ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión

ÇENGEL, Yunus A. y John M. CIMBALA, "Mecánica de fluidos: Fundamentos y aplicaciones", 1ª edición, McGraw-Hill, 2006. Tabla A-9.

Temp.	Densidad ρ, kg/m ³	Calor especifico c _p J/kg - K	Conductividad těrmica k, W/m - K	Difusividad térmica α, m²/s	Viscosidad dinámica μ, kg/m·s	Viscosidad cinemática ν, m²/s	Número de Prandtl Pr
-150 -100 -50 -40 -30	2.866 2.038 1.582 1.514 1.451	983 966 999 1002 1004	0.01171 0.01582 0.01979 0.02057 0.02134	4.158×10^{-6} 8.036×10^{-6} 1.252×10^{-5} 1.356×10^{-5} 1.465×10^{-6}	8.636×10^{-6} 1.189×10^{-6} 1.474×10^{-5} 1.527×10^{-5} 1.579×10^{-5}	3.013×10^{-6} 5.837×10^{-6} 9.319×10^{-6} 1.008×10^{-5} 1.087×10^{-5}	0.7246 0.7263 0.7440 0.7436 0.7425
-20 -10 0 5	1.394 1.341 1.292 1.269 1.246	1005 1006 1006 1006 1006	0.02211 0.02288 0.02364 0.02401 0.02439	1.578×10^{-5} 1.696×10^{-5} 1.818×10^{-5} 1.880×10^{-5} 1.944×10^{-5}	1.630×10^{-5} 1.680×10^{-5} 1.729×10^{-5} 1.754×10^{-6} 1.778×10^{-5}	1.169×10^{-5} 1.252×10^{-5} 1.338×10^{-5} 1.382×10^{-5} 1.426×10^{-5}	0.7408 0.7387 0.7362 0.7350 0.7336
15 20 25 30 35	1.225 1.204 1.184 1.164 1.145	1007 1007 1007 1007 1007	0.02476 0.02514 0.02551 0.02588 0.02625	$\begin{array}{c} 2.009 \times 10^{-5} \\ 2.074 \times 10^{-5} \\ 2.141 \times 10^{-5} \\ 2.208 \times 10^{-6} \\ 2.277 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.802 \times 10^{-5} \\ 1.825 \times 10^{-5} \\ 1.849 \times 10^{-5} \\ 1.872 \times 10^{-5} \\ 1.895 \times 10^{-5} \end{array}$	1.470×10^{-5} 1.516×10^{-5} 1.562×10^{-5} 1.608×10^{-5} 1.655×10^{-5}	0.7323 0.7309 0.7296 0.7282 0.7268
40 45 50 60 70	1.127 1.109 1.092 1.059 1.028	1007 1007 1007 1007 1007	0.02662 0.02699 0.02735 0.02808 0.02881	2.346×10^{-5} 2.416×10^{-5} 2.487×10^{-5} 2.632×10^{-5} 2.780×10^{-5}	$\begin{array}{c} 1.918 \times 10^{-5} \\ 1.941 \times 10^{-5} \\ 1.963 \times 10^{-5} \\ 2.008 \times 10^{-5} \\ 2.052 \times 10^{-5} \end{array}$	1.702×10^{-5} 1.750×10^{-5} 1.798×10^{-5} 1.896×10^{-5} 1.995×10^{-5}	0.7255 0.7241 0.7228 0.7202 0.7177
80 90 100 120 140	0.9994 0.9718 0.9458 0.8977 0.8542	1008 1008 1009 1011 1013	0.02953 0.03024 0.03095 0.03235 0.03374	2.931×10^{-5} 3.086×10^{-5} 3.243×10^{-5} 3.565×10^{-5} 3.898×10^{-5}	2.096×10^{-5} 2.139×10^{-5} 2.181×10^{-5} 2.264×10^{-5} 2.345×10^{-6}	2.097×10^{-5} 2.201×10^{-5} 2.306×10^{-5} 2.522×10^{-5} 2.745×10^{-5}	0.7154 0.7132 0.7111 0.7073 0.7041
160 180 200 250 300	0.8148 0.7788 0.7459 0.6746 0.6158	1016 1019 1023 1033 1044	0.03511 0.03646 0.03779 0.04104 0.04418	4.241×10^{-5} 4.593×10^{-5} 4.954×10^{-5} 5.890×10^{-5} 6.871×10^{-5}	2.420×10^{-5} 2.504×10^{-5} 2.577×10^{-5} 2.760×10^{-5} 2.934×10^{-5}	2.975×10^{-5} 3.212×10^{-5} 3.455×10^{-5} 4.091×10^{-5} 4.765×10^{-5}	0.7014 0.6992 0.6974 0.6946 0.6935
350 400 450 500 600	0.5664 0.5243 0.4880 0.4565 0.4042	1056 1069 1081 1093 1115	0.04721 0.05015 0.05298 0.05572 0.06093	7.892×10^{-5} 8.951×10^{-5} 1.004×10^{-4} 1.117×10^{-4} 1.352×10^{-4}	3.101×10^{-5} 3.261×10^{-5} 3.415×10^{-5} 3.563×10^{-5} 3.846×10^{-5}	5.475×10^{-5} 6.219×10^{-5} 6.997×10^{-5} 7.806×10^{-5} 9.515×10^{-5}	0.6937 0.6948 0.6965 0.6986 0.7037
700 800 900 1000 1500 2000	0.3627 0.3289 0.3008 0.2772 0.1990 0.1553	1135 1153 1169 1184 1234 1264	0.06581 0.07037 0.07465 0.07868 0.09599 0.11113	1.598×10^{-4} 1.855×10^{-4} 2.122×10^{-4} 2.398×10^{-4} 3.908×10^{-4} 5.664×10^{-4}	4.111×10^{-5} 4.362×10^{-5} 4.600×10^{-5} 4.826×10^{-5} 5.817×10^{-5} 6.630×10^{-5}	1.133 × 10 ⁻⁴ 1.326 × 10 ⁻⁴ 1.529 × 10 ⁻⁴ 1.741 × 10 ⁻⁴ 2.922 × 10 ⁻⁴ 4.270 × 10 ⁻⁴	0.7092 0.7149 0.7206 0.7260 0.7478 0.7539

