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Abstract

In this work we review the symmetry breaking mechanism of gauge theories. On the first
chapters of this thesis, we review the concept of symmetry as the action of a group that leaves
an object invariant, in particular Lagrangians and actions, and then develop the corresponding
globally and gauge symmetric theories and the relationship between them. It also reviewed the
concept and general framework of the spontaneous breaking of a symmetry for renormalizable
potentials. Correspondingly, two main results for global symmetries, Noether’s theorem and
Goldstone’s Theorem, are reviewed in a general setting.
Chapter 3 is the most important part of this work. The Brout-Englert-Higgs mechanism is
explained and used to retrieve the symmetry breaking patterns for the vector and all the sec-
ond rank tensor irreducible representations of the O(n) and SU(n) groups. In general we will
retrieve the vacuum expectation value (vev) for the particular representation and value of the
parameters of the potential. Then, for this vev, we calculate the number of massive vector
bosons of the theory. Following BEH mechanism and Goldstone’s theorem, this number is
equal to the number of broken generators delining thus the particular symmetry breaking pat-
tern.
Chapter 4 is a review of the Standard Model with an aim towards Grand Unified Theories
(GUTs). Lastly in Chapter 5 we review the group theory of the minimal model SU(5) in
a very exhaustive way and use the results of Chapter 3 to see the breaking patterns for this
particular GUT.
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Chapter 1

Symmetries

In the following sections we will review classical field theory and introduce the importance of
symmetries in Physics .

1.1 Symmetries in Physics

An object has a symmetry if it is invariant under the action of a group. Let X be an object
such as a Hamiltonian or Lagrangian and G a group, we say that G is a symmetry of X if for
any g ∈ G the action of this element Ag leaves X invariant:

Ag(X) = X ∀g ∈ G (1.1)

The way in which the group acts will have a deep connection to the way in which the group is
represented. Usually the objects in which we are interested are Hamiltonians or Lagrangians
but can also be other objects such as matrix elements.

We shall now overline a first example of symmetry[2] and see the consistency of the
definition (1.1). Consider a system with a finite dimensional Hilbert space where pure states
can be defined. From the standard axioms of Non relativistic Quantum Mechanics a symmetry
transformation g ∈ G,with G the set of all transformation of the system, is defined as a
transformation that is a one to one map between ray vectors 1 into ray vectors and conserve
the transition probabilities. Thus, if φ, ψ are ray vectors; then:∣∣⟨φ|ψ⟩

∣∣ =
∣∣∣⟨φg|ψg⟩∣∣∣ (1.2)

where φg, ψg are the transformed ray vectors. Then, following Wigner’s theorem, the only
type of transformations that satisfy the last equation are linear unitary transformations:

⟨φg|ψg⟩ = ⟨φ|ψ⟩ (1.3)

1a pure state is a state where we have the maximum amount of quantum information available. A ray vector
represents this state and is defined as the equivalence class {eiαψ} with ψ a ket in the Hilbert space
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or antilinear antiunitary transformations [3]:

⟨φg|ψg⟩ = ⟨φ|ψ⟩∗ (1.4)

Thus we have:
ψg = U(g)ψ (1.5)

where U(g) is a continuous operator. The set of transformations G forms a group (group of
transformations under compositions) but the U(g) do not necessarily form the representation
of the group but just a projective representation. For example, given U(g1), U(g2) we have:

U(g1)U(g2) = W (g1; g2)U(g1g2) (1.6)

where W (g1; g2) is a phase term that is not necessarily equal to one.
Since it is the Hamiltonian H that defines the dynamics of the system, a group G′ ⊂ G

of transformation that conserves the dynamics of the system, or more succintly a dynamical
symmetry of the system, is one such that:∣∣∣⟨φg|H|ψg⟩

∣∣∣ =
∣∣⟨φ|H|ψ⟩

∣∣ ∀g ∈ G′ (1.7)

then from Eq. (1.5) we have:

U(g)HU †(g) = H ∀g ∈ G′ (1.8)

with U(g) linear unitary or antilinear antiunitary. But the term at the left is the transformation
of H under g, so we have Hg = H . Then we see that a dynamical symmetry of the system is
a symmetry of the Hamiltonian and it has the form Eq.(1.1) as we initially hypothesized.

It is well know that the symmetry group of H labels the states of the system. In fact from
Eq.(1.2) if the group of transformations is a Lie Group, one can expand to first order to see
that the generators of the Group also commute with H . Then, depending on the rank of the
Algebra2, one can construct an equal number of Casimir operators [4] that labels the states.

1.2 Field Theory and Continuous Global Symmetries
In this section we introduce a general framework for the field theories we will use in later
chapters and some generalities about representations of the Lorentz and Poincaré group. We
will denote with the symbol Φ a generic field and shall later differentiate the type of fields.

The importance of using a field theoretical point of view instead of the wave point of
view can be seen mainly from the fact that in this framework the possibility of creating new
particles is natural and paradoxes such as the Klein Paradox [5] are solved. In addition in this
work we will focus only in Classical fields that is fields before quantization and not operators.

A first restriction in the possible fields theories is that since we will be dealing with fields
in High Energy Physics (HEP), where gravitational effects are vanishingly small, the domain

2The rank of a Lie Algebra is the number of elements of the the maximal abelian subalgebra.
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of the fields Φ(x) belonging to a certain theory will be the Minkowski Space M. The metric
we use is the usual one in particle physics:

ηµν = (1,−1,−1,−1). (1.9)

As we have seen in Section (1.1), symmetries can be a guiding force in Physics. In particular in
HEP they will be useful in model building to construct multiplets of particles and derive their
dynamics (sec. 1.4). It can be shown that for each continuous symmetry of a system there is
a corresponding Lie Group G that generates it. Suppose we have a set of fields: Φ1, · · · ,ΦN ,
then the most general transformation of this set of fields under a Lie group G of dimension dG
is as follows. The coordinate transformation is:

xµ
g(α)→ x′µ = fµ(x;α). (1.10)

Here α is the set of dG parameters that define an element of the Lie Group G 3. This last
equation induces a transformation on the fields:

Φi(x) g(α−1)→ Φ′
i(x′) = Gi(Φ(x), x;α) i = 1, · · · , N. (1.11)

We are usually interested in infinitesimal transformations that act on fields and coordinates.
From Eq.(1.10) and Eq.(1.11), the most general Lie transformation around the identity is:

xµ → x′µ = xµ + αaΓµa(x) ≡ xµ + δxµ (1.12)

Φ(x) → Φ′

i(x′) = Φi(x) + αaFi,a(x,Φ(x)) ≡ Φi(x) + δ̄Φi(x). (1.13)

Here a runs on the parameters (coordinates of the Lie Group) of the transformation, i on the
fields and αa is now infinitesimal. From the last equations we implicitly have defined two
different kinds of "variations".
The first one is the "form variation" and is defined for an infinitesimal transformation by:

δΦ(x) = Φ′(x) − Φ(x) (1.14)

The second one is the "total variation" and is defined by:

δ̄Φ(x) = Φ′(x′) − Φ(x). (1.15)

The relationship between them is:

δ̄Φ(x) = δΦ(x) + δxµ∂µΦ(x). (1.16)

3For example for SO(3), the rotation group, we can assign α as the angles θ1,θ2,θ3
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Classically all the interesting physics can be derived from the action functional:

S[Φ] :=
∫
V

L(Φi, ∂µΦi, ∂µ∂νΦi, · · · , x)d4x i = 1 · · ·N. (1.17)

For this particular Lagrangian we are not restricting the order of derivatives of the fields and
V is a arbitrary volume of spacetime. Then, a Lie group transformation is a global symmetry
of the Lagrangian L if:

L(Φ(x), ∂µ(x), ∂µ∂νΦi, · · · ) = L(Φ′(x′), ∂µΦ′(x′), ∂µ∂νΦ′
i(x′), · · · ) (1.18)

Since the symmetry is continuous it will be enough to verify that the Lagrangian is invariant
under G for infinitesimal transformations .

1.2.1 Restrictions on Field Theories

After having delineated basic concepts on symmetries and transformations we now proceed
to state some restrictions on the classical Action Eq.(1.17) and Lagrangians that are needed to
construct workable theories in HEP . As we will see, many of them are geometrically inspired.

(a) Following the principle of Special Relativity, the Action has to be invariant under the
proper orthochronous Poincaré Group P↑

+ i.e. : S[Φ′(x′)] = S[Φ(x)] for a Poincaré
transformation x′ = Λx+awhere Λ denotes a proper ortochronous Lorentz transforma-
tion L↑

+
4. This implies that the Lagrangian, the integrand and the domain of integration

all have to be P↑
+ covariantly.

For the Lagrangian this means that the Lagrangian itself must have the scalar represen-
tation

L → L′(Φ′(x′), · · · , x′) = L(Φ(x), · · · , x), (1.19)

so all the objects that compose it have to be Lorentz covariant i.e. transform under
representations of P↑

+ combined such that the result is a Lorentz scalar. Since we
have so(1, 3) ∼= su(2) ⊕ su(2), the Lie Algebra of L↑

+ can have two types of finite
dimensional representation. The single valued representation that generates the Lie
group L↑

+, tensorial representations, and the double valued representations generated
by SL(2,C), spinorial representations. We can label all the finite irreps,5 tensorial or
spinorial, using the labels (jL, jR). For example for the left and right Weyl spinors we
have (1/2, 0) and (0, 1/2) respectively. For the vectors (1/2, 1/2) and for the Dirac
spinor (1/2, 0) ⊕ (0, 1/2).

The integrand after a Poincaré transformation is:

d4x′ = | det Λ|d4x = d4x (1.20)

4L↑
+ := {Λ ∈ O(1, 3)| det Λ = 1,Λ0

0 ≥ 1} with Λ is the fundamental representation of O(1, 3). P↑
+ is the

semidirect product of L↑
+ and translations in four dimensions.

5irreps: irreducible representations
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so it is clearly Poincaré invariant.

The covariance of the domain of integration can be solved imposing the use of volumes
with spacelike boundaries 6.

(b) Fields vanish at the boundaries of spacetime: lim
−|x⃗|→∞

Φ(ct, x⃗) = 0

(c) The action is a real functional of the fields and their derivatives. It can be shown that if
this is not the case the S matrix unitary thus, after quantization, total probability is not
a conserved quantity [6].

(d) Lagrangians are restricted such that they produce at most second order derivatives. This
implies that at most, the Lagrangian is composed of second order derivatives for scalar
fields and first order derivatives for spinor fields. A particular hindrance with order more
than three in the derivatives is that usually these equations have non causal solutions,
for example for a Lagrangian that generates the Abraham-Lorentz force these implies
solutions where signals from the future affects the present [6].

(e) The interactions of the fields have to be local i.e. depend only on one set of coordinates.
For example terms like Aµ(x)jµ(x) are accepted but gN

∫
d4yΦ(x)[(x − y)2]Nψ(y) are

not. This will ensure that the dynamics of a field will be influenced by the other fields
only in one point and not depend on all spacetime.

(f) The Lagrangian has to be renormalizable [7]. This means that the combination of fields
and operators have to have mass dimension of order of max. 4 since only terms with
coefficients of positive or zero order mass are renormalizable.

Following these restrictions the action is:

S[Φ(x)] =
∫ Σ2

Σ1
L(Φi, ∂µΦi, x)d4x i = 1, · · · , N, (1.21)

The Σi hyperspaces are space-like 7.
Using the conditions as in Eq.(1.21) we have that the fields Φi(x) with δΦi(x) = 0 for

all x ∈ Σ1,Σ2 satisfy Hamilton’s principle i.e. δS[Φ] = 0 if and only if they satisfy the N
Euler-Lagrange equations: (

∂µ
∂L

∂(∂µφi)
− ∂L
∂φi

)
= 0 (1.22)

1.3 Noether’s Theorem
Noether [8] derived two theorems and their inverses. The first one is the most commonly
used. We, at first, define the symmetry of the system as continuous transformations that leave

6a spacelike manifold is one such that it’s normal vector nµ on each point satisfies nµnµ > 0
7in practice what this means is that there exists a Poincaré transformation that transform into a surface with

constant time
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δ̄S = 0.

0 = δ̄S ≡
∫
R′

L(Φ′(x′), ∂µΦ′(x′), x′)dx′4 −
∫
R

L(Φ(x), ∂µΦ(x), x)d4x (1.23)

Doing a change of variables in the integral:∫
R′

(· · · )d4x′ →
∫
R

(· · · )
(
1 + ∂µ(δxµ)

)
d4x (1.24)

we obtain:

δ̄S =
∫
R

L(Φ′(x′), ∂µΦ′(x′), x′)
(
1 + ∂µ(δxµ)

)
d4x−

∫
R
L(Φ(x), ∂µΦ(x), x)d4x (1.25)

Using the definition of δ̄L, from Eq.(1.15):

δ̄S =
∫
R

(
L(φ(x), ∂µφ(x), x) + δ̄L

) (
1 + ∂µ(δxµ)

)
d4x−

∫
R

Ld4x (1.26)

Expanding to first order we have:

δ̄S =
∫
R
d4x

(
δ̄L(φ(x), ∂µφ(x), x) + L∂µδxµ +O(δxv)2

)
= 0 (1.27)

From Eq.(1.16), since δL = δ̄L − δxµ∂µL we arrive at:

δ̄S =
∫
R
d4x

(
∂L
∂Φi

δΦi + ∂L
∂(∂µΦi)

δ(∂µΦi) + ∂µLδxµ + L∂µδxµ
)

=
∫
R
d4x

 ∂L
∂Φi

− ∂µ
∂L

∂(∂µΦi)

δΦi +
∫
R
d4x∂µ

(
∂L

∂(∂µΦi)
δφi + Lδxµ

) (1.28)

we arrive at Noether´s relation:

N∑
i=1

(
∂µ

∂L
∂(∂µΦi)

− ∂L
∂Φi

)
δΦi =

N∑
i=1

∂µ

(
∂L

∂(∂µΦi)
δΦi + Lδxµ

)
(1.29)

To state Noether’s first theorem we restrict to transformations of coordinates, fields and La-
grangians that additionally satisfy the following points:

• A general group transformation changes also the form of the Lagrangian that is:

L(Φ′(x′), ∂µΦ′(x′), x′) → L̃(Φ′(x′), ∂µΦ′(x′), x′) (1.30)

Thus the most variation is then of the form:

∆L := L̃(Φ′(x′), ∂µΦ′(x′), x′) − L(Φ(x), ∂µΦ(x), x) (1.31)
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Instead, we restrict to Lagrangians such that :

L̃(Φ′(x′), ∂µΦ′(x′), x′) = L(Φ′(x′), ∂µΦ′(x′), x′) (1.32)

So δ̄L is the most general variation.

• Similarly, we restrict to group transformations that leave : S̃(Φ′(x′), x′) = S(Φ′(x′), x′)
Later we will weaken this assumption. Note that all common global group transforma-
tions (Classical Lie groups and Poincaré) satisfy the last two conditions.

• Just to restate, fields vanish at the boundaries of spacetime: lim
−|x⃗|→∞

Φ(ct, x⃗) = 0

From Eq.(1.12) and Eq.(1.13), the infinitesimal transformations for a Lie Group G of dimen-
sion dG, with α the infinitesimal parameter independent of coordinates, satisfyng the above
conditions are:

δxµ = Γµa(x)αa (1.33)

δ̄Φi(x) = Fia(x,Φ)αa (1.34)

Then, from Eq.(1.29), doing a variation around α and moving δα out of the divergence, we
have:

dG∑
a=1

N∑
i=1

(
∂µ

∂L
∂(∂µΦi)

− ∂L
∂Φi

)
∂δΦi

∂αa
δαa =

dG∑
a=1

N∑
i=1

∂µ

 ∂L
∂µΦi

[
∂(δΦi)
∂αa

]
+ L∂(δxµ)

∂αa

 δαa
(1.35)

Defining:

jµa := −
N∑
i=1

 ∂L
∂µΦi

[
∂(δΦi)
∂αa

]
+ L∂(δxµ)

∂αa

 (1.36)

and
δL
δΦi

:= ∂L
∂Φi

− ∂µ
∂L

∂(∂µΦi)
(1.37)

Since the variations of α are not null and linearly independent, Eq.(1.35) implies the following
dG equations:

N∑
i=1

δL
δΦi

∂δΦi

∂αa
= ∂µj

µ
a a = 1, · · · , dG. (1.38)

Now assuming theN L.E. equations are valid (N on shell conditions) we retrieve dG conserved
currents:

∂µj
µ
a = 0 a = 1, · · · , dG. (1.39)

and this is Noether’s first theorem. Summarizing, let L be a Lagrangian such that δ̄S = 0 for a
Lie transformation generated by a Lie Group G of dimension dG. Suppose also that the fields
satisfy the N Lagrange Euler equations. Then we obtain dG conserved currents as shown in
Eq.(1.39).
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A more compact way to express Eq. (1.39) is using the total variation definition Eq.(1.34),
Eq.(1.33). We have:

jµa = Θµ
νΓνa(x) − ∂L

∂(∂µΦi)
Fia(x,Φ) (1.40)

with Θµ
ν = ∂L

∂(∂µΦi)∂νΦi − δµνL
In the case of internal symmetries generated by a compact Lie Group we have:

δxµ = Γµa(x)αa = 0 → Γνa(x) = 0 (1.41)

δ̄Φi(x) = δΦi(x) = Fia(Φ)αa (1.42)

A particular case is very important. Let U(α) = eiTaαa with a = 1, · · · , dG, a unitary N
dimensional representation of a compact Lie group G in a vector space generated by N fields
Φ1(x), · · · ,ΦN(x). Ta are hermitian representations of the Lie Algebra. It is generally re-
ducible. We have the transformation:

Φi(x) → Φ′
i(x′) = Φ′

i(x) = [eiTaαa ]ijΦj(x) (1.43)

Infinitesimally:
δΦi = i[Ta]ijΦjαa (1.44)

So the currents using Eq.(1.40) are:

jµa = −i ∂L
∂(∂µΦi)

[Ta]ijΦj (1.45)

The global symmetry of the Lagrangian implies that each field has to live in a particular irre-
ducible representation. In particle physics this is translated as saying that fields are multiplets
of the symmetry group 8. In this case [Ta]ij is reducible in the N-dimensional representation
but will be an irreducible representation for some subset of fields. An example of the use of
Eq. (1.45) will be done in the Standard Model section.

Noether’s theorem can be expanded such that the condition of a symmetry is one that
transforms the action as:

δ̄S[Φ] =
∫
dx4∂µK

µ (1.46)

Following the steps leading to Eq.(1.35) we have:

N∑
i=1

(
∂µ

∂L
∂(∂µΦi)

− ∂L
∂Φi

)
δΦi =

N∑
i=1

∂µ

(
∂L

∂(∂µΦi)
δΦi + Lδxµ +Kµ

)
(1.47)

thus we have a more general current:

Jµa = jµa + ∂Kµ

∂αa
(1.48)

8Though not always under global symmetry. In fact the dynamics comes using gauge symmetries
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1.4 Abelian Gauge Transformations

The main result of last section is Noether’s First theorem: a Lagrangian with a global continu-
ous symmetry implies dG continuity laws, Eq.(1.48), one for each dimension of the symmetry
group. A natural question then is to ask what happens if instead of global transformations we
use transformations that depend on spacetime.

An important consequence is that the initial Lagrangian, globally symmetric under a
Classical Lie Group G, will be not invariant under this new local transformation. Thus in
order to have a symmetric Lagrangian we need to modify the initial Lagrangian introducing a
new vector field, the Yang Mills field, and a new kind of derivative, the covariant derivative.

Consider the Dirac Lagrangian with a spinor field ψ with mass m.

L = ψ̄(i/∂ −m)ψ (1.49)

A variation for ψ gives:
(−i/∂ −m)ψ̄ = 0 (1.50)

and for ψ
(i/∂ −m)ψ = 0 (1.51)

So we can treat them as two independent fields ψ and ψ̄. Eq.(1.49) is global invariant under
U(1), as we will see below.
Defining:

ψ → ψ′ = eiαψ ≡ U(α)ψ (1.52)

as the transformation for ψ we see, using the induced representation on ψ̄, that Eq.(1.49) is
U(1) global invariant.
The infinitesimal transformation for ψ is :

δψ = iαψ (1.53)

and the induced transformation in ψ̄ is:

δψ̄ = −iαψ̄ (1.54)

Now assume the parameter depends on spacetime α(x), what will happen? In this case the
transformation of ∂µψ is:

ψ → ∂µ(eiα(x)ψ) = eiα(x)∂µψ + iq∂µα(x)eiα(x)ψ (1.55)

thus the Lagrangian becomes:

L → L′ = ψ̄(i/∂ −m)ψ − ψ̄∂µα(x)ψ (1.56)

So L is clearly not invariant under this transformation. In order to cancel this extra term we
need to modify the derivative

∂µ → Dµ = ∂µ − igAµ (1.57)
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such that the Lagrangian (1.49) with the replacement (1.57) is invariant. Aµ is a vector field
that has to transform such that:

Dµψ → D′
µψ

′ = eiα(x)Dµψ (1.58)

in order to cancel with the transformation of ψ̄. Doing both simultaneous transformation on ψ
and Aµ is defined as doing a gauge transformation. Solving last equation, Aµ has to transform
as :

A′
µ = U(α)

(
Aµ + i

g
∂µ

)
U−1(α) = Aµ + 1

g
∂µα(x) (1.59)

The modified Lagrangian is then:

LM = ψ̄(iDµ −m)ψ = ψ̄(i∂µ −m)ψ + gψ̄γµψAµ (1.60)

For the complete Lagrangian we have to include the kinetic term of the gauge vector. From
Classical Electrodynamics it has to be a function f(Fµν) of the Electromagnetic tensor:

Fµν = 1
g

(
∂µAν − ∂νAµ

)
(1.61)

This object is invariant under the transformation (1.59):

F ′
µν = ∂µA

′
ν − ∂νA

′
µ = U(α)FµνU−1(α) = U(α)U−1(α)Fµν = Fµν . (1.62)

Where we have used the Abelian nature of the symmetry to commute the elements.
The kinetic term has to be Lorentz invariant so all indices have to be contracted. For an

abelian symmetry there is only one form for f(Fµν), thus the final Lagrangian is:

LQED = ψ̄(iDµγ
µ −m)ψ − 1

4F
µνFµν . (1.63)

This is the classical QED Lagrangian9 which is the most accurate theory in all physics. It leads
to calculations that agree with experiment to more that 10 significant digits.

Summarizing, in this section we started with a globally invariant Lagrangian L under
U(1), Eq.(1.49), and then, following the requirement of invariance under transformations with
α dependent on spacetime, we modified L replacing the normal derivative with a covariant
derivative thus addingAµ as a physical field and the requirement that both ψ andAµ transforms
simultaneously. The final Lagrangian (1.63) is invariant under both global transformations
and gauge transformations. One consequence was the acquisition of a physically meaningful
current-gauge interaction term included in LQED.

From another point of view, we started with a free Lagrangian for both ψ and Aµ:

Lfree = ψ̄(i∂µγµ −m)ψ − 1
4F

µνFµν . (1.64)

9More correctly, is the classicalLQED only ψ is in the representation q = −1 that is when we are dealing
with electrons
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and then after the replacement ∂µ → Dµ ("gauging") we obtained LQED that is the theory of
electromagnic interactions. This procedure of obtaining a Lagrangian with the correct inter-
action term after "gauging" a free Lagrangian is called the gauge principle [9]. Salam, in fact,
hypotized that the interaction terms of weak and strong interactions could be generated after
using the gauge principle on a free Lagrangian with an appropiate symmetry and representa-
tion. History shows he was correct.

1.5 Non Abelian Gauge Transformations

In this section we will introduce the main framework of Non-Abelian gauge theories and
derive, as with QED, the gauge-matter interaction after applying the gauge principle to a
globally non Abelian symmetric Lagrangian.

Let G be a dG > 1 dimensional compact semi-simple Lie group10, N fermionic fields ψ
and M scalar bosonic fields φ such that each of them live in irreducible representations of G
(multiplets). Then the most general free Lagrangian with global symmetry G is:

Lfree =
∑
ψ

Lψ +
∑
φ

1
2∥∂µφ∥2. (1.65)

Where schematically, we have denoted the kinetic term for the bosonic representations as
scalar products in the internal space and the kinetic term for each ψ as Lψ, that is constructed
such that it is globally G invariant. For a ψ transforming in the fundamental (vectorial) repre-
sentation we have:

Lψ = iψ̄∂µψ = iψ̄i∂µψi, i = 1, · · · , dG. (1.66)

With each ψi a component of the multiplet ψ. For φ transforming in the fundamental repre-
sentation we have:

∥∂µφ∥2 = (∂µφ)†∂µφ = ∂µφ
∗
i∂

µφi i = 1, · · · , dG (1.67)

This will be generalized to k-rank irreducible tensors in Section (3.5). We shall now follow the
procedure outlined on the previous section and demand invariance under local transformations.
We focus on the kinetic term for a field that transforms in the fundamental representation of
G, Φ, a bosonic or fermionic field. We need that after replacing the derivative (∂µ → Dµ)
the kinetic term remains invariant under local transformation of G, similar to Eq.(1.66) and
Eq.(1.67) with the new covariant derivative. We impose that is has to transform such that:

DµΦ → D′
µΦ′ = U(α)DµΦ (1.68)

10A simple group is a group without invariant subalgebras ex. SU(2). A semi-simple group is a group without
an invariant abelian subalgebra example product groups SU(2) × SU(2).
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where U(α) with the fundamental representation of G. Taking as ansatz:

Dµ = ∂µ − igAµ (1.69)

we see that for Aµ to satisfy Eq.(1.68) it has to transform as:

A′
µ = U(α)

(
Aµ + i

g
∂µ

)
U−1(α) (1.70)

It is interesting to note this transformation has the same form for the Abelian group U(1),
Eq.(1.59). We will also see that the components of the field Aµ tranform in a representation
independent way. In this case Aµ will have more elements since it is constructed using the
Lie Algebra of G that has more than one element. Thus it has an internal space indiced by a
in addition to the spacetime indices. These fields transform under the adjoint representation
of G. All in all, to construct the covariant derivative in analogy to QED in order to leave the
leave the kinetic of the Lagrangian invariant we need the addition of a field of this type, the
Yang-Mills field. The first exposition of this groundbreaking idea was done in the seminal
paper [10].

To show what is stated above we do as follows. For group transformations near the
identity we have:

U(α) = 1 + iαaT a (1.71)

U(α)−1 = 1 − iαaT a (1.72)

where T a is a hermitian in the fundamental representation of the Lie algebra. Then we have
using Eq.(1.70) to first order on the parameters:

A′
µ = Aµ + i[αaT a, Aµ] + 1

g
∂µα

aT a (1.73)

For this equation to make sense, seeing the last term, Aµ has to live in the space generated by
the T a’s since it is written as a linear combination of Ta’s with arbitrary parameters. So:

Aµ = AaµT
a (1.74)

This is the Yang-Mills field expressed as combinations of generator of the Lie Algebra of
G. Since gauge invariance implies global invariance the equation is valid also when each
αa changes in the same way over all the space, thus effectively having the last term null in
Eq.(1.73). We see after expanding the second term that Aµ transforms as:

A′a
µ T

a = AaµT
a + i[αaT a, AbµT b] (1.75)

Then using complexified structure equation of the Lie Algebra of G, that is representation
independent, to calculate the Lie bracket:

[T a, T b] = if cabT
c (1.76)
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we have:
A

′c
µT

c = AcµT
c − f cabα

aAbµT
c (1.77)

Then in direction T c we have:
Acµ

′ = Acµ − f cabα
aAbµ (1.78)

But remembering that in the adjoint representation D(t) the matrices dG × dG representing an
element ta of the Lie Algebra have the following form:

D(ta)cb = f cab (1.79)

Thus we see that, for each internal coordinate c of the Yang-Mills field:

Acµ
′ = Acµ −D(ta)cbαaAbµ (1.80)

And this is an infinitesimal transformation in the adjoint representation. Thus Aµ is a field
with values in the Lie Algebra of G (spanned by ta11) whose "internal coordinates" transforms
in the adjoint representation of G . The explicit form of Aµ is modified according to the
representation of the field to which it couples (see Eq.(3.382)).

For an arbitrary gauge transformation we then have, from Eq.(1.73)

Acµ
′ = Acµ − f cabα

aAbµ + 1
g
∂µα

c (1.81)

We have shown the covariant derivative for a field in the fundamental representation. For an
arbitrary representation is:

DµΦ = ∂µΦ + igAµaΓ(ta)Φ = ∂µΦ + igΓ(Aµ)Φ (1.82)

where Γ(ta) will give the Law of transformation in the specific representation of Φ.
To write a complete Lagrangian we need the kinetic term for this new field Aµ. The

analogous of the electromagnetic field tensor, the field strenght of Aµ is defined as a vector in
the internal space of the Lie Algebra of G :

Fµν = 1
g

[Dµ, Dν ] = (∂µAaν − ∂νA
a
µ)ta + igAaµA

b
ν [ta, tb]

= (∂µAcν − ∂νA
c
µ − gf cabA

a
µA

b
ν)tc

(1.83)

To construct the generalization of the kinetic energy for the Yang Mill’s field we need to take
its "norm squared". Since we have the scalar product in the abstract Lie algebra 12:

Tr[ta, tb] = ⟨ta, tb⟩ = δab a, b = 1, · · · dG (1.84)

11the ta are vectors of the Lie Algebra of G in the abstract space of the Lie algebra i.e. not representation
dependent

12can change the normalization.
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we see that the kinetic term for the Yang Mills field is:

L = −1
4 ⟨F µν , Fµν⟩ = −1

4F
aµνF a

µν (1.85)

Equivalently the kinetic term can be defined under any representation of G. Using Aµ =
AaµΓ(ta) and the fact that:

Tr[Γ(ta),Γ(tb)] = δabI(Γ) (1.86)

Where I(Γ) is a constant that depends on the representation.13 We have:

−1
4

Tr[F µνFµν ]
I(Γ) = −1

4
F aµνF b

µν

I(Γ) Tr[Γ(ta)Γ(tb)] = −1
4F

aµνF a
µν (1.87)

For example in the fundamental representation of SU(N) we have I(Γ) = 2 and this gives
the usual factor −1

8 .
In addition of using F µνa we could use it’s dual

F ′
µν
a = 1

2ϵµνρσF
aρσ (1.88)

to construct a kinetic term. Then, it is easy to see that F ′
µν
aF ′µνa is proportional to to the kinetic

term defined above. On the other hand, imposing only gauge invariance on the Lagrangian (i.e.
not imposing C,P, CP symmetries) we can add the following term to the Lagrangian:

LΘ = 1
2ΘF ′

µν
aF µνa (1.89)

This term is actually a total derivative so it does not affect the equations of motion neither
Feynman rules, although it is important for non-perturbative effects only if the gauge group is
non Abelian.

13Dynkin index



Chapter 2

Spontaneous Breaking of Global
Symmetries

Section (2.1) is based on the Nobel Lectures and papers as shown in [11]. The rest of the
Chapter is based mainly on [12] and [13].

2.1 The need for symmetry breaking
In Part (1.4) we already have seen an example of a gauge theory with the QED Lagrangian,
where ψ are charged leptons and Aµ is the Electromagnetic field. At current date this is not
the only interaction in Nature since there are two other experimentally verified interactions:
Weak and Strong interactions. The next step in order to synthesize theories is to construct
Lagrangians for other interactions that also include the electromagnetic one.
Using the field theoretical framework then, a first step into unification is extending a low
energy Lagrangian into another one that includes this initial Lagrangian as a low energy limit.
This is seen with the QED Lagrangian and the well known electroweak sector of the Standard
Model.

In order to schematize this procedure, there are some properties we need to impose in the
new Lagrangian that we can extract from the QED Lagrangian LQED . Recalling:

LQED = Ψ̄(iDµγ
µ −m)Ψ − 1

4F
µνFµν (2.1)

First, we can see a gauge symmetry given by the Lie Group U(1) and an interaction term be-
tween the fermionic and bosonic fields (or gauge), dependent only on one coupling g, derived
from the covariant derivative, that is equivalent to the one retrieved using the gauge principle
on the free Lagrangian for ψ and Aµ. To not spoil U(1) gauge symmetry the vector field Aµ
has no mass term m2

2 AµA
µ. Experimentally a massless gauge vector is consistent with the

the vector mediator of EM interactions, the photon, since these are long ranged. It is also
renormalizable.

We want a gauge theory for weak interactions that is gauge invariant under a groupG such
that after applying the gauge principle to free global version we retrieve correct interaction
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terms, is renormalizable and gives adequate mass terms to the weak interaction mediators.
The first model for weak interactions was developed in analogy to QED. It was the phe-

nomenologically four fermion interaction (Fermi’s theory). It satisfied universality since all
interactions depended on GF (Fermi’s constant), was chiral, but did not have any symmetry
nor was renormalizable. Experimentally, the theory was shown to be inconsistent, for exam-
ple, with scattering experiments of muon neutrinos with electrons since the scattering section
diverged for high energies:

σtot = G2
F

π

(s−m2
µ)2

s
(2.2)

The next model, was a theory with an intermediate massive vector boson (IMVB). The inter-
action terms of the Lagrangian were modified from a current-current one into a vector-current
one. Problems continued, since it was not renormalizable, (order 6 of mass in interaction
terms) and phenomenologically had divergences for other high energies processes such as
νν̄ → W+W−.

