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“When a foreign word falls by accident into the fountain of a language, it will get driven
around in there until it takes on that language’s colour and resembles a native term in
spite of its foreign nature.”

(Jacob Grimm)

“You shall know a word by the company it keeps.”

(J. R. Firth, 1957)
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Abstract
Towards automatic detection of lexical borrowings in wordlists - with

application to Latin American languages

by John Edward Miller

Key words: computer assisted, historical linguistics, computational linguistics,
lexical borrowing, lexical borrowing detection, language model, neural network,
machine learning classifier, sequence comparison methods.

Knowing what words of a language are inherited from the ancestor language,
which are borrowed from contact languages, which are recently created, and
the timing of critical events in the culture, enables modeling of language history
including language phylogeny, language contact, and other novel influences on
the culture. However, determining which words or forms are borrowed and
from whom is a difficult, time consuming, and often fascinating task, usually
performed by historical linguists, which is limited by the time and expertise
available. While there are semi-automated methods available to identify bor-
rowed words and their word donors, there is still substantial opportunity for
improvement.

We construct a new language model based monolingual method, competing
cross-entropies, based on word source groupings within monolingual wordlists;
improve existing multilingual sequence comparison methods, closest match on
language pairs and cognate-based on multiple languages; and construct a clas-
sifier based meta-method, combining closest match and cross-entropy functions.
We also define an alternative goal of borrowing detection for dominant donor
languages, which allows determination of both borrowing and source. We apply
monolingual methods to a global dataset of 41 languages, and multilingual and
meta methods to a newly constituted dataset of seven Latin American languages.
We also initiate work on a dataset of 21 Pano-Tacanan and regional languages
with added Spanish, Portuguese, and Quechua donor languages for subsequent
application of borrowing detection methods.

The competing cross-entropies method establishes a benchmark for automatic
borrowing detection for the world online loan database, the dominant donor
multiple sequence comparison method improves over the competing cross-entropies
method, and the classifier meta-method with sequence comparison and cross-
entropy functions performs substantially better overall.
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Resumen
Hacia la detección automática de préstamos léxicos en listas de palabras - con

aplicación a lenguas latinoamericanas

por John Edward Miller

Palabras clave: asistida por computadora, lingüística histórica, lingüística com-
putacional, préstamo léxico, detección de préstamo léxico, modelo de lenguaje,
red neuronal, clasificador de aprendizaje automático, métodos de comparación
de secuencias.

Conocer qué palabras de una lengua son heredadas, cuáles son prestadas, cuáles
son de reciente creación y el momento de los eventos culturales críticos per-
mite modelar la historia de la lengua, incluyendo su filogenia, el contacto entre
lenguas y otras influencias culturales novedosas. Sin embargo, determinar qué
palabras o formas son prestadas y de qué lengua provienen es una tarea com-
pleja y laboriosa, realizada generalmente por lingüistas históricos, que se ven
limitados por el tiempo y la experiencia disponibles. Aunque existen métodos
semiautomáticos para identificar préstamos y sus lenguas de origen, aún hay
margen de mejora.

Construimos un nuevo modelo de lenguaje basado en un método monolingüe,
entropías cruzadas competitivas, basado en agrupaciones de fuentes de pal-
abras dentro de listas de palabras monolingües; mejoramos los métodos exis-
tentes de comparación de secuencias multilingües, la coincidencia más cercana
en pares de idiomas y afines basados en múltiples idiomas; y construimos un
meta-método basado en clasificadores, combinando funciones de coincidencia
más cercana y de entropía cruzada. También definimos un objetivo alternativo
de detección de préstamos para idiomas donantes dominantes, que permite de-
terminar tanto el préstamo como la fuente. Aplicamos métodos monolingües a
un conjunto de datos global de 41 idiomas (WOLD), y métodos multilingües y
meta-métodos a un conjunto de datos recién constituido de siete idiomas lati-
noamericanos. También iniciamos el trabajo en un conjunto de datos de 21 id-
iomas pano-tacana y regionales con idiomas donantes agregados de español,
portugués y quechua para la posterior aplicación de métodos de detección de
préstamos.

El método de entropías cruzadas competitivas establece un punto de referen-
cia para la detección automática de préstamos en la base de datos mundial de
préstamos en línea (WOLD). El método de comparación de secuencias múltiples
del donante dominante mejora los resultados del método de entropías cruzadas
competitivas. Finalmente, el meta-método clasificador, que combina la com-
paración de secuencias y las funciones de entropía cruzada, ofrece el mejor
rendimiento general.
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Chapter 1

Introduction

1.1 Research problem and objective
Lexical borrowing, the direct transfer of lexical material from donor to recip-
ient languages, is one of the most pervasive processes of language evolution
(Grant, 2014). We can almost see this process as it takes place, with the bor-
rowing of Spanish words into several indigenous languages of Latin America,
e.g., days of the week (lunes, martes, ...), cow (vaca), and borrowing from in-
digenous languages into Spanish as well, e.g., bean (poroto) and field (chacra)
(see Tab. 1.1). While it took researchers much time to realize that languages
were constantly changing (Campbell, 2013), there is evidence from ancient times
that language communities were aware that they received lexical material from
neighboring communities (Geisler and List, 2013). For example in Plato’s Kraty-
los dialog (409d-10a) (Plato, 1921), Socrates addresses the difficulty in etymo-
logical studies when there are lexical borrowings. Estimates of lexical borrow-
ing for languages, mostly from this epoch, from the World Loanword Database
(http://wold.clld.org, Haspelmath and Tadmor, 2009) show a range of [1%,
62%] borrowing with a mean and standard deviation of 25% ± 13%.

Detection of lexical borrowings (borrowed words or loanwords) is an essential part
of and crucial for the application of the comparative method in historical linguis-
tics (Campbell, 2013). The comparative method, more appropriately meta-method,
seeks to reconstruct ancestral languages, and describe language relationships
(see Fig:1.1) and events. Detection of borrowings is also crucial for phylogenetic
reconstruction which seeks to identify probable language phylogenies by which
a family of languages evolved to their current state (Gray, Greenhill, and Atkin-
son, 2013).

Through synergy with other study areas in the natural, social, and historical
sciences, we may be able to connect language events, e.g., language branching,
language extinction, or exaggerated or accelerated language change, with the
existence of events taking place in the human or ecological community at large.
The innovation of words to describe new technologies, capabilities, behaviors, or
religious or cultural customs, whether through lexical borrowing or other pro-
cess, are signals of change. On a human dimension, the kinds of sound changes
and word and language structures used within a language provide evidence for
cognitive and even physical capabilities.

http://wold.clld.org
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Table 1.1: Examples of lexical borrowing in recent time.

Language Language family Form Donor Donor form
concept: Monday
Moseten Mosetén-Chimané roneš Spanish lunes
Cavinena Pano-Tacanan roneši Spanish lunes
Catuquina Pano-Tacanan segunda Portuguese segunda
ShipiboConibo Pano-Tacanan ronis-n1t1 Spanish lunes
Yaminahua Pano-Tacanan roñıs Spanish lunes
Itonama Itonama ulune Spanish lunes
Movima Movima lunes Spanish lunes
concept: livestock
Moseten Mosetén-Chimané waka-Pin Spanish vaca
concept: cattle
Cavinena Pano-Tacanan waka Spanish vaca
EseEjja Pano-Tacanan waka Spanish vaca
Tacana Pano-Tacanan waka Spanish vaca
Catuquina Pano-Tacanan Boi Portuguese boi
concept: cow
Aguaruna Chicham baka Spanish vaca
Yagua Peba-Yagua woka Spanish vaca
Aymara Quechua-Aymaran waka Spanish vaca
Catuquina Pano-Tacanan Boi ãı Portuguese boi
Yaminahua Pano-Tacanan Bakka Spanish vaca
Cayuvava Cayubaba Baka Spanish vaca
Itonama Itonama u-waka Spanish vaca
ImbQuechua Quechua-Aymaran baka Spanish vaca
concept: bean
Spanish Indo-European poroto Quechua purutu
Yagua Peba-Yagua purutu Quechua purutu
Tacana Pano-Tacanan poroto Quechua purutu
Catuquina Pano-Tacanan čičão Portuguese feijão
ImbQuechua Quechua-Aymaran purutu

This table shows recipient language, family, and form along with corresponding donor
language and form ordered by concept. The shear abundance of borrowing of days of the week
(Monday shown here from Spanish ’lunes’), and for several concepts related to cow (from
Spanish ’vaca’), creates a feeling of transfer of lexical material in real time. Lexical borrowing in
these example cases, notably, spans concepts and several Peruvian language families.

Lexical borrowing is not directly comparable with other processes of language
change. For example, sound change often proceeds in a regular manner that
impacts most words in a particular language’s lexicon where the sound occurs
in a given phonetic context (Miller et al., 2020). In contrast, lexical borrowing
depends much more on the initial language contact situation – the donor and re-
cipient languages, the cultures involved, and the nature of the contact itself, e.g.,
mutually beneficial exchange, violent conquest, or gradual economic or cultural
dominance. It has proven difficult to derive general rules or generalizations on
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Figure 1.1: Comparative method - emphasis on lexical forms.
In this view of the comparative method, processes are rounded rectangles and data stores or
reports are pairs of horizontal lines. Processes and stores in green (teal) are most related to this
research, and are intermediate steps in service of the purpose of the comparative method of
reconstructing ancestral families and modeling language relationships. Detect borrowings, our
focus, uses wordlists and sounds and sound classes to develop language word models, align
words, and detect cognates as inputs to detect and output borrowings.

lexical borrowing, although there is some agreement that some words are less
likely to be borrowed depending on their semantics (Swadesh, 1952; Carling et
al., 2019).

Detection of lexical borrowings is still one of the outstanding problems in his-
torical linguistics, for computational approaches in particular (List, 2019b). With
the availability of curated wordlists across languages and language families, and
our ability to curate such wordlists as dictated by research direction, it becomes
practical to develop or apply computer-assisted approaches in historical linguis-
tics (Wu et al., 2020) to wordlists and discern lexical borrowing from lexical inher-
itance.

However, the issue of borrowed words is both subtle and profound. Words are
received throughout the lifetime of language communities. What is obviously a
borrowing from a recent epoch, becomes a subtle entity of unknown provenance
when the loan comes from prior millennia (Heggarty, 2014). They become part
of the language and have adapted more of the form of the language so that they
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are hard to detect as borrowings (Kiparsky, 2014). Yet, indigenous language
users often seem to know when a word doesn’t seem to fit (Campbell, 2013) –
where phonology, phonotactics, morphophonemics, or morphology, even syntax
or semantics, is not consistent with common language patterns. Similarly, multi-
lingual language users may recognize when words seem to fit across languages.

Objective: Our objective is to develop methods for automatic or semi-automatic
detection of lexical borrowings from other lexical origins and apply these meth-
ods to wordlists organized by language, or by language and concept. Detection
of lexical borrowings includes not only the decision of whether a form is bor-
rowed or inherited (or other creative process), but also, where possible, the donor
language, and likely donor form.

Benefits of such methods and applications include: 1. improved application of
the comparative method and phylogenetic reconstruction for languages, 2. evidence
of of language contact and impact, 3. increased borrowing detection produc-
tivity, 4. explicit, defined, and consistent detection processes, 5. benchmarking
versus expert human performance,

1.2 Language wordlists
Nowadays there are abundant linguistic digital data resources available for use
in research and as jumping off points for refining or developing new linguis-
tic resources. We’ve worked exclusively with databases that follow the Cross-
Linguistic Data Format (CLDF) standard (Forkel et al., 2018), which helps as-
sure that data is accessible, shareable, and conforms to minimum quality stan-
dards where languages are linked to Glottolog (https://glottolog.org/, Ham-
marström, Forkel, and Haspelmath, 2021), concepts are linked to Concepticon
(Concepticon, List et al., 2022a), and transcriptions may be optionally annotated
to conform to broad international phonetic alphabet (BIPA or Broad IPA) con-
ventions of the Cross-Linguistic Transcription Systems (https://clts.clld.org,
List et al., 2021).

Wordlists for lexical borrowing minimally present data fields as shown in Tab. 1.2.
Language names and concepts are accompanied by forms or values with lan-
guage specific encoding (typically orthographic, but sometimes phonemic). Val-
ues are also translated uniformly into “sound segments” of Broad IPA tokens (List
et al., 2021) providing consistency of representation across languages. The “Bor-
rowed” field, either as a boolean or score, would be present in a training or test
dataset, where it serves to teach or validate borrowing detection decisions, or
in the predicted dataset as a result of borrowing detection. The donor language
and even donor form (typically orthographic) more completely define the bor-
rowing, where available.

Specific datasets we use in this investigation are:

1. World Online Loan Database (WOLD) (http://wold.clld.org, Tresoldi,
Forkel, and Morozova, 2019; Haspelmath and Tadmor, 2009). This was

https://glottolog.org/
Concepticon
https://clts.clld.org
http://wold.clld.org
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Table 1.2: Snippet of Imbabura Quechua wordlist.

Language Concept Value Segments Borrowed Donor
Swahili World dunia d u n i a True Arabic
TarifiytBerber Valley tizi T i z i False
English Calm calm k A: m True French
Mapudungun Foam tronün t s o n 1 n False
Quechua World pacha mama p a tS a + m a m a False
Quechua Valley yunga j u N g a False
Quechua Foam putsuju p u ts u x u False
Quechua Knife kuchillo k u tS i Z u True Spanish

From Miller, Pariasca, and Beltran Castañon (2021).

recently curated to add harmonized phonetic transcriptions as segmented
Broad IPA tokens (Tab. 1.2). WOLD contains 41 wordlists with Concepti-
con glosses, in English, for 1,460 distinct concepts with wordlists varying
in size from 956 to 2,558 word forms. Not all concepts are represented
in all languages, and some languages have multiple words for the same
concept. Phonetic transcriptions follow the unified Broad IPA transcription
system (Miller et al., 2020) from the Cross-Linguistic Transcription Sys-
tems reference catalog (Anderson et al., 2019). WOLD annotates not only
the likely borrowed status, but also the donor language and likely donated
word form. To only consider clear-cut borrowings in our tests, we treated
as borrowed, only the words labeled as clearly borrowed (Miller et al., 2020).
The resulting database with phonetic transcriptions was curated using the
CLDFBench toolkit (Forkel and List, 2020) and stored in a Cross-Linguistic
Data Format (CLDF, (Forkel et al., 2018)). Besides using all of WOLD for
development of monolingual methods in §2, a subset of Latin-American
wordlists was used to develop our own SABor database in §3.

2. German Wordlist. This is used to construct artificial borrowings in simu-
lation of a recent high intensity language contact event (see §2.2.1). This
wordlist is taken from a German etymological dictionary (Kluge, 2002).
Phonetic transcriptions were added with modifications from the CELEX
database (CELEX).

3. Intercontinental Dictionary Series (IDS) (https://ids.clld.org/, Key and
Comrie, 2015). This too is available as a CLDF database. An informal stan-
dard uses bracketing of the portion of the value that is thought to be bor-
rowed. Encoding of word forms, annotation of borrowing, donor language
and donor word form depends on individual wordlist authors. IDS and
WOLD share most concepts in common. The Spanish wordlist from IDS
is used in developing our SABor database in §3.1. Some 21 Peruvian and
regional language wordlists from IDS, including Spanish, Portuguese, and
Imbabura Quechua (from WOLD) are being used to develop our planned
Pano-Tacanan Borrowing database.

https://ids.clld.org/
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4. Glottolog’s (https://glottolog.org/, Hammarström, Forkel, and Haspel-
math, 2021) goal is to be a “comprehensive reference for the world’s lan-
guages, especially the lesser known languages”. Workflow that constructs
CLDF datasets, such as WOLD and IDS above, incorporate essential Glot-
tolog data such as language names, identification, family, macro-area and
geographic location. Similarly, in our workflows creating SABor and our
planned Pano-Tacanan Borrowing databases, we incorporate essential Glot-
tolog data.

5. Concepticon (Concepticon, List et al., 2022a) provides lists of concepts,
tools for accessing and linking concept lists, and a backbone comprehen-
sive concept list. Individual concept lists may emphasize different seman-
tic fields, ontological relations, concept relations, gloss languages, or other.
Workflow that constructs CLDF datasets, incorporates essential concepti-
con data, concepticon id and concepticon gloss at a minimum. Our SA-
Bor and planned Pano-Tacanan Borrowing databases incorporate essential
Concepticon data.

1.3 Previous work
Historical linguists detect lexical borrowings using a toolkit of different tech-
niques aimed at detecting conflicts or similarities in the data for individual
words (List, 2019a). Techniques can be categorized between monolingual, mul-
tilingual, and (phylogenetic) model discrepancy. We consider each in turn pro-
viding both problem context and state of the art.

1.3.1 Monolingual methods:
For many language contact situations, when borrowed words enter into a lan-
guage, they still retain certain, sometimes even most, of their donor language
properties. These may include specific phonological properties (“foreign sounds”)
or phonotactic properties (“foreign sound patterns”), which may disappear over
time through loanword nativization (Trask, 2000, p. 200).

Although erased or replaced over time, borrowing language-internal evidence is
observable over many languages and language families, as seen in examples
from Miller et al. (2020):

In many Hmong-Mien languages, for example, some Chinese words
are borrowed with a very specific tone that only occurs in Chinese
words (Qiguang, 2013). Similarly, it is easy for German speakers to
identify job as a loan from English, since only in borrowed words
the grapheme j is pronounced as [dZ] in German. In the same line,
but in a radically different context, speakers of Iskonawa, an ob-
solescent Panoan language spoken in Central Peruvian Amazonia
can easily identify loanwords from Shipibo-Konibo, the dominant
language in the area, due to straightforward phonological features.
For instance, Iskonawa has dropped word-initial [h], thus forms like

https://glottolog.org/
Concepticon
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[hana] ‘tongue’ or [huni] ‘man’ are easily detected as loanwords from
Shipibo-Konibo. (Miller et al., 2020)

Language-internal evidence may include particular donor language construc-
tions, phonotactic elements such as particular consonant clusters or vowel com-
bination, or foreign stress patterns (Maddieson, 1986; Grossman et al., 2020).

While we expect language-internal evidence for lexical borrowing to dissipate
over time as words adapt to their recipient language, we want to test how well
such evidence would aid in detection of lexical borrowings. Assuming that
phonology and phonotactics provide the strongest evidence for lexical borrow-
ing, “all that we need to do in a computational approach to monolingual borrow-
ing detection is to derive computational models of phonology and phonotactics
from annotated wordlists of a given language and then calculate to which degree
a word resembles a typically inherited or a typically borrowed word” (Miller et
al., 2020).

We use different lexical language models, where a language model refers to “any
system trained only on the task of string prediction, whether it operates over
characters, words or sentences, and sequentially or not” (Bender and Koller,
2020). Our language models are based on lexical data provided in the form of
wordlists, with words represented by segmented IPA phonetic transcriptions.
Models are trained on a training part of the wordlist and then applied to a test
part of the wordlist to verify detection of lexical borrowings.

While much of the evidence linguists employ to detect borrowed words is based
on the comparison of several languages, conflicts in phonology and phonotactics,
detected by monolingual methods, are also used for borrowing detection (Miller
et al., 2020). Such ought to be particularly effective when dealing with recent
borrowing events.

State of the Art

Mi et al. (2016), Mi et al. (2018), and Mi, Xie, and Zhang (2020) have enjoyed some
success for the specific case of predicting lexical borrowings to Uyghur language
from Chinese, Russian and Arabic languages. Their initial approach (Mi et al.,
2016) is monolingual using a recurrent encoder-decoder neural network for bor-
rowing detection. F1 validation scores on cross-domain data are in the 0.79 to
0.80 range. Subsequent approaches add a significant multilingual component
and are discussed below §1.3.2.

Miller et al. (2020) develop language models for inherited and borrowed words
for individual languages from the World Loanword Database (WOLD) (Haspel-
math and Tadmor, 2009) using Markov chain and recurrent neural network mod-
els, trained on inherited and borrowed word datasets. They compare word en-
tropies for inherited and borrowed language models in order to identify borrow-
ings based on monolingual information alone. F1 scores on borrowing detection
averaged 0.604 over the entire WOLD database. This effort forms part this thesis.
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Cristea et al. (2021) use support vector machine (SVM) and recurrent neural net-
work (RNN) direct borrowing classification to discriminate Latin borrowings in
Romance languages from inherited words (which come largely from a more an-
cient Latin). The feature rich support vector machine outperforms direct classifi-
cation by recurrent neural network. F1 scores for detection of Latin borrowings
over several Romance languages sampled from Wikitionary ranged from 0.86 to
0.92.

1.3.2 Multilingual methods:
Whereas monolingual methods assess whether borrowed words differ from in-
herited words in the recipient (target) language, and use such discrepancies to
classify words as inherited or borrowed in test data, multilingual methods as-
sess whether donor language words are similar to recipient language words for
similar word meanings. Monolingual and multilingual methods are highly com-
plementary, and we shall discover in §3.2.3 how both can work well together for
improved lexical borrowing detection.

Multilingual methods can be grouped into sequence comparison methods ver-
sus feature based classifier methods. In sequence comparison methods string
sequences over multiple languages are compared, usually after some alignment
process, and decisions made as to whether words are related across languages
or language families based on some similarity or distance measure.

Normalize edit distance (NED) directly calculates distances between phonetic
sequences with costs for additions, deletions, replacements, or interchanges of
sequence elements with normalization by the longer sequence. Words adobe and
fazofe seem far apart (Fig. 1.2) based on the NED method.

Language Word Segments Alignment Edit Costs
Spanish adobe a ð o β e - a ð o β e 1 0 1 0 1 0
Mapudungun fazofe f a z o f e f a z o f e

1

Figure 1.2: Normalized edit distance - example.

Sound class based methods cluster phonetic segments into sound classes and
then compute distances between sound class sequences (List, 2012). The sound-
class based alignment method (SCA) provides sound class categories, similarity
measures between sound class categories, scoring functions for distance mea-
sures, and modifiable gap scores based on prosodic context (List, 2012; List et
al., 2018). Words adobe and fazofe seem close together, while adobe and alulis seem
far apart (Fig. 1.3) based on SCA.

When words from more than two languages are compared at the same time,
a pairwise method such as normalized edit or sound-class alignment distance
methods is incorporated into a multiple alignment and comparison method,
which clusters similar word forms. Words for the concept adobe in Fig. 1.4
are clustered into words derived from adobe where alulis is left out, and words
similar to saami from Mexican indigenous languages.
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Language Word Segments Sonority Prosody Sound Cl Alignment
Spanish adob

e
a ð o β e 7 3 7 3 7 XBYBZ ADUBE - a ð o β e

Mapudungun fazofe f a z o f e 3 7 3 7 3 7 AXBYBZ BASUBE f a z o f e

1

Language Word Segments Sonority Prosody Sound Cl Alignment
Spanish adobe a ð o β e 7 3 7 3 7 XBYBZ ADUBE a ð o β e -
Wichi alulis a l u l i s 7 5 7 5 7 3 XBYBYN ALYLIS a l u l i s

1

Figure 1.3: Sound-class alignment method - example.

Language Word Segments Sonority Prosody Sound Cl Alignment BorId
Spanish adobe a ð o β e 7 3 7 3 7 XBYBZ ADUBE - a ð o β e 

-
45

Imbabura Quechua adubi a d u b i 7 1 7 1 7 XBYBZ ATYPI - a d u b i 
-

45
Wichi alulis a l u l i s 7 5 7 5 7 3 XBYBYN ALYLIS - a l u l i 

s
FN

Mapudungun fazofe f a z o f e 3 7 3 7 3 7 AXBYBZ BASUBE f a z o f e 
-

45
Yaqui saami s aː m i 3 7 4 7 AXBZ SAMI s aː m i - ***
ZinacantanTzotzil shamit ʃ a m i tʰ 3 7 4 7 1 AXBYN SAMIT ʃ a  m i tʰ ***
Qeqchi xan ʃ a n 3 7 4 AXN SAN ʃ a  n - - ***

Figure 1.4: Cognate method - SCA multiple alignment - example.

In feature based classifier methods, multiple features from recipient and donor
languages are selected for use by the classifier. Features may include phono-
logical and phonotactic elements, e.g., presence of particular sound segments or
sound segment sequences, morphological elements, sentence elements if avail-
able, and even punctuation and capitalization in the case of text. Classifiers
themselves can be any of logistic regression, support vector machines, advanced
neural networks, log-linear model, or other.

State of the art - sequence comparison methods

The state of the art for sequence comparison methods is essentially the same as
we reported in Miller and List (2023):

Early studies by van der Ark et al. (2007) and later Mennecier et al.
(2016) compute edit distances between words from genetically un-
related languages and compare distances to thresholds, in order to
detect borrowed words in multilingual wordlists.

Zhang et al. (2021) compare borrowing detection performance for edit
distance versus SCA distance (List, 2012; List et al., 2018), finding
that SCA outperforms edit distance in borrowing detection accuracy.
Hantgan, Babiker, and List (2022) build on this work, using dedi-
cated methods for automated cognate detection applied to languages
from different language families in order to identify clusters of re-
lated words resulting from lexical borrowing. List and Forkel (2022)
expand this work further, by applying a two-stage workflow in which
they first identify language-family-internal cognates, using a method
specifically apt for the detection of deep cognates, and then compute
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SCA distances between cognate sets from genetically unrelated lan-
guages in order to infer sets of words related by lexical transfer.

Kaiping and Klamer (2022) use automated methods for cognate de-
tection (List, Greenhill, and Gray, 2017) on a target set of Timor-Alor-
Pantar languages. In order to infer borrowings from Indonesian and
Tetun (not in the target set), they include both languages in their sam-
ple and treat all cognate sets that involves words from either of the
two languages as borrowings. Moro, Sulistyono, and Kaiping (2023)
apply a similar approach to investigate borrowings in Alorese. (Miller
and List, 2023)

State of the art - classifier methods

Mi et al. (2018)’s multilingual approach is based on cross-lingual embeddings
constructed using word embeddings from monolingual models with the help of
bilingual Uyghur and donor dictionaries. The approach is still focused entirely
on the specific case of Uyghur as the recipient language now with Chinese, Rus-
sian, Turkish and Arabic donor languages. Part of speech (POS) and sentence
level features were added to the previous work based on cross-lingual embed-
dings with borrowing prediction now using a log-linear model (Mi, Xie, and
Zhang, 2020). This is a complex borrowing detection work-flow focused on and
developed for just the Uyghur language. Resulting test F1 scores on borrowing
detection range from 0.72 to 0.74.

Nath et al. (2022) trains binary classifiers, mainly advanced neural network
based, on large wordlists to predict borrowed words. They achieve F1 scores
in the 0.75 to 0.85 range. Corpora were largely majority languages with some
lower resource languages represented as well. Wordlists were scraped from Wik-
tionary resulting in 16 different recipient-donor wordlists with 15 unique recip-
ient languages and 10 unique donor languages. Their workflow seems cumber-
some, compute intensive, and not minimalist. The large constructed wordlists
are not comparable to standard wordlists such as WOLD or IDS, or Swadesh, so
it is difficult to know how the seemingly promising results compare to our own
work.

Note that for both classifier methods discussed here, recipient and donor lan-
guages were processed pairwise, i.e., for each recipient language, just Uyghur in
the case of (Mi, Xie, and Zhang, 2020), borrowing detection and evaluation was
versus a single donor language. This is similar to the dominant donor concept
that we introduce in §2 and define more explicitly in §3.

1.3.3 Discrepancies from phylogenetic models:
In this model discrepancy approach to borrowed word detection, one constructs
phylogenetic models (trees) of language families based on wordlists, optionally
including intruder languages that are typically not part of the language fam-
ily, and then looks for phylogenetic conflicts (Minett, Wang, and Kong, 2003;
Nakhleh, Ringe, and Warnow, 2005; Nelson-Sathi et al., 2011; List et al., 2014a;
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List et al., 2014b; List, 2015; Willems et al., 2016). Observed discrepancies in the
model, in particular lexical items that detract from hierarchical family relations
and contribute instead to lateral transfers, are likely due to borrowed words (List
et al., 2014a; Delz, 2014). Recently, Neureiter et al. (2022) introduced Bayesian
phylogenetic language models with horizontal transfer, called contacTrees, to
better handle language events where there is language contact and borrowing
in addition to inheritance. While we don’t take advantage of discrepancies from
Phylogenetic models in our research, such advances as this (Neureiter et al.,
2022), offer promise.

1.4 Research directions
All methods developed in this work are based on sequences of lexical forms
represented as segmented IPA tokens.

Monolingual borrowing detection (§2): Lexical language models are trained
and then used to compute cross-entropies for lexical forms. In cross-entropy and
competing cross-entropies approaches, cross-entropy results are used in deci-
sion procedures to classify lexical forms as borrowed or inherited. Both Markov
chain and recurrent neural network (RNN) language models are used to com-
pute cross-entropies, with decision results compared to a baseline support vector
machine (SVM) using a simpler bag of sounds classifier approach.

A lexical language model on inherited forms serves as a dramatically simplified
model of a proficient indigenous language speaker. Decisions based on this
model, where cross-entropies are compared to a critical value, are analogous to
categorizations by an indigenous speaker of words as from or not from their
language.

