

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

DISEÑO MECÁNICO DE UN DINAMÓMETRO VEHICULAR PORTÁTIL PARA DETERMINAR LA POTENCIA DE AUTOMÓVILES RALLY DE TRACCIÓN SIMPLE

ANEXOS

TESIS PARA OPTAR EL TÍTULO DE INGENIERO MECÁNICO, QUE PRESENTA EL BACHILLER:

JOSÉ LUIS COVEÑAS FLORES

ASESOR: ING. DANTE ELÍAS GIORDANO

LIMA, AGOSTO DEL 2014

ANEXOS

ANEXO A. Tipos de sensores de torque y velocidad rotacional

A.1. Sensores de torque

En la industria, son comunes los transductores que convierten la torsión mecánica de entrada en una señal eléctrica a la salida. Generalmente miden el torque a través de la medida de la deformación que éste causa a una(s) galga(s) que actúa como resorte.

Las galgas extensiométricas miden los cambios de voltaje debidos a los cambios en la resistencia eléctrica de la galga causados por la deformación mecánica. En galgas de semiconductor la mayoría del cambio en la resistencia proviene del efecto piezorresistivo. Entre ellas, las galgas de silicio vienen siendo usadas por largo tiempo, y aunque son bastante más caras y difíciles de implementar que las galgas de metal, su gran ventaja es su gran factor de galga lo que permite la medición de pequeñas deformaciones. (Beeby, 2004).

Celda de carga (*Load cells*).- Es un transductor de fuerza como los de las Figuras A.1 que, empleado a una cierta distancia como brazo de palanca, pueden también medir el torque y convertirlo en señal eléctrica. Su principio de funcionamiento consiste en una (cuarto de puente), dos (medio puente) o cuatro galgas extensiométricas (puente completo) dispuestas en puente de *Wheatstone*.

Figuras A.1. Izquierda: Vista interna de una celda de carga del fabricante *Peekel*³¹. Derecha: Montaje para medir el torque con una celda de carga³².

Sensores de torque de reacción y rotación.- El sensor de torque de reacción es utilizado para medir torques estáticos utilizando galgas en configuración de puente de *Wheatstone* completo con partes inmóviles que no requieren mantenimiento. Puede ser usado para comprobar el torque residual en sujetadores y determinar el torque para vencer los efectos de la fricción. Por otro lado, el sensor de torque de rotación es utilizado para medir torques en movimiento. Se puede ver esquemas de este sensor en las Figuras A.2.

Figuras A.2. Izquierda: Galgas en disposición de puente de *Wheatstone* completo³³. Derecha: Sensor de torque de rotación en servicio³⁴.

³¹ <u>www.peekel.com/splc.html</u>. Fecha de consulta: 12 de mayo de 2011.

 $^{^{32}}$ www.sportdevices.com/dyno/load_cell.htm. Fecha de consulta: 12 de mayo de 2011.

³³ <u>cerulean.dk/words/?page_id=42</u>. Fecha de consulta: 12 de mayo de 2011.

A.2. Sensores de velocidad rotacional

Existen de varios tipos: sensores electromagnéticos, inductivos, codificadores de pulsos, de potenciómetro, de frecuencia, etc. Entre éstos son conocidos: el *encoder* incremental, el alternador tacométrico, el tacómetro de rotor dentado, etc.

Encoder incremental angular.- Sirve para medir posición y velocidad angular dando como salida una señal digital. Consiste en un elemento circular dividido en espacios opacos y transparentes del mismo tamaño como se muestra en la Figura A.3. Este elemento es iluminado por como mínimo un fotodiodo y un fototransistor. Cuando toca un segmento transparente se obtiene una señal de determinado voltaje a la salida. En cambio, cuando toca un segmento opaco se obtiene una señal de cero voltios a la salida. Tiene dos bandas circulares con estos segmentos para reconocer el sentido de giro.

Figura A.3. Esquema de un *encoder* incremental angular³⁵.

Dínamo tacométrico.- También llamada "tacodínamo", Figura A.4, proporciona una señal de corriente continua. Está constituido por un inductor que genera un campo magnético mediante imanes permanentes o electroimanes, y un inducido giratorio o

³⁴ <u>www.futek.com/torque_sensor_selection.aspx</u>. Fecha de consulta: 7 de noviembre de 2011.

⁵ <u>www.forosdeelectronica.com/f16/encoders-informacion-tecnica-25/</u>. Fecha de consulta: 3 de junio de 2011.

rotor ranurado sobre el que se bobinan unos devanados de hilo conductor. Suele tener una sensibilidad entre 5 y 10 mV por cada r.p.m. y puede medir velocidades de hasta 10000 r.p.m.

Figura A.4. Dínamo tacométrico de la marca catalana ERMEC³⁶.

Alternador tacométrico.- Proporciona una señal alterna con frecuencia y amplitud proporcionales a la velocidad de rotación. Tiene la ventaja frente al tacodínamo que no utiliza colector y escobillas, los que se desgastan con el tiempo. Tiene una sensibilidad entre los 2 y 10 mV por rpm y permite la medida de mayores velocidades que el tacodínamo.

Entre los principales fabricantes de sensores de velocidad rotacional se tiene a grandes firmas como: JAQUET Technology Group, POSIC, Ic Haus Integrated Circuits, BOSCH, BALLUFF, Braun Instrument Company Inc. U.S.A., CSEM, Honeywell, Allegro, ETA Circuit Protection & Control, Penny+Giles, Daytronic, AustriaMicroSystems, ERMEC (España).

³⁶ <u>www.ermec.com/es_ES/producto.php?id=17917</u>. Fecha de consulta: 3 de junio de 2011.

ANEXO B. Lista comparativa entre diferentes tipos de frenos de dinamómetros según Land and Sea³⁷

PROP \	Hidráulico	Inercia	Corrientes	Fricción	Bomba	AC Motor-	DC Motor-
FRENO			Parásitas		hidráulica	Generador	Generador
Portabilidad	Excelente	Según	Razonable	Razonable	Bueno	Pobre	Pobre
		peso					
Facilidad de	Excelente	Razonable	Muy	Bueno	Bueno	Bueno	Bueno
instalación	(si hay	(elevador	bueno	(enfriamiento	(enfriamiento	(electricidad	(electricidad
	agua	requerido)	(AC	requerido)	requerido)	requerida)	requerida)
	disponible)		requerida)				
Capacidad de	Excelente	Excelente	Razonable	Bueno	Bueno	Razonable	Pobre
potencia vs.							
Tamaño							
Capacidad de	Excelente	Pobre	Razonable	Razonable	Razonable	Pobre	Pobre
potencia vs.							
Peso							
Alta capacidad	Excelente	n/a	Bueno	Pobre	Razonable	Bueno	Razonable
de potencia				(requiere			
(estado				refrigeración)			
estacionario)							
Alta capacidad	Excelente	n/a	Razonable	Bueno	Pobre	Razonable	Pobre
en RPM							
Capacidad a	Razonable	n/a	Muy	Excelente	Excelente	Excelente	Excelente
bajas RPM			bueno				
(estado							
estacionario)	D	(D 1	D 11	T	N 1
Establidad de	Bueno	n/a	Muy	Pobre	Kazonable	Excelente	Muy bueno
la carga y las RPM			bueno				
Tiempo de	Bueno	n/a	Muy	Pobre	Razonable	Excelente	Muy bueno
respuesta para	(menos de		bueno	(menos de	(menos de	(menos de	(menos de
cambiar 90%	0.5 seg.)		(menos de	1.0 seg.)	0.75 seg.)	0.005 seg.)	0.01 seg.)
de carga			0.05 seg.)				
Capacidad de	Bueno	n/a	Excelente	Razonable	Generalmente	Excelente	Muy bueno
ser controlado					no disponible		
por							
computadora							
Idoneidad	Excelente	n/a	Excelente	Razonable	Bueno	Excelente	Bueno
para ensayos			(agua)	(enfriado por	(con		
largos			Razonable	agua)	refrigeración)		
			(aire)				-
Inmunidad a	Bueno	Excelente	Muy	Bueno	Pobre	Muy bueno	Bueno
las pérdidas			bueno				
(histeresis o							
fricción)	Transland.	Transford	Translation	D	Dec	Transferre	Dec
Facilidad de	Excelente	Excelente	Excelente	Kazonable	Bueno	Excelente	Bueno
mantenimiento							

³⁷ Traducción de la tabla del fabricante norteamericano de dinamómetros Land and Sea. Web: <u>www.land-and-sea.com/dynamometer/dynamometer-comparison.htm</u>. Fecha de consulta: 15 de junio de 2011.

ANEXO C. Patente. Dinamómetro de chasis portátil de rodillos independientes³⁸

(12)	United	States	Patent
	Rostkowsk	i et al.	

- (54) PORTABLE ROLLER DYNAMOMETER AND VEHICLE TESTING METHOD
- (75) Inventors: Jacek L. Rostkowski, Nepcan; William Desmond McGonegal, Osgcode; Frederick J. Hendren; Roman Gorny, both of Nepean, all of (CA)
- (73)Assignce: Her Majesty the Queen in right of Canada, as represented by the Minister of Natural Resources (CA)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/488,704
- (22) Filed: Jan. 21, 2000

Related U.S. Application Data

- (63) Continuation-in-part of application No. 09/081,816, filed on May 20, 1998, now abs
- tal application No. 60/047,353, filed on May 21, (60) Provi 1997
- (51)Int. CL⁷ G01M 15/00
- (52)U.S. CL
- Field of Search . 73/117, 123, 862, (58)73/862.08, 862.191, 862.29, 862.321

(56) References Cited

U.S. PATENT DOCUMENTS

3,277,703		10/1966	Cline 73/123
3,554,023	٠	1/1971	Geul 73/117
4,450,728	*	5/1984	D'Angelo et al 73/862.28
4,468,955	٠	9/1984	Yamasaki et al 73/117

(10) Pat	er e	it No.: of Pat	US 6,257,054 B1 ent: Jul. 10, 2001
(,	-		
4.688.419		8/1987	D'Aagelo et al
4,870,585	٠	9/1989	Manzolini
5,010,763	٠	4/1991	Schneider
5,154,076	*	10/1992	Wilson et al 73/117
5,193,386	÷	3/1993	Hesse et al
5,375,461	٠	12/1994	Suzuki
5,392,640	٠	2/1995	Fukuda et al 73/117
5,402,676	*	4/1995	Shibayama et al 73/117
5,429,004		7/1995	Cruickshank 73/862.29
5,445,013	٠	8/1995	Clayton, Jr. et al
5,450,748	٠	9/1995	Evans 73/117
FC	R	EIGN P/	ATENT DOCUMENTS
0 246 345	÷	11/1987	(EP).