At the beginning of the 60s, the individually universal and vectorial nature of weak and
electromagnetic interactions suggested a possible unification via a gauge theory. At this point,
it was already known the existence ofW± charged vectors bosons and the usualA electromag-
netic gauge boson and it was suggested, from the decay of strange particles, that at least one
other neutral vector was needed, thus restricting the possible gauge group to one of dimension
at least four.

A, possibly first, model using the gauge theory framework [14] was done using SU(2)L
as the chiral gauge group for weak interactions and leptons in the fundamental representa-
tion. Glashow proposed another model [15] where it was found the correct symmetry group
SU(2)L×U(1). In this model, leptons were expressed in the adjoint representation of SU(2)L.
Since the representation is real it only can be constructed as Majorana spinor thus the chiral
spinor were hidden in it. Contrary to the SM, though, the masses for W± and Z were added
explicitly, breaking gauge symmetry thus explaining the qualification of "partially symmetric"
since only the Lagrangian minus these last terms was gauge invariant. The main consequence
of this fact is that a mass inserted in this way gave a non renormalizable Lagrangian, as was
later found. So, we see that the problems of mass, gauge symmetry and renormalizability are
all connected.

Finally in the late 60’s Salam [16] and Weinberg [17] independently built the original
SU(2)L × U(1)Y electroweak sector of the Standard Model using leptons in the fundamental
representation. Besides being compatible with old observables as charged currents and provid-
ing some new, as neutral currents, the Weinberg angle sin θW and the GIM mechanism, a main
feature was the use of a particular mechanism to give mass to the W± and Z bosons without
explicitly breaking gauge symmetry. This is the Brout-Englert-Higgs (BEH) mechanism that
is based on the spontaneous symmetry breaking (SSB) of a gauge theory. Coloquially speak-
ing, the SSB phenomena happens when the ground state of a Lagrangian has a lower symmetry
than the complete Lagrangian. Additionally, the model, was shown to be renormalizable some
years later; T’Hooft showed the renormalizability of both massless [18] and massive1 [19] of
general Yang-Mills field theories of which the Salam and Weinberg model is a particular casel.

1with masses obtained after SSB
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Also, the low energy limit Lagrangian included the QED Lagrangian and the IMVB models,
thus delineating in some sense an electroweak unification.

In this chapter we discuss the preliminaries for the BEH mechanism: the conceptual
foundations of spontaneous symmetry breaking and some applications in theories with global
symmetries.

2.2 Simple mechanical model exhibiting a spontaneous sym-
metry breaking

As seen in Section (1.1) symmetries are everywhere in Nature. There is much information
one can recover using symmetry principles but there is a also a lot to gain when one is not
manifested. A particular example of this is the spontaneous breaking of a symmetry.

Since this is a framework independent concept, we can discuss it conceptually using the
following simple system [20]. Consider a ring with center at O and radius r that rotates around
an axis parallel to the plane of the ring with constant angular velocity. In addition, there is a
material point located in a non fixed point M and massm that can move along the ring without
any friction. The angle θ is defined as the angle between the segment OM and the axis of
rotation, as shown in the Fig.(2.1). Having fixed the axis of rotation, the azimuth angle is φ
and the angular velocity is:

dφ

dt
= Ω. (2.3)

Fixing a frame that rotates with the ring the equilibrium position along the tangent to the ring

W

O

q
M HmL

mg

r sinHqL

Figure 2.1 Simple system

is:
F (θ) = −mg sin θ +mrΩ2 sin θ cos θ = 0 (2.4)



18 Spontaneous Breaking of Global Symmetries

where a sin θ is the distance from M to the rotation axis. The first term is the projection along
the tangent of the ring of the weight mg and the second is the centrifugal force projected also
along the tangent. Since dV = −Fdx = Frdθ where dx is an infinitesimal displacement
along the circunference of the ring, integrating we have:

V (θ) =mgr cos θ +mΩ2 r
2

4 cos 2θ + k = mgr cos θ +mΩ2 r
2

4 (1 − 2 sin2 θ) + k

= −mgr

(
Ω2r

2g sin2 θ + cos θ
)

+mΩ2 r
2

4 + k
(2.5)

where k is the integrating constant. In the frame of reference fixed above we choose V (θ =
0) = 0 so:

V (θ) = mgr

[
1 − cos θ − 1

2
Ω2

Ω2
c

sin2 θ

]
(2.6)

where we have defined
Ω2
c = g

r
. (2.7)

In this potential we see the parity (θ → −θ) symmetry since all functions of θ are even.
Using ∂V

∂θ
= 0 in order to minimize we have:

∂V

∂θ

∣∣∣∣
θ=⟨θ⟩

= mgr sin ⟨θ⟩
(

1 − Ω2

Ω2
c

cos ⟨θ⟩
)

(2.8)

From Eq.(2.8) we have the extrema ⟨θ⟩ = 0, π and if Ω > Ωc also the set ⟨θ⟩ = {±θ0}, with
θ0 = arccos

(
(Ωc

Ω )2
)
. Using:

∂2V

∂θ2 = mrg

(
cos θ − Ω2

Ω2
c

cos 2θ
)

(2.9)

we have that ⟨θ⟩ = 0 is a minimum for Ω < Ωc otherwise a local maximum, θ = π is always
a maximum and that the set {±θ0} are minima for Ω > Ωc. This also can be also be see from
the plots (2.2) and (2.3).
The value of the parameter Ω, the angular velocity, modifies the form of the potential and the

number of minima of the potential. This fact can be interpreted as a phase transition, taking
Ω as the control parameter and defining the order parameter as ⟨ϕ⟩ = ⟨θ⟩

θ0
. We see that when

Ω < Ωc, we have a single minimum so ⟨θ⟩ = 0, and when Ω > Ωc we have two minima
⟨θ⟩ = ±θ0, thus ⟨ϕ⟩ ̸= 0. In both case the potential has parity symmetry. Hidden, there is a
particular reduction in the symmetry of the system when Ω > Ωc. To see this, one can select
⟨θ⟩ = +θ0 as the chosen ground state after the transition. Then, one can express the variable
θ around the ground state θ0:

θ → θ0 + χ (2.10)
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-p p

Figure 2.2 Potential V (θ) for Ω > Ωc

-p p

Figure 2.3 Potential V (θ) for Ω < Ωc

we have that the new potential Vχ is not parity invariant under χ → −χ. In fact :

Vχ(χ) =mgr
[
1 − cos(θ0 + χ) − 1

2
Ω2

Ω2
c

sin2(θ0 + χ)
]

=mgr
1 − cos θ0 cosχ− 1

2
Ω2

Ω2
c

(sin2 θ0 cos2 χ+ cos2 θ0 sin2 χ)

+
(

sin θ0 − 1
2

Ω2

Ω2
c

sin 2θ0 cosχ
)

sinχ


(2.11)

This potential is odd so parity symmetry is broken for a perturbation around the ground state.
Thus, after the transition we have a system that is symmetric except at the ground state. This
is an example of a system whose symmetry has been spontaneously broken.

In general a phenomenon with spontaneous symmetry breaking will consist of the follow-
ing elements: a parameter F called "control parameter" whose influence depends on a critical
value Fcrit, a symmetry of the system given by a group G that breaks i.e. the symmetry group
is reduced, and an order parameter ϕ, an observable of the system whose value will indicate
the existence or not of the spontaneous breaking phenomena. In the example above we had
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Ω = F , Fcrit = Ωc, ϕ = ϕ and the symmety group was Z2.
Initially consider the system with F < Fcrit. We have that the configuration of the sys-

tem, represented by the action in Field theories, is invariant under the action of the group G.
Also we have that the order parameter has a null value: ⟨ϕ⟩ = 0 (one minima in the example
above). Then after F > Fcrit the order parameter is not zero ⟨ϕ⟩ ̸= 0, and the symmetry group
of the system is broken, usually leading to a smaller symmetry group, having thus a phase
transition.

2.3 Spontaneous symmetry breaking in an Abelian model
In High Energy Physics we are interested mostly in continuous symmetries. In this case the
results of spontaneously broken symmetries will vary if the symmetry is global or local. Fol-
lowing the discussion of Section (2.2), the translation of the main elements of spontaneously
broken symmetries into the Lagrangian formalism of classical field theory is done as follows:
the control parameter F will be the "mass squared" of the field 2, usually a self interacting
scalar field φ , the symmetry will be a symmetry of the Lagrangian given by a Lie Group G
and the order parameter will be the vacuum expectation value (vev) equivalently minimum
field configuration of the field in question: ⟨φ⟩, Fcrit will be model dependent but usually
Fcrit = 0.

In practice what will happen is that after the control parameter passes some threshold, the
classical vev of the theory will not be the null field, ⟨φ⟩ ̸= 0 and we will have a degenerate
set of minima given by an algebraic equation. After this, we can arbitrarily select one of
the equivalent possible ground states. Then a perturbation around a particular chosen ground
state will get us into a perturbed Lagrangian that has a smaller symmetry H , having so a
spontaneous breaking of the symmetry G. An equivalent condition to see the spontaneous
breaking of continuous symmetries is having a non null set of generators {Ta} of the large
group G, such that:

Ta ⟨φ⟩ ̸= 0 (2.12)

These will be called the broken generators. The generators that do not belong to this class
wi generate the Little group (stability group, residual grioup) of ⟨φ⟩. The equivalence of both
SSB conditions will be seen at Section (2.4).

Following the discussion of Section (2.1), the SSB of the gauge symmetry SU(2)L ×
U(1)Y provided the needed masses to W± and Z. In order to understand why this happens,
first we need to understand the SSB of a global symmetry and the consequences of it. The first
important result in this context was the discovery in the 60’s that the spontaneous breaking of
a global continuous symmetry (G → H) implied the existence of at least dG − dH real scalar
particles with zero mass. This result is known as Goldstone’s Theorem [21], [22] and will be
explained in detail in Section (2.4).

2this is at least true for all the models treated in this thesis but in general it is not, instead we have a combi-
nation of parameters of the potential that act as control parameters whose combination gives the SSB condition
see chapter 12.2 of [13]
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In the rest of the section we give a first example of the Goldstone’s theorem with the
following Lagrangian with global symmetry U(1) and with complex a scalar field φ. The
mirror example with gauge symmetry is done in Section (3.1).
The Lagrangian is:

L(φ, ∂µφ) = 1
2
∥∥∥∂µφ∥∥∥2

− λ

4

(
∥φ∥2 + m2

λ

)2

(2.13)

with potential:

V (φ) = λ

4

(
∥φ∥2 + m2

λ

)2

(2.14)

The complex scalar field φ can be represented as a 2 dimensional real vector i.e. as φ =
φ1 + iφ2 or in a more vectorial form φ = (φ1, φ2). Seen as two real fields, it is a vector
in the vector space of the fundamental representation of SO(2). Remembering, the Energy
functional for a Lagrangian L(φi, ∂µφi) is:

E(φi, ∂µφi) =
∫
dx3H =

∫
dx3

(
π0
i ∂0φi − L

)
(2.15)

where π0
i ≡ ∂L

∂∂0φi
is the conjugate momentum for φi. We minimize the Energy functional to

calculate the vev : ⟨φ⟩. For Eq.(2.13) we have:

E(ϕ, ∂µϕ) =
∫
d3x

[ 2∑
i=1

(
1
2(∂0φi)2 + 1

2(∂jφi)2
)

+ λ

4

(
∥φ∥2 + m2

λ

)2 ]
. (2.16)

Since the vacuum has to be invariant under translations we need that (∂µ ⟨φi⟩)2 = 0 in each
field and the so possible minima are constants. For the rest of the section, this will be a
universal condition for all matter fields when trying to evaluate the extrema of the Energy
functional. Since the energy has to be bounded from below we need to have λ > 0. The last
term is the potential and the minimization is done using:

∂V

∂φi

∣∣∣∣
φi=⟨φi⟩

= 0 i = 1, 2. (2.17)

We obtain: (
m2

λ
+
∥∥⟨φ⟩

∥∥2
)

⟨φi⟩ = 0 i = 1, 2. (2.18)

Having retrieved the equation that defines the possible vev, we will see now how m2, the
control parameter will change the order parameter, ⟨φ⟩. From Eq.(2.18) we see that the critical
point is m2

crit = 0. So we will have a symmetric phase for m2 ≥ 0 and a spontaneously broken
phase m2 ≤ 0. In each phase we will count the number of massless bosons in two distinct
forms, first directly using a perturbation around the ground state of the phase and also seeing
how the generators of the symmetry group act on the selected ground state as in Eq.(2.12) and
the using Goldstone’s Theorem.

If m2 ≥ 0 the ground state is unique and we have ⟨φ⟩ = φ0 = (0, 0) and the symmetry is
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not broken. A perturbation around this ground state shows that the fields (φ1, φ2) have equal
mass m. This is called a Wigner-Weyl realization of symmetry. Analogously we now see
how the generators act on this ground state. T , the only generator of the group SO(2), in the
fundamental representation T is:

T =
(

0 1
−1 0

)
(2.19)

Since φ0 = (0, 0) we have Tφ0 = (0, 0) thus Tφ0 = φ0 so we don’t have any breaking. The
little group of φ0 is all SO(2).
When m2 = −µ2 < 0 , the Hessian of V at the configuration (0, 0) is negative definite and
so is a maximum implying that at least one component of the vev is different from zero thus
⟨φ⟩ ≠ 0 and so we are at the SSB phase. From Eq.(2.18) components of the vev have to
satisfy:

2∑
i=1

⟨φi⟩2 = µ2

λ
≡ v2 (2.20)

For convenience we select the ground state as ⟨φ⟩ = φ0 = (v, 0). The only generator is broken
since are at the SSB phase. Explicitly, from the form of the generators applied to the vev, we
have that:

Tφ0 = (−v, 0) ̸= (0, 0) (2.21)

Then Goldstone’s theorem implies that there will be one massless real scalar boson. Corre-
spondingly, the little group of φ0 is null as there is not even one generator that is not broken.

A second way to see the fact that we have one massless boson is doing perturbations
around the vev. These will be shown using two different parameterizations of the field and
do the transformation φ → v + χ (a "perturbation around the minimum"). The first one is a
cartesian parametrization:

φ1 = v + χ1 (2.22)
φ2 = χ2 (2.23)

The perturbed potential is:

V (∥v + χ∥) =λ4 (∥v + χ1 + iχ2∥2 − v2)2 = λ

4
(
(v + χ1)2 + χ2

2 − v2
)2

(2.24)

=λ4 (2φoχ1 + χ2
1 + χ2

2)2 = µ2χ2
1 +

√
µ2λ(χ3

1 + χ1χ
2
2) + λ

4 (χ2
1 + χ2

2)2

The new Lagrangian to second order is then :

Lχ = 1
2(∂µχ1)2 + 1

2(∂µχ2)2 − µ2χ2
1 (2.25)

Note that the field χ2 does not have mass and corresponds to the Goldstone boson. This
resultant Lagrangian does not have U(1) symmetry. This is seen explicitly using the real
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representation of U(1).
The other parametrization is using radial coordinates:

φ = (v + ρ)eiη/v (2.26)

It is clear that the potential does not depend on η. In fact:

V (∥φ∥) = λ

4 (ρ2 + 2vρ)2 = µ2ρ2 +
√
λµρ3 + λ

4ρ
4 (2.27)

The perturbed Lagrangian to second order is then:

Lρ = 1
2(∂µρ)2 + 1

2(1 + ρ

v
)2(∂µη)2 − µ2ρ2 (2.28)

In this parametrization η(x) corresponds to the Goldstone boson. An additional comment,
before finishing this section is that using a certain parametrization we explicitely saw the
full perturbed Lagrangian with the physical Goldstone bosons whereas when dealing with
generators acting on the vev we just know that there exist a certain number of Goldstone
bosons without getting the explicit form of them. Sometimes, when it is difficult to found a
parametrization like the radial one it is better to see the SSB pattern using the generators.

2.4 Classical Goldstone’s Theorem

For the enunciation of this version of the theorem, we restrict to theories with N complex
scalar fields that live in a unitary representation (generally reducible) of real dimension dΦ =
2N , of a compact Lie group G of dimension dG. We also restrict to Lagrangians L of the
form:

L = 1
2∥∂µφ∥2 − V (φi) (2.29)

Here ∥∥2 is the N complex scalar product i.e. ∥φ∥2 = ∑N
i=1 φ

∗
iφi. It is easy to see that

the kinetic term is invariant under global G transformations for an appropiate N . Let φ′ the
transformed field:∥∥∥∂µφ′

∥∥∥2
= ∂µφ∗

i
′∂µφ

′
i = ∂µU∗

ijφ
∗
j∂µUij′φj′ = ∂µφ∗

i∂µφi =
∥∥∥∂µφ∥∥∥ (2.30)

where we have used the unitarity of U . V (φi) is the potential of the Lagrangian, that will be
composed of invariant polynomials under global and local G symmetry of at most order four.

We also suppose that the potential has a degenerate set of ground states that is connected
for some elements of the group. Selecting a particular ground state φ0 the elements h ∈ G
with property:

U(h)φ0 = φ0 (2.31)

form a subgroup H of G of dimension RH . Note that it contains the identity element. Natu-
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rally, H will have a Lie algebra h. This group is commonly called the "little group of φ0"3.
Note also that the elements of G that does not have this property does not form a subgroup of
G but are elements of the coset group G/H .
As usual we have:

U(g) = eαaTa , (2.32)

with Ta the antihermitian representation of an element of g the Lie algebra of G. Restrict-
ing ourselves to elements of the group H and using the expansion Eq.(2.32) the equivalent
definition given by Eq.(2.31) in terms of Lie Algebras is:

Thφ0 = 0 (2.33)

that is valid in each order k of αkh with h denoting the directions restricted to the group H by
the dH independent elements of h. For the elements (labeled by g) that do not belong to h we
have Tgφo ̸= 0 thus for a linear combination of them we have:

αgTgφ0 ̸= 0 {αg}arbitrary (2.34)

so they are closed as a vector space thus generate the coset group G/H .
In this way the generators of G can be divided in two disjoint sets : the generators of H,

{Th}, and the RG − RH "broken generators" {Tg} that generate the coset group G/H . From
now on we will use h and g as indices over their respective subspaces. Fields near φ0 can
be divided in fields in the directions generated by the broken generators around φ0, that is,
proportional to Tgφ0 and fields H(x) orthogonal to this space:

[Tgφ0]iH(x)i = 0, i = 1, · · · , N (2.35)

We shall call these spaces Goldstone and Higgs space, respectively. As perturbations in the
dG − dH directions of Goldstone space are linearly independent we have dG − dH fields,
αg(x)T̂gφ0, in this space. The dimension of the Higgs space is then NH = dφ−dG+dH . Thus
a general perturbation is φ0 → φ0 + χ(x) with :

χ(x) = τg(x)T̂gφ0 +H(x) (2.36)

Notice that αg(x) are dimensionless. The perturbed Lagrangian is defined as:

Lχ(χ) := L(φ0 + χ) = 1
2
∥∥∥∂µχ∥∥∥2

− V (φ0 + χ). (2.37)

Now we are ready to state Goldstone’s Theorem using the scheme outlined above. Suppose
we have a Lagrangian L as Eq.(2.29) with global and continuous symmetry for a group G in
the SSB phase corresponding to the vev φ0. Then the potential of the perturbed Lagrangian
Lχ to second order depends only on the Higgs field space, which implies that fields in the
dG − dH dimensional Goldstone subspace are massless.

3The little group H or stability group of a vector φ0 are the h ∈ G that leave φ0 invariant: U(h)φ0 = φ0
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To see this let’s start from the invariance condition of the potential:

V
(
U(α)(φ0 + χ(x))

)
= V (φ0 + χ(x)) (2.38)

with α the coordinates of an arbitrary g ∈ G. This is also valid also for local transformations
i.e. α(x). Then from Eq.(2.32) we have for an arbitrary direction:

U(α(x)) = 1 + αa(x)Ta + 1
2(αaTa)2 + O(α3) (2.39)

So, using Eq.(2.38) as Eq.(2.39) for perturbations only on the Higgs space (χ(x) = H(x)) we
have:

V (φ0 +H(x)) =V
(
U(α(x))(φ0 +H(x))

)
=V (φ0 +H(x) + αa(x)Taφ0 + αa(x)TaH(x) + Aα2)
=V (φ(x) + αa(x)TaH(x) + Aα2)
≡V (φ̄(x))

(2.40)

where the terms of order α2 are written in symbolic form as Aα2. Expanding around the
perturbed field φ(x) we have to first order:

V (φ0 +H(x)) ≈ V (φ(x)) +
[
∂V

∂φ̄

]
i

∣∣∣∣
φ̄=φ

(αa(x)TaH(x) + Aα2)i (2.41)

We shall now do a second expansion around φ0 for the second term[
∂V

∂φ̄

]
i

∣∣∣∣
φ̄=φ

≈
[
∂V

∂φ̄

]
i

∣∣∣∣
φ̄=φ0

+
[
∂2V

∂φ̄2

]
ij

∣∣∣∣
φ̄=φ0

(H(x) + αa(x)Taφ0)j (2.42)

The first term vanishes. Combining (2.41) and (2.42), we see we do not have any term
quadratic in αa(x) and not involving H(x). Thus to second order in α(x) and H(x):

V (φ0 +H(x)) ≈ V
(
φ0 + αa(x)Taφ0 +H(x)

)
(2.43)

Relabeling αa(x) = τa(x) and since we only have non null values in directions directions on
the Goldstone space we have a = g, thus to second order:

V2
(
φ0 + χ(x)

)
= V2

(
φ0 + τa(x)Taφ0 +H(x)

)
= V2(φ0 +H(x)). (2.44)

This means there are no terms of the type TgΦ0Tg′φ0τg(x)τg′(x), which implies that the fields
in Goldstone space do not acquire a mass term. A diagonalization in this space gives the
Goldstone bosons.
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2.5 Spontaneous symmetry breaking for a Lagrangian with
Non Abelian Global Symmetry

A simple and clear example of the application of Goldstone’s theorem for a non Abelian group
is using a Lagrangian with SO(3) symmetry:

L = 1
2
∥∥∥∂µφ∥∥∥2

− λ

4

(
∥φ∥2 + m2

λ

)2

(2.45)

with the field φ = (φ1, φ2, φ3) in the fundamental representation of SO(3). The symmetry
operators have the form U(g) = eαaTa , with Ta the fundamental representation of so(3), the
Lie Algebra of SO(3). The explicit matrices are:

T1 =

 0 0 0
0 0 1
0 −1 0

 , T2 =

 0 0 −1
0 0 0
1 0 0

 , T3 =

 0 1 0
−1 0 0
0 0 0

 (2.46)

The minimum conditions are retrieved in the usual way:

∂V

∂φi

∣∣∣∣
φ=⟨φ⟩

= 0 i = 1, 2, 3. (2.47)

We have: (
m2

λ
+
∥∥⟨φ⟩

∥∥2
)

⟨φi⟩ = 0 i = 1, 2, 3. (2.48)

As before, when m2 > 0 we have the symmetric case with vev ⟨φ⟩ = (0, 0, 0)T . For m2 < 0
we have the SSB case and explicitly we see that the set of ground states that minimize the
potential have to satisfy the following equation:

3∑
i=1

⟨φi⟩2 = −m2

λ
= v2 (2.49)

As before, we select a certain configuration of fields that satisfy equation Eq.(2.49) , a partic-
ular vev, for example φ0 = (0, 0, v). Since SO(3) has 3 generators Ta we apply them into φ0
and we have that the set of broken generators (Tbφ0 ̸= 0) are T1, T2 and the unbroken one is
T3 with T3φ0 = 0. Now applying Goldstone’s theorem we see that we have two Goldstone
bosons corresponding to the φ1 and φ2 fields and the perturbed Lagrangian has a smaller con-
tinuous symmetry generated only by T3. Since there is only one subgroup of SO(3) with one
generator we see that SO(2) is the new global symmetry. Thus the spontaneous symmetry
breaking pattern is:

SO(3) → SO(2) (2.50)
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Doing a perturbation around the vev φ = φ0 +χi with i labeling the directions for the potential
we have:

V (χ) = λ

4 ((v + χ3)2 + χ2 + χ1 − v2)2 (2.51)

Then the perturbed Lagrangian (2.45) to second order is:

L = ∂µχi∂
µχi − λv2χ2

3 (2.52)

showing explicitly the result of Goldstone’s theorem with χ1 and χ2 as the massless Gold-
stone’s bosons and the only Higgs χ3 with mass

√
2λv.

The residual symmetry group SO(2) is seen from the full Lagrangian:

L =∂µχi∂µχi − λv2χ2
3 + λ

2χ
2
3 + λ

4χ
4
3

+ λvχ3(1 + χ2
3)(χ2

1 + χ2
2) + λ

4 (χ2
1 + χ2

2)2
(2.53)

where χ3 is a singlet under this symmetry and the two Goldstone bosons transform as the
fundamental representation of SO(2).

The result of the massless scalar bosons of the Goldstone was seen as a puzzle at the time
of it’s discovery since in those times people worked with global symmetries of phenomeno-
logical flavor models and the result implied long ranged interactions that were clearly not
observed. Contemporaneously, there was also the puzzle of having an adequate propagator for
a massive vector boson such that only the timelike polarization cancels. These two problems
and their solutions are related, as we will see in the next Chapter.





Chapter 3

Generalized Brout-Englert-Higgs
Mechanism

The discussion of Section (3.1) is based on [12]. For the rest of the chapter we mainly deal
with the pedagogical exposition of the seminal paper [23]. The group theoretical methods
were mainly acquired from [24],[25],[26], [27] and in particular the basis of the Classical
Algebras are taken as defined in [28]. The form of presentation was inspired by [13].

3.1 Brout-Englert-Higgs Mechanism in an Abelian Model

Following Section (2.1) the model of Glashow (1962), although important since it found the
adequate symmetry group of Electroweak interactions was not renormalizable nor solved the
problem for the massive vector boson propagator. In 1964, however, it was found a circumven-
tion for Goldstone’s Theorem. Three different contemporaneous papers ([29], [30],[31]), each
one with different methods, showed that after upgrading the global symmetry into a gauge
symmetry, thus adding the respetive gauge field, the massless bosons dissapeared. Instead,
they were "eaten" by the gauge field such that it acquired mass and, surprise, it also gave an
adequate propagator for the gauge field.

We start with an example using a U(1) gauge invariant Lagrangian:1

L(φ, φ∗, Aµ, ∂µA
ν) = −1

4F
µνFµν + 1

2
∥∥∥Dµφ

∥∥∥2
− V (φ, φ∗), (3.1)

with:
Dµφ = (∂µ − igAµ)φ (3.2)

F µν = ∂µAν − ∂νAµ, (3.3)

1we set the label of U(1) to q = 1
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and potential:

V (φ, φ∗) = λ

4

(
∥φ∥2 − µ2

λ

)2

. (3.4)

The gauge transformations for U(1) are:

Aµ → Aµ + 1
g
∂µα(x) (3.5)

φ → eiα(x)φ. (3.6)

From the energy functional:

E(Aµ, φ) =
∫
dx3

(
1
2F

0iF0i + 1
4FijF

ij + ∥Dµφ∥2 + V (∥φ∥)
)
, (3.7)

we calculate the fields that minimize it. To minimize the kinetic term of the boson field Aµ we
do:

∂E

∂(∂µAν)

∣∣∣∣
Aµ=⟨Aµ⟩

= 0 → F µν = 0. (3.8)

Then Aµ has to be a pure gauge i.e.

⟨Aµ⟩ = 1
g
∂µα(x), (3.9)

The minimization of the potential is the same as in the globally symmetric ones. The interest-
ing case is only when there is Spontaneous Symmetry Breaking (SSB): µ2 ≥ 0.

∂V

∂φi

∣∣∣∣
φi=⟨φi⟩

(
−µ2

λ
+
∥∥⟨φ⟩

∥∥2
)

⟨φ⟩i = 0 i = 1, 2. (3.10)

The set of all possible vevs of φ has to satisfy the equation:

⟨φ1⟩2 + ⟨φ2⟩2 = µ2

λ
≡ v2. (3.11)

Though, differing from the globally symmetric examples of Chapter (2), it is not sufficient to
fix the complex vev (constant) ⟨φ⟩ = φ0 = ⟨φ1⟩ + i ⟨φ2⟩ in order to get a physical vev; we still
can have U(1) gauge transformations on φ0 whose results, new vevs, still satisfy Eq. (3.11).
Thus we need to fix the gauge at the level of the vev to cancel the extra degrees of freedom.
To do this we minimize the third term. We have using Eq.(3.9):

Dµφ|φ=⟨φ⟩,Aµ=⟨Aµ⟩ = ∂µ ⟨φ⟩ − i
(
∂µα(x)

)
⟨φ⟩ = 0. (3.12)

From Eq.(3.9) and Eq.(3.11) this implies that:

⟨φ(x)⟩ = eiα(x)φ0. (3.13)
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This is the set of solutions defining all the possible ground states, the same as the case with
global symmetry. For convenience we choose α(x) = 0 that implies:

⟨Aµ⟩ = 0, ⟨φ⟩ = φ0. (3.14)

From last equation, the fact that we fix the gauge of the vev implies that we only need to look
at the potential to evaluate the ground state. Using a real φ0, (⟨φ2⟩ = 0) we have doing an
infinitesimal perturbation in Cartesian parametrization in the matter field:

φ = φ0 + χ1 + iχ2, (3.15)
Aµ = ⟨Aµ⟩ + Aµ = 0 + Aµ. (3.16)

The perturbed Lagrangian is:

L = −1
4F

µνFµν + 1
2∥∂µχ1 + i∂µχ2 − igφ0Aµ − igAµχ1 + gAµχ2∥2 − f(χ1, χ2), (3.17)

where using φ0 =
√

µ2

λ
:

f(χ1, χ2) ≡ V (∥φ+ χ∥) = µ2χ2
1 + µ

√
λ(χ3

1 + χ1χ
2
2) + λ

4 (χ2
1 + χ2

2)2. (3.18)

That is:

L = − 1
4F

µνFµν + 1
2(∂µχ1)2 + g2φ2

0
2 (Aµ − 1

gφ0
∂µχ2)2

+ gAµ(∂µχ1)χ2 + g2φ0

(
Aµ − 1

gφ0
∂µχ2

)
Aµχ1

+ 1
2g

2A2
µχ

2
1 + 1

2(gAµχ2)2 − f(χ1, χ2).

(3.19)

Since we have used infinitesimal fields we focus only on terms of at most second order:

Lχ = − 1
4F

µνFµν + 1
2(∂µχ1)2 + g2φ2

0
2 (Aµ − 1

gφ0
∂µχ2)2 − µ2χ2

1 (3.20)

Redefining the vector field Bµ = Aµ − ∂µχ2
gφ0

we get:

Lχ ≡ −1
4FB µνF

µν
B + 1

2(∂µχ1)2 − µ2χ2
1 + g2φ2

0
2 (Bµ)2, (3.21)

where F µν
B = ∂µBν − ∂νBµ = F µν . This new Lagrangian consist of a real scalar field χ1

and a massive boson vector Bµ. Note that the field χ2 is not longer present explicitly in the
Lagrangian, it is part of the new vector field. The new vector boson Bµ acquires then an
additional degree of freedom given by the degree of freedom of the real scalar χ2. So we have
found that after SSB of a gauge symmetry we can retrieve a massive vector boson. This is the
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BEH mechanism for the second order Lagrangian.
The degrees of freedom of the theory remain the same, four. Comparing the degrees of

freedom of a U(1) theory with a trivial vacuum and one with SSB we see that in the trivial
case we have two real bosons each one with one degree of freedom and a massless gauge
vector field with two degrees of freedom . In the SSB case we have only one boson χ1 and
the massive vector field Bµ with three degrees of freedom. Eq.(3.21) is the SSB Lagrangian
in terms of the physical fields only until second degree.2

To see the full physical Lagrangian is better to use the unitary gauge . Using the radial
parametrization:

φ = (φ0 + ρ)eiη/φ0 (3.22)

where the fields transform as:

η′ =η + φ0α(x)
ρ′ =ρ

A′
µ =Aµ − 1

g
∂µα

(3.23)

We impose a subsidiary condition:
φ = φ∗ (3.24)

that implies η = 0. Condition (3.24) is fixing the unitary gauge. The remaining fields are then
ρ and Aµ. Expanding the potential we arrive at the exact Lagrangian:

L = 1
2(∂µρ)2 + 1

2(φ0 + ρ)2g2A2
µ − µ2ρ2 −

√
λµρ3 − λ

4ρ
4 − 1

4FµνF
µν (3.25)

that shows explicitly the dissapearance of the Goldstone bosons. In this gauge then, the theory
is composed of only the physical fields and the original gauge boson acquires mass. This is
the BEH mechanism.

3.2 Theories with non Abelian Symmetries
In the first Chapter we have shown all the elements needed to construct models with non-
abelian gauge symmetry that include the Standard Model itself. Summarizing, the general
principles are:

(a) Choose the gauge group G with dG generators

(b) Add dG vector fields (gauge bosons) of spin 1 that transform in the Adjoint Representa-
tion of G.

(c) Choose representations under G for the matter fields (elementary particles). These have
to include chiral representation of G for the spin 1/2 fermions and complex or real
Lorentz scalar representations under G for the spin 0 bosons.

2and without fixing the gauge
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(d) Define adequate covariant derivatives for each non gauge field and write the most gen-
eral renormalizable Lagrangian, gauge invariant under G. Matter-gauge interactions
will be derived from the covariant derivative.

(e) In case we require massive vector fields, the Lagrangian has to include a renormalizable
Higgs potential composed of scalar fields in order to spontaneously break the gauge
symmetry G using a generalized BEH mechanism. If the gauge symmetry does not
allow certain fermions to have a Dirac or Majorana mass term then we need to intruduce
Yukawa coupling (trilinears) between the fermions and the scalars of the Higgs potential.