Nota: Para gases ideales, c_{μ} k, μ y Pr son independientes de la presión. Las propiedades ρ , ν y α a una presión P distinta a 1 atm se determinan cuando se multiplican los valores de ρ a la temperatura dada por P (en atm) y cuando se dividen ν y α entre P (en atm).

Fuente: Datos generados a partir del Software EES desarrollado por S. A. Klein y F. L. Alvarado. Fuentes originales:: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, y P. Hestermans, IFI/Pienun, NY, 1970, ISBN 0-306067020-8.

ANEXO 2: Tablas de las propiedades del agua saturada

ÇENGEL, Yunus A. y John M. CIMBALA, "Mecánica de fluidos: Fundamentos y aplicaciones", 1ª edición, McGraw-Hill, 2006. Tabla A-3.

Temp.	Presión de saturación		nsidad kg/m ³	Entalpía de vaporización	Ca espec c _p , J/I	ifico	térr	rtividad nica m - K	Viscosidad μ. kg/		Nümer Pran Pr	dtl	Coeficiente de expansión volumétrica B. 1/K
T, "C	P _{set} , kPa	Líquido	Vapor	h _{fg} , kJ/kg	Liquido	Vapor	Liquido	Vapor	Liquido	Vapor	Liquido	Vapor	Líquido
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00	-0.068×10^{-1}
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-1}	0.934×10^{-5}	11.2	1.00	0.015×10^{-1}
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-6}	9.45	1.00	$0.733 \times 10^{\circ}$
15	1.7051	999.1	0.0128	2466	4186	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	$0.138 \times 10^{\circ}$
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	$0.195 \times 10^{-}$
25	3.169	997:0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987 × 10 ^{-h}	6.14	1.00	0.247 × 10
30	4.246	996.0	0.0304	2431	4178	1875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294 × 10
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-9}	4.83	1.00	0.337 × 10
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-6}	4.32	1.00	0.377 × 10
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-6}	3.91	1.00	$0.415 \times 10^{-}$
50	12.35	988.1	0.0831	2383	4181	1900	0.644	0.0204	0.547 × 10 ⁻³	1.062×10^{-6}	3.55	1.00	0.451 × 10
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077 × 10 ⁻¹¹	3.25	1.00	0.484 × 10
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-6}	2.99	1.00	0.517 × 10
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433 × 10 ⁻³	1.110×10^{-6}	2.75	1.00	0.548 × 10
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00	0.578 × 10
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378 × 10 ⁻³	1.142×10^{-5}	2.38	1.00	0.607 × 10-
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-8}	2.22	1.00	0.653 × 10
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-8}	2.08	1.00	0.670 × 10
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240	0.315×10^{-3}	1.193×10^{-5}	1.96	1.00	0.702 × 10
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-8}	1.85	1.00	0.716 × 10
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251	0.282×10^{-3}	1.227×10^{-5}	1.75	1.00	0.750 × 10
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262	0.255×10^{-3}	1.261 × 10 ⁻⁵	1.58	1.00	0.798 × 10
120	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00	0.858 × 10°
130	270.1	934.6	1,496	2174	4263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-6}	1.33	1.01	$0.913 \times 10^{-}$
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1,02	0.970 × 10°
150	475.8	916.6	2,546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02	1.025 × 10
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05	1.145 × 10
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05	$1.178 \times 10^{-}$
180	1,002.1	887.3	5.153	2015	4410	2590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-8}	0.983	1.07	1.210 × 10
190	1,254.4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.142×10^{-3}	1.537×10^{-1}	0.947	1.09	1.280 × 10
200	1,553.8	864.3	7.852	1941	4500	2840	0.663	0.0401	0.134×10^{-3}	1.571×10^{-5}	0.910	1.11	1.350 × 10°
220	2,318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122×10^{-8}	1.541×10^{-5}	0.865	1.15	$1.520 \times 10^{\circ}$
240	3,344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-1}	0.836	1.24	1.720 × 10
260	4,688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35	2.000 × 10
280	6,412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49	2.380 × 10°
300	8,581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69	2.950 × 10
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97	
340	14,586	610.5	92.62	1028	8240	11,870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2,43	
360	18,651	528.3	144.0	720	14,690	25,800	0.427	0.178	0.060×10^{-3}	2.571×10^{-5}	2.06	3.73	
374.14	22,090	317.0	317.0	0	-	-	-	_	0.043×10^{-8}	4.313×10^{-9}			