A significant innovation we made to this approach, competing cross-entropies,
employs lexical language models each for inherited and borrowed lexical forms.
Cross-entropies are calculated by each language model and the lesser cross-
entropy model determines whether the lexical form is inherited or borrowed.
This innovation produces improved borrowing detection over the simpler single
inherited lexical form model and the baseline bag of sounds approach. Between
Markov chain and recurrent neural network language models, the neural net-
work model produces marginally better results, but at a cost of substantially in-
creased complexity and increased training times. Subsequent experiments with
neural network Transformer language models reduce training times, with little
improvement in borrowing detection. Experiments using multiple donor mod-
els, instead the single borrowed category, also show little improvement in borrow-
ing detection. Further experiments with data augmentation for borrowed lexical
form models result in changes in the distribution of precision and recall with
little net change in borrowing detection.

We also explored using direct neural network models of lexical forms, where
neural models are trained and produce an output state that is used to predict
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borrowed versus inherited lexical forms. Using only the output state of trans-
former based sequence models, borrowing detection results are inferior to that
produce by the competing entropies approach.

Multilingual borrowing detection (§3): Sequences of lexical forms are aligned
and compared across languages for the same or similar concepts. Forms which
are sufficiently similar to one another are cognate, either inherited from the same
proto form or borrowed.1 We include likely contact languages in the sample of
multiple languages, and attribute forms as borrowed from the intruder when
found to be cognate with the intruder form. Both Closest Match, pairwise, and
Cognate-Based, multiple alignment, methods are explored, in each case running
trials with normalized edit distance (NED) and sound class phonetic alignment
(SCA) methods. Input to the methods in each case are the same segmented IPA
forms as for monolingual methods, but the approach aligns and compares se-
quences across languages. NED counts the number of insertions, deletions, and
replacements of IPA segments needed to match, while SCA transforms IPA seg-
ments into classes of similar sounds and performs weighted scoring and align-
ment taking into account sequence position and prosody to match (NED and
SCA shown above in Fig. 1.2).

An innovation we made to this approach is to characterize the likely contact
language as a dominant donor or intruder. We focus on the dominant donor
for borrowing detection and assert the direction of borrowing and the borrowed
lexical form based on whether the dominant donor lexical form is cognate with
lexical forms from other languages in the pairwise or multiple alignment.

Another innovation we made to this approach is to combine pairwise and multi-
ple alignment methods via a Classifier initially implemented as a support vector
machine (SVM). Individual multilingual methods, NED and SCA, are somewhat
complementary, and so the use of a Classifier meta-method which combines in-
dividual methods produces better overall borrowing detection than any single
method.

Based on a error analysis of Classifier results, we learned that non-algorithmic
factors have a greater impact on borrowing detection than individual sequence
alignment methods. Adequate representation of donor source lexical forms for
individual concepts, i.e., coverage of the donor wordlist, opens up the possibility
for a 5% to 10% improvement in recall. Another problem is that borrowings are
not always from the same concept. We experimented with relaxing the same
concept requirement in the pairwise case, and without any concept restriction
that the numerous false cognates detected makes the approach unusable, while
restriction to the same central concept, provides only a minimal improvement
with false cognates offsetting increased borrowings detected. Perhaps a more
complex option which considers both some measure of semantic distance along
with NED or SCA distance would result in some improvement.

1Historical linguistics’ use takes cognates as inherited from the same form. Here we follow
the computational linguistic practice of either inherited or borrowed forms where borrowing in
this work is across languages or sub-groups.
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An advantage of the monolingual cross-entropy methods is that they do not
depend on the wordlists of other language lexical forms, specifically not those
of possible donor forms. Nor do they depend on the concept represented by
the word, so a same or similar concept restriction does not apply. Monolingual
cross-entropy methods are complementary to multilingual sequence comparison
methods.

A significant innovation we made is to form a Classifier meta-model combin-
ing monolingual Least Cross-Entropy (LCE) and multilingual Closest Match (CM)
methods. This Classifier combines complementary Markov chain competing
cross-entropies models (LCE method) with pairwise sequence matching mul-
tilingual models (CM method). There is a substantial resulting improvement in
borrowing detection for the combined model, even without making the improve-
ments in wordlist coverage or relaxing/loosening the same concept requirement.
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Chapter 2

Monolingual borrowing detection

Historical linguists, in order to detect lexical borrowings (see §1.1), make use
of various strategies, combining evidence from multiple sources. Even with
increased popularity of computational linguistics, automated approaches to de-
tect lexical borrowing are still early on, sometimes simplifying the problem and
disregarding evidence that would be routinely considered by human experts.
An example for this kind of language-internal evidence are phonological and
phonotactic clues that are especially useful to detect borrowings that have not
been completely adapted or assimilated into their recipient languages.

In this chapter, we test how such clues can be exploited in automated frame-
works to detect borrowings. By modeling phonology and phonotactics with a
simple support vector machine model (set of sounds), and Markov chain and
recurrent neural network language models (sequences of sounds), we develop
a framework for the detection of borrowings via supervised learning in mono-
lingual wordlists. Using a substantially revised dataset in which lexical bor-
rowings have been thoroughly annotated for 41 different languages from dif-
ferent families, featuring a large typological diversity (Haspelmath and Tadmor,
2009; Tresoldi, Forkel, and Morozova, 2019), we apply these models in series of
experiments to investigate their performance in monolingual borrowing detec-
tion (Miller et al., 2020).

In a significant innovation, language models (Markov chain or neural network)
are constructed and trained from inherited and borrowed words separately, and
then used to compute cross-entropies on test (held-out) words. In this competing
cross-entropies approach, models which calculate the least cross-entropy for a
word, win that word and so categorize the word according to the winning least
cross-entropy model.

Results appear unsatisfying at a first glance, but further tests show that method
performance improves with increasing amounts of attested borrowings, espe-
cially in those cases where most borrowings originated from a single dominant
language (Miller et al., 2020). A preliminary conclusion is that phonological and
phonotactic clues derived from monolingual language data alone appear insuf-
ficient to detect borrowings when used in isolation. Based on our detailed find-
ings, however, we are hopeful that (1) monolingual methods would be useful in
integrated approaches that also take multilingual information into account, and
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(2) more powerful or refined neural network models to detect borrowings might
improve performance.

A Transformer based lexical model is developed to improve detection perfor-
mance and experiment further. Transformer experiments performed are: (1) a
direct model alternative to the competing entropies approach, (2) lexical donor
models replacing the single lexical borrowed model with multiple competing
cross-entropies, and (3) data augmentation via a supplementary dominant donor
language wordlist.

Results are still not convincing, and so we explore multilingual borrowing de-
tection methods in §3. Subsequently a monolingual method is incorporated into
multilingual methods in order to reap the benefit of both approaches in.

Parts of this chapter were previously reported in (Miller et al., 2020; Miller,
Pariasca, and Beltran Castañon, 2021) and will be cited as appropriate.

2.1 Methods
Our monolingual methods encompass: 1. Language models of sound sequences
which produce cross-entropy estimates of lexical forms and are used to discrim-
inate between inherited and borrowed words, 2. Direct borrowing models of
lexical forms, some of which include language model components, which pro-
duce inherited or borrowed word decisions, 3. Data augmentation methods with
the intent of improving results for cross-entropy based language models (above).
Standard precision, recall, and F score measures used to evaluate experimental
results are also explained.

2.1.1 Lexical language models and cross-entropy
Lexical language models used here which estimate cross-entropy are:

1. Markov chain models (Markov, 2006; Shannon, 2001; Jurafsky and Martin,
2009),

2. Recurrent neural network models (Bengio et al., 2003), and

3. Light-weight transformer models (Bahdanau, Cho, and Bengio, 2015; Vaswani
et al., 2017).

Markov chain models represent “words by their sound n-grams, and neural net-
work models ... in the form of sequences of learned vector representations of
sounds” (Miller et al., 2020). Markov and neural models take into account the
sequence of sounds modeling both the phonology and phonotactics of words.
Light-weight transformers provide a more current alternative to recurrent neu-
ral networks with more power and flexibility at a reduced cost in parameters
and computation. More recent advances such as Bi-directional Encoder Repre-
sentations from Transformers (BERT) (Devlin et al., 2018) and the alphabet mash
of ElMo, RoBERT, and GPT@ estimate millions, billions, and even trillions of
parameters and cost days, weeks, and even months of training time. While these
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are dramatic overkill for our problem, the idea of bi-directional modeling with a
masked language model such as in mBERT, a light-weight mBERT, merits future
consideration.

In the subsection on direct borrowing models (§2.1.2), a bag of sounds model is
presented that only takes into account the presence of sounds in a word. Such
simple language model considers only the phonology of words and serves as a
point of reference in contrast with the sequence models covered here.

Markov chain model. The methods section of Miller et al. (2020) provides a
detail explanation of the Markov chain language model:

An n � 1 order Markov chain model, emits a sound segment with
probability dependent on the n� 1 previous sound segments (an n-
gram model). The product of sound segment probabilities estimated
by the Markov model are transformed into per sound segment word
entropies which are then used in borrowing detection.

We use a second order Markov model, a 3-gram model, from the Nat-
ural Language Toolkit (NLTK) (Steven Bird and Loper, 2019). In the
second order model, the emission probability, P(ck|ck�1

k�2), is condi-
tioned on the previous 2 sound segments. The second order Markov
model is local with longer range effects resulting from the second
order probabilistic process.

We can approximate the probability of a sequence of n sound seg-
ments that make up a word, P(cn

1), by the product of the n second
order conditional probabilities:

P(cn
1) ⇡

n

’
k=1

P(ck|ck�1
k�2).

(Miller et al., 2020)

We transform word probability estimates to length normalized cross-entropies
given the word model estimates,

H(w, m) = �(1/n) log P(cn
1).

Miller et al. (2020) discusses characteristics of the cross-entropy distribution, and
challenges of parameter estimation. For the Markov chain word model case here

cross-entropy typically exhibits a smooth distribution with moderate
right skew for wordlists when the model fits well. The second order
model with a sound segment vocabulary size V requires V3 probabil-
ity parameters for sound segment emission probabilities conditioned
on the previous two sound segments.
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With wordlists of just 1,000 to 2,500 word forms and a typical sound
segment vocabulary size of V ⇡ 50, estimating 503 = 125, 000 param-
eters by maximum likelihood would cause sparse parameter estima-
tion with problems of both undefined conditional probabilities and
overfitting. We use interpolated Kneser-Ney smoothing to accommo-
date unseen tri-grams, reduce overfitting, and reduce the number of
estimated parameters to less than the V3 required under maximum-
likelihood. (Miller et al., 2020)

A tally of non-zero n-gram counts used in estimating Markov chain emission
probabilities, reveals⇡ 12, 500 non-zero n-gram counts for a typical second order
Markov chain, 3-gram, language model.

Recurrent neural network. The methods section of Miller et al. (2020) also
provides a detail explanation of the recurrent neural network language model:

Recurrent neural networks provide word length order conditioning
via the recurrent layer with memory. Word probabilities are expected
to be better estimated, i.e., better approximating human performance,
than for the Markov chain model, as we can infer from early work of
language modeling by (Bengio et al., 2003) and more recent work
with transformer language models (Vaswani et al., 2017).

Conditional sound segment emission probabilities are dependent on
and estimated from all earlier sound segments of the current word:

P(ck|ck�1
1 ) = f (ck�1, ..., c1).

We can approximate the probability of a sequence of n sound seg-
ments that make up a word, P(cn

1), by the product of the n corre-
sponding conditional probabilities:

P(cn
1) ⇡

n

’
k=1

P(ck|ck�1
1 ).

(Miller et al., 2020)

Word probability estimates are again transformed to length normalized cross-
entropies given the (word, model) estimates,

H(w, m) = �(1/n) log P(cn
1).

Miller et al. (2020) delves into the details of recurrent neural model architecture
(Fig 2.2):

The challenge and advantage of the recurrent neural network method
is in the estimation of the conditional sound segment probabilities,
with the function f (ck�1, ..., c1), using a more complex architecture
but with fewer parameters (Tab. 2.1) than the second order Markov
model. Sparse indicator vectors, ck, representing sound segments
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are transformed into dense real input vectors, xk. In the recurrent
layer, input vectors, xk, and prior hidden state vectors, hk�1, are lin-
early transformed and passed through a tanh activation function to
produce current hidden state, hk, and output, ok, vectors. Resulting
output vectors are linearly transformed in a dense output layer of log-
its, y, representing possible output segments. The so f tmax activation
function transforms logit values yk into sound segment probability
estimates,

bP(cn|cn�1, ..., c1) = eycn / Â
k

eyk .

(Miller et al., 2020)
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Figure 2.1: Recurrent neural network lexical model.
From Miller, Pariasca, and Beltran Castañon (2021).

Model parameter counts, implementation details, and model fitting challenges
are also discussed by Miller et al. (2020):

While the recurrent neural network model requires a high baseline
number of parameters given its embedding length and recurrent layer
length, the growth in number of parameters is just linear with the
vocabulary size. As a result, the number of parameters in the neural
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network is on the order of 10,000, which does not change much with
the vocabulary size. Furthermore, the number of parameters does
not increase as a power of the word length in sound segments even
though the conditioning is on all previous sound segments.

We implement our recurrent Neural Network in Tensor-Flow 2.2 (Abadi
et al., 2015) and parameterize the model to permit ready changes in
architecture, regulation, and fitting parameters during experimenta-
tion. The [architectural] configuration used in this study is shown in
Fig 2.1 [with corresponding parameter settings in Tab. 2.1]. Neural
network models, even with just thousands of parameters, may suffer
from substantial variance between training and test due to overfitting,
especially when the amount of training data is comparatively small
as in this case. We apply methods of dropout and l2 regulation to
reduce overfitting. (Miller et al., 2020)

Table 2.1: Recurrent and Transformer Model Parameters

Parameter Recurrent Transformer
# Architetural
embedding_len 32 32
hidden_layer_len 32 32
hidden_layer_cell_type GRU LSTM
n_layers 1 1
# Regulation
embedding_dropout 0.0 0.3
recurrent_l2 0.001
recurrent_output_dropout 0.2
merge_embedding_dropout 0.2
attention_dropout 0.2
transformer_dropout 0.1
# Model fitting
epochs 45 80
learning_rate 0.01 0.0055
learning_rate_schedule Decay Transformer
learning_rate_decay_factor 0.95
val_split 0.0 0.0
number of parameters ⇡ 13, 000 ⇡ 10, 000

Adapted from Miller, Pariasca, and Beltran Castañon (2021).

Light-weight transformer neural network. In more recent neural network lan-
guage modeling, (Bahdanau, Cho, and Bengio, 2015) incorporated attention into
recurrent models to better retain important information over long sequences
through a learned attention mechanism. Subsequently, (Vaswani et al., 2017) dis-
covered that “Attention is all you need” and replaced the recurrent and attention
layers with a reformulated attention layer, also adding addition & normalization
layers to makeup the current transformer architecture. In language modeling of
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text at the sentence level or greater for complex applications such as machine
translation, many transformers may be stacked together to compose the result-
ing language model.

The model used here from (Miller, Pariasca, and Beltran Castañon, 2021) re-
places the recurrent neural model with a “light-weight Transformer module
(Vaswani et al., 2017) which includes Attention (Bahdanau, Cho, and Bengio,
2015) and Transformer features of an adding and normalization layer, and a
feed forward layer (Fig 2.2). The model uses a forward only (left-to-right) causal
model — this reduces model complexity and avoids unintended dependencies
between inputs and outputs.” Conditional sound segment emission probabili-
ties, word emission probabilities, cross-entropies given (word, model), and soft-
max estimation of sound segment probabilities is the same as for the recurrent
neural network.

Inputs: <s> k u tʃ i ʒ u

Input 
Embedding

⨁

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Positional 
Encoding

Linear

Softmax

Outputs: k u tʃ i ʒ u </s>

Nx

Figure 2.2: Light-weight transformer lexical model.
From Miller, Pariasca, and Beltran Castañon (2021).
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Parameters settings for the transformer model are shown in Tab. 2.1. Regula-
tion is applied appropriate to the Transformer module, learning rate is reduced
almost by half and training epochs increased almost by half.

The expectation is that this model will execute much more rapidly than recurrent
neural network model, since the attention mechanism operates in parallel and
not sequentially as recurrent neural network, and that model prediction will
also improve since the attention mechanism should focus on more important
data over the entire sound sequence.

Cross-entropy based decision procedures

We take a theoretical linear model based look at the inherited word only, and bor-
rowed versus inherited word decision procedures. In both cases cross-entropy is
used as the decision metric.

Inherited word cross-entropy. We can think of our lexical language models for
words and corresponding cross-entropy estimates for words given the model, as
offering some measure of lexical expectation versus surprise, that might ap-
proximate some aspects of human lexical processing. Entropy has been used to
characterize lexical predictability in natural reading (Lowder et al., 2018). Some
human sensor processes are log based just as the cross-entropy. 1

It is claimed that a native language users often “know when something is off
about a word” Campbell, 2013, and so can often distinguish word source (e.g.,
inherited versus recently borrowed). We use cross-entropy as a computational
surrogate for this human sense of a word being off.

As a thought experiment, let’s think of cross-entropy in terms of a mixed effects
linear model. This is not meant to be definitive, but it does help explain why
competing cross-entropies is a superior approach to inherited only cross-entropy.

A useful mixed effects linear model of cross-entropy is:

H(m, s, w) = µm + µs + µm,s + µw(s) + µm,w(s) + e,

where µm is the language model main effect (fixed), µs is the word source main
effect (fixed), µm,s is the model-source interaction effect (fixed), µw(s) is word ef-
fect nested within source (random), µm,w(s) is the model-word interaction nested
within source (random), and e is model lack of fit and error. The distinction of
random versus fixed effects recognizes individual words and errors as variable
and better characterized by distributions than fixed effects.

In the case of a model of a native language user, who has an abundant repertoire
of inherited words and a lexical language model learned largely from inherited
words, the language model is inherited and the effects model, where I signifies

1Sound power and volume measurement, and musical scales are log based (Decibels is a log10
based measure, and an octave or equivalent in other musical tradition corresponds to frequency
doubling.
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inherited, reduces to :

H(s, w|m = I) = µ0s|m=I + µ0w(s)|m=I + e.

When a native language user hears or speaks an inherited word, it should sound
ordinary or common. This commonness corresponds to a lower valued cross-
entropy for inherited words and in particular negative µs=I|m=I and positive
µs=B|m=I fixed effects. Other terms remain in the effects model as random effects.

One can think of the distribution of calculated cross-entropies as having been
generated by the linear mixed model, and composed of inherited and borrowed
source distributions. To discriminate between inherited and borrowed words,
one of checks the cross-entropy calculated by the inherited model against a crit-
ical value, per this boolean decision function:

s = borrowed H(s, w|m = I) > Hcrit.

This decision function is not particularly powerful. Except for the fixed differ-
ence between inherited and borrowed sources, D = µs=I|m=I � µs=B|m=I , vari-
ability due to random effects, especially word effects, remains. There is little
power in this test and it’s doubtful that this is a reasonable model of supposed
native speaker discrimination. The variance of the cross-entropy measure under
the linear mixed model is,

Var(H(s, w|m = I)) = D2
µ0s|m=I

+ s2
µ0w(s)|m=I

+ s2
e ,

where2 D2
µ0s|m=I

captures fixed effects variability and s2
µ0w(s)|m=I

random effects vari-

ability. The fixed effect difference Dµ0s|m=I
has to dominate random effects such

as word variability, in order to provide a powerful decision function.

Inherited and borrowed word competing cross-entropies. We use multiple
lexical models to characterize the problem of discriminating between inherited
and other word sources. In particular we consider the simplified case of an
inherited word model trained on inherited words and a borrowed word model
trained on borrowed words. For previously unseen words, to classify a word,
the cross-entropy is calculated with each model and the results compared.

For inherited words, inherited word model estimates should generally be lesser
than borrowed word model estimates. Analogously for borrowed words, bor-
rowed word model estimates should generally be lesser than inherited word
model estimates. This is captured as the following decision function,

s = borrowed (H(s, w|m = I)� H(s, w|m = B)) > 0.

This decision function turns out to be much more effective, because the differ-
encing of cross-entropies by word, removes the main random effect of words

2terms are taken to be independent given the model hierarchy.
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from the predictive model. We see this in the following linear mixed model
representation of the decision function:

H(w|m = I)� H(w|m = B) =
µm|m=I � µm|m=B + µm,s|m=I � µm,s|m=B + µm,w(s)|m=I � µm,w(s)|m=B + d.

Word source and word within source effects drop out, and all other effects, re-
tain inherited versus borrowed differences. This decision function is potentially
much more powerful. The variance of the decision function under the linear
mixed model is,

Var(H(w|m = I)� H(w|m = B)) =
D2

µm + D2
µm,s + s2

µm,w(s)|m=I
+ s2

µm,w(s)|m=B
+ s2

d .

2.1.2 Direct classification - borrowing models
Our models to directly predict borrowings represent two corner-points in exper-
iments in lexical borrowing detection: 1. Bag of sounds, a simple non-sequential
model based on only the set of sounds, consider only the phonology of words,
and 2. Neural network sequence models predicting borrowings directly without
an intervening segmented IPA prediction nor word cross-entropy calculation.
These borrowing models are still lexical language model based but with the out-
put no longer “string prediction” (Bender and Koller, 2020), but rather direct
borrowing prediction.

Bag of sounds. The methods section of Miller et al. (2020) provides a detail
explanation of the bag of sounds classifier method:

Since the word forms in our data are available as harmonized pho-
netic transcriptions, it is straightforward to represent each word form
in a given language as a vector indicating the presence and absence
of distinct sound segments. Since the order of these sound segments
is not important, and neither is their frequency considered, this vec-
tor can be thought of as a simple bag of sounds, in which the sounds
making up a given word form are represented as a set. The task
of distinguishing borrowed from inherited words can then be pur-
sued with the help of a support vector machine with a linear ker-
nel (Hastie, Tibshirani, and Friedman, 2001; Cristianini and Shawe-
Taylor, 2000). The support vector machine identifies the plane which
optimally separates inherited from borrowed words based on the set
of sound segments. The bag of sounds method does not consider the
order or the frequency of elements in a given sound sequence, and
we did not expect it to perform extraordinarily well in all languages
in our sample. The advantage of the model is that it is simple and fast
in application. It also provides a baseline for those cases where pecu-
liar sounds provide enough information to identify a given borrowed
word. (Miller et al., 2020)
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Direct neural network. An advantage of neural network models is that they
ought to determine an appropriate decision function directly without having to
insert human knowledge of theoretical intervening variables. In this case, even
though there are plausible arguments for cross-entropy measures representing
human lexical processing in borrowing detection, this may not be a necessary
step if all we want to do is predict borrowing.

The direct model also uses the transformer architecture §2.1.1 where the output
of the transformer module is either averaged (GlobalAveragePooling) to a 1-D
vector the same size as the attention vectors, or flattened (Flatten) to a 1-D vector
the size of the number of sounds by the size of the attention vectors. Given the
relatively small size of attention/hidden layer vectors (length = 32 as seen in
Tab. 2.1) and a similar word size limit, flattening is quite practical here. This
output is connected to a dense output layer which predicts borrowed versus
inherited status directly, without intervening word predictions, cross-entropy
calculations, or separate decision function.

2.1.3 Donor focused borrowing models
Detection of lexical borrowing includes not only whether words are borrowed,
but also from which language donor are they borrowed. This additional capa-
bility to take into account language donor is relatively straightforward for both
the competing cross-entropy and the direct borrowing models.

The methods section of Miller, Pariasca, and Beltran Castañon (2021) introduces
multiple donor and donor focused borrowing models:

We broadened the problem definition to include donor source of the
borrowed words. Output includes indication of word donor instead
of simply inherited versus borrowed, where d = 0 designates an in-
herited word, and d 2 [1, D] designate which is the borrowed word
donor. A minimum donor wordlist size of 75 words was used to
assure enough data to fit corresponding donor models; less than 75
word donor sources were combined into a remaining wordlist.

For competing cross-entropy models this results in D + 1 individual
cross-entropy models per language — one for inherited words and
one for each word donor. In the decision procedure, all models com-
pete for which has the cross-lowest entropy to select the word. For the
direct model, only one model is created and it directly discriminates
between donors. (Miller, Pariasca, and Beltran Castañon, 2021)

This task of selecting the lowest cross-entropy donor can be described by an
equation, d = argdmin(CE(w|m = d)), where d is the donor, w is the word being
tested, and m is the model out of D + 1 competing models.

2.1.4 Data augmentation borrowing models
Given the paucity of data, i.e., ⇡1,500 words per language with commonly four
to seven IPA sound segments per word, we tried to improve neural network



25

model results by artificially augmenting training data by performing the follow-
ing experiments:

1. Added donor wordlist without alteration, as though it were an additional
source of known borrowed words, and

2. Machine translation of donor wordlist to the target language, with subse-
quent inclusion as though a list of known borrowed words.

The first simple experiment developed a prototype method to include additional
donor training data. This opened up the way for the very complex, labor and
compute intensive experiment requiring machine translation.

Added Spanish donor wordlist

Miller, Pariasca, and Beltran Castañon (2021) describe the experimental process:

Lack of sufficient borrowed words for training is a detractor so we
enhanced our data methods to permit an additional donor wordlist
source. This was a limited experiment where we include a Spanish
wordlist from IDS (Key and Comrie, 2015), transcribe it to IPA, and
combine it with Spanish donor borrowed words for target languages
where Spanish is the primary donor language. Latin American lan-
guages in WOLD that have Spanish as the primary language donor
are: Imbabura Quechua, Mapudungun, Otomi, Q’eqchi’, Wichí, Yaqui,
and Zinacantán Tzotzil. We apply our enhanced data methods with
both competing cross-entropy and direct models to these seven lan-
guages. (Miller, Pariasca, and Beltran Castañon, 2021)

We shall see (§2.2.7) that simply adding a Spanish wordlist impacted precision
and recall results, but with little overall improvement in borrowing detection.

Translated Spanish to target language wordlist

To improve performance, we augment borrowed word training data by simulat-
ing what borrowed words might look like in the word table. The expectation
is that if we can simulate borrowed words well enough for the target language,
then this would improve training of the borrowed word model.

The configuration of the competing entropies approach used in this experiment
is shown in Tab. 2.2. The number of parameters varies with the vocabulary size,
between 25 and 60 IPA segments in this study, and was on the order of 10,000
parameters each over target languages.

To simulate borrowed words we performed word translation from a Spanish
donor wordlist to separate target languages (Left side of Fig. 2.3) via neural
translators trained on a Trax Transformer model. Trax is “an end-to-end li-
brary for deep learning ... actively used and maintained in the Google Brain
team” (Team, 2021). We configured training parameters for a single layer Trax
Transfomer, “an encoder-decoder that performs tokenized string-to-string trans-
duction”, as shown in Tab. 2.3. Even though limited to a single layer, the number
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Table 2.2: Data augmentation
competing entropies configuration.

Parameter Value
dimension 32
learning rate 0.0055
dropout 0.1
learning schedule Transformer
number of epochs 100/150

number of parameters ⇡ 10,000

of training parameters was on the order of 30,000 over the full encoder-decoder
model. While tiny for a typical text translation model, this seems overwhelming
for the application of translating ⇡ 1, 400 Spanish words to the different target
languages.

Table 2.3: Translation model configuration.

Parameter Value
dimension 40
learning rate 0.001
dropout 0.3
optimizer Adafactor
learning schedule multifactor
- warmup steps 200
- decay steps 100
number of steps 2000
loss function cross-entropy

number of parameters ⇡ 30,000

The work flow for training and testing each target language in this experiment
is shown in Fig. 2.3 and described as follows:

1. Separate the target language word table into train and test data.
2. Further divide train and test data into inherited and borrowed words.
3. For the borrowed words, identify the corresponding loaned Spanish lan-

guage donor words.
4. Construct parallel train and test translation datasets consisting of Spanish

donor words and corresponding target words.
5. Train Spanish donor to target language translator, and validate on test data.
6. Translate full Spanish donor wordlist to target language simulated bor-

rowed words.
7. Train competing entropies borrowed and inherited words models on in-

herited words train data, and on borrowed words train data augmented by
simulated borrowed words.
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8. Validate borrowed word detection on test data.

Maintaining clear separation of train and test data across translation and borrow-
ing detection, we selected optimal translation models based on internal train-
ing measures (15% sample of train) of maximum accuracy or minimum cross-
entropy, or termination at 2000 training steps.

We used a train (90%) versus test (10%) split for each language table, where
the split is preserved over the competing entropies approach and the simulated
borrowed word translation. Because this is only a one-fold split, results from
this experiment are not directly comparable with 10-fold cross validation studies
of (Miller et al., 2020; Miller, Pariasca, and Beltran Castañon, 2021). There was,
however, little cost to replicate training and test on the same partitioned train
and test dataset, so each trial was replicated 10 times and the mean test results
reported.

Figure 2.3: Competing entropies borrowing detection with data
augmentation by simulated borrowed words.

