
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ
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Resumen

La elastografı́a por ultrasonido es una técnica de imagen no invasiva cuyo objetivo es brindar

información acerca de la elasticidad de los tejidos biológicos evaluando sus propiedades

biomecánicas. Proporciona información valiosa sobre su rigidez, la cual está relacionada a los

cambios biomecánicos ocasionados por condiciones patológicas. Esto la convierte en una

herramienta valiosa para el diagnóstico y el seguimiento del tratamiento de enfermedades

como el cáncer. Uno de los métodos de elastografı́a cuantitativa se basa en el uso de dos

fuentes de vibración para generar un patrón de interferencia en el tejido. La onda de corte

puede visualizarse en tiempo real mediante sonoelastografı́a y debe aplicarse un esquema de

inversión para recuperar la velocidad de la onda de corte a partir de varios fotogramas. Sin

embargo, los estimadores estudiados en la literatura exhiben algunas limitaciones tales como

un pobre rendimiento en entornos ruidosos y prolongados tiempos de adquisición y

procesamiento para aplicaciones en tiempo real.

En esta tesis se proponen e implementan dos algoritmos, basados en la transformada de

Fourier de tiempo corto y la transformada Wavelet continua, para la estimación de la velocidad

de la onda de corte. Se fabricaron maniquies homogéneos y heterogéneos de gelatina para

evaluar el rendimiento de los algoritmos en condiciones controladas. Se realizaron

experimentos de sonoelastografı́a a diferentes frecuencias de vibración para evaluar su

precisión en una serie de escenarios. Los resultados demuestran que los algoritmos

desarrollados son comparables a los estimadores existentes en términos de sesgo, coeficiente

de variación, relación contraste-ruido y resolución. En medios homogéneos, el coeficiente de

variación se mantuvo debajo del 10% para ambos estimadores y, en medios heterogéneos, la

transformada Wavelet continua alcanzó una relación contraste-ruido de 30 dB en promedio.

En general, los algoritmos muestran una robustez superior, sobre todo en presencia de una

relación señal-ruido deficiente y en tejidos más rı́gidos con velocidades de onda de corte más
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elevadas. Se demostró que los algoritmos propuestos no necesitan todo el vı́deo de

sonoelastografı́a para generar un mapa de velocidad de la onda de corte, sino un solo

fotograma. Esto permite la visualización en tiempo real de la velocidad de la onda de corte, lo

que puede beneficiar a diversas aplicaciones clı́nicas.
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Abstract

Ultrasound elastography is a noninvasive imaging technique that aims to provide information

about the elasticity of biological tissues by evaluating their biomechanical properties. It

provides valuable information about their stiffness, which is related to biomechanical changes

caused by pathological conditions. This makes it a valuable tool for diagnosing and

monitoring the treatment of diseases such as cancer. One of the quantitative elastography

methods is based on the use of two vibration sources to generate an interference pattern in the

tissue. The shear wave can be visualized in real time by sonoelastography and an inversion

scheme must be applied to recover the shear wave velocity from several frames. However,

estimators studied in the literature exhibit some limitations such as poor performance in noisy

environments, and long acquisition and processing times for real-time applications.

In this thesis, two algorithms, based on the Short-Time Fourier Transform and the

Continuous Wavelet Transform, are proposed and implemented for shear wave velocity

estimation. Homogeneous and heterogeneous gelatin phantoms were fabricated to evaluate the

performance of the algorithms under controlled conditions. Sonoelastography experiments

were performed at different vibration frequencies to evaluate their accuracy in a range of

scenarios. The results show that the developed algorithms are comparable to existing

estimators in terms of bias, coefficient of variation, contrast-to-noise ratio and resolution. In

homogeneous media, the coefficient of variation remained below 10% for both estimators and,

in heterogeneous media, the Continuous Wavelet Transform achieved a contrast-to-noise ratio

of 30 dB on average. In general, the algorithms show superior robustness, especially in the

presence of poor signal-to-noise ratio and in stiffer tissues with higher shear wave velocities.

It was shown that the proposed algorithms do not need the entire sonoelastography video to

generate a shear wave velocity map, but only a single frame. This allows real-time

visualization of the shear wave velocity, which can benefit various clinical applications.
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Chapter 1

Problem framework

The first chapter presents the problem of estimating the shear wave speed when Crawling

Waves Sonoelastography is used. First, it explains the basic concepts surrounding ultrasound

elastography, its applications and the description of the Crawling Waves Sonoelastography

approach. Then, some developed estimators are outlined, along with their limitations. Finally,

the justification and objectives of the thesis are laid out.

1.1 Ultrasound elastography: basic concepts

1.1.1 Ultrasound imaging

Ultrasound has emerged as a widely utilized medical imaging modality, primarily attributable

to its immediate results, absence of radiation exposure, and cost-effectiveness in comparison to

alternative methods. It is based on the pulse-echo principle, illustrated in Figure 1.1.

A short-duration pressure wave, in the order of MHz, is transmitted through the tissue.

This is achieved with an ultrasound transducer composed of piezoelectric elements that

convert electrical signals into mechanical movements [1]. Echoes are generated according to

the acoustic properties and geometry of the tissue and are received with the same transducer.

Given that the speed of sound is approximately constant in most biological tissues, the signals

can be processed to match the echoes with the locations where they were generated.

