Even with the right positions of the extremes, the construction of the envelopes in the 

case of films with a low number of interference fringes (that is in our simulation for 

films with a thickness about 300 nm) is a difficult task, because the large separation 

between extremes, and therefore the constructed envelopes will not be always suitable 

to calculate the refractive index. However, with the pseudo-envelopes constructed in 

those cases the calculated 𝑇𝛼  curve is suitable to determine the absorption coefficient. 

This is the starting point of the manipulation method presented in the following 

paragraphs. We will use the envelopes constructed to calculate the 𝑇𝛼  curve. The 

refractive index and the thickness will be parameters to find through a fit. 
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The refractive index can be expressed as a function of the wavelength through the 

Cauchy dispersion formula (see equation 4.2.2.1). The equation (4.2.2.1) is valid for 

most of the range of study. Therefore for the refractive index two constant parameters 

should be found. These parameters 𝑝 and 𝑞 will be manipulated along with the 

thickness d using the equations (4.2.1.10) and (4.2.1).  

 𝑛 = 𝑝 +
𝑞

𝜆2
 (4.2.2.1) 

 

Now, the problem is reduced to find three parameters fitting the equation (4.2.1) to the 

measure transmission using the equations (4.2.2.1) and (4.2.1.10). Due to the 

complexity of the equations it is necessary to give appropriate starting values of these 

parameters to perform a fit. The parameters are manipulated manually (actually through 

a well implemented GUI -Graphic User Interface- or graphic tool). The transmission is 

simulated using the equation (4.2.1) and compared to the measured transmission, the 

parameters 𝑝, 𝑞 and 𝑑 are changed till both the simulated and measured transmission fit 

best. The parameters values found by the manipulation are used as starting values to run 

a fit of the transmission. 

In the material science group of the PUCP we have implemented a program to apply the 

manipulation method already. The variables 𝑝, 𝑞 and 𝑑 are manipulated in Mathematica 

7.0 till both curves match best and then a fitting algorithm is perform. The extremes can 

be found by the method explained before or also given manually. 

We have tested the method in several samples with different compositions and 

thicknesses see figure (4.3.2), i.e. the resulting fit for the measured transmission showed 

in the figure (3.3.1) for a composition of 47% is shown in the figure (4.2.2.2) the fitted 

curve is plotted in red dashed line to compare them. 

 

. 
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Figure 4.2.2.2: Measured transmission spectrum (blue solid line) and the fitted transmission 
(red dashed line) using the manipulation method. The parameters found are d = 356.14 ± 0.13 
nm, p = 2.48 ± .0009,  q= 83329.111 ± .00001 nm-1. The corresponding absorption coefficient 
is shown in figure (4.2.2.3) 
 

 

Figure 4.2.2.3: Absorption coefficient corresponding to the data shown in figure 4.2.2.2. It is 
possible to observe a clear tail between 450 and 900 nm. The region below 350 nm should be 
ignored for further calculations. 
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The manipulation method was tested on the Swanepoel’s simulation, see figures (4.2.1), 

(4.2.2.4) and reference [27]. To test the accuracy of the method a comparison of the 

simulation values with the measured values is shown in table (4.2.2.1). Also the 

comparison of the measured absorption coefficient with the theoretical absorption 

coefficient is shown in the figure (4.2.2.5). 

 

Figure 4.2.2.4: Simulated transmission using a substrate with a refractive index 𝑠 = 1.51, a film 

thickness 𝑑 = 1000 nm, refractive index 𝑛 = 3 × 105/𝜆2  + 2.6 and absorption coefficient 
log 𝛼 = 1.5 × 106/𝜆2  − 8 nm−1, typical values of a-Si:H, values obtained from reference [27]. 
And the fitted curve using the manipulation method, the corresponding parameters values are 
shown in table (4.2.2.1) 
 

Table 4.2.2.1: Comparison between the simulation parameters values from reference [27] and 
the measured values obtained with the proposed manipulation method. 

