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Thesis Supervisor: Roberto Lavarello

Examining commitee members:

Paul A. Rodŕıguez
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Lima, Peŕu

September, 2013



i

Abstract

The backscatter coefficient (BSC) is an intrinsic property that quantifies the amount of energy

that is reflected by a material as function of the ultrasound wave frequency. BSCs have been

proposed for decades for tissue characterization, along with quantitative ultrasound (QUS) pa-

rameters derived from BSCs that have been used to construct images that represent how these

properties vary spatially. The availability of formulations based on weakly focusing conditions

has resulted in a widespread use of large focal number transducers for BSC estimation. The

use of highly focused transducers offers the possibility of improving the spatial resolution of

BSC-based imaging. The model by Chen et al. [1] was developed for estimating BSCs us-

ing transducers of arbitrary focal number. However, to this date only preliminary experimental

validation of this method has been performed.

The goals of the present study are to analyze for the first time the accuracy of Chen’s [1]

method when estimating BSCs using highly focused transducers through both simulations and

experiments, and to analyze the accuracy on the estimation of QUS parameters derived from

BSCs (specifically the effective scatterer size (ESD) and concentration (ESC)) applying the

Chen et al. [1] model.

To achieve these goals, a theoretical model of BSC synthesis based on the method of Chen

et al. [1]. was derived and used with simulated data. The model considers frequency depen-

dent diffraction patterns, and the scatterers in the synthetic data replicate the properties of solid

spheres. In experiments, data obtained using highly focused transducers from a physical phan-

tom containing glass beads was used. This experimental data was appropriately compensated

for attenuation and transmission effects. The accuracy of Chen’s method was evaluated cal-

culating the mean fractional error between the estimated and theoretical BSCs curves for both

simulations and experiments. Also, the QUS parameters were estimated and compared with

real known parameters. BSCs and QUS parameter estimates were obtained from regions of

interest from both the transducer focus and throughout the transducer focal region. Finally, the

sound speed and the transducer focus were varied in appropriate ranges when processing the

data for the BSC and QUS values estimation in order to assess the robustness of the method to

uncertainties in these parameters.

The results showed that BSCs and QUS parameters can be accurately estimated using highly

focused transducers if the appropriate model is used, with regions of interest not restricted to be

centered at the focus but to the full extension of the -6-dB transducer focal region. It was also

verified that well estimated parameters as the sound speed and transducer focus are necessary

in order to obtain accurate BSCs and QUS parameters estimates.
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Chapter 1

Introduction

1.1 Background and Context

In many tissue characterization applications it is desirable to obtain information about the mi-

crostructure of the material that is being analyzed. The backscatter coefficient (BSC) is an

intrinsic property that quantifies the amount of energy that is reflected by a material as function

of the ultrasound wave frequency. Many studies in the literature suggest that different materi-

als reflect the ultrasound waves in different ways, therefore, the BSC can be potentially used

for tissue characterization. In addition, quantitative ultrasound (QUS) parameters derived from

BSCs can be used to construct images that represent how these properties vary spatially in the

material. BSCs can be estimated using ultrasound transducers with different focal numbers,

the more focused is the transducer, the QUS parameters can be estimated from smaller regions

of interest (ROI). Accordingly, the use of highly focused transducers offers the possibility of

improving the spatial resolution of BSC-based imaging by reducing the size of the region of

interest (ROI) required to estimate BSCs.

In order to obtain meaningful information from BSCs it is necessary to compensate for

the ultrasound system dependent properties (transducer diffraction pattern, acoustic-electric re-

sponse, etc). The availability of methods for estimating BSCs derived from weakly focusing

conditions [1, 2] and the extended focal region that results from this conditions [3] has resulted

in an overwhelming number of studies that used weakly focused transducers to estimate BSCs

from liver [4, 5, 6], breast [7, 8, 9], heart [10, 11] and bones [12] among other organs. Never-

theless, there exist also studies realized using highly focused transducers to obtain QUS param-

eters derived from BSCs, usually to characterize tissues using high frequency [13, 14, 15, 16].

However, a conclusive study on the accuracy of BSC estimation and derived parameters from

properly characterized scattering media using highly focused transducers has not yet been con-

ducted.

The model proposed in [1] provides expressions to estimate BSCs using transducers with ar-

bitrary focal number, and approximate expressions for the case of a weakly focused transducer.

Therefore, the use of the expressions in [1] will allow to study the differences in estimating

1



CHAPTER 1. INTRODUCTION 2

BSCs with and without assuming weakly focusing conditions from data obtained with highly

focused transducers. Some studies available in the literature suggest that the model proposed

in [1] may be used to compensate for the transducer diffraction pattern when estimating BSCs

from weakly scattering media [17, 18]. However, a conclusive study on the accuracy of BSC

estimation and derived parameters from properly characterized and calibrated scattering media

using highly focused transducers has not yet been conducted.

1.2 Scope and Objectives

The goals of the present study are (1) to analyze for the first time the accuracy of the model

by Chen et al. [1] when estimating BSCs using highly focused transducers through both simu-

lations and experiments, and (2) to analyze the accuracy on the estimation of QUS parameters

derived from BSCs (specifically the effective scatterer size (ESD) and concentration (ESC))

applying the model presented in [1].

The specific objectives are to:

1. Develop a theoretical model of BSCs synthesis based on the method of Chen et al. from

simulated data that considers frequency dependent diffraction patterns.

2. Analyze through simulations the effectiveness of the Chen et al. method to produce exact

BSCs estimates both around the transducer focus and throughout of the transducer focal

region.

3. Verify experimentally the accuracy of the BSC estimation using the Chen et al. method.

4. Analyze through simulations the accuracy of the ESDs and ESCs estimates produced

using the Chen et al. method to synthesize BSCs around the transducer focus and from

side to side of the transducer focal region.

5. Verify experimentally the accuracy of the ESDs and ESCs estimates using the Chen et al.

method.

6. Analyze the robustness of the Chen et al. method using focused transducers to parameters

with uncertainty like the sound speed and the exact position of the transducer focus.

1.3 Achievements

In this document, the accuracy of the method presented in [1] when estimating BSCs using

highly focused transducers through both simulations and experiments were analyzed, along with

the accuracy of the estimation of QUS parameters (ESD and ESC) derived from BSCs applying

the Chen et al. model. The results clearly showed that BSCs can be accurately estimated using

highly focused transducers if the appropriate model is used, with the centers of the regions of
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interest not restricted to the transducer focus. The robustness of the method to parameters with

uncertainty was also analyzed, and the results showed that even a 1% error in the exact position

of the focus or in the sound speed can impair the estimation, being more critical for the case

of the ESCs. The results were obtained from both simulated and experimental data. For the

simulations a complete model for estimating BSCs using the FIELD II [19] simulation software

was developed.

1.4 Overview of the Document

The remainder of this document includes the following chapters:

Chapter 2, Basic Conceptsgives a brief description of a focused transducer, the BSC and

some relevant equations.

Chapter 3, A Model For BSC Estimation Using FIELD II describes the derivation of a

new mathematical model for estimating BSCs using the FIELD II simulation software. Results

using weakly and highly focused transducers for estimating BSCs from simulated data are also

included in this chapter.

