
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ 

ESCUELA DE POSGRADO 

On the fundamental absorption of amorphous semiconductors 

Student: 

Jose Ruben Angulo Abanto 

Advisor: 

Mg. Jorge Andrés Guerra Torres 

Committee: 
Dr. Roland Weingärtner 

Dr. Jan Amaru Palomino Töfflinger 

Lima, February 2016 



Abstract 

The present thesis reviews different models that describe the fundamental absorption of 

amorphous semiconductors. These models make use of the electronic density of states to 

shape the absorption coefficient in the fundamental absorption region. The study focuses 

on the optical absorption of hydrogenated amorphous Silicon (a-Si:H), hydrogenated and 

non-hydrogenated amorphous silicon carbide (a-SiC:Hx), and silicon nitride (a-SiN) thin 

films. On the one hand, parameters like the Tauc-gap and Urbach energy are obtained from 

the absorption coefficient using the traditional models. On the other hand, a recently 

proposed model based on band thermal fluctuations was assessed [1]. This model allows a 

determination of the mobility gap and the Urbach energy from a single fit of the absorption 

coefficient without the need of identifying the Tauc region beforehand. Furthermore, it is 

able to discriminate the variation of the Urbach energy from the bandgap. The results 

allow the evaluation of the aforementioned parameters with annealing treatments at 

different temperatures. The mobility edges are insensitive to the structural disorder by at 

least one degree lower than the Urbach energy. This work demonstrates that it is possible 

to obtain the mobility edge through this model. In addition, the measured Tauc-gap and 

Urbach energy exhibit a strong linear correlation following the Cody model for all three 

materials. Finally, the Urbach focus concept is evaluated and estimated under different 

analysis.  
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Resumen 

En la presente tesis se revisan los diferentes modelos que describen la absorción 

fundamental de los semiconductores amorfos. Estos modelos hacen uso de la densidad de 

estados electrónicos para la forma del coeficiente de absorción en la región fundamental de 

absorción. El estudio se centra en la absorción óptica de películas delgadas de silicio 

amorfo hidrogenado (a-Si:H), carburo de silicio hidrogenado y sin hidrogeno amorfo a-

SiC:Hx y nitruro de silicio amorfo a-SiN. Se obtuvieron parámetros como el Tauc-gap y la 

energía Urbach. Luego, se probó un modelo propuesto recientemente que considera las 

fluctuaciones térmicas de la banda. Este modelo permite determinar la brecha de los 

bordes de movilidad y la energía Urbach aplicando un solo ajuste del coeficiente de 

absorción sin la necesidad de la identificación de la región Tauc y Urbach de antemano. 

Además, es capaz de discriminar la variación de la energía de Urbach en banda prohibida. 

Los resultados permiten la evaluación de los parámetros antes mencionados, con el 

recocido de los tratamientos a diferentes temperaturas. Tomando ventaja que los bordes de 

movilidad deben permanecer insensible al desorden estructural (al menos en un grado 

menor que la energía Urbach) este trabajo demuestra que es posible obtener el borde 

movilidad a través de este modelo. Además, la medida Tauc-gap y la energía Urbach 

mostraron una fuerte conexión reproduciendo la relación lineal de Cody para los tres 

materiales. Por último, el concepto del foco Urbach se evalúa y se estima por diferentes 

análisis como son: ajuste global, relación lineal de Cody, análisis de Orapunt y nuestra 

aproximación. 
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1. Introduction  

Knowledge of the absorption coefficient is especially important in the design and analysis of 

solid state devices. In this sense, the optical absorption in amorphous semiconductors has been 

one of the central objectives to understand the electronic processes [2][3]. The analysis of optical 

data of amorphous semiconductors is usually subjected to unsuitable models. For instance, the 

Tauc-model does not take into account tail-tail and band-tail electronic transitions. Tail states in 

amorphous semiconductors overlap on the fundamental absorption region. Therefore, the 

possibility to obtain information from the absorption coefficient on the optical bandgap and 

electronic density of states is often overlooked [4]. Thereby, the aim is to develop an 

understanding of the optical response of amorphous semiconductors over the fundamental 

absorption spectral range. 

In 1953, Urbach showed experimentally an exponential tail absorption that increased with the 

incident photon [6]. Additionally, in 1966, Tauc et. al. studied the optical properties of 

amorphous germanium [5]. In his study Tauc proposed a simple model for the fundamental 

absorption of amorphous semiconductors. Since then, a large number of amorphous 

semiconductors has been studied under the Urbach and Tauc models [7]. Then, most empirical 

density of states models have been built upon disordered semiconductor phenomenology [8][9]. 

Other models follow the assumption that a disordered material can be studied as an ordered one 

at high temperature (frozen phonon model) [1][10][11]. Here, our goal is to establish a clear 

characterization of the optical absorption spectrum by different analysis. It have been included 

the classical models, Tauc and Urbach, and a new one herein named Guerra’s model [1][12]. 

This work focuses on studying the optical properties of three relevant materials, which present a 

variation of the disorder degree after annealing treatments. The first material is hydrogenated 

amorphous silicon (a-Si: H). This material is used in several applications, such as active matrix 

displays [13], thin film transistors [14], photodiodes [15] and heterojunction solar cells [16][17]. 
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The second material is hydrogenated amorphous silicon carbide (a-SiC: Hx). This material is of 

interest for several electronic applications [18]. For instance: in optoelectronic devices, such as 

heterojunction solar cells [19], devices for light emission [20], thin film transistors [21] and 

photodiodes [22][23]. The third material is silicon nitride. This material has been used in the 

design of advanced solar cells [24]. Furthermore, it can be used as protective overcoats on 

magneto optical films. Moreover, SiN thin films play an important role for the passivation of 

silicon [25]. 

The present thesis is organized in the following manner. In sections 2.1 and 2.2, it introduces the 

optical absorption by electronic processes in the crystalline case. Thereby, it studies the structure 

and highlights the main differences of the amorphous case. The objective is to review briefly 

how the optical response of amorphous materials behaves by measuring the optical absorption 

coefficient and studying its variations after annealing treatments. In section 2.3,  a brief review of 

the empirical density of states models, that have been developed for the analysis of the optical 

properties of disordered semiconductors, is presented [10]. The new model proposed by Guerra 

et al[1] is shown and deliver some insights on the Urbach focus concept. Finally, in the section 3, 

a comparison is performed between the new model with the traditional ones.  
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2. Fundamental theory 

2.1 Background 

The quantum mechanics allow us understanding the properties of semiconductors. To begin, 

some of the most basic concepts and principles will be introduced that allow us to recognize and 

describe the optical absorption process. In this way, it is instructive to start with the crystalline 

structure. Thenceforth, the Bloch’s theorem can be deduced taking advantage of the periodical 

arrangement of atoms. On the other hand, the main feature in amorphous is that there is no long 

range periodicity. Finally, the different approaches to shape the electronic density of states for 

the quasifree electron case in order to understand and model the absorption process is 

considered. 

 

2.1.1 Crystals  

The physical properties of any material are linked to the solid state structure and the electronic 

process that take place under certain excitations. A crystalline solid is a large group of atoms that 

bond one another so as to confine the atoms to a definite volume of space. Additionally, the 

crystal presents a periodic array of atoms or ions throughout the whole solid [26]. Formally, it is 

applied the concept of unit cell and a set of vectors R (lattice vectors). Now, by translation 

operators, it is able to generate the crystalline lattice (see Figure 2.1). The lattice vectors are 

given by 

𝑅 = 𝑎1𝑎⃗ + 𝑎2𝑏⃗⃗+𝑎3𝑐 

Where 𝑎⃗, 𝑏⃗⃗, 𝑐 are the linearly independent vectors, 𝑎1, 𝑎2, 𝑎3 are number positive or negative and 

integer values. An ideal crystal has infinite translation symmetry in all three dimensions and as a 

consequence, it presents a long range order. 
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Figure 2.1 A schematic depiction of the distribution of atoms or ions within equilibrium position in an ideal 

crystal 

In one sense, the atoms have a regular array and in their equilibrium positions. However, at any 

given temperature, the atoms may vibrate with small amplitudes about their fixed equilibrium 

positions. It has been considered only perfect crystalline solids, but defects and the temperature 

effect will be introduced later for modeling amorphous materials by perturbation of the 

equilibrium position. 

2.1.2 Bloch’s theorem  

The Bloch theorem is a consequence of the periodicity of the crystalline lattice [27]. Electrons 

and holes can be described by wavefunctions which are extended in space with quantum states 

defined by the momentum k. The Bloch function is the product of an envelope function (𝑒𝑖𝑘.𝑟), 

that describes the global behavior, and a unit cell function (𝑢𝑘) [28]. 

│𝑟, 𝑘⟩ = 𝑢𝑘(𝑟)𝑒
𝑖𝑘.𝑟 Equation 2.1 

Where 𝑢𝑘(𝑟) = 𝑢𝑘(𝑟) + 𝑢𝑘(𝑟 + 𝑅), it is periodic. Thereby, it has the fundamental translational 

symmetry of the crystal. Bloch’s theorem tells us that it is possible always choose the crystalline 

wave functions to be not localized. 
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2.1.3 Amorphous structure 

An ideal crystal presents an atomic arrangement that has infinite translation asymmetry in all 

three dimensions. On the contrary, amorphous materials, exhibit a lack of order in their atomic 

structure. In consequence, the wave vector k is no longer a good quantum number, thereby the 

energy bands cannot be described by the E-k dispersion relation. Nevertheless, the short range 

order is still present. Hass and Ehrenreich have shown that both, amorphous and crystalline, 

structures have the same local symmetry [29]. Now, there are different theoretical approaches to 

model the optical properties in amorphous materials [4].  

A real crystal presents a finite size and different types of defects such as vacancy, interstitial and 

dislocation in the network. Which means that in a real crystal the translation symmetry is not 

fully kept [30]. On the other hand, amorphous materials present: dangling bonds, different bond 

length, bond angles and it presents different coordination numbers at individual atomic sites, see 

Figure 2.2.  

 

Figure 2.2 Amorphous structure 

The disordered structure has the effect to cause scattering causing wavefunction misses the phase 

coherence over a distance due that the potential is not periodic and results in small perturbation 

the wave function of electronic state then in amorphous materials are present extended state and 

localized state. In section 2.3 will be discussed 
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2.1.4 Density of states in the quasifree-electron approximation 

The density of states give us another starting point for discussing the solid state properties. An 

electron in a solid presents a little different from a free electron since between the valence 

electron and network present the weakly interaction. Then, it is convenient to assign a quasifree 

electron with effective mass 𝑚∗, it is a definition using the host matrix atoms with periodic 

potential. According to quantum mechanics the Schrödinger’s equation 

−
ℏ2

2𝑚∗
∇2│𝑟, 𝑘⟩ = 𝐸│𝑟, 𝑘⟩ Equation 2.2 

Here ℏ is thePlanck’s constant, │𝑟, 𝑘⟩is the wavefunctions associated an electron,  ∇2 represents 

the mathematical operator 
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
, the wavefunctions associated an electron │𝑟, 𝑘⟩ =

√𝑉
−1
exp (𝑒𝒌. 𝑟), and following procedure for the solution of Schrödinger’s equation and defined 

the density of state as is the number de states per energy per volume. It could be written the 

density of states in the quasifree electron approximation [28] 

𝐷(𝐸) = √2
𝑚∗3/2

𝜋2ℏ3
(𝐸)1/2 Equation 2.3 

If the spin of electron was included, the Equation 2.3 is then multiplied by 2. It is important to 

mention that the Equation 2.3 is most often used with Fermi–Dirac distribution, 𝑓(𝐸𝑐), which 

express the average number of electrons per state at a determinate temperature 𝐷 (𝐸) ×

𝑓(𝐸𝑐)𝑑𝐸. 