Nota 1: La viscosidad cinemática ν y la difusividad térmica α se pueden calcular a partir de sus definiciones:, $\nu = \mu l \rho$ y $\alpha = k l \rho c_\rho = \nu l P r$. Las temperaturas 0.01°C, 100°C y 374.14°C son las temperaturas del punto triple, de ebullición y crítico del agua, respectivamente. Las propiedades citadas anteriormente (excepto la densidad del vapor) se pueden usar a cualquier presión con error despreciable, excepto a temperaturas cerca del valor de punto crítico.

Nota 2: La unidad kJ/kg - °C para calor específico es equivalente kJ/kg - K, y la unidad W/m - °C para conductividad térmica es equivalente a W/m - K.

Fuente: Los datos de viscosidad y conductividad térmica están tomados de J. V. Sengers y J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291-1322. Otros datos se obtuvieron de diversas fuentes o se calcularon.

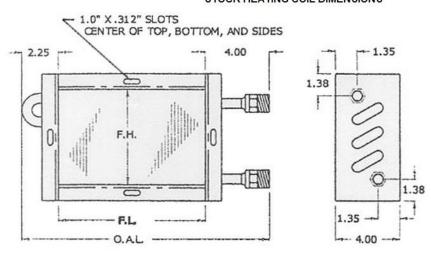
ANEXO 3: Tablas de las propiedades del agua saturada (adicional)

ÇENGEL, Yunus A. y Michael A. BOLES, *"Termodinámica"*, 6ª edición, McGraw-Hill, 2008. Tabla A-4.

			n <i>especifico,</i> m ³ /kg	E	nergia in kJ/kg	TETOLOGICA STATE		Entalpii kJ/kg	9,		Entropia kJ/kg · k	
Temp.,	Pres.	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	
T°C	P _{sat} kPa	V_f	v_g	U_f	u_{fg}	u_g	h _f	h _{fg}	hg	St	Sfg	Sg
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8,8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8,5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368		8.4520
35	5.6291	0.001004	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	
												8.0748
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038		
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313		7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6,9360	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6,5355	7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188		7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279		7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7 0771
130	270.28	0.001065	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	
135	313.22			567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	
	361.53	0.001075	0.58179	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	
140 145	415.68	0.001080	0.50850 0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	
155	543,49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	6.4302

ANEXO 4: Ficha técnica del equipo F210-6x6

Imagen tomada del sitio Usa Coil & Company:


http://www.usacoil.com/products/hotwater/details.cfm?rfnbr=51

(Página consultada el 3 de Diciembre del 2013)

F210-6 x 6

F.H. x F.L.	CFM @	G.P.M. @	60°F EAT	Water	CFM @ 750 FPN Steam MBH	
6 x 6	750 FPM	180° ENT H ₂ O	MBH	FT. Pressure Drop	@ 2 psig	
Rows	187	1.8000	9.8000	2.1100	12.2000	
2	187	3.0000	10.6000	4.2500		
Fins/Inch	187	4.2000	10.9000	6.4700		
10						

STOCK HEATING COIL DIMENSIONS

ANEXO 5: Ficha técnica del equipo F210-6x6 (adicional)

Imagen tomada del sitio Usa Coil & Company:

http://www.usacoil.com/products/hotwater/specifications.cfm

(Página consultada el 3 de Diciembre del 2013)

