

ANEXOS

ANEXO A: Cálculo analítico del ángulo de giro del piñón a partir de la posición de engrane.

La generación del modelo geométrico de la pareja de engrane a simular, en el algoritmo automatizado, requiere como entrada el ángulo de giro del piñón, donde dicho ángulo se determina a partir de la posición de engrane. El procedimiento realizado para la obtención del ángulo en cuestión se plasma en las siguientes líneas.

A.1. Ángulo de contacto global.

El ángulo de contacto global (θ_2) representa el ángulo comprendido desde la línea de centros de los engranajes hasta la posición de contacto. En la Figura A-1, se observa una relación entre la posición de contacto (1) y la posición x_{le_max} a partir de la posición de engrane (p_{eng}), como se muestra en la ecuación (A 1.1).

$$(x_{le_max} - x_1)^2 + (y_{le_max} - y_1)^2 = (p_{eng})^2$$
 (A 1.1)

Debido a que el lugar geométrico de todos los puntos en contacto de la pareja de engrane es una recta de pendiente $m = -\tan(\alpha'_t)$ y $b = d'_1/2$, la ecuación anterior se reduce a la expresión (A 1.2). Para luego, a partir de esta última obtener la posición del punto de contacto como se muestra en la ecuación (A 1.3).

$$(x_{le_max} - x_1)^2 + (m \cdot x_{le_max} + b - m \cdot x_1 - b)^2 = (p_{eng})^2$$
 (A 1.2)

$$x_1 = x_{le_max} - \sqrt{\frac{p_{eng}^2}{m^2 + 1}}$$
(A 1.3)

Finalmente, el ángulo de contacto global se obtiene con la posición del punto de contacto mostrado en la ecuación (A 1.3). La expresión (A 1.4) representa al ángulo de contacto global para cualquier punto sobre la línea de engrane.

Figura A-1: Esquema del ángulo de contacto global

A.2. Ángulo de contacto del diente.

El ángulo de contacto del diente (θ_3) representa al ángulo comprendido entre el eje de simetría del diente y la posición de contacto. De la Figura A-2, se deduce la expresión analítica (A 1.5) que representa al ángulo en cuestión.

$$\theta_3 = \frac{e}{d} + inv(\alpha_t) - inv(\theta); donde \ e = \frac{m}{\cos\beta} \left(\frac{\pi}{2} + 2 \cdot x \cdot \tan\alpha\right)$$
(A 1.5)

Además, se conocen las relaciones (A 1.6), (A 1.7) y (A 1.8), las cuales permiten resolver la ecuación (A 1.5).

$$\theta_2 + \theta = \alpha'_t \rightarrow \theta = \alpha'_t - \theta_2$$
 (A 1.6)

$$inv(\alpha_t) = \tan(\alpha_t) - \alpha_t$$
 (A 1.7)

$$inv(\theta) = \tan(\theta) - \theta$$
 (A 1.8)

Luego de determinar el ángulo de contacto del diente se pasa a calcular el ángulo de giro del piñón (ϕ), el cual se obtiene a partir de la suma del ángulo de contacto global y el ángulo de contacto del diente como se muestra en la ecuación (A 1.9). Es importante mencionar que para efectos de la macro se debe anteponer un signo negativo al resultado alcanzado en el ángulo del piñón, pues el algoritmo aumatizado entiende como negativo a cualquier ángulo anterior al eje de coordenadas "y"; y al tener el piñón, en nuestro caso, un sentido de giro antihorario, el inicio del contacto se da efectivamente en un ángulo anterior al eje de coordenadas "y".

$$\phi = -(\theta_3 + \theta_2) \tag{A 1.9}$$

ANEXO B: Elaboración de las curvas a partir de la simulación de múltiples variantes.

La simulación de múltiples variantes fue realizada con el único objetivo en mente de elaborar curvas que permitan obtener el factor geométrico unificado de forma directa a partir de las mismas. Dicho esto, para efectos de compresión del origen de las curvas entregadas en la tesis, se describen, en las siguientes líneas, las consideraciones tomadas, así como, el cálculo analítico.

B.1. Consideraciones generales.