Subsequently, an image that shows the geometry of the tissue can be generated. In B-mode

imaging, the brightness of each pixel of the image is related to the strength or amplitude of the

1



Figure 1.1: B-mode image generation

echo [4].

Many clinically implemented ultrasound systems also have modalities that aim to detect

and quantify motion, which are known as “Doppler ultrasound” [1]. They achieve this by

sending a set of ultrasound pulses at a certain Pulse Repetition Frequency (PRF) and analyzing

the received signal. When a two-dimensional velocity image is generated, this mode is

denominated Color Flow Imaging. This feature is typically used to image blood flow in

arteries, veins, and the heart, although it can also detect tissue motion in general. In most

scanners, two kinds of images can be generated: Color Doppler and Power Doppler. These are

usually superimposed on the B-mode image, as shown in Figure 1.2. In the first one, the

direction of the flow is color-coded, in a scale that typically goes from blue to red, where blue

indicates a flow coming towards the transducer and red indicates a flow moving away from it.

In the latter, the power of the Doppler signal is displayed, which is related to the intensity of

flow.

1.1.2 Elastography

Elastography encompasses a group of techniques that aim to extract and quantify the

mechanical properties of tissue. Many pathologies can alter these properties, making it a

useful tool for diagnosis. For instance, liver diseases usually alter liver stiffness, so

elastography can be used to determine the stage of fibrosis [5]. By providing a non-invasive
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(a) (b)

Figure 1.2: Colour flow imaging modes. (a) Color Doppler image of an artery showing the
direction of blood flow. (b) Power Doppler image of the same artery [1].

method to evaluate these conditions, clinicians can stage liver disease with greater precision,

monitor the progression of fibrosis, and gauge the effectiveness of treatments over time, all

without resorting to invasive liver biopsies. Elastography can also be used in breast cancer

screening [6], where it helps distinguish between benign and malignant formations, and in

tendinopathy, where it can even detect some pathological changes before they are visible in

conventional ultrasound imaging [7].

There are several methods available for elastography, which may differ in what they

measure and how they measure it. In general, they can be classified into quasi-static,

harmonic, or transient methods [8, 9]. In quasi-static methods, a compression force is applied

to the tissue, and the local strain is measured based on how much the tissue is displaced. This

is often used as a qualitative technique because the strain of the structure under analysis is

compared to the strain of the adjacent tissues [1]. In contrast, both harmonic and transient

methods typically attempt to estimate Shear Wave Speed (SWS) as another method for

quantifying tissue stiffness. Shear waves are waves whose direction of propagation is

perpendicular to the particle displacement, contrary to pressure waves, in which the direction

of propagation is the same as the direction of the displacement. In the human body, the speed

of propagation of shear waves (1 to 10 m/s [9]) is two or three orders of magnitude lower than

the speed of pressure waves (around 1500 m/s [1]). As a consequence, ultrasound systems can

use pressure waves to generate B-mode images and to track the shear wave propagation. In

harmonic methods, one or several vibration sources can be utilized to excite tissue at a low
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frequency (from 10Hz to 10kHz) and generate the shear waves. Lastly, in transient methods, a

short-duration wave is generated and the tissue response is monitored to estimate SWS. This

can be done with either an external actuator or with the transducer itself, using what is known

as acoustic radiation force (ARF) [1].

1.1.3 Crawling Waves Sonoelastography

Crawling Waves Sonoelastography is a harmonic elastography technique that uses two vibration

sources to generate an interference pattern in tissue. For context, most elastography methods

that aim to quantify shear velocity rely on frame rates greater than 1 kHz to accurately track

the shear wave propagation. Although this is achievable nowadays with ultrafast imaging [10],

most scanners used in typical clinical settings have lower frame rates for Doppler Imaging

[8]. For that reason, Wu et al. [11] developed a method that enabled the tracking of the shear

wave propagation in real-time. It is based on sonoelastography, which estimates the vibration

amplitude of a certain region using the Doppler mode [12]. By using vibration sources with

slightly different frequencies, a moving interference pattern can be generated. Its apparent

velocity is proportional to the true SWS and can be estimated from the sonoelastography video.

This process is illustrated in Figure 1.3.

(a) (b) (c)

Figure 1.3: Crawling Waves Sonoelastography experiment [2]. (a) Experimental setup when
imaging a gelatin phantom. One vibration source is attached to each side. (b) Power Doppler
frame. (c) Generated SWS map

The feasibility of the method has been tested for both diagnosis and tissue characterization,

as shown in table 1.1. The proposed technique also brings some advantages when compared
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to other elastography methods. To begin with, as most of the energy in the crawling waves

is aligned in the axial direction, higher penetration depths can be achieved. In addition, the

crawling waves can be visualized in real time by conventional Doppler imaging scanners at

typical Doppler frame rates, which facilitates data acquisition. Lastly, because the local shear

wave velocity can be estimated from the local shear wavelength, numerous inversion schemes

can be utilized.

Modality Organ Function

Ex vivo
Thyroid Detection of thyroid nodules [13]
Prostate Prostate cancer diagnosis [14]
Liver Hepatic Steatosis diagnosis [15]

In vivo
Skin Dermis characterization [16]
Muscle Muscle characterization [3]

Table 1.1: Applications of Crawling Waves Sonoelastography

This thesis aims to tackle the inversion problem of recovering a SWS map from a

sonoelastography video, which shows the shear wave propagation. Several studies have

attempted to address this issue, and these will be outlined in the following section.