The skeleton of a Lagrangian will be:

L = Lgauge + Lfermions + Lscalar + LY + LCPv (3.26)

with:
Lgauge =

∑
i

−1
4F

µνa
Gi
F a
µν Gi

(3.27)

Where the sum over Gi is over each simple group (if there are more than one) of the gauge
symmetry group G = G1 × · · · ×Gm.3 This sector gives the kinetic energy of the gauge fields
and their self interactions.
The fermionic kinetic terms are:

Lfermions =
∑
ψ

ψ̄Dµψ (3.28)

Where the sum is over the different fermionic fields of the theory. From the covariant deriva-
tive we get interactions between the scalar and gauge fields.

Lscalar =
∑
φ

1
2∥Dµφ∥2 − V (φ) (3.29)

where ∥Dµφ∥2 denotes the kinetic term of the φ’s and the ∥∥2 denotes the scalar product in the
specified representation of φ. The Yukawa sector is:

LY = V (φ, ψ) (3.30)

This sector will contain terms constructed between fermions and scalar bosons that are gauge
invariant that can be. It is the generalization of the Yukawa sector and gives masses to the
correspondent fermions after SSB.

In the next section we deal in the most general way with the spontaneous breaking of
gauge symmetries of the orthogonal O(n) and special unitary groups SU(n). First we will
write the most general potential invariant under G in each of the different representations.
Then we minimize the potential to retrieve the vev. As we will see, there will be a more

3for example for the Standard Model with gauge symmetry SU(3)c×SU(2)L×U(1)Y for SU(3)c, SU(2)L

and U(1)Y
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compact way to express the vev in each case using transformations that satisfy the symme-
tries of the potential, that as in the case of of the potential of the Standard Model, has larger
symmetry than the symmetry of the Lagrangian. In order to calculate the dimension of the
lower symmetry group (modulo homomorphisms) and see the different symmetry breaking
patterns we need to know the number of unbroken generators of the lager symmetry group for
the corresponding vev. Since the number of massive vector bosons is equal to the number of
would be Goldstone bosons and these last ones are equal to the number of broken generators,
inserting the vev on the kinetic term gives us the number of vector fields that acquire mass and
consequently (doing a substraction) also the number of broken generators.

Another procedure to get the symmetry breaking patterns [32], that we won’t follow is
explicitly analyzing the action of the generators of G on the factorized vev ⟨Σ⟩. Using this
approach we could find the broken and unbroken generators and retrieve the subalgebra of the
unbroken generators by analyzing the specific relationships they have (i.e. if they are traceless,
hermitian etc.). The usefulness of this approach is that we do not need to calculate the vector
boson mass to get the symmetry breaking patterns. Even more, it is more general since it
just assumes global symmetries tough in practice if we focus only in the SSB breaking of the
potential that is irrelevant.

3.3 Spontaneous breaking of Symmetry in the O(n) group

The matrix Lie Group O(n) is defined as the set of real matrices n × n, denoted by O, that
satisfy:

OTO = 1. (3.31)

The group SO(n) is the subgroup of O(n) with the additional constrain:

det[O] = 1. (3.32)

Using O = eX , 4 with X an element of o(n) (so(n)), the Lie Algebra of O(n) (SO(n)), we
have the corresponding constraints:

X = −XT (3.33)
Tr[X] = 0. (3.34)

Equation (3.31) gives us n(n+1)
2 restrictions. Thus the initial n2 parameters of O ∈ O(n) are

reduced to n(n−1)
2 independent parameters. In a similar way from Eq.(3.33) the same restriction

is retrieved for any element of o(n). For SO(n) , Eq. (3.31) gives us n(n+1)
2 restrictions and

the Lie Algebra is the same as the one for O(n) since the additional constraint Eq.(3.34) is
included in Eq.(3.33) thus o(n) = so(n).

A base for the n(n−1)
2 antisymmetric matrices X , elements of o(n) are the set {Lab},

4This expression is valid globally for compact Lie Groups, that include all Classical groups
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a < b = 1, · · ·n, real matrices with entries as:

[Lab]ij = (δaiδbj − δajδbi). (3.35)

These satisfy the following rule:

[Lij, Lkl] = δjkLil + δilLjk − δikLjl − δjlLik i, j, k, l = 1, · · · , n (3.36)

This is the matrix Lie Algebra o(n), which spans a vector space, with scalar product given by
the trace:

Tr[XijXkl] = 2(δilδjk − δikδjl). (3.37)

The correspondence with another usual notation of o(n) with a single symbol {Ta} is straight-
forward. For so(3) for example we have the correspondence:

T1 = L23, T2 = L31, T3 = L12. (3.38)

Each couple of indices x, y in Lxy is interpreted as rotation in the plane given by x, y.

Using this notation, the fundamental representation of the Lie Group is defined as:

U(ϵij) = e
1
2Lijϵij (3.39)

Then using Eq.(3.33) we see that ϵij are n(n− 1)/2 real antisymmetric parameters.
Since the algebra has n(n−1)/2 elements to construct a gauge theory O(n) we need the same
number of bosonic gauge bosons, Wµij such that the Yang Mills field is : Wµ = WµijLij .
The Wµij are antisymmetric. In fact Wµ = WµijLij = −WijLji, then projecting into the
direction Lab we have Wab = −Wba.
The gauge boson vectors transform as the adjoint representation 5 Eq.(1.70) (using a different
normalization) under a gauge transformation:

Wµ → W ′
µ = e

1
2Lijϵij

(
WµabLab − 2

g
∂µ

)
e− 1

2Lijϵij (3.40)

Expanding near the identity we get:

W
′

µ =Wµ + 1
2[Lijϵij,WµabLab] + 1

g
(∂µϵij)Lij

=Wµ + 1
2ϵijWµab

(
δibLja + δjaLib − δiaLjb − δjbLia

)
+ 1
g

(∂µϵij)Lij

=Wµ + ϵikWµkjLij + ϵikWµjkLji + 1
g

(∂µϵij)Lij.

(3.41)

5that is always real for classical Lie groups
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Using Eq. (3.37) we can project onto the Lij element, (Tr[WµLij] ), to obtain:

W ′
µij = Wµij + ϵikWµkj + ϵjkWµik + 1

g
(∂µϵij). (3.42)

To construct the kinetic part of the Lagrangian we need:

F ij
µν = ∂µW

ij
ν − ∂νW

ij
µ + g(W i k

µ W k j
ν −W i k

ν W k j
µ ) (3.43)

The Lagrangians that we will use for the rest of the chapter have the following form:

L = −1
4 Tr[F †

µνF
µν ] + Lkin − V = −1

4F
ij
µνF

µν
ij + Lkin − V (3.44)

where Lkin is the kinetic term of the scalar field and V is the potential. Both V and Lkin will
depend on the representation of the scalar field.

In the following subsections we will calculate the symmetry breaking patterns. In each
subsection we derive the transformation law of the field in the specific representation and it’s
covariant derivative.

3.3.1 Spontaneous Breaking in the vector representation

A finite transformation in the fundamental representation is:

φ′ = U(ϵ)φ (3.45)

with:
U(ϵij) = e

1
2Lijϵij . (3.46)

For infinitesimal transformations, this implies:

φ′
i = φi + ϵijφj. (3.47)

The covariant derivative can be seen using Eq.(3.35) with Wµ = WµabLab:

Dµφi =∂µφi − g

2Wµab(Lab)ijφj = ∂µφi − g

2Wµab(δaiδbj − δbiδaj)φj
=∂µφi − gWµijφj.

(3.48)

Using these results, we can construct the kinetic part of the scalar field in the fundamental
representation:

Lkin = 1
2(Dµφ)†Dµφ = 1

2∂
µφi∂µφi − gWµijφj∂

µφi + 1
2g

2WµikφkW
µ
ik′φk′ . (3.49)
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Recall that the last term is responsible for giving masses to the gauge bosons Wµ.
The most general renormalizable potential in the vector representation is:

V (φ) = −1
2µ

2(φiφi) + 1
4λ(φiφi)2 (3.50)

where λ > 0 so the potential is bounded below. To minimize the potential we do:

∂V

∂φi

∣∣∣∣
φi=⟨φi⟩

=
(
−µ2 + λ ⟨φj⟩ ⟨φj⟩

)
⟨φi⟩ = 0 i = 1, · · · , n. (3.51)

For µ2 > 0 the standard extremum ⟨φi⟩ = 0, i = 1, · · · , n gives a local maximum.
The equation that defines the set of ground states is:

⟨φi⟩ ⟨φi⟩ = µ2

λ
≡ v2. (3.52)

We select the vev as
⟨φi⟩ = δinv. (3.53)

Remembering the discussion of Section (3.1) we need to fix the gauge to get a physical vev.
We assume for this section and the next ones that from the kinetic term of the gauge vector
bosons the vev of them is pure gauge i.e. ⟨Wµ ij⟩ = ∂µαij and that from the minimization of
the kinetic term of the scalar boson that gives :

Dµφ|φi=⟨φi⟩,Wµ=⟨Wµ⟩ = 0 (3.54)

the gauge is fixed and so Eq.(3.53) is valid unambiguously.
Using Eq.(3.49), we have the term that gives masses to the gauge bosons:

LM = 1
2g

2WµikW
µ
il ⟨φk⟩ ⟨φl⟩ = g2

n−1∑
i=1

WµinW
µ
in

v2

2 . (3.55)

So we have n− 1 bosons that acquire mass. Thus we have:

n(n− 1)
2 − (n− 1) = (n− 1)(n− 2)

2 (3.56)

massless vector bosons. The breaking is then:

O(n) → O(n− 1) (3.57)

This implies that there are (n−1)(n−2)
2 generators that do not break the symmetry meaning that

the residual symmetry (Little group of the vev ⟨φ⟩) is O(n − 1) and there is an equal number
of scalar bosons.
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3.3.2 Spontaneous Breaking in the second rank Antisymmetric Repre-
sentation

The demonstration on how to retrieve the covariant derivative and transformation law for these
representations will be derived in Part 3.6. An infinitesimal transformation in this representa-
tion is:

φ′
ij = φij + ϵikφkj + ϵjkφik. (3.58)

The covariant derivative is:

Dµφij = ∂µφij − gWµikφkj − gWµjkφik. (3.59)

The kinetic term for a second rank tensor is:

Lkin =1
2∂

µφij∂µφij − g(W µ
ikφkj +W µ

jkφik)∂µφik
+ g2(W µ

ikφkjWµilφlj) − g2(W µ
ikφkjWµjlφli).

(3.60)

Note that the gauge boson masses will come from the terms proportional to g2

LM = g2(W µ
ikφkjWµilφlj) + g2(W µ

ikφkjWµjlφil). (3.61)

The most general quartic potential for antisymmetric second order tensor representation of
O(n) is:

V (φ) = − 1
2µ

2 Tr[φ†φ] + 1
4λ1(Tr[φ†φ])2 + 1

4λ2 Tr[φ†φφ†φ]

= 1
2µ

2 Tr[φ2] + 1
4λ1(Tr[φ2])2 + 1

4λ2 Tr[φ4]
(3.62)

or equivalently:

V (φ) = −1
2µ

2φijφij + 1
4λ1(φijφij)2 + 1

4λ2φijφjkφklφli. (3.63)

Any real antisymmetric matrix can be expressed in "standard form" [33] using φ = OΣOT .
Using n = 2L for n even and n = 2L+ 1 for n odd, we have:

Σ =


A1

A2 0
. . .

0 AL

 , n = 2L (3.64)

and
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Σ =



A1
A2 0

. . .
AL

0 0

 , n = 2L+ 1 (3.65)

where:

Ai = ai

(
0 1

−1 0

)
ai real, (3.66)

so

A2
i = a2

i

(
−1 0
0 −1

)
, A4

i = a4
i

(
1 0
0 1

)
. (3.67)

Using OOT = 1 and permutation propriety of factors inside the trace we can write Eq.(3.62)
as:

V (Σ) = 1
2µ

2 Tr[Σ2] + 1
4λ1(Tr[Σ2])2 + 1

4λ2 Tr[Σ4]. (3.68)

Note that we have used the gauge invariance propriety of the Lagrangian both in the potential
and in the kinetic term such that Σ is just a field redefinition.
Explicitly:

V (φ) = −µ2
L∑
i=1

a2
i + λ1(

L∑
i=1

a2
i )2 + 1

2λ2(
L∑
i=1

a4
i ). (3.69)

Taking the minimum we have:

∂V

∂ai

∣∣∣∣
ai=⟨ai⟩

= 2 ⟨ai⟩

−µ2 + 2λ1(
L∑
j=1

⟨a2
j⟩) + λ2 ⟨a2

i ⟩

 = 0, i = 1, · · ·L. (3.70)

As in the vector representation. if µ2 > 0 then ⟨ai⟩ = 0 for all i is a maximum of the potential.
Thus, we look for solutions such that a component of the vev is different from zero ,⟨ai⟩ ̸= 0
for some i. This is the case where spontaneous symmetry breaking happens.

Suppose we have K ≤ L values different than zero. Then:−µ2 + 2λ1(
L∑
j=1

⟨a2
j⟩) + λ2 ⟨a2

i ⟩

 = 0, i = 1, · · · , K. (3.71)

We have K equations of the last type. If we now subtract two of them, for example for
r, s ≤ K, we find:

⟨a2
r⟩ = ⟨a2

s⟩ (3.72)

and this can be done for all equations so all squared coefficients are the same:

⟨a2
i ⟩ = µ2

2λ1K + λ2
≡ a2, i = 1, · · ·K (3.73)
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Since µ2 > 0 we obtain an important inequality:

2λ1K + λ2 > 0 (3.74)

This condition is associated to the stability of the potential. To see this, use the fact that all the
components ⟨ai⟩ of the vev ⟨Σ⟩ are the same, replace it in the potential, and derive. We have:

∂V

∂a
= 2aK

[
−µ2 + 2λ1Ka

2 + λ2a
2
]
. (3.75)

Deriving again and imposing that we are at the minimum, d
2V
da2 > 0 we have:

d2V

da2 = −2Kµ2 + 12K2λ1a
2 + 6Kλ2a

2 > 0. (3.76)

This implies:
3a2(2λ1K + λ2) > µ2 > 0. (3.77)

Showing consistency with (3.74) .
The potential at the minimum is dependent on the K entries different than zero:

V (K) = −1
2

Kµ4

2λ1K + λ2
. (3.78)

We now want to know how many ⟨ai⟩’s are different from zero such that the last equation is
minimized, that is, to find K with 1 ≤ K ≤ L such that Eq.(3.78) is minimized. For this
analysis we treat K as a continuous variable. The derivative with respect to K is:

∂V

∂K
= −1

4
λ2µ

4

(2λ1K + λ2)2 . (3.79)

First note from last equation that the potential is monotonic since it does not have any extrema
for K i.e. ∂V

∂K
= 0 does not have any finite solutions. We also see that the sign derivative

depends only the sign of λ2. We shall analyze two cases.

Vev in the case λ2 < 0

When λ2 < 0 we have ∂V
∂K

> 0 so the potential is monotonically increasing thus the minimum
is at the smallest value forK, K = 1. So we have the solution:

⟨Σ⟩ = b



(
0 1

−1 0

)
0

. . .
0

 (3.80)
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where, using Eq.( 3.73 ) with K = 1:

b =
√

µ2

2λ1 + λ2
. (3.81)

Vev in the case λ2 > 0

The case when λ2 > 0 we see that the potential monotically decreasing so the minimum is at
the largest allowed value for K, K = L.

⟨Σ⟩ = a



(
0 1

−1 0

)
0(

0 1
−1 0

)
. . .

0
(

0 1
−1 0

)


, n = 2L. (3.82)

⟨Σ⟩ = a



(
0 1

−1 0

)
0(

0 1
−1 0

)
. . .

0
(

0 1
−1 0

)
0


, n = 2L+ 1. (3.83)

where using Eq.( 3.73) with K = L we have:

a =
√

µ2

2Lλ1 + λ2
. (3.84)

The precedent reasoning can be clearly visualized in Figure (3.1). To minimize V for λ2 > 0
we need the largest possible K and for λ2 < 0 the smallest.

Derivation of the symmetry breaking pattern

The calculation of the symmetry breaking pattern will depend on λ2 but the procedure to
calculate the number of massive gauge bosons is very similar in both cases. Since the fields
Σ and φ are related by an orthogonal transformations both give the same kinetic term thus
give masses to the gauge bosons in the same way thus is sufficent to use the vev of Σ. Then
from the Higgs Mechanism each Goldstone Boson is converted into the longitudinal degree of
freedom of a massive gauge vector and it is also seen the number of gauge bosons that remain
massless, thus showing the new lower symmetry. This new symmetry group is the little group
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Figure 3.1 The Potential at the vev, V (K,λ2), for λ2 = −0.3 and λ2 = 0.5.

of ⟨Σ⟩. Then, as outlined before, to get the massive gauge bosons we insert the vev on the
mass Lagrangian LM .
The vev of Σ is:

⟨Σkj⟩ = c
K−1∑
l=0

(
δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1

)
. (3.85)

Where K = 1 and c = b in the case λ2 < 0 and K = L and c = a when λ2 > 0, (see Eq.(3.80
and Eq.(3.82 respectively).
We start from Eq.(3.61). Lets consider the first term and insert the vev Σ → ⟨Σ⟩:

LM1 =g2c2W µ
ik(

K−1∑
l=0

δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1)Wµi k′(
K−1∑
l′=0

δk′ 2l′+1δj 2l′+2 − δk′ 2l′+2δj 2l′+1)

=g2c2W µ
i kWµi k′c2

K−1∑
l,l=0

[δk 2l+1δk′ 2l′+1δ2l+2 2l′+2 + δk 2l+2δk′ 2l+2δ2l+1 2l′+1

− δk 2l+1δk′ 2l′+2δ2l+2 2l′+2 − δl 2l+1δk′ 2l+1δ2l+1 2l′+2].
(3.86)

But since δ2l+1 2l′+2 always vanishes since l, l′ are integers, we have:

LM1 = g2c2
K−1∑
l=0

(
W µ
i 2l+1Wµ i 2l+1 +W µ

i 2l+2Wµ i 2l+2
)
. (3.87)
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For the second part we have:

LM2 =g2W µ
ikc

2(
K−1∑
l=0

δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1)Wµj k′(
K−1∑
l′=0

δk′ 2l′+1δi 2l′+2 − δk′ 2l′+2δi 2l′+1)

= − g2c2
K−1∑
l,l′=0

(W µ
2l′+2 2l+1Wµ 2l+2 2l′+1 +W µ

2l′+1 2l+2Wµ 2l+1 2l′+2 −W µ
2l′+1 2l+1Wµ 2l+2 2l′+2

−W µ
2l′+2 2l+2Wµ 2l+1 2l′+1)

=2g2c2
K−1∑
l,l′=0

(
W µ

2l+1 2l′+1Wµ 2l′+2 2l+2 −W µ
2l+1 2l′+2Wµ 2l′+1 2l+2

)
.

(3.88)

Example with O(4)

We first start with an example then show the general way to derive the symmetry breaking
pattern for both cases. Let’s start first with the case where the initial symmetry is O(4). This
group has 6 generators, so 6 gauge bosons.

If we have λ2 < 0, then K = 1 and c = b. Thus:

LM1 = g2b2
(
W µ
i 1Wµ i 1 +W µ

i 2Wµ i 2
)

= g2b2(2W 2
12 +W 2

13 +W 2
14 +W 2

23 +W 2
24) (3.89)

and
LM2 = −2g2b2W µ

1 2Wµ 1 2. (3.90)

So:
LM = g2b2(W 2

13 +W 2
14 +W 2

23 +W 2
24). (3.91)

Four vectors acquire mass, so we have 6 − 4 = 2 massless gauge bosons. Since there is not a
simple algebra of dimension two the unbroken generators have to satisfy the algebra ofO(2)×
SO(2). Note that since SO(2) v O(2)/Z2 we can’t have O(2) ×O(2) or SO(2) × SO(2) as
the stability group for parity reasons (we have just one Z2) although all those groups have the
same Lie Algebra. So, the symmetry breaking pattern is O(4) → O(2) × SO(2).

If we have λ2 > 0 then K = 2 and c = a. Then:

LM1 =g2a2
1∑
l=0

(
W µ
i 2l+1Wµ i 2l+1 +W µ

i 2l+2Wµ i 2l+2
)

=2g2a2
(
W 2

12 +W 2
13 +W 2

14 +W 2
23 +W 2

24 +W 2
34

)
.

(3.92)

and

LM2 =2g2a2
1∑

l,l′=0

(
W µ

2l+1 2l′+1Wµ 2l′+2 2l+2 −W µ
2l+1 2l′+2Wµ 2l′+1 2l+2

)
=2g2a2

(
2W µ

14Wµ 23 − 2W µ
13Wµ 24 −W 2

12 −W 2
34

)
.

(3.93)
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Then

LM =2g2a2
(
W 2

13 +W 2
14 +W 2

23 +W 2
24 + 2W µ

14Wµ 23 − 2W µ
13Wµ 24

)
=2g2a2

(
(Wµ13 −Wµ 24)2 + (W 2

µ14 +Wµ23)2
) (3.94)

We see that only two linear combinations of gauge bosons acquire mass. So we have 6−2 = 4
massless gauge bosons. Then, the stability group has 4 generators and corresponds to U(2).
The symmetry breaking pattern is then:

O(4) → U(2) (3.95)

General Case for λ2 < 0

In the general case when λ2 < 0 we have:

LM =g2b2
(
W µ
i 1Wµ i 1 +W µ

i 2Wµ i 2 − 2W µ
1 2Wµ 1 2

)
=g2b2

n∑
i=3

(
W µ
i 1Wµ i 1 +W µ

i 2Wµ i 2
)
.

(3.96)

And so we have n − 2 + (n − 2) = 2n − 4 bosons that acquire mass thus the number of
massless bosons is:

n(n− 1)
2 − (2n− 4) = n2 − 5

2n+ 4 = (n− 2)(n− 3)
2 + 1. (3.97)

So we have the breaking pattern:

O(n) → O(n− 2) × SO(2). (3.98)

General Case for λ2 > 0

When λ2 > 0 we have K = L:

LM =g2c2
L−1∑
l=0

(
W µ
i 2l+1Wµ i 2l+1 +W µ

i 2l+2Wµ i 2l+2
)

+ 2g2c2
L−1∑
l,l′=0

(
W µ

2l+1 2l′+1Wµ 2l′+2 2l+2

−W µ
2l+1 2l′+2Wµ 2l′+1 2l+2

)
(3.99)
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LM =g2a2
L−1∑
l,l′=0

(
W µ

2l′+1 2l+1Wµ 2l′+1 2l+1 +W µ
2l′+1 2l+2Wµ 2l′+1 2l+2 +W µ

2l′+2 2l+1Wµ 2l′+2 2l+1

+W µ
2l′+2 2l+2Wµ 2l′+2 2l+2

)
+ 2g2a2

L−1∑
l,l′=0

(
W µ

2l+1 2l′+1Wµ 2l′+2 2l+2 −W µ
2l+1 2l′+2Wµ 2l′+1 2l+2

)

+ g2a2δn 2L+1

L−1∑
l=0

(
W µ

2L+1 2l+1Wµ2L+1 2l+1 +W µ
2L+1 2l+2Wµ 2L+1 2l+2

)

=g2a2
L−1∑
l,l′=0

[
(W µ

2l′+1 2l+1 +W µ
2l′+2 2l+2)2 + (W µ

2l′+1 2l+2 −W µ
2l′+2 2l+1)2

]

+ g2a2δn 2L+1

L−1∑
l=0

(
W µ

2L+1 2l+1Wµ2L+1 2l+1 +W µ
2L+1 2l+2Wµ 2L+1 2l+2

)
.

(3.100)

First let’s suppose we are in the even case: n = 2L, then last term is null. Remembering that
each gauge vector with same indexes is null, Wµii = 0, we see that in the first term there are
L(L−1)

2 linear combinations of gauge bosons that acquire mass and in the second another set
with the same number. So we have in total L(L−1) massive vectors. The number of massless
gauge bosons is then:

(2L)(2L− 1)
2 − L(L− 1) = L2. (3.101)

So the symmetry breaking pattern is:

O(2L) → U(L). (3.102)

In the case n = 2L+1 we acquire additional 2Lmassive vectors from the last term of Eq.(3.99)
thus:

(2L+ 1)(2L+ 1 − 1)
2 − L(L− 1) − 2L = L2. (3.103)

So the symmetry breaking pattern is still:

O(2L+ 1) → U(L). (3.104)

3.3.3 Spontaneous Breaking in the second rank Symmetric Representa-
tion

Again, we delay the demonstration on how to retrieve the covariant derivative and transforma-
tion law for this representation until section 3.6.
The symmetric representation φij has the property:

φij = φji. (3.105)
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An infinitesimal transformation in this representation is:

φij → φ′
ij = φij + ϵikφkj + ϵjkφik. (3.106)

The covariant derivative is:

Dµφij = ∂µφij − gW µ
ikφkj − gWµjkφik. (3.107)

The kinetic term is:

Lkin =1
2∂

µφij∂µφij − g(W µ
ikφkj +W µ

jkφik)∂µφik
+ g2(W µ

ikφkjWµilφlj) + g2(W µ
ikφkjWµjlφli).

(3.108)

Note that the vector boson masses will come from the terms proportional to g2

LM = g2(W µ
ikφkjWµilφlj) + g2(W µ

ikφkjWµjlφli). (3.109)

The most general quartic potential for a traceless symmetric second order tensor representation
of O(n), φ′ is:

V (φ′) = − 1
2µ

2 Tr[φ′†φ′] + 1
4λ1(Tr[φ′†φ′])2 + 1

4λ2 Tr[φ′†φ′φ′†φ′] + 1
3λ3 Tr[φ′†φ′φ′†]

= − 1
2µ

2 Tr[φ′2] + 1
4λ1(Tr[φ′2])2 + 1

4λ2 Tr[φ′4] + 1
3λ3 Tr[φ′3].

(3.110)

Ulteriorly, the condition Tr[φ′] = 0 is added as a Lagrange multiplier otherwise we don’t have
an irreducible symmetric representation [4].
It is very well known that a real and symmetric matrix can be diagonalized such that φ′ =
OφOT with φij = δijφi [33], then we have:

V (φ) = −1
2µ

2
n∑
i=1

φ2
i + 1

4λ1(
n∑
i=1

φ2
i )2 + 1

4λ2

n∑
i=1

φ4
i + 1

3λ3

n∑
i=1

φ3
i − λ0

n∑
i=1

φi. (3.111)

For simplicity we impose an additional restriction, parity symmetry in the potential. To satisfy
this symmetry, terms proportional to λ3 are taken away. Since adding a Lagrangian multiplier
has a different origin, is a restriction on the representation, and is imposed after the definition
of the symmetry of the potential,the restriction of parity symmetry does not apply to this term.
We need to find the minimum of this potential with respect to φi and λ0 .
The zero trace condition is given by:

∂V

∂λ0
= 0. (3.112)
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For the other variables φi we have:

∂V

∂φi

∣∣∣∣
φi=⟨φi⟩

= −µ2 ⟨φi⟩ + λ1(
n∑
j=1

⟨φj⟩2) ⟨φi⟩ + λ2 ⟨φi⟩3 − λ0 = 0, i = 1, · · · , n (3.113)

We now show that there are at most three different values of φi’s, φ1 ̸= φ2 ̸= φ3. Let’s suppose
this is true then:

−µ2φ1 + λ1(
n∑
j=1

⟨φj⟩2)φ1 + λ2φ
3
1 − λ0 = 0 (3.114)

−µ2φ2 + λ1(
n∑
j=1

⟨φj⟩2)φ2 + λ2φ
3
2 − λ0 = 0 (3.115)

−µ2φ3 + λ1(
n∑
j=1

⟨φj⟩2)φ3 + λ2φ
3
3 − λ0 = 0. (3.116)

We subtract Eq.(3.115) from Eq.(3.114) arriving at:−µ2 + λ1(
n∑
j=1

⟨φj⟩2 + λ2(φ2
1 + φ1φ2 + φ2

2)
 (φ1 − φ2) = 0. (3.117)

Since φ1 ̸= φ2 we have:−µ2 + λ1

n∑
j=1

⟨φj⟩2 + λ2(φ2
1 + φ1φ2 + φ2

2)
 = 0. (3.118)

From the subtraction of Eq.(3.116) from Eq.(3.114) we have:−µ2 + λ1

n∑
j=1

⟨φj⟩2 + λ2(φ2
1 + φ1φ3 + φ2

3)
 = 0. (3.119)

Then subtracting last two equations we have:

(φ1 + φ2 + φ3)(φ2 − φ3) = 0, (3.120)

that implies:
φ1 + φ2 + φ3 = 0. (3.121)

Assuming there exists another value φ4 we have following the procedure of before:

φ4 + φ2 + φ3 = 0. (3.122)

Then from these last equations φ1 = φ4. So we have shown that the vev of φ is composed of
three different values φ1, φ2, φ3 each n1, n2, n3 times present.
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The vev of φ is:

⟨φ⟩ =



φ1 0
. . .

φ1
φ2

. . .
φ2

0 φ3
. . .