Specifications

Construction

5/8" Copper Tubes - .020" Wall

Thickness

Aluminum Fins- 10 F.P.I.- .006" Fin

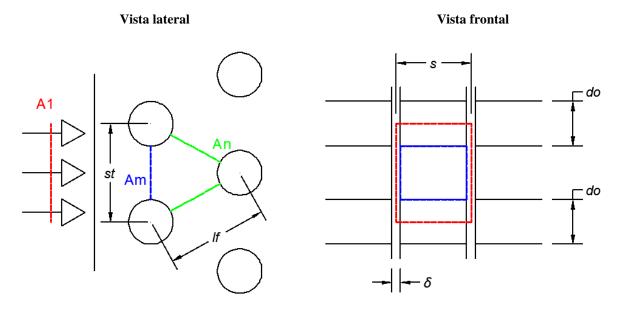
Thickness

16 Ga. Galvanized Steel Casing

Copper Headers where applicable -

M.P.T. Connections

CONDENSED DATA CHART - 1 ROW & 2 ROW COIL


1 ROW MODEL NO.			CONNECTION SIZES COIL WEIGHT			
(CLICK UNDERLINED FOR MORE INFO)	2 ROW MODEL NO.	1 ROW OR 2 ROW CASING DIM.	1 ROW	2 ROW	1 ROW	2 ROW
F110-6 x 6	F210-6 x 6	8 x 8 x 4	3/4	3/4	6	7
F110-6 x 9	F210-6 x 9	8 x 11 x 4	3/4	3/4	7	10
F110-6X12 *	F210-6X12 *	8X14X4	3/4	3/4	8	12
F110-6X15	F210-6X15	8X17X4	3/4	3/4	9	15
F110-6X18	F210-6X18	8X20X4	3/4	3/4	10	16

ANEXO 6: Fórmulas para el cálculo de la velocidad máxima del flujo de aire

El punto 2.2.3.1 correspondiente a las propiedades del flujo de aire requiere del cálculo de un parámetro denominado velocidad máxima del flujo de aire V_{max} . Para ello se suministran dos fórmulas: la ecuación 2.11 y la ecuación 2.12.

A continuación se presenta la demostración de estas dos fórmulas para el cálculo de la velocidad máxima del flujo de aire.

Se comienza presentando un esquema del intercambiador de calor:

Se presentan las dimensiones correspondientes al espaciamiento entre aletas s, el espesor de aletas δ , el espaciamiento transversal entre tubos s_t , la distancia diagonal entre hileras contiguas (o largo virtual de la aleta) l_f y el diámetro de los tubos d_0 .

La velocidad máxima al interior del intercambiador de calor se da debido a que existe una menor área de flujo al interior del intercambiador que acelera el flujo. Estas dos posibles áreas de menor flujo puede darse en A_m o A_n (esta área incluye ambos segmentos verdes). Por ende, se procede a determinar cuál de las dos áreas es menor a través de las ecuaciones geométricas que las definen:

$$A_m = (s - \delta) \left(s_t - d_0 \right)$$

$$A_n = 2 (s - \delta) \left(l_f - d_0 \right)$$

Comparando ambas ecuaciones, se obtiene:

$$A_m <> A_n$$

$$(s - \delta) (s_t - d_0) <> 2 (s - \delta) (l_f - d_0)$$

$$(s_t - d_0) <> 2(l_f - d_0)$$

$$s_t - d_0 <> 2l_f - 2d_0$$

$$\frac{s_t + d_0}{2} <> l_f$$

Entonces, si:

$$\frac{s_t + d_0}{2} < l_f \quad ; \quad A_m < A_n$$

En cambio, si:

$$\frac{s_t + d_0}{2} > l_f \quad ; \quad A_m > A_n$$

Una vez determinada el área de menor flujo, se procede a calcular la máxima velocidad, considerándose los datos de velocidad de flujo de aire en flujo libre V_1 a través del área A_1 con una densidad ρ_1 ; y un flujo de aire a través del intercambiador de calor con una temperatura de masa T_b , por ende, con una densidad ρ_b . Se supone que el flujo másico es constante a la entrada como al interior del intercambiador de calor, por lo cual se tiene:

$$\begin{split} \dot{m} &= V_1 \; \rho_1 \; A_1 = V_{max} \; \rho_b \; A_{menor} \\ V_1 \; \rho_1 \; A_1 &= V_{max} \; \rho_b \; A_{menor} \\ V_{max} &= \frac{V_1 \; \rho_1 \; A_1}{\rho_b \; A_{menor}} \\ V_{max} &= \frac{V_1 \; \rho_1 \; s \; s_t}{\rho_b \; A_{menor}} \end{split}$$

Si se cumple $A_m < A_n$, A_m sería el área de menor flujo, con lo cual se tiene la ecuación 2.11:

$$V_{max} = \frac{V_1 \, \rho_1 \, s \, s_t}{\rho_b \, A_m} = \frac{V_1 \, \rho_1 \, s \, s_t}{\rho_b \, (s - \delta) \, (s_t - d_0)}$$

Si se cumple $A_m > A_n$, A_n sería el área de menor flujo, con lo cual se tiene la ecuación 2.12:

$$V_{max} = \frac{V_1 \, \rho_1 \, s \, s_t}{\rho_b \, A_n} = \frac{V_1 \, \rho_1 \, s \, s_t}{2 \, \rho_b \, (s - \delta) \, (l_f - d_0)}$$

ANEXO 7: Cálculo del flujo másico y la velocidad del aire de entrada

Según la temperatura mencionada en la tabla 3.4 y, considerando que el equipo opera nominalmente a presión atmosférica estándar (0 m.s.n.m), se obtienen las propiedades del flujo de aire a través del anexo 1 (se aplicó interpolación a través de las temperaturas), las cuales son mostradas en la tabla 7.1:

Propiedad	Símbolo	Unidades	Magnitud	
Presión	p_1	Pa	$1.0133*10^{5}$	
Tomporeture	T	°C	15.56	
Temperatura	¹ 1	K	288.71	
Densidad	$ ho_1$	kg/m³	1.223	
Viscosidad dinámica	μ_1	Pa·s	1.805 * 10 ⁻⁵	
Calor esp. a presión cte.	C_{p1}	J/kg·K	1007	
Conductividad térmica	k_1	W/m·K	0.0248	

Tabla 7.1: Propiedades del flujo de aire de entrada

El flujo másico de aire se calcula a partir del flujo volumétrico presentado en la tabla 3.4 y la densidad del flujo de aire de entrada de la tabla 7.1 a través de la ecuación 2.8 de la siguiente manera:

$$\dot{m}_{aire} = \rho_1 * \dot{V}_1$$

$$\dot{m}_{aire} = 1.223 \frac{kg}{m^3} * \left(8.8254 * 10^{-2} \frac{m^3}{s} \right)$$

$$\dot{m}_{aire} = 0.1079 \frac{kg}{s}$$

Por último, se calcula la velocidad que presenta el flujo de aire a la entrada del equipo a través de la ecuación 2.9, presentándose lo siguiente:

$$V_{1} = \frac{\dot{V}_{1}}{A_{1}}$$

$$V_{1} = \frac{\dot{V}_{1}}{L * L_{a}}$$

$$V_{1} = \frac{8.8254 * 10^{-2} \frac{m^{3}}{s}}{0.1524 m * 0.1524 m}$$

$$V_{1} = 3.8 \frac{m}{s}$$

Esta velocidad nos servirá como condición de entrada para el flujo de aire en la simulación del modelo del equipo.

ANEXO 8: Cálculo analítico de la capacidad del equipo F210-6x6

El cálculo analítico se realiza a partir de la teoría analítica presentada en el punto 2.2 de la presente tesis. Por ende, empezamos definiendo la geometría según los parámetros establecidos:

Tabla 8.1: Dimensiones del intercambiador de calor

Dimensión	Símbolo	Unidades	Magnitud
Ancho de la entrada de aire	L	m	0.1524
Alto de la entrada de aire	La	m	0.1524
Largo del intercambiador de calor	Lb	m	0.1016
Número de tubos en dirección transversal	N_t	tubos	4
Número de tubos en dirección longitudinal	N_l	tubos	2
Número de aletas	N_a	aletas	60
Diámetro externo de tubos	d_0	m	$1.5875 * 10^{-2}$
Diámetro interno de tubos	d_i	m	1.4859 * 10 ⁻²
Espaciamiento entre aletas	S	m	$2.54 * 10^{-3}$
Espesor de aletas	δ	m	1.524 * 10 ⁻⁴
Alto virtual de aleta	b_f	m	3.8027 * 10 ⁻²
Largo virtual de aleta	l_f	m	3.8027 * 10 ⁻²
Espaciamiento transversal entre tubos	s_t	m	3.8027 * 10 ⁻²
Espaciamiento longitudinal entre tubos	s_l	m	$3.2933*10^{-2}$

A partir de estos parámetros, se calculan las áreas y superficies del intercambiador de calor:

Tabla 8.2: Áreas y superficies del intercambiador de calor

Dimensión	Símbolo	Unidades	Magnitud
Área total de pared interna de tubos	A_i	m^2	5.691 * 10 ⁻²
Área de flujo a través de los tubos	A_{it}	m^2	1.7341 * 10 ⁻⁴
Área total externa de los tubos	A_{t0}	m^2	6.080 * 10 ⁻²
Área total externa de los tubos restando espacios con aletas	A_t	m^2	5.716 * 10 ⁻²
Área total de la superficie de las aletas	A_f	m^2	1.668
Área total de transferencia de calor	Ä	m^2	1.725

Además, se tienen las propiedades de los materiales del intercambiador de calor de la tabla 3.3, las cuales son:

Tabla 8.3: Conductividad térmica de materiales a 300 K

Componente	nente Material Sír		Unidades	Magnitud
Tubos	Cobre	k_t	W/m·K	401
Aletas	Aluminio	k_f	W/m·K	237

El cálculo se realizará considerándose los flujos másicos de aire y de agua en la primera condición de operación del equipo, tomándose inicialmente que el calor transferido \dot{Q}_t es igual a 2872.1 W, tal como se presenta en la tabla 3.1. Reemplazando este valor en la ecuación 2.2, se obtiene lo siguiente:

$$\dot{Q}_t = 2872.1 = \dot{m}_{aqua}(h_E - h_S) = \dot{m}_{aire}(h_2 - h_1)$$
 [8.1]

Tomando la parte de la ecuación 7.1 correspondiente al flujo de aire, se tiene lo siguiente:

$$2872.1 W = \dot{m}_{aire} (h_2 - h_1)$$
 [8.2]