1.2 State of the art

Many algorithms have been developed for SWS estimation. An outline of the most relevant

methods used in Crawling Waves Sonoelastography is presented in the following section.

1.2.1 Local frequency estimator

When the method was first implemented in heterogeneous media [17], i.e. phantoms with

inclusions, a local frequency estimator based on log-normal quadrature filters was used [18, 19].

This allowed the computation of a SWS map from a single sonoelastography frame. However,

one disadvantage of this approach is that it requires amplitude normalization and trend remotion

to avoid spectral leakage artifacts [20].
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1.2.2 Auto-correlation

Another approach proposed in [20] uses a 1D kernel window, which is translated across a

region of interest to estimate the local shear velocity from the auto-correlation. This method

was also adapted to use a 2D kernel, incorporating both the axial and lateral dimensions,

which resulted in improved accuracy and less noise. Additionally, there is a trade-off between

accuracy and spatial resolution when varying the kernel size. The method was tested in

heterogeneous phantoms and ex vivo livers [21].

1.2.3 Phase Derivative (PD)

The shear velocity can also be estimated by estimating the local wave number, which is equal

to the phase derivative. Estimation of the phase, as proposed in [22], can be done pixel by pixel

by taking the Fourier Transform across the slow-time domain. This is usually a noisy estimate,

thus some smoothing is required to avoid the amplification of error when taking the derivative.

The method, also denoted as PD, was tested in heterogeneous phantoms, excised mouse livers,

and in vivo muscle tissue [3].

1.2.4 WAVE and R-WAVE

Wavelength Average Velocity Estimator (WAVE) consists of measuring the wavelengths and

averaging them across the time domain [23]. It allows fast computation of the SWS, but

estimates can be inaccurate, and a directional filter is required to achieve the desirable results.

On the other hand, a regularized version of this algorithm, denominated R-WAVE, was also

developed [24]. It used the phase information to create an over-determined linear system and

applied Tikhonov regularization to estimate shear velocity. The performance of this method

has been compared to previously proposed estimators, including the approaches based on the

autocorrelation and PD, mentioned earlier. In heterogeneous gelatin phantoms, it has been

found to reduce estimation errors and improve the contrast-to-noise ratio by 5 dB. However, it

also presents a higher execution time.
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1.3 Justification

Despite its advantages, Crawling Waves Sonoelastography still has certain limitations. One

of them is that many of the developed estimators do not have optimal performance in noisy

environments. Given the importance of reliability and accuracy in clinical applications, there is

a constant pursuit of a robust algorithm to ensure reproducible results.

In addition, most of the estimators in the state of the art require the total length of the

recording to obtain a single SWS map, preventing real-time visualization. If possible, this

would provide valuable feedback to the operator during the acquisition process, facilitating

immediate assessment and potentially improving the overall effectiveness and efficiency of the

method.

1.4 Objectives

1.4.1 General

Develop and implement two novel algorithms for SWS estimation based on space-frequency

decomposition within the framework of Crawling Waves Sonoelastography and validate their

performance in homogeneous and heterogeneous gelatin phantoms.

1.4.2 Specific

• Implement two algorithms based on the Short-Time Fourier Transform and the

Continuous Wavelet Transform in Matlab.

• Generate SWS maps from gelatin homogeneous and heterogeneous phantoms using the

developed algorithms.

• Conduct a comparative analysis between the algorithms and existing SWS estimators in

terms of bias, coefficient of variation, contrast-to-noise ratio, and resolution.

The results of this thesis have been presented at two conferences and published in the

conference proceedings [25, 26].
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Chapter 2

Theoretical Background

2.1 Sonoelastography

Sonoelastography imaging has been around for more than thirty years [8]. The following

section aims to thoroughly explain how a sonoelastography signal is generated, how it is

processed to measure vibration amplitude, and the problems that can arise when it is

computed.

2.1.1 Doppler Imaging

Doppler imaging was initially developed to measure blood flow velocity and visualize the flow

in the body. Two techniques can be applied to measure velocity: Continuous-wave Doppler

and Pulse-wave Doppler. The former is based on the Doppler effect, which explains the

frequency shift when a wave source moves relative to an observer. The latter, which is the

most widely used, is based on sending many ultrasound pulses and analyzing their echoes.

Below, the principles of Pulsed-Wave Doppler will be described, including the two main

imaging modalities: Color and Power Doppler.

An ultrasound pulse p(t) is sent at a certain Pulse Repetition Interval (PRI). An ensemble

of N samples is considered to calculate velocity. Considering a scatterer located at a distance

d from the transducer, according to the pulse-echo principle, the received signal is shown in

8



Equation 2.1.

s(t) = p

(
t− 2d

c

)
+ p

(
t− 2d

c
− PRI

)
+ p

(
t− 2d

c
− 2PRI

)
+ ...

=
N∑
i=1

p

(
t− 2d

c
− iPRI

)
.

(2.1)

The velocity of sound in tissue c is considered to be 1540m/s [1]. If the scatterer is moving

towards the transducer at a velocity v, then its distance from it would be d = d0 − vt, where d0

is its initial position. The resulting signal is shown in Equation 2.2.

s(t) =
N∑
i=1

p

(
t− iPRI − 2

c
(d0 − vt)

)
. (2.2)

To obtain the velocity at the point located at d0, the signal is sampled at t = 2d0
c
+kPRI , which

means that one sample per pulse is taken. The result is known as the Doppler signal, expressed

in Equation 2.3.

s[k] = p

(
2v

c

(
2d0
c

+ kPRI

))
. (2.3)

This process is illustrated in Figure 2.1.