φ3



. (3.123)

However, these three φi are not independent. Summarizing we have the following equations:

n1 + n2 + n3 =n
φ1 + φ2 + φ3 =0

n1φ1 + n2φ2 + n3φ3 =0 ( Trace condition).
(3.124)

Solving φ2 and φ3 in terms of φ1 we have:

φ2 = n3 − n1

n2 − n3
φ1 ≡ ρ2φ1 (3.125)

φ3 = n2 − n1

n3 − n2
φ1 ≡ ρ3φ1. (3.126)

Notice that from the trace condition doesn’t allow n2 − n3 = 0. Inserting the vev in the
potential we have in terms of φ1 :

Vm = −aφ2
1 + bφ4

1. (3.127)

Defining:

Yk(n1, n2, n3) = n1(n2 − n3)k + n2(n3 − n1)k + n3(n1 − n2)k. (3.128)

For k even this function is positive and invariant under permutations of the ni’s. If we also
define:

X = (n2 − n3)2. (3.129)

We have:

a = µ2

2
Y2

X
> 0. (3.130)

b = 1
4

[
λ1(Y2)2 + λ2Y4

]
X2 . (3.131)
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Since Eq.(3.127) is the lowest value of the potential, thus a minimum, we have:

∂V

∂φ1
= φ1(−2a+ 4bφ2

1) = 0. (3.132)

The solution is:
φ2

1 = a

2b. (3.133)

Then, making explicit the fact that we are dealing with a vev:

⟨φ1⟩2 = µ2(n2 − n3)2

λ1Y2 + λ2
Y4
Y2

(3.134)

We now have the vev as a function of the parameters of the Lagrangian (λ1, λ2, µ) and the three
ni’s. At this point we can get the stability condition, imposing ∂2Vm

∂φ2
1
> 0. This gives 6b > a

that will give an inequality relating the λ’s and the n’s. Explicitly, from the vev, expressing it
in function of φ1 and inserting in the potential we have:

V (φ1) = −1
2µ

2(n1 + n2ρ
2
2 + n3ρ

2
3)φ2

1 + 1
4λ1(n1 + n2ρ

2
2 + n3ρ

2
3)2φ4

1 + 1
4λ2(n1 + n2ρ

4
2 + n3ρ

4
3)φ4

1

(3.135)

Imposing the minimum condition ∂2V
∂φ2

1
> 0 we arrive at the stability condition:

φ2
1

(
(n1 + n2ρ

2
2 + n3ρ

2
3)λ1 + (n1 + n2ρ

4
2 + n3ρ

4
3)

(n1 + n2ρ2
2 + n3ρ2

3)
λ2

)
>

1
3µ

2 > 0 (3.136)

We can now proceed to obtain the values of ni. The value of the potential at the vev using Eq.
(3.133) is:

Vm(n1, n2, n3) = −a2

4b = −µ4

4
1

λ1 + λ2
Y4

(Y2)2

= −µ4

4
1

λ1 + λ2f(n1, n2, n3)

(3.137)

with f ≡ Y4
(Y2)2 > 0 since is a ratio of positive functions and is monotonic and such that

f ∼ 1/n. To start with the analysis we fix λ1 > 0 otherwise the results we get are symmetrical
with respect to the sign of λ2. We need to calculate configurations (n1, n2, n3) such that the
potential is minimal. This is equivalent to minimizing V over the R3 space of the n’s with
the constrain condition n1 + n2 + n3 = n thus is in fact minimizing the potential in two
independent variables. Using f as an independent variable we derive:

∂Vm
∂f

= µ4

4
λ2[

λ1 + λ2f(n1, n2, n3)
]2 (3.138)
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Then, when λ2 > 0, Vm is monotonically increasing with respect to f so the smallest value of
Vm is when f is minimum. If λ2 < 0 the Vm is monotonically decreasing and smallest is when
f is maximum. Since f ∼ 1/n we retrieve a similar plot as 3.1 with n as K before, but in this
case the only thing that this analysis shows is what to do in each case of the sign of λ2 since
we still to find the configurations of n1 and n2 to get the extremum.
Using the following identity:

Y4 = 1
2Y2

(
(n2 − n3)2 + (n1 − n2)2 + (n1 − n3)2

)
. (3.139)

We have:
f = 1

2Y2

(
(n2 − n3)2 + (n1 − n2)2 + (n1 − n3)2

)
. (3.140)

Note that f is invariant under permutations of the ni’s. We then change variables:

x = n1 + n2 (3.141)
y = n1 − n2 (3.142)
n3 = n− x. (3.143)

So the result is:

f(x, y) = 3y2 + (3x− 2n)2

(8n− 9x)y2 + x(3x− 2n)2 , (3.144)

with domain:

0 ≤ x ≤ n (3.145)
−n ≤ y ≤ n. (3.146)

Note that f is even in y so it is enough to study when:

0 ≤ y ≤ n (3.147)

Also, using last equation and Eq.(3.145) we have:

0 < x− y ≤ n (3.148)

Note that this implies that the possible values of g(c) = x− y = c are discrete (c = 0, · · ·n).
In order to understand how to maximize or minimize f, we take the partial derivative with

respect to y:
∂f

∂y
= 8y(3x− 2n)3(

y2(8n− 9x) + x(2n− 3x)2)2 (3.149)



3.3 Spontaneous breaking of Symmetry in the O(n) group 51

g(0)= y-x

x=2/3n

x = n

1 2 3 4 5 6 7
x

1

2

3

4

5

6

7

y

Figure 3.2 Domain of the function f(x, y) in Eq.(3.144) with the arrows denoting the direction
of the monotonical increments of f(x, y) in the y axis. In the plot n = 6

From Eq.(3.149) we have that:

∂f

∂y
< 0 for x <

2n
3

∂f

∂y
> 0 for x >

2n
3

(3.150)

Thus for all possible cases we have the following table:

Maximize f (λ2 < 0) Minimize f (λ2 > 0)
∂f
∂y
< 0 Max y Min y

∂f
∂y
> 0 Min y Max y

Table 3.1 Cases to minimize the Symmetric Orthogonal Potential at the vev, Vm

So when we want to minimize y the solutions have to satisfy the condition y = n1 − n2 = 0 .
When we want to maximize y the largest value can’t be n (equivalently n1 = n) for boundary
reasons thus have to be in the boundary defined by Eq.(3.148) that is when y = x or n2 = 0.
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Case λ2 > 0

We want to minimize f . Following Table (3.1) when x < 2n
3 (equivalently ∂f

∂y
< 0) the

minimum has to be on the upper boundary, that is, has to satisfy Eq.(3.148) with c = 0 thus
the minimum will satisfy the equation y = x . We still need to get the value x of the minimum.
Expressing the values of f restricted to this line we have:

f(x, x) = 3x2 − 3nx+ n2

xn(n− x) . (3.151)

The minimum is the solution of:

∂f

∂x
= n3 (2x− n)

(xn(n− x))2 = 0. (3.152)

Solving last equation, the minimum is when:

x = n

2 = y. (3.153)

So:
n1 = n

2 , n2 = 0, n3 = n

2 . (3.154)

When x > 2n
3 from Table (3.1) we have y = 0 and 2

3 < x < n. Thus we have:

f(x, 0) = 1
x

(3.155)

Since f(x, 0) is monotonically decreasing with respect to x it is lowest at the largest value of
x, so the minimum is at:

x = n, y = 0 (3.156)

Thus we have:
n1 = n2 = n

2 , n3 = 0 (3.157)

Since f(n1, n2, n3) is symmetric under permutation of the variables we have that the points
given in Eq.(3.154) and Eq.(3.157) that minimize each region give the same value of f and so
are equivalent. So the global minimum is then:

n1 = n

2 , n2 = n

2 n3 = 0 n even (3.158)

In the case where n is odd since it is not permitted to have a minimum at n1 = n
2 , n2 = n

2 , the
minimum is then in the nearest allowed point:

n1 = n+ 1
2 , n2 = n− 1

2 , n3 = 0 n odd (3.159)

which is a global minimum in the odd case.
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Case λ2 < 0

When λ2 < 0 we need to find set of values such that f(x, y) is maximum. From Table (3.1)
and from the precedent analysis we need to find them in the neighborhood of x = y = n when
x > 2n

3 and x = y = 0 for x < 2n
3 . Using the analytic form of f(x, y) the values of f(0, 0)

and f(n, n) diverge. The next maximum value is f(n, n− 1) but we can’t use it since it gives
non integers values for the n1, n2 i.e. n1 = 2n−1

2 . Thus the following allowed point is:

x = n, y = n− 2 (3.160)

and this is the maximum. This can be written as:

n1 = n− 1, n2 = 1, n3 = 0 (3.161)

We can try another point x = y = n − 1, which gives n1 = n − 1, n2 = 0, n3 = 1 and since
f(n1, n2, n3) is invariant under permutations of the ni’s it gives the same result as f(n, n− 2).

Derivation of the symmetry breaking pattern

To calculate the exact pattern we need to use Eq.(3.49) with the vev:

φ =



φ1 0
. . .

φ1
φ2

. . .
φ2


(3.162)

Where there is a diagonal submatrix of dimension n1 with φ1 and another submatrix of dimen-
sion n− n1 with φ2. n1 will depend on the sign of λ2. Equivalently:

⟨φkj⟩ = φ1

n1∑
l=1

δklδjl + φ2

n∑
l=n1+1

δklδjl. (3.163)

Using Eq.(3.134) we have:

φ2
1 = µ2(n− n1)2

n2(λ1n1 + λ2) − nn1(λ1n1 + 3λ2) + 3λ2n2
1
. (3.164)

From Eq.(3.109) we have:

LM 1 = g2W µ
ik

φ1

n1∑
l=1

δklδjl + φ2

n∑
l=n1+1

δklδjl

Wµik′

φ1

n1∑
l=1

δk′l′δjl′ + φ2

n∑
l′=n1+1

δk′l′δjl′

 .
(3.165)
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Since:
n1∑
l=1

n∑
l′=n1+1

δklδjlδk′l′δjl′ =
n1∑
l=1

n∑
l′=n1+1

δklδk′l′δll′ , (3.166)

we see from the set of indices in the summation that δll′ = 0 always so terms proportional to
φ1φ2 in Eq.(3.165) are null. This leaves us with:

LM 1 =g2W µ
i k ⟨φkj⟩Wµ i k′ ⟨φk′j⟩

=g2W µ
i kWµ i k′

φ2
1

n1∑
l,l′=1

δklδjlδk′l′δjl′ + φ2
2

n∑
l,l′=n1+1

δklδjlδk′l′δjl′


=g2φ2

1

n1∑
l=1

W µ
i lWµ i l + g2φ2

2

n∑
l=n1+1

W µ
i lWµ i l.

(3.167)

For the other term we have:

LM2 =g2W µ
i k ⟨φkj⟩Wµ j k′ ⟨φk′i⟩

=g2W µ
i kWµ j k′(

n1∑
l,l′=1

δklδjlδil′δk′l′φ
2
1 +

n∑
l,l′=n1+1

δklδjlδil′δk′l′φ
2
2

+ 2φ1φ2

n1∑
l=1

n∑
l′=n1+1

δklδjlδil′δk′l′)

= − g2φ2
1

n1∑
l,l′=1

W µ
l l′Wµ l l′ − g2φ2

2

n∑
l,l′=n1+1

W µ
l l′Wµ l l′ − 2g2φ1φ2

n1∑
l=1

n∑
l′=n1+1

W µ
l l′Wµ l l′

(3.168)

First we give an example of the breaking of O(4). We see that in the case with λ2 > 0 we
have that n1 = n

2 . The vev is:

⟨φ⟩ =


φ1 0

φ1
0 φ2

φ2

 (3.169)

So we have:

LM =g2φ2
1

2∑
l=1

W µ
i lWµ i l + g2φ2

2

4∑
l=3

W µ
i lWµ i l − g2φ2

1

2∑
l,l′=1

W µ
l l′Wµ l l′

+ g2φ2
2

4∑
l,l′=3

W µ
l l′Wµ l l′ − g2φ1φ2

2∑
l=1

4∑
l′=3

W µ
l l′Wµ l l′

=g2(φ1 − φ2)2(W 2
14 +W 2

24 +W 2
13 +W 2

23)

(3.170)

Thus 4 gauge bosons acquire mass. The remaining symmetry has only two generators and the
subgroup of O(4) that has this number of generators is the product O(2) ×O(2).
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If λ2 < 0 then n1 = n− 1. The vev is:

⟨φ⟩ =


φ1 0

φ1
0 φ1

φ2

 (3.171)

So we have:

LM =g2φ2
1

3∑
l=1

W µ
i lWµ i l + g2φ2

2W
µ
i 4Wµ i 4 − g2φ2

1

3∑
l,l′=1

W µ
l l′Wµ l l′

+ g2φ2
2W

µ
4 4Wµ 4 4 − g2φ1φ2

3∑
l=1

W µ
l 4Wµ l 4

=g2(φ1 − φ2)2(W 2
14 +W 2

24 +W 2
34)

(3.172)

We have that 3 gauge bosons acquire mass so the unbroken subgroup has 3 generators and
thus is the group O(3)6.
In general we have:

LM =g2φ2
1

n1∑
l=1

W µ
i lWµ i l + g2φ2

2

n∑
l=n1+1

W µ
i lWµ i l − g2φ2

1

n1∑
l,l′=1

W µ
l l′Wµ l l′ − g2φ2

2

n∑
l,l′=n1+1

W µ
l l′Wµ l l′

− g2φ1φ2

n1∑
l=1

n∑
l′=n1+1

W µ
l l′Wµ l l′

=φ2
1

n∑
l=n1+1

n1∑
l′=1

W µ
l l′Wµ l l′ + g2φ2

2

n1∑
l=1

n∑
l′=n1+1

W µ
l l′Wµ l l′ − g2φ1φ2

n1∑
l=1

n∑
l′=n1+1

W µ
l l′Wµ l l′

=(φ1 − φ2)2
n1∑
l=1

n∑
l′=n1+1

W µ
l l′Wµ l l′

(3.173)

From the last equation we have n1(n− n1) gauge bosons that acquire mass. Thus the number
of unbroken generators is:

n(n− 1)
2 − n1(n− n1) = (n− n1)(n− n1 − 1)

2 + (n1 − 1)(n1)
2 (3.174)

In all cases the breaking is O(n) → O(n− n1) ×O(n1).

6Note that it cannot be U(1) × U(1) × U(1) this last group is of rank 3 and O(3) is of rank 1
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Summarizing we have the breaking patterns:

O(n) → O(n1) ×O(n− n1), λ1 > 0, λ2 > 0

with n1 = n

2 if n even

with n1 = n+ 1
2 if n even

(3.175)

and

O(n) → O(n− 1), λ1 > 0, λ2 < 0 (3.176)

Here, using Eq.(3.164), we have for λ2 > 0 in the even case:

φ2
1 = µ2

nλ1 + λ2
(3.177)

and in the odd case:

φ2
1 = (n− 1)2µ2

n(n2 − 1)λ1 + (n2 + 3)λ2
(3.178)

On the other hand, when λ2 < 0 :

φ2
1 = µ2

(n2 − n)λ1 + (3 + n2 − 3n)λ2
(3.179)

3.3.4 The Spinor Representation
The irreducible representations of O(n) can be classified into two categories, single-valued
and double-valued representations. In the previous subsections, we already have seen single
valued representations up to rank 2: the fundamental, the antisymmetric and symmetric trace-
less representations. A characteristic of this representations is that are real thus not suitable
for chiral fermions (see Section .(5.1)).

On the other hand, the double-valued representations, called also spinor representations
since the fields in this representations transform like spinors in a n-dimensional coordinate
space, are complex representations thus suitable for chiral fermions. In addition, using spinor
fields we can retrieve new spontaneous symmetry breaking patterns for a Lagrangian with
gauge symmetry O(n); in fact the SO(10) GUT model uses some of these representation in
the Higgs sector (16,120 and 126).

From the definition of theO(n) groups, the condition Eq.(3.31) is equivalent to invariance
of the norm squared of an n-dimensional real vector under rotations i.e. that the quadratic form
x2

1 +x2
2 + . . .+x2

n is left invariant. An interesting fact happens if we write this quadratic form
as the square of a linear form of xi’s.

x2
1 + x2

2 + . . .+ x2
n = (γ1x1 + γ2x2 + . . .+ γnxn)2 , (3.180)

To satisfy this equation the γ’s necessarily have to be matrices which have to satisfy the prop-
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erty:
{γi, γj} = γiγj + γjγi = 2δij1N×N i, j = 1, · · ·n (3.181)

Last equation is a N × N matrix equation. 7In the literature, last equation is referred as the
Clifford Algebra of dimension n, Cln(R).

In order to show the connection of the γ’s with the Lie Group O(n) we define the matrix:

sij = 1
2[γi, γj] (3.182)

From Eq.(3.181) we obtain:
[sij, γk] = δjkγi − δikγj. (3.183)

So the sij satisfy the Lie Algebra so(n) (see Eq.(3.36)) in the representation ofN×N matrices:

[sij, skl] = δjksil + δilsjk − δiksjl − δjlsik (3.184)

This means that the matrices sij , constructed using the γ’s, can be used as generators of O(n).
Additionally, using the sij as generators we define the Lie Group Spin(n) as the set of

N ×N matrices:
Spin(n) := {e

1
2 ϵijsij : ϵij = −ϵji} (3.185)

Note that both O(n) and Spin(n) have the same Lie Algebra so(n) and depend on the same
number of parameters {ϵ}; in fact there exists an homomorphism between the two. It can be
shown that this group is the double covering group of O(n) [28]; for example for n = 3 we
have Spin(3) ≃ SU(2) and is well known that SU(2) is the double cover of SO(3).
To see how Spin(n) induces a transformation on the γ’s let’s do a rotation in the fundamental
representation x′ = Ox = eϵijLijx with O an element of O(n).
Then the linear form 3.180 transforms as:

γ · x → γ · x′ = γiOikxk = γ′
kxk = γ′ · x (3.186)

Correspondingly doing a transformation of γ · x, as a matrix, i.e. using the same set of {ϵ}’s
for the element S(O) = e

1
2 ϵijsij of the Spin(n) group, we have:

S(O)γ · xS−1(O) = γ · x′ (3.187)

Infinitesimally, since x′
i = xi + ϵikxk we arrive at:

1
2ϵij[sij, γk]xk = ϵabxbγa = 1

2(ϵab − ϵba)xbγa = 1
2ϵijxk(δkjγi − δkiγj) (3.188)

retrieving again equation (3.182 ).
Notice that the anticommutation relations remain unchanged, i.e.

{γ′
i, γ

′
j} = OikOjl{γk, γl} = 2OikOjk = 2δij . (3.189)

7It can be shown that the dimension of the γ matrices must be even.
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The correspondence O → S(O) serves as a N -dimensional representation of O(n) and so is
called the spinor representation of O(n). The objects that transform under this N dimen-
sional representation are then called spinors. Equivalently, the spinors are defined as the
Ndimensional vectors ψi that tranforms as the fundamental representation of Spin(n). In
any case the explicit transformation is :

ψ → ψ′ = S(O)ijψj (3.190)

and these objects are called covariant spinors. Their complex conjugate , ψ∗
i , has the transfor-

mation property:
ψ∗ → ψ′

j
∗
S−1(O)ji (3.191)

and are called controvariant spinors.
The dimensionality is easily seen for SO(3). In this case the Clifford algebra is simply

given by the three Pauli matrices, and a finite transformation looks like

S(O(ϕ)) = e
i
2σiϕi = cos |ϕ|

2 + i
σiϕi
|ϕ|

sin |ϕ|
2 , (3.192)

where we have defined ϵ23 ≡ −ϕ1, ϵ13 ≡ −ϕ2, ϵ12 ≡ −ϕ3 and |ϕ| =
√
ϕ2

1 + ϕ2
2 + ϕ2

3,
showing then that for n = 3 the Lie groups Spin(3) is conformed of 2 × 2 matrices.
To see the relation between N , the size of γ’s matrices, and n, we start building explicit
representations of the γ’s inductively. We start with n = 2K = 2. Since the Pauli matrices
satisfy the Clifford algebra {

σi, σj
}

= 2δij , (3.193)

we can choose two of them as the γ’s.

γ
(1)
1 = σ1 =

(
0 1
1 0

)
, γ

(1)
2 = σ2 =

(
0 −i
i 0

)
. (3.194)

thus showing thatN = 2 ≡ f(1) for n = 2 with f(K) a function relating the the dimensional-
ity of the group n = 2K with the size of the square matrix, N . Then the γ matrices for K > 1
are constructed by recursion. The iteration from 2K to 2(K + 1) is defined by the matrices:

γ
(K+1)
i =

 γ
(K)
i 0
0 −γ(K)

i

 for i = 1, 2, . . . , 2K = n , (3.195)

γ
(K+1)
2K+1 =

(
0 1
1 0

)
and γ

(K+1)
2K+2 =

(
0 −i
i 0

)
. (3.196)

Starting with n = 2 using Eq.(3.194) in Eq.(3.195) for n = 4 we haveN = 4 = f(1)×f(1) =
21. For n = 6 we have N = 8 = f(1) × f(1) × f(1) = 22 so for n = 2K we have
N = f(1)K = 2K and so on as can be seen using induction and the explicit formula.

Given the fact that the γ(K)
i matrices satisfy the Clifford algebra Cln(R) we show that the
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set of γ(K+1)
i satisfy the Clifford Algebra Cln+2(R) as well,

{
γ

(K+1)
i , γ

(K+1)
j

}
=


{
γ

(K)
i , γ

(K)
j

}
0

0
{
γ

(K)
j , γ

(K)
i

}
 =

(
2δij 0
0 2δij

)
= 2δij ,

(3.197){
γ

(K+1)
i , γ

(K+1)
2K+1

}
=
 0 γ

(K)
i

−γ(K)
i 0

+
 0 −γ(K)

i

γ
(K)
i 0

 = 0 ,

(3.198)(
γ

(K+1)
2K+1

)2
= 1 .

(3.199)

Analogously one finds{
γ

(K+1)
i , γ

(K+1)
2K+2

}
= 2δij ,

{
γ

(K+1)
2K+1 , γ

(K+1)
2K+2

}
= 0 ,

(
γ

(K+1)
2K+2

)2
= 1 . (3.200)

A similar construction can be done for n = 2K + 1 odd. The size of the n matrices γ(K)
i is

2K . The representation space of Cln (equivalently of S(O) ) for n odd is irreducible.
However for SO(n) groups with n even the representation S(O) is not irreducible. To

see this we construct the chiral projector γf defined by

γf = (−i)nγ1γ2 · · · γ2n . (3.201)

γf anticommutes with γi since 2n is even8 and consequently we get
[
γf , skl

]
= 0 . Thus if ψ

transforms as ψ′
i = S(O)ijψj , the positive and negative chiral components

ψ+ ≡ 1
2
(
1 + γf

)
ψ and ψ− ≡ 1

2
(
1 − γf

)
ψ (3.202)

transform separately. In other words ψ+ and ψ− form two irreducible spinor representations
of dimension 2n−1. The relationship is analogous to the usual left - right spinors under the
Lorentz Algebra.

8Notice that this would not be the case for SO(2N + 1) groups.



60 Generalized Brout-Englert-Higgs Mechanism

3.4 Spontaneous breaking of Symmetry in the SU(n) group

The Lie group SU(n) is defined as the n× n complex matrices that satisfy:

MM † = I (3.203)
det[M ] = 1. (3.204)

The n × n complex matrices that satisfy only Eq.( 3.203) form the Lie Group U(n) that
contains SU(n).
For an element of SU(n) using M = eiX we have that the matrices of the Lie Algebra su(n),
the Lie algebra of SU(n), have to be hermitian X = X† and traceless Tr[X] = 0.
From the conditions Eq.(3.203) and Eq. (3.204) we see that there are only n2 − 1 independent
generators for su(n). This shows the dimension of su(n) and correspondingly of SU(n).
To construct a basis for su(n) we define the following n2 real matrices (n× n)

[Xj
i ]mn = δimδjn. (3.205)

These n2 matrices satisfy the following relationship:

[Xj
i , X

l
k] = δjkX

l
i − δliX

j
k i, j, k, l = 1, · · · , n. (3.206)

This is the Lie Algebra u(n). These matrices form a vector space with scalar product:

⟨Xj
i , X

l
k⟩ = Tr[Xj

iX
l
k] = δikδjl. (3.207)

Thus to express any element of SU(n) as

M = eiϵ
j
iX

j
i . (3.208)

we need to impose certain restrictions on the complex parameters ϵji . In general any matrix
that belongs to the subspace of the real (complex) matrix vector space Mn(R)(Mn(C)) , for
example all Lie algebras of classical groups, can be generated using the set Eq.(3.205) and
complex parameters with specific restrictions derived from the definition of the groups.
Without any restriction, the set of ϵ represents 2n2 independent real parameters. Using Eq.(3.203)
we have that:

ϵji = (ϵij)∗. (3.209)

This reduces the independent parameters to n2 in total with n(n− 1) with distinct indexes and
n with equal indexes. From Eq.(3.204), using det[M ] = eiTr(ϵjiX

j
i ) = 1 we see that:

Tr[ϵjiX
j
i ] = ϵji Tr[Xj

i ] = ϵii Tr[X i
i ] = ϵ1

1 + · · · + ϵnn = 0. (3.210)

This implies that we have only n− 1 independent parameters ϵ with equal indexes.
The fundamental representation of SU(n) is then defined as:

U(ϵ) = eiϵ
j
iX

j
i . (3.211)
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with the restrictions on the ϵ outlined above. Since the algebra has dimension n2 − 1 to add
the Yang-Mills field we need the same number of bosonic gauge bosons, W j

µi . The vector W µ

expressed in the base of the Lie Algebra Eq.(3.206) is:

W µ = W µj
i Xj

i . (3.212)

Contrary to the orthogonal case these are complex. They satisfy the same restrictions as the ϵ
since they are constructed in the same way:

W j
µi = (W i

µj)∗ (3.213)
n∑
i=1

W i
µ i = 0. (3.214)

Wµ transforms in the adjoint representation under a gauge transformation Eq.(1.70):

W ′
µ = eiϵ

j
iX

j
i [W l

µ kX
l
k + i

g
∂µ]e−iϵjiX

j
i . (3.215)

Expanding near the identity :

W ′
µ = Wµ+ i[ϵjiX

j
i ,W

l
µkX

l
k]+

1
g
∂µϵ

j
iX

j
i = Wµ+ iϵkiW

l
µkX

l
i −ϵjiW

i
µkX

j
k + 1

g
∂µϵ

j
iX

j
i (3.216)

where we have used the Algebra (3.206). The diagonal summation between ϵ and W is im-
plied. Projecting onto the component W j

i , Tr[Xj
iWµ] and using Eq.(3.207), we have the trans-

formation law:
W ′j
µ i = W j

µ i + iϵkiW
j
µ k − iϵjkW

k
µ i + 1

g
∂µϵ

j
i . (3.217)

Some W ’s are complex which are interpreted as charged bosons. However to properly count
massive gauge bosons we need to find their decomposition in real boson gauge bosons. An
example on how we get real bosons from complex ones will be done with the Yang Mills field
of SU(2). A general complex boson is:

W j
µ i = Re(W j

µ i) + iIm(W j
µ i). (3.218)

With this formalism we have in SU(2):

Wµ = W j
µ iX

j
i = W 2

µ 1X
2
1 +W 1

µ 2X
1
2 +W 1

µ 1X
1
1 +W 2

µ 2X
2
2 . (3.219)

In principle the Yangs Mills field would depend on 8 real gauge bosons but from the conditions
we have using Eq.(3.213):

W 1
µ 1,W

2
µ 2 real, W 2

µ 1 = W ∗1
µ 2, (3.220)

and using Eq.(3.214)
W 1
µ 1 = −W 2

µ 2 (3.221)
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so we have only 3 independent gauge bosons. Suppose that W 2
µ 1 gets mass we have then:

m2W 2
µ 1W

∗µ 2
1 = m2

(
Re(W 2

µ 1)2 + Im(W 2
µ 1)2

)
, (3.222)

so we have two real vectors that acquire mass.
To construct the kinetic part of the Lagrangian we need:

F j
µνi = ∂µW

j
νi − ∂νW

j
µ i + ig(W k

µiW
j
νk −W k

νiW
j
µk). (3.223)

The Lagrangians that we will use have the following form:

L = −1
4F

j
µνiF

µνi
j + Lk − V (φ) (3.224)

with Lk the kinetic Lagrangian of the scalar field. Both the explicit form of Lk and V (φ)will
depend on the representation of the scalar field and so also the symmetry breaking patterns.

In the following sections we perform the generalized BEH mechanism for different rep-
resentations of the SU(n) group. We start deriving the law transformations in the specific
representation and the covariant derivative. Then use factorization procedures we will retrieve
the corresponding vev for different values of the parameters of the potential.

3.4.1 Spontaneous Breaking in the vector Representation

In SU(n) we only have single valued irreducible representations. A finite transformation in
the fundamental representation is:

ψ′ = U(ϵ)ψ (3.225)

Where ψ is a complex n dimensional vector. We define the equivalence:

ψ∗
i = ψi (3.226)

such that the norm squared of a vector is:

ψ∗
iψi = ψiψi. (3.227)

For infinitesimal transformations we have:

ψ′
i = (1 + ϵlkX

l
k)ijψj = ψi + iϵlkψjδkiδlj = ψi + iϵjiφj. (3.228)

The covariant derivative is:

Dµψi =∂µψi − igWµaΓ(ta)ijψj = ∂µψi − igW b
µa(Xb

a)ijψj = ∂µψi − igW j
µiψj. (3.229)
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In this way we can construct the kinetic part of the scalar field in the fundamental representa-
tion:

Lk = 1
2(Dµψ)†Dµψ = 1

2∂
µψi∂µψi − igW j

µiψj∂
µψi + 1

2g
2W k

µiψkW
∗µk′

i ψk′ . (3.230)

The potential is:

V (ψ) = −1
2µ

2ψiψ
i + 1

4λ(ψiψi)2, µ2, λ real. (3.231)

To retrieve fields that minimize the potential we do:

∂V

∂ψi

∣∣∣∣
ψi=⟨ψi⟩

=
(
−µ2 + λ ⟨ψi⟩ ⟨ψi⟩

)
⟨ψi⟩ = 0, i = 1, · · · , n. (3.232)

If µ2 > 0 (after phase transition) one can show that the condition :

⟨ψi⟩ = 0 i = 1, · · · , n (3.233)

give a local maximum. This is consistent with the fact that we are in the the spontaneously
broken case since the order parameter ϕ(number of grounds states) is not null. Then at least
we need to have ̸= 0 for some i. The set of solutions in fact are defined by the following
equation:

⟨ψi⟩ ⟨ψi⟩ = µ2

λ
= v (3.234)

where v is real. 9 We select a particular direction:

⟨ψi⟩ = vδin. (3.235)

The mass term using Eq.(3.230) is:

LM = 1
2g

2W ∗µj
i W j′

µi ⟨ψj⟩∗ ⟨ψj′⟩ = 1
2g

2v2W ∗µn
i W n

µi, no sum over n. (3.236)

Thus we have 2n − 1 boson vectors that acquire mass. To see this, note from the sum that
each W ∗µn

i W n
µi for i ̸= n gives two real gauge vector bosons and in addition there is the single

W n
n . Thus we have n2 − 1 − (2n − 1) = (n − 1)2 − 1 vector bosons that are massless. The

symmetry breaking is then:
SU(n) → SU(n− 1). (3.237)

A clear example is the case of SU(2). Selecting n = 2, we have:

LM = 1
2g

2v2
(
W ∗µ2

1 W 2
µ1 + (W 2

2 )2
)

(3.238)

9it has the same value as the one of the Standard Model
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From the fact that W 2
2 is real and W 1

2 is complex we have 3 real gauge bosons that acquire the
same mass. Doing the same calculation with the usual fundamental representations:

Ta = τa
2 a = 1, 2, 3 (3.239)

we see that the mass term is:

LM =1
2
g2v2

4
(
(Aµ1)2 + (Aµ2)2 + (Aµ3)2

)
= 1

2
g2v2

4 (Aµ3)2 + 1
4g

2v2 1
2(Aµ1 + iAµ2)(Aµ1 − iAµ2)

=1
2
g2v2

4 (Aµ3)2 + 1
4g

2v2W †W−.

(3.240)

The correspondence between the two notations is then clear:

W 2
µ1 = 1

2(Aµ1 + iAµ2) = 1√
2
W+

W ∗2
µ1 = 1

2(Aµ1 − iAµ2) = 1√
2
W−

W 2
µ2 = −1

2Aµ3

(3.241)

and it can be readily generalized for any gauge vector of SU(n) in any representation con-
structed through the fundamental representation.
It can be shown that when having two sets of vectors the symmetry is reduced as SU(n) →
SU(n− 2). Inductively using m vectors the breaking pattern is SU(n) → SU(n−m).

3.4.2 Spontaneous Breaking of SU(n)×U(1) · · ·U(1) in the Vector Rep-
resentation

In this section we deal with a simple extension of the last case. Let’s consider the symmetry
group G = SU(n)×U(1)×· · ·×U(1) where M is the number of U(1) symmetry groups. As
it is well known all the one dimensional irreducible representations of each U(1) are labeled
by the value of the "charge" Y that can in principle be any number. 10 Denoting β as the
parameter of U(1)Y , a transformation in the specific representation of ψ with hypercharge Yψ
is:

ψ → eiβYψψ (3.242)

Since the fundamental representation of U(1) is one dimensional, the product representation
of the fundamental SU(n) × U(1) is still a vectorial one, and a so a gauge transformation
of U(1) is just a phase transformation. Since the generators of the abelian subgroups of the
gauge group commute with the ones SU(n) they have to be proportional to 1 when expressed
in the fundamental representation of SU(n) that is the only important representation.Then

10In other words Y is not quantized. A suitable solution to this is embedding U(1)Y into a large simple group,
as is well known for the SU(5) GUT.
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the Abelian components of the Yang Mills field are just a diagonal matrix in the fundamental
representation of SU(n). We then have that the covariant derivative is:

Dµψi = ∂µψi − ig1W
j
µ iψj −

M∑
α=1

ig′
α

Yα
2 Bαµψi α = 1, · · · ,M (3.243)

where M is the number of U(1) symmetries. As usual the kinetic term is gauge invariant. We
use the same potential as in last section since the SU(n) symmetry is the dominant one and
it includes all the possible U(1) symmetry groups. We then get the same vev: ⟨ψi⟩ = δinv.
Then to get the mass term we have:

LM =g
2

2 W
j
µiW

∗µk
i ⟨ψj⟩ ⟨ψ∗

k⟩ + g

2

W ∗j
µi ⟨ψ∗

j ⟩ (
M∑
α=1

Yα
2 ⟨ψi⟩ g′

αB
µ
α) +W k

µi ⟨ψk⟩ (
M∑
α=1

Yα
2 g′

α ⟨ψ∗
i ⟩Bµ

α)


+ 1
2

 M∑
α=1

Yα
2 g′

α ⟨ψ∗
i ⟩Bµ

α

 M∑
β=1

Yβ
2 g′

β ⟨ψi⟩Bµβ


=g

2v2

2 W n
µiW

∗µn
i + gv2

2
(
W ∗n
µn +W n

µn

)
(
M∑
α=1

Yα
2 g′

αB
µ
α) + v2

2

 M∑
α=1

Yα
2 g′

αB
µ
α

 M∑
β=1

Yβ
2 g′

βBµβ


(3.244)

From the second term, note that the real gauge boson W n
µn is the only on that mixes with the

U(1) gauge bosons. Then denoting Ȳβ
2 ḡB̄µ = ∑M

β=1
Yβ
2 g

′
βBµβ we get that:

LM =g
2v2

2

n−1∑
i=1

W n
µiW

∗µn
i + v2

2 (ḡ Ȳβ2 B̄µ + gW n
µn)( Ȳβ2 ḡB̄µ + gW ∗µn

n )

=g
2v2

2

n−1∑
i=1

W n
µiW

∗µn
i + v2(g2 + ḡ2)

2 (sin θ Ȳβ2 B̄µ + cos θW n
µn)(sin θ Ȳβ2 B̄µ + cos θW µn

n )

(3.245)

Where we define:
sin θ = ḡ√

g2 + ḡ2 (3.246)

as an angle with an obvious remembrance of the Weinberg Angle. The second term in Eq. (
3.245) can be seen as a mass matrix which gives one non-zero mass gauge boson as a combi-
nation pf Bµβ and W n

µ n. Thus we see that we have n− 1 complex gauge bosons that acquired
mass m = gv and one real boson that acquired mass

√
g2 + ḡ2 v

2 . Thus the symmetry breaking
is:

SU(n) × U(1)Q1 × · · · × U(1)QM → SU(n− 1) × U(1)Q′
1

× · · · × U(1)Q′
M−1

(3.247)
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3.4.3 Spontaneous Breaking in the second rank Symmetric Representa-
tion

The symmetric tensor has the properties:

ψij = ψji = (ψij)∗ (3.248)

The derivation of transformation rule and covariant derivative will be done in Section (3.5.2).
We state the results here.
The transformation rule is:

ψij → ψij + iϵkiψkj + iϵkjψik (3.249)

The covariant derivative:

Dµψij = ∂µψij − igW l
µiψlj − igW l

µjψil (3.250)

The masses will come from:

LM = g2(W k
µiψkjW

∗µk′

i ψ∗
k′j) + g2(W k

µiψ
∗
kjW

µk′∗
j ψ∗

i k′) (3.251)

The most general potential in this case is 11:

V (ψ) = − 1
2µ

2 Tr[ψ†ψ] + 1
4λ1(Tr[ψ†ψ])2 + 1

4λ2 Tr[ψ†ψψ†ψ]

= − 1
2µ

2ψijψ
ij + 1

4λ1(ψijψij)2 + 1
4λ2(ψijψjkψklψli)

(3.252)

To calculate the minimum, we have 12:

∂V

∂ψij

∣∣∣∣
ψij=⟨ψij⟩

= −1
2µ

2ψij + 1
2λ1(ψlmψlm)ψij + 1

2λ2(ψjkψklψli) = 0 i, j = 1 · · · , n

(3.253)
We define a new matrix as:

Σk
l = ψlmψ

mk (3.254)

which is hermitian since:

(Σ†)kl = (Σl
k)∗ = (ψkmψml)∗ = ψkmψml =

eq.3.248
ψlmψ

mk = Σk
l (3.255)

Then the potential is:

V (ψ) = −1
2µ

2 Tr[Σ] + 1
4λ1(Tr[Σ])2 + 1

4λ2Tr[ΣΣ] (3.256)

11Note that we cannot possible add a cubic term: Tr[ψ†ψψ†] since it not gauge invariant under the transfor-
mation ψ → UψUT

12we omit the bracket parenthesis in the following parts but we are working with the vev components of ψ
and Σ



3.4 Spontaneous breaking of Symmetry in the SU(n) group 67

So Eq.(3.253) is: 13

−µ2ψij + λ1(Tr[Σ])ψij + λ2Σj
lψ

li = 0 (3.257)

Since Σ is hermitian we can diagonalize it via a unitary transformation:

Σ → Σ′ = UΣU † = Uψψ∗U † = UψUTU∗ψ∗U † = UψUT (UψUT )∗ = ψ̃ψ̃∗ (3.258)

Where we have used UTU∗ = 1. This is just a change of basis on the ψ space as shown above,
and does not change the shape of the potential. Then Σ′ has the form:

Σ′ =


σ′

1
σ′

2
. . .