0.522.198 A1 * 1/1993 (EP) WOX97/

32189 * 9/1997 (WO).

* cited by examiner

Primary Examiner-Eric S. McCall (74) Attorney, Agent, or Firm-McFadden, Fincham

(57) ABSTRACT

A roller dynamometer is provided, having at least one supporting carriage having a rotatable roller and a dynamometer linked to the roller for measuring torque output of a vehicle. The carriages are rollable on a substrate for positioning under a vehicle. In one aspect, multiple dynamometer and roller units are provided, for engagement with multiple vehicle wheels, with the units being linked electronically for common control by a control unit that simu-lates either straight line or curved driving conditions. In a further aspect, the dynamometer is supported on the carriage by a rotary mount. In a further aspect, the rollers have a generally hourglass shape to permit vehicle wheel selfcentering.

7 Claims, 5 Drawing Sheets

³⁸ (Rostkowski, 2001). Dinamómetro patentado en EEUU que tiene la particularidad de tener los rodillos conectados eléctricamente y no con un eje mecánico. Sólo se muestra el resumen y una página con figuras de la patente.

U.S. Patent

ANEXO D. Ejemplos de ensayos estacionarios y de aceleración constante de la firma sueca Rototest

D.1. Ensayo estacionario a un automóvil Subaru Impreza WRX STI-08³⁹

Certificate of Performance

Test ID	STR-08092901
Created	2008-09-29 13:31
Vehicle ID	
Vehicle make	Subaru
Vehicle model	Impreza WRX STI -08 (221 kW)
Engine	SI TC, 2457 cc, B4, 16v
Mileage	7634 km
Test mode	Steady State
Test fuel	98 RON
Customer	
Description	

	Measured	at [1/min]
Max power [kW]	198.6	5812
Max torque [Nm]	379.6	3510
Correction	None	
Atm pressure [hPa]	997 - 997	
sun pressure [m a]		

Comments

						Total							
					Total	wheel							
Engine	Corr	Corr	Wheel	Total	wheel	torque /	Wheel	Ini	Rel	Amb	Oil		Sample
speed	power	torque	speed	red	torque	total red	power	temp*	hum	temp	temp*	Corr	Time
[1/min]	[kW]	[Nm]	[1/min]	[1/x]	[Nm]	[Nm]	[kW]	[°C]	[%]	[°C]	[°C]	factor	[s]
1013	16.9	158.9	228	4.434	705	158.9	16.9	21	24	22	89	1.000	5.0
1496	28.9	184.5	337	4.434	818	184.5	28.9	22	24	22	88	1.000	4.9
2019	50.0	236.3	455	4.434	1048	236.3	50.0	23	23	22	97	1.000	5.0
2525	84.5	319.6	569	4.434	1417	319.6	84.5	23	23	22	102	1.000	4.8
3015	111.1	352.0	680	4.434	1561	352.0	111.1	22	23	22	102	1.000	5.0
3510	139.5	379.6	791	4.434	1683	379.6	139.5	24	23	22	106	1.000	4.9
3815	149.2	373.4	860	4.434	1656	373.4	149.2	24	22	22	107	1.000	4.9
4008	155.4	370.3	904	4.434	1642	370.3	155.4	25	22	23	108	1.000	4.9
4213	162.2	367.6	950	4.434	1630	367.6	162.2	25	23	23	108	1.000	4.9
4513	170.0	359.8	1018	4.434	1596	359.8	170.0	25	22	24	109	1.000	4.9
5015	186.1	354.3	1131	4.434	1571	354.3	186.1	26	21	24	112	1.000	4.9
5523	192.7	333.2	1246	4.434	1478	333.2	192.7	26	21	24	113	1.000	4.8
5812	198.6	326.3	1311	4.434	1447	326.3	198.6	25	20	25	110	1.000	4.9
6014	192.6	305.9	1356	4.434	1356	305.9	192.6	26	20	25	113	1.000	4.9
6211	185.8	285.7	1401	4.434	1267	285.7	185.8	27	20	25	114	1.000	4.9

³⁹ Recuperado de <u>www.rri.se</u>. *Certificate of Performance of Subaru Impreza WRX STI-08*. Octubre de 2008.

Gráficas de la potencia y torque en las ruedas del Subaru Impreza WRX STI-08

D.2. Ensayo de aceleración constante en el 5to cambio realizado a un Porsche GT3 Cup 2009, coche de competencia en Fórmula 1 y con tracción 4x4⁴⁰

⁴⁰ Recuperado de <u>www.rri.se</u>. *Powertrain Performance Assesment PPA, Porsche GT3 Cup 2009*. Junio de 2009.

ANEXO E. Cálculo estático de los soportes del dinamómetro

Reso	ortes	kgf/mm	N/mm	Altura libre
SLFH-B-1000	k1	18.16	178.1496	102
SLFH-B-450	k2	6.18	60.6258	102

	·								
		CA	RGAS		DEFLEXIONES EN RESORTES				
T (N-m)	P1 (N)	P2 (N)	P3 (N)	P4 (N)	d1	d2	d3	d4	
0	1958	473	3374	628	10.99	7.80	18.94	10.36	
500	2185	1102	3146	-	12.26	18.18	17.66	-1.00	
1000	3042	1102	2290	-	17.08	18.18	12.85	-2.00	
1500	3898	1102	1434	-	21.88	18.18	8.05	-3.00	
2000	4754	1102	578	-	26.69	18.18	3.24	-4.00	
2430	5491	1102	-159	-	30.82	18.18	-0.89	-5.00	

Primera posición del soporte móvil

Quinta posición del soporte móvil

		CAF	RGAS		DEFLEXIONES EN RESORTES			
T (N-m)	P1 (N)	P2 (N)	P3 (N)	P4 (N)	d1	d2	d3	d4
0	1838	267	3501	865	10.32	4.40	19.65	14.27
500	2012	644	3339	476	11.29	10.62	18.74	7.85
1000	2185	1021	3177	87	12.26	16.84	17.83	1.44
1500	2529	1294	2648	-	14.20	21.34	14.86	-
2000	2922	1537	2012	-	16.40	25.35	11.29	-
2430	3260	1746	1465	-	18.30	28.80	8.22	-

ANEXO F. Norma ISO 2372 sobre severidad de vibraciones en máquinas con frecuencias de operación entre 10 y 200 Hz⁴¹

ENER GE TICA	
YDE MATERIALES TEMA 7 - NORMATUAS	SOBREVERACIONES

NORMAS ISO

La normalización internacional (INTERNATIONAL STANDARD ORGANIZATION) sobre la severidad de vibraciones de máquinas tiene una extensa gama de normas, entre las cuales pueden citarse:

 ISO 2372-1974. "Vibración mecánica de máquinas con velocidades de operación entre 10 y 200 rev/s. Bases para la especificación de estándares de evaluación".

Es aplicable a máquinas rotativas con rotores rígidos y a máquinas rotativas con rotores flexibles en los que la medida de vibración en la tapa del cojinete resulta indicativa del comportamiento vibracional de eje.

Sólo estudia vibración global, sin bandas de frecuencias.

Los datos que se requieren para su aplicación son el **nivel global de vibración en velocidad** - **valor eficaz RMS**, en un rango de frecuencia entre 10 y 1.000 Hz (severidad de la vibración, según ISO). Por ello, cuando se trabaja en mantenimiento predictivo haciendo análisis por bandas, puede resultar muy útil definir siempre una **banda ISO de 10 Hz a 1KHz**, de cara a tener una referencia para posibles informes o reclamaciones.

El análisis de este rango de frecuencias permite incluir, para estas velocidades de operación, las acusas más comunes de vibración en máquinas rotativas:

- Excitaciones de carácter asíncrono debidas a rozamientos.
- Desequilibrio del rotor.
- Excitaciones de carácter eléctrico y sus armónicos.
- Armónicos de excitaciones asíncronas del rotor.

De cara al establecimiento de la **severidad de vibración admisible**, se distinguen varias clases de máquinas rotativas:

- CLASE I Componentes individuales, totalmente conectados al conjunto de la máquina en condiciones normales de operación. Por ejemplo, pequeños motores eléctricos hasta 15 Kw.
- CLASE II Máquinas de tamaño medio. Por ejemplo, motores eléctricos de 15 a 75 Kw o hasta 300 Kw en motores con cimentación especial.
- CLASE III Motores principales grandes, con cimentación rígida y pesada.
- CLASE IV Motores principales grandes montados sobre cimentación blanda y ligera. Por ejemplo, Turbomaquinaria (equipos con RPM > velocidad crítica).

Ourso de Doctorado: Ιντροδυσσιόν αι Fenómeno de las Vibraciones Mecánicas

- 7.9 -

⁴¹ Web: <u>www.imac.unavarra.es/web_imac/pages/docencia/asignaturas/emyv/pdfdoc/vib/vib_normativa.pdf</u>. Fecha de consulta: 25 de abril de 2013.

INGENER & MECANICA, ENER GE TICA YDE MA TER IALES

TEMA 7 - NORMATUA SOBRE V BRACIONES

El criterio de severidad en vibración admisible para cada una de las CLASES de máquinas mencionadas, es el reflejado en la Tabla:

RMS veloc of vibratio	ity ranges n severity	Vibration	severity* for s	of machines		
mm/sec	in/sec	Class I	Class II	Class III	Class IV	
0.28 0.45 0.71	0.01 0.02 0.03	А	A			
1.12	0.04	В	в	А	А	
2.8 4.5	0.11 0.18	с	С	В	В	
7.1 11.2	0.28 0.44	D	D	C	с	
18 28 45	0.71 1.10 1.77			D	D	

* The letters A, B, C, and D represent machine vibration quality grades, ranging from good (A) to unacceptable (D).