2.1.5 Assessing detection performance
We have already mentioned precision and recall, and alluded to an overall mea-
sure of performance in detecting borrowings. Miller et al. (2020) defines these
measures:

We assess detection performance using precision, recall, and harmonic
mean (F1 score), as well as accuracy measures based on frequency
counts of borrowing detection by true borrowing status as defined
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in Tab. 2.4. Following (Manning and Schütze, 2001), precision is the
proportion of true positive borrowings out of all detected positives,

precision = tp/(tp + f p),

recall is the proportion of true positive borrowings out of all borrow-
ings,

recall = tp/(tp + f n),

F1 score is the harmonic mean of precision and recall, and

F1 = (2 ⇤ precision ⇤ recall)/(precision + recall),

accuracy is the proportion of all detections that are correct,

accuracy = (tp + tn)/(tp + f p + f n + tn).

We consider F1, since it combines both precision and recall, as the
primary measure. Accuracy does not specifically focus on borrowing
detection and is of secondary importance. (Miller et al., 2020)

While Borrowed and Inherited are the category of interest and default category
here, we could readily change this to focus on borrowings from a particular
donor language, as we do in §3.1.2. In some experiments, we also measure
execution time.

Table 2.4: Frequency counts of borrowing detection
by true borrowing status.

Borrowing True borrowing status
Detection Borrowed Inherited

Positive tp=true positive fp=false positive
Negative fn=false negative tn=true negative

From Miller et al. (2020).

2.2 Experiments and results
We use the World Loan Database (WOLD) (Tresoldi, Forkel, and Morozova,
2019) multilingual collection of wordlists as our primary data source for ex-
periments in this chapter. The first several experiments have been previously
documented in (Miller et al., 2020). We replicate these experiments and add
experiments on inherited only lexical models, which we had explored before
discovering the competing cross-entropies approach. We also report on compet-
ing cross-entropies and direct approaches based on our light-weight transformer
lexical model previously documented in (Miller, Pariasca, and Beltran Castañon,
2021). Finally we report on our most complex approach where we augment
training data based on translation of donor to target language wordlists.
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2.2.1 Artificially seeded borrowings
The experiments and results section of Miller et al. (2020) reports the results of
our artificially seeded borrowings experiments:

To simulate a situation in which foreign words have recently en-
tered a language without being modified by borrowed word nativiza-
tion processes, we designed an experiment in which the wordlists in
our base datasets were artificially mixed with words from another
wordlist which was not part of the original WOLD collection. The
idea to use “artificially seeded” borrowings instead of borrowings
attested in actual language was originally proposed for evaluating
methods for lateral gene transfer detection in biology (Dessimoz,
Margadant, and Gonnet, 2008), and later tested on linguistic data in
order to assess the power of phylogenetic methods for borrowing de-
tection across multiple languages (List et al., 2014a). The advantage
of this procedure is that it creates simulated data without requiring
the efforts of detailed simulation experiments.

Artificial borrowings were seeded into a wordlist in three steps. We
first removed all borrowed words from the wordlist to guarantee that
no recent borrowings from other languages could influence the re-
sults. We then added inherited words from the additional German
list (see §1.2), which we created for testing purposes. Here, we tested
three different proportions of borrowed words, 5%, 10%, and 20%, in
order to allow to compare different degrees of contact. In a final step,
we then split the resulting wordlist into a training and a test set (re-
serving 80% of the data for training and 20% for testing) and ran the
three methods for monolingual borrowing detection, bag of sounds,
Markov model, and neural network. (Miller et al., 2020)

Only the competing cross-entropies approach is included in (Miller et al., 2020).
To this we add results for inherited only, Markov chain and neural network, lex-
ical models. In the competing cross-entropies approach, the difference between
borrowed and inherited cross-entropies is compared to zero to determine bor-
rowed status. With the inherited only approach, the estimated cross-entropy is
compared to a critical value to determine borrowed status. For this critical value,
we use 20th percentile of the training distribution of borrowed words which if
the training and test distributions are similar, guarantees that about 80% of bor-
rowings will be classified as such.

Experimental results are shown in Tab. 2.5 and Figs. 2.4, 2.5, and 2.6. Detail
results by individual language and method are reported in appendix Tabs. A.1,
A.2, and A.3. Bag of sounds and competing entropies models perform well at
20% and 10% borrowings achieving F1 scores or more than 0.90. At 5% borrow-
ings, the competing entropies neural network method attains an F1 score of 0.89,
the competing entropies Markov method degrades substantially with the poor-
est F1 score of 0.78, and bag of sounds and inherited only models all show high
precision with F1 scores in the 80% range. High precision for the bag of sounds
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Table 2.5: Borrowing detection results for artificially seeded borrowings.

Method Rate Precision Recall F1
Bag of Sounds 5 0.99 0.80 0.87
Inherited Markov 5 0.90 0.83 0.85
Competing Markovs 5 0.70 0.95 0.78
Inherited Neural 5 0.92 0.79 0.84
Competing Neurals 5 0.83 0.97 0.89

Bag of Sounds 10 0.99 0.87 0.92
Inherited Markov 10 0.91 0.82 0.86
Competing Markovs 10 0.87 0.97 0.91
Inherited Neural 10 0.93 0.79 0.84
Competing Neurals 10 0.91 0.98 0.94

Bag of Sounds 20 0.99 0.91 0.94
Inherited Markov 20 0.95 0.85 0.89
Competing Markovs 20 0.95 0.97 0.96
Inherited Neural 20 0.98 0.79 0.87
Competing Neurals 20 0.96 0.98 0.97

Results averaged over all languages for each method and
borrowing rate. Updated from Miller et al. (2020).

model at 5% borrowings is likely due to the detection of sounds unique to the
German artificial borrowings. The poorer competing entropies Markov models
method at 5% borrowings is likely due to the poor estimation of the borrowed
word model with so little data, given that the inherited only Markov model has
not degraded.

Note that with commonly 20 to 50 distinct sound segments per language, and
given the phonotactic restrictions on sound combinations, there are ⇡ 1, 750
to ⇡ 12, 500 non-zero conditional probability estimates for the Markov chain
language models, depending on the number of distinct sounds and phonotactic
restrictions. In contrast the bag of sounds model, where we don’t see such model
degradation, representing only the set of unique sounds per language, has ⇡ 20
to ⇡ 50 parameter estimates.

2.2.2 Borrowing detection on real language data (WOLD)
We experimented with more challenging real world data from WOLD wordlists,
as reported by Miller et al. (2020):

Our experiment on artificially seeded borrowings simulated an ideal
situation of language contact in which new words were recently in-
troduced into a given language without being adjusted (adapted) to
the recipient language’s target phonology. While this experiment
provided high scores in our evaluation experiment, the experiment
does not allow us to estimate how well the three borrowing detection
methods will perform when being exposed to “real” data. For this
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Figure 2.4: Borrowing detection results for 5% artificially seeded borrowings.
From Miller et al. (2020).

Figure 2.5: Borrowing detection results for 10% artificially seeded borrowings.
From Miller et al. (2020).
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Figure 2.6: Borrowing detection results for 20% artificially seeded borrowings.
From Miller et al. (2020).

reason, we designed a second experiment on the WOLD data in their
original form. Given that the wordlists are quite small, while specif-
ically Markov Model and Neural Network language models tend to
require larger amounts of data, we used cross validation techniques,
in which the data are repeatedly partitioned into training and test
data and evaluation results are measured for each trial and later sum-
marized. We employed ten-fold cross validation for this experiment,
where each word list was partitioned into 10 parts, and over 10 suc-
cessive trials, one part was successively designated the test set while
the remaining nine parts were designated the training set. This re-
sulted in 10 separate estimates of borrowing detection performance,
with each word appearing once in test sets and nine times in training
sets. (Miller et al., 2020)

Tab. 2.6 shows the averages, standard deviations across languages, and pooled
standard deviations across partitions within languages for cross-validation re-
sults (precision, recall, F1 score, accuracy) for each of our methods. As above, we
also add the inherited only Markov chain and neural network lexical methods to
that which was reported in (Miller et al., 2020). Fig 2.7 graphically summarizes
the averaged results. Detail results by individual language and method are re-
ported in appendix Tabs. A.4 and A.5, and Tabs. A.6 and A.7 for inherited only
methods.

We observe from the table and figure:
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Table 2.6: Borrowing detection results of the cross validation experiment.

Method Statistic Pecision Recall F1 Accuracy

Bag of Sounds Mean 0.592 0.289 0.353 0.844
Language SD 0.281 0.247 0.263 0.081
Pooled SD 0.169 0.066 0.074 0.027

Inherited Markov Mean 0.330 0.796 0.440 0.617
Language SD 0.171 0.030 0.168 0.134
Pooled SD 0.048 0.093 0.054 0.039

Competing Markovs Mean 0.527 0.676 0.583 0.830
Language SD 0.181 0.152 0.170 0.060
Pooled SD 0.076 0.088 0.066 0.029

Inherited Neural Mean 0.315 0.791 0.426 0.593
Language SD 0.164 0.056 0.166 0.138
Pooled SD 0.052 0.119 0.058 0.041

Competing Neurals Mean 0.549 0.701 0.606 0.844
Language SD 0.191 0.161 0.180 0.062
Pooled SD 0.084 0.101 0.076 0.032

Mean and standard deviation over languages, and pooled standard deviation within
language for each method over all languages. Updated from Miller et al. (2020).

• Performance is poorer versus that for the easier task of artificially seeded
borrowings.

• Competing cross-entropies Markov chain and neural network methods
substantially outperform inherited cross-entropy and the bag of sounds
methods.

• Inherited cross-entropy methods both achieve average recall of ⇡ 0.8 with
their decision function’s critical value based on the 20th percentile of the
training distribution of borrowed words, just as for the artificially seeded
cases.

• Inherited cross-entropy methods outperform the phonology only Bag of
Sounds method.

• Standard deviations across languages, ⇡ 0.17 for cross-entropy methods
and 0.26 for bag of sounds, show substantial variability in performance by
language.

An examination of detail results for a few individual languages is reported
by Miller et al. (2020):

When examining the individual results achieved by each method for
each individual language in our sample (Tab. A.4), one can find sub-
stantial variation in the results, ranging from results which one may
consider as satisfying (such as the performance of the Neural Net-
work on Zinacantán Tzotzil with an F1 score of 0.81) up to extremely
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Figure 2.7: Results of the cross validation experiment.
Averaged for each method over all languages in our sample.

Adapted and updated from Miller et al. (2020).

bad results (such as the performance of all methods on Mandarin Chi-
nese, with F1 scores below 0.02). The reasons for the underwhelming
results on Mandarin Chinese are twofold. On the one hand, the lan-
guage rarely borrows words directly, but rather resorts to loan trans-
lation, by which new concepts are rendered with the help of the lex-
ical material in the target language. As a result, Mandarin has the
lowest amount of direct borrowings in our sample. On the other
hand, Mandarin Chinese (as well as all Chinese dialects and many
languages from Southeast Asia) has an extremely restricted syllable
structure that makes it impossible to render most foreign words truth-
fully (Norman, 1988). As a result, words are usually directly adjusted
to Chinese phonotactics when being borrowed and also written with
existing Chinese characters, which again further masks their foreign
origin (Sun, 2006). However, this very specific situation also makes it
also difficult if not impossible for most Mandarin Chinese speakers
to identify borrowings when considering phonotactic criteria alone.
(Miller et al., 2020)

If we can figure out how to improve the results for poorer performing languages,
maybe excluding the Chinese languages, we could have a more useful borrowing
detection method.

2.2.3 Factors that influence borrowing detection
We then looked at factors by target languages that may have influenced borrow-
ing detection, as reported by Miller et al. (2020) in their experiments and results
section:
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Given that the performance of our supervised borrowing detection
methods varied substantially, ranging from poor performance with
F1 scores below 0.5, average performance with F1 scores between 0.5
and 0.8, and acceptable performance with F1 scores above 0.8, we
performed analyses to assess to which degree certain factors might
influence the borrowing detection methods.

In concrete, we computed specific characteristics of each language
variety in our sample and then checked to which degree these char-
acteristics correlated with the test performance. As characteristics, we
chose the proportion of borrowed words in a given language wordlist
(since statistical and machine learning methods perform better with
sufficient representation), and the proportions of unique sounds in
borrowed words and in inherited words, as potential contributors
to prediction performance. A higher proportion of borrowed words
corresponded moderately to a lower proportion of unique sounds in
inherited words, otherwise characteristics were independent. (Miller
et al., 2020)

Characteristics by individual language that may impact borrowing are reported
in Tab. A.8.

Statistical analyses (here correlational and matrix plots), were performed with
JMP® Statistical Software (JMP®, Version 17.0.0 2022). A previous analysis for (Miller
et al., 2020) used Minitab (Minitab, 2020). Correlation results, based on wordlists
from the WOLD database, are reported in Tab. 2.7 with corresponding detailed
plots in Figs. 2.8, 2.9, and 2.10.

Table 2.7: Correlations between phonological characteristics and
performance of borrowing detection methods.

Proportion Precision Recall F1
Bag of Sounds
Borrowed words 0.317 0.558 0.500
Borrowed sounds 0.370 0.225 0.230
Inherited sounds 0.069 -0.059 -0.039

Markov Chain
Borrowed words 0.716 0.395 0.626
Borrowed sounds 0.267 0.343 0.292
Inherited sounds -0.283 -0.077 -0.228

Neural Network
Borrowed words 0.668 0.402 0.595
Borrowed sounds 0.234 0.359 0.268
Inherited sounds -0.163 -0.068 -0.132
Correlations with |r| � 0.30 are significant at p < 0.05.

Updated from Miller et al. (2020).
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There is a moderate to strong positive correlation between the proportion of
borrowed words and the borrowing detection performance for all methods. Op-
posed to this, there is little relationship between the proportion of unique in-
herited sounds and detection performance for any method. The proportion of
unique borrowed sounds is more strongly related to precision for the bag of
sounds method and to recall for competing cross-entropies methods.

The bag of sounds method has several languages where detection performance is
zero or close to zero. Review of the borrowed sounds by recall and F1 score mea-
sures in Fig 2.8 shows most such languages have zero or close to zero borrowed
sounds. This is consistent with the bag of sounds method which only considers
the set of phonological symbols and so has little information to detect borrowed
words without unique borrowed sounds. Both competing cross-entropy meth-
ods show non-linearities in their the borrowed words and borrowed sounds re-
lationships with detection performance. For a very low proportion of borrowed
words, detection performance is always lower than the expected linear relation-
ship, and for an approximate zero proportion of unique borrowed sounds, eval-
uation scores may be almost any value in the range 0.0 to 1.0.
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Figure 2.8: Determining characteristics that influence the perfor-
mance of the bag of sounds.

Updated from Miller et al. (2020).
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Figure 2.9: Determining characteristics that influence the perfor-
mance of the Markov chain cross-entropies.

Updated from Miller et al. (2020).

2.2.4 Detecting borrowings when there is a dominant donor
Another factor which influences borrowing detection, is the intensity of the lan-
guage contact situation, as quantified by the proportion of borrowed words from
a single language donor. Quantity of lexical borrowing and primary language
donor characteristics are reported by individual language in Tab. A.8. We look
again at the relationship between proportion of borrowed words, a proxy for
intensity of language contact, as reported by Miller et al. (2020):

Testing our lexical language models on the WOLD data in their en-
tirety could be considered as unfair to the methods, given that we
know well that monolingual evidence for borrowing in phonotactics
may get lost easily and that the WOLD database was never restricted
to recent borrowings alone. Another problem of the data is that the
distinction between inherited words on the one hand and borrowings
on the other hand is as well a simplifying assumption, since we know
that in intensive contact situations borrowings come from a specific
donor language. As a result, it seems to be justified to test the three
methods for monolingual borrowing detection with the help of more
specific experiments in which the task consists in the detection of
borrowings when there is a single or dominant language donor, as in
intensive contact situations, versus the case when no language donor
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Figure 2.10: Determining characteristics that influence the perfor-
mance of the neural network cross-entropies.

Updated from Miller et al. (2020).

dominates.

To test whether our methods show an improved performance when
there is a dominant language donor as opposed to detecting bor-
rowed words per se, we first created two subsets of the WOLD database,
one containing languages with 300 and more borrowed words (17
language varieties), and one containing languages with 100 and more
borrowed words (37 language varieties). We then searched for “domi-
nant donor languages” in all wordlists in each sample, with dominant
donor languages being defined as those donor languages (as identi-
fied in the WOLD database) that would account for two-thirds of all
borrowings identified for a given language variety. For our sample
of language varieties with 300 and more borrowings, this yielded a
partition of the data into 8 language varieties for which a dominant
donor could be identified and 9 for which none could be found. For
the sample of language varieties with 100 and more borrowings, the
partition yielded 20 language varieties with a dominant donor and 17
without. We were able to apply results of the 10-fold cross validation
study for these two subsets of the data, which we had previously ap-
plied to all language varieties in the WOLD database. In order to test
whether the observed differences between dominant donor and no
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dominant donor categories were significantly different, we also per-
formed randomization resampling tests of 5,000 iterations each, using
Student’s independent t statistic with unequal variances as our test
statistic. We report p-values from the empirical distribution of t statis-
tics calculated under the hypothesis of no difference due to dominant
donor, i.e., dominant and no dominant categories are exchangeable.
(Miller et al., 2020)

Table 2.8: Dominant donor and quantity of borrowed words;
effect shown in 10-fold cross validation results.

Method Dominant Precision p< Recall p< F1 p<
= 300 Borrowed words

Bag of Sounds Yes (8) 0.716 NS 0.532 .03 0.586 .04
No (9) 0.660 0.312 0.393

Markov Chain Yes 0.722 .003 0.771 .002 0.743 .003
No 0.594 0.670 0.626

Neural Network Yes 0.742 .006 0.818 .001 0.775 .002
No 0.622 0.707 0.659

= 100 Borrowed words
Bag of Sounds Yes (20) 0.735 .002 0.413 .003 0.486 .004

No (17) 0.504 0.192 0.253
Markov Chain Yes 0.612 .02 0.764 .001 0.671 .003

No 0.512 0.639 0.561
Neural Network Yes 0.640 .02 0.800 .001 0.702 .003

No 0.526 0.661 0.578
Numbers in parentheses give the frequency of languages included in each group of = 300 or =
100 borrowed words and dominant language ’Yes’ or ’No’. Updated from Miller et al. (2020).

As shown in Tab. 2.8, the performance of borrowing detection methods im-
proves when borrowings come from a dominant language donor. In all com-
parisons, the dominant donor case has better detection performance than the
non-dominant case. Performance also improves, as noted previously, with more
borrowed words. While the bag of sounds method shows a strong increase in
performance when most borrowings come from a single donor language for the
= 100 partition, it is still not competitive with the cross-entropy based methods.

2.2.5 Why competing cross-entropies works
We previously provided a linear model, somewhat theoretical explanation, of
why competing cross-entropies works well versus an inherited only cross-entropy
method §2.1.1. Here we illustrate this with an anecdotal, graphical, and data-
based explanation of why the competing cross-entropies methods work better
from our explanation reported in (Miller et al., 2020):

The Markov model and the neural network methods estimate word
cross-entropy on a per sound basis given the inherited or borrowed
words on which they are trained. Models trained on inherited words
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should estimate lower cross-entropies for inherited words, and mod-
els trained on borrowed words should estimate lower cross-entropies
for borrowed words. However, since words are borrowed over time
and potentially also from various donor languages, using a single
language model for borrowed words is not always optimal.

Our decision procedure for the Markov model and the neural net-
work methods requires the comparison of competing cross-entropies
for a given word, the cross-entropy of the lexical language model
derived from inherited words and the cross-entropy of the lexical
language model derived from borrowed words. If the difference be-
tween the cross-entropies is greater than zero, we designate the word
as borrowed, and if it is smaller than or equal to zero, we designate
the word as inherited.

In order to investigate the discriminative force of this procedure, it is
useful to compare cross-entropy difference distributions of inherited
and borrowed words for a given language variety. The distributions
[of cross-entropy differences] for training and test data from the En-
glish wordlist in the WOLD database are shown in Figs. 2.11 and
2.12. While there is a certain overlap between cross-entropy difference
distributions for inherited and borrowed words, the problem of dis-
criminating between them based on cross-entropy differences seems
tractable, and we can assume that improvements in cross-entropy es-
timation would have an immediate benefit on prediction. (Miller et
al., 2020)

Figure 2.11: Distribution of training (85%) cross-entropy differences
for English – Neural Network method.

From Miller et al. (2020).
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Figure 2.12: Distribution of testing (15%) cross-entropy differences
for English – Neural Network method.

From Miller et al. (2020).

We noted in (Miller et al., 2020) that both the Markov chain and the neural net-
work performed considerably well on Imbabura Quechua, a Quechua language
spoken in Ecuador. With an F1 score above 0.8, it is not surprising to find a
good separation between the cross-entropy difference distributions for inherited
versus borrowed words, as shown in Figs. 2.13 and 2.14.

Figure 2.13: Distribution of training (85%) cross-entropy differ-
ences for Imbabura Quechua – Neural Network method.

From Miller et al. (2020).
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Figure 2.14: Distribution of testing (15%) cross-entropy differences
for Imbabura Quechua – Neural Network method.

From Miller et al. (2020).

Likewise there are examples of poor performance, where we noted (Miller et al.,
2020) that neither method performed very well on Oroqen, a Northern Tungusic
language spoken in the Mongolian region of the People’s Republic of China,
with F1 scores below 0.36. As can be seen in Figs. 2.15 and 2.16 the cross-entropy
difference distributions for inherited and borrowed words are poorly separated.

Figure 2.15: Distribution of training (85%) cross-entropy differ-
ences for Oroqen – Neural Network method.

From Miller et al. (2020).
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Figure 2.16: Distribution of testing (15%) cross-entropy differences
for Oroqen – Neural Network method.

From Miller et al. (2020).

In the results section by Miller, Pariasca, and Beltran Castañon (2021), We elab-
orated on the usefulness of such graphical explanations:

This strong relationship between the distribution of entropy differ-
ences and borrowing detection, indicates a tactic for improving mono-
lingual lexical borrowing detection – increase the separation of differ-
ence distributions for inherited versus borrowed words. An examina-
tion of our sample cases reveals: 1. English and Imbabura Quechua,
even though there were substantial borrowings, have reduced sepa-
ration between inherited and borrowed word difference distributions
for testing, resulting in reduced discriminative power, and 2. Oroqen,
with few borrowings, has almost no separation between inherited
and borrowed word distributions for testing, resulting in little dis-
criminative power. Identification of problems permits trying to solve
them, such as through improved training of neural networks, or by
obtaining more borrowings, real or simulated, for training. (Miller,
Pariasca, and Beltran Castañon, 2021)

The difference between train and test results is most likely due to insufficient
training data given the large number of parameters being estimated by both
Markov chain and recurrent neural network models. Random selection of train
and test datasets makes non-representative sampling unlikely. Regulation in the
neural network training and smoothing in the Markov chain training, was not
sufficient by itself to eliminate test performance degradation.

Reasons for lack of discrimination between inherited and borrowed words for
the Oroqen, English, Imbabura Quechua and similar cases even on the train-
ing data are: 1. in some cases the phonology and phonotactics between donor
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and borrower are just not that different, so that similar words could easily be
generated by either language, and 2. phonological and phonotactic adaption of
different or strange sounding words effectively removes the distinct sound of
borrowed words over time. Both reasons make lexical borrowing detection by
language word models alone a difficult task.

2.2.6 Enhanced neural network experiments
While the neural competing cross-entropies model was little more than 2 per-
centage points better in F1 score than the Markov chain competing cross-entropies
model, it offered an abundance of opportunities for experimentation and im-
provement. We performed the following experiments:

1. Develop a lightweight transformer substitute for the current recurrent neu-
ral network models,

2. Discriminate between language donor sources for borrowed words, and

3. Replace the competing entropies approach with a direct classification ap-
proach.

Tab. 2.9 shows results of these experiments, along with key parameter settings
for the neural networks. Detail results by individual language for the competing
cross-entropies transformer model are reported in appendix Tab. A.9.

The Baseline - recurrent group reports our previous result for the competing
cross-entropies neural model and a recent replicate from our newer Pybor2 code-
base. The Competing cross-entropies - transformer group reports results for
our light-weight transformer with the competing cross-entropies approach. We
enhanced the competing competing cross-entropies approach to optionally use
Donor language source as borrowing category in place of the existing Borrowed
category. Even though donor category is taken into account, only the overall
precision, recall, and F1 scores are reported for borrowing detection. The Di-
rect - transformer - flattened group reports on a direct classification approach,
still using a lightweight transformer for processing word sound segments, and
a final classifier layer which takes the flattened transformer output and classi-
fies words as Inherited versus Borrowed. This direct method is also enhanced to
optionally take into account Donor language category in place of the existing
Borrowed category.

Results of these enhancements were previously reported in (Miller, Pariasca, and
Beltran Castañon, 2021).

Cross-validation results are the same for original (Pybor1) and replicated (Py-
bor2) recurrent neural studies, while execution time is slightly reduced. This
indicates the port from Pybor1 to Pybor2 remains faithful to the original.

Results for the light-weight Transformer with competing entropies approach
whether classifying borrowings with just a Borrowed category or by Donor cat-
egory, are on par with that for the baseline recurrent model, at least for the
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Table 2.9: Competing cross-entropies and direct model experiments
10-fold cross-validation

Expmnt. Epochs Learning Dropout Prec. Recall F1 Time

rate embed attn. transf. hr:min

Baseline - recurrent
Pybor1 45 0.01 0.549 0.701 0.606 1:22
Pybor2 45 0.01 0.549 0.704 0.606 1:17

Competing cross-entropies - transformer
Borrowed 50/80 .0075/.0035 0.4/0.2 0.2 0.1 0.556 0.709 0.613 0:57
Borrowed 50 0.0055 0.3 0.2 0.1 0.554 0.709 0.611 0:51
Borrowed 80 0.0055 0.3 0.2 0.1 0.556 0.712 0.614 1:22
Donor 50/80 .0075/.0035 0.4/0.2 0.2 0.1 0.527 0.724 0.599 0:59
Donor 50 0.0055 0.3 0.2 0.1 0.531 0.715 0.601 0:59
Donor 80 0.0055 0.3 0.2 0.1 0.535 0.739 0.610 1:16

Direct - transformer - flattened
Borrowed 120 0.0025 0.3 0.3 0.3 0.506 0.653 0.556 1:32
Donor 120 0.0025 0.3 0.3 0.3 0.476 0.687 0.547 1:40

Updated from Miller, Pariasca, and Beltran Castañon (2021).

Borrowed case. There is no substantial improvement in adopting the transformer
model, other than reduced execution times.

However, we do see a difference in precision versus recall for Borrowed versus
Donor cases. The Donor case offers improved recall with reduced precision, and
perhaps a slight reduction in F1 score too. The improvement in recall makes
sense in that each major donor category has its corresponding language model
trained just on words borrowed from that donor.

The expected positive effect of modeling borrowed words by donor, due to con-
sistency of phonotactics, is likely offset by the reduction of number of words
available for each entropy model. Paucity of donor data seems a stronger force
than a more consistent language source in fitting the model.

The approach of competing cross-entropies is appealing in that cross-entropy
seems a reasonable measure of how well we model the phonology and phono-
tactics of a language. In particular, by using separate language models for inher-
ited versus borrowed words or donor words, the contrast in model predictions of
cross-entropy for the same words, seems to capture discrepancies in phonology
or phonotactics between models for the same words.

But maybe we are making the problem more complicated than it need be. While
attractive, it is not essential that we model the human process in order to detect
borrowings. We try with a direct neural classification model instead.

Results of our experiments with a light-weight transformer model to directly
discriminate between inherited and borrowed words are reported under Direct
- transformer - flattened. All direct trials used 120 training epochs and the same
learning rate and dropout parameters. The direct transformer model scores ⇡5
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percentage points lower F1 score than the competing cross-entropies model and
takes longer to execute.

The cross-validation results are perhaps not surprising since we have the col-
laboration of two models with the competing entropies approach instead of one
model with the direct approach.

2.2.7 Additional wordlist for dominant donor language
There are many cases where a single or few donor languages account for the
overwhelming majority of borrowings into the target language. We constructed
the capability for our neural network approach to add a supplemental wordlist
to the donor words for a target language. This capability permits us to run
experiments with supplemental data such as the following:

1. Use a supplemental Spanish wordlist, represented as sound segments, as
though borrowed words from target language, and,

2. Use a supplemental Spanish wordlist, with Spanish sound segments trans-
lated to target language, and use as though borrowed words from the target
language.

Add supplemental wordlist to target language donor words

In the experiments section by Miller, Pariasca, and Beltran Castañon (2021), we
describe this simple yet meaningful supplemental wordlist experiment:

Several of the Latin American languages in WOLD [Imbabura Quechua,
Mapudungun, Otomi, Q’qechi’, Wichí, Yaqui, Zinacantán Tzotzil]
have Spanish as the primary and only significant language donor.
For each of these languages we added the Spanish wordlist in seg-
mented IPA to the existing borrowed words of the training set, and
then trained the models and evaluated test performance for these
seven languages in a 10-fold cross-validation. This is a crude at-
tempt to take advantage of data quantity with the hope that Span-
ish phonotactics would translate sufficiently into Spanish borrowed
word phonotactics via our light-weight Transformer model. (Miller,
Pariasca, and Beltran Castañon, 2021)

Tab. 2.10 shows results on cross-validations for competing cross-entropies and
direct approaches using the supplementary Spanish wordlist. Also shown are
the cross-validation results for competing cross-entropies and direct approaches
using transformer models as well as our baseline recurrent model. F1 score
performance is on par between supplementary and not supplementary Spanish
wordlists, but there is substantial inversion of recall and precision results. Use
of the Spanish supplementary wordlist reduces recall and increases precision.
Indeed, with use of a Spanish wordlist, without going through some process
of adaption, the Donor model should do very well identifying unadapted Span-
ish words, typical of recent borrowings, but miss out on words that have been
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Table 2.10: Additional Spanish donor language table experiments
- 10-fold cross-validation - over Latin American languages.