La entalpía se calcula a través de la siguiente expresión, considerando que el aire con un comportamiento idéntico al de un gas ideal:

$$h = C_n * T$$
 [8.3]

Observando el anexo 1, se puede considerar el calor específico a presión constante del aire como invariable respecto a la temperatura con un valor de 1007 J/kg·K. Entonces, reemplazando la ecuación 8.3 y la temperatura de entrada del flujo de aire de la tabla 3.4 en la ecuación 8.2, se obtiene la siguiente expresión:

2872.1
$$W = \dot{m}_{aire} * 1007 \frac{J}{kg \cdot K} * (T_2 - 288.71 K)$$
 [8.4]

Reemplazando el flujo másico de aire calculado en el anexo 7 en la ecuación 8.4, se tiene lo siguiente:

2872.1
$$W = 0.1079 \frac{kg}{s} * 1007 \frac{J}{kg \cdot K} * (T_2 - 288.71 K)$$

$$T_2 = 315.1$$

$$T_2 = 41.99 \,^{\circ}\text{C}$$
[8.5]

La temperatura T_2 es la temperatura que el flujo de aire de salida alcanzaría en la primera condición de operación.

Continuando con el cálculo, según la temperatura mencionada en la tabla 3.6 y, considerando que las propiedades del agua líquida se pueden aproximar a las propiedades de un líquido saturado a la misma temperatura, se obtienen las propiedades del flujo de agua a través del anexo 2 y 3 (se aplicó interpolación a través de las temperaturas) mostradas en la tabla 8.4:

Tabla 8.4: Propiedades del flujo de agua en su primera condición de operación

Propiedad	Símbolo	Unidades	Magnitud
Tamparatura	T	°C	82.22
Temperatura	T_E	K	355.37
Densidad	$ ho_E$	kg/m³	970.2
Entalpía	h_E	J/kg	$3.4434*10^{5}$
Viscosidad dinámica	μ_E	Pa·s	$3.452*10^{-4}$
Calor esp. a presión cte.	C_{pE}	J/kg·K	4198.8
Conductividad térmica	k_E	W/m·K	0.6713

Tomando la parte de la ecuación 3.1 correspondiente al flujo de agua, se tiene lo siguiente:

$$2872.1 W = \dot{m}_{agua} (h_E - h_S)$$
 [8.6]

Reemplazando los valores de la tabla 8.4 en la ecuación 8.6, se obtiene la siguiente expresión:

$$2872.1 W = \dot{m}_{agua} * \left(3.4434 * 10^5 \frac{J}{kg} - h_S \right)$$
 [8.7]

El flujo másico de agua ingresante al equipo se calcula a partir del flujo volumétrico presentado en la tabla 3.5 (primera condición de operación) y la densidad del flujo de agua de entrada de la tabla 8.4.

$$\dot{m}_{agua} = \rho_E * \dot{V}_E$$

$$\dot{m}_{agua} = 970.2 \frac{kg}{m^3} * \left(1.1356 * 10^{-4} \frac{m^3}{s} \right)$$

$$\dot{m}_{agua} = 0.1102 \frac{kg}{s}$$
[8.8]

Reemplazando la ecuación 8.8 en la ecuación 8.7, se obtiene la siguiente expresión:

$$2872.1 W = 0.1102 \frac{kg}{s} * \left(3.4434 * 10^5 \frac{J}{kg} - h_s\right)$$

$$h_s = 3.1828 * 10^5 \frac{J}{kg}$$
[8.9]

Revisando el anexo 3, la temperatura correspondiente a la entalpía específica calculada en la ecuación 8.9 es 76.01 °C, por lo cual esta temperatura será la del flujo de agua de salida del equipo a la primera condición de operación.

$$T_{\rm S} = 76.01\,^{\circ}{\rm C}$$
 [8.9]

Tomando los valores de temperaturas de salida tanto del flujo de aire como del flujo de agua (ecuación 8.5 y 8.9), así como las temperaturas de entrada de los flujos, se elaboran las siguientes tablas de propiedades de los flujos en el intercambiador de calor real en su primera condición de operación.

Tabla 8.5: Propiedades del flujo de aire en su primera condición de operación real

Propiedad	Símbolo	Unidades		Magnitud	
FTopledad	31110010	Unidades	Entrada (1)	Salida (2)	Masa (b)
Presión	р	Pa	$1.0133*10^{5}$	$1.0133*10^{5}$	$1.0133*10^{5}$
Tammanatuma	T	°C	15.56	41.99	28.78
Temperatura	1	K	288.71	315.14	301.93
Densidad	ρ	kg/m³	1.223	1.12	1.169
Viscosidad dinámica	μ	Pa·s	1.805 * 10 ⁻⁵	1.927 * 10 ⁻⁵	1.866 * 10 ⁻⁵
Calor esp. a presión cte.	C_p	J/kg·K	1007	1007	1007
Conductividad térmica	k	W/m·K	0.0248	0.02677	0.02579