En un inicio, debido a que no se tenía una idea clara de como iban a ser conformadas las curvas, se intentó construirlas en un solo gráfico a partir de las 5 variables que caracteriza a cada pareja de engrane, las cuales son mostradas en la Tabla B-1. Sin embargo, esta idea resultó inviable, pues el comportamiento de las mismas no presentaba tendencia alguna solo una conducta aleatoria. Seguidamente, se pensó varias posibilidades para plotear los factores unificados, en un diagrama, a partir de una porción de las variables en cuestión, obteniendo un comportamiento adecuado cuando el número de dientes del engranaje, en el eje horizontal de la parte superior; y el factor geométrico unificado, en el eje vertical como se muestra en la Figura B-1. Es importante mencionar que el factor geométrico unificado se esboza, en la gráfica, sobre la línea que une al número de dientes del piñón con el número de dientes del engranaje, además, cada curva esquematizada representa un valor de ángulo de hélice. Finalmente, solo comentar que la gamma de curvas fue realizada para los factores de corrección 0, 0.25 y 0.50.

	Variables características					
z_1 Número de dientes del piñón.						
<i>z</i> ₂ Número de dientes del engranaje.						
<i>x</i> ₁	Factor de corrección del piñón.					
<i>x</i> ₂	Factor de corrección del engranaje.					
$\beta(^{\circ})$	Ángulo de hélice.					

Tabla B-1: Variables características de cada pareja de engrane

v

Figura B-1: Esquema de curvas del factor geométrico unificado

B.2. Cálculo analítico.

En las siguientes líneas, se describe la metodología de cálculo empleada para la elaboración de las curvas que permiten obtener el factor geométrico unificado, independientemente sea el factor de esfuerzo de contacto o de esfuerzo de flexión. Primero, se establecen los límites geométricos de las curvas a esquematizar en cada uno de los 3 ejes, los cuales están vinculados a dos variables características (z_1 , z_2) y al factor geométrico unificado (Z_U o Y_U) del juego de engrane. Las variables que representan a los límites geométricos de las curvas son mostradas en la Tabla B-2.

Variable	Límite mayor	Límite menor
<i>Z</i> ₁	x _a	x _e
<i>Z</i> ₂	x _a	x _e
Z_U o Y_U	Уа	y_e

Tabla B-2: Límites geométricos de las curvas

De la Figura B-2, se deduce la relación analítica mostrada en la ecuación (B 1.1).

$$\frac{(z_2 - z_1)}{a_1} = \frac{x_{rel}}{a_2}$$
(B 1.1)

Además, con ayuda de las ecuaciones (B 1.2) y (B 1.3), la relación analítica (B 1.1) se reduce a la expresión (B 1.4).

VI

$$a_1 = y_a - y_e$$
 (B 1.2)

$$a_2 = Z_U - y_e$$
 ó $a_2 = Y_U - y_e$ (B 1.3)

$$x_{rel} = \frac{(Z_U - y_e) \cdot (z_2 - z_1)}{(y_a - y_e)} \quad \text{o} \quad x_{rel} = \frac{(Y_U - y_e) \cdot (z_2 - z_1)}{(y_a - y_e)} \tag{B 1.4}$$

Figura B-2: Esquema para la elaboración de curvas

Finalmente, las ecuaciones (B 1.5) y (B 1.6) representan las posiciones absolutas del factor geométrico unificado necesarias al momento de esbozar, en la gráfica, dicho factor.

$$x_{abs} = z_1 + x_{rel} \tag{B 1.5}$$

$$y_{abs} = Z_U \text{ ó } Y_U \tag{B 1.6}$$

Una consideración adicional a lo ya mencionado, en líneas anteriores, es que luego de plotear todos los puntos de la curva en cuestión, se realiza una regresión logarítmica como se visualiza en la Figura B-3.

Figura B-3: Regresión logarítmica

VIII

ANEXO C: Curvas del factor geométrico unificado.

TESIS PUCP

Figura C-2: Factor geométrico unificado para esfuerzo de contacto (x_1 =0.50, x_2 =0.50)

Х

C.2. Factor geométrico unificado para esfuerzo de flexión.

TESIS PUCP

Figura C-4: Factor geométrico unificado para esfuerzo de flexión (x_1 =0.50, x_2 =0.50)

XII

ANEXO D: Tablas de resultados.

Todas las curvas elaboradas en la tesis fueron realizadas a partir de los resultados obtenidos tanto de forma analítica como los entregados por simulación. En el presente anexo, se plasman dichos resultados en tablas, de tal manera se fundamente el origen de las curvas.