Expmnt. Epochs Learning Dropout Prec. Recall F1 Time

rate embed attn. transf. min

With additional donor language table
Competing 100/150 0.0055 0.1 0.1 0.1 0.825 0.761 0.788 37
Direct 120 0.0035 0.3 0.3 0.3 0.745 0.735 0.731 30
Without additional donor language table
Competing - Borrowed - Recurrent 0.719 0.868 0.784 14
Competing - Borrowed - Transformer 0.715 0.862 0.777 9
Competing - Donor - Transformer 0.729 0.864 0.787 9
Direct - Borrowed - Transformer 0.664 0.806 0.721 14
Direct - Donor - Transformer 0.650 0.814 0.716 14

Languages: Imbabura Quechua, Mapudungun, Otomi, Q’qechi’, Wichí, Yaqui, Zinacantán
Tzotzil. Updated from Miller, Pariasca, and Beltran Castañon (2021).

adapted to the target language over substantial time. Thus recall is reduced, but
detected borrowings are more likely from the donor language.

2.2.8 Translate donor wordlist to target language sound segments,
and add to target donor words

The capability of adding a supplementary wordlist to the already existing bor-
rowed words opens up the possibility of adding additional borrowed words
from a borrowed language to that target language without having to restrict the
source to wordlists. Here we explore the arduous, complicated, and time con-
suming experiment to translate Spanish wordlist from IDS into simulated target
language borrowed words, and then add these simulated translated donor words
as though borrowed words.

Results are reported for both the simulated borrowed word translation and for
the competing entropies borrowing detection augmented with simulated word
translations tasks.

Translate wordlist to target language wordlist sound segments

First translate the Spanish wordlist to target language sound segments. Test
results by target language for each method of selecting the optimal model are
shown in Tab. 2.11, with model selection based strictly on training data (§ 2.1.4).
Cross-entropy and accuracy largely tracked together; the max accuracy criteria
appears marginally better than min cross-entropy or 2000 step criteria.

Test results are disappointing en general in that even with the highest accuracy
model, ⇡ 80% for Imbabura Quechua, a five sound segment word would likely
contain at least one error. [i.e., Assuming independence as a false but useful
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simplification, 0.85 = 0.33, is the probability of the word being completely ac-
curately represented.] But maybe the simulated words don’t have to be entirely
accurate, just sufficiently similar to actual borrowed words.

Table 2.11: Translate Spanish wordlist to simulated borrowings -
translation results.

Language Opt-step Test CE Test Acc

Imbabura
Quechua

min CE 0.97 0.79
max Acc 0.91 0.84
2000 1.03 0.81

Mapudungun
min CE 2.33 0.57
max Acc 2.33 0.57
2000 2.91 0.61

Otomi
min CE 2.05 0.60
max Acc 2.35 0.67
2000 2.61 0.66

Q’eqchi’
min CE 2.35 0.56
max Acc 2.35 0.56
2000 2.51 0.64

Wichí
min CE 1.30 0.71
max Acc 1.48 0.73
2000 1.74 0.77

Yaqui
min CE 1.09 0.71
max Acc 1.57 0.71
2000 1.34 0.73

Zinacantán
Tzotzil

min CE 1.24 0.71
max Acc 1.57 0.73
2000 1.09 0.75

Word sound sequence translation accuracy for Quechua is
better than for the remaining languages, but still inadequate

to assure error free simulated borrowed words more than
one-third of the time.

Add simulated words to target language donor words

Next add the translated simulated words to the target language donor words.
Overall test results for borrowing detection using the competing cross-entropies
approach are reported in Tab. 2.12. F1 scores for simulated borrowings are lit-
tle better than baseline results, just a 1 to 2 percentage point improvement. It
seems the translation results were not good enough to substantively improve
borrowing detection.

However, there are substantive differences in the precision and recall. Just as
for (Miller, Pariasca, and Beltran Castañon, 2021), the Spanish wordlist aug-
mentation baseline shows lower recall and higher precision, likely indicating
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adequate modeling of recent Spanish borrowings, but not so for better adapted
older borrowings. Opposed to this are the results for simulated augmented
borrowings where recall is several percentage points higher versus the unaug-
mented and Spanish augmented baselines. This suggests better modeling for
Spanish borrowings in general, but not without errors, thus resulting in a loss
of precision.

Table 2.12: Translation of Spanish donor table -
overall borrowing detection.

Experiment Precision Recall F1

One-fold CV Benchmarks
No augmentation 0.793 0.773 0.781
Spanish augmented 0.829 0.748 0.784

Simulated Augmented Borrowings
Max accuracy 0.778 0.827 0.801
Min cross-entropy 0.775 0.815 0.792
2000 training steps 0.755 0.829 0.787

Single-fold cross-validation benchmarks for comparison
purposes and results for simulated borrowings for each

criterion for selecting an optimum translation model.

Inclusion of simulated borrowings has a clear impact on the borrowed word
language model which is now better adapted to recognize borrowings. This is
made more obvious by contrasting the profiles of unaugmented and simulated
augmented borrowings from Fig. 2.17. Even so, overall detection performance
as shown by F1 score remains little changed.

Figure 2.17: Borrowing detection for unaugmented versus simu-
lated borrowings augmentation in training.
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Test precision, recall, and F1 scores are reported in Tab. 2.13 for each target
language for the unaugmented single-fold baseline, augmented translated sim-
ulated borrowed words, and for the augmented (drop-in) Spanish wordlist.

Average results for unaugmented single-fold baseline are similar to those for
the 10-fold baseline previously reported. Comparisons of individual language
results should be made with respect to their corresponding one-fold baseline.
Neither augmented Spanish nor augmented translated borrowings consistently
increase F1 score relative to their baseline. However, in all cases, recall improves
for the augmented translated borrowings over both the unaugmented baseline
and the simple drop-in of a Spanish wordlist. Similarly, in most cases precision
decreases. The effect is consistent.

Table 2.13: Translation of Spanish donor table -
borrowing detection by language.

Language Unaug. baseline Aug. Sp. translation Aug. Sp. drop-in

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

I. Quechua 0.746 0.749 0.746 0.726 0.811 0.766 0.851 0.757 0.801
Mapudungun 0.786 0.767 0.775 0.827 0.826 0.826 0.829 0.689 0.752
Otomi 0.822 0.741 0.778 0.828 0.821 0.824 0.859 0.753 0.801
Q’eqchi’ 0.679 0.665 0.671 0.626 0.687 0.654 0.721 0.565 0.632
Wichí 0.806 0.774 0.789 0.757 0.795 0.775 0.815 0.763 0.787
Yaqui 0.777 0.829 0.802 0.759 0.855 0.804 0.780 0.805 0.792
Z. Tzotzil 0.932 0.886 0.907 0.923 0.995 0.957 0.946 0.905 0.924

Average 0.793 0.773 0.781 0.778 0.827 0.801 0.829 0.748 0.784
Results from (Miller, Pariasca, and Beltran Castañon, 2021) for single-fold train

and test split - unaugmented baseline, augmented with translated simulated
borrowings from Spanish, augmented with unmodified Spanish wordlist.

Since we maintained the same train and test datasets over baseline and aug-
mented training data studies, we can perform statistical tests of whether there
is an improvement in detection versus the baseline. The paired t-test accom-
modates the case where sample groups are the same and an experimental fac-
tor varies (Dixon and Massey, Jr, 1983). 3 Differences were computed between
unaugmented baseline and augmented translated borrowed words for F1 scores,
precision and recall (Tab. 2.13). For each response the average and standard er-
ror of differences were calculated, which were then used to calculate paired
t-statistics and p-values. There is a clear signal of increased recall, possible
improved F1 score, with no significant change for precision versus the unaug-
mented baseline.

3See (Dror et al., 2018)’s “hitchhiker’s guide” for a fuller discussion of statistical testing in
NLP with mention of classification and cross-validation measures in particular. Our use of
paired t-test and later use of mixed effects models addresses these issues.
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Table 2.14: Borrowing detection statistical results - single fold -
translated Spanish words versus unaugmented and versus drop-in

Spanish words.

Translation vs. unaug. Translation vs. drop-in

Statistic Prec. Recall F1 Prec. Recall F1

Average Delta -0.015 0.054 0.020 -0.051 0.079 0.017
Standard Error Delta 0.012 0.013 0.011 0.017 0.015 0.013
t-statistic -1.209 4.283 1.734 -2.989 5.340 1.265
p-value N.S. < 0.001 < 0.1 < 0.05 < 0.001 N.S.

2.3 Discussion
Our most successful innovation in monolingual methods for detecting lexical
borrowings has been the competing cross-entropies approach. It is enough better
than the inherited words only approach, that we largely ignore the inherited
words only approach in the following discussion. Yet we should recall that the
original incentive for using cross-entropy word models is from the idea that a
primary language speaker often just knows when a word sounds like it is part
of the language. That is, our initial concept was that of an inherited word only
approach inspired in an indigenous speakers knowledge of their language. The
cognitive and linguistic explanation of lexical borrowing detection is seemingly
more complex than our simplistic starting point.

2.3.1 Bag of sounds, Markov, and neural methods
Artificially seeded borrowings. As we saw previously and noted in Miller et
al. (2020):

In our artificially seeded borrowings experiment, we simulated very
close, intensive, and recent language contact, where borrowed words
were transferred without alteration. All methods performed well
when the proportion of artificially borrowed words was high, and
degraded differently when borrowings decreased. (Miller et al., 2020)

While bag of sounds outperformed cross-entropy methods on precision, the
competing cross-entropies methods outperformed the bag of sounds method
in recall. Inherited only models underperformed on F1 score even on this exper-
iment.

Bag of sounds performs well on precision here because it decides whether the
word is borrowed based just on the occurrence of sound segments seen only in
borrowed words. So when it identifies a word as borrowed, it most likely is
borrowed. It’s recall performance suffers only when the phonotactics of words
indicate borrowings without using specifically borrowed word only sound seg-
ments. Competing cross-entropies models perform well on recall, because the
borrowed and inherited word models together take into account the phonology
and phonotactics of borrowed and inherited words.
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Borrowing detection in real world language data. In our real world borrow-
ings experiment, we performed a 10-fold cross validation of lexical borrowing
detection across all 41 WOLD wordlists. The competing cross-entropies meth-
ods performed much better than the bag of sounds method, with the recurrent
neural network performed marginally better than the Markov chain.

This marginally better performance of the competing cross-entropies approach
using neural network word models with precision = 0.549, recall = 0.701,
and F1 score = 0.606 is not good enough to be useful, by itself, as a computer
assisted tool in historical linguistic investigations. Somewhat arbitrarily, a goal
precision, recall, and F1 score of 0.80 would seem the price of entry. So for the
rest of this and subsequent chapters, we consider ways in which we can improve
on these results.

Inherited only methods performed less well overall than their corresponding
competing cross-entropies methods. However, they scored better on recall, a
result of estimating from training data the inherited cross-entropy cutoff needed
to achieve 80% recall on test data. But since the inherited and borrowed cross-
entropy distributions overlap, there was a substantial reduction in precision and
F1 score on test data using inherited only approach.

A key factor favoring the neural networks is that it includes conditional de-
pendencies from all previous sound segments, without having to estimate extra
parameters for this dependency. The marginal lack in performance of Markov
chains may be due to estimation with limited conditional dependency (3-gram)
and excess parameter estimates impacting reproducibility. The bag of sounds
still maintains a better precision than competing entropies methods, but with
very low recall. Because of its dependence on unlikely sound segments, it misses
lots of even moderately adapted borrowings. When it does identify a borrowing,
it’s more likely to be correct, making the bag of sounds method more conserva-
tive than the other methods.

Inspection of individual language results revealed as we noted in Miller et al.
(2020):

When the overall proportion of borrowed words in wordlists is small,
all models perform poorly. This is not surprising, since low borrow-
ing proportions make it difficult to learn the phonotactics or phonol-
ogy of borrowed words, if these can be identified at all. It is also not
clear to which degree trained linguists would be able to identify bor-
rowed words in the respective languages and even less so over entire
wordlists instead of just recent borrowings, if they were given only
monolingual information alone. (Miller et al., 2020)

Factors influencing borrowing detection. Because of the disappointing results
with the real language data, we looked at major factors that might influence the
performance of borrowing detection methods. Besides the obvious proportion
of borrowings, we considered proportions of sounds occurring exclusively in
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borrowed words and sounds occurring exclusively in inherited words (Miller et
al., 2020).

We found “the effect of the proportion of borrowed words was remarkable,
showing a strong linear increase in performance for all methods when the pro-
portion of borrowed words was 5% and more” (Miller et al., 2020). The propor-
tion of sounds occurring exclusively in borrowed words was positively corre-
lated with performance of Bag of Words, and with neural network and Markov
chain competing entropies methods, while the proportion of exclusively inher-
ited sounds had little bearing on performance. This suggests that “modeling
phonotactics with Markov Model and Neural Network methods also takes good
advantage of the simple occurrence of borrowed sounds in words too.”(Miller
et al., 2020)

Detecting borrowings from a single dominant language. Following up to our
finding of the importance of having a large proportion of borrowed words, we
wanted to know if borrowing from a single dominant language donor resulted
in better borrowing detection than just having lots of borrowings across various
donors. The thinking here is that a singe dominant donor should result in more
consistent and better trained language models for borrowed words.

We observed here and in Miller et al. (2020):

Since we create lexical language models for borrowed and inher-
ited words, it is straightforward to question why our basic approach
would treat all borrowed words as if they come from a single donor
language. While it may hold for specific contact situations that a
given language is heavily influenced by one single, dominant donor
language, it is also possible that borrowings form distinct layers in
the lexicon of a given language, reflecting borrowings from different
donor languages and different times. If the majority of the borrow-
ings attested in a given language stem from a single donor, how-
ever, we would assume that our lexical language model approaches
to monolingual borrowing detection would perform better, since the
donor language which we access through the recipient language would
provide a much more coherent and consistent picture than would a
mix of words from different donor languages.

We therefore systematically tested whether the performance of our
methods would increase for those wordlists in our sample for which a
dominant donor language could be identified. Our assumption, that
the methods should show an increased performance for languages
with a dominant donor language were largely confirmed, as reflected
in substantially increased F1 scores of ⇡ 0.75 for the Markov Model
and the Neural Network methods in cases of high contact with more
than 300 borrowings. While we still consider the overall performance
of the monolingual borrowing detection disappointing, this exper-
iment reflects the importance of having a consistent sample of the
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donor language when dealing with monolingual borrowing detec-
tion. (Miller et al., 2020)

With F1 scores at ⇡ 0.75 for both Markov chain and neural network methods
using the competing cross-entropies approach, we are within sight of our earlier
informal goal of 0.80 to be useful in a computer assisted method of lexical bor-
rowing detection. Of course, the context is pretty restrictive requiring more than
300 borrowed words and a dominant donor (i.e., � 2/3 of borrowed words from
a single donor).

Comparing cross-entropy distributions. We previously discussed the useful-
ness of examining the distribution of cross-entropy differences in Miller et al.
(2020).

[Our graphical...] evaluation was intended to demonstrate how the
Markov chain and neural network methods discriminate between in-
herited and borrowed words. We showed how plots of the distribu-
tion of cross-entropy differences between competing inherited and
borrowed word models served to explain borrowing detection re-
sults. Comparing the distributions of cross-entropy differences, we
saw that in cases where the proportion of borrowings was small, the
discriminative force of the word cross-entropy differences dropped
drastically for testing. Where the proportion of borrowings seemed
adequate for training, we saw cases of a reduction in discriminative
force for testing due to reduced separation of inherited and borrowed
word cross-entropy difference distributions. (Miller et al., 2020)

So even though we understand the distribution of cross-entropy differences be-
tween inherited and borrowed language models, this does not solve our prob-
lem of too little borrowed word data for training. Even when training seems
effective, there can be substantial variance in the test results, if training lacks
sufficient data or appropriate tuning of architectural, learning, and regulation
parameters.

2.3.2 Enhanced neural network experiments
Given results from bag of sounds, Markov chain, and neural network meth-
ods, especially our good results using the competing entropies approach with
Markov and neural methods, we decided to focus on neural network methods.
The competing entropies approach with neural network was only marginally
better than even the Markov chain, but the neural network approach offers many
more opportunities for experimentation and improvement such as in architec-
ture, learning and regulation. So after replicating results from earlier our earlier
study (Miller et al., 2020), we enhanced our baseline model and used that for
further experimentation.

These results we previously discussed in Miller, Pariasca, and Beltran Castañon
(2021):
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We developed a light-weight Transformer model (Bahdanau, Cho,
and Bengio, 2015; Vaswani et al., 2017) and observed that it per-
formed minimally better than par versus the recurrent model in bor-
rowed word detection and was more responsive with reduced exe-
cution times. The light-weight Transformer offers a viable base for
exploring different lexical borrowings detection approaches.

Our meta-level experimental design, contrasts Transformer versus the
recurrent model results, and forms a 2-factor design of 1. competing
entropies versus direct approaches, and 2. inherited and borrowed
versus inherited and word donor approaches.

The light-weight Transformer with competing entropies approach per-
formed five percentage points better than the light-weight Transformer
with a direct approach. Competing entropies seems a useful ap-
proach to test for lexical borrowings, more so than fitting a larger
but less meaningful [direct] neural model.

With inherited versus donor models, we tested whether modeling
donors separately would result in better prediction performance, on
the basis that treating donors individually should give more coher-
ent borrowed word samples. Resulting performance was just on par
with the corresponding borrowed word approach; no benefit was
conveyed by modeling donors separately. This suggests that any ben-
efit due to modeling more coherent language subsets is offset by the
reduced sample size for such subsets. This result seems more likely
an artifact of insufficient data rather than a dismissal of the utility of
modeling donors separately. (Miller, Pariasca, and Beltran Castañon,
2021)

2.3.3 Additional wordlist for dominant donor language
We previously commented: “Lack of sufficient data is a major detractor in ob-
taining good model fits and reproducibility on test cases; this is especially true
for highly parameterized models where the parameter counts equal or exceed
the data counts”(Miller, Pariasca, and Beltran Castañon, 2021). So “lack of suf-
ficient data” becomes an improvement opportunity for us. We responded by
creating the capability to augment borrowed wordlist training data with an ad
hoc wordlist of presumedly borrowed words. Then we performed experiments
on wordlists where Spanish is the dominant language.

In our first experiment we augmented borrowed wordlist training data with a
Spanish language wordlist for target (recipient) language wordlists where Span-
ish was the dominant donor language – as we reported in Miller, Pariasca, and
Beltran Castañon (2021).

We added training data from the Spanish language wordlist as though
they were borrowed words, fake borrowed words, for each of the
seven WOLD language tables where Spanish is the primary donor
language.
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Transformer models learned from actual and fake borrowed words
produced F1 scores just on par with the competing entropies ap-
proach on borrowed words alone. Recall decreased and precision
increased. This indicates that the Transformer model learned the
Spanish wordlist so well that it no longer detected borrowed words
that were better adapted to the recipient language. Similarly the bet-
ter learning prevents language recipient inherited words from being
confused with Spanish borrowed words. This suggests that with a
table of fake borrowed words that conforms more faithfully to word
adaption to each language, we could see a more sizable improvement
in detection of borrowed words. We observed an improvement for di-
rect detection too, but still poorer performance versus the competing
entropies approach. (Miller, Pariasca, and Beltran Castañon, 2021)

This then sets us up for a followup experiment where we try to better construct
fake borrowed words in the recipient (target) languages.

2.3.4 Translate donor wordlist to target language sound sequences
and add to target donor words

After seeing the impact of using a Spanish wordlist as though borrowed words,
we determined to simulate a wordlist of translated fake borrowed words for
WOLD languages where Spanish was the dominant donor. We hoped this would
show a more substantial improvement in detection when used to augment bor-
rowings. We’ve termed this effort to create fake borrowed words as translation,
but translation of sound segments from donor to target language adapted bor-
rowings semblance.

Translation results for creating simulated borrowings for training the borrowed
words language model were disappointing. It was likely that many simulated
borrowings would not precisely simulate borrowed words in the target language
based on the sound segment accuracy of  0.80%. Even so, we thought that it
might be close enough that it could adequately represent what borrowed words
would look like!

So we adopt simulated borrowed word translation in an effort to augment data
for the borrowed word language model. But it’s questionable that the aug-
mented data is of adequate quality to meet that need. Just as our original
borrowing detection approach suffered from lack of adequate data to train the
model well, so it seems might our approach to simulate and augment training
data.

It was not too surprising then when the results of data augmentation with sim-
ulated translated borrowed words showed little improvement in F1 scores over
baseline datasets with unaugmented borrowed words. There was a substantial
increase in recall on average and for each language. Use of augmented simu-
lated borrowed words in training made the borrowed word language model fit
actual borrowed words better, with lower cross-entropy, resulting in a higher
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recall. This beneficial effect was partially offset by the model fitting some in-
herited words better as well, resulting in more inherited words also classified as
borrowed, and so reducing precision in some cases.

The sample of seven South American indigenous languages individually and on
average has a much better F1 score than the complete sample of WOLD lan-
guages. So there was also less opportunity to improve the overall result in any
event. Maybe a language case with lower original F1 score, but sufficient bor-
rowings to train a simulated borrowings models, would have fared better. More-
over, instead of being satisfied with just the words from WOLD tables, a more
ambitious effort could sample more borrowed words for training a translation
model. Alternatively, there may be better translation models or other methods
for simulating borrowings that would improve recall without negatively impact-
ing precision.

Scare resources learning. While training with simulated borrowings was ef-
fective in increasing borrowed word recall, it had little overall effect on overall
borrowed word detection. We tried to squeeze more benefit out of the same data
using similar methods, and saw little improvement.

2.4 Conclusions
Beginnings. We began with bag of sounds, Markov chain, and neural net-
work supervised methods, for the detection of lexical borrowings in monolin-
gual wordlists. Our rationale for this method selection and their use we explain
in Miller et al. (2020):

These methods are based on lexical language models and are in-
tended to model specific aspects of phonology and phonotactics in
the lexicon of spoken languages. Assuming that phonological and
phonotactic properties of words in the lexicon of a spoken language
can provide enough clues to identify borrowings by language-internal
comparison of words alone, we designed workflows in which the lex-
ical language models could be trained with monolingual wordlists,
with borrowings are already annotated, and then used to detect bor-
rowings when being confronted with so far unobserved words. (Miller
et al., 2020)

Beyond the application of lexical language models to model sequences of sound
segments (the phonology and phonotactics) of languages, our most important
innovation was to develop and apply a competing cross-entropies approach. In
this approach we trained models on training data for inherited and borrowed
words separately. Then models competed over previously unobserved words to
see which obtained the lower cross-entropy for each word, with the lower cross-
entropy result serving to discriminate between inherited or borrowed words.
Our competing cross-entropies approach was superior to the inherited word
only approach. All lexical language model methods were superior to the weak
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baseline bag of sounds method, which used only the set of sound segments to
discriminate between inherited or borrowed words.

Overall, tests on real wordlists taken from the WOLD database revealed dis-
appointing performance even on competing cross-entropies methods, Markov
chain and neural network. Attempts in Miller et al. (2020) to identify the poten-
tial reasons for this inadequacy

revealed two main factors that considerably influence how well the
methods performed, namely (1) the amount of borrowings in a given
language variety, and (2) the uniformity of the borrowings in a given
language variety, as reflected in the presence of a dominant donor
language. While the first factor reflects the importance of having
enough training data when working in supervised learning frame-
works, the second factor reflects more specific linguistic conditions of
monolingual borrowing detection. Our methods identify borrowings
primarily from phonological and phonotactic clues, and perform bet-
ter in those cases where the words’ properties are coherent and con-
sistent. This is generally the case for inherited words, and also for
words that were borrowed from the same donor language [within a
given epoch]. (Miller et al., 2020)

The competing cross-entropies approach using Markov chain and neural net-
work methods provided a valuable and promising baseline for the further ex-
ploration of monolingual approaches to lexical borrowing detection. From this
point we chose to pursue more enhanced and state of the art neural network lan-
guage models, as well as, in a subsequent chapter, look at methods that consider
multilingual sources of information as well as mixed monolingual-multilingual
solutions (§3).

Enhanced neural networks. Focusing on the Neural Network method as a use-
ful technical direction to enhance our work, we constructed a responsive light-
weight transformer model as a lexical language model for experimentation in
the detection of lexical borrowings. With the transformer model we were able
to continue experiments within the competing cross-entropies approach, where
we considered multiple donor language models, for major donors, in place of
a single borrowed word language model, combining all donors. This was to
test our hypothesis resulting from earlier experiments, where we posited that
borrowings from a single donor should be more uniform and so result in bet-
ter language models with the end result of better borrowing detection. We also
experimented with a direct classification model where the light-weight trans-
former still processes word sound segment sequences, but where output of the
transformer feeds a logistic regression based classifier.

Detection performance of the competing cross-entropies light-weight transformer
was on par with the recurrent neural network model. Direct detection of lexi-
cal borrowings using a light-weight transformer showed poorer performance
than the competing cross-entropies approach. Competing cross-entropies seems
to capture important evidence about lexical borrowings that our direct model
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does not. Language donor based detection models performed on par with cor-
responding borrowed word models. Perhaps paucity of training data detracts
more from the method than same donor language coherence contributes.

Training wordlist augmentation. In an attempt to solve the problem of sparse
data, we developed the capability to add ad hoc wordlist data to augment bor-
rowed word training data. In a preliminary experiment we added a dominant
donor language (Spanish) wordlist to target language borrowed words for train-
ing, where Spanish was the dominant donor language, as though the added
words were borrowings. This resulted in reduced recall and increased precision,
but little impact on F1 score. We mext hypothesized that with better simulated
(translated) borrowed words, rather than simple adoption of the donor wordlist,
recall and precision would improve.

Training wordlist augmentation with translated word sound sequences In
a much more ambitious experiment, we developed sound sequence translators
from a dominant donor language (Spanish) to target languages, and then gener-
ated fake supplemental borrowed words lists for each target language. These fake
borrowed wordlists were added to training data for borrowed word detection as
though they were borrowed words. Translation quality for the wordlists was
mediocre, because there was insufficient data to train translators with adequate
accuracy. Even so, we tested the translated wordlists as augmented training data
in borrowing detection. There was an increase in recall in all cases with a largely
negative effect on precision and little overall impact on F1 score. Simulated bor-
rowed words did improve recall, but translation quality seemed inadequate to
make an overall improvement.

It’s unclear whether augmentation of training data with simulated borrowed
words via a translation model could produce substantially improved monolin-
gual borrowing detection overall in spite of the improved recall effect. But there
might be other options for developing augmented borrowed word training data.
In trying to improve results from inventories of scant data, we should experi-
ment with more dramatic changes in the methodologies we are using in order
to increase our possibilities of success.

Subsequent opportunities. Multilingual or cross-linguistic methods alone or
in combination with a monolingual based approach, such as inherited and bor-
rowed word competing cross-entropies, offer other opportunities for improve-
ment. Our monolingual methods add to the growing pool of automated ap-
proaches to lexical borrowing detection which could eventually be combined
into an integrated workflow – a workflow in which evidence from monolingual
and multilingual sources would form a unified picture of borrowing detection
and more holistically, language contact.
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Chapter 3

Multilingual borrowing detection

Lexical borrowing is a pervasive phenomenon and one of many results of lan-
guage contact, often where one or a few languages dominate the rest. “Most
computational approaches to borrowing detection treat all languages under study
as equally important, even though dominant languages have a stronger impact
on heritage [minority or ancestral] languages than vice versa” (Miller and List,
2023).

We explore and evaluate methods for lexical borrowing detection from wordlists
in contact situations where dominant languages play an important role, for a
sample of seven Latin American languages which have all borrowed extensively
from Spanish (Miller and List, 2023). Methods include pairwise and cognate
based classical sequence comparison methods with either normalized edit or
sound class alignment distance measures, a cross-entropy comparison method
based on language word models, and support vector machine and logistic re-
gression machine learning meta-models combining the above comparison meth-
ods and distance measures.

In our initial multilingual borrowing detection foray (Miller and List, 2023),
classical multilingual sequence comparison methods performed well with the
support vector machine meta-model improving upon individual method perfor-
mance. Error analysis showed, however, that absent donor words and divergent
meanings of donor from recipient words accounted for the bulk of errors, and
offered a significant improvement opportunity.

We explored possibilities of 1. augmenting donor words to address the problem
of absent donor words, 2. relaxing the same concept requirement to address the
problem of divergent donor and recipient concepts, and 3. adding a monolingual
cross-entropy function to complement the multilingual methods. There is clear
value to be gained by augmenting donor words. Relaxing the same concept
requirement is not so clear cut and technically more complex, but it seems worth
continued investigation. Adding the competing cross-entropies function to the
existing meta-model combining methods and distance measures, results in a
substantial improvement in borrowing detection over just multilingual methods.