σ′
n

 (3.259)

where the set σ′’s are real and not all of them zero. Using Σ = U †Σ′U we have Tr(Σ) =
Tr[U †Σ′U ] = Tr[Σ′] = ∑n

i=1 σ
′
i. Rewriting Eq.(3.257) hiding the tildes on ψij and the primes

on Σ and σ we have:−µ2 + λ1(
n∑
k=1

σk)
ψij+λ2σjδ

j
l ψ

li =
−µ2 + λ1(

n∑
k=1

σk) + λ2σj

ψij = 0 j = 1, · · · , n

(3.260)
Since we are in the spontaneous symmetry breaking case there will be some ψij ̸= 0. Let’s
suppose we have K non zero σ’s14, then the equation defining the set of vevs is:−µ2 + λ1(

K∑
k=1

σk) + λ2σj

 = 0, j = 1, · · · , n (3.261)

This equation has the same structure as equation Eq.(3.71) that appeared in the minimization
of the potential of the antisymmetric second rank tensor representation of O(n). As before the
calculation of the vev of ψij will depend on the number K of non zero σ’s . Using the same
procedure as before (Eq.(3.71) and below), the σ’s that are non zero are all equal to each other,
thus from Eq. (3.261) we have:

σ = µ2

Kλ1 + λ2
(3.262)

We can also derive the correspondent stability condition. This is done in analogy with Eq.(3.74)
with the result:

Kλ1 + λ2 > 0 (3.263)

13omitting parenthesis in the componentes of the vev of ψij
14the order is unimportant since we can always use transformations that change order leave the potential

invariant
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Case λ2 > 0

Using the same arguments of Part (3.82), if λ2 > 0 we have that K = n thus Σ = c21 with:

c2 = µ2

(nλ1 + λ2)
, nλ1 + λ2 > 0 (3.264)

The next step is to retrieve ⟨ψ⟩ from Σ .
The defining equations of ψ are:

ψψ∗ = Σ = c21 (3.265)

ψT = ψ (3.266)

Using ψ = A + iB with A and B real n × n matrices, from Eq.(3.266) we see that A and B
have to be symmetric. From Eq.(3.265) we have that:

A2 +B2 = c21 (3.267)
AB = BA (3.268)

SinceA andB are symmetric and commute with each other, we can diagonalize them together
using an orthogonal transformation:

A = OA′OT (3.269)

iB = iOB′OT (3.270)

with:

A′ =


a1 0
0 a2
... . . .

0 an

 (3.271)

B′ =


b1 0
0 b2
... . . .

0 bn

 (3.272)

From Eq.(3.267) and the orthogonality of O:

Oc21OT = c21 = A2 +B2 = OA′OTOA′OT +OB′OTOB′OT = O(A′2 +B′2)OT (3.273)

so we have n equations:
a2
k + b2

k = c2, k = 1, · · ·n (3.274)
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Then the matrix ψ′ from ψ = Oψ′OT is:

ψ′ = A′ + iB′ =


a1 + ib1 0

0 a2 + ib2
. . .

0 an + ibn



=



√
a2

1 + b2
1e
iα1 0

0
√
a2

2 + b2
2e
iα2

. . .
0

√
a2
n + b2

ne
iαn



= c


eiα1 0
0 eiα2

. . .
0 eiαn



(3.275)

This determines the structure of the vev of ψ up to n phases. However, we can factorize ψ′:

ψ′ = Uψ′′UT (3.276)

such that:
ψ′′ = c1 (3.277)

and:

U =


eiα1/2 0

0 eiα2/2

. . .
0 eiαn/2

 (3.278)

by doing this, the potential remains invariant meaning that the phase are not physical and can
be removed.
Summarizing we have:

ψ = OUψ′′(OU)T (3.279)

with, explicitely expressing ψ′′ as a vev:

⟨ψ′′⟩ = c1 ≡ c



1
1 0

. . .
0 1

1

 (3.280)

Having the vev we now need to calculate the number of massive gauge bosons. We insert the
vevs in the Lagrangian and remove the primes so ψ → ψ′′ . Then calculate the masses. The
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vev is:
⟨ψ′′

ij⟩ = cδij (3.281)

then:

LM =g2(W k
µi ⟨ψkj⟩W

∗µk′

i ⟨ψ∗
k′j⟩) + g2(W ∗k

µi ⟨ψ∗
kj⟩W

µk′

j ⟨ψi k′⟩)
=g2c2(W k

µiδkjW
∗µk′

i δk′j) + g2c2W i
µ kδjkW

µk′

j δi k′

=g2c2W ∗j
µiW

µ j
i + g2c2W ∗j

µ iW
µi
j

=2g2c2W ∗i
µiW

µ i
i + 2g2c2∑

i<j

W ∗j
µi (W

µ j
i +W ∗µ j

i )

(3.282)

Then we see that n − 1 diagonal gauge bosons acquire mass and n(n−1)
2 non diagonal real

gauge bosons acquire mass thus we have:

n2 − 1 − (n
2

2 + n

2 − 1) = n(n− 1)
2 (3.283)

massless bosons. Thus the symmetry breaking pattern is:

SU(n) → O(n) (3.284)

Case λ2 < 0

For the case λ2 < 0 we have that K = 1 as in the antisymmetric O(n) case, as when we
arrived at Eq.(3.80). Using Eq.(3.262) and Eq.(3.263), the vev of Σ is

⟨Σ⟩ = d2



1
0 0

. . .
0 0

0

 , d2 = µ2

λ1 + λ2
, λ1 + λ2 > 0 (3.285)

As before ψ = A + iB with all the properties shown for the case λ2 > 0. The difference is
that we only have one equation:

a2
1 + b2

1 = d2 (3.286)

ψ′ = A′ + iB′ =


a1 + ib1 0

0 0
. . .

0 0

 = c


eiα1 0
0 0

. . .
0 0

 (3.287)
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Doing the corresponding redefinition U = diag(e−iα1/2, · · · , 0) we arrive at:

⟨ψ′′⟩ ≡ d



1
0 0

. . .
0 0

0

 (3.288)

To calculate the masses we do as the preceding section with vev:

⟨ψ′′
ij⟩ = dδ1iδ1j (3.289)

LM = g2(W k
µiψkjW

∗µk′

i ψ∗
k′j) + g2(W ∗k

µi ψ
∗
kjW

µk′

j ψi k′) = g2d2(W 1
µiW

∗µ 1
i ) + g2d2(W ∗1

µ1W
µ1
1 )

(3.290)
For example for SU(3) with 8 generators, we have:

LM =g2d2
(
W 1
µ1W

µ 1
1 +W µ 2

1 W ∗ 2
µ 1 +W µ 3

1 W ∗ 3
µ 1

)
+ g2d2

(
W 1
µ 1W

µ1
1

)
=2g2d2W 1

µ 1W
µ1
1 + g2d2

(
W µ 2

1 W ∗ 2
µ 1 +W µ 3

1 W ∗ 3
µ 1

) (3.291)

Note that the gauge vector W 3
µ2 is not present this gives two massless gauge bosons. Also

note that the real gauge bosons W 2
µ2 and W 3

µ3 are not present but W 1
µ1 is. Since one of them

is not independent we have one massless vector in the subspace of W 2
µ2 and W 3

µ3 and W 1
µ1 as

a real massive gauge vector. A diagonalization in the complex gauge subspace (W 3
µ1,W

2
µ1)

gives the real masses to each independent gauge vector thus we have 4 real massive gauge
bosons. In total we have 5 massive gauge vector thus the remaining symmetry has 3 generators
corresponding to the 3 massless gauge bosons so the unbroken group is SU(2).

In the general case we have:

LM = g2d2
n∑
i=2

(W 1
µiW

∗µ 1
i ) + 2g2d2(W ∗1

µ1W
µ1
1 ) (3.292)

The first factor gives 2n− 2 real massive bosons and the second gives one so in total we have
2n− 1. Since:

n2 − 1 − (2n− 1) = (n− 1)2 − 1 (3.293)

The breaking pattern is:
SU(n) → SU(n− 1) (3.294)

As another example, for SU(5) we have:

LM = g2d2
4∑
i=1

(W 1
µiW

∗µ 1
i ) + 2g2d2(W ∗1

µ1W
µ1
1 ) (3.295)
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The first factor has 8 real vector bosons and the second one in total we have 9 massive gauge
bosons. So 24 − 9 = 15 equal to the number of generators of SU(4).

3.4.4 Spontaneous Breaking in the second rank Antisymmetric Repre-
sentation

The antisymmetric representation has the properties:

ψij = −ψji = (ψij)∗. (3.296)

The following proprieties will be derived in Section (3.5.2). The transformation rule is:

ψij → ψij + iϵkiψkj + iϵkjψik. (3.297)

The covariant derivative:

Dµψij = ∂µψij − igW l
µiψlj − igW l

µjψil. (3.298)

The masses will come from:

LM = g2(W k
µiψkjW

∗µk′

i ψ∗
k′j) + g2(W ∗k

µi ψ
∗
kjW

µk′

j ψi k′). (3.299)

The potential has the same form as the potential for the symmetric representation Eq.(3.252):

V (ψ) = − 1
2µ

2 Tr[ψ†ψ] + 1
4λ1(Tr[ψ†ψ])2 + 1

4λ2 Tr[ψ†ψψ†ψ]

= − 1
2µ

2ψijψ
ij + 1

4λ1(ψijψij)2 + 1
4λ2(ψijψjkψklψli)

(3.300)

As the solution before, we define : Σ = ψψ∗. In components: Σl
k = ψkmψ

ml. It is also
hermitian. The procedure of minimization is the same as the previous section. The results are
the same, the value of σ is given by Eq.(3.262) and the stability condition is Eq. (3.263).

Case λ2 > 0

If λ2 > 0 we have

⟨Σ⟩ = c2



1
1 0

. . .
0 1

1

 , c2 = µ2

nλ1 + λ2
, nλ1 + λ2 > 0 (3.301)

that is valid for n odd or even.
Thus:

ψψ∗ = c21 (3.302)
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Let’s first focus on the even case n = 2L. To retrieve ψ from Eq.(3.302) note that ψ can be
written as:

ψ = A+ iB (3.303)

with A,B antisymmetric. The defining conditions are the same as before, from Eq.(3.302):

A2 +B2 = c21 (3.304)
AB = BA (3.305)

Since iA and iB are hermitian and commute with each other they can diagonalized with the
same unitary transformation. This is just an application of the Spectral Theorem. The eigen-
values are real and occur in pairs. Let λ be an eigenvalue, using A = −AT we have :

det(λ1 − iA) = det(λ1 + iAT ) = det(λ1T + iAT ) = det((λ1 + iA)T ) = det(λ1 + iA)
(3.306)

Thus both λ and−λ give solution to the characteristic polynomial. Then:

iA = UiAdU
† (3.307)

iB = UiBdU
† (3.308)

with:

Ad =



ia1
−ia1 0

ia2
−ia2

. . .
0 iaL

−iaL


(3.309)

Bd =



ib1
−ib1 0

ib2
−ib2

. . .
0 ibL

−ibL


(3.310)

This can be simplified. Using the unitary matrix:

k = 1√
2

(
1 −i
1 i

)
(3.311)
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We see that:

k

(
0 1

−1 0

)
k† = 1

2

(
1 −i
1 i

)(
0 1

−1 0

)(
1 1
i −i

)
=
(
i 0
0 −i

)
(3.312)

Defining:

K =



1√
2

(
1 −i
1 i

)
0

. . .
0

1√
2

(
1 −i
1 i

)


(3.313)

We see that Ad = KASK
† with:

AS =


a1

(
0 1

−1 0

)
. . .

aL

(
0 1

−1 0

)


(3.314)

also Bd = KBSK
†:

BS =


b1

(
0 1

−1 0

)
. . .

bL

(
0 1

−1 0

)


(3.315)

that is K transforms Ad and Bd into standard antisymmetric form.
Summarizing:

ψ = A+ iB = UKAS(UK)† + iUKBS(UK)† = UK(AS + iBS)(UK)† = UKψ′(UK)†

(3.316)
But on the other hand it is known that for any real antisymmetric matrix (A,B) a transforma-
tion into standard antisymmetric form (AS, BS) has to be real and orthogonal so UK ≡ O
is a real and orthogonal matrix, thus (UK)† = (UK)T . From ψψ∗ = 1c2 we have using
Eq.(3.316).

O1c2OT = 1c2 = ψψ∗ = Oψ′ψ′∗OT = O(A2
S +B2

S)OT (3.317)
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Since O belongs to O(n) is included also in the symmetry group SU(n) of the Lagrangian,
thus the factorization ψ → ψ′ leaves the Lagrangian invariant. Equation (3.317) implies:

a2
i + b2

i = c2, i = 1, · · · , L (3.318)

We have then:

ψ′ = AS + iBS =


(a1 + ib1)

(
0 1

−1 0

)
. . .

(aL + ibL)
(

0 1
−1 0

)



= c


eiα1

(
0 1

−1 0

)
. . .

eiαL
(

0 1
−1 0

)



(3.319)

As before we do another factorization using V to get rid of the phases:

ψ′ = V ψ′′(V )T (3.320)

with the diagonal matrix:

V =



eiα1/2
(

1 0
0 1

)
0

0 eiα2/2
(

1 0
0 1

)
. . .

0 eiαL/2
(

1 0
0 1

)


(3.321)
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which again leaves the Lagrangian invariant. 15 Then ψ′′ explicitly shown as a vev is:

⟨ψ′′⟩ = c



(
0 1

−1 0

)
0(

0 1
−1 0

)
. . .

0
(

0 1
−1 0

)


, n = 2L (3.322)

For the case n = 2L+ 1 the procedure analogous, we just add a 0 in the diagonal.

⟨ψ′′⟩ = c



(
0 1

−1 0

)
0(

0 1
−1 0

)
. . .

0
(

0 1
−1 0

)
0


, n = 2L+ 1 (3.323)

Case λ2 < 0

For the case λ2 < 0 the vev of Σ is analogous to Eq.( 3.285)

⟨Σ⟩ = d2



1
0 0

. . .
0 0

0

 , d2 = µ2

λ1 + λ2
, λ1 + λ2 > 0 (3.324)

For the vev of ψ we can proceed as in last section and arrive to:

⟨ψ′′⟩ = d



(
0 1

−1 0

)
0

. . .
0

 (3.325)

And this is valid for n odd or even.

15note that the covariant derivative goes like Tr[(Dµψ)†Dµφ] thus V cancels with it’s conjugate.
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Calculation of the symmetry breaking patterns

In both cases the vev is :

⟨ψ′′
kj⟩ = c

K−1∑
l=0

(
δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1

)
(3.326)

where K = 1 for λ2 < 0 and K = L for λ2 > 0. Using:

LM = g2(W i
µkψkjW

µk′

i ψ∗
k′j) + g2(W i

µ kψ
∗
kjW

µk′

j ψi k′) (3.327)

we have:

LM1 =g2c2
K−1∑
l=0

K−1∑
l′=0

(
W i
µkW

µk′

i

(
δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1

) (
δk′ 2l′+1δj 2l′+2 − δk′ 2l′+2δj 2l′+1

))

=g2c2
K−1∑
l=0

(W i
µ2l+1W

µ 2l+1
i +W i

µ2l+2W
µ 2l+2
i )

(3.328)

and

LM2 = − g2
K−1∑
l=0

K−1∑
l′=0

(
W i
µ kW

µk′

j

(
δk 2l+1δj 2l+2 − δk 2l+2δj 2l+1

)
(δk′ 2l′+1δi 2l′+2 − δk′ 2l′+2δi 2l′+1)

)

= − g2
K−1∑
l=0

K−1∑
l′=0

(
W 2l′+2
µ 2l+1W

µ2l′+1
2l+2 +W 2l′+1

µ 2l+2W
µ2l′+2
2l+1 −W 2l′+1

µ 2l+1W
µ2l′+2
2l+2 −W 2l′+2

µ 2l+2W
µ2l′+1
2l+1

)

= − 2g2
K−1∑
l=0

K−1∑
l′=0

W ∗2l+1
µ2l′+2W

µ2l′+1
2l+2 + 2g2

K−1∑
l=0

K−1∑
l′=0

W ∗ 2l+1
µ2l′+1W

µ2l′+2
2l+2

(3.329)

Thus:

LM =g2c2
K−1∑
l=0

(W i
µ2l+1W

µ 2l+1
i +W i

µ2l+2W
µ 2l+2
i ) − 2g2

K−1∑
l=0

K−1∑
l′=0

W ∗2l′+2
µ2l+1 W

µ2l′+1
2l+2

+ 2g2
K−1∑
l=0

K−1∑
l′=0

W ∗ 2l+1
µ2l′+1W

µ2l′+2
2l+2

(3.330)
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Case λ2 < 0

In the case λ2 < 0 we have K = 1. Last equation is:

LM =g2c2(W ∗1
µiW

µ 1
i +W ∗2

µiW
µ 2
i ) − 2g2c2W ∗1

µ2W
µ1
2 + 2g2W ∗ 1

µ1 W
µ2
2

=g2c2
n∑
i=3

(W ∗1
µiW

µ 1
i +W ∗2

µiW
µ 2
i ) + g2c2(W ∗1

µ1W
µ 1
1 +W ∗2

µ1W
µ 2
1 +W ∗1

µ2W
µ 1
2 +W ∗2

µ2W
µ 2
2 )

− 2g2c2W ∗1
µ2W

µ1
2 + g2c2

(
W 1
µ 1W

µ2
2 +W 2

µ 2W
µ1
1

)
=g2c2

n∑
i=3

(W ∗1
µiW

µ 1
i +W ∗2

µiW
µ 2
i ) + g2c2(W ∗1

µ1 +W ∗2
µ2)(W µ1

1 +W µ2
2 )

(3.331)

Then in the first term we have 2(n − 2) complex gauge bosons that acquire mass thus 4(n −
2) real vectors acquire mass and in the second term we have that a linear combination of
W µ1

1 ,W µ2
2 acquire mass. Both are real so we have another gauge boson with mass. In total we

have 4(n− 2) + 1 gauge bosons that acquire mass. The masless vectors are then:

n2 − 1 − (4(n− 2) − 1) =
(

(n− 2)2 − 1
)

+ 3 (3.332)

So the symmetry breaking pattern is:

SU(n) → SU(n− 2) × SU(2) (3.333)

Case λ2 > 0

In the case λ2 > 0 we have K = L. First let’s see an example with SU(4) to see the pattern
of factorization. We have L = 2 so:

LM1 =g2c2(W ∗1
µiW

µ 1
i +W ∗2

µiW
µ 2
i +W ∗3

µiW
µ 3
i +W ∗4

µiW
µ 4
i )

=g2c2(W ∗1
µ1W

µ 1
1 +W ∗2

µ2W
µ 2
2 +W ∗3

µ3W
µ 3
3 +W ∗4

µ4W
µ 4
4 + 2W ∗2

µ1W
µ 2
1 + 2W ∗3

µ1W
µ 3
1

+ 2W ∗4
µ1W

µ 4
1 + 2W ∗3

µ2W
µ 3
2 + 2W ∗4

µ2W
µ 4
2 + 2W ∗4

µ3W
µ 4
3 )

(3.334)

LM2 = − 2g2c2(W ∗1
µ2W

µ1
2 +W ∗3

µ2W
µ4
1 +W ∗1

µ4W
µ3
2 +W ∗3

µ4W
µ3
4 ) + 2g2c2(W ∗1

µ 1W
µ 2
2

+W ∗3
µ 1W

µ 2
4 +W ∗1

µ 3W
µ 4
2 +W ∗3

µ 3W
µ 4
4 )

(3.335)

Note that the terms W ∗1
µ2W

µ1
2 and W ∗3

µ4W
µ3
4 cancel, and factorizing we have:

LM = g2c2(W ∗1
µ1 +W ∗2

µ2)(W µ1
1 +W µ2

2 ) + g2c2(W ∗3
µ3 +W ∗4

µ4)(W µ3
3 +W µ4

4 )
+ 2g2c2(W ∗1

µ4 −W ∗3
µ2)(W µ1

4 −W µ3
2 ) + 2g2c2(W ∗1

µ3 +W ∗4
µ2)(W µ1

3 +W µ4
2 )

(3.336)
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The first two terms each gives one real bosons and the other two give two complex ones so
1 + 1 + 2 + 2 = 6. The number of masless bosons is 15 − 6 = 9. We find there is not a Lie
algebra with this number of generators. The closer one is the algebra of Sp(2n) with n = 2
that is the intersection between the unitary group U(2n) and the sympletic group Sp(2n,C)

Sp(2n) = U(2n) ∩ Sp(2n,C) (3.337)

An element of the sympletic group Sp(2n,C) is an M such that:

MTJM = J (3.338)

were J the 2n× 2n matrix:

J =



(
0 1

−1 0

)
. . . (

0 1
−1 0

)


(3.339)

Since J is antisymmetric, condition Eq.(3.338) provides 2n(2n−1)
2 restrictions thus the dimen-

sion of this group is:

2(2n)2 − 2n(2n− 1)
2 = n(6n+ 1) (3.340)

If M belongs to Sp(2n) then M has to satisfy Eq. (3.338) and also the condition MM † = 1.
The dimension of Sp(2n) is then:

n(6n+ 1) − (2n)2 = 2n2 + n = 2n
2 (2n+ 1) (3.341)

Thus the dimension of Sp(N) with N even is N
2 (N + 1). Sp(4) has dimension 10. Assuming

instead that the initial symmetry of the Lagrangian is U(4) (in practice throwing away con-
dition W µi

i = 0) we have 16 − 6 = 10 massless gauge bosons thus the symmetry breaking
is U(4) → Sp(4). Things change when we have odd number. For SU(5) we have that still
L = 2 but the summation on i in Eq.(3.330) goes until 5, we have:

LM = g2c2(W ∗1
µ1 +W ∗2

µ2)(W µ1
1 +W µ2

2 ) + g2c2(W ∗3
µ3 +W ∗4

µ4)(W µ3
3 +W µ3

3 )
+ 2g2c2(W ∗1

µ4 −W ∗3
µ2)(W µ1

4 −W µ3
2 ) + 2g2c2(W ∗1

µ3 +W ∗4
µ2)(W µ1

3 +W µ4
2 )

+ g2c2(W ∗1
µ5W

µ1
5 +W ∗2

µ5W
µ2
5 +W ∗3

µ5W
µ3
5 +W ∗4

µ5W
µ4
5 )

(3.342)

The last line adds 8 real gauge bosons so the number of masless generators is : 24 − 14 = 10.
So the symmetry breaking is SU(5) → Sp(4), exactly.
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Generalizing the procedure before, we have the factorization:

LM = g2c2
L−1∑
l,l′=0

(W ∗2l′+1
µ2l+2 −W ∗2l+1

µ2l′+2)(W
µ2l′+1
2l+2 −W µ2l+1

2l′+2 )

+ g2c2
L−1∑
l,l′=0

(W ∗2l+1
µ2l′+1 +W ∗2l′+2

µ2l+2 )(W µ2l+1
2l′+1 +W µ2l′+2

2l+2 ) + g2c2δn 2L+1

2L∑
i=1

W ∗i
µ 2L+1W

µi
2L+1

(3.343)

Remember that SU(n) we can have n odd or even, n = 2L + 1 or n = 2L. The first
term contributes with L

2 (L − 1) complex vector bosons , the second with L
2 (L − 1) complex

vector bosons and L real vector bosons and the last term is different from zero when n =
2L+ 1, i.e. SU(n) is odd, and contributes with 2L gauge boson bosons. Thus when n is even
we have 2L(L − 1) + L massive real vector bosons thus the massless vectors are using and
"approximate" SU(n) symmetry:

(2L)2 − 2L(L− 1) − L = L(2L+ 1) (3.344)

This is the dimension of the algebra of Sp(n) with n = 2L. Thus the approximate symmetry
breaking is

U(n) → Sp(n) n even (3.345)

In the odd case we have:

(2L+ 1)2 − 1 − 2L(L− 1) − L− 4L = 4L2 − 2L(L− 1
2) = L(2L+ 1) (3.346)

So the symmetry breaking is

SU(2L+ 1) → Sp(2L) n=2L+1 odd (3.347)

3.4.5 Spontaneous Breaking in the Adjoint Representation

A scalar ψ in the adjoint representation can be written as:

ψ = ψjiX
j
i (3.348)

A similar calculation that lead to Eq.(3.213) shows that it has the same properties as the gauge
bosons, which means:

ψji = (ψij)∗ (3.349)

n∑
i=1

ψii = 0 (3.350)

From Eq.(3.349) we have that:
(ψ†)ji = ψ∗i

j = ψji (3.351)
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Thus ψ is hermitian.
The infinitesimal transformation of ψji is:

ψ′
i
j = ψji + iϵkiψ

j
k − iϵjkψ

k
i (3.352)

Since ψ lives in the adjoint representation the covariant derivative is:

Dµψ = ∂µψ − ig[Wµ, ψ] = ∂µψ − igWm
µiψ

l
mX

l
i + igW j

µmψ
m
k X

j
k (3.353)

So projecting:
Dµψij = ∂µψij − igW l

µiψ
j
l + igW j

µlψ
l
i (3.354)

The kinetic Lagrangian is:

Lkin = 1
2 Tr[(Dµψ)†Dµψ] = 1

2(∂µψ∗
ij + igW ∗l

µiψ
j
l − igW j

µlψ
l
i)(∂µψij − igW µl

i ψ
j
l + igW µj

l ψli)
(3.355)

From this we can extract the mass terms:

LM1 = g2
(
W k
µiψ

j
kW

µ∗k′

i ψjk′ +W j
µkψ

k
iW

µ∗j
k′ ψk

′

i

)
(3.356)

LM2 = −g2
(
W j
µkψ

k
iW

µ∗k′

i ψjk′ +W k
µiψ

j
kW

µ∗j
k′ ψk

′

i

)
(3.357)

The most general invariant potential (imposing ψ → −ψ symmetry) is:

V (ψ) = −1
2µ

2ψjiψ
i
j + 1

4λ1(ψjiψij)2 + 1
4λ2(ψjiψkjψlkψil) (3.358)

where the crossed index summation is implied. Since ψ is hermitian it can be diagonalized via
a unitary matrix:

ψji = (U †)jkφkUk
i = δjiφj, φi real (3.359)

The potential Eq.(3.348) then can be rewritten as:

V = −1
2µ

2
n∑
i=1

φ 2
i + 1

4λ1

 n∑
i=1

φ 2
i

2

+ 1
4λ2

 n∑
i=1

φ 4
i

− g
n∑
i=1

φi (3.360)

where we have added the restriction Eq.(3.350) as a Lagrange multiplier. This equation has
the same structure as the one used to calculate the minimum in the symmetric tensor in the
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O(n) group as is shown in Eq.(3.113). Following these results, the vev is:

⟨ψ⟩ =



φ1
. . .

φ1
φ2

. . .
φ2


(3.361)

Where we have n1 (n2) entries with value φ1 ( φ2). The stability condition is the same as
Eq.(3.136) with n3 = 0
In the case where λ2 > 0 we have that n1 is:

n1 =1
2n even

n1 =1
2(n+ 1) odd

(3.362)

If λ2 < 0 we have that n1 = n− 1.
Replacing the vev:

⟨ψ⟩ij =
n1∑
l=1

φ1δi lδj l +
n∑

l=n1

φ2δi lδj l (3.363)

From the kinetic term inserting the vev ψ → ⟨ψ⟩ we have that the mass terms in the Lagrangian
are:

LM1 =g2
(
W k
µi ⟨ψ

j
k⟩W

µ∗k′

i ⟨ψjk′⟩ +W j
µk ⟨ψki ⟩W

µ∗j
k′ ⟨ψk′

i ⟩
)

=g2

φ2
1

n1∑
l=1

W l
µiW

µ∗l
i + φ2

2

n∑
l=n1+1

W l
µiW

µ∗l
i + φ2

1

n1∑
l=1

W j
µlW

µ∗j
l + φ2

2

n∑
l=n1+1

W j
µlW

µ∗j
l


(3.364)

LM2 = −g2
(
W j
µk ⟨ψki ⟩W

µ∗k′

i ⟨ψjk′⟩ +W k
µi ⟨ψ

j
k⟩W

µ∗j
k′ ⟨ψk′

i ⟩
)

= −2g2

φ2
1

n1∑
l,l′=1

W l′

µlW
µ∗l′
l + φ2

2

n∑
l,l′=n1+1

W l′

µlW
µ∗l′
l


− 2g2φ1φ2

n1∑
l′=1

n∑
l=n1+1

(W l′

µlW
µ∗l′
l +W l

µl′W
µ∗l
l′ )

(3.365)

Thus we have:

LM = 2(φ1 − φ2)2
n1∑
l′=1

n∑
l=n1+1

W l′

µlW
∗µl′
l (3.366)
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The number of gauge bosons that acquire mass is all the possible combination of ψ with
the first index less than n1 (n1 indices) and the other more than n1 (n − n1 indices). Thus
we have n1(n− n1) possible combinations. Since these are alternate terms, gauge bosons are
complex thus we have 2n1(n− n1) real bosons that acquire mass.
Since:

n2 − 1 − 2n1(n− n1) = (n− n1)2 − 1 + (n1)2 − 1 + 1 (3.367)

We see that the symmetry breaking is:

SU(n) → SU(n− n1) × SU(n1) × U(1) (3.368)

In the case λ2 > 0 we have:

n1 =1
2n even

n1 =1
2(n+ 1) odd

(3.369)

In the case λ2 < 0, we have n1 = n− 1 so the symmetry breaking is:

SU(n) → SU(n− 1) × U(1) (3.370)

As an example we deal with the SU(3). In the case λ2 < 0, we have n1 = 2. Using eq.
Eq.(3.366) :

LM = 2(φ1 − φ2)2
3∑

l′=1
W l′

µ3W
µ∗l′
3 = 2(φ1 − φ2)2

(
W 1
µ3W

∗µ1
3 +W 2

µ3W
µ∗2
3

)
(3.371)

Clearly 4 bosons acquire mass. Thus we have 4 massless bosons. The symmetry breaking
pattern is SU(3) → SU(2) × U(1).When λ2 > 0 we have n1 = 2 the symmetry breaking
pattern is the same.
Another example can be found with SU(5). In the case λ2 > 0, we have n1 = 3. Using eq.
3.366 :

LM = 2(φ1 − φ2)2
3∑

l′=1

5∑
l=4

W l′

µlW
µ∗l′
l = 2(φ1 − φ2)2

(
W 1
µ4W

∗µ1
4 +W 1

µ5W
∗µ1
5 +W 2

µ4W
∗µ2
4

+W 2
µ5W

∗µ2
5 +W 3

µ4W
∗µ3
4 +W 3

µ5W
∗µ3
5

)
(3.372)

Thus 12 vectors acquire mass then we have 24-12 = 12 massless gauge bosons. These are the
8 generators of SU(3), 3 of SU(2) and 1 generator for U(1). This is a very important fact
since it is the the breaking of the grand unification model using SU(5):

SU(5) → SU(3) × SU(2) × U(1) (3.373)



84 Generalized Brout-Englert-Higgs Mechanism

In the case where λ2 < 0 we have that n1 = 4, so:

LM = 2(φ1 − φ2)2
4∑

l′=1
W l′

µ5W
µ∗l′
5 = 2(φ1 − φ2)2

(
W 1
µ5W

∗µ1
5 +W 2

µ5W
∗µ2
5 +W 3

µ5W
∗µ3
5

+W 4
µ5W

∗µ4
5

)
(3.374)

We have 8 bosons that acquire mass so 24-8 =16 massless bosons. These are equal to 15
bosons of SU(4) and a single boson for U(1).
The symmetry breaking pattern is: SU(5) → SU(4) × U(1).