Duomiadad	Címbolo	Umidadaa		Magnitud		
Propiedad	Símbolo	Unidades	Entrada (E)	Salida (S)	Masa (i)	
Tomporoturo	т	°C	82.22	76.01	79.12	
Temperatura	1	K	355.37	349.16	352.27	
Densidad	ρ	kg/m³	970.2	974.1	972.3	
Entalpía	h	J/kg	$3.4434*10^{5}$	$3.1828 * 10^{5}$	$3.3131*10^{5}$	
Viscosidad dinámica	μ	Pa·s	$3.452*10^{-4}$	$3.733*10^{-4}$	3.591 * 10 ⁻⁴	
Calor esp. a presión cte.	C_p	J/kg·K	4198.8	4193.8	4196.3	
Conductividad térmica	k	W/m·K	0.6713	0.6676	0.6695	

Tabla 8.6: Propiedades del flujo de agua en su primera condición de operación real

Las propiedades de los flujos se obtuvieron a partir de los anexos 1, 2 y 3. Además, se puede observar que se obtuvieron las temperaturas de masa tanto para el flujo de aire T_b como para el flujo de agua T_i , calculados de las ecuaciones 2.10 y 2.13.

Además, se calculan los parámetros de velocidades de los flujos. Para el flujo de aire, se aplica la ecuación 2.11 o 2.12, dependiendo de la geometría del intercambiador de calor:

$$l_f = 3.8027 * 10^{-2} m$$

$$\frac{s_t + d_0}{2} = 2.6951 * 10^{-2} m$$

Entonces:

$$l_f > \frac{s_t + d_0}{2}$$

Por ende, se utiliza la ecuación 2.11, calculando la velocidad máxima del flujo de aire en el intercambiador de calor:

$$V_{max} = \frac{V_1 \,\rho_1 \,s \,s_t}{\rho_b \,(s - \delta) \,(s_t - d_0)} = 7.26 \,\frac{m}{s}$$
 [8.10]

La velocidad del flujo de agua se calcula a través de la ecuación 2.14:

$$V_i = \frac{\dot{m}_{agua}}{\rho_i A_{if}} = 0.6534 \frac{m}{s}$$

Entonces, se procede al cálculo del coeficiente α_m , empezando por el cálculo de Re_b y Pr_b con las ecuaciones 2.17 y 2.18 respectivamente:

$$Re_b = \frac{V_{max} d_0 \rho_b}{\mu_b} = 7216$$

$$Pr_b = \frac{C_{pb} \, \mu_b}{k_b} = 0.7288$$

Con estos datos, se procede a calcular Nu_b :

$$Nu_b = 0.33 Re_b^{0.6} \left(\frac{A}{A_{t0}}\right)^{-0.15} Pr_b^{1/3} = 37.13$$

Se verifica lo establecido en las ecuaciones 2.20 y 2.21:

$$10^3 < Re_h = 7216 < 10^5$$

$$5 \le \frac{A}{A_{t0}} = 28.37 \le 30$$

Continuando, se determina α_m a través de la ecuación 2.22:

$$\alpha_m = \frac{Nu_b \ k_b}{d_0} = 60.32 \ \frac{W}{m^2 \cdot K}$$

Ahora, se procede con el cálculo de η_f a través de la aplicación de las ecuaciones 2.23, 2.24, 2.25 y 2.26 en orden:

$$\varphi' = 1.27 \frac{b_f}{d_0} \sqrt{\left(\frac{l_f}{b_f} - 0.3\right)} = 2.55$$

$$\varphi = (\varphi' - 1)(1 + 0.35 \ln \varphi') = 2.06$$

$$X = \varphi \, \frac{d_0}{2} \sqrt{\frac{2 \, \alpha_m}{k_f \, \delta}} = 0.94$$

$$\eta_f = \frac{\tanh X}{X} = 0.78$$

Ahora, se procede con el cálculo de α_i , empezando por el cálculo de Re_i y Pr_i con las ecuaciones 2.27 y 2.28 respectivamente:

$$Re_i = \frac{V_i \ d_i \ \rho_i}{\mu_i} = 26292$$

$$Pr_i = \frac{C_{pi} \,\mu_i}{k_i} = 2.251$$

Con ello, se procede al cálculo de Nu_i a través de las ecuaciones 2.29 y 2.30:

$$f_i = [0.79 Ln(Re_i) - 1.64]^{-2} = 2.4415 * 10^{-2}$$

$$Nu_{i} = \frac{\left(\frac{f_{i}}{8}\right) (Re_{i} - 1000) Pr_{i}}{1 + 12.7 \left(\frac{f_{i}}{8}\right)^{0.5} (Pr_{i}^{2/3} - 1)} = 116$$