Chapter 4, Accuracy Assessmentlists the equations used for estimating BSCs using

highly focused transducers from simulated and experimental data. The equations presented

to measure the accuracy and the properties of the simulated and experimental transducers are

also included. The results obtained using regions of interest centered around the transducer

focus and then centered at several positions around the transducer focal region are presented.

The accuracy of the method to parameters with uncertainty is also assessed in this chapter.

Chapter 5, Conclusionslists the concluding remarks for this work. All the specific objec-

tives were fulfilled.



Chapter 2

Basic Concepts

2.1 Focused Transducer

A focused transducer has the shape of a spherical cap, and all the points on its surface are

equidistant to a point F termed the focal distance. This type of transducer has tipically the peak

of the energy of its radiation pattern slightly before the depth F. The geometry of the focused

transducer is shown in Fig. 2.1.

Figure 2.1: Schematic diagram of a focused transducer.

The most important parameter to define a focused transducer is the focal number

f /# = F/2R, (2.1)

where R is the transducer radius andf /# represents a focused transducer with a focal number

#. The radiation patter of two focused transducer with different focal numbers are presented in

Fig. 2.2.

It can be noticed that when the focal number is lower the focal region become smaller.

The axial dimension (AD) and the lateral dimension (LD) of the focal region are defined [3] in

4



CHAPTER 2. BASIC CONCEPTS 5

equations 2.2 and 2.3 respectively, whereλ is the wavelength.

AD = 7.08λf /#2. (2.2)

LD = 1.028λf /#. (2.3)

Figure 2.2: Two different radiation patterns. Top 9 MHz f/1 transducer, bottom 9 MHz f/2
transducer. Image courtesy of the University of Illinois

2.2 Backscatter Coefficient

Commonly in ultrasound imaging, radio frequency (RF) data is used to obtain information of

structures from hundreds of micrometers to centimeters in scale (structures greater than the

acoustic wavelength). Each of the RF signals is a series of echoes backscattered from structures

in the interrogation medium. Usually the frequency-dependent information in the RF signals is

not used. Instead, the coventional ultrasound imaging relates the envelope of a backscattered

RF signal to a gray-scale image.

The ultrasonic backscatter coefficient (BSC) is a useful property for characterizing tissues.

It is defined as the differential scattering cross section per unit of volume for a scattering angle



CHAPTER 2. BASIC CONCEPTS 6

of 180◦. The BSC use the frequency-dependent information to characterize different aspects

of microstructure in biological tissues. Specifically, BSC has been used to extract the average

scatterer sizes and acoustic concentrations (product of the number concentration of scatterers

and surrounding tissues) from biological tissues.



Chapter 3

A Model For BSC Estimation Using

FIELD II

3.1 Introduction

BSCs are estimated from radio frequency (RF) data that can be obtained both from simulations

and experiments. The simulations offer a practical alternative to experiments because acous-

tics waves can be artificially generated from computer phantoms with their acoustic properties

(sound speed, focus position,etc) adjusted to known values. In addition, these properties can be

easily changed to other values in case are needed. Many models have been proposed in order to

simulate ultrasonic systems for several applications, including BSC estimation. These models

may significantly differ in their complexity depending on which wave propagation phenomena

are considered (i.e. attenuation, diffraction, multiple scattering, etc). For its simplicity and

computational cost, some studies [20, 21] simulated the low radiation pattern as a Gaussian

beam (only spatially dependent), for example, to analyze the effects of the cell organization

and size distribution on the ultrasound backscatter [20]. To define the optimal axial and lateral

resolution,authors in [21] simulated a computer phantom assuming to be acoustically lossless

and modeling the emited pulse as a Gaussian beam (laterally). Other studies [22] made use of

more complex models based in spectral coherence, statistical analysis or angular compounding.

FIELD II [19] is a free Matlab library created by Jorgen Arendt Jensen in order to simulate

a wide variety of ultrasound imaging systems, and it has been previously used in several studies

[23, 24]. Two significant features of FIELD II is that it considers the frequency dependent

tranasducer diffraction and that it can be directly applied to obtain the rf data needed to estimated

the BSCs. On the other hand FIELD II does not consider multiple scattering and propagation

in inhomogeneous media. Nevertheless, the combination of the FIELD II simulation software,

with a more complete (in comparison to the Gaussian beam model) and efficient (in comparisson

to the models that solves the wave equation with finite elements methods) model, that considers

the frequency dependent diffraction brings the possibility of obtaining results that are closely

7
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related with real experimental data, along with the benefit of an easily replicable model that can

be used in other quantitative ultrasound investigations.

A mathematical model is derived in order to properly simulate an ultrasound system based

on the FIELD II simulation software. The properties of the simulated ultrasound system are

compensated using a point reference for simplicity and the transducer diffraction correction

theory proposed by Chen et al. [1]. BSCs are estimated using the proposed model to assess its

reliability.

3.2 Methods

3.2.1 The FIELD II model for a distribution of scatterers

The first step to obtain an equation for the estimation of the BSCs using FIELD II is to calculate

the received echo signal from a distribution of scatterers. The equation for the incident pressure

at a position~r can be written as

Pin(~r;ω) = P0(ω)DT (~r;ω), (3.1)

whereω = 2π f is the angular frequency of the acoustic wave,P0(ω) is the amplitude of the

characteristic pressure at the transducer surface andDT (~r;ω) is the radiation pattern on trans-

mission (identical to radiation pattern on reception due to recirpocity) defined as

DT (~r;ω) = DR(~r;ω) =
"

A

e−ikr

2πr
dA, (3.2)

where A is area of the transducer surface andk is the wavenumber. Also, we can define for a

single scatterer at a position~r a scattered pressure,

PS (~r;ω) = Pin(~r;ω)
e−ikr

2πr
. (3.3)

The scattered acoustic pressure received by a transducer due the presence of an isolated

scatterer can be expressed as the average ofPS (~r;ω) over the surface of the transducer, i.e.

P̄S (~r;ω) =
1
A

"
A

PS (~r;ω)dA. (3.4)

Replacing eq. (3.3) in (3.4)

P̄S (~r;ω) =
1
A

"
A

Pin(~r;ω)
e−ikr

2πr
dA. (3.5)
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And replacing the incident pressure (3.1) in (3.5)

P̄S (~r;ω) =
1
A

P0(ω)DT (~r;ω)
"

A

e−ikr

2πr
dA. (3.6)

It can be noticed that the last integral in eq. (3.6) is equal toDR(~r;ω). Replacing it by its

equivalent and makingDR(~r;ω) = DT (~r;ω) = D(~r;ω), eq. (3.6) can be rewritten as

P̄S (~r;ω) =
1
A

P0(ω)D2(~r;ω). (3.7)

Scattered data from an ensamble of N discrete scatterers can be simulated with FIELD II

using the function “calcscat”, which produces the ultrasound waveforms as

P̄S (~r;ω) = P0(ω)



















N
∑

j=1

1
A

D2(~r j;ω)



















. (3.8)

Then, the effect of an scattering amplitude function that varies with the frequency is added

to this echo because it is not considered by the FIELD II program. This can be modeled as

P̄S (~r;ω) = P0(ω)



















N
∑

j=1

1
A

D2(~r j;ω)



















Λ(ω), (3.9)

whereΛ(ω) is the scattering amplitude function. From this it is possible to obtain the power

spectrum from a single data line in a region of interest (ROI), i.e.