Como puede observarse en al tabla, la **severidad de vibración** se divide en cuatro rangos: A-Buena, B-Satisfactoria, C-Insatisfactoria o D-Inaceptable. Para utilizar la norma **ISO 2372**, basta con clasificar la máquina en estudio dentro de la clase correspondiente y, una vez obtenido el valor global (RMS) de vibración entre 600 y 60.000 CPM, localizar en la tabla la zona en la que se encuentra. La clasificación de la máquina se llevará a cabo en base a una serie de consideraciones:

- El tipo y tamaño de la máquina.
- El tipo de servicio que la misma va a proporcionar o proporciona.
- El sistema de soporte de la máquina.
- El efecto de la vibración en la máquina sobre el entorno de la misma (instrumentación, equipos adyacentes, personas, ...)

En general, se suele considerar que la severidad de vibración de la máquina se mantiene invariable si presenta siempre el mismo valor RMS de amplitud de velocidad de vibración en el rango de frecuencias 10 – 1.000 Hz.

 ISO 3945. "Medida y evaluación de la severidad de vibración en grandes máquinas rotativas, in situ; velocidades de operación entre 10 y 200 rev/s":

Esta norma, como su mismo título indica, permite clasificar la severidad de vibración de grandes máquinas rotativas "in situ", para velocidades de operación también entre 600 y 1 200 RPM, mediante la Tabla de la página siguiente. Se aplica a los grandes motores principales, Clases III y IV definidas arriba.

Ourso de Doctorado: Introducción al Fenómeno de las Vibraciones Mecánicas

- 7.10 -

ANEXO G. Cálculos del desbalance admisible según severidad vibracional

En estos cálculos se asumen los valores de las variables correspondientes al desbalanceo resultante del automóvil. Estas estimaciones se iteran varias veces hasta hallar los valores que provocan que la *velocidad de vibración rms* sea admisible según la norma ISO 2372 del anexo anterior. En este anexo se presentan los cálculos para el caso de vibración B-Satisfactoria de 2,8 mm/s máximos.

Masa sistema ...M :=
$$0.6 \cdot 1450 \text{kg} + 2 \cdot 194 \text{kg} = 1.258 \times 10^3 \text{kg}$$
Rigidez de cada aislador ... $\mathbf{k}_1 := 18.16 \frac{\text{kgf}}{\text{mm}} = 178.089 \cdot \frac{\text{N}}{\text{mm}}$ $\mathbf{k}_2 := 6.18 \frac{\text{kgf}}{\text{mm}}$ Rigidez equivalente sistema ... $\mathbf{k}_{eq} := 4 \cdot \mathbf{k}_1 + 4 \cdot \mathbf{k}_2 = 97.36 \cdot \frac{\text{kgf}}{\text{mm}}$ Frecuencia natural ... $\omega_n := \sqrt{\frac{\text{k}_{eq}}{M}} = 27.549 \cdot \text{Hz}$ $\omega_n = 263.076 \cdot \text{rpm}$

Desbalanceo

$$\Delta m := 1.21 \text{kg}$$

Excentricidad ... $e_{ejes} := 5 \text{mm}$
 $\Delta m \cdot e_{ejes} = 6.05 \cdot \text{mm} \cdot \text{kg}$

ISO 2372 - Valor RMS de velocidad de vibración

$$\nu_{\rm rms} := \sqrt{\frac{\left[\int_{10Hz}^{1000Hz} \left[-\frac{\Delta m \cdot e_{\rm ejes} \cdot \omega^2 \cdot \omega}{M \cdot \left(\omega_{\rm n}^2 - \omega^2 \right)} \right]^2 d\omega}{1000Hz - 10Hz}} = 2.797 \cdot \frac{mm}{\rm s}$$

ANEXO H. Especificaciones técnicas de fajas y bloques de freno de FRENOSA

MATERIALES

BLOQUES Y FAJAS DE FRENO

	511		3240	HD	7111
DIMENSIONES	Bloques	Fajas	Bloques	Fajas	Bloques
Espesor	10 mm - 38 mm 3 m (25/64" - 1" 1/2) (1	nm - 38 mm /8" - 1" 1/2)	10 mm - 38 mm (25/64" - 1" 1/2)	3 mm - 38 mm (1/8" - 1" 1/2)	10 mm - 38 mm (25/64" - 1" 1/2)
Ancho	76 mm - 406 mm 25 r (3" - 16")	nm - 279 mm (1" - 11")	76 mm - 406 mm 2 (3" - 16")	25 mm - 279 mm (1" - 11")	76 mm - 406 mm (3" - 16")
Longitud Máximo	603 mm (23" 3/4)	790 mm (31" 7/64)	603 mm (23" 3/4)	790 mm (31" 7/64)	603 mm (23" 3/4)
Máximo Diámetro de Tambor	2388 mm (94")	1245 mm (49")	2388 mm (94")	1245 mm (49")	2388 mm (94")
CARACTERÍSTICAS					
Tipo do Matorial	EL MA IERIAL	rio	Oraá	nico	Non achactac
ripo de Material	FIDIA de vio	1110	Organ	1100	orgánico
Coeficiente de Fricción según SAE J 661	FF Normal: 0, Caliente: 0,4	41 (F) O (F)	FF Normal: Caliente:	0,40 (F) 0,39 (F)	GG Normal: 0,49 (G) Caliente: 0,48 (G)
PROPIEDADES FÍSIC	CAS				
Gravedad Específica	2.00		2.1	8	2.30
Resistencia a la Tracción	105 da N cm ² (15	500 PSI)	160 daN/cm ²	(2300 PSI)	105 daN/cm ² (1500 PSI)
Resistencia a la Flexión	281 daN/cm ² (40	000 PSI)	352 daN/cm ²	(5000 PSI)	421 daN/cm ² (6000 PSI)
Resistencia a la Compresión	633 daN/cm ² (90	000 PSI)	580 daN/cm ²	(8000 PSI)	633 daN/cm ² (9000 PSI)
Dureza Gogan	30 GD		30 0	GD	25 GD
RANGOS DE OPERAC	IÓN RECOMENDADOS				
Temperatura Máxima	343°C (650	°F)	343° C (6	550° F)	343° C (650° F)
Carga Máxima	10,5 daN/cm ² (1	50 PSI)	10,5 daN/cm	² (150 PSI)	10,5 daN/cm ² (150 PSI)
	DO OBEENING				
FMVSS121 Ensayo Dinamómetro	Aprobado para 23	000 Lbs.			
CEPTIFICA CTÓN CREI	ENTING				
VESC V-3 Emitido por AMECA	CERTIFICA	00			CERTIFICADO
0.600	11	324	40 HD 🖉	0.000	7111
3. 'C 0.400	8.00			10 0 000 C	
	5 0.100			0.500	
da da				- 0.400 E	
a lu suo	g 0.300			B 0.300	
8	30 0 200			10.200 0.200	
0.100 100 200 250 300 560	400 450 500 550 601 650 7	00 150 200 250 HDD 1	50 400 450 500 560 602 650	- 0.100	0 560 400 450 500 550 601 650
Temperat	Sura ("F)	Terre	ieratura ("F)		femperatura ("F)
(*) Basado an 2 do Ernayo Devi	vanecumento, Norma SAE JB61	*) Basedo en 2 do Emayo	Desvarecimiento, Norma SAE 3661	(7 Basedo en 2 do Erro	ayo Desvare centento, Norma SAE J661

ANEXO I. Cálculos del freno

Este anexo es un detalle de cálculos del freno de fricción de la sección 4.1. Freno de fricción.

I.1. Cálculo de dimensiones del freno

Los frenos de zapata larga pueden ser del tipo exterior o interior, simples, auto energizantes o auto bloqueantes. Entre ellos, el más conveniente es el *exterior* porque da acceso a su manipulación por fuera, y que además, sea auto energizante para que durante los ensayos dinamométricos necesite menos fuerza de ajuste por parte del operario. Por lo tanto, se elige el freno de zapata larga exterior auto energizante.

Figura I.1. Freno de zapata larga exterior⁴².

Haciendo girar el eje motriz del auto en sentido anti horario, según la Figura I.1, tenemos la condición de freno auto energizante. Se tiene la siguiente relación para el torque de fricción calculado de la estática del freno (Shigley, 2011):

⁴² <u>http://materias.fi.uba.ar/6712M/TEORICO%20FRENOS%20Y%20EMBRAGUES.pdf</u>. Fecha de consulta: 26 de setiembre de 2011.

$$T = \frac{r^2.\,\mu.\,t.\,p_{max}}{\sin\phi_M} \int_{\varphi_1}^{\varphi_2} \sin\varphi\,d\varphi$$

Donde:

Т	Torque de fricción transmitido al tambor
r	Radio del tambor
μ	Coeficiente de fricción (0,49 – material de fricción FRENOSA)
t	Ancho de la zapata
$p_{m lpha x}$	Presión máxima en la zapata

La presión $p_{m \dot{a}x}$ se da en el punto de la zapata a los 90° del pivote, o en el ángulo máximo \emptyset_M si es que la zapata no llega a cubrir los 90°. En nuestro casi sí se sobrepasa los 90° por lo que el término sin \emptyset_M es igual a la unidad.

Tomaremos el caso de diseño de torque máximo y reemplazaremos $p_{máx}$ por p_{adm} para diseñar el tambor y la zapata.

Т	Torque máximo de ensayos = 2430 N-m
p _{adm}	Presión admisible del material de fricción (150 psi = 1034 kPa)
Ø ₁	Ángulo inicial contacto entre material de fricción y tambor (15°)
Ø ₂	Ángulo final del contacto (165°)

Asumiendo el ancho de la zapata t = 200mm y despejando el diámetro nos resulta D = 402mm lo cual es excesivo. *Entonces se diseñará el freno con dos zapatas*. Ahora el torque para absorber por cada zapata es la mitad: T = 1215 N - m

Rediseñando se obtienen los siguientes resultados:

√	Número de zapatas	2
✓	Ancho de cada zapata	t = 220mm
✓	Diámetro del tambor	D = 150,2 mm, $D = 285 mm$

Se aumenta a 285mm el diámetro calculado para bajar la presión en el freno. Verificación la presión máxima y despejándola de la ecuación del torque:

 $Pm\acute{a}x = 287 \ kPa$

I.2. Cálculo de fuerzas en las zapatas

Antes de calcular la fuerza necesaria a aplicar ('F') en cada zapata, para generar la carga, se definen las variables necesarias.

$$h = 207,5 mm$$

$$c = 405 mm$$

$$r = \frac{D}{2} = 142,5 mm$$

$$\phi_1 = 15^{\circ}$$

$$\phi_2 = 165^{\circ}$$

Torque generado por fuerzas normales a lo largo de la zapata:

$$M_n = \frac{h.r.t.P_{max}}{\sin \phi_M} \int_{\pi/12}^{11\pi/12} \sin \theta^2 \, d\theta$$
$$= 2.914 \, N - m$$

Figura I.3. Zapata inferior la cual es autoenergizante.

