

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

Medición del Potencial de Generación de Agua Ácida para un Relave en la Zona Central del Perú y sus Necesidades de Neutralización (ANEXOS)

TEMA DE TESIS PARA OPTAR EL TÍTULO DE INGENIERO DE MINAS

Presentado por el Bachiller:

SERGIO LI LIN

Asesor:

DR. EDMUNDO ALFARO DELGADO

Lima, Setiembre 2013

ANEXO 1:

Reporte de Análisis Químico ICP de Muestras de Relave de Diferentes

Yacimientos

Muestras: M1, M2, M3, M4, M5, M6 & M7

Realizado por SGS del Perú S.A.C

Lima, Diciembre del 2010

ANEXO 2:

Reporte de Análisis Estático ABA de Muestras de Relave de Diferentes

Yacimientos

Muestras: M1, M2, M3, M4, M5, M6 & M7

Realizado por SGS del Perú S.A.C

Lima, Diciembre del 2010

ANEXO 3:

Análisis Mineralógico por Difracción de Rayos X (DRX) de Muestras de Relave de

Diferentes Yacimientos

Muestras: M3, M4, M5 & M7

Realizado por Buenaventura Ingenieros (BISA)

Lima, Febrero del 2011

INTRODUCCIÓN:

Se han realizado los análisis mineralógicos por Difracción de Rayos X de cuatro muestras (M3, M4, M5 & M7). Las muestras se recibieron como polvo, encontrándose secas y en una cantidad apropiada para los análisis a realizar.

En los análisis mineralógicos semicuantitativos por Difracción de Rayos X (DRX) se han determinado todos los minerales presentes con un límite de detección (L.D.) de 1.14 % en promedio. Para el caso de fases amorfas el límite de detección es de aproximadamente 15%.

RESULTADOS DE ANÁLISIS POR DIFRACCIÓN DE RAYOS X (DRX):

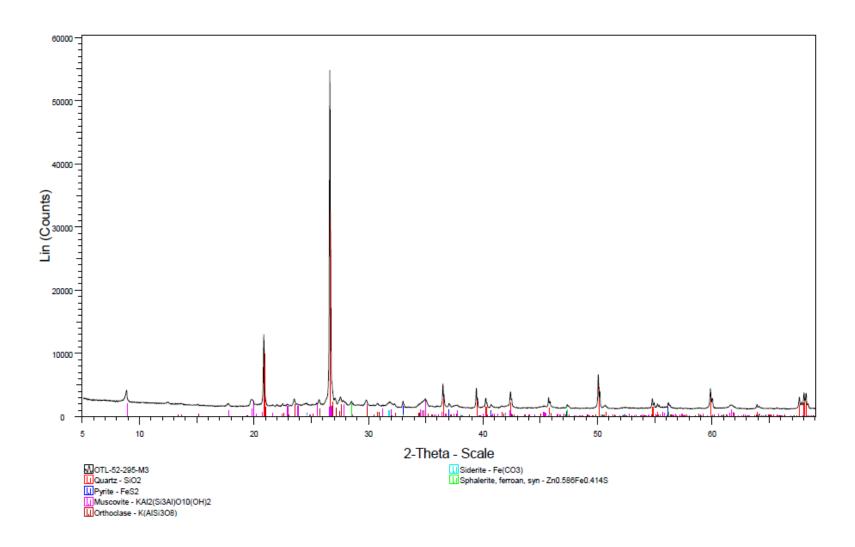
Muestra M-3

Nombre del mineral	Fórmula	%
Cuarzo	SiO ₂	56.22
Muscovita	$KAI_2(Si_3AI)O_{10}(OH,F)_2$	22.53
Ortoclasa	KAISi₃O ₈	16.42
Siderita	FeCO₃	2.61
Pirita	FeS₂	1.70
Esfalerita	(Zn,Fe)S	< L. D.