Diente H	Helicoidal	Diente Recto			
$x_{le} (mm)$	$ \rho_{red} (mm) $	$x_{le} (mm)$	$\rho_{red} \ (mm)$		
2,07	0,70	1,49	3,03		
1,50	1,18	1,25	3,19		
1,00	1,55	1,00	3,36		
0,50	1,86	0,50	3,68		
0,00	2,13	0,00	3,97		
-0,50	2,34	-0,50	4,23		
-1,00	2,49	-1,00	4,47		
-1,50	2,60	-1,50	4,68		
-2,00	2,65	-2,00	4,86		
-2,50	2,65	-2,30	4,96		
-2,58	2,64	-2,93	5,13		
-2,36	2,04	-2,93	5,15		

Tabla D-1: Radio reducido en función de la variable x_{le}

abla D-2: Longitud d	e contacto sumaria en	función de la po	osición de engrane (p_{eng})
----------------------	-----------------------	------------------	--------------------------------

Diente	e Helicoida		Dier	nte Recto			
$p_{eng} (mm)$	$l_{\Sigma}(mm)$	NDC	$p_{eng}(mm)$ $l_{\Sigma}(mm)$ N				
(IC) 0,00	15,78	3	(IC) 0,00	20	2		
0,34	15,78	3	0,33	20	2		
0,68	15,78	3	0,66	20	2		
1,01	15,78	3	0,98	20	2		
(FC) 1,33	15,78	3	1,31	20	2		
1,35	15,87	2	1,64	20	2		
1,69	17,26	2	(FC) 1,78	20	2		
2,03	17,98	2	1,97	10	1		
2,37	17,98	2	2,30	10	1		
2,71	17,17	2	2,62	10	1		
(<i>p</i> _{bt}) 3,04	15,78	3	(p _{bt}) 2,95	20	2		
IC: Inicio de	IC: Inicio de contacto.						
FC: Fin de	contacto.						
NDC: Núme	ero de dien	tes en o	contacto.				

Die	ente Heli	coidal	Diente Recto		
φ (°)	$\sqrt{\frac{1}{\rho_{red}}}$	$\sqrt{\frac{1}{l_{\Sigma} \cdot \rho_{red}}}$	φ (°)	$\sqrt{\frac{1}{\rho_{red}}}$	$\sqrt{\frac{1}{l_{\Sigma} \cdot \rho_{red}}}$
-19,83	1,193	1,193	-10,38	0,575	0,575
-17,61	1,009	1,009	-9,00	0,556	0,556
-15,39	0,898	0,898	-7,62	0,539	0,539
-13,17	0,823	0,823	-6,24	0,525	0,525
-11,10	0,772	0,772	-4,86	0,512	0,512
-10,94	0,769	0,767	-3,48	0,501	0,501
-8,72	0,729	0,697	-2,89	0,496	0,496
-6,50	0,698	0,653	-2,10	0,491	0,694
-4,28	0,673	0,631	-0,72	0,482	0,682
-2,06	0,655	0,628	0,65	0,474	0,670
0,17	0,640	0,640	2,03	0,467	0,467
2,39	0,629	0,629	3,41	0,461	0,461
4,61	0,621	0,621	4,79	0,456	0,456
6,83	0,616	0,616	6,17	0,451	0,451
8,90	0,614	0,614	7,55	0,447	0,447
9,06	0,614	0,612	8,93	0,443	0,443
11,28	0,614	0,587	9,52	0,441	0,441
12,42	0,615	0,576	115	a -	
ϕ : Ángu	ulo de gi	ro del piñón		S	

Tabla D-3: Esfuerzo de	e contacto en	función de	l ángulo d	de airo del piñó	n
					•••

Tabla D-4: Esfuerzo de flexión en función d	del ángulo de giro del piñón
---	------------------------------

Dien	te Helico	oidal	Diente Recto		
φ (°)	r _{hs}	$rac{r_{hs}}{l_{\Sigma}}$	φ (°)	r _{hs}	$rac{r_{hs}}{l_{\Sigma}}$
-19,83	0,117	0,117	-10,38	0,024	0,024
-17,61	0,117	0,117	-9,00	0,033	0,033
-15,39	0,120	0,120	-7,62	0,046	0,046
-13,17	0,125	0,125	-6,24	0,059	0,059
-11,10	0,133	0,133	-4,86	0,074	0,074
-10,94	0,133	0,132	-3,48	0,090	0,090
-8,72	0,144	0,132	-2,89	0,098	0,098
-6,50	0,157	0,138	-2,10	0,109	0,218
-4,28	0,173	0,152	-0,72	0,130	0,260
-2,06	0,194	0,179	0,65	0,152	0,305
0,17	0,219	0,219	2,03	0,177	0,177
2,39	0,245	0,245	3,41	0,204	0,204
4,61	0,275	0,275	4,79	0,232	0,232
6,83	0,310	0,310	6,17	0,262	0,262
8,90	0,345	0,345	7,55	0,295	0,295
9,06	0,348	0,346	8,93	0,329	0,329
11,28	0,390	0,356	9,52	0,344	0,344
12,42	0,412	0,362	-	-	-