∣

∣

∣S s(~r, k)
∣

∣

∣

2
= |P0(ω)|2

∣

∣

∣

∣

∣

1
A

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

D2(~r j;ω)
N

∑

i=1

D2(~ri;ω)

∣

∣

∣

∣

∣

∣

∣

∣

× |Λ(w)|2 . (3.10)

From (3.10) the mean power can be calculated averaging the power spectra of several ad-

jacent data lines and the sum can be reduced following the same criteria as in [1, (17),(18)],

obtaining
〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

= |P0(ω)|2
∣

∣

∣

∣

∣

1
A

∣

∣

∣

∣

∣

2 N
∑

j=1

∣

∣

∣D(~r j;ω)
∣

∣

∣

4
|Λ(w)|2 . (3.11)

The last equation will be related with the theoretical BSC in the following subsection.

3.2.2 The theoretical BSC and its relation with the power spectrum of the re-
ceived echo

The theoretical BSC can be calculated assuming that the analyzed media in consisted by ran-

domly located spherical scatterers, and neglecting coherent and mutiple scattering effects as [2,
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(10)]

ηth =
β

4π

∫ ∞

0
p(a)σ(k, a)da, (3.12)

σ(k, a) =
∣

∣

∣

∣

∣

2
ka
Λ(ω)

∣

∣

∣

∣

∣

2

(πa2),

whereβ is the number of scatterers per unit of volume,p(a) is the estimated scatterer size

probability distribution function, andσ(k, a) is the backscattering cross-section of an individual

scatterer of radiusa.

If the particular case of a field with constant size spheres is considered eq. (3.12) is reduced

to

ηth =
β

4π

(

2
ka
|Λ(ω)|

)2

πa2. (3.13)

Simplifying equation (3.13)

ηth = β
1
k2
|Λ(ω)|2 . (3.14)

The last equation for the BSC can be related with the equation (3.11),

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

= |P0(ω)|2
∣

∣

∣

∣

∣

1
A

∣

∣

∣

∣

∣

2 N
∑

j=1

∣

∣

∣D(~r j;ω)
∣

∣

∣

4
· η ·

k2

β
. (3.15)

Assuming a uniform distribution of scatterers inside the volume of interest and that the re-

ceived signals are statistically independent, it is possible to change the last sum with an integral

times the number of scatterers per unit of volume,

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

= |P0(ω)|2
∣

∣

∣

∣

∣

1
A

∣

∣

∣

∣

∣

2

β

∫

V

∣

∣

∣D(~r;ω)
∣

∣

∣

4
dV · η ·

k2

β
. (3.16)

Reordering the terms and simplifying

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

= |P0(ω)|2
∣

∣

∣

∣

∣

1
A

∣

∣

∣

∣

∣

2

k2
∫

V

∣

∣

∣D(~r;ω)
∣

∣

∣

4
dV · η. (3.17)

The last equation relates the theoretical BSC with the average power spectrum of the re-

ceived echo.

3.2.3 The FIELD II model for a point reference

The scattered pressure by the reference used for the normalization of the BSC, which consists

in a point target located at the geometrical focusF of the transducer, can be modeled as

Pre f (F;ω) =
1
A

P0(ω)(Dre f )
2, (3.18)
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where

Dre f =

"
A

e−ikF

2πF
dA.

The last integral can be numerically evaluated for a concave transducer obtaining

Dre f =
e−ikF

2πF
π(R2 + d2).

with d = F
(

1−
√

1− 1
4 f /#2

)

. And for the case thatR2 >> d2

Dre f �
e−ikF

2πF
π(R2). (3.19)

Obtaining the power spectrum from the equation (3.18)

∣

∣

∣S re f (~r, k)
∣

∣

∣

2
=

1
A2
|P0(ω)|2

∣

∣

∣(Dre f )
2
∣

∣

∣

2
. (3.20)

Using equation (3.19) in equation (3.20) and solving for|P0(ω)|2,

|P0(ω)|2 =

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

(

A
2πF

)4
A2. (3.21)

3.2.4 BSC estimation

Using equations (3.17) and (3.21) the backscatter coefficient can be estimated as

η =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

(

A
2πF

)4

k2

1
∫

V

∣

∣

∣D(~r;ω)
∣

∣

∣

4
dV
. (3.22)

For solving the integral in eq. (3.22) two solutions are presented in [1], a general solution

(termed here Chen’s model - CM) for arbitrary focal number transducers and an approximation

(termed here Chen’s approximate model - CAM) for weakly focused transducers.

Some modifications have to be done to the equations presented in [1] in order to have

consistency between the formulations. Chen [1] defines the mean diffraction correction function

as

D̄S (~r, k) =
1
∆z

∣

∣

∣

∣

∣

2π
kA

∣

∣

∣

∣

∣

2 ∫

V

∣

∣

∣DChen(~r; k)
∣

∣

∣

4
dV, (3.23)

where

DChen(~r; k) = −ik
"

S

e−ikr

2πr
dS,

and∆z is the length of the gated region (see Fig. 3.1).
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Figure 3.1: Schematic diagram of the geometry.

For the general case Chen et al. gives a solution for eq. (3.23) as

D̄S (~r, k) =
1
∆z

∣

∣

∣

∣

∣

2π
A

∣

∣

∣

∣

∣

2

k2
∫

V

∣

∣

∣

∣

∣

∣

"
S

e−ikr

2πr
dS

∣

∣

∣

∣

∣

∣

4

dV

=
1
∆z

∫ r̄+ ∆z
2

r̄− ∆z
2

DS (~r; k)dr. (3.24)

where ¯r is the mean distance from the transducer surface to the sample volume and

DS (~r, k) =



















































(A/r2)0.46 exp[−(0.46/π)G2
P(F/r − 1)2],

(1+ π/GP)−1 ≤ r/F ≤ (1− π/GP)−1,

1.07(A/r2)[GP(F/r − 1)]−2,

otherwise,

(3.25)

whereGP = (kR2/2F) is the focal gain of the transducer.