(a) (b)

(c)

Figure 2.1: Process of obtaining a Doppler signal. (a) Moving target for 4 consecutive pulses.
(b) Received echoes. (c) Doppler signal, which is composed of the echo amplitude for each
pulse [1].

Additionally, the variable τ = kPRI is defined as the “slow-time”. The Doppler signal is

equivalent to sampling a signal in the slow time domain at a certain frequency, which is known
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as the pulse repetition frequency PRF = 1/PRI . The result is expressed in Equation

s(τ) = p

(
2v

c
τ + ϕ

)
. (2.4)

Considering p(t) is a narrow-band signal with center frequency f0, the center frequency of a

Doppler signal would be fD = 2v
c
f0. Additionally, the Nyquist theorem shows an upper bound

for the maximum velocity that can be measured, which is expressed in Equation 2.5.

fD(max) =
PRF

2
=⇒ vmax = PRF

c

4f0
. (2.5)

If a particle moves at a higher rate, aliasing can occur.

Following that, for the computation of particle velocity, the center frequency of the

frequency spectrum needs to be found. However, computation of the whole spectrum is often

computationally costly. For that reason, Kasai et al [27] derived a simple method to calculate

mean frequency and spectral variance from the autocorrelation function of the Doppler signal

R[k] and its phase ϕ[k]. This is displayed in Equations 2.6 and 2.7.

ω̄ =
ϕ[1]

PRI
, (2.6)

σ2 =
2

PRI2

(
1−

∣∣∣∣R[1]R[0]

∣∣∣∣) . (2.7)

The autocorrelation function is often derived from the packet of N pulses with Equation 2.8.

R[k] =
N−2∑
n=0

s[n+ k]s∗[n]. (2.8)

Lastly, an accurate estimation requires the elimination of echoes from stationary or slowly

moving tissue, which is achieved by high-pass filtering. Typically, a filter characterized by a

sharp response, commonly referred to as the “Wall Filter”, is selected for this purpose [4].

2.1.2 Vibration amplitude estimation

Now a particle moving harmonically will be analyzed. A target vibrating with amplitude ϵv at

a frequency ωv has a variable depth of d = d0 − ϵv sin(ωvt). From Equation 2.4, the received
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signal is derived in Equation 2.9.

s(τ) ≈ exp

(
jω0

2ϵv
c

sin (ωvτ + ϕ)

)
. (2.9)

Consequently, the Jacobi-Anger expansion, widely used in FM signals analysis, can be used.

The resulting signal is shown in 2.10.

s(τ) ≈
+∞∑

n=−∞

Jn(β)e
jn(ωvτ+ϕ), (2.10)

where Jn is the Bessel function of the first kind of order n and β = 2ϵvω0

c
is the modulation

index.

This gives us an insight into what we can expect when a Doppler signal from a vibrating

object is received. A vibrating object generates a frequency-modulated signal, whose

modulation index is proportional to its vibration amplitude. In [12], a relationship between the

modulation index β and the Doppler spectral spread is derived. Therefore, it can be concluded

that the vibration amplitude of the signal is proportional to the standard deviation of the

spectrum σ, according to the Equation 2.11.

ϵm =
c√
2ωωv

σ. (2.11)

The variance of the spectrum can be obtained from Equation 2.7, so an image of the vibration

amplitude of the excited tissue can be generated. This is the main principle on which

sonoelastography is based. However, there is a limit to vibration amplitude that can be

measured. Because of the Nyquist frequency, the maximum frequency that can be measured

when sampling the signal in Equation 2.10 is PRF/2. If the vibration amplitude is too high,

some spectral components may extend beyond this limit, so aliasing can occur [28].

Furthermore, the use of a wall filter, which is common in Doppler imaging, can be detrimental

to the obtained result. The effect of the chosen wall filter, PRF, and ensemble length is

analyzed in [29].
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2.2 Shear wave propagation

The next section explains the principles governing motion in elastic media and what occurs

when using Crawling Waves Sonoelastography. This includes how a shear wave propagates,

how it is related to the stiffness of the medium, and how the tissue responds when two vibration

sources are used.

2.2.1 Wave propagation in elastic media

In an elastic solid, the conservation of linear momentum, accounting for external forces acting

on the surface and internal body forces, can be written in integral form. This is shown in

Equation 2.12, where ρ is the density, u is the displacement vector, σ is the stress tensor, and

f is the body force per unit mass vector.

d

dt

∫∫∫
V

ρu̇ =

∫∫
S

σdS +

∫∫∫
V

ρfdV, (2.12)

Using the divergence theorem, Equation 2.12 is rewritten in differential form in Equation 2.13.

ρü = ∇ · σ + ρf . (2.13)

Considering that the effects of internal body forces are negligible, f ≈ 0. Then, the strain

tensor can be expressed in terms of the strain using the linear relationship between strain and

stress. Furthermore, for small deformations, the strain can be expressed in terms of derivatives

of the displacement, so the same Equation can be obtained in terms of the displacement vector

alone [30], as shown in Equation 2.14, where λ and µ are known as the first and second Lamé

parameters.

(λ+ µ)∇(∇ · u) + µ∇2u = ρü, (2.14)

The Lamé parameters are related to Young’s modulusE and Poisson’s ratio v by equations 2.15

and 2.16.