Diente Helicoidal				Diente Recto			
$p_{eng} (mm)$	φ (°)	σ_{CP} (MPa)	σ_{CE} (MPa)) $p_{eng}(mm) \phi$ (°) $\sigma_{CP}(MPa) \sigma_{CE}(MPa)$			
(IC) 0,00	-19,83	22,70	22,67	(IC) 0,00	-10,38	22,17	22,16
0,34	-17,61	24,06	24,10	0,33	-9,00	17,74	17,75
0,68	-15,39	23,98	24,05	0,66	-7,62	16,88	16,84
1,01	-13,17	24,83	24,83	0,98	-6,24	17,83	17,82
(FC) 1,33	-11,10	23,39	23,39	1,31	-4,86	17,71	17,73
1,35	-10,94	23,48	23,46	1,64	-3,48	17,85	17,92
1,69	-8,72	22,06	22,06	(FC) 1,78	-2,89	21,31	21,24
2,03	-6,50	20,80	20,80	1,97	-2,10	28,20	28,29
2,37	-4,28	20,83	20,93	2,30	-0,72	27,99	28,00
2,71	-2,06	21,16	21,16	2,62	0,65	28,03	28,05
(<i>p</i> _{bt}) 3,04	0,17	22,70	22,67	(p_{bt}) 2,95	2,03	22,17	22,16
σ_{CP} : Esfuerz	σ_{CP} : Esfuerzo de contacto – Piñón.						
σ_{CE} : Esfuerz	σ_{CE} : Esfuerzo de contacto – Engranaje.						

Tabla D-5: Resultados de la simulación er	n varias posiciones - Esfuerzo de contacto
---	--

Tabla D-6: Resultados de la simulación en varias posiciones - Esfuerzo de flexión

	Diente	Helicoidal		Diente Recto			
$p_{eng} (mm)$	φ (°)	σ_{FP} (MPa)	σ_{FE} (MPa)	$p_{eng} (mm)$	φ (°)	σ_{FP} (MPa)	σ_{FE} (MPa)
(IC) 0,00	-19,83	6,83	6,94	(IC) 0,00	-10,38	6,44	6,11
0,34	-17,61	7,92	7,65	0,33	-9,00	5,56	7,21
0,68	-15,39	8,26	7,24	0,66	-7,62	4,76	6,33
1,01	-13,17	9,35	7,93	0,98	-6,24	6,28	7,15
(FC) 1,33	-11,10	9,05	6,98	1,31	-4,86	6,22	7,11
1,35	-10,94	9,02	6,99	1,64	-3,48	6,33	7,08
1,69	-8,72	9,11	6,12	(FC) 1,78	-2,89	6,90	8,82
2,03	-6,50	8,08	6,11	1,97	-2,10	9,98	12,40
2,37	-4,28	6,93	6,42	2,30	-0,72	10,65	11,54
2,71	-2,06	7,45	6,50	2,62	0,65	11,31	10,68
(p _{bt}) 3,04	0,17	6,83	6,94	(p _{bt}) 2,95	2,03	6,44	6,11
σ_{FP} : Esfuerz	zo de flex	ión – Piñón.					
σ_{FE} : Esfuerz	zo de flex	ión – Engrar	aje.				