In the formation of energy bands is a consequence of bonding and anti-bonding orbitals states. 

Under the quasifree electron approximation (section 2.1.4), the density of states for valence and 

conduction band, can be written as [28]: 

𝐷𝑐(𝐸𝑐) = √2
 𝑚ℎ

∗ 3/2

𝜋2ℏ3
√𝐸𝑐 − 𝐸𝑐(0) 

Equation 2.4 

 
𝐷𝑣(𝐸𝑣) = √2

 𝑚𝑒
∗3/2

𝜋2ℏ3
√𝐸𝑣(0) − 𝐸𝑣 

Here  𝑚𝑒/ℎ
∗  is the hole and electron effective mass, respectively. 𝐸𝑐(0) and 𝐸𝑣(0) are arbitraries 

constants. Figure 2.3 depicts the two bands separated by an energy gap 𝐸𝑔 = 𝐸𝑐(0) − 𝐸𝑣(0).  
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Figure 2.3 (a) Bonding and anti-bonding state, (b) Density of state in valance and conductions, under the 

quasifree electron approximation 

 

Finally, the existence of energy bands is not a consequence of the translational symmetry nor the 

fact that they are separated by an energy gap. Additionally, the energy gap depends on the inter-

atomic distance [31]. 

2.2 Fundamental absorption in crystalline semiconductors 

The fundamental absorption edge contains information of the electronic structure of the material. 

Therefore, the purpose of this section is to review the fundamental absorption calculation in the 

crystalline case. The optical properties of solids are associated to the interaction of solids with 

electromagnetic radiation whose wavelength ranges from the infrared to the ultraviolet. There are 

several processes involved in absorption. The optical absorption in the UV-VIS-NIR is mainly 

due to electronic transitions between the valence and conduction bands of semiconductors. To 

begin, the absorption process is studied by perturbation theory. Then, the electromagnetic field is 

described by a vector potential 𝑨 and the scalar potential 𝝓. In this sense, the Hamiltonian is 

written as:  

Η =
1

2𝑚
[𝑝 + 𝑒𝑨]2 − 𝑒(𝝓 + 𝑉) Equation 2.5 
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Here, 𝑒 is the electron charge, 𝑝 is the electron momentum, 𝑚 is the electron mass and V is the 

potential in absence of an electromagnetic field. Moreover, the Coulomb gauge to describe the 

electromagnetic field, that is 𝜙 = 0, ∇.𝐴 = 0, and the electric and magnetic field are given by 

𝐸 = −
𝛿𝐴

𝛿𝑡
 , 𝐵 = ∇ × 𝐴   Equation 2.6 

Then, expanding Equation 2.5 and making an approximation such as it was ignore the quadratic 

terms in 𝐴, they are normally small compared to the linear terms in 𝐴. Additionally, the Coulomb 

gauge can be commuted, [p. 𝐴] = 0, ∇. 𝐴 = A. ∇. Thereby, the Hamiltonian can be written: 

Η =
1

2𝑚
𝑝2 − 𝑒𝑉 +

𝑒

𝑚
𝐴. 𝑝 Equation 2.7 

Now, Fermi’s golden rule was taken into account, then, the transition probability from the 

valance and conduction band by photon absorption per unit time per unit volume due to 

perturbation of the photon energy incident on the solid, Η𝐸𝑅. Then, the rate becomes[31]  

𝑅𝑐𝑣 =
2𝜋

ℏ
(
𝐄 𝑒

2𝜔𝑚𝑒
)
2

∑ |𝑀𝑐𝑣|
2𝛿(𝐸𝑐 − 𝐸𝑣 − ℏ𝜔)𝛿𝑘𝑐 ,𝑘𝑣

𝑘𝑐 ,𝑘𝑣

 Equation 2.8 

Where 𝑚𝑒 is the electron mass, 𝑒 the electron charge, 𝜔 the photon frequency, 𝐸𝑐and 𝐸𝑐 are the 

electron energy, 𝒌𝒄 and 𝒌𝒗the electron wave vector at the conduction and valence states. 

Transition matrix element in dipole approximation given by |𝑀𝑐𝑣|𝑒/𝑚𝑒 = 〈𝑐|𝐻𝑒𝑅|𝑣〉  

 

2.2.1 Direct and indirect materials 

Let us now look the absorption coefficient using the Equation 2.8. In this sense, the power per 

unit volume lost is related the transition probability per unit volume 𝑅 multiplied by the energy 

of each photon energy 𝜔ℏ. Additionally, the intensity of incident beam I decrease with the rate 

−𝑑𝐼/𝑑𝑡. Then, the power ratio loss equal: 

𝑅𝜔ℏ = −
𝑑𝐼

𝑑𝑡
 Equation 2.9 
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For the case of light normally incident on a materials and in the absence of any reflection (see 

Figure 2.4). Light attenuation in intensity as it propagate through a material. For monochromatic 

light, in intensity of light diminishes exponentially as it pass through a material. Then, the 

Lambert-Beer law is given by 

𝐼 = 𝐼0𝑒
−𝛼𝑥 Equation 2.10 

Where 𝐼0 denotes the intensity at the surface of the material, 𝛼 is the optical absorption 

coefficient.  

This coefficient describes the rate at which this exponential attenuation occurs and analysis the 

optical response of these materials when variation of the photon energy. Our study center in 𝛼 

being that allows for the quantitative prediction of the device performance. In reference to the 

Equation 2.10 is given by 

 

Figure 2.4 Light normally incident on a material 
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−
𝑑𝐼

𝑑𝑡
= −(

𝑑𝐼

𝑑𝑥
) (
𝑑𝑥

𝑑𝑡
) =

𝑐

𝑛
𝛼𝐼 ⟹  𝑅𝜔ℏ =

𝑐

𝑛
𝛼𝐼 Equation 2.11 

Furthermore, the intensity, I, can be related to the field amplitude by 

𝐼 =
𝑛2

8𝜋
|𝐸(𝜔)|

2
 Equation 2.12 

The power loss from the field can also be expressed in terms of absorption coefficients α. Then, 

from the Equation 2.8, Equation 2.11 and Equation 2.12  

𝛼 =
ℏ

4𝜋𝜖0𝑛𝑐
(
2𝜋𝑒

𝑚𝑒
)
2 1

ℏ𝜔
∑ |𝑀𝑐𝑣|

2𝛿(𝐸𝑐 − 𝐸𝑣 − ℏ𝜔)𝛿𝑘𝑐 ,𝑘𝑣
𝑘𝑐 ,𝑘𝑣

 Equation 2.13 

Where |𝑀𝑐𝑣|
2 varies slowly with the photon energy, 𝛿 relate with the energy conservation and 

momentum in direct absorption process. Furthermore, the summation over the vector k can be 

written as a summation over the energy due to energy bands dispersion relation. These 

summation can be also calculated by the density of states [31] 

∑=

𝑘

∑⟹

𝐸

∫𝐷(𝐸)𝑑𝐸 
Equation 2.14 

 Notice for direct optical transition,  𝑘𝑐 = 𝑘𝑣 or 𝛿𝑘𝑐 ,𝑘𝑣 = 1. See Figure 2.5. it is defined 𝐸𝐶𝑉 as 

𝐸𝐶𝑉 = 𝐸𝑔 +
ℏ2𝑘2

2𝜇
 Equation 2.15 

Where 𝐸𝐶𝑉 = 𝐸𝐶 − 𝐸𝑉, 𝐸𝑔 is the optical bandgap, and 𝜇 the reduced mass, 𝜇−1 = 𝑚𝑒
−1 +𝑚ℎ

−1. 

the Joint density of state JDOS is introduced as 

𝐽(𝐸𝑐𝑣) = √2
𝜇3/2

𝜋2ℏ3
√(𝐸𝑐𝑣 − 𝐸𝑔) 

Equation 2.16 

The matrix element change slowly with k and the Joint density state per unit volume to represent 

a summation over the energy. 

𝛼 =
ℏ

4𝜋𝜖0𝑛𝑐
(
2𝜋𝑒

𝑚𝑒
)
2 1

ℏ𝜔
|𝑀𝑐𝑣|

2∫𝐽(𝐸𝑐𝑣)𝛿(𝐸𝑐𝑣 − ℏ𝜔)𝑑𝐸𝑐𝑣 Equation 2.17 

Therefore, after integrating the Equation 2.17 the absorption coefficient for direct transitions is 

given by 
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𝛼𝑑𝑖𝑟
(ℏ𝜔) = 𝑀𝑑𝑖𝑟

1/2 (ℏ𝜔 − 𝐸𝑔)
1/2

ℏ𝜔
 Equation 2.18 

Where 𝑀𝑑𝑖𝑟 contains all other constants. In contrast, for the case of indirect transition, the 

phonon assistance is considered ( 𝑘𝑐 ≠ 𝑘𝑣), In such case, the maximum energy of the valence 

band and the minimum energy of the conduction band do not appear at the same k vectors, one 

has what is called an indirect bandgap semiconductor, see Figure 2.5. Moreover, the Fermi’s 

Golden rule for indirect transitions look a bit different. The electronic transition matrix element 

includes the phonons.   

The indirect process as a two process in which the electron absorbs a photon and changes state 

then absorbs or emits a phonon.  

2.3 Fundamental absorption in amorphous semiconductors 

In a crystalline semiconductor, the conduction band and valence band distributions of states 

terminate clearly at their respective band edges. This leads to a well-defined bandgap (the 

minimum necessary energy to excite an electron from band to band, section 2.2.1. On the 

contrary, in an amorphous semiconductor, the distributions of conduction band and valence band 

states do not terminate clearly at the band edges, instead, the distributions of states invade into 

 

Figure 2.5Direc and indirect transition showing the most probable transitions 
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the gap region. These states arise as a consequence of the disorder which characterizes these 

materials. The tail states  are often associated as: variations in the bond lengths, bond angles, 

defects intrinsic, dangling bonds and vacancies [32]. Moreover, in the disorderless case, the 

wavefunctions are associated with the extended states, which are extended throughout the entire 

of the volume of the crystalline materials. In contrast, the tails are localized states. That is, the 

wavefunctions are confined to a small volume. The border region between the localized states 

and the delocalized states is called the mobility edge. A schematic representation of the 

electronic DOS distribution is plotted in Figure 2.6. 

 

The aim of the present thesis is to review existing models and to test a new model to describe the 

optical absorption coefficient. Figure 2.7 exhibits the typical shape of the absorption coefficient 

in the UV-VIS-NIR spectral region. It presents three principal zones: the very low absorption 

region arises from transitions involving defect states within the gap. In contrast, the mid 

absorption region exhibits an exponential behavior. This region is known as Urbach region, it 

arises from tail states. Finally, the strong absorption edge correspond to the fundamental 

absorption or Tauc region and corresponds to the band-to-band electronic transitions. 