Torque generado por fuerzas de fricción a lo largo de la zapata:

$$M_f = \frac{r.t.P_{max}.\mu}{\sin \phi_M} \int_{\pi/12}^{11\pi/12} \sin \theta (r - h \cos \theta) \, d\theta = 1\,215\,N - m$$

Zapata superior

$$F = \frac{M_n + M_f}{c} = 1,019 \times 10^4 \, N$$

Zapata inferior (autoenergizante)

$$F = \frac{M_n - M_f}{c} = 4,194 \times 10^3 \, N$$

Se concluye que se necesita un agente (tornillo de ajuste del acápite 4.1.2) que aplique una fuerza total de compresión de $10\ 190 + 4\ 194 = 14\ 390\ N$ para generar la carga de torque máxima de ensayos de $2\ 430\ N$ -m.

Reacciones:

CÁLCULO DE REACCIONES EN PIVOTE

$$a := \int_{\varphi_1}^{\varphi_2} \sin(\varphi) \cdot \cos(\varphi) \, d\varphi = 0 \qquad \qquad b := \int_{\varphi_1}^{\varphi_2} \sin(\varphi)^2 \, d\varphi = 1.559$$

ZAPATA SUPERIOR:

 $F_x :=$

0
$$F_{y} := F_{zapsup}$$

$$R_{x} := \frac{P_{max} \cdot t \cdot r}{1} \cdot (a + \mu \cdot b) - F_{x} = 6.881 \times 10^{3} N$$

$$R_{y} := \frac{P_{max} \cdot t \cdot r}{1} \cdot (\mu \cdot a - b) + F_{y} = -3.848 \times 10^{3} N$$

ZAPATA INFERIOR (autoenergizante):

$$F_{x2} := 0$$

$$R_{x2} := \frac{P_{max} \cdot t \cdot r}{1} \cdot (a - \mu \cdot b) - F_x = -6.881 \times 10^3 \text{ N}$$
$$R_{y2} := \frac{P_{max} \cdot t \cdot r}{1} \cdot (-\mu \cdot a - b) + F_{y2} = -9.848 \times 10^3 \text{ N}$$

F_{v2} := F_{zapinf}

En la Figura I.4 se muestra un análisis por elementos finitos de la zapata superior. Se colocó como carga un momento de 2000 N-m por seguridad, el cual es mucho mayor a la mitad del torque máximo de operación (2430/2 = 1215 N-m). Se obtuvo un esfuerzo de Von Misses con valor máximo de 67.44 MPa ubicado en el área donde va la arandela de la unión empernada de ajuste. Es por ello que se decidió diseñar una arandela especial de gran tamaño para este trabajo (Figura I.5). El factor de seguridad a la fluencia para esta pieza fundida de material ASTM A743-CA6NM es entonces:

$$FS = \frac{550 MPa}{67,44 MPa} = 8,16$$

Figura I.4. Esfuerzos de Von Misses para la zapata superior

Rx = 1366 N (hacia la derecha) Ry = 5680 N (hacia arriba)

Las reacciones calculadas con ayuda del software en el agujero de pivote indican que se tratará de traccionar al espárrago con 1030 N (eje Z) y de aplastar con una fuerza cuyas componentes son "Rx" y "Ry". Estas reacciones en el pivote no coinciden con los resultados analíticos anteriores pues las asunciones son diferentes. En todo caso, en el cálculo del espárrago se emplearán los valores más críticos.

Figura I.5. Freno de tambor y zapatas

TESIS PUCP

I.3. Cálculo del espárrago-pin del freno

Luego de haber calculado las reacciones en el pin que en este caso es un espárrago, pues tiene roscado en sus dos extremos para su debido cierre con tuercas y arandelas de presión, se realiza un diagrama de cuerpo libre presentado en la Figura I.6.

Figura I.6. DCL de espárrago-pin del freno

El cálculo de este espárrago se realizó con la ayuda del software Inventor. Se modeló las fuerzas como fuerzas distribuidas como se aprecia en la Figura I.7. Los resultados se pueden revisar en los diagramas de la Figura I.8. El diámetro del pin quedó en 24 mm con un esfuerzo máximo de Tresca de 127 MPa y una deflexión máxima de 0,215 mm. El diámetro no se puede aumentas más para disminuir ese esfuerzo de 127 MPa, por razones de espacio, es por ello que se eligió un material de acero inoxidable más resistente el cual es el mismo EN 1.4410 que tienen los árboles. El factor de seguridad con este material es 4,33.

Figura I.7. Modelo de cálculo del pin

Shear Force, YZ Plane

🗆 Shear Force, XZ Plane

Bending Moment, YZ Plane

🗆 Bending Moment, XZ Plane

Deflection, YZ Plane

Deflection, XZ Plane

Reduced Stress

Figura I.8. Diagramas de fuerzas internas, deflexiones y esfuerzos reducidos del pin

I.4. Estudio estático del tambor por elementos finitos

Ahora que ya conocemos las cargas sobre el tambor podemos apreciar un estudio estático por elementos finitos realizado en el software *Inventor*.

El tambor consiste en una pieza soldada obtenida a partir de una plancha rolada de espesor 9mm, un disco (cortado de una plancha de espesor 12mm), nervios también de 12mm de espesor, y un tubo circular de diámetro exterior 88mm e interior de 58mm.

Introducimos las restricciones del caso y las cargas de torque y de presión de ambas zapatas sobre la superficie exterior.

- Torque: 2 430 N-m
- Presión: 300 kPa que es la presión máxima de contacto con las zapatas

Los resultados de esfuerzos de Von Misses se pueden observar en la Figura I.9.

Figura I.9. Gráfica de tensiones en el tambor del freno.

El resultado del estudio es un factor de seguridad en fluencia de:

$$FS = \frac{250 \, MPa}{61,72 \, MPa} = 4,05$$

Tesis publicada con autorización del autor No olvide citar esta tesis

Resultado satisfactorio en el que se concluye que la plancha rolada de 9 mm, los nervios de 12 mm y la barra redonda de 3 $\frac{1}{2}$ " de diámetro escogidas para fabricar el tambor cumplen con las solicitaciones.

I.5. Árbol del freno

Primero, se realiza la estática que involucra a este eje y a los demás que tiene conectados. Los acoples entre ejes son flexibles y se modelan como rótulas pues permiten giro y evitan los momentos concentrados. Para el análisis estático de este caso se empleó el software XVIGAS, Figura I.10, pues permite el uso de rótulas y el análisis de varias vigas a la vez.

Figura I.10. Los tres ejes de una unidad de absorción modelados como viga y sus apoyos.

Se ingresaron las fuerzas estáticas en el modelo realizado en el software (Figura I.11) omitiendo el torque porque, al ser constante, no modifica la sección crítica buscada.

		rincpa nyi onne cacato co	Actiones	FUERZAS (N)	POSICIONES (m)	ister
			Aceptar	4350.000000 250.000000	1.321000 0.149800	0
			Introducir Eliminar			
			Copiar Modificar			
			Introduzca aquí la cota de la catga Debe ser mayor que cero y menor que la longitud de la viga.			
				Magnitud	ia I	listan
. 8	•	<u>a ∨ a</u> •		Magnitud:	ia J	listan

Figura I.11. Cargas estáticas y sus posiciones en la unidad de absorción.

Al calcular las fuerzas internas en el software y graficar los resultados (Figura I.12) podemos ver que el eje ubicado entre los acoples flexibles no sufrirá ni fuerzas ni momentos flectores- predecible por teoría - lo cual es una buena noticia para el sensor que estará alojado en él. Además, se observa que el apoyo fijo que está en el árbol de entrada es el más esforzado pues presenta la mayor carga de momento flector (435 N-m) y de fuerza cortante (6525 N).

Figura I.12. Diagramas de fuerzas internas para el caso de diseño con acoples flexibles (rótulas). Fuerzas cortantes (Verde). Momentos flectores (Rojo).

Como se puede apreciar en estos resultados, el árbol del freno no presenta un momento flector ni carga vertical considerable que generen deflexión alguna, la única carga importante que sufre es el torque de trabajo. Por ello se eligió como material al EN 1.4410 el cual es el mismo que para el árbol de entrada.

Los diagramas de fuerza cortante, deflexiones y esfuerzos reducidos de Tresca para este árbol se observan en la Figura I.13. El esfuerzo máximo de Tresca es 198 MPa. Con **TESIS PUCP**

este valor, y en vista de que el esfuerzo de fluencia del material EN 1.4410 es 550 MPa, el factor de seguridad es:

$$FS = \frac{550}{198} = 2,78$$

Figura I.13. Diagramas de fuerzas internas, deflexiones y esfuerzos del árbol del freno.

ANEXO J. Especificaciones técnicas de los soportes aisladores de vibración de **Mason Industries**

21/2 64

BH- Bracket Height BE- Bracket Elevation Size М BE (in) (mm) BH (in) (mm) Туре W (in) (mm) (in) (mm) (in) (mm) 2 21/2 64 21/2 64 21/2 64 4 102 23/4 70 31/4 83 21/2 64 21/2 64 51 51 33

2

51

All springs have additional travel to solid equal to 50% of the rated deflection. Solid Spring Height = Free Height minus 1.5 times Rated Deflection.