Muestra M-4

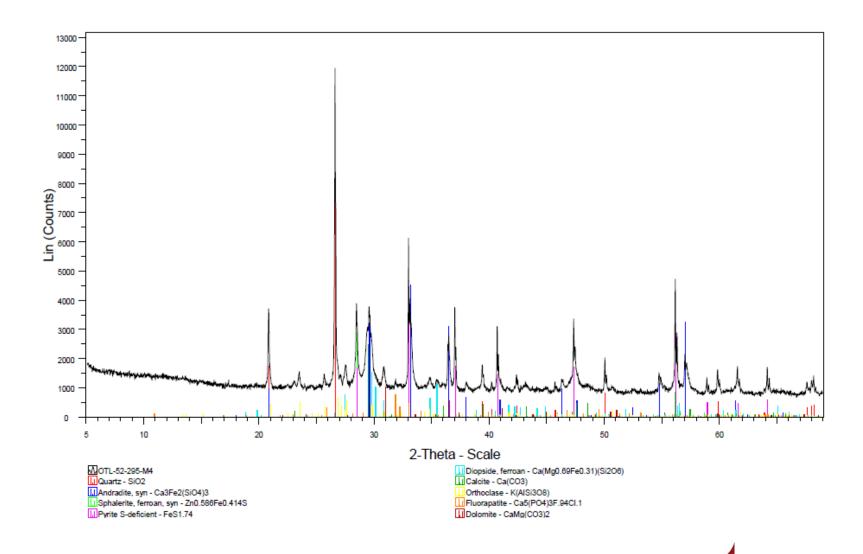
Nombre del mineral	Fórmula	%
Andradita	Ca₃Fe₂(SiO4)₃	24.00
Cuarzo	SiO ₂	21.88
Calcita	CaCO₃	16.76
Ortoclasa	KAISi₃O ₈	11.55
Pirita	FeS ₂	10.87
Diopsido	CaMgSi₂O ₆	8.94
Esfalerita	(Zn,Fe)S	3.12
Apatito	Ca₅(PO₄)₃ F	1.78
Dolomita	CaMg(CO ₃) ₂	< L. D.

Muestra M-5

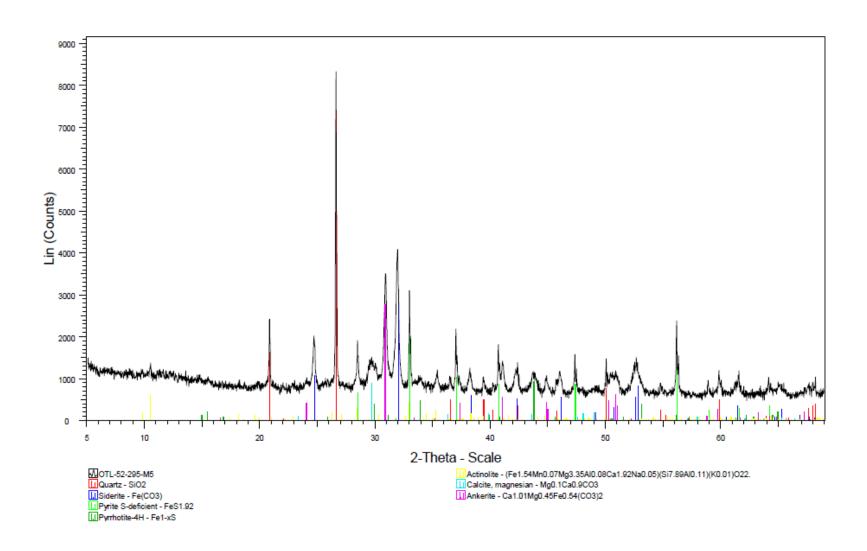

Nombre del mineral	Fórmula	%
Siderita	FeCO₃	24.94
Ankerita	Ca(Fe,Mg,Mn)(CO3) ₂	24.21
Cuarzo	SiO ₂	17.59
Actinolita	$Ca_2(Mg,Fe,Mn)_5Si_8O_{22}(OH)_2$	9.98
Pirita	FeS ₂	8.91
Calcita	CaCO₃	8.19
Pirrotita	$Fe_{(1-x)}S_x$	6.18