 

Figure 2.6 Schematic representation of the distribution of electronic states associated with a) Ideal crystalline, b) 

amorphous materials. The wavefunction associated localized state, in tail, and extended state are represented 

bellow. 
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Figure 2.7 Three principal regions of the optical absorption in an amorphous semiconductor 

 

In order to study the optical properties associated with amorphous semiconductors, from the 

absorption coefficient spectra. As it was seen previously, the shape of the absorption coefficient 

is directly related to the shape of the electronic density of states. Typically, in order to model the 

fundamental absorption of amorphous materials different models of the density of states have 

been developed. Here a brief review of these models is presented. First with the Tauc model 

because it introduces the bases in amorphous materials. In this case, the conservation of 

momentum does not apply to optical transition since the long-range order is not present and k is 

not a good quantum number. Additionally, it is important to remark that in the amorphous case a 

direct or indirect transition cannot distinguished.  
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2.3.1 Review of the electronic density of states models  

The dependence of the absorption coefficient with the photon energy contains information of the 

electronic structure. Besides, the shape of the valance and conduction bands play a determining 

role on the optical absorption coefficient. In this sense, many authors proposed empirical models 

for valence and conduction band-edge in amorphous materials. Brief summaries of these models 

have been included. Different interpretation about the density of states and the empirical models 

will be given. 

In 1966, Tauc et. al. [5] studied the optical properties of amorphous germanium. In this study 

Tauc proposed a simple model for density of state of amorphous semiconductors (see Equation 

2.19).Tauc proposed to relax the conservation of momentum k. Furthermore, Tauc considered 

that the atomic arrangement in an amorphous solid as a perturbed lattice of the corresponding 

crystal and assumed that the density of states are the same in valance and conduction bands [5] 

𝐷𝑣(𝐸) = 𝐶1 {
0, 𝐸 > 𝐸𝑣

√𝐸𝑣 − 𝐸, 𝐸 ≤ 𝐸𝑣
 

Equation 2.19 

𝐷𝑐(𝐸) = 𝐶2 {
√𝐸 − 𝐸𝑐, 𝐸 ≥ 𝐸𝑐

0, 𝐸 < 𝐸𝑐
 

Here 𝐶1, 𝐶2 are constants, 𝐸𝑣, 𝐸𝑐 are the valance and conduction band edges. This model has 

been widely used to find the optical bandgap in amorphous materials. The optical bandgap 

calculation will be discussed in section 2.3.3. Furthermore, O’Leary et al [33] proposed a 

generalization of the Tauc model by introducing the disorder characteristics of amorphous 

semiconductors through fluctuations around band edges as an average with a Gaussian 

distribution. 

In 1980, Chen [8] investigated the thermalization gap ET in hydrogenated amorphous silicon by 

photoluminescence excitation. In this work, they found for the emission of photons with an 

energy lower than the thermalization gap (<1.8 eV) by electron-hole radiative recombination and 

with a red-shifted in the spectrum. Chen et. al [8] constructed an empirical model by introducing 

an exponential density of states in the valance band for 𝐸 > 𝐸𝑣. Additionally, Chen applied the 

Tauc model for   𝐸 ≤ 𝐸𝑣. 
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𝐷𝑣(𝐸) = {
𝐶1exp (

𝐸𝑣 − 𝐸

𝜃𝑣
) , 𝐸 > 𝐸𝑣

𝐶2√𝐸𝑣 − 𝐸𝑡 − 𝐸, 𝐸 ≤ 𝐸𝑣

 

Equation 2.20 

𝐷𝑐(𝐸) = 𝐶3 {
√𝐸 − 𝐸𝑐, 𝐸 ≥ 𝐸𝑐

0, 𝐸 < 𝐸𝑐
 

Here 𝐶1, 𝐶2and 𝐶3 are constants, 𝐸𝑣, 𝐸𝑐 are the valance and conduction band-edges, respectively. 

Chen et. al. concluded that in hydrogenated amorphous silicon, it is possible to define three 

energy gaps. The thermalization gap by excitation photoluminescence ET, the optical gap by the 

Tauc model and the mobility gap. 

 

Figure 2.8 The empirical model of density of states considered by Chen et. al [8] 

In 1982, Redfield [9] investigated the absorption edge of a-Si:H and found that the drift mobility 

of electrons and holes presented two band tails in the gap. They inferred that the energy 

dependence of both, valance and conduction bands tails, is exponential. Redfield considered 

three possible optical transitions: i) valence band to tail state in the conduction band, ii) valence 

band tail to the conduction band tail and iii) the valence band tail to the conduction band. 

However, it assumes horizontal distributions of valance band for 𝐸 ≤ 𝐸𝑣 and conduction band 

for 𝐸 ≥ 𝐸𝑐. 
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𝐷𝑣(𝐸) = 𝐶1 {
exp (

𝐸𝑣 − 𝐸

𝜃𝑣
),   𝐸𝑣 < 𝐸 < 𝐸𝑐

1,  𝐸 ≤ 𝐸𝑣

 

Equation 2.21 

𝐷𝑐(𝐸) = 𝐶2 {

1, 𝐸 ≥ 𝐸𝑐

exp (
𝐸𝑣 − 𝐸

𝜃𝑐
),    𝐸𝑣 < 𝐸 < 𝐸𝑐

 

Here 𝐶1 and 𝐶2 are constants, 𝐸𝑣and 𝐸𝑐 are valance and conduction band edges, 𝜃𝑣 and 𝜃𝑐 

breadth of the valence and conduction tail. It is possible that breadth of the valence tail is equal 

to breadth of the conduction tail. The effect of these breadths are usually overlapped in the 

Urbach tail observed in the absorption coefficient. 

 

Figure 2.9 The empirical model of density of states considered by Redfield et. al. [9] 

In 1984, Cody et. al. [34] introduced an exponential tail absorption by modifying the valance 

band edge (see Equation 2.22). Following the ideas of Chen et. al [8]. Furthermore, they 

considered that the parabolic and exponential density of states are continuous in the mobility 

energy 𝐸𝑣 −
3𝜃𝑣

2
 which denotes the transition point between square-root and linear-exponential 

distributions of states. They considered electronic transitions between valence band to 

conduction band and valence band tail to conduction band. 
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𝐷𝑣(𝐸) = 𝐶1

{
 
 

 
 
√
3𝜃𝑣
2
exp (−

3

2
) exp (

𝐸𝑣 − 𝐸

𝜃𝑣
) , 𝐸 > 𝐸𝑣 −

3𝜃𝑣
2

√𝐸𝑣 − 𝐸, 𝐸 ≤ 𝐸𝑣 −
3𝜃𝑣
2

 

Equation 2.22 

𝐷𝑐(𝐸) = 𝐶2 {
√𝐸 − 𝐸𝑐 , 𝐸 ≥ 𝐸𝑐

0, 𝐸 < 𝐸𝑐
 

Here 𝐶1, 𝐶2 are constants, 𝐸𝑣and 𝐸𝑐 were defined previously, 𝜃𝑣 is the breadth of the conduction 

tail. Certainly, Tauc was able to associate the absorption edge with fundamental features in 

amorphous semiconductors. Cody model is accurate with the interpretation of the energy 

dependence of the absorption spectrum of a-Si:H.  

 

Figure 2.10 The empirical model of density of states considered by Cody et. al. [34] 

Cody et. al.[34] considered two gaps, the bandgap 𝐸𝐺 = 𝐸𝑐 − 𝐸𝑣 and the mobility gap 𝐸𝐺
𝑀, which 

depends of the disorder degree.  

In 1997 O’leary et. al. [10] presented an elementary empirical model for the distribution of 

electronic density of states, focusing on the one-electron density-of-states, square-root 

distributions, and introduce an empirical exponential model for tail absorption region. They 

consider both regions to be continuous and all transitions to be possible. 
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𝐷𝑣(𝐸) = 𝐶1

{
 
 

 
 
√
𝜃𝑣
2
exp (−

1

2
) exp (

𝐸𝑣 − 𝐸

𝜃𝑣
) , 𝐸 > 𝐸𝑣 −

𝜃𝑣
2

√𝐸𝑣 − 𝐸, 𝐸 ≤ 𝐸𝑣 −
𝜃𝑣
2

 

Equation 2.23 

𝐷𝑐(𝐸) = 𝐶2

{
 
 

 
 √𝐸 − 𝐸𝑐, 𝐸 ≥ 𝐸𝑐 +

𝜃𝑐
2

√
𝜃𝑐
2
exp (−

1

2
) exp (

𝐸𝑐 − 𝐸

𝜃𝑐
) ,    𝐸 < 𝐸𝑐 +

𝜃𝑐
2

 

Here 𝐶1, 𝐶2 are constants, 𝐸𝑐 +
𝜃𝑐

2
 and 𝐸𝑐 −

𝜃𝑐

2
 represent the mobility edges of the conduction and 

valence bands, respectively (see Figure 2.11). Furthermore, in the disorderless limit (𝜃 → 0 ) the 

conduction and valence band function terminate abruptly which corresponds to the case in the 

absence of disorder. 

`  

Figure 2.11 The empirical model of density of states considered by O’leary[10] 
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In 1998 Jiao et. al. [35] considered similar density of states that O’Leary et. al. [10].  The main 

difference is that Jiao assumed that the exponential tail states intersect the parabolic extended 

states at the energies 𝐸𝑣𝑇, 𝐸𝑐𝑇, see Figure 2.12, for the conduction and valence bands, 

respectively.  

𝐷𝑣(𝐸) = 𝐶1 {
√𝐸𝑣 − 𝐸𝑣𝑇exp (

𝐸𝑣𝑇 − 𝐸𝑣
𝜃𝑣

) exp (
𝐸𝑣 − 𝐸

𝜃𝑣
) , 𝐸 > 𝐸𝑣𝑇

√𝐸𝑣 − 𝐸, 𝐸 ≤ 𝐸𝑣𝑇

 

Equation 

2.24 

𝐷𝑐(𝐸) = 𝐶2 {
√𝐸 − 𝐸𝑐, 𝐸 ≥ 𝐸𝑐𝑇

√𝐸𝑐𝑇 − 𝐸𝑐exp (
𝐸𝑐 − 𝐸𝑐𝑇
𝜃𝑐

) exp (
𝐸 − 𝐸𝑐
𝜃𝑐

) , 𝐸 < 𝐸𝑐𝑇
 

Here 𝐶1, 𝐶2 are constants, 𝐸𝑣𝑇, 𝐸𝑐𝑇 are the intersections between the exponential tail states and 

the parabolic extended states. 

 

Figure 2.12 The empirical model of density of states considered by Jiao[35] 

In 2013 Guerra  following the assumption that a disordered material can be studied as an ordered 

at high temperature (frozen phonon model) proposed a band fluctuations based model [12]. 

Guerra modeled the topological and thermal disorder by thermal fluctuations in valence and 

conduction band. Furthermore, Guerra considered the electronic occupation degree in the 

valence band and the available states in the conduction band by using the Fermi 

distribution 𝑓(𝐸𝑐), thereby, 𝐷𝑐 → 𝐷𝑐(𝐸𝑐) × (1 − 𝑓(𝐸𝑐)) and 𝐷𝑣 → 𝐷𝑣(𝐸𝑣) × 𝑓(𝐸𝑣). Following 
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the Kugo-Greewood formula, Guerra found that the joint density of states (JDOS) can be average 

by  

〈𝐽𝑐𝑣〉(𝐸𝑐𝑣) = ∫ −𝑓′(𝐸 − 𝐸𝑐𝑣)𝐽𝑐𝑣(𝐸)𝑑𝐸
∞

−∞

 Equation 2.25 

Here 𝑓′(𝐸 − 𝐸𝑐𝑣)is the first derivate of the Fermi distribution, 𝐸𝑐𝑣 = 𝐸𝑐 − 𝐸𝑣, where 𝐸𝑐and 𝐸𝑣 

representing the conduction band and valence band energies, respectively. In Figure 2.13, DOS 

and JDOS in this for a fluctuating band is presented. Note that the tail appears in the JDOS. 