From eq. (3.24) the following equality can be obtained

∫

V

∣

∣

∣

∣

∣

∣

"
S

e−ikr

2πr
dS

∣

∣

∣

∣

∣

∣

4

dV =
A3

(2π)2k2
·

∫ r̄+ ∆z
2

r̄− ∆z
2

DS (~r; k)dr. (3.26)

Using the last equality in eq. (3.22) a general solution for estimating BSCs using arbitrary

f/# transducers is obtained,

ηCM =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

A

(2π)2F4
·

1
∫ r̄+ ∆z

2

r̄− ∆z
2

DS (~r; k)dr
. (3.27)



CHAPTER 3. A MODEL FOR BSC ESTIMATION USING FIELD II 13

For the case of weakly focused transducers with small variations over their focal regions,

Chen approximated̄DS (~r, k) asDS (r̄, k). For the specific case when ¯r = F, the form that solves

the integral in equation (3.22) can be written as

∫

V

∣

∣

∣

∣

∣

∣

"
S

e−ikr

2πr
dS

∣

∣

∣

∣

∣

∣

4

dV =
A30.46∆z

(2π)2F2k2
. (3.28)

Using equation (3.28) in (3.22) an approximate solution for estimating BSCs with high f/#

transducers when ¯r = F is obtained,

ηCAMm =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

A

0.46(2π)2F2∆z
. (3.29)

The termin CAM will be used for the general case (¯r , F).

3.2.5 The spatial gated region

In order to appropriately delimit the gated region to be used, the idea of the ”Spatial Receive

Gate” presented in [1, Appendix A] is applied. Due to the finite pulse duration the spatially

gated signal will contain information that can be partially or fully received depending on its

source inside or outside of the gated region. In Fig. 3.2 the diagram of the spatial gated region

is presented. The information coming from the region [r1,r2-PL] (PL is the length of the pulse)

will be fully received, and the information coming from the regions [r1-PL,r1[ and ]r2-PL,r2]

will be partially received. With this information an spatial receive gate functionG(r) can be

defined as,

G(r) =



















































r/PL + (1− r1/PL), r1− PL ≤ r < r1

1, r1 ≤ r ≤ r2− PL,

−r/PL + r2/PL, r2− PL < r ≤ r2

0, otherwise,

(3.30)

where r1 and r2 are the distances from the transducer to the beginning and to the end of the

gate respectively. This function is used along with the diffraction correction function as a more

practical and accurate way to delimit the receive gate.G(r) is used by redefiningξ(k, r) as

ξ(k,~r) =
∫ r̄+ ∆z

2

r̄− ∆z
2

G(r)DS (~r; k)dr (3.31)



CHAPTER 3. A MODEL FOR BSC ESTIMATION USING FIELD II 14

Figure 3.2: Diagram of the spatial gated region.

3.3 Results

3.3.1 Scattering amplitude function

For all the simulations, the solid sphere model described by Faran [25] (Eq. (31) with the

corrections to Eq. (30) noted by Hickling [26]) is used for replacing the scattering amplitude

functionΛ(ω).

Λ(ω) =
∞
∑

m=0

(−1)m(2m+ 1)sin(Υm)exp(iΥm), (3.32)

where,

Υm = tan−1
(

tanδm(ka)
[tanΦm + tanαm(ka)]
tanΦm + tanβm(ka)

)

, (3.33)

δm(x) = tan−1 [

− jm(x)/nm(x)
]

,

αm(x) = tan−1 [

−x j′m(x)/ jm(x)
]

,

βm(x) = tan−1 [

−xn′m(x)/nm(x)
]

,

Φm = tan−1 [

(ρ/ρ1)tanζm(k1a, σ)
]

,

ζm(k1a, σ) = tan−1

























−
k2

2a

2

k1a j′m(k1a)
k1a j′m(k1a)− jm(k1a) −

2(m2+m) jm(k2a)
(m2+m−2) jm(k2a)+k2

2a j′′m(k2a)

k2
1a{[σ/(1−2σ)] jm(k1a)− j′′m(k1a)}

k1a j′m(k1a)− jm(k1a) −
2(m2+m)[ jm(k2a)−k2a j′m(k2a)]
(m2+m−2) jm(k2a)+k2

2a j′′m(k2a)

























,

whereζm is the scattering phase angle,jm is the spheric bessel function,nm is the spheric

neumann function,k1 is the wavenumber for the compressional waves inside the sphere,k2

is the wavenumber for the shear waves inside the sphere,a is the sphere radius andσ is the

poisson’s ratio.
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3.3.1.1 Model evaluation

In order to assess the reliability of the model, several simulations were conducted for different

weakly focused transducers to obtain BSC estimates using the CAM and compare them with

the theoretical results. The simulated phantom contained 41µmdiameter solid spheres and

attenuation effects were not included. In all the simulations the gated region was centered

around the transducer focus. For all the cases the gated region was selected to have a length of

15 wavelengths [21]. The results are presented in Fig. 3.3.
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Figure 3.3: BSC estimates using CAM (solid) and theoretical BSC (dash) for three different
transducers. From the left to the right,f0=10MHz, f /#=4 and 0.5”diameter;f0=20MHz, f /#=4
and 0.5”diameter;f0=20MHz, f /#=4 and 0.25”diameter.

The results show great correlation between the theoretical and estimated BSCs when using

weakly focused transducers with the CAM solution. The mean fractional error (MFE) was

calculated between the theoretical and estimated BSCs as

MFE =
1
N

N
∑

i=1

|(η(ki) − ηth(ki))|
η(ki)

∗ 100, (3.34)

and the results are presented in Table 3.1. along with the transducers properties.
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Table 3.1: Transducers used to obtain the simulated data
f0(MHz) f /# Diameter Analyzis bandwith (MHz) MFE (%)

10 4 0.5 in [6-14] 9.1
20 4 0.5 in [12-28] 11.1
20 4 0.25 in [12-28] 12.2

The MFE values support what is observed on Fig. 3.3. For weakly focused transducers

MFE of less than 12.2% is obtained proving the reliability of the model. It also can be observed

that the MFE value is lower for low frequencies, this occurs because the shape of the theoretical

BSC curves is smoother for low frequencies.

3.3.1.2 Approximate vs. General solution

To assess the robustness of the general solution (CM) when estimating BSCs using highly fo-

cused transducers, several simulations were made and the results were compared to the esti-

mates using the approximate solution (CAM) and the theoretical curves. The results are pre-

sented in Fig. 3.4. These results clearly show that for the case of highly focused transducers

the general solution gives better estimates than the ones produced by CAM. An improvement

of around 20% is obtained for both f/1.5 transducers, and around 4% for the f/2 transducer..

The MFE was calculated and the results are presented in Table 3.2. along with the transducers

properties.

Table 3.2: Highly focused transducers used to obtain the simulated data

f0(MHz) f # Diameter Analyzis bandwith (MHz) MFE (CAM) (%) MFE (CM) (%)
10 1.5 1 in [6-14] 30.1 9.5
10 2 1 in [6-14] 11.4 7.3
15 1.5 0.5 in [9-21] 30.4 9.6

3.4 Summary

A mathematical model for estimating absolute BSC vs. frequency curves using FIELD II was

derived. The model was verified against theoretical BSC curves showing great matching be-

tween them.

Two specific solutions to the diffraction correction function were given based in the study

of Chen et al. and these solutions were used to obtain equations for estimating BSCs for the

case of weakly focused transducers (CAM) and for the general case of arbitrary focal number

transducers (CM).