Diversity wins.

Parts of this chapter were previously reported in (Miller and List, 2023) and will
be cited as appropriate.
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3.1 Materials and methods

3.1.1 Materials
With our focus on dominant donor languages in multilingual methods of bor-
rowing detection, we constructed a database of seven Latin American languages,
plus Spanish as the dominant donor language, with which to develop and prove
out our methods. In the previous Monolingual chapter (§2.2.7), we selected these
same Latin American languages from the WOLD database and added via and
ad hoc procedure variants on a Spanish wordlist. Here we formalize this selec-
tion of languages and the addition of the Spanish wordlist as its own database
for this part of our borrowing investigation. This initial foray of developing our
research specific database is particularly appropriate in that in subsequent work
we plan to develop a much more expansive Pano-Tacanan Borrowing database
of focused on Pano-Tacanan languages with both Spanish and Portuguese as
dominant donors, to showcase methods developed here and in the previous
monolingual chapter (§2.1).

We quote from our “Detecting lexical borrowings from dominant languages” (Miller
and List, 2023) paper to provide the new database details:

For this study, a new comparative wordlist was created by taking
data for seven Latin American languages from WOLD (https://
wold.clld.org, Tresoldi, Forkel, and Morozova 2019) and combin-
ing them with a wordlist of Spanish derived from the Intercontinen-
tal Dictionary Series (https://ids.clld.org, Key and Comrie 2015).
Phonetic transcriptions for the Latin American languages were added
to WOLD (Miller et al., 2020). Latin American Spanish phonetic
transcriptions were added for this study, and these could later be
expanded by adding more transcriptions from historical varieties of
Spanish.

The resulting dataset conforms to the standards suggested by the
Cross-Linguistic Data Formats initiative (CLDF, https://cldf.clld.
org, Forkel et al. 2018). The data curation follows the Lexibank
workflow (List and Forkel, 2022) and checks that data conform to
certain standards, with languages being linked to Glottolog (https:
//glottolog.org, Hammarström, Forkel, and Haspelmath 2021, Ver-
sion 4.7), concepts being linked to Concepticon (https://concepticon.
clld.org, List et al. 2022a, Version 3.0), and transcriptions follow-
ing the B(road)IPA conventions of the Cross-Linguistic Transcription
Systems reference catalog (https://clts.clld.org, List et al. 2021,
Version 2.2, see Anderson et al. 2019).

Details of the resulting database are shown in the map of language
locations along with percentages for borrowings from Spanish in Fig.
3.1 and in Tab. 3.1. Q’eqchi’ and Zincantán Tzotzil are both Mayan
languages, but appear substantially varied in the database. (Miller
and List, 2023)

https://wold.clld.org
https://wold.clld.org
https://ids.clld.org
https://cldf.clld.org
https://cldf.clld.org
https://glottolog.org
https://glottolog.org
https://concepticon.clld.org
https://concepticon.clld.org
https://clts.clld.org
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Borrowing Class

Figure 3.1: Map of languages with
Spanish borrowing class.

Adapted from Miller and List (2023).

Table 3.1: Database details by language for
seven Latin American languages plus Latin

American Spanish.

Language Concepts Lexemes Segments Vocab.

Imb. Quechua 1,155 1,156 7,177 33
Mapudungun 1,040 1,242 7,356 33
Otomi 1,252 2,241 11,730 57
Q’eqchi’ 1,211 1,773 10,367 49
Wichí 1,128 1,219 8,233 44
Yaqui 1,242 1,433 9,297 28
Zin. Tzotzil 955 1,266 7,129 41
Spanish 1,308 1,770 11,261 30

Aggregate 1,308 12,100 72,550 112
Adapted from Miller and List (2023)

Language details added.

3.1.2 Methods
Methods for multilingual borrowing detection makeup most of this subsec-
tion, but because of semantic restrictions on matching words from multilingual
wordlists and our dominant donor language focus, adjustments are made to
previous sampling and evaluation methods.

Dominant donor

In this part of our investigation, we have focused on detecting borrowings from
dominant donors (previously defined as 67% of all borrowings in §2.2.4 for use
with WOLD), but here simply defined as Spanish for the seven Latin American
languages in our study. Given the dominant donor language we automatically
infer the direction of borrowing as from the dominant donor language to the
target language where the borrowing is detected.

The borrowing detection problem becomes – word not borrowed from dominant
donor versus word borrowed from dominant donor. This has implications for
borrowing detection methods as well as for the evaluation of these methods:

1. In training and test data, the detection distinction becomes – word not bor-
rowed from dominant donor versus word borrowed from dominant donor.
The criterion variable has changed from the previous inherited versus bor-
rowed distinction.
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2. In evaluation of borrowing detection on test data, performance, precision,
recall, and F1 scores are calculated based on category distinctions of not bor-
rowed from dominant donor versus borrowed from dominant donor. There is no
change to the evaluation methods, but the criterion variable has changed.

3. A new classification error becomes – incorrectly inferring the direction of
borrowing, when the borrowing is really to the dominant language.

The limitation to a single dominant donor and the simple inference rule that
the borrowing comes from the dominant donor is an interim step in a more
completely defined methodology of borrowing detection including direction of
borrowing.

Same concept restriction

The sequence of sound segments (spoken word) used by a language to express
a concept are largely independent of the concept meaning. As a result, in a
multilingual context where some sound segments are similar across language,
we expect to find many similar sounding words that have no semantic rela-
tionship whatsoever, and so not borrowings. To inoculate against this problem,
the Comparative Method (Campbell, 2013) asks that semantics be taken into ac-
count when testing for cognates or borrowings. So for multilingual approaches,
wordlists are organized by concepts, and comparisons between words can be
restricted to just words expressing the same concept.

We further explore the impact of this same concept restriction and possible so-
lutions in §3.2.5.

Methods for borrowing detection

The basis for multilingual borrowing detection methods described here was
introduced in §1.3.2. Our “Detecting lexical borrowings from dominant lan-
guages” paper (Miller and List, 2023) describes methods for multilingual bor-
rowing detection as follows:

We develop three different methods for the detection of borrowings
from a dominant language to non-dominant languages in multilingual
wordlists. Following historical linguistics comparative method prac-
tice (Campbell, 2013), only word forms corresponding to the same
concept are considered as candidates for borrowing.

The first method, called Closest Match borrowing detection in the fol-
lowing, iterates over all word pairs that express the same concept in
the dominant language and the heritage languages and then com-
putes phonetic distances. Word pairs whose phonetic distance is be-
low a certain threshold are judged to be borrowings from the domi-
nant language. We test two phonetic distances, the normalized edit
distance (NED) – the classical edit distance (Levenshtein, 1965) be-
tween two words, divided by the length of the longer word – and the
SCA distance (List, 2012).
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The second method, called Cognate-Based borrowing detection in the
following, follows the approach by (Hantgan, Babiker, and List, 2022):
it first computes cognates using a cluster-based approach for auto-
mated cognate detection in which words expressing the same concept
whose average phonetic distance is below a certain threshold are as-
signed to the same cognate set (List, Greenhill, and Gray, 2017), and
then identifies all words assigned to cognate sets involving the dom-
inant language as borrowings. We tested again normalized edit and
SCA distances.

The third method, called Classifier borrowing detection in the follow-
ing, iterates over all word pairs with the same concept, but stores pho-
netic distance scores for various distance measures as vectors, which
can then be used to train a classifier, firstly, a linear Support Vector
Machine (SVM) (Cristianini and Shawe-Taylor, 2000), in a supervised
setting. (Miller and List, 2023)

Our dominant donor focus has some implications for closest match and cognate
based sequence methods. With closest match, even with multiple language tar-
gets for borrowing detection it is only necessary to compute pairwise distances
between the dominant donor words and target language words, since distances
between different target words are not useful in this context. With cognate-
based, all words for a given concept are already considered and aligned when
found to match. But we discard matches which do not include the dominant
donor language and retain only matches with the dominant donor.

The sound class based alignment method (SCA) (List, 2012), used in both the
closest match and cognate-based methods as well as indirectly through functions
provided to the classifier, provides many options for configuring the alignment
and measurement process. While we have experimented with several differ-
ent options, for the purposes of this experiment, we accepted the default SCA
configuration with the exception of tests at each of global, overlap, and local align-
ment modes. Alignment mode indicates how much of the sound sequences
being aligned need be included in the final alignment and measurement, where
global means everything, local means just the sequence in common without any
overlaps, and overlap means everything less an overlap from one side.

We report only on the combination of normalized edit distance (NED) and the
global SCA distance, since local and overlap alignment modes were never better
than the global SCA distance. Both closest match and cognate-based methods
require a fixed threshold which we estimate from the training data. So all three
methods are considered as supervised (Miller and List, 2023).

Our use of the classifier method is a significant innovation. The classifier qualifies
as a meta-method as it subsumes and combines finer grained closest match and
cognate-based methods. Instead of having to chose between normalized edit
(NED) or SCA distance from the closest match method, we can choose both and
the classifier will optimize the combination to best predict borrowing detection.
Once the classifier architecture was it place, it was straight forward to extend
beyond the initial linear support vector machine (SVM) to a radial basis function
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SVM, linear SVM with weight balanced sampling of borrowing categories, and a
Logistic regression.

Besides incorporating effects for selected closest match functions, where the de-
fault is both the normalized edit distance (NED) and sound-class based align-
ment (SCA) distance, and cognate-based function, where none is the default,
various other factors may be added to the classifier. By default, an indicator
function is added for each target language to handle the possibility that differ-
ent languages have a different propensity to borrow from the dominant donor
language.

The classifier method could support more complex factors such as the pairing of
target language indicator function with individual distance functions for the case
where target languages vary in the weight that should be assigned to distance
measures. We have not pursued such models at this time and think to handle this
case with a more powerful neural network based classifier with a fully connected
hidden layer between inputs and the final classification layer.

The cognate-based function as a data source for the classifier, provides indi-
cator functions of which target languages borrowed from the dominant donor
language. It would be practical to use the optimal threshold from the cognate-
based (CB) method and provide a single indicator function of whether the CB
classifies the word as borrowed from a dominant donor or not. However, since
the classifier optimizes the the combination of inputs, our CB function provides
four separate indicator variables based on a range of thresholds that includes
the optimal CB method value.

The previous Monolingual borrowing detection chapter introduced the approach
of competing cross-entropies using Markov chain and neural network language
model methods (see §2.1.1). The Markov chain method has been re-implemented
here as a stand-alone method called Least Cross-entropy (LCE) in the following,
essentially replicating the previous competing cross-entropies method. Impor-
tantly, the least cross-entropy method makes the cross-entropy calculations avail-
able as an invocable separate function. With this, the classifier meta-method can
incorporate both inherited and borrowed (or donor) cross-entropies from least
cross-entropy along with already available phonetic distance measures from
closest match or cognate-based methods. While the advantage offered with the
classifier for combining distance measures was important, the incorporation of
cross-entropy measures is a significant upgrade to that innovation.

Sampling and analysis

The restriction to comparison of words for the same concept effects how train
and test data are split in order to evaluate reproducibility of a method. Our
previous “Detecting lexical borrowings from dominant languages” paper (Miller
and List, 2023) describes these effects for sampling and subsequent analysis and
evaluation:

Train-test splits are made based on concepts rather than individual
word entries. This permits matching of words for the same concept
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in all methods without loss of candidate words. Treating train-test
split as a nuisance variable takes into account differences between
partitions across methods thus controlling for effects of sampling by
concepts with differing borrowing behavior or statistical dependen-
cies between test partitions due to sampling without replacement.
See (Dror et al., 2018) for mention of the dependency problem with
cross-validation. Our use of a fixed partition across treatments and
analysis of variance controlling for partition as a nuisance or ‘block-
ing’ variable accounts for this dependency, and takes advantage of
any systematic effects in borrowing behavior by partition.

For the analysis of the cross-validation data, we use a randomized
blocks design where experiment is the treatment or factor, and test
partition is the randomized block or nuisance variable. A standard
analysis of variance partitions treatment effects, nuisance variable,
and error, and permits a more powerful test of treatment differences
without the nuisance variable variance. We follow up statistically
significant findings for treatment (experiment) with comparisons of
experiments versus the overall average using a joint (family) error
rate (Nelson, Wludyka, and Copeland, 2005). (Miller and List, 2023)

Implementation

Implementation tools used here are described in Miller and List (2023):

Our methods are implemented in Python, specifically making use of
the CLDFBench package (https://pypi.org/project/cldfbench/, Forkel
and List 2020, Version 1.13.0) to provide command line access to all
methods described here. For the computation of alignments and
edit distances, LingPy (https://pypi.org/project/lingpy, List and
Forkel 2021, Version 2.6.9) is used. SVM [also Logistic regression]
and evaluation are realized with the help of Scikit-Learn (https:
//pypi.org/project/scikit-learn/, Pedregosa et al. 2011, Version
1.2.1). (Miller and List, 2023)

Furthermore, access to repositories of code and data for this study are also pro-
vided in Miller and List (2023):

The data and code needed to replicate the results reported here,
along with detailed information on installing and using the software
is curated on GitHub (https://github.com/lexibank/sabor, Version
1.0) and has been archived with Zenodo (https://doi.org/10.5281/
zenodo.7591335). (Miller and List, 2023)

https://pypi.org/project/cldfbench/
https://pypi.org/project/lingpy
https://pypi.org/project/scikit-learn/
https://pypi.org/project/scikit-learn/
https://github.com/lexibank/sabor
https://doi.org/10.5281/zenodo.7591335
https://doi.org/10.5281/zenodo.7591335
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3.2 Results

3.2.1 Detecting lexical borrowings in multilingual wordlists
We previously reported on closest match and cognate-based, and classifier ex-
periments in Miller and List (2023). We gave a brief description of experimental
methods and cross-validation:

We tested our three methods with two distance measures in five ex-
periments (normalized edit and SCA distances individually in both
Closest Match and Cognate-Based methods, and combined in the
Classifier-Based method) using a 10-fold cross-validation on our data
and reporting precision, recall, F1 scores, accuracy, and execution
times (mm:ss). F1 score is the primary result measure; accuracy and
execution time are informational.

The 10-fold cross-validation uses the same 10 fixed train and non-
overlapping test splits for all experiments. With few parameter es-
timates (1 threshold each for Closest Match and Cognate-Based, 2
distance and 7 target language coefficients for Classifier), a separate
train split into fit/val is not necessary. (Miller and List, 2023)

Table 3.2: Ten-fold cross-validation for three methods with NED
(normalized edit) and SCA (Sound-Class based phonetic align-

ment) distance measures.

Method Prec. Recall F1 Acc. mm:ss

Closest Match
NED 0.832 0.703 0.761 0.938 00:15
SCA 0.869 0.720 0.787 0.945 00:29
Cognate-Based
NED 0.853 0.705 0.771 0.941 01:48
SCA 0.862 0.719 0.783 0.944 04:49
Classifier SVM (linear)
NED, SCA 0.931 0.713 0.806 0.952 00:37

Bolded estimates are superior to and underlined estimates in-
ferior to the the overall average using analysis of means (Nel-
son, Wludyka, and Copeland, 2005) with joint error rate a =
0.05. Adapted and updated from Miller and List (2023).

We also reported out results from the experiments in Miller and List (2023):

All methods perform well with less than 5 points separating the
highest from the lowest F1 scores. Tab. 3.2 shows the results of
the ten-fold cross validation of our three methods in five experi-
ments. An analysis of variance,1 with experiment as the effects vari-
able and train-test split as the nuisance variable, shows highly sig-
nificant effects for precision (F4,36 = 25.74, p < 0.0001) and F1 score

1Statistical analyses with JMP (JMP®, Version 17.0.0 2022).
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(F4,36 = 14.3, p < 0.0001).

Closest Match with normalized edit distance performs poorly, while
Classifier-Based with combined normalized edit and SCA distances
performs well. Classifier-Based performs better than the average of
all experiments in F1 score, and substantially better in precision ver-
sus other experiments; the method is conservative, with a low num-
ber of false positives. Performance on remaining experiments is in-
distinguishable from the overall average of all experiments combined.
The Cognate-Based method is compute intensive performing multi-
ple alignment over all languages. Accuracy is well above the majority
decision accuracy of 84.8% (100%� 15.2% borrowing) in all experi-
ments. (Miller and List, 2023)

Figure 3.2: Results of the cross validation experiment.
Averaged for each method over all languages in our sample.

Adapted and updated from Miller and List (2023).

In Fig. 3.2 the differences in precision and F1 score stand out a bit more especially
the high precision for the Classifier. The stand-along Closest SCA method looks
pretty competitive, but not good enough to separate it from the Cognate-Based
methods (NED and SCA) all performing near the average of all methods.

While not directly comparable, since the monolingual methods do not use a
donor focused implementation or evaluation, the reported results for borrowing
detection for the same set of seven languages of ⇡ 0.80 (see §2.2.7, and Tab. 2.10)
is little different from that seen here.

We also performed several ad hoc experiments in response to reviewer comments.
These were summarized in (Miller and List, 2023):

A search for classifier improvements prompted several ad hoc experi-
ments (see Tab. 3.3). We observe: (1) A radial basis function (rbf) SVM



69

classifier performs no better than our linear SVM. We suspect the esti-
mated target language parameters do not generalize well to held-out
data. (2) A logistic regression classifier performs on par with our lin-
ear SVM. (3) A weight balanced SVM classifier trades an increase in
recall for a larger drop in precision. We also test whether using sepa-
rate trials for each target language in Closest Match, would perform
as well as all languages together. A combined trial performs better; a
single threshold estimate appears to generalize better to held-out data
than using individual language estimates. (Miller and List, 2023)

Results are similar for the classifier method with linear SVM and both NED and
SCA functions. The combined analysis for all seven languages together appears
slightly better than performing analyses separately.

Table 3.3: Ten-fold cross-validation for several ad hoc experiments
with NED (normalized edit) and SCA (Sound-Class based phonetic

alignment) distance measures.

Experiment Prec. Recall F1 Acc.

Classifier variations - NED, SCA
SVM (rbf) 0.945 0.694 0.799 0.951
Logistic regression 0.914 0.728 0.809 0.952
SVM (balanced) 0.613 0.826 0.704 0.902

Means over languages analyzed separately
Closest match - SCA 0.860 0.707 0.770 0.941
Classifier (linear SVM) - NED, SCA 0.936 0.697 0.793 0.949

Previous analyses altogether
Closest match - SCA 0.869 0.720 0.787 0.945
Classifier (linear SVM) - NED, SCA 0.931 0.713 0.806 0.952

Classifier experiments: SVM with radial basis function, Logistic regression,
linear SVM with balanced class weights. Analyses for method by each lan-
guage separately. Adapted and updated from Miller and List (2023).

We were also curious as to whether there was variation in borrowing detection
by individual target language. Since highly parameterized language models are
not used in multilingual methods, data paucity versus the number of estimated
parameters should not come into play. Here are the results by target language
for Classifier borrowing detection as we reported in Miller and List (2023):

Tab. 3.4 shows the results of the Classifier method for the seven target
languages in our sample with training and evaluation over the entire
dataset. There is some variation in performance by language, in par-
ticular, with recall in [0.615, 0.778]. We detect a linear relation between
the performance and the amount of borrowings from the dominant
language in the target languages. (Precision: r = �0.39, NS; Recall:
r = 0.88, p < 0.01; F1 score: r = 0.85, p < .01; 1-sided Pearson corre-
lation tests with d f = 5). Recall and F1 scores improve as borrowing
increases. This is a curious finding given that there are only nine
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parameters estimated over the entire dataset (one for each target lan-
guage, and one each for NED and SCA functions). This correlation
could be an artifact of higher borrowing resulting in better estimation
of a target language coefficient, or more interestingly, a cultural pro-
cess where more dominant-donor borrowing corresponds to reduced
phonetic adaption into the target language. (Miller and List, 2023)

Table 3.4: By language results for the Classifier borrowing detec-
tion methods on the seven target languages in our sample.

Language Prec. Recall F1 Acc. Borr.

Imb. Quechua0.921 0.773 0.841 0.924 26%
Mapudungun 0.944 0.716 0.814 0.950 15%
Otomi 0.932 0.692 0.794 0.968 9%
Q’eqchi’ 0.934 0.615 0.742 0.961 9%
Wichí 0.952 0.658 0.778 0.953 12%
Yaqui 0.938 0.778 0.851 0.941 22%
Zin. Tzotzil 0.932 0.661 0.773 0.949 13%

Average 0.934 0.714 0.810 0.952 15%
Last column shows the proportion of Spanish borrowings.

Adapted from Miller and List (2023).

3.2.2 Error analysis
While pleased with the F1 score average of 0.81, we wanted see how we could
improve borrowing detection even more, with the hope to achieve F1 scores ex-
ceeding 0.90. Such would make our methods truly useful to historical linguists
and perhaps apt for inclusion in comparative method and phylogenetic model-
ing automated workflows.

So we performed a detail analysis of errors from the classifier on the combined
database, and reported the results in Miller and List (2023):

To get a better understanding about the different types of errors
that our best performing experimental combination commits, we con-
ducted a detailed error analysis from the Classifier-Based borrowing
detection results. A spreadsheet snippet (Fig. 3.3), serves as a refer-
ence for several error types.

For undetected borrowings (false negatives), we identified four er-
ror types: (1) cases where the borrowed form was not present in
the donor wordlist, e.g., Mapudungun peso “coin” is borrowed from
Spanish peso “peso”, but our Spanish wordlist only has moneda, (2) cases
where the form was present in the donor wordlist, but with a dif-
ferent concept, e.g., Wichi anio “age” is borrowed from Spanish año
“year”, while the Spanish word for “age” is edad, (3) cases of large
phonetic distance between donor and recipient forms, e.g., Wichi
alulis “adobe”, which is somewhat distant from Spanish adobe, and
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ID DOCULECT TOKENS DONOR 
LANGUAGE

DONOR 
VALUE

DET 
STATUS

ABSTAIN FROM FOOD
Spanish a ʝ u n a ɾ

6227 Qeqchi a j uː n i n k + ɾ i ʃ Spanish ayunar fn
ADOBE

Spanish a ð o β e
8988 ImbaburaQuechua a d u b i Spanish adobe fn

10182 Wichi a l u l i s Spanish adobe fn
AGE

Spanish e ð a ð
10531 Wichi a n i o Spanish año fn

ANIMAL
Spanish a n i m a l

3351 ZinacantanTzotzil tʃʰ a n u l i l fp

1

Figure 3.3: Example collection of detection errors.
From Miller and List (2023).

(4) cases of unrecognized partial borrowing, e.g., Qeqchi aiunink-riS
“abstain from food”, which is partially borrowed from Spanish ajunar
“fast, abstain from food”.

For falsely detected borrowings (false positives), we identified three
error types: (1) cases where the form was not borrowed from the
dominant language but vice versa, e.g., Spanish poroto “bean” was bor-
rowed from Quechua purutu, (2) cases of chance similarities between
word forms, e.g., Spanish animal “animal” and Zinacantan Tzotzil
tSanulil, and (3) cases so improbably similar that we suspect errors in
the original annotation, e.g., Spanish pelota “ball” and Wichi pelutaj.
(Miller and List, 2023)

For 115 concepts with errors from 490 sampled concepts, there were 139 unde-
tected (false negative) and 26 falsely detected (false positive) lexical borrowings.
Note that only 37.5% of all concepts were sampled, 490 out of 1,308, and that
only 23.5% of sampled concepts had errors. Note also that several concepts
had multiple target language errors – so 165 total errors over 115 concepts with
errors. Tab. 3.5 reports both the details and this summary.

The great majority of errors were in recall, and many of these borrowings were
from lexemes not within the same concept (75) or not on the dominant donor
wordlist (28). Note also that the not within same concept category, did not dis-
cern whether the form was available in another concept, so an undetermined
amount of not same concept errors (semantic shift) might also be not in donor
wordlist errors. There were also many recall errors (31) due to the classifier not
matching on the donor lexeme (large phonetic distance). For the few falsely de-
tected borrowings, most were due to the chance similarity of forms (10), or likely
dataset error (9). Importantly, only 7 errors overall were because the borrowing
direction was not from the dominant language.
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Table 3.5: Summary of undetected (false negative) and falsely de-
tected (false positive) borrowings over 115 concepts with detection

errors from 490 sampled concepts.

Undetected Borrowings

Error Type Count Pct
borrowed form not in donor list 28 17
different concept than recipient form 75 45
large phonetic distance 31 19
partial borrowing as only reason 5 3
Subtotal 139 84

Falsely Detected as Borrowings

Error Type Count Pct
direction not from dominant donor 7 4
chance similarity of form 10 6
likely dataset error 9 5
Subtotal 26 16

Total 165 100
Adapted from Miller and List (2023).

3.2.3 Incorporating competing cross-entropies
A way to address the problem (see Tab. 3.5 of error diagnostics) of not match-
ing on the donor lexeme, might be to add another method of matching to the
classifier meta-method.

The least cross-entropy (LCE) method was introduced in §3.1.2 as a port of our
previous Markov chain method of the competing cross-entropies for use in this
multilingual wordlist and dominant language donor context. Here we prove
out LCE both as a stand alone method and as a function used by the classifier
meta-method. The already well performing classifier method with normalized
edit (NED) and sound-class based phonetic alignment (SCA) distance functions
now incorporates the least cross-entropy function (LCE) as well.

Results for the new experiments with LCE as well as a few previous experiments
(for easy reference) are reported in Tab. 3.6. An analysis of variance, with experi-
ment/method as the effects variable and train-test split as the nuisance variable,
shows highly significant effects for precision (F4,36 = 32.49, p < 0.0001), recall
(F4,36 = 41.90, p < 0.0001), and F1 score (F4,36 = 30.13, p < 0.0001). Comparisons
between the overall average and individual experiments/methods, are shown
for each measure at a joint error rate of 5%. Of particular note is the superior
performance of the classifier with NED, SCA, and LCE functions on recall and
F1, and for the classifier with just NED and SCA on precision.

Detail results by individual language and method are reported in appendix Ta-
ble B.1.
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Table 3.6: Ten-fold cross-validation for experiments with Least
Cross-Entropy (LCE) and other methods.

Method Prec. Recall F1 Acc. mm:ss

Closest Match previous analyses
- NED 0.832 0.703 0.761 0.938 00:15
- SCA 0.869 0.720 0.787 0.945 00:29
Least Cross Entropy
- LCE 0.795 0.739 0.765 0.936 02:46
Classifier linear SVM
- NED, SCA (previous) 0.931 0.713 0.806 0.952 00:37
- NED, SCA, LCE 0.871 0.827 0.848 0.958 04:34

There were ⇡ 25, 000 non-zero count parameters overall LCE language
models, i.e., ⇡ 1, 750 per language model. Bolded estimates are superior
to and underlined estimates inferior to the the overall average using
analysis of means (Nelson, Wludyka, and Copeland, 2005) with joint
error rate a = 0.05. Format adopted from Miller and List (2023).

Fig. 3.4 presents the tabular results grouped by performance measure – this
better shows the contrast between experimental methods on each measure. Note:
just as for Tab. 3.6, that previous results without LCE are shown for contrast.

Figure 3.4: Results of the cross validation experiment.
Averaged for each method over all languages in our sample.

Format adopted from Miller and List (2023).

There is an impressive increase in recall and recall and F1 score for the classifier
meta-method with NED, SCA, and LCE functions versus the classifier with just
NED and SCA functions. While precision dropped from the previous high level,
it is still well above our acceptable limit of 0.8. Stand-alone least cross-entropy
(LCE) merely performs on par with the closest match NED. Again we find that
the combination of diverse useful methods complement each other to give over-
all better borrowing detection performance than any stand alone method.



74

The execution time for performing the cross-validation with incorporated least
cross-entropy method now measures in minutes instead of just seconds. This is
due to the fitting of the 3rd order Markov chain language models for dominant
donor and not dominant donor borrowed word models for each target language.

Risk of overfitting with least cross-entropy. With traditional multilingual se-
quence models with few parameters, there was little difference between bor-
rowing detection on training and test datasets. With LCE either stand-alone or
incorporated into the classifier, there is risk of substantial overfitting, and so
it becomes essential to report results from test datasets in order to adequately
represent expected borrowing detection performance. Results for borrowing de-
tection methods are reported for the initial fold of our 10-fold cross-validation
train and test datasets for comparable cases with and without LCE in Tab. 3.7.
Note the large difference in number of estimated parameters and the substantial
variance between train and test F1 scores for methods with LCE.

Table 3.7: Difference between train and test F1 scores depending
on use of Lowest Cross-Entropy method. Trials made on fold 00

from a 10-fold cross-validation train and test split.

Method Parameters Train F1 Test F1

Closest match - SCA 1 0.790 0.788
Least cross-entropy ⇡ 25, 000 0.939 0.776
Classifier - linear SVM - NED, SCA 9 0.811 0.809
Classifier - linear SVM - NED, SCA, LCE ⇡ 25, 000 0.959 0.834

Smoothing parameter for Markov chain. The previous Markov chain lan-
guage model for monolingual borrowing detection (§2.1.1), used Kneser-Ney
smoothing with a smoothing value of 0.3. This was determined in an ad hoc
manner based on early screening trials before the more rigorous comparison of
Markov chain, neural network, and bag of words methods. For this reimplemen-
tation of Markov chain borrowing detection as the least cross-entropy method
and function for incorporation into the classifier meta-method, we conducted ex-
periments on just the training partitions of the database to determine an optimal
setting for the smoothing parameter. Kneser-Ney smoothing of 0.9 is optimal for
this application based on the results with the highest F1 score in Tab. 3.8. This
results in improved recall and approximately the same precision versus the 0.3
smoothing used previously.