λ =
Ev

(1 + v)(1− 2v)
, (2.15)

µ =
E

2(1 + v)
. (2.16)
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Then, the displacement vector u can be split into two by using the Helmholtz Equation, u =

uc + us. The theorem states that any vector field can be decomposed into the sum of an

irrotational field (∇ × uc = 0) and a solenoidal field (∇ · us = 0). The irrotational field

accounts for compressional waves, and the solenoidal field accounts for shear waves [8]. This

implies that the displacements within an elastic can be decomposed into a pressure field and a

shear wave field.

Considering only the shear displacement us, the shear wave Equation can be derived from

Equation 2.14 in Equation 2.17.

∇2us =
1

c2s
üs. (2.17)

The constant cs, which corresponds to the SWS, is defined in Equation 2.18.

cs =

√
µ

ρ
=

√
2E

(1 + v)ρ
. (2.18)

When specifically analyzing biological tissues, a consideration that must be made is that

they are nearly incompressible, meaning their Poisson ratio v is approximately 0. Replacing

v = 0 in Equation 2.18 gives cs =
√

E
ρ

, which links the SWS and the stiffness of the material

[31]. Therefore, by imaging the SWS in tissue, we can detect regions with abnormal stiffness

and quantify it.

2.2.2 Shear wave interference pattern

In Crawling Waves Sonoelastography, a shear wave interference pattern is generated by placing

two vibration sources with slightly different frequencies at each side of the region of interest.

When using parallel plates, the wave propagation is modeled as the superposition of two plane

waves coming from each side in Equation 2.19, where u is the particle displacement, α is

the attenuation coefficient, D is the distance between sources and ki is the wave number that

corresponds to the frequency ωi.

u(x, t) = uright + uleft,

u(x, t) = e−α(D/2+x)e−j(k1(D/2+x)−ω1t) + e−α(D/2−x)e−j(k2(D/2−x)−ω2t).
(2.19)
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With sonoelastography, the vibration amplitude of a target is estimated, which corresponds to

the envelope of the particle displacement. This can be derived from the relationship in Equation

2.20.

|u(x, t)|2 = (uright + uleft)(uright + uleft)
∗. (2.20)

By replacing Equation 2.19 in 2.20, we get 2.21.

|u(x, t)|2 = 2−αD [cosh(2αx) + cos((2k +∆k)x+∆ωt)] . (2.21)

Considering low attenuation, the hyperbolic term becomes approximately constant [32], so

it can be filtered out. Therefore, the ideal signal, normalized by amplitude, is expressed in

Equation 2.22.

s(x, t) = cos((2k +∆k)x+∆ωt). (2.22)

Following that, a relationship between the wave number of the received signal (kr) and the

SWS is derived in Equation 2.23.

kr = 2k +∆k =
2ω +∆ω

cs
. (2.23)

This relationship can be generalized to heterogeneous media [17], so the local SWS can be

calculated from the local shear wave number using Equation 2.24.

cs(x) =
2ω +∆ω

kr(x)
. (2.24)

2.3 SWS estimation

In this section, the principles for some algorithms found in the literature for SWS estimation

are described, as well as their limitations.

2.3.1 Phase Derivative

It can be noted that extracting the phase from the signal obtained in Equation 2.22 can give

information about the shear wavelength, which varies in space, meaning θ′(x) = 2k + ∆k.
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Using the fact that c = ω/k = ∆ω/∆k, the SWS can be calculated with Equation 2.25.

c(x) =
2ω +∆ω

θ′(x)
. (2.25)

Estimation of the phase can be done pixel by pixel through a slow-time filter [22]. In [3], a

framework is proposed for fast computation of the algorithm. Firstly, the FFT across the slow-

time is calculated and the phase corresponding to ∆ω is extracted. Then, given that the phase is

in the interval of ]−π, π], it needs to be transformed to a continuous signal, in a process known

as phase unwrapping. Lastly, some additional smoothing is applied to the unwrapped phase to

avoid amplifying errors when taking the derivative numerically [33]. This process is shown in

Figure 2.2.

Figure 2.2: Block diagram of the framework of estimating the SWS via PD [3]

2.3.2 R-WAVE

This algorithm is based on a previous method. It uses a peak detection algorithm to measure

wavelength. Due to noise, before direct measurement, a directional motion filter [34] is

implemented in each depth slice. This is a band-pass 2D filter centered at ∆ω with a spatial

frequency range defined by an upper and lower limit for SWS (1-10 m/s). After measurement,

the SWS is computed with the wavelength and is assumed to be equal to a weighted average of

the local measurements between peaks, as shown in Figure 2.3 Each xi represents local SWS

Figure 2.3: Wavelength measurement in interference pattern along a certain depth. The peak-
to-peak distance is equal to half a wavelength.
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and corresponds to a weighted coefficient ai. For each measured wavelength, Equation 2.26

must hold.

a5x5 + a6x6 + a7x7 + a8x8 + a9x9 =
1

2
λ1f = Sav1 (2.26)

The weighted coefficients are obtained from the phase estimate, which is computed from the

Hilbert transform of the signal [24]. By repeating the process for each frame at the same

depth, a system of equations of the form Axj = Sav can be formed, where Axj is the weighted

coefficient map and Sav is the measured average speed. Once computed, the result is an

overdetermined linear system, which is solved with an iterative algorithm based on Tikhonov

regularization. This algorithm finds the solution to Equation 2.27, where Γ is the Tikhonov

matrix and α is the regularization coefficient.

x̂j = argmin

{
||Axj − Sav||2 + α2

N∑
n=1

(|(Γxj)i|2 + β)
k
2

}
, (2.27)

2.4 Time-Frequency analysis

In the final section of this chapter, two transforms are introduced to decompose a signal into

a time-frequency representation. These are the basis of the algorithms described in the third

chapter for estimating shear velocity.