The results with the simulated transducers shown that the CM gives much better results

than the ones obtained using CAM when using highly focused transducers. These preliminary
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Figure 3.4: BSC estimates using the CAM (solid) and CM (dot-dash) solutions three highly
focused transducers ((a) corresponds to a transducer withf0=10 MHz, f /#=1.5 and 1”diameter,
(b) corresponds to a transducer withf0=10 MHz, f /#=2 and 1”diameter, and (c) corresponds
to a transducer withf0=15 MHz, f /#=1.5 and 0.5”diameter).

results support the use of the presented model with experimental data obtained using highly

focused transducers.



Chapter 4

Accuracy Assessment

4.1 Introduction

The model proposed in [1] provides expressions to estimate BSCs using transducers with arbi-

trary focal number, and approximate expressions for the case of a weakly focused transducer.

Therefore, the use of the models in [1] will allow us to study the differences between estimating

BSCs with and without assuming weakly focusing conditions from data obtained with highly

focused transducers. Some studies available in the literature suggest that the model proposed in

[1] may appropriately compensate diffraction effects when estimating BSCs from weakly scat-

tering media. Some of them make use of the expressions for weakly focused transducers, with

data obtained from calibrated phantoms as in [27] (with an f/2 transducer) and in [28] (with

an f/8 transducer). In [18] BSCs were not estimated but the diffraction curves presented by

Chen were compared against the power spectrum of the backscattered signal as a function of

depth, but is suggested that the curves have better correlation at low frequencies. The data were

obtained from human dermis. In [29] and in [30] BSCs were estimated from non-calibrated

imaging targets (human tissues). Despite these works, a conclusive study on the accuracy of

BSC estimation and derived parameters from properly characterized scattering media using

highly focused transducers has not yet been conducted and this is the limitation that this work

is intended to redress.

The goal of the present study is (1) to analyze for the first time the accuracy of the model

by Chen et al. when estimating BSCs using highly focused transducers through both simula-

tions and experiments, and (2) to analyze the accuracy on the estimation of QUS parameters

derived from BSCs (specifically the effective scatterer size (ESD) and the effective scatterer

concentration (ESC)) applying the Chen et al. model.

In Chapter 3 a model for estimating BSCs using the FIELD II [19] simulation software that

includes the frequency dependent diffraction effects was derived. The model gives the possibil-

ity of using any formulation for the diffraction compensation. Because of this, the formulations

proposed in [1] for the diffraction compensation can be directly used to estimate BSCs and QUS

parameters from simulated data. This data can be obtained using weakly or highly focused

18
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transducers. In addition, the model can use any scattering function, so a computer phantom that

is comparable with a real phantom can be simulated.

The simulations were used to analyze the accuracy of Chen’s model when estimating BSCs

and QUS parameters throughout the focal region and not just at the transducer focus in order

to assess its applicability in QUS imaging. The experimental data were used to verify the

simulation results.

The robustness of the model to uncertainties in parameters like the sound speed and exact

position of the focus was verified. A physical phantom with an independently calibrated BSC

was used.

The next section briefly describes the methods used for the BSCs and the QUS parameter

estimation for both simulations and experiments. In Section 4.3 the results are presented. The

conclusions of the present Chapter are presented in Section 4.4.

4.2 Methods

4.2.1 Experimental BSC estimation with a reference plate

4.2.1.1 Chen’s model (CM) with a planar reference

In experiments, the reference spectrum
∣

∣

∣S re f (~r, k)
∣

∣

∣

2
was obtained from a planar reflector with

pressure reflection coefficientγ located at depthF. For experimental data BSCs can be esti-

mated as (Ref [1], Eqs. (31), (34), (52) and (57))

η(k,~r) =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

γ2

A
Dre f (F, k)H(k) ·

1
∫ r̄+ ∆z

2

r̄− ∆z
2

DS (~r; k)dr
, (4.1)

Dre f (F, k) = |exp(−iGP)[J0(GP) + iJ1(GP)] − 1|2,

whereH(k) is a function that compensates for attenuation effects (Ref. [31], Eq. (16)) and

Jm(.) is the m-th order Bessel function.

4.2.1.2 Chen’s approximate model (CAM) with a planar reference

An approximate model to estimate BSCs using weakly focused transducers was also provided

in [1]. Using this approximate model BSCs can be estimated as (Ref [1], Eqs. (31), (54) and

(57))

η(k,~r) =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

γ2

Ds(r̄, k)∆z
Dre f (F, k)H(k). (4.2)

It can be noticed that the only difference between CM and CAM is the integration ofDs

throughout the gated region.
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4.2.2 Simulated and experimental data

4.2.2.1 Simulated data

In simulations, BSC estimates were obtained from a simulated phantom containing 41µm di-

ameter solid spheres. In particular, the model of Faran [25] as presented in (3.30) was used to

replaceΛ(w). Attenuation effects were not included. The properties of the simulated transduc-

ers are given in Table 4.1.

Table 4.1: Transducers used to obtain the simulated data
Simulated Transducers

f0(MHz) f /# Diameter ka
10 1.5 0.5 in [0.52-1.24]
10 2 1 in [0.52-1.24]
10 3 0.5 in [0.52-1.24]

4.2.2.2 Experimental data

In physical experiments, rf data were obtained from an agar physical phantom containing glass

beads of 41+/-5µm diameter. The attenuation coefficient was measured independently using an

insertion loss technique in through transmission. The reference was a Plexiglass planar reflector

(γ = 0.37). The properties of the experimental transducers are given in Table 4.2.

Table 4.2: Transducers used to obtain the experimental data

Experimental Transducers

f0(MHz) f /# Diameter ka
10 1.5 0.5 in [0.44-1.09]
10 2 1 in [0.44-1.09]
10 3 0.5 in [0.65-1.26]

The 10 MHz experimental transducers were used due their availability and in order to have

a fixedka range for different f/# transducers. The properties of the simulated transducers were

based on the experimental transducers for an straightforward comparison.

4.2.3 BSC parameter estimation

Accuracy was quantified using the mean fractional error (MFE) between the estimated and

theoretical BSC curves as defined in (3.34). BSCs were estimated using gate lengths (∆z)

between 15λand 30λ. Variance effects were reduced by using data from 441 rf lines.
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QUS parameters were also obtained from the estimated BSCs. ESD estimates were obtained

by solving the optimization problem

ES D = 2 arg
a

min
1
N

N
∑

i=1

[

X(η(ki), σ(ki, a)) − X̄
]2
, (4.3)

X(r, s) = 10 log10(r/s), (4.4)

where X̄ is the mean value ofX(η(ki), σ(ki, a)) within the analysis wave number bandwidth

ki ∈ [kmin, kmax]. Once an estimate of the ESD has been calcutaled, the ESC can be estimated as

ES C = 4π

∑N
i=1 η(ki), σ(ki, ES D/2)
∑N

i=1σ
2(ki, ES D/2)

. (4.5)

The accuracy between the estimated and actual ESD value was quantified using the frac-

tional error (FE) as

FE(x) =
(x − xth)

x
∗ 100. (4.6)

The accuracy between the estimated and actual ESC value was quantified using a decibel

scale (10 log10(ES C/β)).