3.2.4 Augment donor wordlist coverage
A way to address the problem (see Tab. 3.5 of error diagnostics) of not having
the borrowed lexeme in the donor wordlist, would be to augment the donor
wordlist so that it is more likely to include borrowed forms.

Given the set of seven target languages plus Spanish in the SABor database with
borrowing already annotated, it would be a straight forward task to augment the
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Table 3.8: Borrowing detection and Kneser-Ney smoothing param-
eter for Least Cross-Entropy method

Method precision recall F1 score

0.1 0.781 0.667 0.718
0.3 0.793 0.695 0.740
0.5 0.802 0.692 0.742
0.7 0.821 0.691 0.748
0.9 0.790 0.730 0.758

Spanish wordlist with all the missing lexemes from the Spanish donor wordlist.
However, this would not serve to develop and prove out methods for borrowing
detection to be used by historical linguists when wordlists have not yet been
annotated for borrowing. In the real life of historical linguists, there are no pre-
existing oracles to say what donor language words/lexemes have been borrowed.

We investigate how difficult a problem it would be to improve borrowing detec-
tion from a dominant donor, by comparing a few pre-existing Spanish wordlists
with a list of borrowed words in the SABor database. The critical measure in
this case is the coverage of known borrowed words by the candidate Spanish
wordlists, where better coverage should translate into better borrowing detec-
tion. Beware. We do not consider whether the donor word is for the same
concept as the target. So coverage results will provide an optimistic view of
what coverage is possible.

Materials and Methods for Donor Wordlist Coverage Experiment

Materials. Specific datasets used in this experiment are:

1. Currently defined SABor database of seven indigenous Latin American
languages and their dominant language donor (Spanish). Key fields from
language forms include: ID, Language_ID, Parameter_ID (concept), Form
(orthographic form), Segments (sounds), Borrowed (True/False), Borrowed_Score
(0, .25, .5, .75, 1.0), Donor_Language (’Spanish’), and Donor_Value (ortho-
graphic form).

2. IDS database including the Spanish wordlist used as the base for the Span-
ish wordlist included in SABor (Key and Comrie, 2015).

3. Concepticon database of concepts including language forms in several ma-
jor languages (List et al., 2022a).

4. Big dictionary of the 8,600 most frequently occurring written words from
a large sample of Spanish text (Neri, 2018).

Methods. The workflow process to describe wordlist coverage follows:
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1. Get the wordlist of all borrowings from Spanish into the seven target lan-
guages for the SABor database defined by this study. This list consists of
all Donor_Value where the Donor_Language is Spanish.

2. Get the Spanish source wordlists of Forms (orthographic forms) for these
cases: (a) Extract Spanish wordlist from the IDS database - both Forms
(orthographic forms) and Parameter_IDs (concepts). (b) Extract Spanish
wordlist from Concepticon - both forms and concepts. Concepticon is
likely to provide good coverage for wordlists such as that derived from
IDS or WOLD. (c) Extract Spanish wordlist from a big freely available dic-
tionary of forms - just forms as the dictionary is not indexed by concept.

3. Match words between the wordlist of all borrowings from Spanish and
each case of Spanish source wordlists, as well as the union of IDS and
Concepticon Spanish source, and the union of all Spanish source wordlists
cases. Express the matches as a percent coverage of the wordlist of all
borrowings from Spanish.

4. After stemming all wordlists using the NLTK Spanish stemmer, report the
match between wordlist of all borrowings from Spanish and the Spanish
source wordlists. Since Spanish borrowings and Spanish source wordlists
may use different word form conventions reflected in Spanish word inflec-
tions, stemming should remove such differences. Likewise, multilingual
matching methods, would assign more value for matching on word stems
than suffixes, and so stemming should be more representative of potential
word matching and borrowing detection potential.

Results

Coverage of borrowed forms from Spanish in the seven target languages of the
SABor database is shown in Tab. 3.9 for original orthographic forms and for
stemmed orthographic forms. A graph shows the distinction between wordlist
sources and effect of stemming even more clearly in Fig. 3.5. The IDS Spanish
wordlist source is the basis for the Spanish wordlist source used in SABor and so
percentage coverage here should be similar to coverage that available to borrow-
ing detection methods reported previously in this chapter. As mentioned above,
no consideration is given here for whether the form is used with the same con-
cept shared between target and donor language, so coverage here is more a best
case scenario.

In all cases stemmed forms show a several point advantage in coverage versus
original forms. This should be reflected in detection methods that more effec-
tively ignore less important differences between source and target words, such as
terminations for a right-hand side inflected language such as Spanish. Looking
at the IDS Spanish source, the difference between original and stemmed cover-
age is like the difference between closest NED (normalized edit distance) versus
classifier NED, SCA performance. The Concepticon Spanish source also adds
several points advantage over the baseline IDS source. However, the Big (8,600)
Spanish source performs poorly. Combining IDS with Concepticon source adds
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Table 3.9: Donor wordlist coverage of orthographic forms for Span-
ish borrowings (1,480) from target languages.

Wordlist source Size Match No match % coverage

Original orthographic forms
IDS Spanish 1,683 1,112 368 75
Concepticon Spanish 2,620 1,244 236 84
Big (8,600) Spanish 8,645 990 490 67
IDS, Concepticon 2,832 1,253 227 85
Altogether 10,108 1,313 167 89

Stemmed orthographic forms
IDS Spanish 1,571 1,193 287 81
Concepticon Spanish 2,335 1,317 163 89
Big (8,600) Spanish 4,114 1,094 386 74
IDS, Concepticon 2,529 1,327 153 90
Altogether 5,319 1,372 108 93

little to Concepticon source alone, but the union of all three sources produces
a several point advantage over the the Concepticon source alone or IDS and
Concepticon. Even so, still ignoring the issue of same concept requirement, the
maximum coverage attained is 93%.

Figure 3.5: Results of augment donor wordlist coverage experiment.

3.2.5 Relax same concept restriction
A way to address the problem (see Tab. 3.5 of error diagnostics) of the borrowed
(recipient) lexeme not coming from the same concept as the donor lexeme, would
be to relax the requirement that borrowed and donated lexeme must be from the
same concept.
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We investigate a simplified version of this problem using an experimental ver-
sion of the closest match method with the sound-class based phonetic alignment
(SCA) measure. This experimental version supports the following variants of
a concept restriction between borrowed and donor lexeme: 1. same concept re-
striction (current standard), 2. major concept restriction, where major concept
is available from Concepticon, 3. no concept restriction at all, 4. same concept
restriction as priority with fallback to major concept restriction. The critical
measure of success in this experiment is borrowing detection performance as
measured by F1 score. Corresponding recall and precision are also reported as
well as execution time.

Materials and Methods

In addition to the currently defined SABor database of seven indigenous Latin
American languages and their dominant language donor (Spanish), the “Rzymski-
2020-1624” concept list from the Concepticon database (List et al., 2022a) is used
to implement a more abstract (higher level) major concept restriction. This extra
concept list provides a mapping between standard Concepticon concepts already
available in SABor and their major concept categories.

The existing closest match method (subcommand closest) is used to define an
experimental closest_exp subcommand which implements the concept restriction
variants enumerated above. Besides implementing the concept restrictions, the
report out for closest_exp calculates borrowing detection performance at multiple
threshold values in order to determine the optimum for each concept restriction
variant. So optimum threshold is another response variable from this experi-
ment.

Results

Since only one parameter is being estimated from this experiment for each con-
cept restriction variant, there should be little problem of reproducibility of re-
sults and so all data is used in training with results reported from training.
Experiments were run for each concept restriction variant, with systematic sam-
pling from thresholds between 0.05 and 0.5 with step-size of 0.05. Borrowing
detection results for the optimum threshold are reported for each method in
Tab. 3.10 and shown graphically in Fig. 3.6.

Table 3.10: Borrowing detection by concept restriction – threshold
selected to optimize F1 score.

Concept Restriction Prec. Recall F1 Acc. Threshold Time

Target (default) 0.872 0.721 0.789 0.945 0.40 0:10
Central 0.848 0.676 0.752 0.936 0.3 0:25
No restriction 0.358 0.582 0.443 0.791 0.15 35:00
Target-Central 0.866 0.741 0.799 0.947 0.35 0:25
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No concept restriction results in poor borrowing detection, poor accuracy, and
a prolonged execution time. When a lexeme on the target wordlist can match
with any lexeme on a corresponding donor wordlist, without concept restric-
tion, there will often be closer matches found than for the same concept. The
execution time is increased by a significant fraction of the donor wordlist size,
since without a concept restriction, each donor lexeme has to be checked for
each target word.

Figure 3.6: Results of relaxed concept requirement experiment.

Even limited to just the central concept, there will be some lexemes that are a
closer match than lexemes for the same concept. Interestingly, the recall for the
central concept restriction is less than with the same concept restriction. The
restriction to same concept doesn’t seem so bad after all. And the combination
of restriction to target concept with fallback to central concept when no match
is found, might offer a path for improvement.

3.3 Report out to historical linguist
Something applied this way comes...

In all the talk of wordlists, borrowing detection methods and results, experi-
ments and cross-validations, we had almost forgotten to show what a useful
report out of borrowing detection looks like.

Each of the multilingual methods, e.g., classifier, produces a brief report of train
and test datasets, as well as creates a tab delimited rectangular file organized
by concept and language of input forms and predictions of borrowing, includ-
ing the donor language, and reference to the likely donor form. A subsequent
evaluation step, for when borrowings have already been annotated, as is the
case here with SABor, reports detection error status and the donor language and
form. Here only show the donated form since Spanish is the dominant donor
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and hence the only donor language to report. Detection error status is coded
as: fn=false negative (undetected borrowing), tn=true negative, fp=false posi-
tive (incorrectly predicted borrowing), and tp=true positive (correctly predicted
borrowing).

Various example snippets from the evaluation file are given for the best case
classifier NED, SCA, LCE prediction and followup evaluation in the following.

Figure 3.7: Snippet of borrowing report output.
Spreadsheet edited to remove unnecessary columns and provide highlights. Green
columns are predicted donor language and form ID in the report. Blue columns are

output from the evaluation only when borrowings are already annotated.

In the example of Fig. 3.7, the report is organized by concept with language
forms and borrowing predictions reported for each concept. Most language
forms are not borrowed and so are not predicted to have a language donor or
corresponding form ID. These show a “tn” detection status.

The concepts of BED and BOOK were selected to show off other detection sta-
tuses as well. Imbabura Quechua borrowed the word “cama” from Spanish. This
is correctly predicted with language and ID (Spanish, 718). The ID points to the
row of the form for the same concept, as seen here. Mapudungun borrowed the
word “kawitu” from Quechua. But it is incorrectly predicted as borrowed from
Spanish “cama”, so this has a “fp” detection status. The word “libro” was bor-
rowed by most of the indigenous languages in the SABor database, and correctly
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predicted so. However “kamu” was incorrectly predicted as a borrowing from
Spanish, when indeed it seems an innovation of the Imbabura Quechua.

If we were working as historical linguists and using the classifier to show likely
words borrowed from a dominant language, then we would of course not have
detection and donated word outcomes available as with the evaluation report.
Instead we would work with the prediction report from the classifier. To focus
on just the borrowing predictions in this case we could filter on the predicted
donor language, PR_LANG in this example.

Since we are working with an evaluation report, we can choose to ignore the less
interesting detection status of “tn”, words not borrowed and correctly predicted
as not borrowed. To do this we filter the evaluation spreadsheet on detection
status (DET) other than “tn”. We present several example concepts with expla-
nations as appropriate.

Figure 3.8: Snippets of borrowing report output for concepts cookhouse, custom, and
drum. Snippets show expected detection behavior of the classifier.

The snippets of Fig. 3.8 show the expected behavior of the classifier with NED,
SCA, LCE functions. For the concept COOKHOUSE Yaqui and Zinacantan
Tzotzil languages borrow “cocina” from Spanish, and the borrowing is correctly
predicted with language and ID (Spanish, 699). However, Otomi borrows “co-
mida” which is not present in the Spanish wordlist for this concept. Even if it
were, it’s not clear that the classifier would have identified “comida” from the
composite Otomi word. For the concept CUSTOM, the classifier recognizes the
borrowing of “costumbre” into Imbabura Quechua, but not into Yaqui. For the
concept DRUM, the classifier recognizes the borrowing of “tambor” into Qeqchi,
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Otomi, and Imbabura Quechua, but not into Zinacantan Tzotzil. Also, “moor”
seems problematic, it is not identified as donated in the wordlist, but the classi-
fier detects it as a borrowing.

Figure 3.9: Snippets of borrowing report output for concepts count, cheap, and
doorpost. Snippets show more problematic detection behavior of the classifier.

The snippets of Fig. 3.9 show a somewhat problematic behavior of the classi-
fier with NED, SCA, LCE functions, which we hope to resolve in subsequent
work. For the concept COUNT Wichi borrows “contar” from the Spanish and
this is correctly predicted. However, Zinacantan Totzil borrows “cuenta” from
the Spanish, and this is not recognized, both because “cuenta” is not included as
a word for COUNT and also because because it is a partial borrowing. For the
concept CHEAP, Imbabura Quechua and Mapudungun borrow “barato” from
Spanish and this is correctly predicted. Interestingly, “pichi falin” is also cor-
rectly recognized as a borrowing of from Spanish “valer” although misiden-
tified as from “barato”. This seems the effect of the LCE function which can
identify borrowings based on lexical cross-entropies, such as for “pichi falin”
which obeys Spanish phonology and phonotactics. For the concept DOORPOST,
“macro” and “poste” are both correctly detected as borrowings from Spanish,
even though they don’t correspond at all to the Spanish “jamba de puerta”.
Again this is an effect of the LCE function based on lexical cross-entropies. How-
ever, the borrowing of “jamba” is not recognized likely because it is just a partial
borrowing.

These examples show how the report out of the classifier or similar command of
the SABor database could be very useful in computer assisted detection of bor-
rowings, or in the case of already annotated borrowings, for the evaluation of
borrowing detection. Moreover, while the examples shown are anecdotal, they
suggest further work that could be done to improve our borrowing detection
methods. A more complete error assessment as performed previously would
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give a better insight into the gains and losses made by including the LCE func-
tion in the classifier.

3.4 Discussion
How well did we do automatically detecting borrowings from dominant lan-
guages based on wordlist data?

3.4.1 Initial effort
In our multilingual only approach, with implementation and evaluation focused
on a dominant donor language, we devised three general methods to detect
borrowed words from dominant languages, closest match and cognate-based
multilingual sequence comparisons, and a classifier meta-model. The classifier
meta-model showed the best performance, with F1 score of 0.81, and high pre-
cision of 0.93. This method in its current state could already prove very useful
in computer-assisted workflows, at least for the case of high contact language
events with a dominant language donor.

Borrowing detection results are similar to those obtained using the neural net-
work competing cross-entropies method from our monolingual borrowing de-
tection chapter §2. However, the methods are not directly comparable, since the
monolingual method did not use a dominant donor focused implementation or
evaluation. Nevertheless this suggests that each approach and method is useful
in its own right. It might be useful to offer a donor focused implementation for
monolingual methods as well. Or general borrowing detection in multilingual
methods in addition our donor focused efforts.

Since in our ad hoc experiments we saw little difference between our default
linear SVM classifier versus a radial basis function SVM classifier or logistic re-
gression classifier, we could continue with anyone of these classifier methods.
The logistic regression classifier might be preferable in a neural network im-
plementation, opening up the possibility to add a fully connected hidden layer
between inputs and logistic regression. Such configuration might learn an im-
proved predictor for dominant donor borrowing. Since balanced training data,
between borrowed or not borrowed from dominant donor categories, gave poor
results on test data, we continue with unweighted data in general.

We observed a positive correlation between dominant donor borrowing percent-
age and borrowing detection performance over languages. With data hungry
methods such as Markov chains and neural networks used in monolingual bor-
rowing detection, an obvious explanation for improved detection would be the
better fit of models resulting from increased data. But here, only the thresh-
old parameter is being estimated for closest match and cognate based methods,
and just nine factor coefficients for the classifier meta-model. These multilingual
methods aren’t data hungry. There is an abundance of training data versus the
few parameters being estimated.
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So a more likely explanation, or at least plausible explanation, is that there is
some other variable related to the percentage of borrowing that better explains
why the borrowing detection improves with the percentage of borrowing. A few
plausible and untested hypotheses are: 1. With higher percentage of borrowing,
there is lesser adaption of borrowed words to the target language. 2. Higher
percentage of borrowing corresponds to borrowing over a shorter time period,
and so borrowings are more consistently and similarly adapted. These possibil-
ities might even apply to the monolingual case, where it was so much easier to
attribute borrowing percentage and borrowing detection to a machine learning
with insufficient data problem.

3.4.2 Error analysis
Our investigation of detection errors for the multilingual dominant donor ap-
proach showed several opportunities for improvement. In particular, there seems
substantial potential for improvements that account for borrowing accompanied
by semantic shift, i.e., where the donor and target language concepts are not the
same. Designing such methods is not trivial, since an unconstrained comparison
of word forms independent of meaning also dramatically increases the number
of falsely detected borrowings (see §3.2.5). Also important were the lack of bor-
rowed word forms (lexemes) in the dominant donor wordlist, and the failure of
even the classifier to detect the similarity of some donor forms that were present
in the same concept as the target language form.

3.4.3 Improvements based on error analysis
Based on the error analysis, we explored these opportunities:

1. Fit language models to wordlists and add word cross-entropy to the classi-
fier. This adds a complementary borrowing detection that is independent
of concept and individual donor form.

2. Augment donor wordlist for increased coverage of possible forms.

3. Relax “same” to “similar” concept restriction for matching target and donor
language forms.

Least cross-entropy function. After adding least cross-entropy function re-
sults, i.e., competing cross-entropies based on Markov chain language models,
to the classifier inputs, dominant donor borrowing detection improved dramat-
ically (4 percentage points). This shows that monolingual functions are not only
equally powerful, but also complementary with multilingual functions! While
there was substantial overfitting using least cross-entropy (LCE), due to the ex-
treme increase in estimated parameters, borrowing detection performance on
test (held-out) data is clearly superior when LCE is used in the classifier meta-
method along with normalized edit distance (NED) and sound-class based pho-
netic alignment (SCA) distance.
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The least cross-entropy method, only considers the language models and cal-
culated cross-entropies, but is not matching on specific forms or concepts. So
it serves as a valuable complement to sequence matching methods in detecting
borrowing, as seen by the success of the classifier-NED,SCA,LCE.

Augment donor wordlist. Exploration of Spanish donor wordlist coverage of
borrowings in the seven indigenous languages, showed what would be possible
in borrowing detection, were there no issues of semantic shift nor not matching
related forms (due to phonetic distance or incapable methods). Without such is-
sues, 93% coverage with all available forms in our collection of databases should
map to 93% recall with F1 score moving up or down depending on the preci-
sion attained. For similar wordlists to those used here, Concepticon source by
itself might suffice to provide 89% coverage and so potentially 89% recall too.
The point is, even for wordlists similar to those used here (IDS, WOLD, or less
inclusive), it would take a large dictionary of forms to reach the 90% range, and
this by ignoring the issues of semantic shift (not matching on concept) and not
matching related forms.

This finding is based on the classifier meta-model using normalized edit distance
(NED) and sound class-based phonetic alignment (SCA) distance functions. In-
clusion of the least cross-entropy (LCE) method, may change that calculus as
LCE does not depend on matching words across languages, but rather measur-
ing fit of words to a language model. With LCE in the classifier, words may be
correctly classified as borrowed even when there is no similar form in the donor
wordlist. This is a big advantage and reduces the need to shoot for higher and
higher donor vocabulary coverage.

Relax same concept restriction for match. Relaxing the same concept restric-
tion between target borrowed word and donor word, showed using no restriction
as harmful as it results in poor precision (excessive false positives) and mediocre
recall. Optimal performance resulted from using the same concept restriction
with fall-back to a central concept restriction if no borrowing was detected for
the same concept. However there was only a single percentage point improve-
ment, so relaxing the same concept restriction was at most marginally effective.
The fall-back to a central concept restriction provides an increase in recall with
a slight decrease in precision.

There is an interesting interplay here between the tightness of the concept restric-
tion (semantics), recall, and phonetic distance, based on our experiment using
closest match SCA. Loosening the restriction up to the central concept, opens
up the possibly to correctly detect semantically related borrowings, but it also
opens up more matching possibilities for non-borrowings. A more subtle way of
relaxing the same concept restriction, such as consider donor concepts that are
semantically similar to the target concept, by some measure of semantic similar-
ity, versus the phonetic distance between forms as measured by closest match.
A classifier meta-model could integrate both phonetic distance and semantic
similarity measures to optimize borrowing detection.
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3.4.4 Report out to historical linguist
This was the most applied section of this thesis in that we showed what the results
of borrowing detection look like and how they could be used. There is abundant
information in the prediction and evaluation reports to connect the dots between
target and donor language lexical forms. Even when the corresponding donor
lexical form is not given, whether because it is not on the donor wordlist at
all or because the meaning varies from the given target concept, i.e., semantic
shift, borrowings may be detected based on the incorporation of the least cross-
entropy (LCE) function into the classifier. This is the big advantage of adding
the LCE function.

Some problems remain: 1. Donor wordlist coverage is not complete, as noted
previously. 2. Lexical borrowings with semantic shift are not recognized, as
noted previously. 3. Lexical borrowings detected because of the LCE function
may reference a dissimilar donor word for the same concept.

3.5 Conclusions
Classical sequence comparison measures, such as normalized edit distance (NED),
or sound-class based phonetic alignment (SCA), incorporated into multilingual
methods, such as closest match with pairwise alignment, or cognate-based with
multiple alignment, of target and donor language sequences, offers the advan-
tages that (1) comparisons are largely independent from one anther given a bor-
rower concept, and (2) only a single fixed threshold is necessary to make cognate
or borrowing decisions. However, they suffer the disadvantages that (1) a restric-
tive borrower concept needs be specified to carry out a small number matching
attempts, and (2) donor language sequences need to include all possible donor
words that might correspond to borrowings in order to be matched.

In contrast, sequence cross-entropy measures, such as in Markov chain or neural
network language (word) models, in inherited only or competing cross-entropies
methods offer the advantages that (1) comparisons are independent of borrower
concept, and (2) the monolingual only language sample need only sufficiently
represent the phonology and phonotactics of the borrowed and non-borrowed
words of the target language. However, they suffer the disadvantages that (1) a
large and phonetically representative sample of words is necessary to estimate
the borrowed and non-borrowed word language models, and (2) with so many
estimated parameters, borrowing detection performance needs to be demon-
strated in separate test (hold-out) datasets for each language.

Our most important discovery in this chapter, is that the classifier meta-method,
combining classical sequence comparison measures with sequence cross-entropy
measures via corresponding closest match and least cross-entropy functions,
produces superior borrowing detection versus without such a combination of
complementary functions.

Dominant donor focused borrowing detection, an innovation, finesses the prob-
lem of identifying the direction of borrowing by simply attributing direction
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of borrowing as from dominant donor to target language. While sometimes in
error, this was a small count out of all tallied errors.

Our error analysis exposed several problems of errors resulting from the use
of closest match, cognate-based, and classifier methods before adding the least
cross-entropy method. We further explored some of the problems revealed by
the error analysis, but more work needs to be done. In the following, we further
clarify our conclusions and contributions, and discuss possible research direc-
tions to further improve borrowing detection.
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Chapter 4

Conclusions and path forward

Our objective was to develop methods for automatic or semi-automatic detec-
tion of lexical borrowings from other lexical origins and apply these methods to
wordlists organized by language, or by language and concept, where detection
of lexical borrowings includes not only the borrowing decision itself, but also
the donor language and even the likely donor form.

Detection of lexical borrowings is an essential part of and crucial for the suc-
cessful application of the comparative method in historical linguistics (Camp-
bell, 2013), where the comparative method seeks to reconstruct ancestral lan-
guage and describe language relationships and events. Detection of borrowings
is also crucial for phylogenetic reconstruction which seeks to identify probable
language phylogenies by which a family of languages evolved to their current
state (Gray, Greenhill, and Atkinson, 2013).

Common approaches to lexical borrowing detection from wordlists are:

• Monolingual borrowing detection looks for similarities and differences be-
tween words from the same wordlist based on the phonology and phono-
tactics of words, and designates words that are dissimilar from inherited
words as borrowings. This was covered in monolingual borrowing detection,
chapter §2.

• Multilingual borrowing detection looks for similarities between words across
languages and designates similar words which cross language families as
borrowed words. We dealt with the special case of dominant language
donor as a means to focus the search for borrowings and designate the di-
rection of borrowing. This was covered in multilingual borrowing detection,
chapter §3.

• When incorrectly annotated words are used in language relationship mod-
els, e.g., using borrowed words in phylogenetic models, such words may
appear very discrepant versus the model, and so are likely incorrectly an-
notated. We did not cover this approach in our investigation.

• Hybrid approaches correspond to how historical linguists actually perform
their work – employing a toolkit of methods across monolingual, multi-
lingual, and discrepancy based approaches. While we did not cover an
overall holistic approach to borrowing detection in our investigation, we
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did indeed demonstrate the integration of monolingual with multilingual
methods in subsections §3.1.2 and §3.2.3 of multilingual borrowing detection,
chapter §3.

4.1 Monolingual borrowing detection
The primary data source for our research in monolingual borrowing detection
was the World Online Loan Database (WOLD) (Tresoldi, Forkel, and Moro-
zova, 2019), consisting of 41 language wordlists from all over the world – anno-
tated with word form, language, concept, borrowing information for each lex-
ical entry, including segmented broad IPA – all packaged as a Cross-Linguistic
Data Format (CLDF) database. For our purposes, all of this detail informa-
tion was reduced to multiple training and test tests per language of word_id,
segmented_IPA, and borrowed_status for training and testing of monolingual
methods. Percentage of borrowed words ranged from 0.7%, for Mandarin Chi-
nese, to 56.3%, for Selice Romani, over 1,308 standardized concepts, with the
number of lexical entries varying between ⇡ 950, for CeqWong, and ⇡ 2, 560,
for Otomi.

The investigation included a rudimentary baseline support vector machine (SVM)
classifier with features composed from the set of phonemes in a word, the bag
of sounds model. More fruitful models and the subject of our research were
Markov chain and neural network based language word models used to esti-
mate word cross-entropies.

The inherited word cross-entropy approach, fit language models, both Markov
chain and neural network, based just on inherited words from training data,
and then compared estimated cross-entropies for words from test data versus
a specified critical value to determine borrowing. This was not a very effective
approach with an average F1 score ⇡ 0.44 overall languages for Markov chain
and ⇡ 0.43 for neural network models.

However, we realized we could fit both inherited and borrowed language word
models, and then compare the cross-entropies calculated by each model where
the least cross-entropy result determined whether the word is inherited or bor-
rowed. This was much more effective with an average F1 score ⇡ 0.58 overall
languages for Markov chain and ⇡ 0.61 for neural networks.

This important and effective yet simple innovation named competing cross-
entropies works because by using paired model estimates of cross-entropy for
each word, the variability across words is controlled for – just as in a paired or
blocked trials experiment. Comparisons are made for each word between bor-
rowed or inherited models, largely eliminating word variability as a source of
error. The comparison is more powerful. However, there still are unaccounted
for sources of error, so the approach does not perform well enough to suffice by
itself for borrowing detection.
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We performed several experiments with this approach, and learned that per-
formance improves when there are more borrowings and when there are sin-
gle donors accounting for more than 67% of the borrowings. We subsequently
named such super-majority donors as dominant donors. This improved result
seems due to: 1) having more borrowing data from which to estimate the bor-
rowing model, 2) having borrowings from largely a single donor, so that the
borrowing model is estimated for essentially a single language, and maybe 3)
language contact was over a shorter time, resulting in more consistent borrow-
ing and adaption of borrowed words.

The original recurrent neural network model, used an embeddings layer and
recurrent sequence layer per target language for borrowed or inherited word
subgroups. The transformer model is closer to state of the art, and replaces the
recurrent sequence layer with a multi-head attention layer, feed forward layer,
and add and normalization steps. We expected this change to result in reduced
execution time and improved detection performance, but there was only a mod-
est reduction in execution time and an insignificant improvement in F1 scores.
However, the introduction of the transformer model did set us up better for fur-
ther experimentation. So while not so successful, it was an enabling step in or
research.

With the transformer, we tried out innovative enhancements of: 1) distinguish-
ing borrowings by individual donors, and 2) direct classification with the model
sending flattened transformer output to a fully connected logistic layer to make
detection decisions. The competing cross-entropies model with inherited versus
individual donors gave slightly reduced F1 scores versus the simple inherited
versus borrowed model. Perhaps, the reduced number of training examples
for individual donors offset the expected gain from more consistent individual
donor alternatives. This approach was innovative, but ineffective in improv-
ing borrowing detection. In the direct model case, F1 score performance was
reduce by 5 percentage points versus the competing cross-entropies models. Ei-
ther the classification layer needs to be improved beyond the fully connected
logistic function, or individual cross-entropies capture vital information that is
not captured by the classification layer.