 Simulation Values Fit results Confidence Interval at 95% 

d 1000 nm 989.16 ± 1.3691 nm [986.47, 991.86] 
p 2.6 2.63 ± 0.0037 [2.623, 2.637] 
q 3x105 nm-1 3.02x105 ± 582.9 nm-1 [3.01 x105,3.03 x105] 
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Figure 4.2.2.5: Corresponding absorption coefficient to the simulation, dashed in red, and 
measured, blue squares. Two different scales are shown. Linear scale: the results seem to fit 
very well with the theoretical curve. Logarithmic scale: it is possible to identify a disagreement 
between the measured and the theoretical curves in the low energy region or low absorption 
region. This is a systematical error that should be taken in to account in the case that a fit on 
the absorption coefficient might be performed. 
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Now that we have a method to obtain the optical constants, it is left to obtain the optical 

bandgap from the absorption coefficient i.e. from the resulting absorption coefficient 

shown in fig (4.2.2.3). For this two common representations of the absorption 

coefficient and a model will be used, therefore three bandgaps corresponding to the 

same sample absorption coefficient are found. This topic will be treated in the next 

section. 

Bandgap determination 

Once the best fit between the measured and the simulated transmission is achieved, the 

absorption coefficient is obtained directly from 𝑥 = 𝑒−𝛼𝑑 . The optical bandgap can be 

determined from the absorption coefficient. It is important to remark that for thicker 

samples less data of the absorption coefficient is available. This feature is illustrated in 

the figure (4.3.1). For our aims the optical bandgap can only be determined if enough 

data of the absorption coefficient is available. 

The compromise is that thicker films have more interference fringes that can be used to 

construct the envelopes properly and to calculate the thickness accurately, but at the 

same time less information of the absorption coefficient is obtained and therefore the 

calculation of the optical bandgap becomes difficult or even impossible. Thinner films 

have less interference fringes, and therefore the calculation of the thickness and the 

construction of the envelopes become a difficult task, but the transmission have 

information closer to the absorption edge and therefore to the fundamental absorption. 

Then the calculation of the optical bandgap is possible. 

In any case, since we are using the manipulation method which only needs the 

envelopes for the calculation of the 𝑇𝛼  curve. The thickness and refractive index are 

taken as variables or parameters to find through a fit. Thus we have chance to apply the 

method to transmission spectrums with a low interference pattern and obtain reliable 

results. In fact this method was used to determine the thickness of pure AlN and pure 

SiC films with a low number interference fringes in the transmission spectrum with the 

aim of determine the emission or deposition rate pattern of the sputtering target 

[24][25]. The advantage of the method in these cases is that is not destructive and the 

films are preserved. 
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Figure 4.3.1: Set of simulated transmission for three different thicknesses a1, b1, c1, and their 
respective absorption coefficients a2, b2, c2. The range of the calculated absorption coefficient 
plotted in squares is reduced along with the increment of the thickness. 
 

We have seen that there are several problems for obtaining the absorption coefficient of 

a thin film deposited in a transparent substrate. But once we have the absorption 

coefficient we have to deal with the representation problem for obtaining the optical 

bandgap. We will use two common representations of the absorption coefficient to 

determine the optical bandgap, the Tauc plot and the  𝛼𝐸 2 plot [2][4][7][17]. Also we 

will propose the use of known but no often used model to make a fit and obtain the 

optical bandgap from it. 
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In the second section of the Chapter II, fundamental absorption in amorphous solids, an 

approach to the calculation of the absorption coefficient of an amorphous solid 

developed by J. Tauc (1968) [7] was presented. It was also mentioned in that section 

that the Tauc representation might not be the better one to determine the optical 

bandgap in all the cases and therefore other representations are typically used in the 

literature [2][17][21][22]. 

The region where the refractive index decrease towards shorter wavelengths is known as 

a region of anomalous dispersion and therefore a Kramers Kronig consistent oscillator 

model to describe it should be used. The imaginary and real parts of the complex 

refractive index 𝑛  = 𝑛 + 𝑖𝑘 are related each other by the Kramers Kronig relations 

(KKRs) shown in the equations (4.3.1) where P is the Cauchy principal value 

[9][22][38].  

 𝑛(𝜔) = 1 +
𝑃

𝜋
 

𝜔′𝑘 𝜔′ 

𝜔′ − 𝜔
𝑑𝜔′

∞

−∞

  (4.3.1.a) 

 

 𝑘 𝜔 = −
𝑃

𝜋
 

𝑛 𝜔′ − 1

𝜔′ − 𝜔
𝑑𝜔′

∞

−∞

  (4.3.1.b) 

 

The region where the refractive index increases towards shorter wavelengths is known 

as a region of normal dispersion. The Cauchy dispersion relation accomplishes a normal 

dispersion and hence the Cauchy-Urbach model can be used to describe the absorption 

coefficient. 