 

Figure 2.13 The model of density of states considered by J.A. Guerra [12] 

 

2.3.2 The Tauc model 

The Tauc model allows quantitative predictions for amorphous silicon according to the 

experimental data of Cody. Furthermore, it has been widely applied to amorphous 

semiconductors. Tauc’s approach is based in two assumptions. First, that the density of states is 

parabolic in the valence and conduction bands from the free-electron approximation. Second, the 

conservation of the wave vector k is relaxed, k is no a good quantum number.  

𝛼𝑇𝑎𝑢𝑐 =
𝛼0
ℏ𝜔

∬𝐷𝑐(𝐸𝑐)𝐷𝑣(𝐸𝑣)𝛿(𝐸𝑐 − 𝐸𝑣 − ℏ𝜔)𝑑𝐸𝑣𝑑𝐸𝑐 Equation 2.26 

Solving the integral, in the framework Tauc’s model, the absorption coefficient is given by  

𝛼𝑇𝑎𝑢𝑐 = 𝑀𝑇𝑎𝑢𝑐
2

(ℏ𝜔 − 𝐸𝑇𝑎𝑢𝑐)
2

ℏ𝜔
 

Equation 2.27 
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Here 𝑀𝑇𝑎𝑢𝑐
2 is a constant, and according to this model, √𝛼ℏ𝜔 versus the photon energy is a 

straight line [36]. The Tauc-gap, 𝐸𝑇𝑎𝑢𝑐, is the intercept with energy axes and is considered a 

measurement of the bandgap in amorphous materials. 

2.3.3 The bandgap measurement in amorphous semiconductor  

The optical bandgap is one of the most important optical parameters in amorphous 

semiconductors. different methods to determinate the bandgap in amorphous can found [37] [38]. 

However, for many years the Tauc model has served as the standard empirical model whereby 

the optical gap of an amorphous semiconductors may be determined.  

√𝛼(ℏ𝜔)ℏ𝜔 = 𝑀𝑇(ℏ𝜔 − 𝐸𝑇𝑎𝑢𝑐) Equation 2.28 

Tauc concluded that an extrapolation of the essentially linear functional dependence of Equation 

2.28, at sufficiently large in Energy, allowed an empirical bandgap. Furthermore, the 

isoabsorption method called E04[39], [40], it is also widely applied. 

2.3.4 The Urbach model 

In 1953, Urbach showed experimentally that exponential tail absorption increase with the 

incident photon [6]. Then, a larger number of amorphous semiconductors study the tail 

absorption by Urbach model [7].Which is a universal feature of the absorption edge of 

amorphous semiconductors and insulators. The nature of disordering can be intrinsic due 

structural defects (vacancies, interstitial or dislocation) and by temperature effect. The 

dependence of absorption coefficient, at the Urbach edge, on the photon energy is typically given 

by 

𝛼(𝐸) = 𝛼𝐹exp (
𝐸 − 𝐸𝐹
𝐸𝑢(𝑋, 𝑇)

) Equation 2.29 

Here 𝛼𝐹 , 𝐸𝐹 are constants related to the Urbach focus, as will be discussed later, 𝐸𝑢(𝑋, 𝑇) is an 

indirect measure of the disorder degree. Then, the Urbach energy,𝐸𝑢, reveals the influence from 

static (‘frozen’ phonon) and dynamic (thermal phonon) disordering via displacement of atoms 

from their equilibrium position[41]. the Urbach energy can be written 
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𝐸𝑢(𝑇, 𝑋) = 𝐾{〈𝑢2〉𝑇 + 〈𝑢
2〉𝑥} Equation 2.30 

Where K is a constant, 〈𝑢2〉𝑇, 〈𝑢2〉𝑥 are is the mean square displacement of the atoms due to the 

thermal and structural disorder, respectively, both contributions are independent, additive and, in 

adiabatic approximation, have a similar effects on the electronic levels [42]. Additionally, the 

displacement of the atoms due to the thermal vibrations and structural generate in the absorption 

edge to the electron-phonon interaction. The Equation 2.31 can be rewritten as electric potential 

of the system: 

𝐸𝑢(𝑇, 𝑋) = 𝐾𝑤{〈𝑊
2〉𝑇 + 〈𝑊

2〉𝑥} = (𝐸𝑢)𝑇 + (𝐸𝑢)𝑥 Equation 2.31 

Where 𝐾𝑤 is a constant, 〈𝑊2〉𝑇 is a mean-square deviation from the electric potential related 

disordering due to the temperature in a ideally ordered structure, 〈𝑊2〉𝑇 is due to structural 

disorder [43]. Now, amorphous materials present parallel shift of the absorption edge in the 

temperature range, in consequently 〈𝑊2〉𝑥 present to components static and dynamic disordering 

[44]. Moreover, the Equation 2.31 can be rewritten 

𝐸𝑢(𝑇, 𝑋) = (𝐸𝑢)𝑇 + (𝐸𝑢)𝑥,𝑠𝑡𝑎 + (𝐸𝑢)𝑥,𝑑𝑦𝑛 
Equation 2.32 

Here (𝐸𝑢)𝑥,𝑠𝑡𝑎, (𝐸𝑢)𝑥,𝑑𝑦𝑛 are the static and dynamic disordering contribution, respectively. The 

contribution by (𝐸𝑢)𝑥,𝑠𝑡𝑎 represent the absence of the long-range order in the solid and (𝐸𝑢)𝑥,𝑑𝑦𝑛 

is the contribution by absence of the intermediary-order. Thus, it has been reported that at high 

temperature of As2S3 (~300K) is gradually established the intermediate order that resulting in the 

decrease of (𝐸𝑢)𝑥,𝑑𝑦𝑛[43]. However, the contribution by (𝐸𝑢)𝑥,𝑠𝑡𝑎 is constant. The study of 

(𝐸𝑢)𝑇, (𝐸𝑢)𝑥,𝑠𝑡𝑎and (𝐸𝑢)𝑥,𝑑𝑦𝑛 are through the Einstein model [43]. The Equation 2.30 can be 

expressed as 

𝐸𝑢 = (𝐸𝑢)0 + (𝐸𝑢)1 [
1

exp [
𝜃𝐸
𝑇
] − 1

] Equation 2.33 

Here (𝐸𝑢)0and (𝐸𝑢)1 are a constants, 𝜃𝐸the Einstein temperature. 
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2.3.5 Generalization of the fundamental absorption in amorphous semiconductors. 

The aim is to develop an understanding of the optical response of amorphous semiconductors 

over the spectral range corresponding to the Urbach and Tauc regions. To do so, the theoretical 

basis for the interpretation of the optical absorption spectrum is provided. Following the analysis 

performed by Guerra et. al. [12] in which the topological disorder is introduced by thermal band 

fluctuations. Optical absorption spectrum within the framework of this model is studied. To 

begin, the electronic transition rate between the extended valence and conduction bands, 

Equation 2.8.  

O’Leary  evidenced by electron and hole drift mobility measurements the potential fluctuations 

between the conduction and valence bands[10][45]. O’Leary proposed treating the JDOS as a 

local JDOS over the distribution of conduction and balance bands. 

〈𝐽(ℏ𝜔)〉 =< ∫𝐷𝑐
𝐿𝑜𝑐(𝐸)𝐷𝑣

𝐿𝑜𝑐(𝐸 − ℏ𝜔)𝑑𝐸 > Equation 2.34 

𝐷𝑐/𝑣
𝐿𝑜𝑐(𝐸)  is the local conduction and valence band DOS. O’Leary demonstrated that Equation 

2.34 can be considered as a generalization of the traditional approach of Tauc. The average of the 

JDOS can be expressed by: 

〈𝐽𝑐𝑣〉 = ∫ 𝐽𝑐𝑣(𝐸)𝑊̂(𝐸−𝐸𝑐𝑣)𝑑𝐸 Equation 2.35 

𝑊̂ is the weight function, 𝐸𝑐𝑣 = 𝐸𝑐 − 𝐸𝑣, where 𝐸𝑐and 𝐸𝑣 representing the conduction band and 

valence band energies, respectively. The average JDOS in the Fermi’s golden rule can be 

introduce and relax the momentum conservation.  

〈𝑅𝑐𝑣〉 =
2𝜋

ℏ
(
𝐸̃𝑒

2𝜔𝑚𝑒
)

2

∫|𝑀𝑐𝑣|
2𝐽𝑐𝑣(𝐸𝑐𝑣)𝑊̂(𝐸𝑐𝑣−𝐸)𝑑𝐸𝑐𝑣 Equation 2.36 

|𝑀𝑐𝑣|
2  is the matrix element of the optical transitions, who dependence with the energy is 

negligible and 〈𝑅𝑐𝑣〉~〈𝐽𝑐𝑣〉 depends directly of the weight function. Note that by using  𝑊̂ ⟶

𝛿(𝐸𝑐𝑣 − ℏ𝜔) it is recovered the traditional Tauc calculation. O’Leary introduced a Gaussian 

distribution as weight function  while Guerra used the derivative of the Fermi distribution 

[33][12] 
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𝑊̂ ⟶ −
𝑑𝑓(𝐸)

𝑑𝐸
 

 

Here 𝑓(𝐸) denotes the Fermi distribution. On the other hand, Guerra presented used this weight 

function motivated in the Kugo-Greewood formula the absorption coefficient can be written as 

follows shown in equation 2.35 and 2.36. More details can be found in[46][12]  

𝛼(ℏ𝜔, 𝑇) =
𝛼0
ℏ𝜔

∫ ∫ 𝐷𝑐(𝐸𝑐)𝐷𝑣(𝐸𝑣)(−1) × 𝑓
′(𝐸𝑐 − 𝐸𝑣 − ℏ𝜔) 𝑑𝐸𝑣𝑑𝐸𝑐 Equation 2.37 

Where 𝛼0 absorbs the constants including the transition matrix element. By integrating Equation 

2.37 the functional form of the optical absorption spectrum can be determined. 

𝛼(ℏ𝜔) = −
𝜋

4

𝛼0
𝛽2ℏ𝜔

Li2(−𝑒
𝛽(ℏ𝜔−𝐸0)) Equation 2.38 

 

Here 𝛽 is defined as 𝛽 = 1/(𝑘𝐵𝑇). And is equivalent to the Urbach slope. 𝐸0 is defined as the 

energy difference between the mobility edges. 𝐸0 = 𝐸𝑐(0) − 𝐸𝑣(0). Li2(𝑥) is the di-logarithm 

function of x. Figure 2.14 depicts the absorption coefficient of a-Si:H along with a fit using 

equation 2.38. The model captures the distributions of tail states and band-to-band transitions. 

Furthermore, the optical absorption coefficient blends into both regions. It is pointed out that 

traditional means due which the region between Urbach and Tauc through the fitting could be 

used. Now, an asymptotic analysis of Equation 2.38 leads to similar expressions obtained by 

Urbach and Tauc, Guerra called extended Urbach and extended Tauc these equations, 

respectively (see Equation 2.39). Note that at cero Kelvin (or 0 meV Urbach energy) the 

extended Tauc expression is reduced to the traditional Tauc model. 

𝛼(ℏ𝜔) =
𝜋

8

𝛼0
ℏ𝜔

{
 

 
2

𝛽2
𝑒𝛽(ℏ𝜔−𝐸0) , ℏ𝜔 ≪ 𝐸0

(ℏ𝜔 − 𝐸0)
2 +

𝜋

𝛽2
, ℏ𝜔 ≫ 𝐸0

 Equation 2.39 

 Figure 2.14 also depicts the asymptotical curves. Our results show that the extended Urbach and 

Tauc equations are within of the Urbach and Tauc region, respectively. 
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Figure 2.14 The optical absorption spectrum, 𝛼(𝐸) versus the photon energy, associated with a-Si:H. The 

experimental data of Cody et. al.[47]. The points correspond to experimental data. The solid line is the equation 

indicated in the legend within Figure. 