Se verifica lo establecido en las ecuaciones 2.31 y 2.32:

$$3000 \le Re_i = 26292 \le 5 * 10^6$$

$$0.5 \le Pr_i = 2.251 \le 2000$$

Continuando, se determina α_i a través de la ecuación 2.33:

$$\alpha_i = \frac{Nu_i \ k_i}{d_i} = 5207 \ \frac{W}{m^2 \cdot K}$$

Con los datos obtenidos de α_m , η_f y α_i se aplican las ecuaciones 2.16 y 2.17, obteniéndose lo siguiente:

$$\alpha_v = \alpha_m \left[1 - (1 - \eta_f) \frac{A_f}{A} \right] = 47.55 \frac{W}{m^2 \cdot K}$$

$$U = \left[\frac{1}{\alpha_{\nu}} + \frac{A}{A_{i}} \left(\frac{1}{\alpha_{i}} + \frac{d_{0} - d_{i}}{2 k_{t}}\right)\right]^{-1} = 37.19 \frac{W}{m^{2} \cdot K}$$

Antes de aplicar la ecuación 2.3, se procede a hallar el valor de ΔT_{LM} . Primero se aplican las ecuaciones 2.5 y 2.6 de la siguiente forma:

$$\Delta T_A = T_E - T_2 = 60.45 \, K$$

$$\Delta T_B = T_S - T_1 = 40.23 K$$

Posteriormente, se aplica la ecuación 2.4:

$$\Delta T_{LM} = \frac{\Delta T_A - \Delta T_B}{Ln \frac{\Delta T_A}{\Delta T_D}} = 49.65 K$$

Finalmente, con los datos obtenidos de ΔT_{LM} y U se procede a la ecuación 2.3:

$$\dot{Q}_{ta} = U A \Delta T_{LM} = 3185.8 W$$

Inicialmente, se había planteado lo siguiente:

$$\dot{Q}_t = 2872.1 \, W$$

Donde:

$$\dot{Q}_t \neq \dot{Q}_{ta}$$

Como no se cumple la ecuación 2.34, se procede a realizar el cálculo nuevamente desde la ecuación 2.2 considerándose lo siguiente:

$$\dot{Q}_t = \dot{Q}_{ta}$$

Elaborando una tabla de iteraciones con los resultados del calor teórico transferido obtenidos, se observa lo siguiente:

Tabla 8.7: Iteraciones para la primera condición de operación

Número de	Calor transferido	Calor teórico	
iteración	$\dot{\boldsymbol{Q}}_{t}\left(\mathbf{W}\right)$	transferido \dot{Q}_{ta} (W)	
1	2872.1	3185.8	
2	3185.8	3061.4	
3	3061.4	3111.0	
4	3111.0	3091.2	
5	3091.2	3099.1	
6	3099.1	3096.0	
7	3096.0	3097.2	
8	3097.2	3096.7	
9	3096.7	3096.9	
10	3096.9	3096.9	

Se observa que en la iteración número 10 se cumple con la ecuación 2.2, con lo cual se tiene:

$$\dot{Q}_t = \dot{Q}_{ta} = 3096.9 \, W$$

Con este valor de calor, se procede a calcular los valores de temperaturas de flujos de salida en la ecuación 2.2, obteniéndose lo siguiente:

$$T_2 = 44.06 \, ^{\circ}C$$

$$T_S = 75.53 \,^{\circ}C$$

La literatura nos indica que la correlación de la ecuación 2.19 parte de un ajuste de datos, con lo cual los número de Nusselt Nu_b calculados a través de la misma pueden presentar variaciones de $\pm 10\%$ hasta $\pm 25\%$ respecto a los números de Nusselt reales. Tomándose los casos en los cuales se presentan variaciones de $\pm 25\%$, se recalcula el calor teórico transferido y se realizan las iteraciones respectivas, obteniéndose la siguiente tabla de resultados, en la cual se observa la capacidad mínima, normal y máxima que se puede calcular para el intercambiador de calor:

Tabla 8.8: Resultados de la primera condición de operación

			Magnitud		
Dimensión	Símbolo	Unidades	Mínimo $Nu_b - 25\%$	Estándar <i>Nu_b</i>	Máximo $Nu_b + 25\%$
Capacidad	\dot{Q}_t	W	2694.3	3096.9	3401.7
Temperatura de salida de flujo de aire	T_2	°C	40.36	44.06	46.87
Temperatura de salida de flujo de agua	T_S	°C	76.40	75.53	74.87

Por último, se vuelve a realizar todo el procedimiento para la segunda y tercera condición de operación, obteniéndose sus respectivas capacidades analíticas. Tomando las capacidades reales y analíticas, se elabora la tabla 8.9, tal como se muestra a continuación.

Tabla 8.9: Capacidades reales y analíticas del intercambiador de calor

Condición de operación	Capacidad					
	Datos de fabricante	Cálculo analítico				
		Mínimo	Estándar	Máximo		
1	2872 W	2694 W	3097 W	3402 W		
2	3107 W	2874 W	3334 W	3687 W		
3	3194 W	2962 W	3451 W	3829 W		