Ratings & Dimensions for 1"(25mm) Deflection Single Spring Mounts (inches millimeters)

35/9 5 92

33 76

Туре	Size	Rated Capacity (lbs) (kg)	Rated Defl. (in) (mm)	Spring Constant (Ibs/in)(kg/mm)	Spring Color	Sprin Spring OD	g Only Free Height	Free Ope Ht	& ' A	с	E	G	Max. Bolt Dia. H	J	Adjust- ment Bolt AB	Locking Cap Screw CS
	X-23 [†] X-33 [†] X-54 [†] X-76 [†] X-113 [†] X-130 [†] X-175 [†] X-210 [†]	23 10 33 15 54 24 76 34 113 51 130 59 175 79 210 95	1.50 38 1.30 33 1.40 36 1.22 31 1.20 30 1.20 30 1.20 30 1.20 30 1.20 30 1.20 30 1.20 30	18 0.26 30 0.45 45 0.67 73 1.10 113 1.70 130 1.97 175 2.63 210 3.17	Brown Red White Black Yellow Purple Silver Blue	11/2 38	21/2 64	33/4 95	2 51	-	-	-	_	-	1/2 x 21/2 x 64	1/4 x 1 x 25
SLF-	A-45 A-75 A-125 A-200 A-310 A-400	45 20 75 34 125 57 200 91 310 141 400 181	1.60 41 1.50 38 1.33 34 1.15 29 1.00 25 1.00 25	28 0.49 50 0.89 94 1.68 174 3.14 310 5.64 400 7.24	Blue Orange Brown Black Yellow Green	13/4 44	3 76	41/4 108	21/8 54	21/4 57	3 76	33/4 95	1/4 6	3/9 10	5/8 x 21/2 x 64	3/9 x 1 x 25
SLFH-	A-510 A-625	510 231 625 283	1.00 25 1.00 25	510 9.24 625 11.32	Red White	13/4 44 13/4 44	31/8 79 33/8 86	45/9 117	21/8 54	21/4 57	3 76	33/4 95	1/4 6	3/9 10	5/9 x 21/2 x 64	3/9 x 1 x 25
	B-65 B-85 B-115 B-150 B-280 B-450 B-750 B-1000	65 29 85 39 115 52 150 68 280 127 450 204 750 340 1000 454	2.10 53 2.00 51 2.00 51 1.60 41 1.31 33 1.12 28 1.00 25	31 0.55 40 0.74 57 1.02 75 1.33 174 3.10 344 6.18 670 12.14 1000 18.16	Brown White ^{rr} Silver Orange Green Red White Blue	23/9 60	4 102	6 152	29/4 70	27/9 73	41/9 105	59/8 137	1/2 13	3/9 10	7/8 x 41/4 x 108	^{1/2} x 1 ^{1/4} x 32
	C-1000 C-1350 C-1750 C-2100 C-2385 C-2850 C-2935	1000 454 1350 612 1750 794 2100 953 2385 1082 2650 1202 2935 1331	1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25 1.00 25	1000 18.16 1350 24.48 1750 31.76 2100 38.12 2385 43.28 2650 48.08 2935 53.24	Black Yellow Black* Yellow* Yellow** Red* Red**	27/8 73	41/9 105	6 152	31/4 83	3 3/9 86	43 /4 121	61/9 156	1/2 13	3/9 10	7/g x 41/4 x 108	1/2 x 11/4 x 32

SLF-

SLFH

A-45 - A-400 A-510 - A-625 B & C

ANEXO K. Especificaciones técnicas de garruchas "Colson Caster" - modelo "Cast Iron" y su respectivo freno⁴³

Home 💮 Products 🛞 Casters 🌖 4 Series - capacity up to 1400 lbs 🕘 4 Series Enforcer Top Plate Swivel & Rigid

Standard Features:

standard features

- Attractive zinc plated finish
 Single ball hardened swivel raceway construction
- . Formed fork legs feature robotic welding
- 1/2" hollow axle with grease zerk and lock nut Plastic seal/retainer washer (roller bearing models)
- . 5/16" swivel steel top plate for durability, rigid top plate 1/4" steel

- Fork legs 1/4" thick x 2" wide Formed fork legs feature robotic welding Grease fittings: wheel bearing and swivel raceway .
- · Multi-temp grease lubricates in extreme hot and cold temperatures

caster dimensions

Internet Explorer is recommended to view models

Caster Description	Wheel Diameter	Tread Width	Capacity Each (lbs.)	Wheel Description	Optional Bearings	Load Height	Swivel Radius	Weight (Ibs.)
4 Series Enforcer Top Plate Swivel & Rigid	4"	2"	1000	Endura Solid Elastomer	Delrin, Prec. Ball, PPBB	5-5/8"	3-9/16"	5-3/4
4 Series Enforcer Top Plate Swivel & Rigid	4"	2"	1000	<u>Cast Iron</u>	Delrin, PPBB	5-5/8"	3-9/16"	7-7/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	325	Performa Rubber (Conductive/Flat)	PPBB	6-1/2"	3-7/8"	6-1/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	400	Moldon Rubber (Cast iron core)	Delrin, PPBB	6-1/2"	3-7/8"	7
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	450	Trans-forma LT (Flat)	Delrin, PPBB	6-1/2"	3-7/8"	6-1/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	500	Performa Rubber (Flat/Black)	Delrin, Prec. Ball, PPBB	6-1/2"	3-7/8"	6-1/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	500	Performa Rubber (Flat/Grey)	Delrin, Prec. Ball, PPBB	6-1/2"	3-7/8"	6-1/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	500	Trans-forma (Flat/Grey)	Delrin, PPBB	6-1/2"	3-7/8"	6-1/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	650	Polyolefin	Delrin, Plain, PPBB	6-1/2"	3-7/8"	4-7/8
4 Series Enforcer Top Plate Swivel & Rigid	5"	2"	750	Polyurethane HI-TECH	Delrin, PPBB	6-1/2"	3-7/8"	4-3/4

performance options wheel selection

4 & 6 Series Tread Lock Brake

Capacity up to 1500 lbs each

Available on 4 and 6 Series casters, this adjustable brake can be installed in the field or ordered assembled onto the caster. The toe activated brake features positive engagement via a rubber faced plate. This brake is not available with V-groove wheel models or 2-1/2 tread width wheels. To order with a caster, specify "BRK1". To field install the brake, see kit numbers below

Wheel Dia.	Kit Number Standard	Standard 4 Series Swivel Radius	Standard 6 Series Swivel Radius	4 & 6 Series Enforcer Swivel Radius
4"	05944.24	5-5/16"	7-3/8"	5-3/16"
5"	05944.25	6-5/8"	6-9/16"	6-1/2"
6"	05944.28	7-5/16"	7-1/8"	6-7/8"
8"	05944.28	8-1/2"	8-9/16"	8-3/8"

Kit includes brake assembly, axle and lock nut.

Replacement brake pad model number: 05944.45.

⁴³ <u>www.colsoncaster.com/products/productdetails/default.aspx?productid=44</u>. Fecha consulta: 25 de febrero de 2013.

ANEXO L. Verificación del árbol de entrada

Este anexo trata de la verificación del árbol de entrada de potencia (eje que sostiene el acople entre cada unidad de absorción y su respectiva bocamasa) calculado por rigidez en 55mm en la sección 4.4.

L.1. Verificación del árbol de entrada por resistencia

Se necesita hacer la estática previa. Para ello se utilizó la ayuda del software XVIGAS. Como se puede apreciar en el diagrama de fuerzas internas de la Figura L.1, desde las rótulas (acoples flexibles) hacia la izquierda no hay cargas internas resultantes, pues como se vio en el análisis del freno, su peso es despreciable y las cargas de sus zapatas de fricción se anulan entre sí.

Figura L.1.Fuerzas cortantes (verde) y momentos flectores (rojo). Derecha: Reacciones en los apoyos.

Las reacciones en los apoyos del árbol de entrada son:

- Apoyo Fijo: 6525 N
- Apoyo Móvil: 2175 N (hacia abajo)

La sección crítica está en la posición del apoyo fijo y los valores de carga son:

- Momento flector máximo: 435 N-m
- Torque máximo: 2430 N-m
- Factor de choques (C_B): 1,5 (motor de combustión interna)

Esfuerzos

• Esfuerzo normal máximo:
$$\sigma_s = \frac{32M}{\pi d^3} = 47,3$$
 MPa

Los esfuerzos normales son sólo ocasionados por flexión pues no hay fuerza normal. Asimismo son del tipo **alternante puro** por la naturaleza del eje que es giratorio y no soporta carga axial.

Esfuerzo normal alternante: $\sigma_a = \sigma_s$

Esfuerzo normal medio: $\sigma_m = 0$

• Esfuerzo cortante máximo: $\tau_s =$

$$\tau_s = \frac{16T}{\pi d^3} = 114,3 MPa$$

Los esfuerzos cortantes son **pulsantes** pues el freno se activa y desactiva intermitentemente, del mismo modo la carga producida (torque). Por ejemplo, al realizar ensayos estacionarios, el equipo se para cada vez que se quiere evaluar otro cambio de la caja de velocidad.

$$\tau_a = \tau_m = \frac{\tau_s}{2}$$

Material: EN 1.4410

Puesto que la carga es relativamente importante, se escogió un acero inoxidable con buenas propiedades mecánicas cuyo nombre comercial es SANDVIK SAF 2507 (Bar)⁴⁴.

•	Esfuerzo de rotura:	$\sigma_{\rm B}=760-930~{\rm MPa}$
•	Esfuerzo de fluencia:	$\sigma_{\rm F} = 550 \; \text{MPa}$
•	Esfuerzo de flexión alternante:	$\sigma_{falt} = 400 \text{ MPa}$
•	Esfuerzo de torsión pulsante:	$\tau_{puls} = 350 \text{ MPa}$

Cálculo por fatiga

Se realizó según el libro de Resistencia de Materiales 2 de la PUCP.

$$\sigma_{aeq} = \sqrt{\sigma_a{}^2 + 3\tau_a{}^2} = 123,7 MPa$$
 , $\sigma_{meq} = \sqrt{\sigma_m{}^2 + 3\tau_m{}^2} = 114,3 MPa$

Factor de seguridad:

$$FS = \left(\frac{\sigma_{meq}}{\sigma_{\rm B}} + \frac{\sigma_{aeq}}{\sigma_{\rm falt}}\right)^{-1} = 2, 2$$

⁴⁴ Consultado en la página web: <u>www.smt.sandvik.com/en-gb/materials-center/material-datasheets/tube-and-pipe-</u>seamless/sandvik-saf-2507/

El factor de seguridad de fatiga obtenido es aceptable.