In the Cauchy-Urbach dispersion model the refractive index is described by 𝑛 = 𝐴 +

𝐵/𝜆2 + 𝐶/𝜆4, and the extinction coefficient is modeled by the equation (4.3.2) often 

used in ellipsometic analysis [22]. 

 𝑘 𝜆 = 𝑘0 exp  𝛽 𝑕𝑐  
1

𝜆
−

1

𝛾
    (4.3.2) 

 

The absorption coefficient can be calculated from the extinction coefficient 𝑘 by 

𝛼 = 4𝜋𝑘/𝜆. The absorption coefficient in the energy frame is shown in the equation 

(4.3.3) where the remaining constants coefficients were absorbed by the scale factor 𝛼0. 
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The parameter 1/𝛽 is known as the disorder energy [6][11][12][16][18][19][23], and it 

takes into account the topological and thermal disorder. The parameter 𝐸0 was claimed 

by D. J. Dunstan [18][19] to be a new material constant, however this parameter is just 

the true energy gap between the conduction and valence band edges, thus is 

characteristic of the material itself and it matches the optical bandgap of the material in 

the crystalline state. 

 𝛼 𝐸 = 𝛼0𝐸 exp 𝛽  𝐸 − 𝐸0    (4.3.3) 

 

Nevertheless, the calculation of the optical bandgap following this model can be 

performed as suggested by D. J. Dunstan (who proposed a similar model based on the 

Tauc representation) [18][19] by the fact that the disorder energy reduces the gap 

between the conduction and valence band edges creating tail states below the mobility 

edges. 

 𝐸𝑔 = 𝐸0 − 1/𝛽   (4.3.4) 

 

It is important to note a problem when a fit using the equation (4.3.3) is performed. The 

parameters 𝛼0 and 𝐸0 are linked and therefore the errors of this two parameters became 

large. This is easily seen when taking the natural logarithm of the equation (4.3.3) and 

reordering the terms (see equation 4.3.5). The equation behaves like a straight line, 

except for the ln 𝐸  term, with a slope 𝛽 and intercept  ln 𝛼0 − 𝛽𝐸0  which in a fit is 

a finite value and therefore 𝛼0 and 𝐸0 are linked. 

 ln 𝛼 =  ln 𝛼0 − 𝛽𝐸0 + 𝛽𝐸 + ln 𝐸    (4.3.5) 

 

When fitting a set of data is necessary to fix one of the parameters 𝛼0 or 𝐸0, i.e. for the 

absorption coefficient shown in the figure (4.2.2.3), the evaluation with the Tauc-plot 

the  𝛼𝐸 2-plot and the Cauchy-Urbach model are shown in the figure (4.3.2). We will 

see in the next chapter that the parameters 𝛼0 and 𝐸0 have a more fundamental meaning.  
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Figure 4.3.2: Bandgap determination using the two typical representations Tauc and  𝛼𝐸 2. 
And the fit using the Cauchy Urbach model. The parameter 𝛼0 is arbitrarily fixed at 40400 cm-1. 
𝛽 is not linked to any parameter. 
 

To avoid the problem of fixing one of the parameters arbitrarily 𝛼0 or 𝐸0 in the fit of the 

Cauchy-Urbach model, it is possible to make a global fit as long as enough sets of data 

of the absorption coefficient of the same material and/or sample are available. Then a 

global fit (multiple data set) sharing the parameters 𝐸0 and 𝛼0 can be performed without 

fixing any parameter. 
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This technique was used in a study of pure a-AlN films grown with a Nitrogen 

atmosphere. Various sets of data of the absorption coefficient where obtained using the 

manipulation method proposed in this thesis. The samples where annealed at different 

temperatures and therefore the absorption coefficient with different disorder energies 

were obtained. The resulting bandgaps will be presented in the last chapter. 

Results concerning three samples with different composition and thickness are shown in 

the figure (4.3.3). The obtained optical bandgap for both representations are in apparent 

disagreement, there is not a strict way to prove which of them is the right representation, 

in fact none of them could be the right one. We may find an answer once we plot the 

bandgaps for each representation against the composition. This topic will be treated in 

the next chapter. 