The bandgap in absence of disorder, 𝐸0, which is a measurement of the mobility edge between 

the valance band and conduction band. 𝐸0 can be modified by the chemistry and structure of the 

material. For instance a reduction of the lattice parameter, 〈𝑟𝑖
2〉, will be translated in an increase 

of 𝐸0. Furthermore, the Tauc-gap is sensitive to both the mobility band edges and Urbach tails. 

In this sense, the proposed model allows us the measurement of a parameter independent of the 

disorder degree, the advantage that is no necessary to discriminate the Urbach and Tauc regions 

beforehand. 

2.4 Urbach focus  

The Urbach focus concept has been employed extensively for a-Si:H [48], [49] and other 

amorphous materials [12], [50]. However, the real physical meaning has been extensively 

discussed  and different approaches were taken to estimate the Urbach focus[12], [50], [51]. The 

exponential tail observed in amorphous semiconductors is usually described by the Urbach 
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model (equation 2.40). The structural disorder can be manipulated by thermal annealing 

treatments for instants and is reflected on the width of the exponential tail. The Urbach focus is 

the apparent constant point appearing in a material when measuring the absorption coefficient 

under different disorder degrees. This focus can be calculated as the extrapolation of the Urbach 

tails towards higher energies in logarithm scale as shown in figure 2.15. 

𝛼(𝐸) = 𝛼𝐹exp(𝛽(𝐸 − 𝐸𝐹)) Equation 2.40 

Here 𝛽 = 1/𝐸𝑈 is the Urbach slope, 𝛼𝐹 is the pre-exponential constant and 𝐸𝐹 is characteristic 

energy independent of the amount of disorder. The coordinate (𝛼𝐹; 𝐸𝐹) is the Urbach focus.  

The Urbach focus is considered a parameter independent of the amount of disorder and therefore 

an intrinsic property of materials. However, the meaning of the value is extensively discussed. 

Different authors proposed several models. In this sense, in the next section three estimation 

approaches and propose a new analysis taking advantage of the extended Urbach rule is 

introduced.  

 

Figure 2.15 Schematic representation of Urbach focus. Dotted lines is the absorption coefficient representation 

with different width of the exponential tails and Solid line is the Urbach model.  
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2.4.1 Global fit  

In order to find the Urbach focus, typically, one writes the 𝜒𝑎𝑙𝑙
2  estimator as summation of 𝜒𝑖

2 

corresponding to each tail. The parameters 𝛼𝐹 and 𝐸𝐹 are shared (are the same) for all these 

individual estimators, see Equation 2.41, where N is the number of fitting curves. Thenceforth 

the estimator 𝜒𝑎𝑙𝑙
2  is minimized. Figure 2.15 shows the Global fit method. However, this method 

could be consider as an artifact mathematical of the particular of the fitting process.  

𝜒𝑎𝑙𝑙
2 (𝛽1, 𝛽2… , 𝛽𝑁 , 𝛼𝐹 , 𝐸𝐹) =∑𝜒𝑖

2(𝛽𝑖, 𝛼𝐹 , 𝐸𝐹)

𝑁

𝑖=1

 Equation 2.41 

2.4.2 Cody’s relation 

Cody, in the framework of the study the disorder effect in a-Si:H [4][48] introduced the 

temperature and thermal annealing effects and found a relation between the Urbach energy and 

bandgap in amorphous materials. Following the Urbach model and according to Cody the 

bandgap in semiconductors is written as  

𝐸𝑔(𝑇, 𝑋) = 𝐸𝑔(0,0) − 𝐷{〈𝑢
2〉𝑇 + 〈𝑢

2〉𝑥 − 〈𝑢
2〉0} Equation 2.42 

Here 𝐸𝑔(0,0) represents the bandgap in absence of disorder, 〈𝑢2〉0 is the mean square atomic 

displacement in the absence of disorder. 〈𝑢2〉𝑇 and 〈𝑢2〉𝑥 are is the mean square displacement of 

the atoms due to the thermal and structural disorder, respectively. The latter contributions are 

independent and additive. Furthermore, from the Urbach definition and consider the Equation 

2.42 the bandgap as a function of the Urbach energy can be write [48]: 

𝐸𝑔(𝑇, 𝑋) = 𝐸𝐹 + 𝐺𝐸𝑢(𝑇, 𝑋) Equation 2.43 

Here 𝐸𝑔(𝑇, 𝑋) is the bandgap, 𝐸𝐹 is Urbach focus, 𝐺 is a constant and 𝐸𝑢 is the Urbach energy. 

Afterwards, Cody defined the Urbach focus by, 𝐸𝐹 = 𝐸𝑔(𝑋 = 0, 𝑇 = 0) for 𝐸𝑈(𝑋 = 0, 𝑇 = 0) =

0 [31]. It is important to mention that the bandgap presents different approximations. These were 

introduced in section 2.3.3. According to different authors the Tauc band gap is applied to 

evaluate the lineal relation, between Tauc gap and Urbach energy values, in semiconductors 

materials as a-Si: H, a-SiC and a-SiC:H [48] [46]. 
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2.4.3 Orapunt and O’Leary’s approach 

According to Orapunt and Oleary, it is possible to calculate the Urbach focus without a bias 

[49].They expressed the Urbach model (Equation 2.29) as  

𝛼(𝐸) = 𝛼0exp (
𝐸

𝐸𝑢
) Equation 2.44 

and 

𝛼0 = 𝛼𝐹exp (−
𝐸𝐹
𝐸𝑢
) Equation 2.45 

Where 𝛼0 is the pre-exponential in the Urbach rule, 𝐸𝑢 is the Urbach energy. Now, if Equation 

2.44 in logarithmic scale is expressed and 𝛽 is considered as = 1/ 𝐸𝑢, a linear function which is 

represent as 

𝐿𝑛[𝛼(𝐸)] = 𝑳𝒏[𝜶𝟎] + 𝜷𝐸 Equation 2.46 

From the fitting process, in logarithm scale, by least-square for each spectra of the optical 

absorption independently in the Urbach region and the set of parameters ( 𝜷, 𝑳𝒏[𝜶𝟎] ) is 

obtained, which can be represented as in Equation 2.47 and it is represent by Ω as the pre-

exponential in the Urbach rule, Ω = 𝐿𝑛[𝛼0]. 

Ω = 𝑳𝒏[𝜶𝑭] + 𝑬𝑭𝛽 Equation 2.47 

The linear function Ω, allow to find the Urbach focus by the slope and intercept. In several 

semiconductors materials will be evaluated. Additionally, it is important to mention that this 

method use independent fits which in contrast to the global fit does not introduced a numerical 

bias. 

2.4.4 Our approach 

The extended Urbach rule is used, Equation 2.39, which was obtained by asymptotic analysis of 

the dilogarithm equation. Using the setting of parameters found in the dilogarithm equation 

(𝛼0, 𝛽, 𝐸0) and contrasting them with the traditional Urbach rule. To begin, the Urbach focus is 

actually a region and that both equations are nearly, see Figure 2.16. 
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Figure 2.16 Urbach rule and extended Urbach rule plotted together with similar parameters for comparison 

reasons only. 

Therefore, both equations around the Urbach focus can be written as 

𝛼(𝐸)
𝑈′ = 𝛼(𝐸)

𝑈  , 𝐸~𝐸𝐹 Equation 2.48 

Where 𝛼(𝐸)
𝑈′  is the extended Urbach rule and 𝛼(𝐸)

𝑈  is the Urbach rule. In the same way, both 

equations in Urbach focus value are evaluated 

𝜋

4

𝛼0
𝐸𝐹𝛽2

𝑒𝛽(𝐸𝐹−𝐸0) = 𝛼𝐹𝑒
𝛽𝑢(𝐸𝐹−𝐸𝐹) Equation 2.49 

The terms are rearranged and written in Equation 2.49  . Then, a linear relationship is represented 

as 

ln [
𝜋

4

𝛼0
𝛽2
] − 𝛽𝐸0 = −𝛽𝐸𝐹 + ln[𝛼𝐹𝐸𝐹] Equation 2.50 

Finally, the term Ψ is defined, and it is showed the linear relationship as 

Ψ = −𝛽𝐸𝐹 + ln[𝛼𝐹𝐸𝐹] Equation 2.51 

𝛼𝐹,𝐸𝐹 represent the Urbach focus. Finally, the plot 𝛽 versus Ψ are fitted, then, the slope represent 

the Urbach focus energy.   
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3. Results and discussion  

This section, the sensitivity of the Guerra’s model is evaluated by introducing changes disorder 

degree and how it is affected in Tauc gap and mobility gap. Afterwards, in section 3.2 the optical 

characterization of hydrogenate amorphous silicon is studied. In order to validate the model this 

is applied not only to a-Si:H, furthermore, to a-SiC:H and a-SiN. Finally, the implications of the 

Urbach focus concept due that represents a parameter independent of disorder degree is explored 

and it is still widely discussed. However, several analysis is introduced.  

3.1 The sensitivity of the Guerra’s model 

The aim is to develop an understanding of the optical response of amorphous semiconductors 

over the entire spectral range, Urbach and Tauc regions. In the present section, the sensitivity of 

the Di-logarithm function, Equation 2.38, is examined upon the modification of the band-tails 

breadth (𝐸𝑢 = 1/ 𝛽), all other parameters being held fixed at their nominal hydrogenated 

amorphous silicon values. the independence between 𝐸0 from to 𝐸𝑇  , 𝐸𝑢 is presented.  

In Figure 3.1, the setting of parameters (𝛼0, 𝛽, 𝐸0) is determined from the fits performed to the 

experimental a-Si:H optical absorption data sets of Cody et al. [42] at different temperatures. 

However, the curves are generated with 𝛼0, 𝐸0 fixed at 1.69 ×106cm-1 and 1.76 eV, respectively. 

In order to assess the impact of the Urbach energy, within the framework of the simple model of 

Guerra[1][12]. The Tauc-gap determined by using the relationship for amorphous solids (√𝛼𝐸 =

𝑀𝑇(ℏ𝜔 − 𝐸𝑇), where ℏ𝜔 is photon energy[5]), and Urbach energy (𝐸𝑢), found by using the 

exponential behavior at band-edges in logarithm scale (𝐿𝑛[𝛼(𝐸)] = 𝑳𝒏[𝜶𝟎] + 𝜷𝐸 ), are 

evaluated and plotted as a function of ℏ𝜔 in Figure 3.1a and b, respectively. In Figure 3.1a, a 

local point is showed, called Urbach focus, where in section 3.5 will be discussed, however, here 

it is showed as a consequence of the fit in the Urbach region.  
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Figure 3.1 Absorption coefficient generated with the equation Equation 2.38  evaluated on different Urbach energy 

values, and with 𝛼0, 𝐸0 fixed. (a) Urbach region is fitted in logarithm scale, (b) Tauc plot 

Figure 3.2 b 𝐸𝑢 is varied from 58.23 meV to 80.42 meV, and in agreement with our prediction, 

the linear relation with Tauc energy is shown, following the classical models. Figure 3.2 b. the 

parameter 𝐸0is independent of the disorder degree. This is the first analysis to understand the 

behavior of dilogarithm function and extract information of the Guerra’s model. In the next 

section, the characterization of amorphous semiconductors materials is presented.  