Verificación por fluencia

$$\sigma_{eqs} = \sqrt{\sigma_s^2 + 3\tau_s^2} = 233,5 MPa$$
$$FS = \frac{\sigma_F}{\sigma_{eq}} = 2,4$$

L.2. Verificación del árbol de entrada por resonancia

Vimos en el cálculo por rigidez que $\delta_C = \frac{PL^3}{8EI}$ en el punto de aplicación de la carga. Recordando la ley de Hooke: *Fuerza* = *rigidez* × *deformación* $P = k\delta$, entonces despejando k:

$$k = \frac{P}{\delta} = \frac{8\mathrm{EI}}{\mathrm{L}^3}$$

•	La rigidez en nuestro caso:	$k = \frac{8EI}{L^3} = 7,18 \times 10^4 \text{ N/mm}$
•	Masa del eje:	$m = ho rac{\pi D^2}{4} rac{3L}{2} = 12,5 \ \mathrm{kg}$

Calculando la frecuencia natural en el modo de vibración coincidente con el punto mencionado: $\omega_0 = \sqrt{k/m}$

• Frecuencia natural:
$$\omega_0 = \sqrt{k/m} = 2396 Hz$$

La frecuencia natural del eje es muy alta. El equipo nunca la alcanzará.

L.3. Verificación de la chaveta por resistencia

Este cálculo de chaveta corresponde a la que transmite el torque entre el árbol de entrada y el acople de grilla. Las dos chavetas del sensor de torque ya no requieren un cálculo pues vienen de fábrica con las medidas $\frac{1}{2}$ " x $\frac{1}{2}$ " x 3 $\frac{1}{2}$ ". No obstante las demás chavetas de la máquina si se calcularon con el mismo procedimiento. La chaveta del árbol del freno con el acople de grilla es la misma que la presente 16x10x110. La chaveta entre el mismo eje de freno y el tambor es más grande pues tiene medidas 16x10x140.

Las siguientes medidas son recomendadas de acuerdo a la norma

para
$$d := 52mm$$

 $b := 16mm$
 $h := 10mm$
 $t_1 := 6mm$
 $t := h - t_1 = 4 \cdot mm$
 $p_{adm} := 260MPa$... (material St60)

$$L_{ef} := \frac{2 \cdot M_t}{d \cdot t \cdot p_{adm}} = 89.87 \cdot mm$$
$$L \ge L_{ef} + b$$
$$L_{ef} + b = 105.87 \cdot mm$$

Entonces seleccionamos una CHAVETA DIN A16x10x110 DIN 6885

Para el cubo del acople debe tenerse como mínimo:

$$L_c := 1.3d = 67.6 \cdot mm$$

 $D_c := 2 \cdot d = 104 \cdot mm$

ANEXO M. Cálculo de las uniones atornilladas de los acoples

Este anexo es la continuación de cálculo de tornillos del acápite 4.4.3. Otras consideraciones a parte de la fuerza tangencial, ocasionada por el torque en las 4 uniones atornilladas del acople, se presentan en la siguiente tabla.

Seguridad al deslizamiento	1,5				
Coeficiente de fricción en el roscado	0,15				
Coeficiente de fricción entre tuerca-brida	0,15				
Coeficiente de fricción entre bridas	0,15				
Efectos de temperatura en la precarga	No hay. La T° es ambiente				
Asentamiento total de superficies	0,013 mm				
Espesor de la brida solidaria	9 mm				
Material de la brida solidaria	EN 1.4410				
Espesor de la brida intercambiable	10 mm				
Material de la brida intercambiable	A-743-CA-6NM				

Parámetros de operación de la unión atornillada.

En la Figura M.1 se observa el diagrama de esfuerzo y deformaciones de la unión entre uno de los tornillos y las placas de las bridas.

Figura M.1. Esquema de fuerza y deformaciones de una unión atornillada del acople.

A continuación se presentan las ecuaciones de cálculo involucradas que se realizaron según la teoría de elementos de máquinas.

• Fuerza normal mínima de montaje: $F_n = \frac{F_r}{\mu} = \frac{7163N}{0,15} = 47750 \text{ N}$

- Factor de seguridad al deslizamiento = $\frac{\text{Precarga de operación}}{F_n}$
- Longitud de asentamiento : δ_{as}
- Rigidez del tornillo : c_t
- Rigidez de las bridas : c_b
- Pérdida de precarga debida al asentamiento = $\frac{c_t c_b}{(c_t + c_b)} \delta_{as}$
- Precarga de montaje (F_0) = Precarga de operación + Pérdida por asentamiento
- Torque de apriete de montaje: $T_m = F_0 \frac{d_2}{2} tan(\phi + \phi') + F_0 \mu \frac{D_m}{2}$
- $\sigma = \frac{4F_0}{\pi d_o^2}$ Esfuerzo normal del perno:
- Esfuerzo de cizallamiento por torsión del perno: $\tau = \frac{16T_{\text{m}}}{\pi d_s^3}$
- Esfuerzo equivalente del perno: $\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2}$
- Presión en las bridas: $F_0/Area$

Los resultados de los cálculos realizados se presentan en la siguiente tabla. Según se aprecia en los resultados obtenidos, el torque máximo de montaje para cada uno de los cuatro tornillos es de 210,1 N-m y se da en el caso crítico que el acople embridado tenga que transmitir el torque máximo del automóvil de 2430 N-m considerado en las estimaciones preliminares del capítulo 2.

Rigidez del perno	827 022 N/mm
Rigidez de las bridas	2 736 760 N/mm
Fuerza mínima de montaje	47 750 N
Seguridad al deslizamiento	1,5
Precarga de operación	71 626 N
Pérdida por asentamiento	8 256 N
Precarga de montaje (F ₀)	79 882 N
Torque de apriete montaje	210,1 N-m
Esfuerzo normal perno	684 MPa
Esfuerzo de cizallamiento por torsión	338 MPa
Esfuerzo equivalente perno	900 MPa
Esfuerzo de fluencia del material	1100 MPa
Factor de seguridad perno	1,22
Presión en las bridas	422 MPa
Presión admisible material bridas	460 MPa

Resultados de los cálculos de la unión atornillada

ANEXO N. Método de selección SKF para acoples tipo grilla

SKF Grid Couplings

In high output (kW) and high torque applications where vibration, shock loads and misalignment occur, SKF Grid Couplings are an excellent choice.

The unique design of the grid and hub teeth enable these couplings to accommodate movement and stresses from all three planes, which can reduce vibration levels by as much as 30%.

The tapered grid element is manufactured from a high strength alloy steel. The grid, which, is the primary wear component of the coupling is designed for quick and easy replacement. Unlike other couplings, the hubs and other components are not disturbed. This makes realignment unnecessary and further reduces downtime and maintenance costs.

Selection

Standard selection method

This selection procedure can be used for most motor, turbine, or engine driven applications. The following information is required to select an SKF grid coupling:

- Torque power [kW]
- Speed [r/min]
- Type of equipment and application
- Shaft diameters
- Shaft gaps
- Physical space limitation
 Special bore or finish information

Exceptions to use of the standard selection method are for high peak loads and brake applications. For these, use the formula selection method or contact SKF.

1 Determine system torque

If torque is not given, use the following formula to calculate for torque (T)

System torque = Power [kW] × 9 549

Speed [t/min]

2 Service factor

Determine the service factor from tables 7 and 8 on pages 60 and 61.

3 Coupling rating

Determine the required minimum coupling rating as shown below:

Coupling rating = service factor × torque [Nm]

4 Size

Select the appropriate coupling from the torque column of the product tables on **pages 12** to **14** with a value that is equal to or greater than that determined in **step 3** above and check that the chosen coupling can accommodate both driving and driven shafts.

5 Other considerations

Possible other restrictions might be speed [t/min], bore, gap and dimensions.

Harizontal split cover \rightarrow page 12

Vartical split cover \rightarrow page 13

4

Full space \rightarrow page 14

Half spacer \rightarrow page 15

SKF

TESIS PUCP

1140 TGH 1150 TGH 1160 TGH	1110 TGH 1120 TGH 1130 TGH	1080 TGH 1090 TGH 1100 TGH	1050 TGH 1060 TGH 1070 TGH	1020 TGH 1030 TGH 1040 TGH			Size	
299,0 416,0 586,0	97, <u>6</u> 143,0 208,0	21,5 39,0 65,7	4,6 7,2 10,4	0,54 1,6 2,6	kW		Power pe 100 r/mir	
28 600 39 800 55 900	9320 13700 19900	2 050 3 730 6 280	435 684 994	52 149 249	Nm		r Rated 1 torque	
1 650 1 500 1 350	2 250 2 025 1 800	3 600 3 600 2 440	4 500 4 500 4 125	4 500 4 500 4 500	r/min		Max speed	
66 108 120	60 66	41 27	12 19	121212	mm	min,	Bore	
184 203 228	117 136 165	79 95 107	50 57 57	30 36 44		max.	e diameter	
384 453,1 501,4	270 308 346	194 213 250	138 150,5 161,9	101,6 110 117,5	mm	A	Dimensi	
374,4 371,8 402,2	259,0 304,4 329,8	180,8 199,8 246,2	123,6 130,0 155,4	98,2 98,2 104,6		Β	ons	Cover profil
184,2 182,9 198,1	127,0 149,2 161,9	88,9 98,4 120,6	60,3 63,5 76,2	47,5 47,5 50,8		C		-1140 es
254,0 269,2 304,8	160,3 179,4 217,5	104,8 123,8 142,1	66,7 76,2 87,3	39,7 49,2 57,2				SE 608
201 271,3 278,9	161,5 191,5 195	116 122 155,5	79,5 92 95	66 68,3 70				es 1150 - 12
- 391,2 436,9	111	111		111		- T		
	111	64,5 71,6 -	44,7 52,3 53,8	39,1 39,1 40,1		S		→
1111 5555	11 11 12 1,5 5 5	12 12 12 55 55	14 14 14 15 15 15	444 7000	mm	min.	6 gap	
666	66J	տաա	ωωω	ພພພ		Normal		
12,5 12,5	9,5 12,5 12,5	6 9,5	4,55 4,55	44 ភ្លំភ្លំភ្		max.		and the second
1,13 1,95 2,81	0,508 0,735 0,907	0,172 0,254 0,426	0,068 0,086 0,113	0,027 0,040 0,054	kg		Lubricant weight	LE HERE FEEL
178 234 317	54 81 121	18 25 42	5,4 7,3 10	2,6 3,6	kg		Coupling weight without bore	

TESIS PUCP

ANEXO O. Selección de sensores y accesorios

O.1. Sensor de torque de rotación

La parte electrónica de la tesis se seleccionó del fabricante HONEYWELL. Esta incluye dos sensores de torque, dos sensores de rpm, dos *display* y un software de descarga de datos para PC. El sensor de torque es del tipo rotacional (Figura O.1), es decir, cuando está en servicio sus ejes en rotación no entran en contacto con la carcasa que es fija.