4.3 Results

4.3.1 Around the transducer focus

The MFE was calculated for both, simulated and experimental data collected from gated re-

gions centered at the transducer focus. These results are reported in Table 4.3. The simulation

results suggest that the CAM MFE increases with increasing∆z for highly focused transducers

( f /#<3), with MFEs exceeding 50% for the 10 MHz, f/1.5 transducer. This result is expected

due to the size of the -6-dB focal region of a focused circular piston (eq. (2.2)), and therefore

diffraction effects across a given distance are more significant for lower f/#s values. For exam-

ple, for a f/1.5 transducer the focal region is approximately 15.75λand therefore the use of∆z

values of 15λor 30λimplies that the ROI covers the full extension of the focal region or further.

In contrast, the use of CM results in MFE values that were highly insensitive to∆z (i.e. vari-

ations of less than 2.3% for∆z values between 15λand 30λ) for all focal numbers considered

in the simulations. Moreover, in some cases the MFEs were largely reduced when using the

CM instead of the CAM, with values below 10% for all the simulated cases and more of than a

fourfold increase in accuracy observed both with the f/1.5 and f/2 transducers for∆z = 30λ.

The improvements in BSC estimation accuracy were much more evident when highly fo-

cused transducers were used, but the results with the simulated and experimental f/3 transducers

suggest that CM may also provide minor improvements when using weakly focused transducers

compared to methods based on weakly focusing approximations such as the CAM.



CHAPTER 4. ACCURACY ASSESSMENT 22

Table 4.3: MFE in simulations and experiments

MFE in Simulations
Transducer CAM (∆z = 15λ) CAM (∆z = 30λ) CM (∆z = 15λ) CM (∆z = 30λ)

10 MHz f/1.5 30.4% 57.1% 9.5% 10.0%
10 MHz f/2 14.6% 34.9% 6.8% 8.1%
10 MHz f/3 8.8% 8.2% 8.7% 6.4%

MFE in Experiments
Transducer CAM (∆z = 15λ) CAM (∆z = 30λ) CM (∆z = 15λ) CM (∆z = 30λ)

10 MHz f/1.5 20.5% 46.0% 5.7% 5.2%
10 MHz f/2 7.3% 22.4% 4.8% 5.1%
10 MHz f/3 19.8% 23.1% 18.2% 17.1%

It can also be observed that although the experimental results support thesignificant reduc-

tion on MFE when using the CM instead of the CAM, the MFE for the 10 MHz f/3 transducer

was larger than expected. Potential reasons for this discrepancy may include errors in modeling

the transducer geometry, errors in the assumed theoretical BSC, and noise effects. Regardless,

the results support advocating for the use of CM when estimating BSCs instead of the CAM for

highly focused transducers.

Figure 4.1 shows the experimental BSC curves produced with all the 10 MHz experimental

transducers using the CM and the CAM for∆z = 15λand∆z = 30λ. It can be observed that all

the estimated BSC curves are closer to the theoretical ones after using the appropriate correction

(i.e., the CM), which is consistent with the MFE values reported in Table 4.3.

Although the choice of large∆z values allowed to analyze the ability of both CM and CAM

to correct for depth-dependent diffraction effects, the choice of gate lengths as large as 30λ

is not consistent with the goal of constructing high resolution quantitative ultrasound images.

Therefore, a similar analysis using shorter ROIs centered at several depths along the transducer

focal region was also conducted.

4.3.2 Assessment of the estimation method along the transducer focal region

Based on the results of the previous section, it is expected that CM will outperform CAM for

the general scenario wherer , F. In order to verify the difference between the CM and its

approximations when estimating BSCs using ROIs throughout the transducer focal region, a

simulation and an experiment were conducted.

The CM as presented in (3.27) and (4.1) were used for the simulation and the experiment

respectively, and the CAM as presented in (3.28, 3.22) and (4.2) were used for the simulation

and the experiment respectively. In addition, two modified versions of the CAM, called CAMm



CHAPTER 4. ACCURACY ASSESSMENT 23

4 6 8 10 12 14
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

Experimental BSCs with CAM using
10 MHz, f/1.5 transducer

 

 

η
th

η ∆z=15λ
η ∆z=30λ

4 6 8 10 12 14
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

Experimental BSCs with CM using
10 MHz, f/1.5 transducer

 

 

η
th

η ∆z=15λ
η ∆z=30λ

(a) (d)

4 6 8 10 12 14
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

Experimental BSCs with CAM using
10 MHz, f/2 transducer

 

 

η
th

η ∆z=15λ
η ∆z=30λ

4 6 8 10 12 14
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

 

 

Experimental BSCs with CM using
10 MHz, f/2 transducer

η
th

η ∆z=15λ
η ∆z=30λ

(b) (e)

6 8 10 12 14 16
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

Experimental BSCs with CAM using
10 MHZ, f/3 transducer

 

 

η
th

η ∆z=15λ
η ∆z=30λ

6 8 10 12 14 16
10

−3

10
−2

10
−1

f(MHz)

B
S

C
 in

 S
r−

1 cm
−

1

Experimental BSCs with CM using
10 MHz, f/3 transducer

 

 

η
th

η ∆z=15λ
η ∆z=30λ

(c) (f)

Figure 4.1: BSCs estimates with 15 and 30 wavelengths gated regions and theoretical BSCs
(dotted line) for three experimental highly focused transducers ((a) and (d) corresponds to a
transducer withf0=10 MHz, f /#=1.5 and 0.5”diameter, (b) and (e) corresponds to a transducer
with f0=10 MHz, f /#=2 and 1”diameter, (c) and (f) corresponds to a transducer withf0=10
MHz, f /#=3 and 1”diameter). The first three estimates (top) were obtained using CAM and the
second three (bottom) were obtained using CM.
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(modified CAM), assuming ¯r = F as presented in equation (3.29) for a point reference, and as

η(k,~r) =

〈

∣

∣

∣S s(~r, k)
∣

∣

∣

2
〉

∣

∣

∣S re f (~r, k)
∣

∣

∣

2

2.17F2γ
2

A∆z
Dre f (F, k)H(k). (4.7)

for a planar reference were used to explore the performance of the method to a naive approxi-

mation.

Gated regions of∆z = 15λ [21] centered at several positions along the transducer -6-dB

focal region (from side to side) were used. The BSC and the QUS parameters were estimated

from all the gated regions, and the errors in estimating BSCs, ESDs, and ESCs for all the

estimations. A 10 MHz, f/2 and 0.5” diameter transducer was used for both, the simulation and

the experiment. The simulation and the experimental results are presented in Figs. 4.2 and 4.3,

respectively.
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Figure 4.2: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2 trans-
ducer. Three methods were used to estimate the BSCs, the CAMm (dash), the CAM (dot-dash)
and the CM (solid).