Muestra M-7

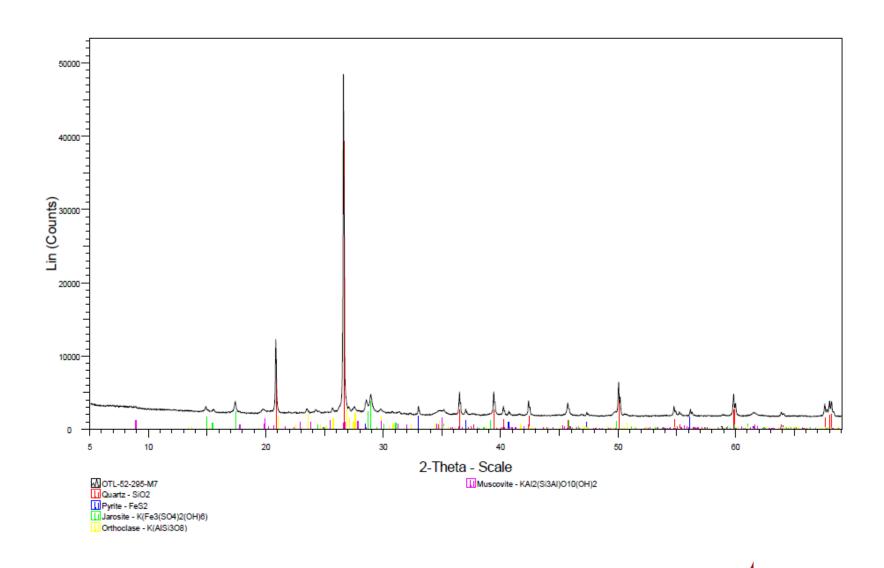
Nombre del mineral	Fórmula	%
Cuarzo	SiO ₂	61.13
Ortoclasa	KAISi₃O ₈	12.40
Muscovita	$KAI_2(Si_3AI)O_{10}(OH,F)_2$	12.23
Jarosita	KFe ₃ (SO ₄) ₂ (OH) ₈	12.00
Pirita	FeS₂	2.25



Difractograma de la Muestra M3 con sus respectivos minerales identificados:



Difractograma de la Muestra M4 con sus respectivos minerales identificados:



Difractograma de la Muestra M5 con sus respectivos minerales identificados:

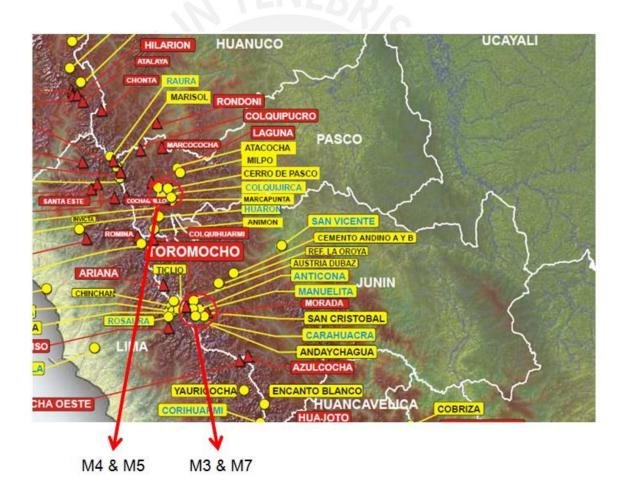
Difractograma de la Muestra M7 con sus respectivos minerales identificados:

ANEXO 4:

Registro Fotográfico y Ubicación Geográfica de Muestras de Relave y Toma de Muestras de Diferentes Yacimientos