Figura O.1. Sensor de torque rotacional Honeywell Series 1600.

Los datos de entrada necesarios para la selección del sensor de torque son los casos críticos de velocidad angular máxima y torque máximo:

- Torque máximo: 2 430 N-m (1era velocidad de la caja de cambios)
- Velocidad angular máxima: 2 331 rpm (6ta velocidad de la caja de cambios)

Entonces, y según la información proporcionada por el fabricante que se muestra en el ANEXO P, se procede a la selección del sensor de torque.

El modelo elegido es el 1606-30K y su capacidad y especificaciones son:

✓	Capacidad	: 3390 N-m
√	Sobrecarga admitida	: 6780 N-m (60 000 lb-in)
√	Máximas revoluciones	: 6700 rpm
√	Rigidez torsional	: 460980 N-m/rad = 8045,6 N-m/grado sexagesimal
✓	Peso	: 18,2 kg

- ✓ Histéresis
- : ±0,1% del torque medido : ±0,1% del torque medido

: $\pm 0,05\%$ del torque medido

- No linealidad
- ✓ Repetitividad
- ✓ Cantidad
- : 2 (uno por cada unidad de absorción de potencia)

Figura O.2. Sensor de torque rotacional Honeywell Series 1600 y sus componentes opcionales.

Accesorios

Los accesorios que se presentan en este inciso son indispensables para obtener las curvas de potencia y torque versus velocidad angular, producto de los ensayos del dinamómetro, y poder visualizarlas en una computadora. Los mismos son dos sensores de velocidad angular, dos display, un software utilitario para procesamiento de datos en PC y dos cables. Ellos se eligieron también del fabricante Honeywell y son compatibles según las especificaciones técnicas del sensor de torque seleccionado previamente. Estos accesorios se deben adquirir en pares a excepción del software utilitario. En la Figura O.2 se pueden apreciar los accesorios seleccionados encerrados en dos rectángulos rojos y con un "check" el equipo suministrado por el cliente (a adquirir por separado) que en este caso es la PC.

O.2. Sensor de velocidad angular magnético

En el caso de este componente, el código enmarcado en un cuadro rojo que va acompañado de las palabras "speed sensor" ha sido reemplazado por el código de venta 064-LW24368-2 en las cotizaciones del capítulo 5. El sensor se muestra en la Figura O.3. Entre sus características este sensor cuenta con salida eléctrica de frecuencia sinusoidal y se ensambla directamente al sensor de torque a través de un conector de dos pines.

Figura O.3. Sensor de velocidad magnético pasivo.

O.3. *Display* para torque, velocidad angular y potencia:

En este caso se selecciona el de código de venta 7541-115 (Figura O.4) que posee 2 canales de entrada: uno para el torque y el otro para la velocidad angular, datos que provienen de los respectivos sensores. La potencia es calculada por este dispositivo como el producto de los otros dos datos. Esta interface tiene la capacidad de presentar las 3 variables en su pantalla pero sólo puede mostrar 2 de ellas al mismo tiempo. Otras características y especificaciones pueden consultarse en la segunda página del ANEXO P.

Figura O.4. Display Honeywell modelo 7541.

O.4. Software utilitario

En este caso se selecciona el de código de venta AA-183 (Figura O.5) según la segunda página del ANEXO P.

Figura O.5. Software utilitario para instrumentación Honeywell.

O.5. Cable del sensor de velocidad

Se selecciona el cable de 15 pies de largo con código de venta 7204-00-15 según la segunda página del ANEXO P.

ANEXO P. Especificaciones técnicas de los sensores de torque rotacional Honeywell Series 1604-1607⁴⁵ y accesorios

PERFORMANCE SPECIFICATIONS

Characteristic	Measure
Torque range	50 lb-in to 100000 lb-in
Non-linearity	±0.1 % of rated output
Hysteresis	±0.1 % of rated output
Repeatability	±0.05 % of rated output
Output @ rated capacity	2 mV/V (nominal)

ENVIRONMENTAL SPECIFICATIONS

Characteristic	Measure
Temperature, operating	-29 °C to 93 °C [-20 °F to 200 °F]
Temperature, compensated	21 °C to 77 °C [70 °F to 170 °F]
Temperature effect, zero	±0.002 % of rated output/°F
Temperature effect, output	±0.002 % of reading/°F

ELECTRICAL SPECIFICATIONS

Characteristic	Measure
Excitation	3.28 kHz optimum @ 10 Vac max. RMS
Insulation resistance	> 5000 mOhm@ 50 Vdc
Bridge resistance	350 ohm(nominal)
Number of bridges	1
Zero balance	±1.0 % of rated output

TYPICAL SYSTEM DIAGRAM

I YPICAL SYSTEM DI	IAGRAM
Mating Connectors & Cables	<u>š</u>
064-LW13521 Mating conne 064-LW13556 Mating conne 064-LW25469 Mating conne (unamplified to 7200-106-XX* Mating conne (for connectio 7204-00-XX* Speed sensor 7204-16-XX* Speed sensor 7220-4-16-XX* Zero velocity : 7220-119-XX* Zero velocity :	ctor ctor, speed pickup ctor, speed pickup ctor & 6 conductor cable unit with sense leads but not shunt cal) sctor & 6 conductor cable n to instrument 7541) r cable, pigtail leads at instrument r cable, pigtail leads at instrument speed sensor cable, pigtail leads at instrument speed sensor cable to instrument 7541
* XX represents length in fe ** XX represents length in fe	et 100ft mæximum et 20ft mæximum
Customer Supplied Chart Recorder Alarm Panel Data Acquisition Computer PLC	Display Units 7541-111 (Single Channel Display) 7541-112 (Dual Channel Display) 7541-115 (For Torque and Optional Speed Display)

MECHANICAL SPECIFICATIONS

Model	Capacity Ib-In	Capacity N-m	Max speed RPM	Protected for overloads to lb-in	Torsional stiffness lb-in/rad	Rotating inertia lb-in/sec ²	Welght kg [lb]
1604-50	50	5	10000	150	5000	2.59 x 10 ⁻³	8,20 [18]
1604-100	100	10	10000	300	13500	2.59 x 10°	8,20 [18]
1604-200	200	20	10000	600	33000	2.59 x 10 ⁻³	8,20 [18]
1604-500	500	55	10000	1500	85000	2.59 x 10 ⁻³	8,20 [18]
1604-1K	1000	115	10000	3000	150000	2.59 x 10°	8,20 [18]
1604-2K	2000	225	10000	3000	225000	2.59 x 10°	8,20 [18]
1605-2K	2000	225	10000	6000	700000	8.41 x 10 ⁻³	12,70 [28]
1605-5K	5000	565	10000	15000	950000	8.41 x 10°	12,70 [28]
1605-10K	10000	1130	10000	20000	1000000	8.41 x 10°	12,70 [28]
1606-20K	20000	2250	6700	60000	4080000	3.62 x 10 ⁻²	18,20 [40]
1606-30K	30000	3390	6700	60000	4080000	3.62 x 10 ⁻²	18,20 [40]
1607-50K	50000	5650	6000	150000	11800000	0.15	34,10 [75]
1607-100K	100000	11300	6000	150000	19950000	0.47	34,10 [75]

⁴⁵ HONEYWELL (2008). Model 1604-1607 Standard Rotating Shaft Torque Sensor.

Torque Accessories

PASSIVE MAGNETIC SPEED SENSOF

Order Code	Description
064-LW24368-1	for Models 1102 and 1602
064-LW24368-2	for Models 1100, 1600, and 1800 Series
064-LW24368-3	for Model 1228
064-LW24368-4	for Model 1248
064-LW24368-5	for Model 1648

PASSIVE SPEED SENSOR PICKUP CABLE ASSEMBLY

Order Code	Description
7204-00-15	15 feet
7204-00-50	50 feet
7204-00-100	100 feet
7204-16-15	15 feet with connector for Model 7541
7204-16-50	50 feet with connector for Model 7541
7204-16-100	100 feet with connector for Model 7541

CALIBRATION ARM

 Order Code
 Description

 071-LW10686
 Calibration armfor Model 2404 torque systems

Order Code	Description
071-LW10070-1	Calibration beam for Models 1102, 1602, 2105, and 2120
071-LW11540	Calibration beam for Model 1103
071-LW14086-1	Calibration beam for Models 1104, 1604, and 1804 (for ranges 500 lb through 2K lb)
071-LW14086-2	Calibration beam for Models 1104, 1604, and 1804 (for ranges 50 lb through 500 lb)

Model 7541 AC Carrier or DC Strain Gage Conditioner Indicator

FEATURES

- May be calibrated in two directions (clockwise and counterclockwise or tension and compression)
- Fast, rock-solid readings with high noise immunity 2000 samples/sec for torque, head, or drawbar force input - 1 ms response for speed
- One or two channel input
- Six-digit engineering unit with legends and 0.01 % resolution max.
- No pots, batteries, fans, maintenance, or external power supplies
- Excitation: ac carrier models, 3.28 kHz, 3 V rms; dc models, 5 V or 10 V dc, user selectable

Order code

- 7541-111 ac excitation, single display
- 7541-112 ac excitation, dual display (two inputs)
- 7541-115 ac excitation, torque, RPM, hp (displays 2 of the 3)
- 7541-101 dc excitation, single display
- 7541-102 dc excitation, dual display (two inputs)
- 7541-105 dc excitation, torque, RPM, hp (displays 2 of the 3)