 

Figure 4.3.3: Fitted transmission of three different samples using the proposed manipulation 
method, and their respective representations of the absorption coefficient. The transmission fit 
is plotted at -0.2 to be able to compare it with the measured transmission.  
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Chapter V 

Results and discussion 

A method to obtain the optical constants of thin films deposited on transparent 

substrates was implemented based on the Swanepoel’s method. The improvements 

consist applying the method for the case of films with a low interference fringes in the 

transmission spectrum and therefore obtain information of the absorption coefficient in 

the high energy region of films with a thickness around 300 nm for the calculation of 

the optical bandgap from the fundamental absorption. 

This chapter is divided in two main sections. In the first section results concerning the 

bandgap values for the whole range of compositions of a-(SiC)1-x(AlN)x are shown and 

the dependence of the optical bandgap with the composition is discussed. In the second 

section results concerning the optical bandgap and Urbach tail variation through 

annealing treatments of pure a-AlN films are shown and discussed. 

Bandgap engineering 

As it was mentioned in the last chapter, the determination of the optical bandgap can be 

done by choosing an appropriate representation of the absorption coefficient with the 

photon energy and extrapolating the linear part that appears in the respective 

representation. The fundamental absorption in amorphous films is highly influenced by 

the presence of localized states which appear in the form of band tails discussed in the 

chapter two. They are mainly caused by the intrinsic disorder of the material but can 

also be induced by defects [17]. The determination of the optical bandgap could be very 

difficult or even impossible if the linear part of the fundamental absorption used to 

determine the optical bandgap is significantly reduced by these band tails. For example 

in the figure (2.2.3.3) it seems that there is only information of the absorption 

coefficient in the tail region and probably away from the fundamental absorption and 

therefore after an annealing treatment and a reduction of the tails the optical bandgap is 

no longer able to be calculated since no extrapolation is possible for the  𝛼𝐸 2 

representation. 
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The most common representation of the absorption coefficient for the determination of 

the bandgap for amorphous materials is known as the Tauc-plot [7], where the 

dependence of the absorption coefficient with energy is parabolic: 𝛼 = 𝐶  𝐸 −

𝐸𝑇𝑎𝑢𝑐  2/𝐸 . In this formula, ETauc is the Tauc-gap and represents a measure of the 

optical bandgap. Another commonly used representation is induced by the 𝛼 =

𝐶  𝐸 − 𝐸𝑔 
1/2

/𝐸 dependency, here called the (αhv)
2
 plot [2][22]. Generally both 

methods lead to different bandgap values, indicating that they are only reference values 

of the true mobility edge of the amorphous state. In order to compare our values with 

those in the literature we apply systematically both methods of bandgap extraction as it 

was shown in the figure (4.3.3), the resulting values of the bandgap versus composition 

for samples covering most of the composition range are shown in the figure (5.1.1) 

along with the bandgap values of a-AlN and c-(SiC)1-x(AlN)x obtained from the 

literature. 
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Figure 5.1.1: Optical bandgap versus composition x of a-(SiC)1-x(AlN)x, The Tauc-gap is 

essentially lower than the (αhν)2 gap. The lines are fitting curves to Vegard’s rule of bandgap 

values of either method. The corresponding fitting parameters are shown in Table 5.1.1. 

Different film processes are marked by different symbols (denoted by P#). Bandgap values 

from the literature corresponding to x = 1 are shown. The curve from reference [37] was also 

included. 

 

The bandgaps obtained with both methods follow Vegard’s phenomenological rule, 

which requires a linear relationship between lattice constants in solid solutions and the 

composition x. This accounts for a quadratic dependency of the bandgap on the 

composition x (5.1.1), where b is the bowing parameter, Egap,SiC is the bandgap of pure 

SiC and Egap,AlN the bandgap of pure AlN. 

 𝐸𝑔𝑎𝑝  𝑥 =  1 − 𝑥 𝐸𝑔𝑎𝑝 ,𝑆𝑖𝐶 + 𝑥𝐸𝑔𝑎𝑝 ,𝐴𝑙𝑁 + 𝑏𝑥(1 − 𝑥) (5.1.1) 

 

Bandgaps of films with a higher SiC content showed a higher deviation from the fitted 

curve according to Vegard’s rule. This could be attributed to possible different 

hybridization states of the carbon atom in our films since the sputtering processes were 

slightly different and this may lead to a variation in local structure. 