Muestras: M1, M2, M3, M4, M5, M6 & M7

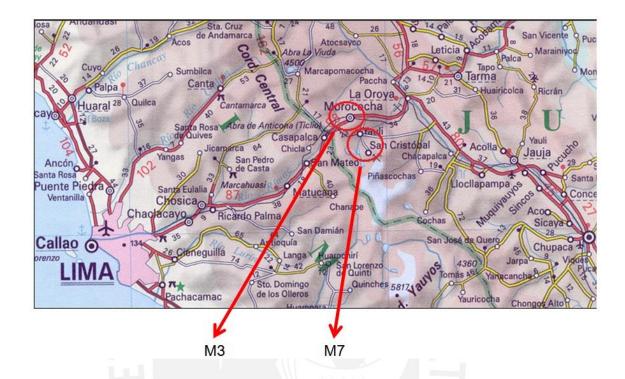
Realizado por Equipo de Investigación DGI PUCP Proyecto


Lima, Diciembre del 2010

Ubicación Geográfica de Zonas de Muestreo y Muestras de Material de Relave:

En los siguientes mapas de la zona central del Perú (regiones de Pasco y Junín) se presenta la ubicación geográfica de los puntos de muestreo de donde se tomaron las muestras de material de relave para el presente estudio.

Figura N° 1: Ubicación Geográfica de Todas las Muestras Seleccionadas (M3, M4, M5 y M7):



*Mapa Tomado de:

http://www.minem.gob.pe/minem/archivos/file/Mineria/PUBLICACIONES/MAPAS/PROYECTOS/MAPA%20PROYECTO.pdf

Figura N° 2: Ubicación Geográfica de Muestras Seleccionadas M3 y M7 (Región Junín):

*Mapa Tomado de: http://am-sur.com/am-sur/peru/r-0xa-L-21-10-2008/02-sierra-ESP.html.

Toma de Muestras de Material de Relave:

El siguiente registro fotográfico muestra algunas de las fotos que se tomaron durante la recolección de muestras de relave para el proyecto de investigación realizado en Diciembre 2010, fecha en la que se realizó el viaje de campo a la zona centro del Perú (Junín y Cerro de Pasco).

Fotografía N° 1: Toma de Muestra M3

Fotografía N° 2: Toma de Muestra M4

Fotografía N° 3: Toma de Muestra M5

Fotografía N° 4: Toma de Muestra M7

Muestras de Material de Relave:

El siguiente registro fotográfico muestra algunas de las fotos que se tomaron de las canchas de relave / relaveras de donde se tomaron las principales muestras para el proyecto de investigación realizado en Diciembre 2010, fecha en la que se realizó el viaje de campo a la zona centro del Perú (Junín y Cerro de Pasco).

El presente registro también presenta algunas imágenes sobre la realidad de las aguas y de las condiciones de muchos pasivos ambientales mineros dejados por la minería antigua que se desarrolló a lo largo del siglo XX en las regiones de Pasco y Junín.

Fotografías N° 5: Relavera y Aguas de Muestra M5

Fotografía N° 6: Relavera y Aguas de Muestra M5

Fotografía N° 7: Relavera de Muestra M2

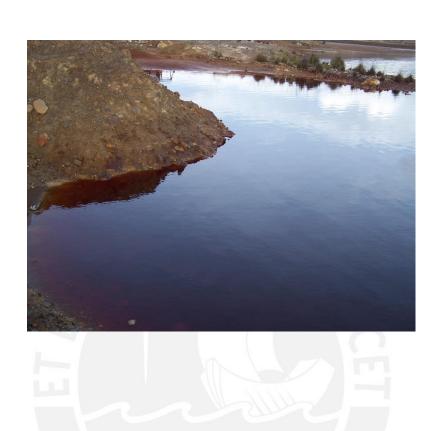
Fotografía N° 8: Relavera de Muestra M2

Fotografía N° 9: Relavera de Muestra M4

Fotografía N° 10: Relavera de Muestra M4

Fotografía N° 11: Relavera y Agua de la Zona Centro (Pasivos Ambientales)