 

 
Figure 3.2 (a) Linear relation of Tauc and Urbach energy. (b) Here 𝐸0 is an independent parameter of disorder 

degree, Urbach energy 
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3.2 Optical characterization of hydrogenated amorphous silicon 

The presented model with hydrogenated amorphous silicon (a-Si:H) is tested first since it is one 

of the most important electronic materials. To begin, the data obtained in this study was fitted by 

J. A. Guerra’s model in the entire absorption coefficient spectra, Equation 2.38, and the classical 

models: (i) Urbach model, in the absorption exponential and (ii) Tauc model, characterizing the 

transitions between extended states or band-to-band transitions. First, the fitting process with 

Guerra’s model has been applied on the logarithm scale, which is a manner of visualizing data 

that are associated with exponential and fundamental absorption region, thereby, a better 

performance of the Guerra’s model fit can be do and the error can be diminished by the fitting 

process in logarithm scale. Then, non-linear regression is performed on the data with the 

Guerra’s model, which was worked in the Mathematica software environment. In this regards, 

from least squared fit, three parameters for each spectrum is founded: (i) the Urbach energy 𝐸𝑢 =

1/𝛽, (ii) the bandgap in absence of disorder degree 𝐸0 and one parameter which is related to (iii) 

electronic transition matrix element between the conduction and valence band 𝛼0. The fits are 

depicted in Figure 3.3. the Guerra’s model is suitable to describe the optical behavior of a-Si:H. 

 

Figure 3.3 The optical absorption spectrum,𝛼(𝐸) versus photon energy, associated with a-Si:H. The experimental 

data of Cody et. al.[47]. The color scheme is indicated in the legend within Figure. 
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The optical bandgap of amorphous semiconductors is a rather debatable parameter since in an 

amorphous semiconductor, the tail states in the absorption coefficient presents into the gap 

region, in contrast, in a crystalline semiconductor, the optical absorption coefficient terminates 

abruptly at the energy gap. In this sense, the Tauc equation is widely used to define the bandgap 

in amorphous semiconductors [52] and is comparable with iso-absorption bandgap E04 [29][30] 

and Sokolov gap [37]. The Tauc-analysis, from the fundamental absorption region, suggests an 

extrapolation of the apparent linear function dependence, this is plot √𝛼𝐸 versus the photon 

energy, see Figure 3.4 (a), the intercept with the axis of energy give us the value 𝐸𝑡. 

 

Figure 3.4 (a)The Tauc gap. the Tauc extrapolations corresponding to the hydrogenated amorphous silicon data is 

showed [47]. The data are depicted with the solid and open points, the least-squares fits to Tauc model being 

indicated with the solid lines. (b) The breadth of the optical absorption tail 𝐸𝑢 

The Urbach model in the exponential region was applied. Though of the semi-log plots of the 

absorption coefficient versus photon energy shows an extended linear region, a value for the 

Urbach energy is often given by the slope 𝛽, see Figure 3.4 (b). the results show important 

changes of the different parameters determined after annealing. Table 3.1 summarizes the results 

obtained from the fitting process. It’s important to mention that the bandgap in the absence of 

disorder and Urbach energy can be calculated simultaneously with a simple fit only. In contrast 

with the traditional model that has been required bisect the optical absorption in two regions. 

 

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

0

25

50

75

100

125

150

175

200

225

250

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

10
1

10
2

10
3

10
4

10
5

10
6

 (a) Tauc plot

  Tempeture

 25
o
C

-123
o
C

 -260
o
C

      Annealing

 625
o
C

 600
o
C

574
o
C

 550
o
C

 525
o
C

500
o
C

 25
o
C

 






Photon Energy (eV) 

 (b)Urbach plot



 (

c
m

-1
)

Photon Energy (eV)



 

34 

 

Table 3.1 The best fitted parameters corresponding to the fits to the experimental a-Si:H optical absorption data 

sets of Cody et al. [47] are shown in Figure 3.3 

Temperature 

(oC) 

Classical model Guerra's model 

Urbach energy 

(meV) 

Tauc gap  

(eV) 

Urbach energy 

(meV) 
Band gap ‘𝐸0’  

(eV) 

TM=-260.8 55.73 1.77 49.79 1.84 

TM=-122.5 64.72 1.74 58.1 1.83 

TM=19.5 62.01 1.72 54.74 1.75 

25.5 65.92 1.69 58.23 1.76 

TH=499.5 81.83 1.66 72.22 1.75 

TH=524.5 80.29 1.63 73.43 1.74 

TH=549.5 81.8 1.59 72.43 1.69 

TH=574.5 85.37 1.56 75.38 1.66 

TH=599.5 88.32 1.53 76.81 1.64 

TH=624.5 94.09 1.49 80.42 1.61 
 

 

3.2.1 The bandgap and Urbach energy of a-Si:H 

The a-Si:H material presents a random covalent network of Si-Si and Si-H bonds, the hydrogen 

in the a-Si:H network plays an important role due the fact that the presence of hydrogen atoms 

reduces the dangling bonds density which reduces the disordered structure [53] [54]. a-Si and a-

Si:H are metastable materials, which present excess energy and unstable with respect to the 

crystalline case. This excess energy in materials stems from the energy input received during the 

growth film[55]. 

The three first points, in Figure 3.5(a), correspond to temperature changes in the sample. The 𝐸0 

is a direct measure of the energy gap between the mobility edges and is independent of the 

Urbach tails. The bandgap variation as a function of temperature, 𝑇 𝑣𝑠 𝐸0, which is usually used 

to calculate nonlinear temperature dependent bandgap change as established by Varshni equation 

[56]. Therefore, 𝐸0 is dependent on the temperature changes in the sample, Figure 3.5 (a). On the 

other hand, the Tauc-gap is sensitive to both: the mobility edges and the Urbach energy as shown 

earlier, section 3.1, and, therefore, applying the Varshni equation to the Tauc-gap versus the 

temperature would be misleading [56]. Then, the variation with the temperature observed in 𝐸0 is 

a direct measure of the effect of the temperature on the lattice constant and therefore on the 
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bandgap of the material. It is found that the Urbach energy is not correlated to 𝐸0. Notice that 

with the Guerra’s model the two values of 𝐸0 obtained at room temperature match pretty well. 

The variation of the Tauc-gap with the annealing temperature is illustrated in Figure 3.5(a). The 

general shape of all the curves agrees very well with others works[47][33]. It is known that the 

optical bandgap increases with the hydrogen incorporation. This is due to dangling bonds 

decrease[57]. The effect of the annealing temperature in the fundamental absorption of a-Si:H 

was reported by Y. Laaziz [57]. Laaziz showed that the hydrogen concentration in a-Si:H thin 

films decrease with the annealing temperature between 300 and 500 oC. This effect has been 

reported in materials like a-SiC:H [58], [1]. The thermally-induced hydrogen loss altered the 

structure as the dangling bonds density increased and the stress in the lattice was increased [53]. 

The Tauc-gap, sensitive to the disorder modification, decreased after 500 oC annealing 

temperature. This diminution is progressive for all annealing temperatures, see Figure 3.5 (a). 

The 𝐸0 bandgap exhibits a similar behavior than the Tauc-gap in the annealing region and 

suggests a diminution of the energy separation between the mobility edges or increment of the 

average of lattice parameters. 

 

Figure 3.5 Optical bandgap (a) and Urbach energy (b) versus the temperature. Open symbols correspond to sample 

under measured under different temperatures. Filled symbols correspond to the sample annealed at the shown 

temperatures. 
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The Urbach energy gives us the measure of the width of the tail states which contain both the 

effect of the static and thermal disorder. Indeed, defects play an important role in shaping  the 

spectrum of optical absorption coefficient [59]. In hydrogenated amorphous silicon case, J. J. 

Thevaril demonstrated that the conduction band-tail breadth is always smaller than the valence 

band-tail breadth [60]. Cody induced structural disorder intentionally in the films by introducing 

dangling bonds through the thermal evolution of hydrogen out-diffusion. In this sense, the 

Urbach energy is correlated with the sharpness of the band tail and hence provides information 

about defect density as dangling bonds[32]. 

Figure 3.5 (b), depicts the variation of the Urbach energy with the annealing temperature and for 

3 different samples temperatures. The first three points correspond to temperature variation 

which relates to thermal effect on the Urbach energy. Both models, the Urbach and Guerra’s 

models present a similar behavior with temperature. The relationship between the defect density 

and annealing temperature was studied by M. Stutzmann [32]. Stutzmann shows that the Urbach 

energy reflects into the dangling bond density for an increase of 𝐸𝑢. Nonetheless, 𝐸𝑢 increase 

with the annealing temperature.  

The key result of the presented analysis is the correlation between the Tauc-gap and Urbach 

energy. When the Urbach energy increases the Tauc-gap decreases. To sum up, our measurement 

of the bandgap exhibited a similar behavior with Tauc-gap, because the chemistry changed as 

soon as the hydrogen concentration decreased, thereby, 𝐸0 decreased. The bandgap 𝐸0 suggests a 

diminution of the energy separation between the mobility edges or increment of the average of 

lattice parameters. On the other hand, the Urbach energy increased due the stress in the lattice by 

the hydrogen loss and defects appear into. 

3.3 Optical characterization of hydrogenated and non-hydrogenated amorphous 

silicon carbide 

In the framework of the research realized in the Solid State Physics group at the PUCP a-SiC:H 

layers were produced on polished crystalline calcium fluoride (CaF2) substrates by RF 

magnetron sputtering in a 5N purity argon-hydrogen atmosphere mixture using a high purity 

crystalline SiC target with a diameter of 51 mm. Table 3.2 enlists the different deposition 

parameters used for growing the films. Three different hydrogen fluxes were used during the 
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deposition process, the samples were subjected to post-deposition isochronal thermal annealing 

treatments in a quartz tube with a constant argon flux at 2.6 x 10-2 mbar. The annealing 

temperature ranged from 300 oC to 700 oC in steps of 100 oC for 15 min each. More details 

concerning the deposition, annealing and characterization conditions can be found in [46][1]. 

Table 3.2 Deposition conditions of the SiC layers grown with 0 sccm (i), 5 sccm (ii) and 15 sccm (iii) hydrogen 

flux[1]. 

Material Ar 

(sccm) 

H2 

(sccm) 

Power 

(W) 

Time (min) Pressure (mBar) 

(i)a-SiC 50 0 120 143 1.5 10-2 

(ii)a-SiC:Hx 50 5 120 270 9.0 10-3 

(iii)a-SiC:Hx 35 15 120 330 1.2 10-3 
 

The absorption coefficient spectra presented in this thesis are all obtained from optical 

transmission, in the range from 190 nm to 1100 nm (UV-VIS). The optical constants of a-SiC:Hx 

were determined in the photon energy range 1.15-5 eV, with the aim to obtain information about 

electronic structure. Following the procedure in a-Si:H case, the Guerra’s model, Equation 2.38 

to fit  by the least squared method the absorption coefficient. Three parameters for each spectrum 

(𝛼0, 𝛽, 𝐸0) was found.  

 
Figure 3.6 Optical absorption spectra 𝛼(𝐸) versus the photon energy, of a-SiC:Hx. The exhibited curves correspond to 

different annealing temperatures. The solid line is the Equation 2.38evaluated with the parameters obtained from a 

least squared fit. The color scheme is indicated in the legend within figure 

It is found that the Di-logarithm function from Guerra’s model is suitable to describe the optical 

behavior of the absorption coefficient of a-SiC:H, as shown in Figure 3.6. Following, the 

procedure in a-Si:H, the bandgap 𝐸0 and 𝐸𝑢 using the Guerra’s model can be determine, 
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additionally, the Tau-gap from Tauc model and the tail breadth, 𝐸𝑢, from the Urbach rule, see 

Figure 3.7.  
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`  
Figure 3.7 (a),(b) and (c)The Tauc plot. the Tauc is extrapolations corresponding for a-SiC and a-SiC:Hx The 

data are depicted with the solid points, the least-squares fits to Tauc model being indicated with the solid lines. 