Table 5.1.1. Fitting parameters of Vegard’s rule (eq. 5.1.1). The bandgap values of a-SiC and 

a-AlN and the bowing parameter b are shown for the Tauc and the (αhν)2 plots and for two 

references. 

 

 Ref[37] Ref[36] Tauc method (αhν)
2
 method 

Egap,SiC [eV] 3.31 3.370.05 1.430.13 2.400.15 
Egap,AlN [eV] 6.42 6.140.06 3.930.17 5.220.21 

b [eV] -6.36 -4.260.3 -4.610.72 -3.110.77 

 

Thin films deposited on glass substrates were annealed up to 500°C and the fit to 

Vegard’s rule was performed for each annealing step considering the Tauc-gap only. 

The resulting behavior is shown in the figure (5.1.2). A significant increase of the Tauc-

gap for samples with a high SiC content is observed. These changes registered in the 

bandgaps might be attributed to a particularly strong reduction of the tail states in the 

rich SiC region. After the last annealing step at 500°C the parameters according to 

Vegard’s rule are: Egap,SiC = 2.13 eV, Egap,AlN = 3.11 eV and b = -2.72 eV. The absolute 

bandgap values match well the ones found earlier. 
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Figure 5.1.2: Tauc-gap versus composition of a-(SiC)1-x(AlN)x thin films deposited on glass 

substrates. The films were annealed up to 500°C and a clear enhancement of the bandgap 

in the higher SiC content region is observed. The Tauc-gap values for x = 1 were taken from 

[17]. 

 

Urbach tail variation 

The significantly change of the bandgap in the SiC region shown in the figure (5.1.2) 

might be attributed to a strong reduction of the band tail states due to the annealing 

treatment. To test this argument, annealing treatments up to 700 °C of a-(SiC)1-x(AlN)x 

samples deposited on MgO substrates were performed. The analyzed compositions were 

of 80% and 4% AlN and the results of the absorption coefficients of each one are shown 

in the figure (5.2.1). 
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Figure 5.2.1: Absorption coefficients for a film with composition x = 80% (a) and for a film 

with a composition x = 4% (b) for three different annealing temperatures. It is possible to 

see the strong reduction of the Urbach tails in the SiC rich case. 

 

After an annealing at 300 °C for 30 min, the obtained absorption coefficient from the 

samples did not present a considerable change, but after 500 °C the variation of the tails 

is considerable in the rich SiC region in comparison with the rich AlN region. This can 

be expressed in terms of the disorder energy 1/𝛽 shown in the inserted graph in the 

figure (5.2.2) where for the AlN rich region an almost linear change is observed, and for 

the SiC rich region a strong change is observed in comparison. 

An explanation to this behavior might be that the amorphous structure in the material as 

grown is in strain due to the short and long bonds consequence of the topological 

disorder. With the annealing treatment the atoms have at certain point enough energy to 

mobilize and therefore a change in the structure is expected. However the structure is 

still amorphous, but less disordered. In this sense we attribute the reduction of the tails 

due to annealing treatments as a reduction of the disorder in an as grown material, in 

agreement with the reduction of the disorder energy shown in the figure (5.2.2). 
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Figure 5.2.2: Absorption coefficients of a-(SiC)1-x(AlN)x at different annealing temperatures 

for two compositions blue triangles x = 0.8 and black squares x= 0.04 and their respective 

disorder energies versus annealing temperatures in the inserted graph. It is possible to see 

how the band tails are significantly reduced in the SiC rich case in agreement with the results 

shown in the figure (5.1.2). 

 

To complement this study we apply the Cauchy-Urbach model. A whole new set of pure 

a-AlN films was evaluated. The absorption coefficient was obtained with the 

manipulation method proposed in this thesis. The bandgap was determined using the 

two common representations and the Cauchy-Urbach model for the absorption 

coefficient. Typical absorption coefficients versus annealing temperatures are shown in 

the figures (5.2.3) and (5.2.4). It is necessary to remark that as reported in [17] the 

annealing treatment generate small pin holes in the samples. These pin holes where a 

problem in some cases for further calculations at temperatures greater than 500°C. 

Like in the case treated before, it is 

possible to observe the reduction 

of the Urbach Tails with the 

annealing treatment for each 

increasing temperature. The 

absorption coefficients were fitted 

by a global fit sharing the 

parameters 𝐸0 and 𝛼0 for each 

sample, the results corresponding 

to this fit are shown in the figure 

(5.2.4). 