2.4.1 Short-Time Fourier Transform

Time-frequency decomposition has been known for a long time. By using a short-duration

window w(t), a local frequency spectrum of a signal x(t) can be computed from Equation 2.28.

X(τ, ω) =

∫ +∞

−∞
w(t− τ)x(t)ejωtdt. (2.28)

This is known as the Short-Time Fourier Transform or STFT [35]. A discrete-time version of

the transform is also well-known [36] and is expressed in Equation 2.29.

X(m,ω) =
+∞∑

n=−∞

x[n]w[n−m]e−iωn. (2.29)

The STFT is often used to analyze non-stationary signals or to compute the periodogram

16



of a random process. It is important to mention that when analyzing any signal with this

transform, there exists an inherent trade-off between frequency and spatial resolution, which

can be controlled by adjusting the window size. The longer the window, the better frequency

resolution and worse spatial resolution are obtained. The opposite is also true.

2.4.2 Continuous Wavelet Transform

A more modern approach to time-frequency decomposition is based on wavelets. Wavelets are

a class of basis functions that have to fulfill certain requisites: they need to have zero-mean and

square norm one. In other words, they need to have band-pass characteristics [37].

In continuous time, the Continous Wavelet Transform or CWT of a signal x(t) is obtained

by computing the inner product of the signal with a wavelet, as Equation 2.30 shows.

W (τ, s) =
1

s

∫ +∞

−∞
x(t)ψ∗

(
t− τ

s

)
dt. (2.30)

The wavelet ψs,τ (t) is a scaled and translated version of another function called the mother

wavelet, defined in Equation 2.31.

ψs,τ (t) =
1

s
ψ

(
t− τ

s

)
. (2.31)

The factor 1/s assures that the output of the CWT has the same amplitude as the signal [38].

For this reason, the transform can be interpreted as a filtering operation, in which the signal is

convoluted with the time-reversed version of the wavelet. This is expressed in Equation 2.32.

W (τ, s) = x(t) ∗ ψs(−t). (2.32)

In that sense, the CWT allows the decomposition of the signal into different frequency bands.

For instance, if a wavelet has a peak frequency of f and a bandwidth B, the scaled wavelet

ψs(t) will have a peak frequency of sf and a bandwidth sB. The bands at lower frequencies

have a better frequency resolution and a poor time resolution, while the bands at higher

frequencies have a better time resolution and a poor frequency resolution [39]. This is an

advantage compared to the STFT, which has a fixed resolution for all frequencies which

depends on the window length.
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Chapter 3

Materials and Methods

This chapter describes the proposed algorithms, the methodology used to perform the

experiments, and the metrics to compare the results with the state-of-the-art. The first section

describes the SWS estimation algorithms from the STFT and the CWT, as well as the election

of hyperparameters such as the window length or wavelet. The next section discusses the data

acquisition process, which includes the preparation of the gelatin phantoms, the setup to

generate the vibration pattern, the equipment to acquire the ultrasound signal, and some

pre-processing steps. Finally, the last section describes the metrics that will be used in the next

chapter to quantify the performance of the proposed algorithms.

3.1 Estimation algorithms

3.1.1 Algorithm for the STFT

From the filtered version of the ideal sonoelastography signal, shown in Equation 2.22, a

discrete version is derived in 3.1, where Tlat is the lateral separation between samples (also

known as pitch) and ϕ is a phase that varies depending on time.

s[n] = A cos(ksnTlat + ϕ). (3.1)

For the algorithm, the STFT is computed along the lateral dimension of the measured signal

with maximum overlap. This is expressed in Equation 3.2, where w[n] denotes the window and
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L denotes its length in samples.

S(m,ω) =
L∑

n=0

s[n]w[n−m]e−iωn. (3.2)

Ideally, the amplitude of the transform would be maximum in regions where the frequency ω

is equal to the local shear wavelength of the signal ks. As a consequence, a rough estimate of

the shear wavelength can be obtained by finding the frequency that maximizes the transform’s

amplitude, which is expressed mathematically in Equation 3.3.

k̂s[m] = argmax
ω

|S(m,ω)| . (3.3)

Then, local SWS can be found using the relation ĉs = (2ω +∆ω) /k̂s, derived in the previous

chapter.

The window and window size must be selected carefully to achieve the expected results.

In this application, prioritizing the spatial resolution is crucial to accurately distinguish the

boundaries between regions with contrasting SWS. Frequency resolution, on the other hand,

holds less significance as the signal is composed of a single varying frequency component.

Consequently, a smaller window size is selected. Nonetheless, it is important to note that the

window size cannot be arbitrarily reduced; therefore, the window length is determined so that

at least a wavelength of the signal is included. To do this, an upper bound for SWS must be

considered, which results in a minimum wave number (Equation 3.4) from which the window

size can be determined (Equation 3.5).

kmin =
2ω +∆ω

cmax

(3.4)

L =

⌊
2π

kmin

1

Tlat

⌋
(3.5)

In addition, a Hamming window function is chosen for w[n] to avoid spectral leakage artifacts.