Z_1	Z_2	β(°)	$\sigma_{MEF-C max}$ (MPa)	Z_{II} (10)		
17	40	0	34,94	2,97		
18	47	0	32,12	2,94		
29	96	0	18,55	2,82		
55	73	0	10,55	2,62		
67	86	0	8,63	2,59		
20	54	0	28,76	2,94		
25	66	0	22,15	2,82		
28	75	0	19,99	2,86		
50	70	0	11,78	2,69		
17	40	10	26,97	2,33		
18	47	10	26,15	2,43		
29	96	10	13,24	2,04		
55	73	10	8,14	2,05		
67	86	10	6,62	2,02		
25	66	10	17,65	2,28		
28	75	10	15,24	2,21		
50	70	10	8,78	2,04		
17	40	20	24,23	2,20		
18	47	20	22,07	2,15		
29	96	20	13,75	2,22		
55	73	20	6,61	1,75		
67	86	20	4,84	1,55		
25	66	20	16,68	2,26		
28	75	20	14,47	2,20		
50	70	20	8,05	1,96		
80	96	20	4,68	1,76		
18	47	30	21,94	2,32		
55	73	30	7,28	2,09		
67	86	30	6,14	2,13		
20	54	30	19,59	2,31		
25	66	30	16,07	2,36		
28	75	30	15,01	2,48		
50	70	30	9,16	2,42		
80	96	30	4,72	1,93		
El mor es de	El momento torsor aplicado en el piñón de las parejas de engrane es de 400 Nmm.					

Tabla D-7: Factor geométrico unificado para esfuerzo de contacto (x_1 =0.0, x_2 =0.0)

Z_1	Z_2	β(°)	$\sigma_{MEF-C max}$ (MPa)	Z_{U} (10)	
17	40	0	32,30	2,79	
18	47	0	31,06	2,88	
29	96	0	18,44	2,82	
55	73	0	10,36	2,59	
67	86	0	8,51	2,57	
25	66	0	21,23	2,73	
28	75	0	18,86	2,72	
50	70	0	11,18	2,57	
80	96	0	7,09	2,52	
17	40	10	30,00	2,64	
18	47	10	26,30	2,48	
55	73	10	8,32	2,11	
67	86	10	6,71	2,06	
20	54	10	22,95	2,41	
25	66	10	17,60	2,30	
28	75	10	15,76	2,31	
50	70	10	9,10	2,13	
80	96	10	5,62	2,03	
17	40	20	23,52	2,16	
18	47	20	21,14	2,09	
29	96	20	12,50	2,03	
55	73	20	7,46	1,98	
67	86	20	5,50	1,77	
25	66	20	15,83	2,17	
28	75	20	13,19	2,02	
80	96	20	4,72	1,78	
17	40	30	27,88	2,78	
29	96	30	14,95	2,64	
55	73	30	7,48	2,16	
67	86	30	6,17	2,15	
20	54	30	19,70	2,35	
28	75	30	15,06	2,50	
El moi es de	El momento torsor aplicado en el piñón de las parejas de engrane es de 400 Nmm.				

Tabla D-8: Factor geométrico unificado para esfuerzo de contacto (x_1 =0.25, x_2 =0.25)

7.	7.	B(°)	$\sigma_{MPR} = (MPa)$	7 (10)	
² 1 17	40	ρ()	31 37	276	
17	40	0	28.45	2,70	
20	96	0	17 30	2,00	
29 55	30 73	0	17,50	2,07	
67	86	0	8 50	2,53	
20	54	0	25.46	2,50	
20	66	0	20,40	2,00	
50	70	0	20,33	2,72	
80	96	0	7.01	2,50	
18	30 47	10	26.85	2,50	
55	73	10	8 53	2,50	
67	86	10	6.92	2,10	
20	54	10	23.85	2,14	
25	66	10	17 84	2,35	
28	75	10	15 90	2,00	
50	70	10	9.70	2,00	
80	96	10	5,70	2,20	
18	47	20	21.36	2,11	
29	96	20	12.86	2.11	
55	73	20	7.57	2.03	
67	86	20	5,75	1,86	
20	54	20	19,47	2,17	
25	66	20	15,18	2,10	
28	75	20	13,55	2,10	
50	70	20	8,27	2,04	
80	96	20	4,83	1,83	
29	96	30	14,82	2,64	
55	73	30	7,84	2,28	
67	86	30	6,73	2,36	
25	66	30	16,61	2,49	
28	75	30	15,84	2,65	
El momento torsor aplicado en el piñón de las parejas de engrane					
es de 400 Nmm.					