3.5 Spontaneous Breaking of products of Simple Groups

In the following section we develop the transformations of representations of product Groups
i.e. representations of G1 × G2. This is important since in the case where G1 = G2 and
g1 = g2 we have that the fundamental representation of tensor product G1 × G2 as a gauge
group is isomorphic (transforms the same way both scalar boson and gauge boson) to the
second tensor reducible irrep of G1 that we have used in the chapter. In this way for the
orthogonal and special unitary symmetries we retrieve the laws of transformations and the
covariant derivative for the second rank antisymmetric and symmetric representations.

First let’s continue the procedure of Section (1.5) and see in general how tensor irreps of
a compact group G transform. For a ψ transforming in the second rank symmetric traceless or
antisymmetric representation the kinetic term is:

Lψ = iTr[ψ̄∂µψ] = iψ̄ij∂µψij i, j = 1, · · · , dG (3.375)

and for a φ:

∥∂µφ∥2 = Tr[(∂µφ)†∂µφ] = ∂µφ
∗
ij∂

µφij i, j = 1, · · · , dG (3.376)

and in general for a K tensorial (K indices) irreducible representation:

Lψ =iψ̄i1···iK∂µψi1···iK i1, · · · , iK = 1, · · · , dG (3.377)
∥∂µφ∥2 =∂µφ∗

i1···iK∂
µφi1···iK i1, · · · , iK = 1, · · · , dG (3.378)

since for each index we have both a fundamental and antifundamental transformation that
cancel each other since representations with different indices commute since live in different
tensor spaces. For example, for the transformation:

ψi1···iK → ψ′
i1···iK = Ui1i′1 · · ·UiK i′Kψi′1···i′K ≡ [Uψ]i1···iK (3.379)
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we have:

iψ̄′
i1···iK∂µψ

′
i1···iK =iψ̄i′′1 ···i′′KU

∗
i1i′′1

· · ·U∗
iK i

′′
K
Ui1i′1 · · ·UiK i′K∂µψi′1···1′

K
= iψ̄i′1···1′

K
∂µψi′′···i′′Kδi′1i′′1 · · · δi′K1′′

K

=iψ̄i···j∂µψi···j
(3.380)

Even more we can create tensor with both fundamental and antifundamental indices. In order
to use these transformations in a gauged theory we need to know how the covariant derivative
transform. We need then:

DµΦ → D′
µΦ′ = U(α)DµΦ (3.381)

with explicitely U(α) = U(α) ⊗ · · · ⊗ U(αK) is the tensor representation, where the U(α)’s
are fundamental or antifundamental. So the Yang Mills has to transforms in the same way:

A′
µ = U(α)

(
Aµ + i

g
∂µ

)
U−1(α) (3.382)

The difficulty is now to calculate explicitly form of the transformation. In the next part
we focus on second rank tensor representations for the orthogonal and special unitary groups.

3.5.1 Spontaneous Breaking of O(n) ×O(m)

Let the gauge symmetry be G1 × G2 with G1 = O(n), G2 = O(m) where for convenience
(otherwise we have a symmetric in the indices argument) we have n ≥ m. The transformation
on each fundamental representation is:

φ
(1)
i

′ = φ
(1)
i + ϵ1ijφ

(1)
j i, j = 1, · · · , n (3.383)

φ(2)
α

′ = φ(2)
α + ϵ2αβφ

(2)
β α, β = 1, · · · ,m (3.384)

with their respective Yang Mills field transforming as Eq.(3.42):

W
(1)
µ ij =W (1)

µij + ϵ1 ikW
(1)
µkj + ϵ1jkW

(1)
µik + 1

g1
(∂µϵ1 ij) i, j = 1, · · · , n (3.385)

W
(2)
µ αβ =W (2)

µαβ + ϵ2αγW
(2)
µγβ + ϵ2βγW

(1)
µαγ + 1

g2
(∂µϵ2αβ) α, β = 1, · · · ,m (3.386)

Remember that this group has only real representations so there are no proper antifundamental
representations (see Eq.(5.1)) so we only focus on fundamentals. In general we can construct
N - rank tensor representations such that M indexes transforms as the fundamental represen-



86 Generalized Brout-Englert-Higgs Mechanism

tations of O(n) and N −M as the fundamental representation of O(m) :

φik···αγ → φ′
ik···αγ = O1 ij · · ·O1 kl︸ ︷︷ ︸

Mterms

O2 αβ · · ·O2 γδ︸ ︷︷ ︸
N−Mterms

φj···lβ···δ

i, j, k, l = 1, · · · , n;α, β, γ, δ = 1, · · · ,m
(3.387)

Where we denote Ok the fundamental matrix representation of the group k with k = 1, 2.
These representations are not necessarily irreducible.

Now let’s focus on the second rank tensor representations:

φiα = φ
(1)
i φ(2)

α (3.388)

When the second rank tensor representation is of type n⊗1, that is the tensor transforms as an
n-dimensional vector (fundamental representation) under O(n) but as a singlet under O(m),
we have:

φ′
iα = (φ(1)

i + ϵ1ijφ
(1)
j )φ(2)

α = φiα + ϵ1ijφjα i, j = 1, · · · , n (3.389)

In this case the most general potential will have the same form as the one from Section(3.3.1)
under O(n) symmetry. The vev will be then ⟨φiα⟩ == vδin. The symmetry breaking pattern
is O(n) × O(m) → O(n − 1) × O(m). This means that the symmetry breaking pattern is
not disturbed by other symmetries if the scalar is a singlet under other symmetries. Similarly,
when (1,m) the symmetry breaking is O(n) × O(m) → O(n) × O(m − 1). Then, the most
simple non trivial representation is where each φ(1), φ(2) transform simultaneously under the
fundamental representation of the orthogonal groups, (n,m). Infinitesimally:

φ′
iα = φia + ϵ1 ijφjα + ϵ2 αβφiβ i, j = 1, · · · , n; α, β = 1, · · · ,m. (3.390)

or finitely as 16:
φ′
iα = O1 ijO2αβφjβ = [O1φO

T
2 ]iα (3.391)

This is an irreducible representation.
The usual kinetic term is invariant under global transformations:

2Lkin = Tr
[
(∂µφ)†∂µφ

]
= Tr

[
(∂µφ′)†∂µφ′

]
(3.392)

In fact :

Tr
[
(∂µφ)′†∂µφ′

]
= Tr

[
(∂µO1φO

T
2 )†∂µ(O1φO

†
2)
]

= Tr
[
O2(∂µφ)†O†

1O1(∂µφ)O†
2

]
= Tr

[
∂µφ

†∂µφ
] (3.393)

Where we have used the fact that for orthogonal representations we have: O†
k = OT

k .
If we do a gauge transformation the terms that depend on ∂µϵ do not cancel.

16We simplify notation: Ok ≡ O(ϵk), an element of the representation of SO(nk) in the fundamental repre-
sentation with n1 = n, n2 = m
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As before we need to define an appropriate covariant derivative such that:

Dµφ → D′
µφ

′ = O1(Dµφ)OT
2 (3.394)

in such way that under a trace property the kinetic product is invariant. So, we define the
covariant derivative as:

Dµφ = ∂µφ− 1
2g1W

(1)
µ φ− 1

2g2φW
(2)
µ

T (3.395)

where each field W transforms globally as Eq.(3.40) . The transformation is:

(Dµφ)′ =∂µφ′ − g1

2 W
(1)
µ

′φ′ − g2

2 φ
′W (2)

µ
†′ = ∂µ(O1φO

†
2) − g1

2 O1

(
(W (1)

µ − 2
g1
∂µ)O−1

1

)
O1φO

†
2

− g2

2 (O1φO
†
2)
(
O2(W (2)

µ − 2
g2
∂µ)O−1

2

)†

=O1(Dµφ)O†
2 + ∂µ(O1)φO†

2 +O1φ∂µO
†
2 +O1∂µ(O−1

1 )O1φO
†
2 +O1φO

†
2(O2∂µO

−1
2 )†

=O1(Dµφ)O†
2 + ∂µ(O1)φO†

2 +O1φ∂µO
†
2 − ∂µ(O1)φO†

2 −O1φ∂µO
†
2

=O1(Dµφ)O†
2

(3.396)

Then the new kinetic term that is gauge invariant is:

Lkin = 1
2 Tr[(Dµφ)†Dµφ] (3.397)

Using Eq.(3.35) and Eq.(3.395) we have explicitely:

Dµφiα =∂µφiα − g1

2 W
(1)
µab(Lab)ikφkα − g2

2 φiβ(W (2)
µabLab)

†
βα

=∂µφiα − g1

2 (W (1)
µik −W

(1)
µ ki)φkα − g2

2 φiβWµab(Lab)αβ

=∂µφiβ − g1W
(1)
µikφkα − g2W

(2)
µαβφiβ

(3.398)

The kinetic term for a second rank tensor is then:

Lkin =1
2 Tr[(Dµφ)†Dµφ] = 1

2(Dµφ)†
αi(Dµφ)iα = 1

2(Dµφ)iα(Dµφ)iα

=1
2∂

µφiα∂µφiα − (g1W
(1)µ
ik φkα + g2W

(2)µ
αβ φiβ)∂µφiα + 1

2(g2
1W

(1)µ
ik φkαW

(1)
µil φlα

+ g2
2W

(2)µ
αβ φiβW

(2)
µαγφiγ) + g1g2W

(1) µ
ik φkαW

(2)
µαβφiβ

(3.399)

Note that the gauge boson masses will come from the terms of second order in the couplings:

LM = 1
2(g2

1W
(1)µ
ik φkαW

(1)
µil φlα + g2

2W
(2)µ
αβ φiβW

(2)
µαγφiγ) + g1g2W

(1) µ
ik φkαW

(2)
µαβφiβ (3.400)
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Minimization of the Potential

The invariant potential is:

V = −1
2µ

2φiαφiα + 1
4λ1(φiαφiα)2 + 1

4λ2(φiαφiβ)(φjαφjβ) (3.401)

The set of minima satisfy:

∂V

∂φiα

∣∣∣∣
φ=⟨φ⟩

= −µ2 ⟨φiα⟩ + λ1(⟨φjβ⟩ ⟨φjβ⟩) ⟨φiα⟩ + λ2 ⟨φiβ⟩ (⟨φjα⟩ ⟨φjβ⟩) = 0 (3.402)

Introducing:

Xij =
m∑
β=1

⟨φiβ⟩ ⟨φjβ⟩ = (⟨φ⟩ ⟨φ⟩T )ij (3.403)

This is a real and symmetric n× n matrix and can be diagonalized by an orthogonal transfor-
mation then Xij = δijXj . Then Eq.(3.402) is:−µ2 + λ1

n∑
j=1

Xj + λ2Xi

 ⟨φiα⟩ = 0 (3.404)

This equation has the same structure as Eq.(3.71). Using the same argument we have:

Xi = µ2

λ1K + λ2
, i = 1, · · · , K (3.405)

Xi = 0, i = k + 1, · · · , n (3.406)

and

V = Kµ4

λ1K + λ2
(3.407)

The potential is monotonically increasing for λ2 < 0. The minimum is at K = 1:

X = b



1
0

. . .
0

0

 , b = µ2

λ1 + λ2
(3.408)

For λ2 > 0 the potential is monotonically decreasing function of K hence the minimum is at
the largest allowed value of K. This in principle could be:

X = c21n = c2


1

. . .
1

 (3.409)
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but since n > m and considering each row as an m dimensional vector, we see that this not
make sense since we at most can have m orthogonal m dimensional vectors. Thus X is:

X = c2


1m

0
. . .

0

 , c2 = µ2

nλ1 + λ2
(3.410)

i.e. a matrix with entries different than zero only in a block m×m.

Symmetry Breaking Patterns

The vev when λ2 < 0 is the n×m matrix:

φ =


b 0 · · · 0
0 0 · · · ...
...

... . . . · · ·
0 0 · · · 0

 , b = µ2

λ1 + λ2
(3.411)

The vev when λ2 > 0 is:

φ = c



1 0 · · · 0
0 1

. . .
1

0 · · · · · · 0
...

...
0 · · · · · · 0


, c = µ2

mλ1 + λ2
(3.412)

The vev in both case is represented as:

⟨φ⟩iα = d
K∑
l=1

δilδlα (3.413)

with d = b(c) and K = 1(m) for λ2 positive (negative).
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Case λ2 < 0

Inserting the vev:

LM =1
2

(
g2

1W
(1)µ
ik ⟨φ⟩kαW

(1)
µil ⟨φ⟩lα + g2

2W
(2)µ
αβ ⟨φ⟩iβW

(2)
µαγ ⟨φ⟩iγ

)
+ g1g2W

(1) µ
ik ⟨φ⟩kαW

(2)
µαβ ⟨φ⟩iβ

=1
2(g2

1b
2W

(1)µ
i1 W

(1)
µi1 + g2

2b
2W

(2)µ
α1 W

(2)
µα1) + g1g2d

2W
(1) µ
11 W

(2)
µ 11

=1
2(g2

1b
2W

(1)µ
i1 W

(1)
µi1 + g2

2b
2W

(2)µ
α1 W

(2)
µα1)

(3.414)

Where we used the fact that W (1)µ
11 = 0 and W (2)µ

11 = 0. So we have n − 1 gauge bosons that
acquire mass g1b and m− 1 gauge bosons with mass g2b thus the symmetry breaking is:

O(n) ×O(m) → O(n− 1) ×O(m− 1) (3.414)

Case λ2 > 0

Inserting the vev we have:

LM =1
2

(
g2

1W
(1)µ
ik ⟨φ⟩kαW

(1)
µil ⟨φ⟩lα + g2

2W
(2)µ
αβ ⟨φ⟩iβW

(2)
µαγ ⟨φ⟩iγ

)
+ g1g2W

(1) µ
ik ⟨φ⟩kαW

(2)
µαβ ⟨φ⟩iβ

=1
2

g2
1c

2
m∑
l=1

W
(1)µ
il W

(1)
µil + g2

2c
2
m∑
l=1

W
(2)µ
αl W (2)

µαγ

+
m∑

l,l′=1
g1g2d

2W
(1) µ
ll′ W

(2)
µ l′l

=1
2d

2
m∑

l,l′=1

(
g1W

(1)µ
ll′ W

(1)
µll′ − g2W

(2)µ
ll′ W

(2)
µll′

)2
+ 1

2g
2
1d

2
m∑
l=1

n∑
l=m+1

W
(1)µ
ll′ W

(1)
µll′

=1
2d

2(g2
1 + g2

2)
m∑

l,l′=1
(cos θW (1)µ

ll′ W
(1)
µll′ − sin θW (2)µ

ll′ W
(2)
µll′)2

+ 1
2g

2
1d

2
m∑
l=1

n∑
l=m+1

W
(1)µ
ll′ W

(1)
µll′

(3.415)

with sin θ = g2√
(g2

1+g2
2
. Thus we have m(m−1)

2 gauge bosons with mass
√
g2

1 + g2
2d and n(n−m)

gauge bosons with mass g1d. Then the massless bosons are:

n(n− 1)
2 + m(m− 1)

2 − m(m− 1)
2 − 2m(n−m)

2 = m(m− 1)
2 + (n−m)(n−m− 1)

2
(3.416)

Thus the symmetry breaking is:

O(n) ×O(m) → O(m) ×O(n−m) (3.417)
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Case O(n) = O(m)

First of all assuming that even if n = mwe have that each transformationO1 is independent of
O2, we get an irreducible representation and the preceding results are still valid. Now asuming
that both transformations are simultanoeus we effectively see that the tensor φij = φ1iφ2j is
isomorphic to the full second rank representation of O(n) since both transforms in the same
way. This usual second rank tensor product Eq.(3.390) is not an irreducible representation. It
can be shown that the second rank tensor decomposes into irreducible representation which
are 17: a second rank traceless symmetric, second rank antisymmetric and a scalar, with di-
mensions n(n−1)

2 − 1 , n(n+1)
2 and 1 respectively. Explicitly, for the tensors, we have:

φij ≡ φ1iφ2j ± φ2jφ1i (3.418)

where φ1i and φ2j transform in the fundamental representation of O(n) and +(−) gives the
symmetric (antisymmetric) representation. In addition to make the symmetric representation
irreducible we impose the traceless condition Tr[φ] = 0. A finite local or global transforma-
tion follows:

φ′
ij = Oikφ1kOjk′φ2k′ ±O2jk′φ2k′O1ikφ1k = O1ikφkk′O2jk′

= (O1φO
T
2 )ij

(3.419)

Then the covariant derivative constructed in the precedent paragraphs is still valid with some
obvious replacements. This leads to the results in the various sections of the chapter. To
preserve gauge invariance we do noot need that g1 = g2 to preserve gauge invariance at the
level of the Lagrangian.

Dµφiα =∂µφ− g1

2 W
(1)
µab(Lab)ikφkα − g2

2 φiβ(W (2)
µabLab)

†
βα = ∂µφiβ − g1

2 (W (1)
µik −W

(1)
µ ki)φkβ

− g2

2 φiβWµab(Lab)αβ

=∂µφiβ − g1W
(1)
µikφkα − g2W

(2)
µαβφiβ

(3.420)

And if g1 ̸= g2 we arrive at the result of Eq.(3.399). Using g1 = g2 and W (1)
µ = W (2)

µ as we
have done in the chapter to arrive at the following basic result.

Lkin =1
2 Tr[(Dµφ)†Dµφ] = 1

2(Dµφ)ij(Dµφ)ij

=1
2∂

µφij∂µφij − 1
2g(W

µ
ikφkj +W µ

jkφik)∂µφik + g2(W µ
ikφkjWµilφlj +W µ

ikφkjWµ jlφil)

=1
2∂

µφij∂µφij − g(W µ
ikφkj +W µ

jkφik)∂µφik + g2(W µ
ikφkjWµilφlj)

±g2(W µ
ikφkjWµjlφli)

(3.421)

17for example following a procedure similar to the Young Diagrams of Chapter 5
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Note that the gauge boson masses will come from the terms proportional to g2

LM = g2(W µ
ikφkjWµilφlj) ± g2(W µ

ikφkjWµjlφli) (3.422)

3.5.2 Spontaneous Breaking of SU(n) × SU(m)

Transformations

Let the gauge symmetry be G1 ×G2 with G1 = SU(n), G2 = SU(m).18 The transformation
on each fundamental representation is:

φ
(1)
i

′ = φ
(1)
i + ϵj1iφ

(1)
j i, j = 1, · · · , n (3.423)

φ(2)
α

′ = φ(2)
α + ϵβ2αφ

(2)
β α, β = 1, · · · ,m (3.424)

with their respective Yang Mills fied transforming as:

W
(1) j
µ i = W

(1) j
µi + iϵk1 iW

(1)
µkj − iϵj1kW

(1) k
µ i + 1

g1
(∂µϵj1 i) i, j = 1, · · · , n (3.425)

W (2) β
µ α = W (2) β

µα + iϵγ2αW
(2) β
µγ − iϵβ2γW

(2) γ
µα + 1

g2
(∂µϵβ2α) α, β = 1, · · · ,m (3.426)

The case where the second rank tensor is a singlet under a symmetry group gives, using an
analogous reasoning as with the O(n) × O(m) symmetry, the symmetry breaking patterns
SU(n)×SU(m) → SU(n−1)×SU(m) if it is a singlet under SU(m) and SU(n)×SU(m) →
SU(n) × SU(m− 1) if it is a singlet under SU(n).

The lowest dimensional irreducible representation is then the tensor product of funda-
mental representations n × m19(bifundamental representation) transforming infinitesimally
as:

ψ′
iα = ψia + ϵj1 iψjα + ϵβ2 αψiβ i, j = 1, · · · , n; α, β = 1, · · · ,m. (3.427)

The complex conjugate n̄ × m̄ transforms as:

ψiα′ = ψia + ϵi1 jψ
jα + ϵα2 βψ

iβ i, j = 1, · · · , n; α, β = 1, · · · ,m. (3.428)

As in the orthogonal case, the action of the covariant derivative on ψ under the bifundamental
transforms as:

D′
µψ

′ = U1DµψU
T
2 (3.429)

18Again assuming n ≥ m
19if n ̸= m and g1 ̸= g2
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Then the new kinetic term that is gauge invariant is:

Lkin = 1
2 Tr[(Dµψ)†Dµψ] (3.430)

Explicitely we have:

Dµψiα =∂µψ − ig1W
(1) b
µa (Xb

a)ikψkα − ig2ψiβ(W (2)b
µa Xb

a)Tβα
=∂µψiβ − ig1W

(1)
µi

kψkβ − ig2ψiβW
(2)
µa

b(Xb
a)αβ

=∂µψij − ig1W
(1)
µ i

kψkα − ig2W
(2) β
µα ψiβ

(3.431)

Thus the kinetic term for a second rank tensor is then:

Lkin =1
2 Tr[(Dµψ)†Dµψ] = 1

2(Dµψ)∗
iα(Dµψ)iα = 1

2(Dµψ∗)iα(Dµψ)iα

=1
2∂

µψ∗
iα∂µψiα − (g1W

(1)µ∗k
i ψ∗

kα + g2W
(2)µ∗ β
α ψ∗

iβ)∂µψiα + 1
2(g2

1W
(1)µ∗k
i ψ∗

kαW
(1)l
µi ψlα

+ g2
2W

(2)µ∗β
α ψ∗

iβW
(2)γ
µα ψiγ) + g1g2

2 (W (1) µ∗k
i ψ∗

kαW
(2)β
µα ψiβ +W

(1) µk
i ψkαW

(2)∗β
µα ψ∗

iβ)
(3.432)

Note that the gauge boson masses will come from the terms of second order in the couplings:

LM =1
2(g2

1W
(1)µ∗k
i ψ∗

kαW
(1)l
µi ψlα + g2

2W
(2)µ∗β
α ψ∗

iβW
(2)γ
µα ψiγ) + g1g2

2 (W (1) µ∗k
i ψ∗

kαW
(2)β
µα ψiβ

+W
(1) µk
i ψkαW

(2)∗β
µα ψ∗

iβ)
(3.433)

Case SU(n) = SU(m)

In the case we have n = m with g1 = g2, as we saw in the O(n) section, then second rank rep-
resentations can be decomposed into the irreducible complete antisymmetric and symmetric
representation. In this case the mass therm is:

LM = g2(W k∗
µi ψ

∗
kjW

µk′

i ψk′j) + g2(W ∗k
µ iψ

∗
kjW

µk′

j ψi k′) (3.434)

Symmetry Breaking patterns

The invariant potential is:

V = −1
2µ

2(ψiαψiα)2 + 1
4λ1(ψiαψiα)2 + 1

4λ2(ψiαψiβ)(ψjαψjβ) (3.435)

The minimum as always is retrieved from:

∂V

ψiα

∣∣∣∣
ψ=⟨ψ⟩

= 1
2µ

2ψiα + 1
2λ1(ψiβψiβ)ψiα + 1

2λ2(ψjαψjβ)ψiβ (3.436)
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This is the same structure equation as Eq.(3.402), thus we can use the results from there. The
symmetry breaking is:

λ2 > 0 SU(n) × SU(m) → SU(m) × SU(n−m) (3.437)
λ2 < 0 SU(n) × SU(m) → SU(n− 1) × SU(m− 1) (3.438)

3.6 Summary of results
In this chapter we developed the theory of spontaneous breaking of symmetries for different
representations of the O(n) and SU(n) groups. The properties of the representations and the
different symmetry breaking patters can be seen in Tables (3.3), (3.4) and (3.5). We started
with the vector representation of O(n) where the symmetry breaking pattern was derived in a
very standard way.

Next, we started the treatment of the second rank antisymmetric representation of O(n)
that was very important since the results are used for the SU(n) case. To retrieve the vev
in the second rank antisymmetric representation of O(n) we first noted that all the values ai
of Eq.(3.64) are equal and that the form of the vev, i.e. number K of antisymmetric blocks,
depended on the parameter λ2 of the potential. To explicitly calculate the number K we in-
serted the generic vev in the potential and analized for which value of K it was minimum. We
arrived at the conclusion that for λ2 > 0 we got K = L and for λ2 < 0 we got K = 1. Cor-
respondingly there were two different symmetry breaking patterns, each one corresponding to
λ2 positive Eq. (3.82) or negative Eq. (3.80). Using the fact that all non zero entries of the vev
were equal, another important equation Eq.(3.74) was derived. This is the stability condition
for the vev.

In the second rank symmetric representation of O(n) the structure equation of the vev is
Eq.(3.113). We found directly from the structure equation that the vev is a diagonal matrix
composed of three different values Eq.(3.123). Then, analyzing the possible values in the
n1, n2, n3 space with conditions given in Eq.(3.124) that made potential at the vev, V (⟨φ⟩) =
Vm, minimum we understood that the vev depended just on two different values. Thus, the
set of n’s and correspondingly the symmetry breaking patterns depend on the value of the
parameter λ2. After defining the function f and doing the coordinate change n1, n2, n3 → x, y
we found using monotonicity and boundary arguments the values that minimized V (φ) that
was equivalent to the value that maximized f when λ > 0 and minimized f when λ < 0 as
shown in Table 3.5.

For the symmetric and antisymmetric second rank irreducible representations of SU(n),
we, as said above, used the results of the antysimmetric O(n) case. The defining equation
of the vev for the second rank symmetric representation Eq. (3.261) and for the second rank
antisymmetric representation Eq.(3.300) has the same structure as the vev equation for the
second rank antisymmetric tensor of O(n) Eq.(3.71). The difference is that in the O(n) case
the equation is defined directly by the tensor φij where in the other case we are dealing with the
tensor Σj

i = ψjkψki. In the symmetric case, we have a first factorization ψ → ψ̃ (at the level of
the vev) using the operators that diagonalize Σ. Then, after expressing as ψ̃ = A+ iB we use
the orthogonal matrixO that diagonalizes simultaneously the matrices A andB to diagonalize
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ψ̃ → ψ′. Lastly we use the a diagonal phase matrix U to get the vev ψ′ = Uψ′′UTof the
physical field ⟨ψ′′⟩.

For the antisymmetric case, the procedure is similar. After retrieving ψ̃ as before we use
U , the matrix that diagonalizes the hermitian matrices iA and iB, and K of Eq.(3.313) to
express ψ̃ in canonical form block as seen in Equation (3.319). Lastly we use the matrix V
from Eq.(3.321) to get rid of the phases.

For the adjoint representation of SU(n) we use the results of the symmetric represen-
tation of O(n) to retrieve the vev since both have the same structure equation. In this case,
there is no need for ulterior factorization, we arrive at the vev of Eq.(3.361). The last section
included the SSB of product groups O(n)×O(m) and SU(n)×SU(m) and some derivations
needed to calculate the breaking patterns for the other sections.
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Representation Dimension in O(n) Dimension in SU(n)
Vector n 2n

2nd rank Symmetric Tensor 1
2n(n+ 1) − 1 n(2n+ 1) − 1

2nd rank Antisymmetric Tensor 1
2n(n− 1) n(2n− 1)

Spinor 2 × 2l−1

(n = 2l orn = 2l + 1)
Adjoint 1

2n(n− 1) n2 − 1
Table 3.2 Real dimensions of the representations used for O(n) and SU(n)

Representation Transformation Law Covariant Derivative
Vector φ′

i = φi + ϵijφj ∂µ − gWµijφj
2nd rank Symmetric Tensor φ′

ij = φij + ϵikφkj + ϵjkφik Dµφij = ∂µφij − gWµikφkj − gWµjkφik
2nd rank Antisymmetric Tensor φ′

ij = φij + ϵikφkj + ϵjkφik Dµφij = ∂µφij − gWµikφkj − gWµjkφik
spinor χ′

i = χi − 1
4iϵjk(σ

jkχ)i
Table 3.3 Properties of the various representations in O(n)

Representation Transformation Law Covariant Derivative
Vector ψ′

i = ψϵjiφj ∂µ − igW j
µiφj

2nd rank Symmetric Tensor ψ′
ij = ψij + iϵkiψkj + iϵkjψik Dµψij = ψij − igW l

µiψlj − igW l
µjψil

2nd rank Antisymmetric Tensor ψ′
ij = ψij + iϵkiψkj + iϵkjψik Dµψij = ψij − igW l

µiψlj − igW l
µjψil

Adjoint ψ′
i
j = ψji + iϵkiψ

j
k − iϵjkψ

k
i Dµψij = ∂µψij − igW l

µiψ
j
l + igW j

µlψ
l
i

Table 3.4 Properties of the various representations in SU(n)

Representation O(n) SU(n)
Vector O(n− 1) SU(n− 1)

k Vectors O(n− k) SU(n− k)
2nd rank Symmetric λ2 > 0 O(l) ×O(n− l), l = [1

2n] O(n)
Tensor λ2 < 0 O(n− 1) SU(n− 1)

2nd rank Antisymmetric λ2 > 0 U(l), l = [1
2n] Sp(n)

Tensor λ2 < 0 U(1) ×O(n− 2) SU(n− 2) × SU(2)
Adjoint λ2 > 0 SU(l) × SU(n− l) × U(1), l = [1

2n]
λ2 < 0 SU(n− 1)

Table 3.5 Summary of the Patterns of Symmetry Breaking for the O(n) and SU(n) groups



Chapter 4

The Standard Model

For this chapter we have used mainly the books [34], [35] and [36]. In addition for Section
(4.5) we have used [37]. For Section (4.6) we have used [38] and [39].

4.1 Content of the Standard Model
The gauge group of the Standard Model GSM = SU(3)c ×SU(2)L ×U(1)Y is a rank 4 group
that is not semisimple. 1 SU(3)c is the gauge group of the strong interaction and correspond-
ingly has eight gauge boson vectors , the gluons Ga

µ where the internal space coordinate a
labels the color indexes. SU(2)L × U(1)Y is the gauge group of the electroweak interactions
and has three gauge vector bosonsW a

µ for SU(2)L and one gauge vector bosonsBµ for U(1)Y
where the subscript L of SU(2)L denotes the fact that interactions are between fields of left
chirality and Y denotes the hypercharge number.

Fermions are divided into of quarks and leptons where the definition is based on the fact
that quarks are particles that can interact via strong interactions and leptons are singlets under
this gauge group. For one generation, the fermions are composed of 8 left and 7 right Weyl
spinors corresponding to a triple set of left handed up and down quarks (6 Weyl spinors),
another triple set of right handed up and down quarks, a doublet of left handed leptons and
the right handed electron . Since in the SM the number of generations is 3 we have in total 45
Weyl spinors.

For EWSB the Standard Model introduces one complex scalar doublet, the Higgs field.
Following the discussion of last chapters, EWSB will give a renormalizable Lagrangian with
a mass term for the W+,W− and Z gauge vectors. The breaking of symmetry will be done in
Section (4.2). Additionally the Higgs field gives masses to the fermions since before EWSB
it is not possible to construct a Majorana or Dirac mass terms as these terms are not gauge
invariant. All the fields of the Standard model are shown in Table (4.1).

The Lagrangian of the Standard Model is:

L = LB + Lf + LH + LY + LCPv (4.1)

1it contains the abelian invariant ideal that is the generator of U(1)Y . In other words the lone generator of
U(1)Y commutes with all the rest of generators of the Standard model
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Fields of the Standard Model Representation
Vector Fields

Gµ := Ga
µ
λ̂a

2 a = 1, · · · , 8 (8,1,0)

Wµ := W a
µ Î

a a = 1, · · · , 3 (1,3,0)

Bµ := Ŷ
2 Bµ (1,1, 0)

Spinor Fields

QL1 :=
(
uL
dL

)
; QL2 :=

(
cL
sL

)
; QL3 :=

(
tL
bL

)
; (3,2, 1

3 )

LL1 :=
(
νeL
eL

)
; LL2 :=

(
νµL
µL

)
; LL3 :=

(
ντL
τL

)
; (1,2,−1)

uR1 := uR; uR2 := cR; uR3 := tR; (3,1, 4
3 )

dR1 := dR; dR2 := sR; dR3 := bR; (3,1,−2
3 )

ℓR1 := eR; ℓR2 := µR; ℓR3 := τR; (1,1,−2)
Scalar Fields

φ :=
(
φ+

φ0

)
(1,2, 1)

Table 4.1 The SM fields in gauge basis classified with respect to the symmetry group GSM =
SU(3)c × SU(2)L × U(1)Y

Here LB contains the kinetic terms of the gauge boson vectors :

LB = −1
4W

a
µνW

a µν − 1
4BµνB

µν − 1
4G

m
µνG

m µν a = 1, 2, 3;m = 1, · · · , 8 (4.2)

The kinetic terms involve the field strengths also known as field tensor since are Lorentz
tensors. Wµν corresponds to the field strength of the triplets W a

µ of SU(2)L × U(1)Y :

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW

b
νW

c
ν a, b, c = 1, 2, 3 (4.3)

The Yang-Mills field of U(1)Y is Bµ, with field tensor :

Bµν = ∂µBν − ∂νBµ (4.4)

and the Strong Interaction field tensor is:

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + g3f

a
bcG

b
µG

c
ν a, b, c = 1, · · · , 8 (4.5)
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For a generic fermion f of the Standard Model it’s kinetic term is:

Lf = f̄ iDµγ
µf = f̄ iγµ

∂µ − igW a
µ Îa − ig3G

m
µ

λ̂m

2 − ig′ Ŷ

2 Bµ

 f
with a = 1, 2, 3; m = 1, 2, · · · , 8;

(4.6)

Where a the index of the generators of SU(2) and i the generators of SU(3). Î is the repre-
sentation of the algebra of SU(2)and λ̂m

2 of SU(3) in the specific representation of the f field
(see Table (4.1)).