TESIS PUCP

ANEXO Q. Cotizaciones

Q.1.	Cotización	de sensores y	materiales	accesorios
------	------------	---------------	------------	------------

23,072.00						
TOTAL LISS				FORMA DE PAGO 30% ADELANTADO, SALDO CONTRA ENTREGA	NOTA:	
220.00	220.00	EA	1.00	Software utilitario del instumento Order Code: AA183 Marca: HONEYWELL Origen: USA (Entrega 14 semanas a partir de la recepción de la orden de comnua)	AA183	
3,840.00	3,840.00	EA	1.00	Instrumento de medición Order Code: 7541-115 Modelo: 7541 Marca: HONEYWELL Origen: USA (Entrega 8 semanas a partir de la recepción de la orden de compra)	7541-115	4
660.00	330.00	EA	2.00	Cable conector Order Code: 7204-00-15 Marca: HONEYWELL Origen: USA (Entrega 8 semanas a partir de la recepción de la orden de compra)	7204-00-15	. <mark>ເ</mark>
690,00	345.00	EA	2.00	Sensor de Velocidad Order Code: 064-LW24368-2, Marca: HONEYWELL Origen: USA (Entrega 8 semanas a partir de la recepción de la orden de compra)	064-LW24368	ાન
17,662.00	8,831.00	EA	2.00	Sensor de Torque Rotacional Rango: 30.000 in-lbs, Salida: mV/V, Temperatura de Operación: 20 a 75 °C, Order Code: 1606- 30K,1AD,2U,6AC,15C Modelo: 1606, Marca: HONEYWELL Origen: USA (Entrega 14 semana: a partir de la recepción de la orden de compra)	1606-30K	1
TOTAL USS	P.U.S	UM	CANTIDAD	DESCRIPCION	CODIGO	IT
				acemos llegar nuestra oferta por el siguiente material :	el presente, ha	Por
				jose.covenas@qualityprofessionalsoftware.com	E-mail: j	
4. 92	VER NOTA	TREGA	TIEMPO ENT	989.001.659 veñas Flores / Soporte en Software de Ingenieria	RPC: + 51 1 99 José Luis Cov	
	30 DIAS	FERTA	VALIDEZ O	ctores Nº 395 - Of. 302 La Molina, Lima 12, Perú	Av. Construct	
YE	NO INCLU	V. 18%	IMP. IC	PROFESSIONAL SOFTWARE S.A.C.	QUALITY	
NTA	NES DE VE	NDICIO	CO		ORES	SED
		6	0			
TTATT	1.01			www.aiesac.com		
CHA	18/1	1		1EL: (511) 401-3828 FAX: (511) 400-5059		
51-11-QPS	AIE-046	Ť		LIMA - 17 PERU	A. I. E.	_
ACION	COIL	1		Jr. Bolivar 695 Magdalena del Mar		
101865101	RUC: 20			AMERICAN INDUSTRIAL EQUIPMENT S.A.C.		8

Q.2. Cotización de acoples flexibles SKF

ALFA BEARING S.A.C.

Oficina: Av. Nicolas Arriola 1399 - La Victoria Teléfono: +51 1 324-3344 Fax: +51 1 323-1484 Nextel: 837*7946

www.alfabearing.com alfabearingsac@terra.com.pe ventas1@alfabearing.com

Numero de	Cliente	Fecha de Emisión	Fecha de Validez	Moneda	Condicón de Pago
Proforma		06/12/2011	15/12/2011	USD	CONTADO
2011AB00948	QUALITY PROFESSIONAL SOFTWARE S.4				
				-	
Item	Producto	Cantidad	Precio Unitario	Total	Tiempo de entrega
1	Acoples PHE 1100H GRID KIT SKF	4	823.69	3294.76	Stock, salvo venta previa.
			Valor Neto	3294.76	
N. de Req.	Email		I.G.V.(18%)	593.06	
Ref. del Cliente	José Luis Coveñas Flores		Total	3887.82	
Ref. Alfa Bearing	Juliana Linares N.				

Q.3. Cotización de uniones atornilladas

COTIZACION N° 037640 FECHA : 06/12/2011

Ruc : 20500242966 Calle Omicrón 340-348 Paque de la Industria y Comercio - Callao Telefonos : 452-0355 / 452-5345 Fax : 561-2467 Email : ventas@ajusteperfecto.com

Señor (es) : QUILITY PROFESIONAL SOFTWARE S.A.C.

Dirección :

Atte. Sr(a) : JOSE LUIS COVENAS FLORES

Nos es grato saludarlos y les hacemos llegar nuestra cotización de acuerdo a lo solicitado

Itm	Descripción	Und	d Cant.	Precio	% Dto	Total
1	PERNO HEX INOX 304 M-14 X 50	PZA	100.00	1.5230	0.00	152.30
2	PERNO HEX INOX 304 M-16 X 70	PZA	100.00	1.8950	0.00	189.50
3	PERNO HEX INOX 304 M-6 X 30	PZA	100.00	0.1240	0.00	12.40
4	PERNO HEX INOX 304 3/8" X 2"	PZA	100.00	0.3610	0.00	36.10
5	ESPARRAGO INOX 304 M-10 X 1.0 M	PZA	10.00	7.9000	0.00	79.00
6	TUERCA HEXAGONAL UNC INOX 304 M-14	PZA	100.00	0.5660	0.00	56.60
7	TUERCA HEXAGONAL UNC INOX 304 M-16	PZA	100.00	0.6480	0.00	64.80
8	TUERCA HEXAGONAL UNC INOX 304 M-6	PZA	100.00	0.0380	0.00	3.80
9	TUERCA HEXAGONAL UNC INOX 304 3/8"	PZA	100.00	0.0850	0.00	8.50
10	TUERCA HEXAGONAL UNC INOX 304 M-10	PZA	100.00	0.1360	0.00	13.60
11	ARANDELA PRESION INOX 304 M-6	PZA	100.00	0.0230	0.00	2.30
12	ARANDELA PRESION INOX 304 M-10	PZA	100.00	0.0540	0.00	5.40
13	ARANDELA PRESION INOX 304 M-14	PZA	100.00	0.2000	0.00	20.00
14	ARANDELA PRESION INOX 304 M-16	PZA	100.00	0.2100	0.00	21.00
1		US\$	Dscto	0.00 Sub	Total	665.3
					lgv	119.7
					54274	

(US\$) Total 785.05

Q.4. Precios de soportes de fundición con rodamientos Y de SKF⁴⁶

Έδρανα χυτοσίδηρου					Y-bearing units with cast housing			
Y-laakeriyksiköt, valurautapesä				Y-Lagereinheiten mit Gussgehäuse				
Unidades de Rolamentos Y com chumaceira de ferro fundido					Paliers Y avec corps en fonte			
Y-lejeenheder me	Y-lejeenheder med støbejernshuse Sopporti Y con corpo in ghisa							in ghisa
Y-lagerenheter med gjutna lagerus					Soportes de fundición con rodamientos Y			
Y-lagerenheter med stopejernshus Y-lagereenheden met gietijzeren huizen						n huizen		
Unit	Shaft	€	Housing	Bearing		€	End cover	€
SY 15 FM	15	***	SY 503 M	YET 203/15		31.54		
SY 17 FM	17	***	SY 503 M	YET 203		31,54		
SY 20 FM	20	53,76	SY 504 M	YET 204		34,64	ECY 204	***
SY 25 FM	25	60,97	SY 505 M	YET 205		37,43	ECY 205	***
SY 30 FM	30	72,59	SY 506 M	YET 206		44,76	ECY 206	***
						- · ·		
SY 35 FM	35	85,23	SY 507 M	YET 207		54,57	ECY 207	***
SY 40 FM	40	99,42	SY 508 M	YET 208		66,01	ECY 208	***
SY 45 FM	45	118,67	SY 509 M	YET 209		78,88	ECY 209	***
SY 50 FM	50	133,95	SY 510 M	YET 210		85,25	ECY 210	***
SY 55 FM	55	***	SY 511 M	YET 211		103,69	ECY 211	***
SY 60 FM	60	215,48	SY 512 M	YET 212		141,51	ECY 212	***
SY 30 LF	30	***	SY 506 M	YSP 206 SB-2F		***		
SY 35 LF	35	***	SY 507 M	YSP 207 SB-2F		***		
SY 40 LF	40	***	SY 508 M	YSP 208 SB-2F		***		-
SY 45 LF	45	***	SY 509 M	YSP 209 SB-2F		***		
SY 12 TF	12	***	SY 503 M	YAR 203/12-2F		29,59		
SY 15 TF	15	***	SY 503 M	YAR 203/15-2F		29,59		
SY 17 TF	17	***	SY 503 M	YAR 203-2F		29,59		
SY 20 TF	20	48,59	SY 504 M	YAR 204-2F		29,59	ECY 204	***
SY 25 TF	25	57,67	SY 505 M	YAR 205-2F		34,20	ECY 205	***
SY 30 TF	30	69,48	SY 506 M	YAR 206-2F		41,73	ECY 206	***
SY 35 TF	35	81,07	SY 507 M	YAR 207-2F		50,51	ECY 207	***
SY 40 TF	40	93,68	SY 508 M	YAR 208-2F		60,40	ECY 208	***
SY 45 TF	45	106,91	SY 509 M	YAR 209-2F		67,34	ECY 209	***
SY 50 TF	50	125,01	SY 510 M	YAR 210-2F		76,46	ECY 210	***
SY 55 TF	55	164,07	SY 511 M	YAR 211-2F		99,23	ECY 211	***
SY 60 TF	60	206,63	SY 512 M	YAR 212-2F		132,64	ECY 212	***
SY 65 TF	65	255,99	SY 513 M	YAR 213-2F		152,88	ECY 213	***
SY 1. TF	25,4	***	SY 505 M	YAR 205-100-28	F	34,20	ECY 205	***
SY 1.1/2 TF	38,1	***	SY 508 M	YAR 208-108-28	F	***	ECY 208	***

En el diseño de esta tesis se emplearon 4 chumaceras por cada unidad de absorción, es decir, en total 8 de estos elementos.

⁴⁶ Extraído de la lista de precios de SKF (SKF, Price list €, 2012).