Experiments to artificially augment data to supplement borrowings, were in-
novative, but ineffective in improving borrowing detection. The simple case of
treating a Spanish wordlist as though it were partially adapted borrowings from
Spanish, made negligible difference in F1 score, but did substantially impact the
precision and recall. Precision was improved and recall reduced with borrowed
word training data augmented by a Spanish wordlist.

The much more complex attempt of translating a Spanish wordlist to borrowed
words, based on a transducer trained on borrowed words, resulted in a negligi-
ble one percentage point improvement, for a very complex and lengthy process
of training translators, translating wordlists, and trying out detection with aug-
mented wordlists. In this case, recall was improved while precision suffered.

While there are still many possibilities for further research in monolingual bor-
rowing detection, looking to multilingual and cross-linguistic approaches seemed



91

to offer richer possibilities. This was the conclusion of our papers on borrowing
detection using monolingual lexical models (Miller et al., 2020; Miller, Pariasca,
and Beltran Castañon, 2021) and reaffirmed here.

4.2 Multilingual borrowing detection
For the primary data source of our research in multilingual borrowing detection,
we selected the seven Latin-American indigenous languages from the World
Online Loan Database (WOLD) (Tresoldi, Forkel, and Morozova, 2019), added
in a Spanish dominant donor wordlist, and saved this in a cross-linguistic data
format (CLDF) database for development of multilingual wordlist methods of
borrowing detection.

We limited our study to the special case of multiple recipient languages with a
dominant donor, Spanish in this case. Detected borrowings are assumed to come
from the dominant donor, and we detected and measured detection performance
based on a “borrowed or not-borrowed from the dominant donor” distinction.
Both this dominant donor policy and the definition of detection relative to the
dominant donor were innovative, and subsequently effective.

The closest match method performed pairwise alignments and matched between
the dominant language and each recipient language – for lexical entries ordered
by concept. We tried both normalized edit distance (NED), and sound class
based phonetic alignment (SCA) distance functions. The cognate-based method
used multiple alignments built from pairwise alignments, either NED or SCA,
to identify likely cognate sets. Cognate sets were qualified as borrowings from
a dominant donor if they included the dominant donor.

Finally the classifier based method used a classifier as a meta-model to com-
bine NED and SCA functions, and target language indicators as features. Use
of a meta-model of multiple distance measures was innovative and successful.
The cross-validation approach of using the same fixed partitions of train and
test over all methods, allowed us to use a more powerful analysis of variance
(ANOVA) factoring out nuisance effects of the partition and giving more statis-
tical power to the method comparisons. The statistical methods are standard,
and the application was innovative and effective.

Error analysis revealed several significant opportunities for improvement of our
methods: 1) increase coverage of donor wordlist, 2) relax same concept restric-
tion, and 3) add alternative distance measures. While performing an error analy-
sis is hardly innovative, its application here was very informative and influential
on subsequent effort.

Preliminary investigation of increased wordlist coverage, showed that recall per-
centage could be increased by 10 percentage points by adding the curated Con-
cepticon (List et al., 2022a) Spanish wordlist to the already present IDS (Key
and Comrie, 2015) Spanish wordlist. Up to 90% coverage could be possible us-
ing using this combined wordlist based on results using stemmed forms, which
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should be similar to matching on segmented broad IPA sound sequences where
right-hand side results are trimmed or discounted.

Preliminary investigation of relaxation of same concept restriction, revealed a
more complex and difficult picture, where simply loosening up the same concept
restriction, results in longer execution time and poorer borrowing detection as
false positives for similar sounding words from dissimilar concepts overwhelms
the benefit of a few more true positive matches. This needs to be done carefully.
These results, confirm our prior expectations in a resounding way through an in-
novative and effective use of Concepticon functions coupled with modifications
to the closest match method.

Finally, we added a least cross-entropy (LCE) distance measure based on Markov
chain language word models. Using the same train, test partitions as before,
we tested LCE both stand-alone and as a function added to the classifier. The
classifier with NED, SCA, and LCE functions performs substantially better than
other methods. This was both nicely innovative and highly successful.

An important general learning, going beyond our work in multilingual borrow-
ing detection, has been that “combining a variety of complementary functions in
a meta-model classifier can result in substantially improved results versus any
single function.”

4.3 Path forward
Borrowing detection applied to Pano-Tacanan languages. We are in the pro-
cess of curating a borrowing database of Pano-Tacanan and neighboring lan-
guages from the region of Peru and neighboring countries. Wordlists come
originally from the Intercontinental Dictionary Series (IDS) (Key and Comrie,
2015) which are similar in size to WOLD (Tresoldi, Forkel, and Morozova, 2019)
wordlists, and share largely the same concept space. Curation includes: 1. Anno-
tate forms as segmented Broad IPA, 2. Include Spanish and Portuguese language
wordlists from IDS as likely donor languages, as well as Imbabura Quechua from
WOLD, 3. Annotate borrowings including donor language, form and mean-
ing, with emphasis on Spanish, Portuguese, and Quechua as important donors,
4. Compile the database into a shareable cross linguistic data format (CLDF) (Forkel
and List, 2020).

Our multilingual methods used only dominant donor based borrowing detec-
tion, whereas a general borrowing solution should support general and donor
specific donor detection - both in the detection process and in the evaluation
of borrowing detection. We expect to generalize the classifier from multilingual
borrowing detection to function in general borrowing detection as well as donor
dominant borrowing detection, and provide evaluations for both cases.

Borrowing detection based on the generalized classifier would be applied to the
Pano-Tacanan borrowing database in order to illustrate this approach on our
Peruvian and neighboring countries’ languages. The resulting database with
software will be put into the public domain for all to use.
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Make borrowing detection tools usable by historical linguists. This thesis has
focused on development and evaluation of monolingual and multilingual meth-
ods of lexical borrowing detection. However, the utility of this work is in the
application of these methods to real world wordlists such as from IDS (Key and
Comrie, 2015) and the planned Pano-Tacanan borrowing database. To make our
work usable by historical linguists, we need to demonstrate borrowing analyses
on real world data, using an application interface understandable by histori-
cal linguists without requiring specialists in computational historical linguistics.
While our applications already provide for borrowing analyses on accompany-
ing databases, this needs to be made even more accessible, and the output of
such analyses focused more on historical linguistic use.

Augment donor wordlist. Using Concepticon (List et al., 2022a) and IDS (Key
and Comrie, 2015) wordlists combined could achieve 90% coverage for many
common wordlists and vocabulary. To get beyond 90% coverage or beyond the
concept coverage of Concepticon, would require a substantially greater effort if
the experience with Big (8,600) Spanish wordlist (Neri, 2018) applies more gener-
ally. In that case it would take a large dictionary of tens of thousands of words
with corresponding concept and segmented sounds to go the extra kilometer to
95% or greater coverage. This may be doable, given a focus on dominant donor
languages, most of which are majority languages with sufficient linguistic re-
sources, but it would still be a substantial effort.

Relax concept restriction. The Central concept restriction does not offer the
fine granularity necessary to optimize the interplay between semantic and pho-
netic distances of words. Instead a more general vector based model of meaning
might be more workable, where vector cosine similarity could suffice as a se-
mantic similarity measure, and semantic similarity might combine in a classifier
with various monolingual and multilingual phonetic distance measures to pre-
dict borrowing. Instead of a curated conceptual structure, there is a machine
learned vector representation of tens of thousands of words, combined with a
broad IPA sound segment encoding, itself created from an orthographic to sound
segment mapping of those tens of thousands of words as text. This could pro-
vide the basis to solve both the augmented donor wordlist and relaxed concept
restriction problems.

Dominant donor and general borrowing detection. Monolingual borrowing
evaluated borrowing in general with a brief foray into borrowing by donor, while
multilingual borrowing evaluated dominant donor borrowing without consid-
ering borrowing in general. It would be useful to evaluate both borrowing by
language donor, whether dominant or not, and overall, in monolingual and mul-
tilingual contexts.

What might that look like? This would also support the case of multiple donor
languages. Dominant donor would no longer be a special case, but just one
donor among others. Our Pano-Tacanan borrowing database (above path) antic-
ipates at least a partial solution to this problem.
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Enhance classifier for multilingual wordlists. The logistic regression (LR) clas-
sifier performs on par with the support vector machine (SVM) classifier. However,
if the LR classifier were implemented as a neural network, this would open up
the possibility to stack a fully-connected hidden layer between the input layer of
closest match, least cross-entropy, target language and other inputs, and a logistic
classification layer. This extra hidden layer, for being fully connected, would
add substantially more parameters to the classifier, but this might also be what
is needed to improve borrowing detection.

Enhance classifier for monolingual wordlists. The direct classifiers used with
monolingual wordlists performed five percentage points lower than correspond-
ing competing cross-entropies methods. While we attributed this in part to the
specialness of competing cross-entropies, that is not necessarily the case. With
much recent effort and articles written on neural network based classifiers, it’s
still possible that a direct classifier could be made to outperform competing
cross-entropy methods.

Enhance language word models to use a common embedding layer. A com-
mon embedding layer for broad IPA segments might permit better learning of
embeddings through sharing across languages and borrowing categories. Lan-
guage specific or category specific, e.g., inherited, borrowed, language donor,
differences could enter with the hidden layers. The model would become more
complex, but by leveraging embeddings over all languages and categories, the
overall neural borrowing detection model could gain greater power to discrimi-
nate between borrowing categories.

Drop the wordlist requirement. If donor wordlists grow substantially, and
concept restrictions are relaxed, and dominant donor becomes just another donor
instance in borrowing detection, then the next step could be to leave behind the
requirement of curated wordlists altogether. Image borrowing detection that is
more than 90% effective (F1 score > 0.90) and applicable to general text. Still not
ready to replace an experienced historical linguist, but now an important tool
for work in historical linguistics.

Not the end state. Next would be to go beyond lexical borrowing.
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Appendix A

Monolingual detail results

Here are detail results by language for the major experiments from monolingual
borrowing detection §2.2.

Detail results for artificially seeded borrowings from §2.2.1 are given in Ta-
bles A.1, A.2, and A.3 for 20%, 10%, and 5% borrowings correspondingly.

Detail results for real world borrowing from the world online loan database
(WOLD) from §2.2.2 are given in Tabs. A.4, A.5, A.6, and A.7 for competing en-
tropies and inherited only language model approaches with means and standard
deviations reported separately.

Followup investigations on detection performance are documented in §2.2.3,
factors influencing borrowing detection, and §2.2.4, detecting borrowings with
dominant donor language. Detail information used in these investigations in-
cluding borrowing percentages and phonological characteristics by language are
reported together in Tab. A.8.

The neural network transformer language model was adopted to replace the
original recurrent language model in §2.2.6. Detail by language results, both
mean and standard deviations, are reported for the competing cross-entropies
approach using the transformer model in Tab. A.9.
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Table A.1: Artificially seeded 20% borrowing - 10-fold cross-validation.

Neural net Markov chain Bag of sounds

Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Archi 0.98 0.98 0.98 0.99 0.92 0.98 0.95 0.98 0.91 0.91 0.91 0.96
Bezhta 1.00 1.00 1.00 1.00 0.93 0.96 0.95 0.98 1.00 0.96 0.98 0.99
Ceq Wong 0.96 0.93 0.95 0.98 0.84 0.97 0.90 0.95 1.00 0.79 0.88 0.96
Dutch 0.87 0.86 0.87 0.94 0.77 0.89 0.83 0.92 1.00 0.69 0.82 0.93
English 0.85 1.00 0.92 0.96 0.86 0.92 0.89 0.95 1.00 0.84 0.91 0.97
Gawwada 0.95 0.98 0.97 0.98 0.93 0.98 0.96 0.98 0.95 0.90 0.92 0.97
Gurindji 0.98 0.98 0.98 0.99 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Hausa 1.00 0.99 0.99 1.00 1.00 0.98 0.99 1.00 0.98 0.87 0.92 0.97
Hawaiian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00
Hup 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.89 0.94 0.98
Imbabura Quechua 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.96 0.98
Indonesian 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.98 0.99
Iraqw 0.93 0.98 0.96 0.98 0.92 0.92 0.92 0.97 1.00 0.87 0.93 0.97
Japanese 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.95 0.97 0.99
Kali’na 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.99 1.00 0.98 0.99 1.00
Kanuri 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 0.91 0.95 0.98
Ket 0.96 0.98 0.97 0.99 0.86 0.98 0.92 0.97 1.00 0.90 0.95 0.98
Kildin Saami 0.99 1.00 0.99 1.00 0.93 0.96 0.95 0.98 0.95 0.84 0.89 0.96
Lower Sorbian 0.98 0.97 0.98 0.99 0.95 0.99 0.97 0.99 0.97 0.92 0.95 0.98
Malagasy 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 0.92 0.96 0.99
Manange 0.93 1.00 0.96 0.98 0.98 0.96 0.97 0.99 1.00 0.93 0.96 0.98
Mandarin Chinese 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.89 0.94 0.97
Mapudungun 0.97 1.00 0.98 0.99 0.98 1.00 0.99 1.00 1.00 0.98 0.99 1.00
Old High German 0.91 0.91 0.91 0.97 0.85 0.92 0.89 0.95 0.90 0.86 0.88 0.95
Oroqen 0.95 0.98 0.97 0.99 0.90 0.93 0.92 0.96 0.98 0.68 0.80 0.93
Otomi 0.99 0.99 0.99 1.00 0.98 1.00 0.99 1.00 1.00 0.97 0.98 0.99
Q’eqchi’ 0.99 0.95 0.97 0.99 0.98 0.98 0.98 0.99 1.00 0.93 0.96 0.99
Romanian 0.96 0.99 0.97 0.99 0.92 0.97 0.95 0.97 1.00 0.91 0.95 0.98
Sakha 0.96 1.00 0.98 0.99 0.93 0.98 0.96 0.98 0.98 0.90 0.94 0.98
Saramaccan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.88 0.92 0.97
Selice Romani 0.90 1.00 0.95 0.98 0.94 0.97 0.96 0.98 1.00 0.94 0.97 0.99
Seychelles Creole 0.99 0.99 0.99 1.00 0.96 1.00 0.98 0.99 1.00 0.92 0.96 0.99
Swahili 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.96 0.99
Takia 0.96 0.96 0.96 0.98 0.97 1.00 0.98 0.99 1.00 0.96 0.98 0.99
Tarifiyt Berber 0.97 0.91 0.94 0.98 0.97 0.95 0.96 0.99 0.98 0.98 0.98 0.99
Thai 0.98 0.98 0.98 0.99 0.91 0.95 0.93 0.97 0.97 0.90 0.93 0.97
Vietnamese 1.00 0.98 0.99 1.00 0.93 0.91 0.92 0.98 1.00 0.98 0.99 1.00
White Hmong 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00
Wichí 0.98 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00 0.91 0.95 0.98
Yaqui 1.00 0.97 0.98 0.99 0.93 1.00 0.97 0.98 1.00 0.96 0.98 0.99
Zinacantán Tzotzil 0.97 0.99 0.98 0.99 0.98 1.00 0.99 1.00 1.00 0.96 0.98 0.99
Mean 0.97 0.98 0.98 0.99 0.95 0.98 0.96 0.98 0.99 0.91 0.95 0.98
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Table A.2: Artificially seeded 10% borrowing - 10-fold cross-validation.

Neural net Markov chain Bag of sounds

Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Archi 0.91 1.00 0.95 0.99 0.70 0.95 0.81 0.96 1.00 0.91 0.95 0.99
Bezhta 0.83 1.00 0.91 0.98 0.72 1.00 0.84 0.97 1.00 0.95 0.98 1.00
Ceq Wong 0.68 0.94 0.79 0.94 0.69 0.95 0.80 0.94 1.00 0.73 0.85 0.97
Dutch 0.58 0.71 0.64 0.94 0.58 0.81 0.68 0.93 0.95 0.64 0.77 0.96
English 0.95 0.95 0.95 0.99 0.54 1.00 0.70 0.91 1.00 0.61 0.76 0.97
Gawwada 0.81 0.95 0.88 0.97 0.93 1.00 0.97 0.99 1.00 0.84 0.91 0.98
Gurindji 1.00 1.00 1.00 1.00 1.00 0.94 0.97 0.99 1.00 0.91 0.95 0.99
Hausa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.90 0.98
Hawaiian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hup 1.00 1.00 1.00 1.00 0.90 1.00 0.95 0.99 1.00 0.86 0.93 0.99
Imbabura Quechua 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.92 0.98
Indonesian 0.97 0.97 0.97 0.99 1.00 0.97 0.98 1.00 1.00 0.76 0.87 0.97
Iraqw 0.82 1.00 0.90 0.98 0.86 0.96 0.91 0.98 1.00 0.92 0.96 0.99
Japanese 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.94 0.99
Kali’na 1.00 1.00 1.00 1.00 1.00 0.93 0.97 0.99 1.00 0.93 0.96 0.99
Kanuri 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.96 0.99
Ket 0.87 0.96 0.91 0.98 0.70 0.86 0.78 0.96 1.00 0.79 0.88 0.98
Kildin Saami 0.88 1.00 0.94 0.99 0.82 1.00 0.90 0.98 1.00 0.69 0.81 0.96
Lower Sorbian 0.96 0.96 0.96 0.99 0.92 0.97 0.95 0.99 1.00 0.88 0.94 0.99
Malagasy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.93 0.98
Manange 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.99 1.00 0.93 0.96 0.99
Mandarin Chinese 0.94 1.00 0.97 1.00 0.90 1.00 0.95 0.99 1.00 0.80 0.89 0.98
Mapudungun 0.95 1.00 0.98 1.00 0.96 1.00 0.98 1.00 1.00 0.96 0.98 1.00
Old High German 0.91 0.97 0.94 0.98 0.81 0.94 0.87 0.97 1.00 0.73 0.84 0.98
Oroqen 0.81 1.00 0.90 0.98 0.67 1.00 0.81 0.94 1.00 0.85 0.92 0.98
Otomi 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.89 0.92 0.98
Q’eqchi’ 0.87 1.00 0.93 0.99 0.94 0.94 0.94 0.99 1.00 0.83 0.91 0.98
Romanian 0.84 0.97 0.90 0.98 0.84 0.91 0.88 0.97 1.00 0.80 0.89 0.98
Sakha 0.91 0.97 0.94 0.98 0.84 0.96 0.90 0.98 1.00 0.84 0.91 0.98
Saramaccan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.93 0.99
Selice Romani 0.81 1.00 0.90 0.98 0.92 0.86 0.89 0.98 1.00 0.83 0.91 0.98
Seychelles Creole 0.98 0.98 0.98 1.00 0.91 0.98 0.94 0.99 1.00 0.91 0.96 0.99
Swahili 0.96 0.96 0.96 0.99 1.00 1.00 1.00 1.00 0.96 0.93 0.94 0.99
Takia 0.97 0.97 0.97 0.99 0.92 1.00 0.96 0.99 1.00 1.00 1.00 1.00
Tarifiyt Berber 0.88 0.96 0.92 0.98 0.84 1.00 0.91 0.98 0.91 0.83 0.87 0.97
Thai 0.94 0.91 0.93 0.99 0.76 0.89 0.82 0.96 1.00 0.90 0.95 0.99
Vietnamese 0.97 1.00 0.98 1.00 0.91 0.97 0.94 0.99 1.00 0.85 0.92 0.99
White Hmong 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00 1.00 0.95 0.98 1.00
Wichí 1.00 0.97 0.98 1.00 0.97 1.00 0.98 1.00 1.00 0.93 0.96 0.99
Yaqui 1.00 1.00 1.00 1.00 0.92 0.96 0.94 0.99 1.00 0.88 0.94 0.99
Zinacantán Tzotzil 0.97 1.00 0.99 1.00 0.96 0.96 0.96 0.99 1.00 0.96 0.98 1.00
Mean 0.92 0.98 0.95 0.99 0.89 0.97 0.92 0.98 0.99 0.86 0.92 0.98
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Table A.3: Artificially seeded 5% borrowing - 10-fold cross-validation.

Neural net Markov chain Bag of sounds

Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Archi 0.50 1.00 0.67 0.97 0.27 1.00 0.43 0.88 1.00 0.80 0.89 0.99
Bezhta 0.71 1.00 0.83 0.98 0.60 0.92 0.73 0.96 1.00 0.83 0.91 0.99
Ceq Wong 0.40 1.00 0.57 0.96 0.31 1.00 0.47 0.87 1.00 0.67 0.80 0.98
Dutch 0.56 0.83 0.67 0.96 0.52 0.86 0.65 0.95 0.86 0.50 0.63 0.97
English 0.67 1.00 0.80 0.98 0.40 1.00 0.57 0.94 1.00 0.67 0.80 0.99
Gawwada 0.94 0.89 0.91 0.99 0.82 1.00 0.90 0.99 1.00 0.50 0.67 0.97
Gurindji 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hausa 0.86 1.00 0.92 0.99 0.81 0.94 0.87 0.98 1.00 0.64 0.78 0.99
Hawaiian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hup 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.86 0.99
Imbabura Quechua 1.00 0.92 0.96 0.99 0.86 1.00 0.92 0.99 1.00 1.00 1.00 1.00
Indonesian 1.00 1.00 1.00 1.00 1.00 0.95 0.97 1.00 1.00 0.86 0.92 0.99
Iraqw 0.65 0.85 0.73 0.97 0.67 1.00 0.80 0.98 0.93 0.88 0.90 0.99
Japanese 0.95 1.00 0.97 1.00 0.78 1.00 0.88 0.99 1.00 0.84 0.91 0.99
Kali’na 1.00 1.00 1.00 1.00 0.89 0.89 0.89 0.99 1.00 0.86 0.92 0.99
Kanuri 0.78 1.00 0.88 0.99 0.90 1.00 0.95 0.99 1.00 0.77 0.87 0.99
Ket 0.55 1.00 0.71 0.96 0.42 0.93 0.58 0.92 1.00 0.88 0.93 0.99
Kildin Saami 0.73 1.00 0.85 0.98 0.57 0.92 0.71 0.96 1.00 0.83 0.91 0.99
Lower Sorbian 0.78 0.91 0.84 0.97 0.71 1.00 0.83 0.99 1.00 0.75 0.86 0.99
Malagasy 0.95 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.96 1.00
Manange 0.75 1.00 0.86 0.99 0.69 1.00 0.81 0.98 1.00 0.92 0.96 1.00
Mandarin Chinese 0.90 1.00 0.95 1.00 0.89 1.00 0.94 0.99 1.00 0.77 0.87 0.99
Mapudungun 0.90 1.00 0.95 1.00 0.81 1.00 0.90 0.99 1.00 1.00 1.00 1.00
Old High German 0.62 0.83 0.71 0.97 0.58 0.92 0.71 0.96 1.00 0.73 0.84 0.99
Oroqen 0.67 1.00 0.80 0.97 0.61 0.93 0.74 0.96 0.71 0.56 0.63 0.97
Otomi 1.00 1.00 1.00 1.00 0.94 1.00 0.97 1.00 1.00 0.85 0.92 0.99
Q’eqchi’ 0.88 1.00 0.94 0.99 0.82 0.93 0.87 0.99 1.00 0.71 0.83 0.99
Romanian 0.76 0.84 0.80 0.97 0.67 0.93 0.78 0.97 1.00 0.87 0.93 0.99
Sakha 0.69 1.00 0.81 0.98 0.61 0.93 0.74 0.96 1.00 0.73 0.85 0.98
Saramaccan 0.44 0.80 0.57 0.97 0.69 1.00 0.82 0.98 1.00 0.89 0.94 0.99
Selice Romani 0.50 0.88 0.64 0.95 0.50 1.00 0.67 0.94 1.00 0.67 0.80 0.98
Seychelles Creole 0.87 0.87 0.87 0.99 0.71 0.95 0.82 0.98 1.00 0.67 0.80 0.98
Swahili 0.78 1.00 0.88 0.99 0.95 1.00 0.97 1.00 1.00 0.85 0.92 0.99
Takia 0.85 1.00 0.92 0.99 0.52 1.00 0.69 0.95 1.00 0.65 0.79 0.97
Tarifiyt Berber 0.58 1.00 0.74 0.97 0.24 1.00 0.39 0.86 0.83 0.45 0.59 0.96
Thai 0.74 0.82 0.78 0.98 0.70 0.95 0.81 0.97 1.00 0.87 0.93 0.99
Vietnamese 0.93 1.00 0.97 1.00 0.61 1.00 0.76 0.96 1.00 0.71 0.83 0.98
White Hmong 1.00 1.00 1.00 1.00 0.61 1.00 0.76 0.97 1.00 0.83 0.91 0.99
Wichí 0.81 1.00 0.90 0.99 0.92 0.92 0.92 0.99 1.00 0.92 0.96 1.00
Yaqui 0.93 1.00 0.97 1.00 0.88 1.00 0.94 0.99 1.00 0.91 0.95 1.00
Zinacantán Tzotzil 1.00 1.00 1.00 1.00 0.88 1.00 0.93 0.99 1.00 0.75 0.86 0.99
Mean 0.80 0.96 0.86 0.99 0.72 0.97 0.81 0.97 0.98 0.79 0.87 0.99
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Table A.4: Real world borrowing from the World Online Loan Database (WOLD) –
10-fold cross-validation - means.

Neural net Markov chain Bag of sounds Prop.

Language Prec. Recall F1 Acc Prec. Recall F1 Acc Prec. Recall F1 Acc Inher.

Archi 0.593 0.748 0.655 0.841 0.549 0.757 0.634 0.817 0.687 0.267 0.375 0.817 0.786
Bezhta 0.760 0.814 0.784 0.868 0.699 0.759 0.726 0.832 0.772 0.705 0.735 0.849 0.701
Ceq Wong 0.716 0.773 0.741 0.823 0.614 0.682 0.641 0.752 0.660 0.575 0.611 0.762 0.667
Dutch 0.470 0.585 0.512 0.800 0.442 0.566 0.493 0.784 0.200 0.007 0.013 0.814 0.814
English 0.615 0.660 0.634 0.709 0.609 0.635 0.620 0.701 0.667 0.517 0.578 0.712 0.614
Gawwada 0.367 0.628 0.456 0.864 0.352 0.572 0.427 0.867 0.618 0.167 0.252 0.915 0.909
Gurindji 0.244 0.468 0.318 0.753 0.330 0.578 0.416 0.798 0.000 0.000 0.000 0.875 0.875
Hausa 0.550 0.654 0.594 0.826 0.525 0.683 0.591 0.815 0.705 0.290 0.397 0.832 0.802
Hawaiian 0.438 0.773 0.557 0.805 0.457 0.720 0.556 0.817 0.600 0.034 0.063 0.845 0.839
Hup 0.658 0.883 0.750 0.940 0.562 0.829 0.658 0.919 0.921 0.448 0.590 0.940 0.899
Imbabura Quechua 0.784 0.845 0.811 0.892 0.771 0.846 0.803 0.886 0.808 0.604 0.687 0.849 0.720
Indonesian 0.611 0.676 0.640 0.771 0.602 0.635 0.617 0.765 0.641 0.269 0.378 0.734 0.698
Iraqw 0.578 0.742 0.638 0.895 0.501 0.727 0.582 0.871 0.689 0.375 0.470 0.895 0.870
Japanese 0.720 0.823 0.766 0.851 0.712 0.771 0.738 0.839 0.676 0.406 0.506 0.768 0.704
Kali’na 0.482 0.688 0.559 0.853 0.510 0.649 0.563 0.858 0.967 0.200 0.327 0.883 0.855
Kanuri 0.432 0.627 0.506 0.789 0.437 0.596 0.497 0.792 0.717 0.053 0.098 0.830 0.823
Ket 0.461 0.780 0.551 0.908 0.433 0.702 0.530 0.899 0.647 0.212 0.301 0.928 0.916
Kildin Saami 0.448 0.575 0.501 0.789 0.425 0.551 0.479 0.775 0.050 0.004 0.007 0.807 0.810
Lower Sorbian 0.612 0.738 0.665 0.857 0.590 0.692 0.633 0.845 0.692 0.191 0.293 0.824 0.803
Malagasy 0.380 0.627 0.470 0.823 0.375 0.580 0.453 0.826 0.000 0.000 0.000 0.875 0.875
Manange 0.320 0.613 0.411 0.889 0.262 0.579 0.345 0.866 0.400 0.069 0.114 0.939 0.935
Mandarin Chinese 0.019 0.092 0.031 0.950 0.004 0.050 0.007 0.816 0.000 0.000 0.000 0.993 0.993
Mapudungun 0.650 0.820 0.723 0.875 0.656 0.803 0.720 0.877 0.815 0.528 0.637 0.882 0.800
Old High German 0.200 0.335 0.241 0.887 0.190 0.433 0.261 0.866 0.000 0.000 0.000 0.947 0.947
Oroqen 0.305 0.596 0.388 0.864 0.266 0.507 0.341 0.854 0.600 0.088 0.150 0.928 0.922
Otomi 0.704 0.911 0.792 0.953 0.621 0.892 0.729 0.936 0.874 0.688 0.764 0.959 0.902
Q’eqchi’ 0.658 0.845 0.735 0.937 0.609 0.822 0.693 0.927 0.807 0.513 0.624 0.937 0.895
Romanian 0.697 0.713 0.704 0.761 0.663 0.720 0.690 0.741 0.634 0.421 0.505 0.671 0.600
Sakha 0.612 0.687 0.644 0.812 0.555 0.640 0.592 0.783 0.684 0.217 0.323 0.777 0.751
Saramaccan 0.583 0.637 0.606 0.707 0.584 0.629 0.605 0.709 0.597 0.076 0.134 0.653 0.645
Selice Romani 0.902 0.877 0.889 0.876 0.887 0.877 0.882 0.865 0.746 0.834 0.787 0.742 0.427
Seychelles Creole 0.274 0.573 0.364 0.828 0.315 0.594 0.409 0.849 0.200 0.011 0.020 0.911 0.911
Swahili 0.687 0.775 0.725 0.860 0.636 0.692 0.661 0.828 0.795 0.540 0.637 0.854 0.758
Takia 0.607 0.795 0.684 0.836 0.593 0.752 0.660 0.822 0.800 0.042 0.078 0.777 0.768
Tarifiyt Berber 0.813 0.789 0.798 0.806 0.774 0.771 0.772 0.778 0.773 0.697 0.730 0.749 0.511
Thai 0.541 0.654 0.590 0.805 0.459 0.648 0.531 0.759 0.591 0.104 0.175 0.791 0.785
Vietnamese 0.449 0.641 0.524 0.789 0.421 0.595 0.489 0.777 0.617 0.113 0.186 0.824 0.817
White Hmong 0.373 0.589 0.451 0.784 0.383 0.656 0.482 0.782 0.325 0.024 0.045 0.846 0.845
Wichí 0.751 0.900 0.817 0.941 0.729 0.839 0.772 0.933 0.726 0.523 0.602 0.904 0.857
Yaqui 0.746 0.836 0.786 0.893 0.754 0.804 0.776 0.890 0.780 0.560 0.649 0.857 0.760
Zinacantán Tzotzil 0.748 0.905 0.815 0.942 0.696 0.852 0.762 0.924 0.931 0.412 0.565 0.912 0.857
Mean 0.550 0.700 0.606 0.845 0.526 0.675 0.581 0.830 0.595 0.287 0.351 0.844 0.797



100

Table A.5: Real world borrowing from the World Online Loan Database (WOLD) –
10-fold cross-validation - standard deviations.