Tabla D-9: Factor geométrico unificado para esfuerzo de contacto (x_1 =0.50, x_2 =0.50)

TESIS PUCP

<i>Z</i> ₁	<i>Z</i> ₂	β(°)	$\sigma_{MEF-F max} (MPa)$	Y_U	
17	40	0	11,91	2,53	
18	47	0	10,73	2,41	
29	96	0	5,73	2,08	
55	73	0	3,02	2,08	
67	86	0	2,44	2,04	
20	54	0	9,58	2,39	
25	66	0	6,96	2,17	
28	75	0	6,06	2,12	
50	70	0	3,39	2,12	
80	96	0	2,01	2,01	
17	40	10	11,00	2,37	
18	47	10	10,08	2,30	
29	96	10	4,38	1,61	
55	73	10	2,21	1,54	
67	86	10	1,64	1,39	
25	66	10	5,75	1,83	
28	75	10	4,79	1,70	
50	70	10	2,50	1,59	
17	40	20	10,16	2,30	
18	47	20	9,71	2,32	
29	96	20	5,09	1,96	
55	73	20	2,47	1,81	
67	86	20	1,91	1,70	
20	54	20	7,64	2,03	
25	66	20	5,57	1,85	
28	75	20	5,19	1,93	
50	70	20	2,73	1,82	
80	96	20	1,51	1,61	
18	47	30	8,47	2,20	
55	73	30	2,60	2,06	
67	86	30	1,89	1,83	
20	54	30	6,85	1,98	
25	66	30	6,31	2,28	
28	75	30	5,27	2,13	
50	70	30	2,91	2,10	
80	96	30	1,46	1,69	
El mon	El momento torsor aplicado en el piñón de las parejas de engrane				
es de 400 Nmm.					

Tabla D-10: Factor geométrico unificado para esfuerzo de flexión (x_1 =0.0, x_2 =0.0)

<i>Z</i> ₁	<i>Z</i> ₂	$\beta(^{\circ})$	$\sigma_{MEF-F max} (MPa)$	Y_U
17	40	0	10,81	2,34
18	47	0	10,43	2,38
29	96	0	5,49	2,00
55	73	0	2,82	1,95
67	86	0	2,25	1,89
25	66	0	6,28	1,98
28	75	0	5,64	1,99
50	70	0	3,14	1,98
80	96	0	1,87	1,88
18	47	10	8,97	2,08
55	73	10	2,17	1,53
67	86	10	1,75	1,50
20	54	10	7,99	2,05
25	66	10	5,95	1,91
28	75	10	5,13	1,84
50	70	10	2,44	1,56
80	96	10	1,43	1,46
17	40	20	9,09	2,09
18	47	20	8,94	2,17
29	96	20	5,39	2,09
55	73	20	2,39	1,76
67	86	20	1,77	1,59
25	66	20	6,14	2,06
28	75	20	5,40	2,03
80	96	20	1,54	1,64
17	40	30	9,09	2,26
29	96	30	4,92	2,07
55	73	30	2,70	2,16
67	86	30	1,94	1,88
20	54	30	7,47	2,18
28	75	30	5,17	2,11
El momento torsor aplicado en el piñón de las parejas de engrane				
es de 400 Nmm.				

Tabla D-11: Factor geométrico unificado para esfuerzo de flexión (x_1 =0.25, x_2 =0.25)

<i>Z</i> ₁	<i>Z</i> ₂	β(°)	$\sigma_{MEF-F max} (MPa)$	Y_U
17	40	0	10,32	2,26
18	47	0	9,52	2,20
29	96	0	5,86	2,16
55	73	0	2,77	1,93
67	86	0	2,38	2,02
20	54	0	8,53	2,19
25	66	0	6,61	2,11
50	70	0	3,08	1,95
80	96	0	1,80	1,82
18	47	10	10,11	2,37
55	73	10	2,33	1,65
67	86	10	1,87	1,61
20	54	10	8,67	2,25
25	66	10	5,93	1,92
28	75	10	5,06	1,83
50	70	10	2,68	1,73
80	96	10	1,48	1,51
18	47	20	8,61	2,12
29	96	20	5,06	1,98
55	73	20	2,40	1,78
67	86	20	1,94	1,75
20	54	20	8,02	2,18
25	66	20	5,82	1,97
28	75	20	5,39	2,04
50	70	20	2,65	1,79
80	96	20	1,55	1,66
29	96	30	4,90	2,08
55	73	30	2,75	2,21
67	86	30	1,97	1,93
25	66	30	6,11	2,25
28	75	30	5,15	2,12
El momento torsor aplicado en el piñón de las parejas de engrane				
es de 400 Nmm.				

Tabla D-12: Factor geométrico unificado para esfuerzo de flexión (x_1 =0.50, x_2 =0.50)