(d),(e)and (f) Urbach equation, the breadth of the optical absorption tail 𝐸𝑢by slope 
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3.3.1 The bandgap and Urbach energy of a-SiC:Hx 

 In reference to the analyzes the optical absorption spectrum corresponding to each a-SiC:Hx data 

set is characterized by determining the breadth of the optical absorption tail and corresponding 

optical gap. The effect of annealing temperature on the optical properties of a-SiC:Hx thin films 

were investigated. To begin, the structure of hydrogenated amorphous silicon carbide thin film 

present multiphase structure such as Si-C, C-C, C-Hn, Si-Hn [61]. Moreover, three different types 

of films polymethylsilane, polycarbosilane, and hydrogenated microcrystalline material are 

possible present from temperature effect [62]. 

The non-hydrogenated samples, the Tauc-gap increased with the annealing temperature up to 

400oC as shown in Figure 3.8 (a). It has been reported that the substrate temperature influences 

the growth of crystalline nanograins in a-SiC:H. In this manner, 200-300 oC is the characteristic 

temperature at which the material is predominantly amorphous. However, Mohsen Daouahi et. 

al. [63] indicated the presence of nanocrystalline Si embedded in the amorphous SiC matrix. 

TEM studies revealed the presence of nanocrystallites in the films with size in the range of 2–10 

nm [64]. Figure 3.8 (a) depicts the variation of the 𝐸𝑡. The 𝐸𝑢 exhibits a trend that is opposite to 

that seen for the Tauc-gap, similarly to the observed in the a-Si:H case. Thereby, for the 

annealing temperatures between 500-700 oC, 𝐸𝑡 decreases, perhaps due to the strong connection 

between 𝐸𝑡 and 𝐸𝑢. Now, the Urbach energy from the fit of the Urbach equation and Guerra’s 

model. 𝐸𝑢 decreases with increasing annealing temperature, up to 400 oC. However, after 400 oC 

annealing it increases. This could be related to the improving of carbon bonds [65]. Moreover, in 

the hydrogenated samples, it is possible that annealing at high temperatures results in evacuation 

of H around 500 oC[66]; leads to an changes of structural disorder because of the increase of 

stress in the texture [67] 
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Figure 3.8 (a) Optical bandgap energies of a-SiC and a-SiC:H samples, from (a) the Tauc plots and from (b) Di-

logarithm equation is square , 𝐸0. (c) Urbach energies, from Urbach equation and (d) from Guerra’s model 

 

The optical bandgap of a-SiC:H is bigger than that of a-Si:H. In fact, the former increases with 

the incorporation of carbon atoms [19] [68]. In such case, the disorder degree increases with 

increasing carbon fraction [69]. The 𝐸0 gap is independent of 𝐸𝑢 as shown in figure 3.8. This fact 

is attributed to the definition of the 𝐸0 bandgap from the Guerra model[1]. a-SiC exhibits a slow 

enhancement probably due to the increment of nanograins. These have been reported to form at 

300 oC [70]. This crystalline fraction increases about 60% when the substrate temperature is 

raised to 600 °C [70]. On the other hand, the 𝐸0 gap changes slowly, see Figure 3.8 b. 

Additionally, the hydrogen incorporation enhances the 𝐸0 value, from 2.586 to 2.938 eV for 5 
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sccm and from 2.931 to 3.110eV for 10 sccm. Following, Mohsen Daouahi et. al. [63] showed 

that at a substrate temperature of 400°C, and 500°C has a substantial change in the concentration 

of Si-C bonds, which increase which increasing of substrate temperature[63]. Then, it is may be 

the contribution to the bandgap, 𝐸0,is related from SiC, SiC:H and clusters of Si and C crystalline 

with C-C bonds in sp3 Hybridization[71][72]. 

3.4 Optical Characterization of amorphous Silicon-Nitride 

Nitrogen atoms is an atom with a small ionic radius. Usually, the inclusion of smaller atoms into 

a semiconductor alloy that the material's bandgap increase, an effect of great significance for 

instance for the design of advanced solar cells [24]. Furthermore, it can be used as protective 

overcoats on magneto optical films and SiN film plays an important role for the passivation of 

silicon [25]. Now, the silicon nitride films were deposited by r.f. magnetron sputtering using a 

silicon nitride target at a low substrate temperate. High-purity Ar and N2 were used and the 

temperature with a water cooling system at 10 °C to ensure the amorphous state of the films. A 

51 mm diameter Si wafer were used as substrate[73]. It is significant to consider the oxygen 

absorption during film growth due it has been reported some vapors attributed to vacuum wall or 

substrates taking part in response in the sputtering process, or post annealing lead the oxygen 

may absorber by moisture[74]. Then, following similar procedure in a-Si:H and a-SiC:H. The 

bandgap 𝐸0 and Urbach energy of the films were obtained by fitting the absorption coefficient 

data in the range 3.5–5.6 eV applying the Guerra´s model, Figure 3.9(a). The optical Tauc-gap 

and Urbach energy were deduced from the optical absorption by using the Tauc plots and Urbach 

model, in Figure 3.9 (b) and (c) is showed. 
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Figure 3.9 Optical absorption spectra 𝛼(𝐸) versus the photon energy, of a-SiN. The exhibited curves correspond to 

different annealing temperatures (a) Guerra’s model, (b) Tauc plot and (b) Urbach’s model. 

In Figure 3.10 (a) shows the variation of the optical gap with the annealing temperature. As can 

be seen, the Tauc gap is as increasing function of the temperature. The measured values vary 

from 4.17 ± 0.01 eV, as growth, to 4.53 ± 0.01 at high temperature. These are of the same order 

of magnitude as those reported in [75], and this trend in the Tauc gap values has been also 

reported in [76]. Now, the film structure is a random mixture of bonds of Si-Si, Si-N rather than 

a mixture of segregated silicon and Si3N4 phases. Additionally, it has been previously reported 

that the reduction of Tauc gap is influenced by the decrease in Si and N bonds concentration in 

RF sputtering [77]. The Tauc gap increase may be due the nitrogen bonds [78] and strong 

connection with Urbach energy. 

 

Figure 3.10(a) Optical bandgap energies of a-SiN samples, from the Tauc plots and from Guerra model. (b) 

Urbach energies, from Urbach equation and  from Guerra’s model 
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Figure 3.11 Photo Luminescence emission peak with temperature effect[79] 

The optical bandgap can be controlled by varying the film stoichiometry[80]. Films with a 

silicon rich composition exhibit a Tauc-gap below 3 eV  [81], in contrast, with films that present 

high Si-N bonds. The bandgap has been reported in range between 3.0  to 4.0 eV [75]. Here, as is 

shown in Figure 3.10 𝐸0 is around 5.15 eV for the whole temperature range. Changhun Ko et. al. 

[79] reported, by Photo Luminescence measurements that the host matrix related PL emission 

peak suffers a diminution if the FWHM due to annealing treatments, while a shift of the peak 

center when varying the nitrogen incorporation, Figure 3.11. it could be due to the fact that the 

mobility edge doesn’t change considerably and, therefore, the 𝐸0 value remains nearly constant. 

About the Urbach energy versus the annealing temperature. Jia Xiaoyun et al. studied structure 

of silicon nitride films deposited by r.f. magnetron sputtering and annealing treatment. 

According to his results, the bonds in the films emerged some fluctuates and the hydrogen 

concentration in the films after annealing decreased and the film presented a more compact 

construct [82], then it can be mainly reason of Urbach energy decrease. 
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3.5 Discussion of Urbach focus  

The Urbach focus concept is applied to amorphous semiconductor materials by using the Urbach 

rule on optical absorption coefficient spectra[7] [43][50]. The Urbach focus is a constant found 

after modifying the disorder degree via for instance in situ temperature changes during the 

optical measurement or post-deposition thermal treatments. The disorder modification can be 

monitored by optical means through the Urbach energy. Our understanding as to how disorder 

influences the optical absorption spectrum gives way to the Urbach focus concept, which was 

defined as a parameter independent of static and thermal disorder. The notion was discussed in 

section 2.4, where the Urbach focus concept merely arose as an artifact of the particular fitting 

process or as an intrinsic property of the material. For this reason, four perspectives was covered: 

(i) the global fit method; (ii) the Cody relationship, derived from the interpretation of the Urbach 

Model; (iii) the Orapunt and O'Leary analysis, and (iv) our approach by asymptotic analysis 

using the dilogarithm equation from Guerra’s model[1]. This matter was investigated with a 

critical examination and an appropriate model for the calculation of the Urbach focus. Therefore, 

it will be evaluated each model for a-Si:H, which has been reported extensively by many authors 

and contrast with our approach. Furthermore, also in a-SiC:Hx was studied in order to provide 

further validation to our model. 

Urbach edges were studied in section 3.2.1 for a-Si:H, where the exponential slopes do not 

intersect at a local point but instead within a region around the Urbach focus (Figure 3.4 b).It is 

introduced the typical steps to find a local point or Urbach focus, by fitting different optical 

absorption spectra measurements using the Urbach model. First, the global fit method is applied, 

thereby, 𝛽 by a least-squares fit can be determined and the parameters 𝛼𝐹 and 𝐸𝐹 are shared (are 

the same) for all these individual estimators from the Urbach equation, see section 2.4.1. The 

result shows that the Urbach focus occurs two to three decades beyond the Urbach region (𝛼𝐹 =

4.227 × 106 𝑐𝑚−1  𝐸𝐹 = 2.28 𝑒𝑉 ) on the absorption coefficient, which is shown in Figure 3.12. 

However, this is the first approach, in which two parameters (𝛼𝐹 , 𝐸𝐹) are shared. In the fitting 

process on the global fit method, it is may be enforced the Urbach existence or does not. For this 

reason, differently are proceed. 
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Figure 3.12 The Urbach focus find (𝛼𝐹 = 4.227 × 10
6 𝑐𝑚−1,𝐸𝐹 = 2.28 𝑒𝑉) for the optical data corresponding 

to a-Si:H[47]. Solid line are the fits to Urbach model using global fit method. The points represent experimental 

data for temperature and annealing effect. 

Cody found that the data of a-Si: H is consistent with the interpretation that the width of the 

exponential edge and the optical bandgap are influenced by the structural and thermal disorder 

amount [42]. Cody’s analysis is performed. That is to test the linear relationship between Urbach 

energy and Tauc-gap derived from the interpretation of the Urbach energy (see section 2.4.2) 

[47]. That is, the optical bandgap decreases in response to an increase of the Urbach tail. In 

section 2.4.2, The Cody defined the Urbach focus [48] by, 𝐸𝐹 = 𝐸𝑔(𝑋 = 0, 𝑇 = 0) for 𝐸𝑈(𝑋 =

0, 𝑇 = 0) = 0. Thereby, the relationship can be expressed: 

𝐸𝑔(𝑋, 𝑇) = 𝐸𝐹 − 𝐺 × 𝐸𝑈(𝑋, 𝑇) Equation 3.1 

Where, 𝐸𝑔(𝑋, 𝑇) is the optical bandgap to an amorphous semiconductor, 𝐸𝐹 is Urbach focus, 

𝐸𝑈(𝑋, 𝑇) is the Urbach energy, and G is a Cody constant. Following the procedure of Cody, it is 

considered the optical bandgap in amorphous semiconductor is equal the Tauc gap for a-Si:H 
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and 𝐸𝑢 was found by independent fitting (the slope in Urbach region). Thereby, the linear 

relationship is found thus plotting Urbach energy and Tauc gap to a-Si:H, see Figure 3.13 (a). 