Neural net Markov chain Bag of sounds

Language Prec. Recall F1 Acc. Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Archi 0.113 0.072 0.082 0.026 0.048 0.098 0.056 0.027 0.211 0.119 0.138 0.048
Bezhta 0.058 0.076 0.053 0.026 0.095 0.089 0.087 0.045 0.056 0.065 0.048 0.030
Ceq Wong 0.084 0.062 0.063 0.036 0.102 0.036 0.069 0.040 0.093 0.075 0.065 0.032
Dutch 0.115 0.115 0.101 0.024 0.096 0.099 0.090 0.045 0.422 0.015 0.029 0.031
English 0.055 0.071 0.047 0.051 0.075 0.073 0.067 0.048 0.063 0.078 0.057 0.037
Gawwada 0.097 0.133 0.091 0.040 0.085 0.160 0.096 0.029 0.407 0.121 0.170 0.020
Gurindji 0.084 0.161 0.106 0.041 0.083 0.115 0.091 0.046 0.000 0.000 0.000 0.031
Hausa 0.113 0.071 0.089 0.035 0.084 0.071 0.072 0.033 0.166 0.108 0.122 0.038
Hawaiian 0.075 0.065 0.070 0.026 0.068 0.079 0.059 0.032 0.516 0.042 0.074 0.021
Hup 0.109 0.087 0.091 0.028 0.152 0.133 0.117 0.025 0.114 0.148 0.131 0.019
Imbabura Quechua 0.085 0.050 0.061 0.028 0.066 0.063 0.041 0.022 0.084 0.109 0.086 0.034
Indonesian 0.063 0.054 0.047 0.040 0.056 0.078 0.061 0.027 0.074 0.029 0.039 0.034
Iraqw 0.146 0.091 0.099 0.027 0.115 0.128 0.087 0.022 0.185 0.146 0.134 0.036
Japanese 0.062 0.068 0.047 0.031 0.059 0.053 0.039 0.021 0.092 0.051 0.057 0.013
Kali’na 0.143 0.130 0.132 0.023 0.054 0.154 0.079 0.023 0.105 0.069 0.098 0.022
Kanuri 0.117 0.091 0.107 0.030 0.115 0.073 0.075 0.034 0.343 0.033 0.058 0.022
Ket 0.211 0.181 0.219 0.028 0.160 0.171 0.161 0.029 0.403 0.154 0.199 0.019
Kildin Saami 0.081 0.136 0.098 0.024 0.072 0.094 0.078 0.021 0.158 0.011 0.021 0.034
Lower Sorbian 0.073 0.073 0.056 0.012 0.082 0.112 0.081 0.032 0.177 0.079 0.101 0.021
Malagasy 0.079 0.114 0.083 0.041 0.058 0.100 0.062 0.027 0.000 0.000 0.000 0.025
Manange 0.086 0.168 0.093 0.024 0.107 0.218 0.120 0.039 0.516 0.103 0.165 0.020
Mandarin Chinese 0.040 0.217 0.066 0.018 0.012 0.158 0.022 0.028 0.000 0.000 0.000 0.007
Mapudungun 0.049 0.066 0.033 0.023 0.081 0.079 0.067 0.021 0.107 0.086 0.084 0.031
Old High German 0.099 0.097 0.102 0.027 0.111 0.245 0.146 0.027 0.000 0.000 0.000 0.025
Oroqen 0.094 0.226 0.121 0.018 0.065 0.167 0.078 0.040 0.516 0.094 0.155 0.024
Otomi 0.044 0.053 0.031 0.008 0.104 0.066 0.091 0.020 0.098 0.074 0.052 0.009
Q’eqchi’ 0.122 0.063 0.087 0.019 0.097 0.101 0.075 0.024 0.100 0.091 0.086 0.014
Romanian 0.055 0.035 0.037 0.027 0.047 0.064 0.048 0.042 0.078 0.053 0.058 0.035
Sakha 0.057 0.080 0.043 0.033 0.080 0.085 0.071 0.031 0.149 0.054 0.059 0.024
Saramaccan 0.074 0.048 0.053 0.044 0.057 0.057 0.052 0.042 0.218 0.031 0.052 0.032
Selice Romani 0.026 0.033 0.021 0.019 0.035 0.023 0.023 0.027 0.032 0.043 0.025 0.025
Seychelles Creole 0.096 0.102 0.103 0.021 0.048 0.089 0.051 0.024 0.422 0.024 0.045 0.014
Swahili 0.077 0.056 0.049 0.019 0.067 0.043 0.036 0.026 0.061 0.098 0.065 0.022
Takia 0.106 0.065 0.081 0.030 0.087 0.057 0.064 0.034 0.422 0.035 0.064 0.039
Tarifiyt Berber 0.057 0.051 0.032 0.027 0.033 0.046 0.031 0.024 0.051 0.063 0.027 0.027
Thai 0.080 0.075 0.067 0.029 0.096 0.076 0.067 0.031 0.087 0.035 0.048 0.024
Vietnamese 0.080 0.095 0.072 0.039 0.079 0.114 0.077 0.029 0.104 0.043 0.062 0.032
White Hmong 0.064 0.140 0.068 0.033 0.049 0.079 0.052 0.027 0.472 0.034 0.063 0.028
Wichí 0.085 0.055 0.067 0.028 0.136 0.092 0.093 0.020 0.189 0.064 0.102 0.019
Yaqui 0.062 0.056 0.039 0.017 0.079 0.069 0.063 0.031 0.056 0.062 0.050 0.018
Zinacantán Tzotzil 0.055 0.074 0.029 0.015 0.061 0.092 0.049 0.017 0.093 0.099 0.096 0.015
Mean 0.085 0.092 0.074 0.028 0.079 0.098 0.072 0.030 0.181 0.064 0.073 0.026
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Table A.6: Real world borrowing from the World Online Loan Database (WOLD) –
10-fold cross-validation - means [inherited only methods].

Neural net - inherited Markov chain - inherited Prop.

Language Prec. Recall F1 Acc Prec. Recall F1 Acc Inher.

Archi 0.349 0.788 0.483 0.643 0.384 0.807 0.516 0.683 0.786
Bezhta 0.432 0.767 0.549 0.632 0.469 0.810 0.593 0.671 0.701
Ceq Wong 0.389 0.792 0.519 0.522 0.424 0.792 0.549 0.572 0.667
Dutch 0.244 0.788 0.370 0.506 0.249 0.813 0.379 0.507 0.814
English 0.458 0.798 0.579 0.557 0.475 0.806 0.595 0.581 0.614
Gawwada 0.127 0.828 0.219 0.467 0.149 0.781 0.248 0.585 0.909
Gurindji 0.137 0.793 0.233 0.349 0.145 0.796 0.245 0.382 0.875
Hausa 0.292 0.810 0.428 0.572 0.314 0.789 0.449 0.618 0.802
Hawaiian 0.193 0.798 0.309 0.425 0.196 0.804 0.314 0.442 0.839
Hup 0.273 0.770 0.402 0.774 0.242 0.821 0.368 0.727 0.899
Imbabura Quechua 0.621 0.805 0.696 0.806 0.685 0.788 0.730 0.839 0.720
Indonesian 0.445 0.795 0.570 0.641 0.430 0.795 0.557 0.619 0.698
Iraqw 0.196 0.770 0.309 0.557 0.254 0.821 0.385 0.663 0.870
Japanese 0.463 0.806 0.586 0.665 0.456 0.793 0.577 0.658 0.704
Kali’na 0.172 0.798 0.280 0.420 0.201 0.798 0.318 0.505 0.855
Kanuri 0.255 0.805 0.387 0.551 0.265 0.802 0.396 0.574 0.823
Ket 0.159 0.804 0.261 0.629 0.175 0.793 0.284 0.672 0.916
Kildin Saami 0.233 0.814 0.361 0.452 0.220 0.800 0.344 0.425 0.810
Lower Sorbian 0.303 0.798 0.439 0.599 0.339 0.802 0.477 0.654 0.803
Malagasy 0.173 0.782 0.283 0.510 0.175 0.802 0.285 0.504 0.875
Manange 0.173 0.787 0.279 0.749 0.188 0.785 0.298 0.768 0.935
Mandarin Chinese 0.010 0.450 0.019 0.513 0.009 0.617 0.018 0.445 0.993
Mapudungun 0.351 0.798 0.484 0.665 0.399 0.810 0.533 0.720 0.800
Old High German 0.077 0.805 0.139 0.474 0.086 0.814 0.155 0.535 0.947
Oroqen 0.140 0.810 0.235 0.595 0.142 0.791 0.236 0.608 0.922
Otomi 0.488 0.798 0.599 0.896 0.497 0.798 0.607 0.900 0.902
Q’eqchi’ 0.387 0.826 0.523 0.842 0.374 0.807 0.508 0.837 0.895
Romanian 0.501 0.802 0.616 0.600 0.531 0.796 0.637 0.640 0.600
Sakha 0.321 0.819 0.460 0.523 0.360 0.803 0.496 0.594 0.751
Saramaccan 0.390 0.802 0.522 0.483 0.397 0.803 0.529 0.498 0.645
Selice Romani 0.772 0.796 0.783 0.748 0.815 0.795 0.803 0.778 0.427
Seychelles Creole 0.137 0.804 0.232 0.534 0.144 0.803 0.243 0.565 0.911
Swahili 0.330 0.809 0.468 0.557 0.336 0.800 0.472 0.571 0.758
Takia 0.321 0.788 0.454 0.564 0.373 0.817 0.512 0.640 0.768
Tarifiyt Berber 0.632 0.787 0.700 0.673 0.652 0.792 0.714 0.692 0.511
Thai 0.280 0.782 0.411 0.518 0.288 0.805 0.422 0.527 0.785
Vietnamese 0.191 0.810 0.307 0.338 0.196 0.798 0.314 0.361 0.817
White Hmong 0.175 0.789 0.284 0.387 0.169 0.788 0.277 0.368 0.845
Wichí 0.393 0.805 0.520 0.793 0.444 0.807 0.568 0.831 0.857
Yaqui 0.561 0.805 0.656 0.801 0.546 0.796 0.645 0.791 0.760
Zinacantán Tzotzil 0.382 0.831 0.520 0.783 0.317 0.784 0.450 0.727 0.857
bf Mean 0.315 0.791 0.426 0.593 0.330 0.796 0.440 0.617 0.797
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Table A.7: Real world borrowing from the World Online Loan Database (WOLD) –
10-fold cross-validation - standard deviations [inherited only methods].

Neural net - inherited Markov chain - inherited

Language Prec. Recall F1 Acc. Prec. Recall F1 Acc.

Archi 0.043 0.086 0.053 0.025 0.061 0.085 0.056 0.023
Bezhta 0.071 0.089 0.066 0.029 0.037 0.096 0.050 0.038
Ceq Wong 0.047 0.139 0.063 0.030 0.075 0.110 0.077 0.061
Dutch 0.044 0.070 0.054 0.039 0.051 0.071 0.064 0.054
English 0.070 0.069 0.066 0.053 0.074 0.029 0.061 0.047
Gawwada 0.033 0.132 0.052 0.051 0.051 0.186 0.078 0.035
Gurindji 0.029 0.099 0.042 0.044 0.033 0.057 0.050 0.049
Hausa 0.051 0.050 0.059 0.053 0.036 0.062 0.043 0.028
Hawaiian 0.053 0.133 0.076 0.070 0.033 0.081 0.047 0.042
Hup 0.090 0.216 0.128 0.025 0.070 0.117 0.092 0.038
Imbabura Quechua 0.096 0.064 0.054 0.037 0.080 0.084 0.071 0.044
Indonesian 0.049 0.070 0.054 0.033 0.048 0.042 0.047 0.032
Iraqw 0.052 0.128 0.069 0.058 0.056 0.139 0.073 0.047
Japanese 0.027 0.070 0.022 0.023 0.067 0.056 0.063 0.041
Kali’na 0.046 0.129 0.066 0.050 0.063 0.068 0.081 0.063
Kanuri 0.041 0.062 0.051 0.026 0.048 0.068 0.058 0.037
Ket 0.053 0.136 0.075 0.045 0.052 0.109 0.073 0.043
Kildin Saami 0.035 0.056 0.044 0.044 0.021 0.075 0.028 0.021
Lower Sorbian 0.043 0.082 0.056 0.036 0.034 0.079 0.045 0.034
Malagasy 0.034 0.108 0.051 0.030 0.035 0.092 0.045 0.051
Manange 0.049 0.146 0.066 0.039 0.060 0.155 0.083 0.032
Mandarin Chinese 0.009 0.445 0.018 0.058 0.008 0.458 0.016 0.064
Mapudungun 0.056 0.062 0.055 0.033 0.047 0.068 0.047 0.021
Old High German 0.031 0.155 0.053 0.042 0.015 0.130 0.025 0.045
Oroqen 0.046 0.141 0.068 0.065 0.040 0.133 0.053 0.071
Otomi 0.070 0.100 0.048 0.019 0.078 0.087 0.063 0.014
Q’eqchi’ 0.074 0.077 0.071 0.029 0.056 0.072 0.050 0.025
Romanian 0.020 0.027 0.019 0.024 0.049 0.054 0.051 0.036
Sakha 0.049 0.049 0.055 0.037 0.044 0.044 0.042 0.042
Saramaccan 0.072 0.047 0.072 0.061 0.057 0.065 0.054 0.047
Selice Romani 0.055 0.041 0.040 0.041 0.049 0.050 0.036 0.035
Seychelles Creole 0.031 0.048 0.045 0.028 0.033 0.160 0.052 0.039
Swahili 0.037 0.062 0.045 0.033 0.045 0.066 0.052 0.021
Takia 0.042 0.077 0.042 0.036 0.032 0.047 0.035 0.032
Tarifiyt Berber 0.050 0.055 0.043 0.032 0.044 0.053 0.037 0.028
Thai 0.028 0.078 0.035 0.043 0.040 0.062 0.046 0.040
Vietnamese 0.031 0.064 0.039 0.028 0.034 0.088 0.049 0.047
White Hmong 0.041 0.077 0.057 0.053 0.027 0.102 0.040 0.041
Wichí 0.085 0.094 0.071 0.041 0.092 0.096 0.086 0.026
Yaqui 0.073 0.104 0.061 0.030 0.064 0.072 0.052 0.028
Zinacantán Tzotzil 0.053 0.098 0.058 0.038 0.049 0.063 0.056 0.030
Mean 0.049 0.098 0.055 0.039 0.048 0.093 0.054 0.039
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Table A.8: Borrowing and phonological characteristics by language.

Fraction Primary donor

Language Words Borrowed Inherited Bor. Bor. sounds Inh. sounds Language Bor. Bor. fraction

Archi 1254 268 986 0.21 0.02 0.36 Avar 77 0.29
Bezhta 1473 441 1032 0.3 0.03 0.29 Avar 268 0.61
Ceq Wong 956 318 638 0.33 0.05 0.16 Malay 318 1.00
Dutch 1588 295 1293 0.19 0.05 0.02 French 106 0.36
English 1516 585 931 0.39 0.02 0 French 373 0.64
Gawwada 1163 106 1057 0.09 0.05 0.2 Amharic 96 0.91
Gurindji 1028 129 899 0.13 0 0.06 Jaminjung 37 0.29
Hausa 1668 330 1338 0.2 0.07 0.19 Arabic 123 0.37
Hawaiian 1544 248 1296 0.16 0.29 0.14 English 199 0.80
Hup 1179 119 1060 0.1 0.12 0.31 Portuguese 84 0.71
Imbabura Quechua 1319 369 950 0.28 0.06 0.11 Spanish 359 0.97
Indonesian 2049 619 1430 0.3 0.08 0.03 Sanskrit 132 0.21
Iraqw 1262 164 1098 0.13 0.06 0.21 Swahili 146 0.89
Japanese 2131 631 1500 0.3 0.03 0.03 Chinese 494 0.78
Kali’na 1373 199 1174 0.14 0.29 0.15 Sranan 79 0.40
Kanuri 1591 281 1310 0.18 0 0.06 Arabic 142 0.51
Ket 1262 106 1156 0.08 0.05 0.47 Russian 100 0.94
Kildin Saami 1473 280 1193 0.19 0.02 0.29 Russian 176 0.63
Lower Sorbian 1765 348 1417 0.2 0.03 0.05 New High German 217 0.62
Malagasy 1680 210 1470 0.12 0 0.05 French 90 0.43
Manange 1124 73 1051 0.06 0.11 0.33 Nepali 66 0.90
Mandarin Chinese 2130 15 2115 0.01 0 0.38 English 2 0.13
Mapudungun 1412 282 1130 0.2 0.09 0.06 Spanish 261 0.93
Old High German 1258 67 1191 0.05 0 0.25 Latin 61 0.91
Oroqen 1205 94 1111 0.08 0.08 0.18 Chinese 54 0.57
Otomi 2558 251 2307 0.1 0 0.29 Spanish 251 1.00
Q’eqchi’ 1995 209 1786 0.1 0.1 0.18 Spanish 201 0.96
Romanian 2270 908 1362 0.4 0.04 0.08 French 283 0.31
Sakha 1588 395 1193 0.25 0.08 0.08 Russian 253 0.64
Saramaccan 1303 462 841 0.35 0 0.02 Suriname Portuguese 242 0.52
Selice Romani 1732 993 739 0.57 0.22 0.1 Hungarian 792 0.80
Seychelles Creole 2089 185 1904 0.09 0.11 0.06 English 83 0.45
Swahili 1830 443 1387 0.24 0.02 0.1 Arabic 331 0.75
Takia 1329 308 1021 0.23 0.07 0.33 Tok Pisin 248 0.81
Tarifiyt Berber 1688 826 862 0.49 0.14 0.02 Arabic (Moroccan) 665 0.81
Thai 2107 454 1653 0.22 0 0.06 Sanskrit 260 0.57
Vietnamese 1534 281 1253 0.18 0 0.1 Chinese 254 0.90
White Hmong 1474 229 1245 0.16 0.01 0.21 Chinese 158 0.69
Wichí 1361 194 1167 0.14 0.14 0.25 Spanish 192 0.99
Yaqui 1615 387 1228 0.24 0.07 0.07 Spanish 386 1.00
Zinacantán Tzotzil 1413 202 1211 0.14 0.15 0.22 Spanish 201 1.00
Mean 1568.0 324.5 1243.5 0.203 0.067 0.160 216.1 0.683
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Table A.9: Real world borrowing from the World Online Loan Database (WOLD) –
10-fold cross-validation [neural network Transformer module].

Neural transf. mean Neural transf. st. dev. Prop.

Language Prec. Recall F1 Acc Prec. Recall F1 Acc Inher.

Archi 0.615 0.755 0.673 0.846 0.100 0.065 0.071 0.025 0.786
Bezhta 0.766 0.832 0.796 0.873 0.022 0.071 0.033 0.019 0.701
Ceq Wong 0.729 0.797 0.758 0.832 0.100 0.065 0.066 0.047 0.667
Dutch 0.444 0.622 0.512 0.785 0.069 0.118 0.067 0.025 0.814
English 0.656 0.714 0.682 0.745 0.055 0.053 0.039 0.029 0.614
Gawwada 0.385 0.648 0.468 0.879 0.101 0.207 0.098 0.023 0.909
Gurindji 0.199 0.339 0.244 0.748 0.067 0.142 0.076 0.046 0.875
Hausa 0.533 0.734 0.615 0.820 0.054 0.053 0.040 0.021 0.802
Hawaiian 0.425 0.769 0.542 0.797 0.059 0.086 0.050 0.012 0.839
Hup 0.698 0.891 0.777 0.946 0.107 0.112 0.093 0.030 0.899
Imbabura Quechua 0.776 0.851 0.811 0.889 0.042 0.065 0.049 0.030 0.720
Indonesian 0.636 0.681 0.655 0.784 0.087 0.059 0.064 0.042 0.698
Iraqw 0.573 0.761 0.648 0.896 0.121 0.069 0.098 0.022 0.870
Japanese 0.694 0.824 0.753 0.841 0.029 0.039 0.027 0.015 0.704
Kalina 0.462 0.747 0.567 0.838 0.104 0.096 0.100 0.034 0.855
Kanuri 0.436 0.654 0.513 0.788 0.124 0.088 0.096 0.033 0.823
Ket 0.514 0.768 0.603 0.920 0.127 0.118 0.094 0.016 0.916
Kildin Saami 0.493 0.578 0.530 0.809 0.093 0.136 0.109 0.040 0.810
Lower Sorbian 0.596 0.747 0.658 0.851 0.066 0.101 0.056 0.017 0.803
Malagasy 0.353 0.648 0.456 0.808 0.057 0.117 0.071 0.028 0.875
Manange 0.402 0.650 0.464 0.899 0.204 0.117 0.137 0.043 0.935
Mandarin Chinese 0.050 0.111 0.072 0.973 0.107 0.208 0.140 0.011 0.993
Mapudungun 0.673 0.799 0.726 0.884 0.100 0.073 0.074 0.031 0.800
Old High German 0.359 0.265 0.284 0.927 0.284 0.164 0.172 0.027 0.947
Oroqen 0.330 0.573 0.416 0.876 0.108 0.185 0.133 0.033 0.922
Otomi 0.692 0.899 0.779 0.950 0.060 0.046 0.031 0.010 0.902
Qeqchi 0.679 0.869 0.754 0.941 0.116 0.055 0.067 0.017 0.895
Romanian 0.664 0.733 0.694 0.744 0.051 0.037 0.027 0.017 0.600
Sakha 0.592 0.681 0.631 0.803 0.079 0.063 0.062 0.044 0.751
Saramaccan 0.591 0.642 0.613 0.716 0.053 0.090 0.059 0.034 0.645
Selice Romani 0.900 0.873 0.886 0.871 0.018 0.028 0.019 0.024 0.427
Seychelles Creole 0.280 0.599 0.378 0.831 0.063 0.096 0.071 0.019 0.911
Swahili 0.664 0.799 0.723 0.852 0.058 0.061 0.047 0.031 0.758
Takia 0.580 0.789 0.665 0.814 0.082 0.083 0.070 0.051 0.768
Tarifiyt Berber 0.786 0.826 0.805 0.805 0.033 0.032 0.029 0.028 0.511
Thai 0.544 0.689 0.605 0.806 0.071 0.048 0.051 0.035 0.785
Vietnamese 0.451 0.659 0.532 0.790 0.098 0.082 0.092 0.033 0.817
White Hmong 0.385 0.597 0.466 0.793 0.083 0.112 0.088 0.018 0.845
Wichi 0.703 0.888 0.783 0.934 0.085 0.047 0.067 0.015 0.857
Yaqui 0.719 0.850 0.775 0.885 0.084 0.031 0.051 0.016 0.760
Zinacantan Tzotzil 0.789 0.899 0.836 0.950 0.060 0.098 0.051 0.018 0.857
Main 0.556 0.709 0.613 0.847 0.085 0.088 0.072 0.027 0.797
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Appendix B

Multilingual detail results

Multilingual methods consider all languages simultaneously, especially when
using cognate based methods. So the norm for performing an analysis, such as
a 10-fold cross-validation, is to report on borrowing detection performance over
all languages, and not individually. However, to offer a detail comparison of
results versus monolingual methods, albeit still with the measurement difference
between general lexical borrowing detection versus dominant donor borrowing
detection, languages can be analyzed and reported separately. Cognate based
methods are not included in these analyses.

Overall results for method where each recipient language is analyzed separately
are reported in §3.2.1 and §3.2.3. Detail results for this analysis are reported in
this appendix as Tab. B.1. Previously it was noted that performing analyses indi-
vidually by language resulted in slightly reduced detection performance with F1
score reductions of ⇡ 1 point. This is seen here in the mean results by method.
Even with the small number of parameters estimated by multilingual method,
there seems to be an added cost to performing analysis by language instead of
one overall analysis.
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Table B.1: 10-fold cross-validation by language for detection method.
Each language target analyzed separately.

Method mean Method st. dev. Prop.

Language Prec. Recall F1 Prec. Recall F1 Sp. bor.

Closest Match - SCA
Imbabura Quechua 0.898 0.779 0.833 0.059 0.054 0.042 0.26
Mapudungun 0.855 0.687 0.757 0.156 0.083 0.103 0.15
Otomi 0.788 0.691 0.730 0.151 0.110 0.112 0.09
Q’eqchi’ 0.908 0.651 0.755 0.101 0.081 0.072 0.09
Wichí 0.915 0.710 0.796 0.041 0.116 0.083 0.12
Yaqui 0.859 0.778 0.813 0.083 0.062 0.040 0.22
Zinacantán Tzotzil 0.796 0.654 0.709 0.086 0.141 0.097 0.13
Mean 0.860 0.707 0.770 0.111 0.105 0.090 0.15

Least cross-entropy - LCE
Imbabura Quechua 0.826 0.800 0.812 0.058 0.073 0.060 0.26
Mapudungun 0.691 0.607 0.639 0.146 0.134 0.120 0.15
Otomi 0.836 0.723 0.772 0.097 0.117 0.098 0.09
Q’eqchi’ 0.797 0.742 0.755 0.087 0.162 0.081 0.09
Wichí 0.841 0.740 0.777 0.074 0.148 0.105 0.12
Yaqui 0.811 0.747 0.775 0.081 0.086 0.067 0.22
Zinacantán Tzotzil 0.824 0.769 0.789 0.109 0.097 0.077 0.13
Mean 0.804 0.733 0.760 0.104 0.128 0.100 0.15

Classifier - Linear SVM - NED, SCA
Imbabura Quechua 0.916 0.769 0.835 0.046 0.067 0.054 0.26
Mapudungun 0.939 0.717 0.812 0.046 0.063 0.047 0.15
Otomi 0.945 0.655 0.765 0.056 0.137 0.095 0.09
Q’eqchi’ 0.930 0.643 0.758 0.097 0.088 0.082 0.09
Wichí 0.957 0.660 0.775 0.062 0.134 0.111 0.12
Yaqui 0.933 0.781 0.848 0.057 0.066 0.040 0.22
Zinacantán Tzotzil 0.934 0.653 0.760 0.068 0.139 0.100 0.13
Mean 0.936 0.697 0.793 0.062 0.114 0.084 0.15

Classifier - Linear SVM - NED, SCA, LCE
Imbabura Quechua 0.884 0.871 0.876 0.051 0.074 0.051 0.26
Mapudungun 0.768 0.719 0.738 0.109 0.103 0.087 0.15
Otomi 0.891 0.824 0.853 0.062 0.104 0.069 0.09
Q’eqchi’ 0.887 0.798 0.835 0.103 0.112 0.085 0.09
Wichí 0.883 0.839 0.855 0.082 0.108 0.068 0.12
Yaqui 0.871 0.845 0.855 0.085 0.060 0.047 0.22
Zinacantán Tzotzil 0.897 0.838 0.865 0.086 0.075 0.065 0.13
Mean 0.869 0.819 0.839 0.091 0.100 0.079 0.15
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