Given that the algorithms are applied to a one-dimensional signal, the calculation is repeated

for each depth step and for each frame of the sonoelastography video. This results in a SWS

video, which should have the same measurements across all time samples.
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3.1.2 Algorithm for CWT

3.1.2.1 Wavelet Ridges

Like the STFT, the CWT offers a means to analyze a signal across space and frequency. Each

scale corresponds to a scaled version of the mother wavelet, which has a central frequency

kpeak. Considering this, a similar procedure to the one described in the previous section can

be followed. Firstly, a filter bank is generated from the chosen wavelet and the discretized

scales. For the discretization of the scales, an upper and lower bound for SWS must be selected.

This range is based on the usual velocities found in biomaterials, which go from 2 to 10 m/s

approximately [40]. Following that, a shear wave number range can be obtained, where the

lower and upper bound can be calculated from Equation 3.4. For the step size, 48 scales per

octave were considered, as it provided sufficient resolution for the estimated SWS. This means

that the scale doubles every 48 steps: s = 2i/48. Then, the transform is computed with Equation

3.6.

W (m, s) = s[n] ∗ ψs[−n]. (3.6)

Subsequently, the local shear wavelength can be estimated with Equation 3.7.

k̂s[m] = kpeak × argmax
s

|W (m, s)| (3.7)

These points, in which the scale corresponds to a local maximum of the transform, are also

known as amplitude ridge points [41]. Once a local shear wavelength is found, the SWS can

be found using the relation ĉs = (2ω +∆ω) /k̂s. An illustration of the algorithm is shown in

figure 3.1. For implementation, the Wavelet Toolbox from Matlab [42] is used.

As with the STFT, the calculation is repeated for each depth step and for each frame of the

sonoelastography video.

3.1.2.2 Choice of wavelet and wavelet hyperparameters

The generalized Morse Wavelet was selected because of its flexibility, with two adjustable

hyperparameters, allowing customization for this specific application. It is defined in the

continuous frequency domain with Equation 3.8, where u(ω) is the unit step function, α is a
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(a) (b)

Figure 3.1: (a) Sonoelasticity video frame at 360 Hz. The transform is computed across the
lateral dimension for each depth. (b) CWT magnitude scalogram for 18 mm depth. The
maximum amplitudes of the transform for each x coordinate are calculated and marked as a
black line.

normalization constant, and β and γ control the wavelet shape.

Ψ(ω) = αu(ω)e−ωγ

ωβ. (3.8)

This is an analytic wavelet, meaning its spectrum has only positive frequencies

(Ψ(ω) = 0 ∀ω < 0). Analytic wavelets allow recovery of the instantaneous amplitude and

phase of the input signal [41]. Besides that, the central frequency of the Morse Wavelet is

ωβ,γ = (β/γ)(1/γ). This value is utilized to calculate shear wavelength.

Another parameter of interest is the time-bandwidth product Pβ,γ =
√
βγ. It can be

interpreted as the wavelet’s duration, since Pβ,γ/π is the number of oscillations that fit in the

central window of the wavelet in the time domain [43]. Subsequently, to enhance spatial

resolution, a time-bandwidth product of π is selected, so that at least the wavelet includes one

oscillation within its duration. For the Gamma parameter, it is shown that setting γ = 3

closely resembles a Gaussian window in the frequency domain [43], so this value is also

selected. An illustration of the wavelet with the selected parameters, considering the sampling

frequency in the spatial domain, is found in Figure 3.2.
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(a) Wavelet in the frequency domain (b) Wavelet in the spatial domain

Figure 3.2: Scaled Morse wavelet with P 2
β,γ = π, γ = 3 and central frequency fc = 287.6 m−1

3.2 Data acquisition

3.2.1 Materials

A set of gelatin phantoms was elaborated for testing, using a mixture of water, gelatin powder,

corn starch, salt, and agar, following the framework in [3]. The specific quantity of each

ingredient in grams is provided in Table 3.1, which depends on the volume of water L in liters

and the gelatin concentration x.

Material Mass [g]
Gelatin Lx/(1− x)

Corn starch 0.02L
Salt 0.009L
Agar 0.0015L

Table 3.1: Amount of each ingredient used for the elaboration of gelatin phantoms. L is the
volume in liters of water and x is the concentration in

The gelatin concentration is normally expressed as a percentage, and it is approximately

proportional to the hardness of the gelatin, so a higher concentration results in a higher SWS.

The homogeneous phantoms were prepared using three different mixtures containing gelatin

concentrations of 8%, 12%, and 20%. These values were selected so the SWS of the phantoms

ranged from 2 to 9 m/s [29, 44], as these are the typical values in tissue [8]. To achieve

homogeneity, the compounds were heated to 100°C and thoroughly mixed. Subsequently, they

were allowed to cool down for an hour in a plastic container measuring 15 cm in width, 10 cm
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in length, and 10 cm in height.

(a) Mix of gelatin heating up (b) Gelatin with the gap for the inclusion

Figure 3.3: Pictures from the preparation procedure of the gelatin phantoms. The picture from
the left shows a mix with 15% gelatin concentration, which is poured in the gap from the gelatin
in the right picture.