Then, the Equation 3.1 to find the Urbach focus as shown in Figure 3.13 (a). 

 

Figure 3.13 The Urbach focus find to the optical data corresponding to a-Si:H[47]. In a) the Tauc gap and 

Urbach energy relationship by data cody and b) Orapunt and O’leary analysis working with Urbach equation. 

 

Another interesting alternative to understanding the Urbach focus concept was proposed by 

Orapunt and O’Leary’s [49]. This analysis suggests to finding the parameter set (𝛽, Ω), where 𝛽 

is the Urbach slope and Ω is the intercept in logarithm-scale of the Urbach rule and is also 

determined experimentally. Thenceforth the Urbach focus can be found by testing the linear 

relationship shown in equation 3.2.  

Ω = 𝐿𝑛(𝛼𝐹) − 𝛽𝐸𝐹 Equation 3.2 

 

The resulting linear fits are shown in Figure 3.13 (b). The Urbach focus found is equal to 2.20 ±

 0.06 𝑒𝑉. There is a striking similarity between the obtained values of 𝐸𝐹 using the previously 

described models for the case of a-Si: H. The global fit may suggest that 𝐸𝐹 merely arises as a 

mathematical artifact of the fitting process as in the global fit method. However, Cody and 

O’Leary have shown that a connection exists between the optical properties, such as Urbach 
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focus, of the materials by independent fit. As result the linear relationship in both methods (see 

Figure 3.13). 

Finally, our model is employed following the asymptotic analysis in dilogarithm equation into 

the Urbach region. The parameter set (𝛼0, 𝛽, 𝐸0) is determined by the least-square fit of 

dilogarithm equation that it was obtained by fitting data absorption coefficient of a-Si: H for 

each annealing (and temperature) step. Then, it is replace these parameters in Ψ as defined in 

Equation 3.3 

Ψ = ln [
𝜋

4

𝛼0
𝛽2
] − 𝛽𝐸0 

Equation 3.3 

Ψ = −𝛽𝐸𝐹 + ln[𝛼𝐹𝐸𝐹] Equation 3.4 

 

Equation 3.4 was determined analytically in section 2.4.4. This linear relation between Ψ and 𝛽 

is shown in Figure 3.14 for a-Si:H. The slope lead to 𝐸𝐹 = 2.22 ±  0.07 eV. 

 

Figure 3.14 Linear fit of 𝜓 vs 𝛽 corresponding to the optical absorption of a-Si:H [47]. 

The Urbach focus for a-Si: H using the three methods through the data of Cody [Cody] is found. 

The obtained values are similar to each other (see table 3.1). Thenceforth, the same analysis on 

a-SiC:Hx will be applied. our model and other are tested to shed some light on the meaning of the 

Urbach focus [48].  
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3.5.1 Urbach Focus of hydrogenated and non-hydrogenated amorphous silicon 

carbide. 

Now the same analysis performed on a-Si: H is proceeded, moreover, on a-SiC:H grown with 

different hydrogen contents. Figure 3.15, depicts the global fit of the Urbach rule on the three 

samples. The Urbach focus obtained by a global fit is shown also shown in figure 3.12. The 

value is similar to that reported by F. Zhang et. al. [67]. Additionally, the existence of Urbach 

focus has been reported by J. A. Guerra et. al [12]  Applying the global fit. The values for each 

hydrogen concentration are presented in the Table 3.4. 

 

Figure 3.15 The Urbach focus find for the optical data corresponding to a-SiC, a-SiC:H (5 sccm) and a-SiC:H 

(15 sccm)[1]. Solid line are the fits to Urbach model using global fit method. The points represent experimental 

data for annealing temperature effect. 
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Table 3.3 Urbach focus energy value for a-Si:H 

 Our approach Orapunt 

approach[49] 

Cody analysis[47] 

𝑬𝑭 2.22 ±  0.07 𝑒𝑉 2.20 ±  0.06 𝑒𝑉 2.17 ± 0.06 𝑒𝑉 
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Figure 3.16 Linear fit using Equation 3.1 corresponding to the  analysis of Cody for a) a-SiC, b) a-SiC:H 

 

Through the relationship of Cody, it is obtained 𝐸𝐹 and 𝐺. Whilst in the a-Si:H case a well 

defined linear behavior is observed between the Tauc-gap and the Urbach energy in the a-SiC:H 

case this does not happen. The dispersion between the data and linear equation is more evident 

(see Figure 3.16). For non-hydrogenated case a-SiC, presents evidence that different methods 

give rise to different Urbach focus energy values see table 3.4. On the other hand, the hydrogen 

incorporation establishes lower dispersion within this linear relation. Nevertheless, the global fit 

predicts slightly different values for the Urbach focus energy coordinate.  

The Orapunt analysis was performed. That is, performing  independent linear fits in Urbach 

region of the logarithm of the absorption coefficient a-SiC and a-SiC :H, which has been fully 

studied by J. A. Guerra [12]. Essentially, those materials show a linear relation agreeing with 

Orapunt and O’Leary found for a-Si:H [49]. The values of the Urbach focus obtained through the 

aforementioned methods are shown in Table 3.4. Notice that following our approach, the 

expected linear behavior is met with a much lower dispersion than the Orapunt analysis as shown 

in Figure 3.17 (a) and (b). 

The three performed analysis revealed that the experimental data are consistent with the notion 
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examined, based on our analysis. Figure 3.17 depicts the lineal dependence of Ψ and β for non-

hydrogenated (c) and hydrogenated (d) a-SiC. Note that the experimental data exhibits quite a 

linear behavior. The procedure to find the coordinates (β,Ψ) was explained for the case of a-

Si:H. Thenceforth, a linear least squares fit this experimental data allowed us to determinate the 

slope (𝐸𝐹) of Equation 3.4, and the intercept (Ln[αF]). This result is contrasted with that obtained 

by the analysis of Orapunt and O’leary applied in the same materials. Table 3.4 summarizes 

these results.  

 

 

Figure 3.17 Urbach focus using Orapunt approach by the linear dependence of 𝛺 on beta for a) a-SiC, b) a-

SiC:H and  using our approach by the linear dependence of 𝛹 on beta for (c) a-SiC, (d) a-SiC:H 
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Table 3.4. Urbach Focus of hydrogenated and non-hydrogenated amorphous silicon carbide. 

Material Parameter Global fit 
Cody 

Relationship 

Orapunt 

Analysis 
Our analysis 

a-SiC 
ln[𝛼𝐹] 10.48±0.02 --- 10.48 ± 1.17 10.94 ± 0.44 

𝑬𝑭 (eV) 3.15±0.01 2.50 ± 0.18 3.09 ± 0.57 3.31 ± 0.12 

a-SiC:Hx 

5 

sccm 

ln[𝛼𝐹] 10.89±0.05 --- 10.08 ± 0.47 10.68 ± 0.96 

𝑬𝑭 (eV) 3.52±0.02 2.73 ± 0.16 3.06 ± 0.26 3.24 ± 0.03 

15 

sccm 

ln[𝛼𝐹] 10.43±0.01 --- 10.38 ± 0.27 10.68 ± 0.31 

𝑬𝑭 (eV) 3.49±0.01 2.91 ± 0.06 3.45 ± 0.12 3.45 ± 0.09 
 

 

Finally, notice that the values of the Urbach focus found under the Orapunt and O’Leary analysis 

have a similar behavior to the values found in our analysis in a-SiC, a-SiC:Hx. On the contrary, 

Cody’s relationship present differences for 5 sccm in from of other models, see Table 3.4. In 

Figure 3.18 depicts the Urbach focus energy ordinate found by the three analysis. The Urbach 

focus presents an enhancement, with the hydrogen incorporation. Most likely due to the decrease 

of dangling bonds and, therefore, the shrinking of the mean lattice parameter. This result 

suggests a direct connection between the mobility edges and the Urbach focus. 

 

Figure 3.18 The Urbach focus energy ordinate found by the three approaches 
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4. Conclusions and outlook 

In the present work distinct approaches to describe the fundamental absorption of 

amorphous semiconductors have been reviewed. Three models: Tauc, Urbach and 

Guerra, were evaluated. These models were used to fit the absorption coefficient data of 

a-Si:H, a-SiC:H and a-SiN. With a single fit the bandgap in the absence of disorder and 

the Urbach energy were simultaneously obtained. The spectral region where the Tauc and 

Urbach tail absorption overlap was also used in the aforementioned single fit. This is in 

contrast to the traditional models, which required a separation of the optical absorption in 

these two regions in order to perform the corresponding analysis. 

 

Before applying Guerra’s model on the experimental absorption coefficient data, it was 

evaluated how variations in the Urbach energy influenced the shape of the Di-Logarithm 

function. In this sense, the capability of this model to fit generated data of the absorption 

coefficient and to obtain relevant parameters through simulation was tested. It was 

possible to recover the parameter 𝐸0 and it was found that it is independent of the 

disorder degree as shown by simulations. Furthermore, the results on the experimental 

data also confirm the independency of 𝐸0 on the Urbach energy. Additionally, the Tauc-

gap and the Urbach energy showed a linear relationship which was described by the 

model of Cody. 

 

In the case of a-Si:H, the 𝐸0 and the Tauc gaps showed a similar behavior with the 

annealing temperature. This behavior is mainly attributed to the fact that the chemistry 

changes as soon as the hydrogen concentration decreases. Thereby, on the one hand, 

𝐸0 diminishes suggesting a diminution of the energy separation between the mobility 

edges. On the other hand, the Urbach energy increases with the annealing temperature, 

due to the increasing stress in the lattice induced by the hydrogen loss. 

 

In the case of a-SiC:Hx, the changes observed in 𝐸0 after annealing do not follow the 

behavior of the Tauc-gap: First, the Urbach energy demonstrated a shrinking with an 

increasing annealing temperature. Then, after a critical temperature of 400°C, an increase 
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was observed. A possible explanation for the latter observation could be the formation of 

clusters of Si and C in the films at this critical temperature and above. 

 

In the case of a-SiN, 𝐸0 exhibits a nearly constant behavior with the annealing 

temperature. This result suggests that the mobility edges do not change considerably 

under thermal annealing treatments. Additionally, it was shown that 𝐸0 and 𝐸𝑢 also 

demonstrate an independent behavior from one another.  

 

Even though the model proposed by J. A. Guerra does not predict an Urbach focus, this 

concept is compatible with it. An analysis was developed that allows the measurement of 

the Urbach focus energy ordinate (𝐸𝐹) based on the model of Guerra. The Urbach focus 

of the two materials a-Si:H and a-SiC:H under the approach of Orapunt and by our 

analysis were found. In these cases the Cody approach did not result in a well-defined 

linear behavior. In this sense, it is recommended to use our approach or Orapunt’s 

analysis to determine the Urbach focus. 

 

Finally, an interesting feature was observed in the case of a-SiC:H grown with different 

hydrogen contents: An increase of the Urbach focus energy ordinate with an increase of 

the hydrogen incorporation during the deposition process was observed. This behavior 

correlates with the increase of the band-edge energy separation as it was shown in the 

recovered 𝐸0 value. Part of these results have been recently published [1]. 

 

In order to validate the Guerra’s model, it is recommended first to apply the method to 

other amorphous semiconductors materials. Additional information of the band-to-band 

transition and tail-to-band transitions can be provided by alternative techniques. For 

instance, through photo-luminescence measurements. Finally, the role of the Urbach 

focus in amorphous semiconductors could be interpreted by changes of the chemistry as 

shown in the case of a-SiC:Hx with distinct hydrogen contents. 
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