Fotografía N° 12: Relavera y Agua de la Zona Centro (Pasivos Ambientales)



Fotografía N° 13: Relavera y Agua de la Zona Centro (Pasivos Ambientales)

Fotografía N° 14: Relavera y Agua de la Zona Centro (Pasivos Ambientales)

ANEXO 5

Proceso Metalúrgico de Mineral de Mina

Lima, Diciembre del 2011

Proceso Metalúrgico de Mineral de Mina:

Los minerales explotables en las minas de la zona Centro del Perú, son de yacimientos polimetálicos que típicamente contienen Plomo, Cobre, Zinc, Plata y otros elementos en mínimas proporciones.

Los valores de composición en minerales de cabeza pueden oscilar entre los siguientes rangos para cada elemento polimetálico:

- Pb de 1 4 %
- Cu de 1 3 %
- Zn de 4 10 %
- Ag de 2 10 oz/TM
- Fe de 5 15 %.

La presencia de estos metales como sulfuros representa la forma mineralógica más habitual. Es posible también encontrar elementos como el Arsénico, Bismuto, etc. Algunos como contaminantes y otros como elementos de valor. Otros componentes de los minerales son las denominadas gangas, constituidas fundamentalmente por cuarzo, silicatos, arcillas, carbonatos, pirita, etc.

En el procesamiento metalúrgico de estos minerales, se separa como productos valiosos, los sulfuros de los metales presentes (Pb, Zn, Ag, Cu) y el resto de componentes se desecha, constituyendo los relaves de procesamiento metalúrgico. La pirita es uno de los constituyentes de los relaves y la especie mineralógica que causa la mayor generación de ácido en los relaves debido a que no resulta aprovechable en los procesos de recuperación por concentración y a que al estar a la intemperie frente

a las condiciones atmosféricas (oxígeno y agua) se oxida y da lugar a iones hidrógeno que son los causantes de los drenajes ácidos y a la acidez en el agua.

Es de notar que si un proceso tiene un radio de concentración de ocho, por ejemplo, significa que por cada tonelada de producto valioso se deberá procesar 8 toneladas de mineral. Ello significa que de ocho toneladas que se removieron de mina tan sólo una representa mineral aprovechable y las otras siete restantes son relave o desechos. Los radios de concentración pueden llegar a valores como de hasta treinta en promedio, lo que significa gran cantidad de generación de relaves producto de las operaciones mineras y de la concentración de minerales.

Los relaves objeto del presente estudio, son producto del procesamiento de minerales de mina que siguen el siguiente proceso de tratamiento para obtención de concentrados y de Relave Final:

 Molienda y clasificación en molinos de bolas. Inserto en el circuito de molienda, se dispone de una celda de Flotación Flash, para minerales de Plomo, Figura 4.1.



Figura 4.1: Circuito de molienda – clasificación para flotación de plomo

Tomado de: "Informe Proyecto Investigación VRI 2010-0065, EVALUACIÓN DE DRENAJE ACIDO Y CONTAMINANTES EN RELAVES UTILIZANDO QEMSCAM, DGI - PUCP".

2. El producto de la molienda pasa a un circuito de flotación de plomo, Figura 4.2. Incluye remolienda del concentrado Rougher y limpieza en Celda Columna.

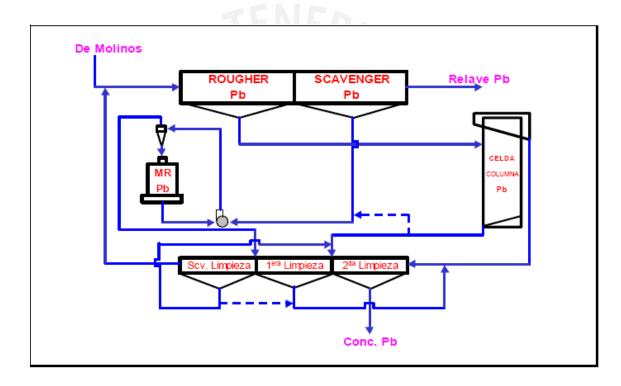


Figura 4.2: Circuito de Flotación de Plomo.