The results clearly show for both, the simulation and the experiment, that the general

method (CM) for estimating BSCs gives better results throughout the transducer focal region

than the approximate method (CAM) and its modified version (CAMm) as expected. It can be

observed that the BSC MFE and the ESC FE were reduced when using the CM while moving

away from the transducer focus. In simulations, a 27% and a 5% improvement in the average

MFE for the BSC estimation can be observed when using CM instead of CAMm and CAM

respectively. In experiments, a 10% and a 0.5% improvement in the average MFE for the BSC
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Figure 4.3: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2
transducer. Three methods were used to estimate the BSCs, the CAMm (dash), the CAM (dot-
dash) and the CM (solid).

estimation can be observed when using CM instead of CAMm and CAM respectively. In ad-

dition, a slightly lower improvement can be noticed in the ESD FE for both, simulations and

experiments when using the CM. The average error for the BSC, ESD and ESC throughout the

focal region for the CM and its approximations are presented in Table 4.4. Even though the

average MFE does not show a big reduction in Table 4.4., Figs. 4.2 and 4.3 clearly show that

the MFE increases when moving away from the transducer focus.

Table 4.4: Average error in simulations and experiments

Average error in simulations
Method Average BSC error (%) Average ESD error (%) Average ESC error (dB)

CM 9.0% -0.9% -0.2 dB
CAM 14.0% -4.2% 0.3 dB

CAMm 36.7% 8.2% -3.4 dB

Average error in experiments
Method Average BSC error (%) Average ESD error (%) Average ESC error (dB)

CM 11.5% -2.5% 0.8 dB
CAM 12.0% -5.3% 1.2 dB

CAMm 21.7% 8.5% -2.6 dB

In order to visually assess the improvement of the CM versus the CAMm, QUS images
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presenting the ESD and ESC fractional errors from a computer phantom using the 10 MHz, f/2

transducer are presented in Fig. 4.4.

Figure 4.4: Simulated QUS images showing the ESD and the ESC absolute estimation error,
both with the CM and CAMm for the 10 MHz, f/2 transducer. The estimates were made using
gated regions of 15 wavelengths and 15 adjacent scan lines along all the focal region.

These results clearly show that the CM gives quantitatively much better results than its

approximations throughout the transducer focal region. Based on this, just the CM will be used

for estimating the BSCs in the following sections.

4.3.3 Simulations along the transducer focal region

New simulations were made using gated regions of 15λcentered at several positions throughout

the transducer -6-dB focal region. The BSC and the QUS parameters were estimated from all the

gated regions, and the MFE and the FE were calculated for all the estimations. Unfortunately,

some parameters that are required by the method by Chen et al. may not be known exactly.

For example, the sound speed tends to vary slightly in soft tissues [32], being the extremes the

fat and muscle. On the other hand, ultrasound transducers manufacturers usually give margins

of error with respect to the exact position of the focus. To assess the robustness of the method

to parameters with uncertainty, BSCs were estimated from simulated data generated using the

10 MHz transducers with the properties given in Table 4.1 with a sound speed of 1480m/s

but assuming a different sound speed and focal depth. The deviation between the given and
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assumed values for the focus position and for the sound speed was chosen to be from about 1%

in order to assess the robustness against really small deviations. The results for the simulated

transducers assuming different focal depths are presented in Figs. 4.5-4.7.
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Figure 4.5: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/1.5
transducer with a 19.05 mm focus. The focus assumed when calculating the BSCs was set to
18.85 mm (dash), 19.05 mm (solid) and 19.25 mm (dash-dot) in order to assess the robustness
of the method.
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Figure 4.6: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2 trans-
ducer with a 50.8 mm focus. The focus assumed when calculating the BSCs was set to 50.3 mm
(dash), 50.8 mm (solid) and 51.3 mm (dash-dot) in order to assess the robustness of the method.
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Figure 4.7: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/3 trans-
ducer with a 38.1 mm focus. The focus assumed when calculating the BSCs was set to 37.7 mm
(dash), 38.1 mm (solid) and 38.5 mm (dash-dot) in order to assess the robustness of the method.

The results for the 10 MHz simulated transducers, but now assuming different sound speeds

are presented in Figs. 4.8-4.10.
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Figure 4.8: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/1.5
transducer with a 1480 m/s sound speed. The sound speed assumed when calculating the BSCs
was set to 1460 m/s (dash), 1480 m/s (solid) and 1500 m/s(dash-dot) in order to assess the
robustness of the method.

It can be observed that although on the average the CM provides accurate QUS estimates,

the performance of the CM may degrade significantly when the assumed focus location is off

even by 1% of its true value. The same behavior can be observed with the sound speed. Nev-

ertheless, results with lower errors can be obtained if the mismatch in these parameters is less

than 1%, especially for ESCs, even with f/1.5 transducers.

The results shown in Figs. 4.5-4.10, besides showing the behavior described before, exhibit

another interesting behavior that can be more appreciable for the ESCs. It can be observed that

when the assumed focus position is before or after the real focus, the ESCs estimates have a
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Figure 4.9: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2 trans-
ducer with a 1480 m/s sound speed. The sound speed assumed when calculating the BSCs was
set to 1460 m/s (dash), 1480 m/s (solid) and 1500 m/s(dash-dot) in order to assess the robustness
of the method.
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Figure 4.10: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/3 trans-
ducer with a 1480 m/s sound speed. The sound speed assumed when calculating the BSCs was
set to 1460 m/s (dash), 1480 m/s (solid) and 1500 m/s(dash-dot) in order to assess the robustness
of the method.

positive or a negative slope respectively, and when the assumed sound speed is less or more than

the real sound speed the ESCs estimates have a negative or a positive slope respectivly. When

the assumed values are closer or equal to the real values the slope is close to zero. The same

behavior can be observed in all the simulation results. In [33] an assessment of the attenuation

estimation when there exists a mismatch in the sound speed when using a reference phantom

compensation method was presented. The study showed similar results for small variations

respect to the real value of the sound speed. It remains to be studied if the behavior of the QUS

curves as a function of depth can be exploited to estimate tissue parameters such as the sound

speed.
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For the case of the 10 MHz f/2 transducer it can be observed that the error of the ESD and

ESC estimation is about 10% and 3 dB greater respectively than for the f/1.5 and f/3 transducers

when an error of 1% of the actual value of the focus or the sound speed is introduced. This

behavior is directly related to the ratio between the induced location errors and the extent of the

focal region (AD). The 10 MHz f/2 transducer have a focal depth of 50.8 mm and a focal region

length of about 28λ, therefore an error of even 1% in the exact position of the focus or in the

sound speed will have a greater impact than the one presented with the f/1.5 (with a focal depth

of 19.05 mm and a focal region of 15.75λ) or with the f/3 transducer (with a focal depth of 38.1

mm and a focal region of 63λ). The relative shift (Rshi f t) of the focus position, when an error of

1% is introduced, respect to the focal region length using

Rshi f t =
0.01(F)

AD
× 100% (4.8)

is about 12% for the f/2 transducer, while is 8% and 4% for the f/1.5 and f/3 transducer

respectively.

For a visual demonstration of what has been stated before, another simulation with the 10

MHz f/2 transducer but now introducing a mismatch of just 0.2 mm (relative shift of about 4%

of the focal region) in the position of the focus was performed. The result is presented in Figure

4.11.
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Figure 4.11: Simulation results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2 trans-
ducer with a 50.8 mm focus. The focus assumed when calculating the BSCs was set to 50.6
mm (dash), 50.8 mm (solid) and 51.0 mm (dash-dot).