The kinetic terms of the first generation of fermions are :

Lf1 =iQ̄Lγ
µ

(
∂µ − igW a

µ

σa

2 − ig3G
m
µ

λm

2 − i
1
6g

′Bµ

)
QL

+ iL̄Lγ
µ

(
∂µ − igW a

µ

σa

2 + i

2g
′Bµ

)
LL

+ iūRγ
µ

(
∂µ − ig3G

m
µ

λm

2 − i
2
3g

′Bµ

)
uR

+ id̄Rγ
µ

(
∂µ − ig3G

m
µ

λm

2 + i

3g
′Bµ

)
dR

+ iℓ̄Rγ
µ
(
∂µ + ig′Bµ

)
ℓR

(4.7)

with λi the Gell-Mann matrices. Notice these terms appear for every generation.
The Lagrangian of the Higgs sector is:

LH = 1
2∥Dµφ∥2 − V (φ) = 1

2Dµφ
†Dµφ− V (φ) (4.8)

Where the potential is defined as:

V (φ) = λ

4
(
∥φ∥2 − v2

)2
; with v2 = µ2

λ
(4.9)

and the covariant derivative is:

Dµφ = ∂µφ− igW a
µ

σa

2 φ− ig′ 1
2Bµφ (4.10)

Eq.(4.8) is the most general renormalizable potential for the vector representation of the group
SU(2)L × U(1)Y .

The Yukawa sector is:

LY = − 1√
2
ūRαY

u
αβQLβ(iσ2φ

∗) − 1√
2
d̄RαY

d
αβQLβφ− 1√

2
ℓ̄RαY

ℓ
αβLLβφ+H.c.

α = 1, 2, 3
(4.11)



100 The Standard Model

Where Y u, Y d, Y ℓ are 3 × 3 matrices in generation space. From this term we will get the
masses for the fermions without spoiling gauge invariance.

The last term of the Standard Model is a strong CP violation term of the strong interac-
tion:

LCPv = g2
3ΘCP

64π2 ϵµνρσG
iµνGiρσ i = 1, · · · 8; (4.12)

where θCP is an arbitrary parameter.

4.2 Spontaneous Symmetry Breaking of the Standard Model

As we have a scalar in the fundamental representation of SU(2)L×U(1)Y , to get the symmetry
breaking pattern we can use the results of Section (3.4.1). The vev for the potential (4.8) is
then:

⟨φ⟩ =
(

0
v

)
(4.13)

with experimental value v ≈ 246 GeV. The symmetry breaking is:

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q. (4.14)

Where Q denotes the generator that forms the Little Group of ⟨φ⟩ and is defined as the electric
charge. Using the generators of SU(3)c × SU(2)L ×U(1)Y , Q̂ is expressed as a combination
of generators:

Q̂ = Ŷ

2 + Î3 (4.15)

This formulation is independent of representation thus valid for all fields in the SM. For the
Higgs it is:

Q = Y

2 + 1
2σ3 (4.16)

The vector boson masses come from Eq.(3.245):

LM = g2v2

2 W 2
µ1W

∗µ2
1 + v2(g2 + g′2)

2

(
sin θW

Y

2 Bµ + cos θWW 2
µ2

)(
sin θW

Y

2 B
µ + cos θWW µ2

2

)
(4.17)

where:
sin θW = g′

√
g2 + g′2 (4.18)

defines the Weinberg angle. Another important relationship is the module of the electric
charge:

e =
√

4παem = gg′
√
g2 + g′2 = g sin θW = g′ cos θW (4.19)



4.2 Spontaneous Symmetry Breaking of the Standard Model 101

Using the usual Pauli matrices representations we have the equivalence:

W 2
µ1 = 1√

2
W−
µ = 1

2(Wµ1 + iWµ2)

W ∗2
µ1 = 1√

2
W+
µ = 1

2(Wµ1 − iWµ2)

W 2
µ2 = −1

2Wµ3

(4.20)

Defining:

cos θWWµ3 − sin θWBµ = Zµ

sin θWWµ3 + cos θWBµ = Aµ
(4.21)

We obtain mass terms:

LMH
= g2v2

4 W+
µ W

−µ + 1
2
v2(g2 + g′2)

4 ZµZ
µ (4.22)

This is the BEH Mechanism in the Standard Model.
To get the interactions of the Higgs Field we do a perturbation around the vev. We have

the perturbed field:

φ =
(

φ1 + iφ2
v + φ3 + iφ4

)
= ei

σaρa
2v

(
0

v +H

)
(4.23)

Last factorization clearly shows the Goldstone fields in the exponential and the Higgs boson
H . We choose the unitarity gauge that is the gauge where the Goldstone fields are taken away
from the theory, obtaining so:

φ =
(

0
v +H

)
(4.24)

The Higgs Lagrangian is then:

LH = 1
2Dµφ

†Dµφ− λ

4 (2vH +H2)2 = 1
2DµφDµφ− µ2H2 −

√
λµH3 − λ

4H
4 (4.25)

where naturally the interactions with the gauge fields will come from the covariant derivative:

Dµφ =
 −i g√2W

+
µ (v +H)

∂µH − i
2

g
cos θW Zµ(v +H)

 (4.26)

So:

1
2(Dµφ)†Dµφ = 1

2(∂µH)2 + g2

4 (v +H)2W−
µ W

+ µ + g2

8 cos2 θW
(v +H)2ZµZ

µ (4.27)
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Expanding:

LH =1
2(∂µH)2 − µ2H2 −

√
λµH3 − λ

4H
4 + g2

4 v
2W−

µ W
+ µ + g2

8 cos2 θW
v2ZµZ

µ

+ g2

2 vW
−
µ W

+ µH + g2

4 cos2 θW
vZµZ

µH

+ g2

4 W
−
µ W

+ µH2 + g2

8 cos2 θW
ZµZ

µH2

(4.28)

Last equation shows again the mass terms of the boson vectors and the interactions of them
with the Higgs Fields.

4.3 Gauge Boson sector of the Standard Model

Having obtained the physical configuration of the gauge vector fields we re express LB in
terms of them . Gµν remains the same but the strength tensors of W and Z change. Using
Eq.(4.21) we have:

W 3
µν = ∂µW

3
ν−∂νW 3

µ+g(W 1
µW

2
ν−W 2

µW
1
ν ) = cos θWZµν+sin θWAµν−ig(W−

µ W
+
ν −W−

ν W
+
µ )

(4.29)
In the same way:

Bµν = cos θWAµν − sin θWZµν (4.30)

with:

Aµν = ∂µAν − ∂νAµ (4.31)
Zµν = ∂µZν − ∂νZµ (4.32)

Defining:

FW µν = 1√
2

(W 1
µν − iW 2

µν) (4.33)

we see that:
−1

2F
†
W µνF

µν
W = −1

4W1µνW
µν
1 − 1

4W2µνW
µν
2 (4.34)

then, expanding:

FWµν = (∂µ − igW3µ)W+
ν − (∂ν − igW3ν)W+

µ ≡ dµW
+
ν − dνW

+
µ (4.35)

with:
dµ = ∂µ − ieAµ − ig cos θWZµ (4.36)
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We have then:

LB = − 1
4G

b
µνG

b µν − 1
4W

a
µνW

a µν − 1
4BµνB

µν

= − 1
4G

b
µνG

b µν − 1
2F

†
W µνF

µν
W − 1

4W
3
µνW

3 µν − 1
4BµνB

µν

= − 1
4G

b
µνG

b µν − 1
2F

†
W µνF

µν
W − 1

4ZµνZ
µν − 1

4AµνA
µν

+ iW+ µW− ν(g cos θWZµν + ieAµν) + g2

2 [(W+)2(W−)2 − (W+ µW−
µ )2]

(4.37)

From the results we see the interactions of the gauge bosons between themselves.

4.4 Fermion-Gauge interaction in the Standard Model
The fermion-gauge interactions come from the covariant derivative Eq.(4.6). Using:

Î1 + iÎ2 = Î+

Î1 − iÎ2 = Î−
(4.38)

We obtain:

gW 1
µ Î1 + gW 2

µ Î2 = g√
2
(
W+
µ Î+ +W−

µ Î−
)

(4.39)

Also:

gW 3
µ Î3 + g′Bµ

Ŷ

2 =
g cos θW Î3 − g′ Ŷ

2

Zµ +
g sin θW Î3 + g′ cos θW

Ŷ

2

Aµ (4.40)

From last equation, using Q̂ = Ŷ
2 + Î3 and Eq.(4.19) we have(

(g2 + g′2) 1
2 Î3 − g′2

√
g2 + g′2 Q̂

)
Zµ + eQ̂Aµ = g

cos θW

(
Î3 − sin2 θW Q̂

)
Zµ + eQ̂Aµ

(4.41)

So from Eq.(??) we can see the current for each type of interaction:

LI =
∑
f

f̄γµ

g3G
i
µ

λ̂i
2 + g√

2
(
W+
µ Î+ + gW−

µ Î−
)

+ g

cos θW

(
Î3 − sin2 θW Q̂

)
Zµ + eQ̂Aµ

f
=Gi

µj
iµ
G + g

2
√

2
(
W+
µ j

µ
W +W−

µ j
µ†
W

)
+ g

2 cos θW
jµZZµ + ejµγAµ

(4.42)
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In total we have 12 currents corresponding to each generator of GSM . Gi
µj

iµ
G denotes the

current-gauge interactions with the SU(3) gauge bosons, jµW and jµ†
W the charged negative and

positive weak currents, jµZ the neutral weak current and jµγ the electromagnetic current (that is
neutral too). Explicitely, in the so called gauge basis (or generation,family basis), the negative
charged current is:

jµW =
∑
f

2f̄γµÎ+f = 2ūLαγµdLα + 2ν̄LαγµeLα, α = 1, 2, 3. (4.43)

and the neutral weak:

jµZ =2
∑
f

f̄γµ
(
Î3 − sin2 θW Q̂

)
f

=2gνLν̄LαγµνLα + 2geLēLαγµeLα + 2geRēRαγµeRα + 2gUL ūLαγµuLα
+ 2gDL d̄LαγµdLα + 2gUR ūRαγµuRα + 2gDR d̄RαγµdRα.

(4.44)

where the constants geR, · · · are shown in Table (4.2).

Fermion gL gR
u, c, t gUL = 1

2 − 2
3s

2
W gUR = s2

W

d, s, b gDL = −1
2 + 1

3s
2
W gDR = 1

3s
2
W

e, µ, τ geL = −1
2 + s2

W geR = s2
W

νe, νµ, ντ gνL = 1
2 gνR = 0

Table 4.2 The result of the operator Î3−sin2 θW Q̂ in each representation of the fermions where
sW = sin θW

4.5 Yukawa interactions
The Standard Model Lagrangian without the Yukawa term has a [U(3)]5 = [SU(3)]5 × [U(1)]5
global symmetry. This is seen from the fact that each different representation of fermions, that
are five, is multiplied by three since three are the generations thus is a three dimensional
vector in generation space. Equivalently each spinor is seen as a tensor product of the gauge
symmetry times the corresponding family symmetry U(3), so [U(3)]5 = U(3)Q × U(3)u ×
U(3)d × U(3)L × U(3)e. Adding the Yukawa Lagrangian some of the global symmetries are
explicitly broken. Denoting the fermions we are using until now, i.e. represented in the gauge
basis , with an additional prime ′ we see that the Yukawa Lagrangian from Eq. (4.11) is:

LY = − 1√
2
ū′
RαY

u
αβQ

′
Lβ(iσ2φ

∗) − 1√
2
d̄′
RαY

d
αβQ

′
Lβφ− 1√

2
ē′
RαY

ℓ
αβL

′
Lβ +H.c. (4.45)

Independent rotations in the different U(3) spaces do not leave last equation invariant since
we have trilinears couplings between the Higgs boson with two fermions in different repre-
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sentations. Since are complex matrices, the 3×3 matrices Y u, Y d, Y e can be diagonalized via
a biunitary transformation [36]:

V u
RY

uV u †
L = Y u

D ; V d
RY

dV d †
L = Y d

D;
V e
RY

eV e †
L = Y e

D;
(4.46)

Where Y u
D , Y

d
D, Y

e
D are diagonal 3 × 3 real matrices, the Yukawa mass matrices. The fermions

are redefined:

V u
LQ

′
L = QL; V u

Ru
′
R = uR

V d
Rd

′
R = dR

V e
LL

′
L = eL; V e

Re
′
R = eR

(4.47)

Following [U(3)]5 symmetry in the Lagrangian minus LY we have for example for the three
dimensional vector Q′

L:

Q̄′
LDµQ

′
L = Q̄′

LDµV
u
L

†V u
LQ

′
L = Q̄LDµQL (4.48)

and so for each of the five different representations of fermions. This new basis is called the
flavor basis for all fermions and the mass basis of all fermions minus the dL. In fact:

V u
LQ

′
L =

(
V u
L u

′
L

V u
L d

′
L

)
:=
(
uL
duL

)
= QL (4.49)

where V u
L d

′
L = duL is the flavor basis of the down left quarks. After the factorization of the

Yukawas, we obtain:

LY = − 1√
2
ūRiY

u
DiiQLi(iσ2φ

∗) − 1√
2
d̄RiY

d
Dii(V d

LV
u †
L )ijQLjφ− 1√

2
ēRiY

e
DiLLiφ+ h.c.

i = 1, 2, 3
(4.50)

In this way we see that dUL is not the mass eigenstate of down quarks. We also see the first
appearance of the unitary Cabibbo-Kobayashi-Masawaka matrix (CKM) defined as:

UCKM = V u
L V

d †
L (4.51)

Note that the [U(3)]5 = [SU(3)5 × [U(1)]5 is broken at the full Lagrangian level with the the
only remaining global symmetries being U(1)B × [U(1)ℓ]3. In fact the CKM matrix restricts
the possible [U(3)]3 symmetry of the baryons into only a symmetry given by the diagonal
phase matrix eiαB13×3 that is interpreted as the Baryon number conservation. Then, the trans-
formations under U(1)B are:

Q′
L = eiBαB13×3QL; u′

R = eiBαB13×3uR; d′
R = eiBαB13×3dR; (4.52)
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with B the baryonic number of the representation where the transformation acts. 2B is +1/3
for quarks and −1/3 for antiquarks. The rest of the fields are invariant under this transforma-
tion.
Since in the Standard Model there is not an analogous to the CKM matrix (the PMNS matrix)
for the leptons, there is a U(1) symmetry in each lepton mas basis. The transformations:

L′
L1 = eiLeαeLL1; e′

R1 = eiLeαee′
R1;

L′
L2 = eiLµαµLL2; e′

R2 = eiLµαµe′
R2;

L′
L3 = eiLτατLL3; e′

R3 = eiLτατ e′
R3;

(4.53)

leave the Yukawa term invariant and correspond the U(1)e, U(1)µ and U(1)τ symmetry that
conserve leptonic Le, Lµ, Lτ number, respectively. Note again that since there is no PMNS
matrix the SM the mass basis is the same as the flavor basis for the leptons thus we can
make the correspondence of indices e = 1, µ = 2, τ = 3. Each Le, Lµ, Lτ is +1 for the
corresponding lepton and −1 for the corresponding antilepton.

After spontaneous symmetry breaking from Eq.(4.50) we get:

LY = (v +H)
(

1√
2
ūRiY

u
ii uLi + 1√

2
d̄RiY

d
Dii(U

†
CKM)iαduLα + 1√

2
ēRiY

ℓ
iieLi + h.c.

)
(4.54)

Redefining the down left quarks into a mass diagonal base:

[U †
CKM]iαduLα ≡ dLi (4.55)

Thus last equation is:
duLα = [UCKM]αidLi (4.56)

It is equal to:

(UCKM)ij(V u
L )jαd′

Lα = (V d
LV

u †
L )ij(V u

L )jαd′
Lα = V d

Liγd
′
Lγ = dLi (4.57)

The CKM matrix depends on four parameters, three angles θ12, θ23, θ13 and a CP-violating
phase δ13. It can be shown that one parametrization of the CKM, the standard parametrization
is:

UCKM =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ13

0 1 0
−s13e

iδ13 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 (4.58)

=

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 (4.59)

2B is given by the representation since baryonic number conservation is aU(1) symmetry. See the discussion
at Chapter 1.
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or using the Wolfenstein parametrization, an approximation of the standard parameterization:

UCKM ≈

 1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

 (4.60)

The four Wolfenstein parameters have the property that all are of order 1 and are related to the
standard parameterization:

λ = s12 (4.61)
Aλ2 = s23 (4.62)

Aλ3(ρ− iη) = s13e
−iδ (4.63)

with λ ≈ 0.22. It can be shown that the CP violation can be determined by measuring ρ− iη.
From Eq.(4.54) we arrive, using ψ = ψL + ψR for the fermions, at:

LY = 1√
2

(v +H)
(
ūY u

Du+ d̄Y d
Dd+ ēY e

d e
)

(4.64)

We clearly see the masses and interactions with the Higgs boson of all the fermions less the
neutrino. Explicitly the mass matrices are:

M I = 1√
2
vY I

D; I = u, d, ℓ (4.65)

Note that the interactions of the fermions with the Higgs are proportional to the Yukawa Cou-
plings and thus to the fermion mass ∼ mf

v
, with mf mass of the fermion. This fact has

important phenomenological consequences for Higgs physics.
Expressing the charged current term using Eq.(4.43) in the mass basis we have:

jµW =2ū′
Lγ

µd′
L + 2ν̄ ′

Lγ
µe′
L = 2ūLγµ(V u

L V
d
L

†)dL + 2ν̄LγµeL
=2ūL kγµ(UCKM)dL + 2ν̄LγµeL

(4.66)

Last equation implies charged that current interactions between quarks mix the mass eigen-
states of quarks (equivalently mix flavor eigentstates). On the other hand, since in the SM
there are not right handed neutrinos we cannot construct a second Yukawa matrix Y ν for neu-
trinos thus they are massless. In this way swe see that doing the transformation (4.47) we
already defined also the flavor basis for neutrinos. So Eq.(4.66) implies that there are not
flavor changing charged currents for leptons.
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For the weak neutral current we have:

jµZ =2gνLν̄ ′
Lγ

µν ′
L + 2geLē′

Lγ
µe′
L + 2geRē′

Rγ
µe′
R + 2guLū′

Lγ
µu′

L

+ 2gdLd̄′
Lγ

µd′
L + 2guRū′

Rγ
µu′

R + 2gdRd̄′
Rγ

µd′
R

=2gνLν̄LγµνL + 2geLēLγµeL + 2geRēRγµeR + 2guLūLγµuL + 2gdLd̄uLγµduL
+ 2guRūRγµuR + 2gdRd̄RγµdR

(4.67)

Where we have used Eq.(4.47) to go into the flavor basis. Note that at tree level there are not
flavor changing neutral currents (FCNC). This is the GIM mechanism.

Table 4.3 Analytic form of Tree level Masses of the different fields and experimental value.[1]

Field Analytic Form Experimental Value
H

√
2µ 125.03+0.26 0.27 (stat) +0.13 0.15 (sys) GeV (CMS)

W± g
2v 80.385±0.015 GeV

Z

√
g2+g′2

2 v 91.1876±0.0021 GeV
γ 0 ≤ 1−18 eV
G 0
e 1√

2vY
e
D1 0.510998928 ± 0.000000011 MeV

µ 1√
2vY

e
D2 105.6583715 ± 0.0000035 MeV

τ 1√
2vY

e
D3 1776.82 ± 0.16 MeV

νe 0 ≤ 2.05 eV (95 % C.L.)
ντ 0 "
ντ 0 "
u 1√

2vY
u
D1 2.3+0.7

−0.5 MeV
d 1√

2vY
d
D1 3.5+0.7

−0.2 MeV
s 1√

2vY
u
D2 95 ± 5 MeV

c 1√
2vY

d
D2 1.275 ± 0.025 GeV

t 1√
2vY

u
D3 173.21 ± 0.51 ± 0.71 GeV a

b 1√
2vY

d
D3 4.66 ± 0.03 GeV b

adirect measurement
bin bounded state

4.6 Cancellation of Anomalies in the Standard Model

Following the discussion at the beginning of the Chapter 2, a strong motivation for the use
of gauge theories was the fact that they are renormalizable. It can be shown that when try-
ing to prove the renormalizability of the Electroweak Sector of the classical Standard Model
Lagrangian, LSM, one arrives at diagrams of the type of diagram (4.1). The amplitude of the
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Figure 4.1 Feynman Diagram

3-point function using Feynman rules on the sum of both diagrams in (4.1) is then:

T µνkabc (k1, k2) = −i
∫ d4p

(2π)4

Tr
 i

/p− /k2 −m

λ̂b
2 γ

ν i

/p−m

λ̂c
2 γ

λ i

/p+ /k1 −m

λ̂a
2 γ

λγ5



+

k1 ↔ k2
ν ↔ µ
b ↔ c



(4.68)

Where λ̂ are proportional to the four generators in the fundamental representation of SU(2)L×
U(1)Y . Explicitly they take the values:

λ̂i = σi, i = 1, 2, 3
λ̂4 = Y

(4.69)

Using the fact that in the Standard Model the fermions are massless before EWSB we have
m = 0. Then using symmetry properties we arrive at the formula:

T µνkabc (k1, k2) = 1
8Dabc

−i
∫ d4p

(2π)4 Tr
 i

/p− /k2
γν
i

/p
γλ

i

/p− /k1
γµγ5


 , (4.70)

where :
Dabc =

∑
f

Tr[λ̂a{λ̂b, λ̂c}]. (4.71)

The sum is over the chiral fermions of the Standard Model. When evaluating Eq.(4.70), one
finds that these kind of diagrams break the SU(2)L × U(1)Y symmetry. Such an effect is
called an ”anomaly ”. In order to keep the symmetry of SU(2)L × U(1)Y intact, one requires
that the term Dabc vanishes for all combinations of λ̂.
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Taking all λ̂ as the Pauli matrices we see that Dabc is null since the σ are traceless, in fact:

Tr[{σaσb}, σc] = 2δab Tr[σc] = 0 (4.72)

When we have one λ̂ as the hypercharge λ̂ = Y we have:

∑
f

Tr[{σa, σb}, Y ] = 2δab
∑
f

Tr[Y ] = 2δab

∑
f

Yf

 = 0 (4.73)

using the results of Table (4.1). When we have two λ̂ as the hypercharge we have:∑
f

Tr[{σa, Y }, Y ] =
∑
f

Tr[σa]Y 2
f = 0 (4.74)

using again the fact that Pauli matrices are traceless.
When we have all λ̂ as the hypercharge we have:

∑
f

Tr[{Y, Y }, Y ] =
∑
f

Y 3 = 3
(1

3

)3

+
(

1
3

)3
+ 2(−1)3 − 3

(
4
3

)3

− 3
(

−2
3

)3

− (−2)3 = 0

(4.75)

So we see that the Standard Model is anomaly free.

4.7 Problems of the Standard Model
At present time the Standard Model has been experimentally verified with incredible accuracy.
The last ingredient was the discovery of the Higgs boson. Despite the success, the SM has
some important problems. Let’s enumerate some of them:

4.7.1 Observational Problems
(a) Dark Matter and Dark Energy. The Planck mission team measured using the Standard

model of Cosmology, the total mass–energy of the known universe. It contains 4.9 %
ordinary matter, 26.8 % dark matter and 68.3 % dark energy. Dark matter corresponds to
matter with at most weak interactions. Dark energy can be interpreted as a cosmological
constant.

(b) Matter-Antimatter Asymmetry. Currently there is no consistent explanation for the
perceived excess of matter over antimatter . The Standard Model gives a possible ex-
planation, the asymmetry was created after the electroweak phase transition (100 GeV).
The SM satisfies Shakarov’s conditions for baryogenesis: it has processes that violate
B number (thought not at tree level), has plenty of C and CP violation (in the phases of
the CKM) and if it happened at the electroweak phase transition (EWPT) it is also out
of equilibrium. Nevertheless quantitatively, the results are not consistent with current
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measurements; there is not enough production of asymmetry. Mainly after EWPT the
asymmetry diminishes.

(c) Neutrino masses and mixing. One of the last remarkable experimental results in HEP
was the recent (1998-2002 ) measurement of oscillations between the different flavors
of neutrinos. This implies a non-zero neutrino mass, completely in disagreement with
the massless neutrino of the Standard Model.

(d) Anomalous Magnetic moment of the muon. The prediction of the factor 1
2(g − 2)

related to the Magnetic moment of the muon is in disagreement with the SM at the level
of ∼ 3σ.

4.7.2 Theoretical Problems
(a) The gauge hierarchy problem and Naturalness. Renormalizable Quantum Field The-

ories connect physical observables not to fundamental parameters i.e. parameters at tree
level, but to the renormalized version of them. Since the physical mass of the Higgs is
in the GeV scale, a problem happens when calculating the quantum corrections to the
Higgs mass. Using only the fields of the Standard Model we have a set of quadratically
divergent terms ∼ Λ2( after imposing a cutoff a lot larger than the EW scale) whose
sum must cancel in a very delicate way, such that the renormalized mass is in the order
of the fundamental mass. Without knowing any other mechanism except the ones of the
Standard Model the cancellation happens using a very strong fine tuning thus needing
explanation. In fact if assuming naturalness3 one would expect both Higgs mass and
radiative corrections to be at the same scale.This is related to the question of why there
exists this difference in scale between the Higgs mass and the scale of Λ (for exam-
ple, the Planck Scale, MPlanck ≈ 1019 GeV). This is referred as the gauge hierarchy
problem.

(b) Hypercharge quantization Since the quantization of the hypercharge implies quanti-
zation of Electric Charge we focus in the first one. In the SM we don’t have a clear
explanation in the choice of the hypercharge representations (i.e. hypercharge numbers
see Section(1.4) ) for the matter fields since in principle the spectrum of the generator
of the hypercharge is continuous because it is the generator of the Abelian U(1)Y group
of the GSM . On the other hand,if somehow the gauge group U(1)Y is embedded into
a larger semi-simple group we could obtain discrete eigenvalues 4 for the generator of
U(1)Y thus we would "quantize" the Hypercharge. From the formula Q̂ = Î3 + Ŷ

2 this
would imply the quantization of the Electric charge.

(c) Arbitrariness in the Fermion Representations and the "miracle" of anomaly can-
cellation. The fermion representations of the SM and their hypercharge numbers mirac-
ulously canceled the anomalies of the theory. Since the GSM is not a simple group there

3given a theory with a cutoff we expect all parameters of order O(1)
4Eigenvalues here means the entries of the matrix in the fundamental representation of the generator of

U(1)Y when embedded in the larger Group. See Chapter 5 for an example.
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it is not a clear recipe on how to select the representations of the fermions such that
anomalies cancel, contrary to the case of gauge theories using simple groups where
from the structure of the group we can find representations of combinations of them
where anomalies cancel.

(d) Gauge Unification. Reiterating, the gauge group of the Standard Model SU(3)c ×
SU(2)L × U(1)Y is not simple. A particular consequence is that each coupling corre-
sponding to each gauge subgroup is not clearly related to the other. This is what we see
at EW scale where we have three different values for the coupling but it is desirable that
they unify at a higher energy such that there is only one coupling related to a simple
Lie group. This will restrict the number of parameters and also solve the problem of the
gauge coupling divergence. Besides this, gauge unification will explain the quantiza-
tion of charge and provide a guide in the choosing of fermion representations such that
anomalies cancel.

(e) Flavor theory. Currently there is not a theory of flavour even when 13 of the 19 pa-
rameters correspond to flavor physics in the SM (Yukawa couplings, CKM mixing, CP
phase).

(f) Violation of strong CP. In principle QCD would violate CP but experimentally this has
never been measured. This implies that the value of ΘCP in g2

3ΘCP
64π2 ϵµνρσG

iµνGiρσ is very
small and not of order one. This is very unnatural and in the need of a more exhaustive
explanation.

(g) Quantum Gravity. The Standard Model does not include Gravitation for technical
reasons. In particular gravitation is not renormalizable

(h) Vacuum Stability. In the Higgs potential of the SM we had λ > 0 for stability but it
can be shown that a running of this parameter to higher energies can make it zero or
negative.



Chapter 5

Minimal SU(5) Grand Unification Model

For this chapter we have mainly used [40],[41] , [38] and [34]. For the Young diagram treat-
ment we used [42] and [4]. In this Section we use the following convention. For a Left
handed spinor ψL the spinor that results after applying the operator C of charge conjugation
is ĈψL = Cγ0PLψ

∗ = PRCγ
0ψ∗ = (ψc)R ≡ ψcR and viceversa.

5.1 Extensions of the Standard Model
As show in Section (4.7), the Standard Model is weak in many fronts. Correspondingly, there
have been a lot of extensions of it since the dawn of the model, even before it became "Stan-
dard" . One possible solution to solve some of the problems of the SM is Grand Unification.

The main idea of Grand Unification is to construct a Lagrangian with a gauge symme-
try given by a bigger compact1 group G that contains the Standard model group SU(3)c ×
SU(2)L×U(1)Y ⊂ G such that after at least one spontaneous symmetry breaking mechanism
( usually two or more) we arrive at the interactions of the Standard Model after Electroweak
Symmetry Breaking (EWSB) plus other possible new interactions. In this view, the specifica-
tion of the group is the first important choice. Since GSM is rank 4 group, in fact it is a simple
product of rank 2 SU(3), rank 1 SUL(2) and rank 1 UY (1), we require G is of at least rank 4.

We also need a groupG to have complex representations and not only real nor pseudoreal
representations. Remembering, a representation D(g) with g ∈ G is real if there exists a
transformation S such that:

SD(g)S−1 = D∗(g) (5.1)

with D∗(g) the conjugate representation. In principle, using real representations we can con-
struct a Majorana mass term for the Weyl spinor ψL 2:

LM = −1
2M(ψcRSψL + h.c.) = −1

2M(ψTLCSψL + h.c.) (5.2)

that is gauge invariant as can be seen using the transformation ψL → D(g)ψL, Eq.(5.1) and the

1We again reiterate that we need compact groups in order to have finite unitary representations
2technically it is a left handed Dirac Spinor but a field of this type is equivalente to a (1/2, 0) Weyl Spinor
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Table 5.1 Classical Groups

Group Rank Dimension Complex Rep.
SU(n) n− 1 n2 − 1 n ≥ 3
SO(2n) n n(2n− 1) n = 2l + 3, l ≥ 1

SO(2n+ 1) n n(2n+ 1) no
Sp(2n) n n(2n+ 1) no
G2 2 14 no
F4 4 52 no
E6 6 78 YES
R7 7 133 no
G2 8 248 no

fact thatD(g) is unitary. ExpandingD(g) in the generators we can show that S is symmetric or
antisymmetric. Since the fermions of the SM do not acquire mass until EWSB we need them
to be embedded in a chiral representations at the GUT scale. Even more, suppose we have a
chiral theory with ψL and ψR chiral components of a fermion. All left handed fields ψL and
ψcL live in the representation (usually reducible) DL and the right handed in the representation
DR = D∗

L. So in the the case the representation is real we have that both left and right handed
components transform in the same way thus the representation is not chiral, it is ”vectorlike”
implying that we necessarily need complex representations. For example in QCD we have
the reducible representation DL labeled as (3 ⊕ 3̄) and it is real, in fact DR = D∗

L = DL

consequently the theory is not chiral. Last fact limits the space of possible groups as can be
seen in the Table (5.1).

Another important requirement, though not restrictive, is to use a simple group. This is
done in order to have a single gauge coupling at the scale of grand unification, thus explaining
the origin of the coupling parameters of the Standard model. Summarizing, after requiring
rank ≥ 4, complex representations and simplicity of the group, from Table (5.1) we see that
the possible choices for a Grand Unification group are SU(n) for n ≥ 5, SO(4l+ 6) for l ≥ 1
and E6

3.
Historically the first model was grand unification in SU(5) [43] in 1974. This is the

probably the most simple GUT theory and will be the main topic of this chapter. All the other
simple GUTs contain this group as a subgroup. Contemporaneously, in 1974 Pati and Abdus
Salam [44] developed the eponymous model with gauge symmetry SUL(2)×SUR(2)×SU(4).
It is very important since it is a main subgroup of a larger GUT based on the SO(10) group
and would explain the V − A (chiral) structure of the interaction of the Standard model since
is left-right symmetric. This last model [45] was created in 1975.

3Table (5.1) should really be a Table of groups generated by semisimple Lie algebras since SO(k) does not
have complex representations. Instead is the group Spin(k) that has them though both have the same algebra.
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5.2 Fields of the Minimal SU(5)

As outlined in Section (3.2), after the choice of the Gauge group, we naturally need to add
dim(G) gauge vector bosons in order to construct covariant derivatives. In addition we need
to find adequate representations for the fermionic fields and for the scalar fields. Following
chapter 3, we can express the Yang Mills fields using Eq.(3.205) as : Wµ = W j

µiX
j
i with

i, j = 1, · · · , 5 with scalar product Tr[Xj
i , X

l
k] = δikδjl and with each gauge fields W j

µi

satisfying conditions (3.213) and (3.214). In this chapter we will use a different basis to
express the YM field. We will use the generalized Gell-Mann matrices λa (hermitian and
traceless) as generators such that the YM is expressed as Wµ = Aaµλ

a with a = 1, · · · , 24.
The scalar product now is:

Tr[λa, λb] = 2δab, a, b = 1, · · · , 24. (5.3)

and the gauge fields Aaµ are now real. This new choice representation of generators is chosen
since in this way the embedding of the generators of the SM SU(3)c × SU(2)L × U(1)Y is
explicit. Since SU(5) is a rank 4 group the Cartan subalgebra ( maximal abelian subalgebra)
is composed of λ3, λ8, λ21 and λ24. Explicitly.