Tomado de: "Informe Proyecto Investigación VRI 2010-0065, EVALUACIÓN DE DRENAJE ACIDO Y CONTAMINANTES EN RELAVES UTILIZANDO QEMSCAM, DGI - PUCP".

3. El relave del circuito de Plomo, pasa al circuito de Flotación de Zinc, Figura 4.3. Incluye varias etapas de limpieza. Se obtiene de aquí el relave final.

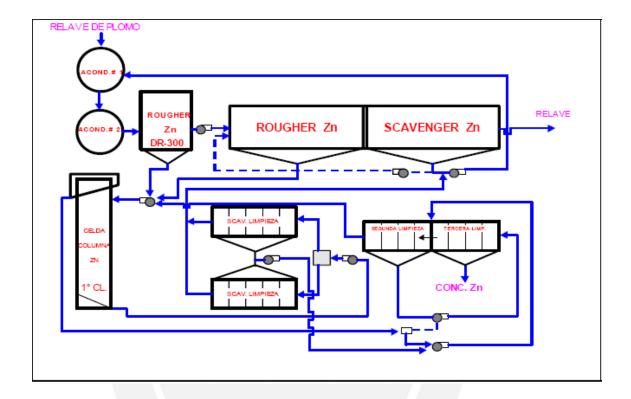


Figura 4.3: Circuito de Flotación de Zinc, se obtiene el relave final.

Tomado de: "Informe Proyecto Investigación VRI 2010-0065, EVALUACIÓN DE DRENAJE ACIDO Y CONTAMINANTES EN RELAVES UTILIZANDO QEMSCAM, DGI - PUCP".

En una operación minera típica, se determina un balance de materiales estándar para obtener la distribución del material ingresado a planta concentradora. Un ejemplo de esto es el presentado como ejemplo de muestra en la Tabla 4.1. Los valores no recuperados forman parte del relave final.

Tabla 4.1: Ejemplo de Balance de materiales estándar de planta de procesamiento de minerales de Plomo – Zinc – Plata.

	TMSD	Leyes					Contenidos; TMSD				% Recuperación			
Producto		% Cu	% Pb	% Zn	Oz/T Ag	Cu	Pb	Zn	Ag	Cu	Pb	Zn	Ag	
Cabeza	1566.000	0.84	1.40	5.02	3.35	13.154	21.924	78.613	5246.10	100.0	100.0	100.0	100.0	
Conc. Cu	36.578	27.30	5.60	4.48	21.84	9.986	2.048	1.639	798.86	75.912	9.343	2.085	15.228	
Conc. Pb	24.580	3.56	65.46	8.00	96.45	0.875	16.090	1.966	2370.74	6.652	73.390	2.501	45.190	
Conc. Zn	122.734	0.63	1.17	54.02	7.91	0.773	1.436	66.301	970.82	5.878	6.550	84.338	18.506	
Relave	1382.108	0.11	0.17	0.63	0.80	1.520	2.350	8.707	1105.68	11.557	10.717	11.076	21.076	

Tomado de: "Informe Proyecto Investigación VRI 2010-0065, EVALUACIÓN DE DRENAJE ACIDO Y CONTAMINANTES EN RELAVES UTILIZANDO QEMSCAM, DGI - PUCP".

Los relaves objetos del presente estudio, que también fueron obtenidos bajo el método de "Procesamiento Metalúrgico de Mineral de Mina" detallado en la presente sección, son caracterizados por composición química, mineralogía de microscopia óptica y por difractometría de rayos X, según se observa en la sección de caracterización.