This result clearly show the reduction of the ESD and ESC estimation error, in a range

comparable to the error obtained for the f/1.5 and f/3 transducers. In addition, this result shows

that a relative error in the real position of the transducer focus or in the sound speed will have a

greater impact if the transducer focal depth is larger. In general, any of these errors will have a

greater impact on QUS images from deeper depths.
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4.3.4 Experiments along the transducer focal region

To verify the results of the simulations, the same process were repeated using experimental

data. Figs. 4.12-4.14 shows the results for all the 10 MHz experimental transducers presented

in Table 4.2 while changing the assumed position of the focus. These results exhibit a very

similar behavior to what was observed in simulations, i.e., the performance of QUS estimation

may be affected by very small perturbations in the assumed focal distance.
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Figure 4.12: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/1.5
transducer. The focus assumed when calculating the BSCs was set to 18.74 mm (dash), 18.84
mm (solid) and 19.04 mm (dash-dot) in order to assess the robustness of the method.
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Figure 4.13: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2
transducer. The focus assumed when calculating the BSCs was set to 50.82 mm (dash), 51.22
mm (solid) and 51.62 mm (dash-dot) in order to assess the robustness of the method.
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Figure 4.14: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/3
transducer. The focus assumed when calculating the BSCs was set to 39.48 mm (dash), 39.88
mm (solid) and 40.28 mm (dash-dot)) in order to assess the robustness of the method.

The results for the 10 MHz experimental transducers, but now assuming different sound

speeds are presented in Figs. 4.15-4.17. These results also shown the same behavior for the

slope of the ESCs curves reported before for the simulations.
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Figure 4.15: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/1.5
transducer. The sound speed assumed when calculating the BSCs was set to 1470 m/s (dash),
1490 m/s (solid) and 1510 m/s(dash-dot) in order to assess the robustness of the method.

It can be observed that although in the average the experimental results present a similar

behavior that the simulations, in some cases the errors are more severe than in the simulations.

These discrepancies can be potentially due errors in modeling the transducer geometry, errors

in the theoretical BSC, attenuation compensation problems, and noise effects.
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Figure 4.16: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/2
transducer. The sound speed assumed when calculating the BSCs was set to 1470 m/s (dash),
1490 m/s (solid) and 1510 m/s(dash-dot) in order to assess the robustness of the method.
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Figure 4.17: Experimental results of the BSC MFE and ESD/ESC FEs for the 10 MHz, f/3
transducer. The sound speed assumed when calculating the BSCs was set to 1470 m/s (dash),
1490 m/s (solid) and 1510 m/s(dash-dot) in order to assess the robustness of the method.
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4.4 Conclusions

The presented results suggest that significant improvements in the accuracy of BSC estimation

with highly focused transducers can be achieved by using Chen’s general model instead of

weakly focused transducer formulations.

By improving the BSC estimates the QUS parameters (ESD and ESC) derived from BSCs

also present significant improvements based on the FE results. These improvements were not

limited to ROIs centered around the transducer focus, but in general better estimates were ob-

tained for ROIs throughout the transducer focal region, allowing to produce better QUS images

as shown in the results.

It is important to assess how significant an error of even 1% can be in parameteres as the

exact position of the transducer focus and the sound speed. For this, induced errors effects were

evaluated and some negatives effects were noticed even with these small errors. Related effects

have been reported in other studies, in particular for attenuation estimation [33], where small

errors in the sound speed can degrade the attenuation measurements. Other works have showed

that the ESC estimation usually have an error of about 2-3dB and an ESD error around 2-10%

[2, 34], also the diference between a healthy and a cancerogenic tissue ESD is about 300-500%

and the ESC diference is of about 20-30dB [7] indicating that the results obtained can still be

used for characterizing tissues.



Chapter 5

Conclusions

In this work, the accuracy of the BSC estimation when using highly focused transducers was

evaluated. A theoretical model was developed for estimating BSCs using the FIELD II [19]

simulation software, by adapting the model for compensating diffraction effects proposed in [1].

The reliability of the model was assessed, by calculating the MFE between the theoretical and

estimated BSC curves using weakly focused transducers. Then calculating the MFE between

the theoretical and estimated BSCs curves using highly focused transducers, obtaining MFE

values of less than 12% for both cases.

Through simulations, the effectiveness of the CM for estimating accurate BSCs throughout

the focal region was evaluated. When the CAM was used at the focus for three highly focused

simulated transducers the MFEs varied between 14% and 57%, and were below 10% when the

CM was used for the same transducers. This shows a great improvement on the BSC estimates.

Moreover, the use of the CM results in MFE values of 15% or less when using information

coming from all the focal region and not just from around the transducer focus.

The simulation results were verified using experimental data for estimating BSCs using the

CM both from ROIs centered at the focus and throughout the focal region. The experimental

results showed the same behavior as the simulations, with better estimates when using the CM

for highly focused transducers. Nevertheless, the reductions on the MFEs were not as large

as the ones obtained in simulations, potentially because of errors in modeling the transducer

geometry, errors in the assumed theoretical BSC, and noise effects. Regardless, the results

support advocating for the use of CM when estimating BSCs instead of the CAM for highly

focused transducers.

Through simulations, the accuracy of the estimates of the QUS parameters (ESD and ESC)

produced using the CM for synthesize BSCs both from around the focus and throughout the fo-

cal region was evaluated. When the CM was used for ROIs centered at several positions around

the focal region for three highly focused simulated transducers the FEs for the ESD estimates

varied between -5% and 2%. For the ESC estimates a decibel scale was used. When the CM

was applied, the relation between the estimated and expected values varied between -0.5dB and

1dB. These results showed that the QUS parameter estimation can be highly improved when

35
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using the CM. The improvement is much more notorious for the case of the ESC estimates.

These improvements were not limited to ROIs centered at the transducer focus, but in general

better estimates were obtained for ROIs throughout the transducer -6-dB focal region, allowing

to produce better QUS images as shown in the results.

The simulation results were verified using experimental data for estimating the QUS param-

eters from the BSCs using the CM. The experimental results showed again the same behavior

as the simulations, with better estimates when using the CM for highly focused transducers.

The robustness of the method when using highly focused transducers to uncertainties in

parameters like the sound speed and the exact position of the transducer focus was assessed.

BSCs were estimated from synthetic data produced using a given sound speed and focus but

assuming values that differ slightly to the given ones. The results showed that although on the

average the CM provides accurate QUS estimates, the performance of the CM may degrade

significantly when the assumed focus location or the sound speed is offeven by 1% of its

true value. The ESD estimates may degrade up to 20% and the ESC estimates up to 6dB.

The degradation is closely related with the relation of the transducer focal depth and focal

number. These findings were experimentally validated using data from a physical phantom,

which resulted in error curves exhibiting close correlation with the simulation results.

Based on the results it can be concluded that if the appropriate model is used, along with

well estimated parameters, highly focused transducers can be used to obtain BSCs and QUS pa-

rameters. In addition, better QUS images containing information not restricted to the transducer

focus but to the full extention of the transducer focal region can be generated.
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