λ3 =



1
−1

0
0

0

 , λ8 = 1√
3



1
1

−2
0

0

 , λ23 =



0
0

0
1

−1


(5.4)

λ24 = 1√
15



−2
−2

−2
3

3


(5.5)

We can see the correspondence between λ3 and λ8 with the two generators that generate the
Cartan subalgebra of SU(3)c and λ21 corresponding to the lone generator of the Cartan sub-
algebra of SU(2)L. Thus λ24 generates the hypercharge (in the fundamental representation):

Y = cλ24 (5.6)

with a constant that will be found later. This last result is important since it solves the problem
of quantization of the Electric charge since the spectrum of the hypercharge and consequently
the charge will take only discrete values. The complete set of generators are, using λG as the
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3 × 3 Gell-Mann matrices and using block matrices:

λi =
(
λGi

)
, i = 1, · · · 8 (5.7)

with the rest being

λ9 =



1 0
0 0
0 0

1 0 0
0 0 0

 λ10 =



i 0
0 0
0 0

i 0 0
0 0 0

 λ11 =



0 1
0 0
0 0

0 0 0
1 0 0

 (5.8)

λ12 =



0 i
0 0
0 0

0 0 0
i 0 0

 λ13 =



0 0
1 0
0 0

0 1 0
0 0 0

 λ14 =



0 0
i 0
0 0

0 i 0
0 0 0

 (5.9)

λ15 =



0 0
0 1
0 0

0 0 0
0 1 0

 λ16 =



0 0
0 i
0 0

0 0 0
0 i 0

 λ17 =



0 0
0 0
1 0

0 0 1
0 0 0


(5.10)

λ18 =



0 0
0 0
i 0

0 0 i
0 0 0

 λ19 =



0 0
0 0
0 1

0 0 0
0 0 1

 λ20 =



0 0
0 0
0 i

0 0 0
0 0 i


(5.11)

λ2a =
(

σa

)
, a = 1, 2, 3 (5.12)

and λ24 as above. The λi’s with i = 1, c . . . , 8 form the algebra of SU(3)c. The λi’s with
i = 21, 22, 23 form the algebra of SU(2)L.
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5.2.1 Construction of irreducible representations of SU(n) using the fun-
damental representation

The procedure of getting all possible tensorial irreducible representations for the SU(n) group
can be easily done using the Young tableaux. A Young tableaux is a tableaux made ofD boxes
arranged in R ≤ D rows such that the number of boxes in each row is non increasing. Explic-
itly, let {r1, · · · , rR} denote the number of boxes in each row of the tableux or equivalently a
non increasing partition of D. A Young tableaux have to satisfy:

R∑
i=1

ri = D r1 ≥ r2 ≥ · · · ≥ rR (5.13)

It can be shown [42] that each Young tableaux with D boxes in at most n rows corresponds
to an irreducible D-tensorial representation of SU(n). Using the general formalism for ten-
sors in SU(n) a general tensor K + K ′ tensor is written as ψ = ψ

j1···j′
K

i1···iK where lower indices
denote indices that transform under the fundamental and higher ones that transform under the
antifundamental. We can use Levi Civita’s to lower indices. Using Young tableau each box
correspond to an index of the tensor and we have that for two vertically aligned boxes we have
correspondingly two indices antisymmetric for them and for horizontal boxes we have indices
that are symmetric. The conjugate or not nature of the index will depend on how the tableux
is constructed.
The fundamental representation corresponds symbolically to a box, . Since the fundamental
SU(n) representation for n > 2 is complex we have also an antifundamental representation.
It’s Young tableaux is defined as the complementary tableaux (complement) of the fundamen-
tal. In general for a given Young tableaux to retrieve it’s complement we first fill the original
Young tableaux with boxes such that we get a rectangular Young tableaux of n rows and an
equal number of columns as the original Young tableaux. Then to the tableaux made of the
new boxes we rotate by 180 degrees and that is the conjugate tableaux of the original Young
tableaux For example fixing n = 5 for the complement of , defined symbolically as ¯, we
use the Young tableaux:

(5.14)

and so the Young Tableaux of ¯ is:

. (5.15)

Another example, for n = 4:

→ (5.16)
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Since the n column Young diagram correspond to a singlet in SU(n) it is sufficient to use
n− 1 indices to label unambiguously any representation of SU(n). One parametrization is as:

[r1 − rn, r2 − rn, · · · , rn−1 − rn] (5.17)

in this way if taking a full n-row row we see that it is not a representation of SU(n) since it’s
labeling is made of zero entries thus a singlet. The number of labels n− 1 corresponds to the
number of Casimirs of SU(n) or equivalently the rank of the Group.

Dimension of the the Young Tableaux

To know the irrep that each diagram corresponds to we need to calculate its dimension. To
calculate the dimension of an arbitrary representation of SU(n) we do as follows. Suppose
we have the tableaux:

(5.18)

and we want to calculate it’s dimension. First fill the tableaux inserting n on the leftmost
element of the first row and then inserting n + 1 to the right to it and so on. Then, in the
second row, start with n − 1 in the leftmost elements and so on. For example, for the empty
tableaux above.

n n+1 n+2

n−1 n

n−2

(5.19)

Now multiply all the entries to get a number A. Next construct a similar tableau and fill each
box with the number of boxes directly below and directly to the right of the box plus one. This
is called the Hook Lenght of the box. We then have the following Young’s Diagram:

5 3 1
3 1
1

(5.20)

Multiplying all entries we get the number B. Then the dimension is shown to be:

d = A

B
(5.21)

We give a more explicit formula. The dimension of the representation [λ1, · · · , λn−1] for
SU(n) is:

dim[λ] =
∏
i

mi

gi

∏
i<j

(
mi −mj

gi − gj

)
i, j = 1, · · ·n− 1 (5.22)

where
gi = n− i; mi = gi + ri (5.23)
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Usually we use the dimension of the irrep as the symbol to denote the irrep. For example
for the fundamental rep. of SU(5) we have 5. To the denote conjugate representations we
use a bar as 5̄. A Young tableaux made of only vertical boxes is antisymmetric irreps, with
each box indicating A totally antisymmetric representation of SU(n) is equivalently labelled
using [m] with m denoting the number of rows of the Young Diagram. When dealing with full
antisymmetric representations the formula (5.22) can easily be seen to reduce into:

dim[m] = n!
m!(n−m)! (5.24)

Multiplication of tableauxs

Let n be the dimension of SU(n). We give some examples of irreps and the corresponding
labeling in SU(5) in Table(5.2). Note that in general the conjugate representation has the same
dimensionality as the original one. Ths can be deduced from the general formula.

We can multiply two irreps to get new irreducible representations. To do this correctly
we use a simple algorithm, for example for the product in SU(n):

⊗ (5.25)

We start labeling each box of the second tableaux with the number of the corresponding row:

⊗ 1
2 (5.26)

Then multiply each box of the second tableaux, starting from the rightmost box of the first
row. The restrictions on the new Young diagram besides being a proper one for SU(n) (satisfy
condition (5.13), at most n− 1 vertical boxes) are such that:

(a) For each row, the number on the boxes originating from the second diagram must not
decrease from left to right.

1
1 2 2

(5.27)

is valid but
1

2 1 2
(5.28)

it is not since the 2 is before 1 in the same row.

(b) For each column the number on the boxes originating from the second diagram must
increase from top to bottom.

1

1
2

(5.29)
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Young Tableaux Dimension in SU(n) Labeling in SU(5) Tensor rep.
n 5 ψi1

n 5̄ ψi1

n(n−1)
2 10 ψi1i2

n(n−1)
2 1̄0 ψi1i2

n(n+1)
2 15 ψi1i2

n(n+1)
2 1̄5 ψi1i2

n2 − 1 24 ψj1i1

(n+1)n(n−1)(n−2)
8 45 ψj1i1i2

(n+1)n(n−1)(n−2)
8 4̄5 ψi1i2j1

(n+1)2(n−1)n
12 50 ψi1i2

(n+1)n(n−1)(n−2)
8 5̄0 ψi1i2

(n+1)n(n−1)
6 20 ψi1i2i3

Table 5.2 Tableaux of different irreps
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is valud but
1

2
1

(5.30)

is not

(c) Counting labeled boxes starting from the upper right box of the new diagram, the num-
ber of boxes labeled by amust never be more than the ones labeled by the number a−1.

1
1 2
2
1

(5.31)

is valid but
1

2 2
2
1

(5.32)

it is not since the second 2 apperars before the second 1.

We give an example using Eq.(5.26)

⊗ 1
2 =

 1 ⊕
1

⊕

1

⊗ 2 = 1
2

⊕ 1

2

⊕
1

2

⊕

1
2

(5.33)

Thus:
⊗ = ⊕ ⊕ ⊕ (5.34)

where each resultant Young Tableaux can or cannot be a representation of SU(n). This will
depend on n. For example for SU(2) we at most can have 2 rows thus some diagrams are not
valid so the decomposition is just:

⊗ = (5.35)
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Examples with SU(5)

On the other hand for n = 5 the decomposition is exactly as in Eq.(5.34).
We retrieve some general decompositions for SU(n) the correspondent representations

can be seen from Table(5.2) and the last result in SU(5):

⊗ = ⊕ = 10 ⊕ 15 (5.36)

⊗ = ⊕ = 20 ⊕ 1̄0 (5.37)

⊗ = ( )c ⊗ ( )c =
( )c

⊕

 c = 1̄0 ⊕ 1̄5 (5.38)

( )c⊗ = ⊗ = 1 ⊗ 2 = 1
2

⊕ 1

2

= ⊕ =



c

⊕ = 4̄5⊕5

(5.39)

× =

 1 ⊕

1

⊗ 2 = 1
2

⊕ 1

2

⊕

1
2

= 50 ⊕ 45 ⊕ 5̄ (5.40)

In addition to retrieve the adjoint representation we have:

⊗
( )c

= 1 + dim(SU(n)) (5.41)

If there are subgroups of SU(m) embedded in a larger SU(n) we can see the branching rules.
For the fundamental rep. of SU(5)

5 = ( 3, 12) ⊕ (13, 2) (5.42)

and, since SU(2) is pseudoreal for the antifundamental:

¯
5 = ( ¯

3, 12) ⊕ (13, 2) (5.43)
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To get the decomposition of 24 we use the Young multiplication procedure:

5 ⊗ 5̄ =
(
(1,2)(+1) ⊕ (3,1)(−2/3)

)
⊗
(
(1,2)(−1) ⊕ (3̄,1)(+2/3)

)
=
(
(1,2)(+1) ⊗ (1,2)(−1)

)
⊕
(
(1,2)(+1) ⊗ (3̄,1)(+2/3)

)
⊕
(
(3,1)(−2/3) ⊗ (1,2)(−1)

)
⊕
(
3,1)(−2/3) ⊗ (3̄,1)(+2/3)

)
=(1,2 ⊗ 2)(0) ⊕ (3̄,2)(+5/3) ⊕ (3,2)(−5/3) ⊕ (3 ⊗ 3̄,1)(0)

=(1,1)(0) ⊕ (1,3)(0) ⊕ (8,1)(0) ⊕ (3̄,2)(+5/3) ⊕ (3,2)(−5/3)
(5.44)

5.2.2 Fermion Representations

Fields in Left chirality Representation
Spinor Fields

QL :=
(
uL
dL

)
(3,2, 1

3 )

LL :=
(
νL
eL

)
(1,2,−1)

ucL (3̄,1,−4
3)

dcL (3̄,1,+2
3 )

e+
L (1,1,+2)

Table 5.3 The SM field for one generation classified with respect to the symmetry group
GSM = SU(3) × SU(2) × UY (1) in Left Chirality

As seen before all possible irreducible representation of SU(n) for n ≥ 3 are constructed
from the tensor products of the fundamental representation and the antifundamental repre-
sentation ¯. This is a consequence of the complexity of representations. From the explicit
algebra of generators of SU(5) we see that su(3) ⊕ su(2) ⊂ su(5) thus the fundamental irrep.
of SU(5) is decomposed as:

5 = ( 3, 12) ⊕ (13, 2) (5.45)

Using the tensorial product we arrive at the braching rules of Table (5.4).
Now we want to embed the first generation of the SM fermionic fields into a representa-

tion(s) of SU(5).
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Table 5.4 Branching Rules for SU(5) → SU(3)c × SU(2)L × U(1)Y

5 (1,2)(+1) ⊕ (3,1)(−2/3)

5̄ (1,2)(−1) ⊕ (3̄,1)(+2/3)

10 (1,1)(+2) ⊕ (3̄,1)(−4/3) ⊕ (3,2)(+1/3)

15 (1,3)(2) ⊕ (3,2)(1/3) ⊕ (6,1)(−4/3)

24 (1,1)(0) ⊕ (1,3)(0) ⊕ (8,1)(0) ⊕ (3,2)(−5/3) ⊕ (3̄,2)(5/3)

45 (1,2)(1) ⊕ (3,1)(−2/3) ⊕ (3,3)(−2/3) ⊕ (3̄,1)(8/3) ⊕ (3̄,2)(−7/3)
⊕(6̄,1)(−2/3) ⊕ (8,2)(1)

50 (1,1)(−4) ⊕ (3,1)(−2/3) ⊕ (3̄,2)(−7/3) ⊕ (6,3)(−2/3)
⊕(6,1)(8/3) ⊕ (8,2)(1)

A first restriction is that they cannot possible be other than totally antisymmetric representa-
tions otherwise we include new fermions not belonging to the standard model. For example
for the 15 representation we have a sextet of quarks 6 = 3. Then the only possible repre-
sentations are the K totally antisymmetric tensors denoted by [K].

Fermions are a collection of 15 Weyl spinors so if we want to embed them into a single
representation we need at least one with 15 complex dimension. There are not totally anti-
symmetric reps of SU(5) with this dimensions so we can’t use just one representation, need at
least two. Since the combinations of representations of the type [K] + [n − K] are real (thus
fermions are vectorlike) we can’t use representations of these types.

Nevertheless, the most important restriction is to select fermion representations such that
anomalies cancel. 4 For a [K] representation we have that the normalized anomaly contribu-
tion is:

A([m]) = (n− 2)!(n− 2m)
(n−m− 1)!(n− 1)! = −A([n−m]) (5.46)

Since we only can have five different totally antisymmetric representations the only combina-

tion for SU(5) that cancel anomalies is: [2] + [4] or equivalently, since [4] = = ¯ = 5̄,

5̄ + 10. In order to see which fields compose the SU(5) field in the 5̄, denoted as 5cF , we
start from its branching rule, 5̄ = (3̄,1) ⊕ (1, 2̄), and see that is composed of a multiplet
that is color antitriplet in SU(3)c and singlet in the SU(2)L and another one that is an anti-
doublet in SU(2) and singlet in SU(3). The color antitriplet can be filled, without knowing
the hypercharge of 5cF , with ucL or dcL implying that the chiral field 5cF has to be left handed.
On the other hand, since the fundamental representation of SU(2) is pseudoreal then 2 and 2̄
are equivalent implying that the antidoublet SU(2)L can only be filled with the fields of LL,

4In fact we could just imposed anomaly cancellation to retrieve 5f and 10F as the fermion fields.
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and not its charge conjugated, since have to be left handed. Although we know there are the
leptons of LL we still don’t know the order of them in 5cF .

Thus we need to find which quark antitriplet belongs to 5cF and the position of the lep-
tons. First, since 5cF transforms as an antifundamental we need to know the generators in the
antifundamental representation. Denoting λ as the generator in the fundamental representation
and λ̄ in the antifundamental using the fact that for a field in the antifundamental we have

Ūψ = eiλ̄ψ ≡ U∗ψ = e−iλ∗
ψ (5.47)

but λ is hermitian so we have:
λ̄ = −λT (5.48)

Using last equation we see the order of the leptons of 5cF . Since the charge operator is defined
as:

Q̂ = Î3 + Ŷ

2 (5.49)

since Î in the fundamental is the generator λ23 we have for the doublet of 5cF , using Eq.(5.48)
that it has the value of:

Î

(
l1
l2

)
=
(

−1
2 0

0 +1
2

)(
l1
l2

)
(5.50)

then using Eq.(5.49) on 5cF knowing that the value of the hypercharge is −1 we obtain:

Q

(
l1
l2

)
=
(

−1 0
0 0

)(
l1
l2

)
(5.51)

Thus 5:

5cF =



qc1L
qc2L
qc3L
e−

−ν

 (5.52)

To find the hypercharge of the quarks of 5cF we need to the constant c from Eq.(5.6). We have:

−cλT245cF = −cλ245cF = Y 5cF (5.53)

5there is an ambiguity on the sign of ν
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Explicitly:

−cλ245cF = c√
15



−2
−2

−2
3

3





qc1L
qc2L
q3L
e−

−ν

 =



Yq
Yq

Yq
YL

YL





qc1L
qc2L
q3L
e−

−ν

 (5.54)

From the value of the hypercharge of the doublet YL = −1 we have that c =
√

5
3 . Thus

Yq = +2
3 so qcL = dcL. The result is:

5cF =



dc1L
dc2L
dc3L
e−

−ν

 (5.55)

We will use greek symbols to denote 1, 2, 3 and latin symbols to index 4, 5.
The decomposition of the 10 representation under SU(3)c × SU(2)L is:

10 = (1,1) ⊕ (3̄,1) ⊕ (3,2) (5.56)

Then the rest of the fermions are contained in the 10 representation :

10F = 1√
2



0 uc3L −uc2L u1L d1L
−uc3L 0 uC1L u2L d2L
uc2L −uC3L 0 u3L d3L

−u1L −u2L −u3L 0 e+
L

−d1L −d2L −d3L −e+
L 0

 (5.57)

X̂ is an arbitrary operator. For an antisymmetric tensor we have:

[X̂ψ]ij = Xi +Xj (5.58)

and for an adjoint:
[Q̂ψ]ji = Xi −Xj (5.59)

In this way we complete the branching rules Table using Ŷ . Using Q̂ we have:

Q̂10F = 1√
2



−2/3 −2/3 −2/3 2/3 −1/3
−2/3 −2/3 −2/3 2/3 −1/3
−2/3 −2/3 −2/3 2/3 −1/3
2/3 2/3 2/3 2 1

−1/3 −1/3 −1/3 1 0

 (5.60)
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5.2.3 Gauge Bosons

The SU(5) Adjoint representation (5 ⊗ 5̄ = 24 ⊕ 1) decomposes under SU(3)c ×SU(2)L as:

24 = (8,1) ⊕ (1,3) ⊕ (1,1) ⊕ (3,2) ⊕ (3̄, 2̄) (5.61)

where (8,1) is the adjoint representation of SU(3), (1,3) the adjoint representation of SU(2)
and the (1,1) as a singlet under SU(3)c×SU(2)L. The new gauge fields will live in the (3,2)
and (3̄, 2̄). The Yang-Mills field Aµ = 1

2λ
aAaµ after the correspondent redefintion of fields as

in the SM is:

Aµ = 1√
2


1√
2
∑8
a=1 G

a
µλ

a

X1µ Y1µ
X2µ Y2µ
X3µ Y3µ

Xc
1µ Xc

2µ Xc
3µ

Y c
1µ Y c

2µ Y c
3µ

W 3
µ√
2 W+

µ

W−
µ

W 3
µ√
2


+ Bµ

2
√

15



−2
−2

−2
3

3

 (5.62)

Or compactly:

Aµ = 1√
2

(
[Gµ8]βα [Xµ]aα
[X†

µ]αa [Wµ3]ba

)
+ 1

2Bµλ24 (5.63)

We also have:

Q̂Aµ =



0 0 0 −4/3 −1/3
0 0 0 −4/3 −1/3
0 0 0 −4/3 −1/3

4/3 4/3 4/3 0 1
−1/3 −1/3 −1/3 −1 0

 (5.64)

5.2.4 Scalar Representations

Using the results of Section 3 we see that we need at least two scalars to arrive to the low
energy symmetry U(1)Q. The first scalar Σ in the adjoint representation will give us the
symmetry breaking pattern SU(5) → SU(3)c × SU(2)L × U(1)Y .

Σ = 1√
2

[Σ8]βα − 2√
30Σ0 [ΣX ]aα

[Σ†
X ]αa [Σ3]ba + 3√

30Σ0

 (5.65)

The second scalar has to gives us the the electroweak symmetry breaking. To satisfy this it
needs to contain the Standard Model Higgs field. The minimal representation that contains it,
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is again the vector representation of SU(5), 1.

φ =



T1
T1
T1
H1
H2

 =
(
Tα
Ha

)
, α = 1, 2, 3. a = 4, 5. (5.66)

5.2.5 Calculation of the Weinberg Angle

Expressing the coupling of the hypercharge as in the SM, that is with the coupling g′, we have
that :

1
2g5λ24Bµ = 1

2g
′Y Bµ (5.67)

Since cλ24 = Y we arrive at g′ =
√

3
5g5 . From the other components we have that the SU(2)L

is equal to g = g5 so the Weinberg angle at grand unification scale (µ > MGUT) is:

sin2 θW = g2

g′2 + g2 = 3
8 (5.68)

To arrive at testable experimental values at the EW scale we need to use the renormalization
group equations.The result is:

sin θ2
W = 0.208 (5.69)

in discordance with the result of the SM of sin θ2
W = 0.23120 ± 0.00015.

5.3 SU(5) Lagrangian

The complete Lagrangian is composed of:

L = LB + Lf + LH + LY (5.70)

where the kinetic term of the gauge bosons is:

LB = −1
4A

a
µνA

aµν , a = 1, · · · , 24 (5.71)

with
Aaµν = ∂µA

a
ν − ∂νA

a
µ + g5fabcA

b
µA

c
ν , a, b, c = 1, · · · , 24 (5.72)

where fabc is the structure constant of the Lie Algebra of SU(5).
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The fermionic Lagrangian (implying scalar product on generation space) is:

Lf =i5̄cLγµDµ5cF + iTr[10FγµDµ10F ]

=i5̄cL(γµ∂µ − iAaµ
1
2γ

µλ̄a)5cF + iTr[1̄0F (γµ∂µ10F − iγµAaµ
λa

2 10F − iγµAaµ10F
(λa)T

2 ]

=i5̄cF /∂5cF + 1
2iTr[1̄0F /∂10F ] − 5̄cFγµAaµ

(λa)T
2 5cF + Tr[1̄0FγµAaµλa10F ]

(5.73)

where we used λ̄a

2 as the antifundamental generators of SU(5) and the antisymmetry propriety
of 10.

We impose parity in the scalar Lagrangian h for practical reasons:

Lh = 1
2 Tr[(DµΣ)†DµΣ] + 1

2(Dµφ)†Dµφ− V (Σ, φ) (5.74)

with

V (Σ, φ) =V (Σ) + V (φ) + λ4

4 Tr[Σ2](φ†φ) + λ5

4 (φ†Σ2φ) (5.75)

V (Σ) = − m2
1

2 (Tr[Σ2]) + λ1

4 (Tr[Σ2])2 + λ2

4 Tr[Σ4] (5.76)

V (φ) = − m2
2

2 (φ†φ) + λ3

4 (φ†φ)2 (5.77)

The Yukawa Lagrangian (as will be retrieve in Section (5.5)) is:

LY = 5cFY510Fφ∗ + 1
8ϵ510FY1010Fφ (5.78)

which contain the Yukawa terms that gives masses to the fermions at EW scale.
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Fermionic Interactions

Expanding the covariant derivatives from Lf we have new interactions at GUT scale:

Lintf = g5√
2
(
ūαi γ

µ[Gµ8]βαuiβ + d̄αi γ
µ[Gµ8]βαdiβ

)
+ g5√

2
(
Q̄a
iLγ

µ[Wµ3]baQiLb + L̄aiLγ
µ[Wµ3]baLLb

)

+
√

3
5
g5

2

− L̄iLγ
µBµLiL − 2ē+

iLγ
µBµe

+
iL + 1

3Q̄Liγ
µBµQiL

+ 4
3 ūiRγ

µBµUiR − 2
3 d̄iRγ

µBµdiR


− g5√

2
ϵabL̄

b
Lγ

µ[Xµ]aα[dciL]α + g5√
2
ϵαβγūciLγγ

µ[Xµ]aαQiLβa + g5√
2
Q̄αb
iLγ

µ[Xµ]aαϵabe+
iL + h.c.

(5.79)

Note that there are new interactions mediated by the gauge boson X that violate B baryon and
leptonic numbers but preserve B − L symmetry.

We can retrieve an order of magnitude for the GUT scale MX . An amplitude for the
decay of the proton viable from the last term of the full fermionic interacions (5.79) is:

Γ(p → π0e+) ≈
m5
p

M4
X

(5.80)

Since the actual constraints on proton decay are of the order of ≈ 1034 years we obtain MX ≥
1016 GeV.

5.4 Spontaneous symmetry breaking of SU(5)
To retrieve the vev of the potential (5.75) we can use two approaches. The first one is assuming
a priori the existence of two mass scales, the EW scale MW and the very much large GUT
mass scale MX , introducing the hierarchy MW ≪ MX . One can have an approximate order
of magnitude using the Renormalization Group Equation (RGE) on each of the couplings of
SU(3)c, SU(2)L and U(1)Y independently. In this case we can assume a two step breaking
mechanism. The first breaking will be of the potential V (Σ) from Eq.(5.76) and after that we
will retrieve the Standard Model Higgs potential after assuming certain conditions. The other,
more direct procedure, is retrieving the vev of the full potential V (Σ, φ) as done in [46]. We
will not use this approach though the results, as for example when retrieving the masses of the
different vector and scalar bosons, go like MW

MX
, thus essentially irrelevant for calculations but

not so much for the conceptual understanding.
The first stage of the breaking corresponds finding the vev ⟨Σ⟩ of V (Σ, φ) with φ = 0

(note that we just take the field as the null vector we don’t minimize the potential in any form
for φ) that is just the vev of the potential V (Σ) of Eq.(5.76). Following Section (3.4.5) if
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(λ1 > 0, λ2 > 0) and 30λ1 + 7λ2 > 0 the pattern of symmetry breaking is:

SU(5) → SU(3)c × SU(2)L × U(1)Y . (5.81)

The vev of Eq.(5.76) is retrieved from the general formula Eq.(3.361) with Eq.(3.179) for
n1 = 3, n2 = 2 and:

⟨φ1⟩2 = 4m2
1

30λ1 + 7λ2
≡ 4V 2 (5.82)

thus:

⟨Σ⟩ = ⟨φ1⟩



1
1

1
−3

2
−3

2

 = V



2
2

2
−3

−3

 (5.83)

To see the bosons that acquire mass we use Eq. (3.366). From the expression of the gauge
fields we have the relation W a

α = 1√
2X

a
α then the gauge mass term is:

LM = g2(φ1 − φ2)2 1
2X

a
µαX

∗µa
α = 25

2 V
2g2Xa

µαX
∗µa
α (5.84)

So the mass of the six X (12 real fields) bosons is MX =
√

25
2 gV . From the potential V (Σ)

we retrieve the masses of the components of Σ:

V (⟨Σ⟩ + Σ) = −m2
1

2 Tr[(⟨Σ⟩ + Σ)2] + λ1

4 (Tr[(⟨Σ⟩ + Σ)2])2 + λ2

4 Tr[(⟨Σ⟩ + Σ)4] (5.85)

arriving at the results in Table (5.5).
The φ scalar also develops a mass after SSB at grand unification scale:

V (φ) = − m2
2

2 (φ†φ) + λ3

4 (φ†φ)2 + λ4

4 Tr[⟨Σ⟩2](φ†φ) + λ5

4 (φ† ⟨Σ⟩2 φ). (5.86)

restricting to second order in φ we have:

Vquadratic = − m2
2

2 (T †T +H†H) + 30
4 λ4V

2(T †T +H†H) + λ5

4 V
2(4T †T + 9H†H)

=1
2
(
−m2

2 + 15λ4V
2 + 2λ5V

2
)
T †T + 1

2

(
−m2

2 + 15λ4V
2 + 9

2λ5V
2
)
H†H

=1
2m

2
TT

†T + 1
2m

2
HH

†H.

(5.87)
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Scalar Fields SU(3)c × SU(2)L Mass
quantum numbers after separate breaking

[Σ8]βα (8,1) 5λ2V
2

[Σ3]ba (1,3) 20λ2V
2

Σ0 (1,1) m2
1

[ΣX ]aα (3,2) 0
Tα (3,1) −m2

2 + (15λ4 + 2λ5)V 2

Ha (1, 2) −m2
2 + (15λ4 + 9

2λ5)V 2

Table 5.5 Masses of the Scalar Bosons

In principle after SSB at GUT scale all masses in Table (5.5) would be expected to be of
the order of the GUT scale if the SSB is done contemporaneously. This is not the case for us,
since at the beginning of the Section we have imposed the hierarchy MW ≪ MX implying
that the Goldstone Bosons of the SM are absorbed only by the Higgs similar to the one of the
SM that is H . In consequence it will have a mass MH of the order MW but from seeing how
the analytical form of MH is we see that this requirement can be satisfied only at the expense
of Large Fine Tuning O

(
MW

MX

)
= 10−12. For the triplet with mass MT we don’t have this

requirement. This discordance is the doublet-triplet splitting. Even more it is not known if
the triplet T satisfies the Appelquist-Carazzone theorem [47] since in principle could interact
with SM particles. We can get a boundary condition for MT from the couplings at the Yukawa
sector that produce the proton decay. Using the values of the diagonalized Yukawas of the
SM, [Y u

D ]11 and [Y d
D]11, we obtain:

[Y u
D ]11[Y d

D]11

M2
T

≤ 1
M2

X

(5.88)

that imply MT ≥ 1012 GeV and lessening the fine tuning requirement for the Doublet-Triplet
splitting to O

(
MW

MT

)
= 1010.

Then, at EW scale we get the effective potential.

Veff = m2
H

2 H†H + λ3

4 (H†H)2 (5.89)

that is the Standard Model Higgs potential and the vev is retrieved in the usual way. Summa-
rizing the SSB pattern is:

SU(5) → SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)Q (5.90)
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5.5 Yukawa sector and fermion masses

The combination of fermions we can have for a possible Yukawa coupling and the correspond-
ing representation of the product is:

5cF TC5cF → 5̄ ⊗ 5̄ = 1̄0 ⊕ 1̄5
5cF TC10F → 5̄ ⊗ 10 = 5 ⊕ 4̄5
10TFC10F → 10 ⊗ 10 = 5̄ ⊕ 45 ⊕ 50

This shows that the 24 scalar boson cannot couple to the fermions fields via a Yukawa cou-
pling thus the fermions remain massless after SSB at grand unification scale. The Yukawa
Lagrangian is then as in Eq. (5.5), only with the 5 scalar: 6

LY = 1√
2

(5cF )xiaCxy(Y5)ij(10F )yabj (φ∗)b + 1
8
√

2
ϵabcde(10F )abxi Cxy(Y10)ij(10F )cdyj φe + h.c.

(5.91)
From the first term we get:

1√
2

5cFY510Fφ∗ =dcY5Qφ
∗ + LY5e

cφ∗ + dcY5ϵ3u
cT ∗ + Lϵ2Y5Q

TT ∗ + h.c.

=dcY5Qφ
∗ + ecY T

5 Lφ
∗ + dcY5ϵ3u

cT ∗ + Lϵ2Y5Q
TT ∗ + h.c.

(5.92)

Thus the traspose of the Yukawa matrix for down quarks is the Yukawa matrix for leptons:

YD = Y T
L (5.93)

This implies equal masses of leptons and down quarks at GUT scale. Since leptons and quarks
evolve differently, we can use the RGE to see the ratio of masses at EW scale. At scale µ = 10
GeV it is:

md

me

= 3.5 (5.94)

Implying a mass of md = 1.6 MeV, different from the measured value in (4.22). From the
second term we retrieve:

1
2

1√
2
uc(Y10 + Y T

10)QH + h.c. = 1
2

1√
2
ucYUQH (5.95)

that implies a symmetric up quark mass Yukawa matrix:

YU = Y T
U (5.96)

Note that Eq.(5.92) implies fermions-T interactions that violate Baryon and leptonic quantum
numbers.

6using mass proportional to ψT
LCψ

′
L. The indices i, j denote family indices, the ab SU(5) indices and x, y

Lorentz
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5.6 Problems of the minimal SU(5) model
(a) No Unification It can be shown using RGE starting from EW with corrections induced

by the minimal SU(5) that the couplings of the SM do not converge at GUT scale.

(b) Gauge hierarchy problem. Doublet-Triplet splitting After the introduction of a new
mass scale MGUT, we see that we need to fine tune the values of many observables
and explain the existence of a scalar with two different mass scales (Doublet-Triplet
splitting).

(c) No Flavor theory. Although we have constrained some parameters on the Minimal
SU(5), (YL = YL, YU = Y T

U ) there is still not an explanation for the existence of three
generations. To deal with this in the context of GUT theries we need larger gauge groups
or horizontal symmetries.

(d) No Neutrino mass. We need to introduce a right handed neutrino in order to construct
a Yukawa coupling analogous to the PMNS matrix. In the minimal SU(5) model this
cannot be done using only the 5 and 10 irreps thus we need at least to introduce a right
handed singlet.

(e) Wrong Charged Lepton Mass. The results YD = Y T
L is wrong. A possible new scalar

that modifies this relationship can be seen in Eq.(5.5).

(f) Too fast proton decay. The initial Georgi-Glashow model, the one we have used in this
chapter, predicted a lifetime of the proton of τP ≈ 1031 [48]years for Mx ≈ 1014 GeV.
This was disproved very soon for example at the Kamiokande experiment (1989) that
gave τP ≥ 2.6 × 1032 years.

(g) Magnetic Monopoles Following hypercharge quantization, the minimal SU(5) pre-
dicted heavy (order ≈ MX) magnetic monopoles that have been falsified by the MACRO
experiment (2011).
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