The meaning of this parameter’s 

sharing can be understood in the 

following way. First, the parameter 

𝐸0 is in fact a material constant 

that does not depend on the 

structure. Second, both parameters 𝐸0 and 𝛼0 are linked as shown in the equation (4.3.5) 

by the term  ln 𝛼0 − 𝛽𝐸0  being the intercept in the logarithm scale of the absorption 

coefficient and therefore a constant for each absorption curve. By sharing them we are 

 

Figure 5.2.3: Absorption coefficient versus energy for 

each annealing temperature of an a-AlN film with 

thickness 330.04 ± 0.48 nm. The optical constants and 

thickness were found by the Manipulation method 

proposed in this thesis. 
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enforcing that the change of the intercept is only due to a change in the slope and 

therefore all the absorption curves share a point usually called Urbach focus [6][12][16]. 

The Urbach focus is normally obtained directly from the Urbach rule [12]. In our case 

since we are not using the Urbach rule but the Cauchy-Urbach model to fit the 

absorption coefficient, the Urbach focus can be easily found as 𝛼𝑓 = 𝛼0 × 𝐸0 and 

𝐸𝑓 = 𝐸0. In this sense both parameters define the Urbach Focus and it is unique. 

Therefore the global fit is justified since the material has a defined Urbach Focus no 

matter the disorder energy. We do the fit for the absorption coefficients at different 

annealing temperatures corresponding to the same sample in study. 

After the fit, the optical bandgap using the Cauchy-Urbach model can be found by the 

equation (4.3.4). This optical bandgap is in apparent disagreement with the calculated 

bandgaps using the Tauc representation and the  𝛼𝐸 2 representation shown in the 

figure (5.2.5).  The bandgap obtained using the Cauchy-Urbach model can be 

considered as another representation of the true gap. 

This evaluation was performed for several a-AlN samples with a thickness around 300 

nm. The Tauc-gaps of these samples are compared in the figure (5.2.6) with the Tauc 

gap from reference [17]. The resulting bandgaps of four a-AlN samples are shown in 

the figure (5.2.7). 
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Figure 5.2.4: Absorption coefficients versus photon energy corresponding to each annealing 

temperatures. The resulting values from the Cauchy-Urbach model fit are shown. The 

obtained disorder energy is shown in the inset. The value denoted by UF (green star) 

corresponds to the Urbach focus of the absorption coefficients set shown. It is possible to 

observe how the slope in the fundamental absorption is increasing with the annealing 

temperature or disorder (tail) reduction. 
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Figure 5.2.5: Comparison between the Tauc-gap 𝐸𝑇𝑎𝑢𝑐 ,  𝛼𝐸 2-gap 𝐸 𝛼𝐸 2 , and Cauchy-

Urbach-gap 𝐸𝐶𝑈 , versus the annealing temperature corresponding to the absorption 
coefficient shown in the figure (5.2.4) 

 

 
Figure 5.2.6: Tauc-gaps of several samples prepared in our labs, compared with the Tauc-
gaps from reference [17]. The disagreement with the reference [17] might be attributed to 
the amount of data close to the fundamental absorption, our samples where thinner and 
therefore the absorption coefficient data was closer to the fundamental absorption. 
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Figure 5.2.7: Comparison between the three different methods for obtaining the optical 

bandgap of four a-AlN thin films with thicknesses around 300 nm. 

 

Conclusions 

A method to determine the optical constants of thin amorphous films with a low 

interference transmission spectrum was developed and implemented. This method was 

used to determine the optical bandgap of a-(SiC)1-x(AlN)x thin films for compositions in 

the whole range. The enhancement of the optical bandgap and the reduction of the band 

tails due to annealing treatments were studied. The mean value of the obtained Urbach 

focus of pure a-AlN films is  𝛼𝑓 = 96775.81 ± 3178.46 cm−1 and  𝐸𝑓  = 6.17 ±

0.03 eV. The 𝐸𝑓  value corresponds to the bandgap of the material in the crystalline 

state. 

The results of this work were published in [3][4][5]. The developed method was used to 

determine the thickness of several samples in order to determine the deposition rate 

pattern of the magnetrons without damaging the samples and the corresponding results 

were published in [24][25]. 
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