For the heterogeneous phantom, data acquired in [2] was used. An 8% gelatin concentration

was chosen for the background and a 15% concentration for the inclusion. In the background,

the same procedure was used to elaborate the homogeneous phantom, but with a plastic cylinder

located 10 mm from the side of the container. This cylinder was later removed and the gap was

filled with the 15% concentration mixture, as shown in Figure 3.3. In addition, mechanical

measurements of the SWS were available, which were 3.45 m/s for the background and 5.1 m/s

for the inclusion. These were taken with the time-of-flight method [2].

3.2.2 Equipment and protocol

The vibration sources were two shakers connected to a signal generator. Parallel plates were

attached to each shaker and placed at each side of the phantom to transmit the vibration

accordingly. The vibration frequencies went from 250 to 500 Hz in 50 Hz steps for the

homogeneous phantoms, and from 200 to 360 Hz in 20 Hz steps for the heterogeneous

phantoms. Lower frequencies were selected for the latter to address signal attenuation. In both

cases, a 0.4 Hz difference in frequency was chosen for the generation of the interference

pattern.

The ultrasound signal was generated using a 10 MHz pulse and a linear array with 128
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elements, using a SonixTouch Research System. For the Doppler acquisition, a pulse

repetition frequency of 1.7 kHz was set to avoid aliasing with the vibration sources, along with

an ensemble size of 15 samples, which was the largest available. These settings were chosen

based on the analysis carried out in [29].

The ultrasound scanner gives raw radio frequency signals, so an IQ (in-phase quadrature)

demodulation process was performed. From the IQ signal, the B-mode image was obtained by

calculating the envelope and converting it to decibels [1]. The sonoelastography signal is also

obtained from the IQ data using the ensemble autocorrelation, as shown in the previous chapter,

resulting in one sonoelastography frame for each ensemble [27][12]. This process is illustrated

in Figure 3.4.

Figure 3.4: Flow diagram of the data acquisition process to obtain the B-mode images and the
sonoelastography videos

3.2.3 Pre-processing

Three steps were performed before calculating the SWS image. First, a two-dimensional

median filter was applied to each frame of the sonoelastography video for noise reduction.

This filter was proposed in [34] to avoid salt-and-pepper noise. The kernel size was chosen so

that it has the same length in the axial and lateral directions, about 0.9 mm. However, given

that the lateral resolution (0.318 mm) differs from the axial resolution (0.101 mm), this results

in a window length of 3 x 9 samples. For visualization purposes, a normalization step was

performed for each depth by subtracting the mean and dividing the signal by its standard

deviation. The results from these two steps are shown in Figure 3.5.

The last pre-processing step consists of applying a directional band-pass filter, to enhance

the signal that would be obtained from shear velocities inside the previously mentioned range,
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(a) Raw image (b) Filtered image

Figure 3.5: Sonoelastography pictures before and after applying the median filter and depth
normalization. Images were generated with a vibration frequency of 350 Hz.

also proposed in [34]. This only requires the lateral and the slow-time dimension, so the same

filter is applied for each depth slice. It was designed in the frequency domain by generating a

mask of unit amplitude that is high when the temporal frequency is around the selected

frequency offset for the generation of the Crawling Waves (0.4 Hz) and the shear wavelength

is inside the expected range. This range varies depending on the vibration frequency, dictated

by equation 2.24, so a different filter is used for each sonoelastography video. This mask is

shown in 3.6(a). To avoid artifacts from reflections, the quadrant of the filter was selected

taking into consideration the movement from the wave, left to right or right to left. This

depends on which source is moving with a higher frequency. Afterward, the mask is

convoluted with a Gaussian window to achieve a smooth frequency response, as shown in

3.6(b). Finally, the filter is implemented by direct multiplication in the frequency domain.

The effect of the directional filter can be observed in Figure 3.7. The image shows the

sonoelastography signal obtained at a depth of 16 mm, with the x axis indicating lateral position

and the y axis indicating time. In this case, the wave is moving from right to left.

3.3 Metrics

The objective is to assess the performance of the suggested SWS estimators, based on the STFT

and the CWT in comparison to estimators currently in use. To achieve this, we have chosen
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(a) Filter mask (b) Smoothed filter mask

Figure 3.6: Directional filter on the frequency domain. The right image only includes two
quadrants to enhance waves moving from right to left.

(a) Before directional filtering (b) After directional filtering

Figure 3.7: Effect of the directional filter in a sonoelastography signal generated at 350 Hz.

to compare it with PD and R-WAVE, previously described in the state-of-the-art section. We

selected the former because it has been successfully implemented in vivo [3], and the latter due

to its proven superiority over existing estimators [24]. The metrics and the regions of interest

described subsequently are selected based on other comparative studies [45, 2].

For the homogeneous phantoms, a square region of interest was selected from the center of

the image, such that the distance to the borders is larger than 5 mm. This was selected because

reflections from the gelatin border create artifacts near the bottom and top of the image. All the

samples from this region should have the same SWS, so the mean and standard deviation were

calculated.

For the heterogeneous phantom, three regions were defined at the same depth: two in the

background and one in the inclusion. The locations and sizes of these were chosen based on
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the B-mode ultrasound image. The two background regions were rectangles of 10.8 mm x 5.4

mm, and the inclusion region was a square region with a side length of 10.8 mm. The regions

were spaced 4 mm laterally. In Figure 3.8 the regions are shown on top of the B-mode image

for the homogeneous and heterogeneous phantoms.

(a) ROI for the homogeneous phantom (b) ROI for the heterogeneous phantom

Figure 3.8: Regions of interest (ROI) on top of the B-mode ultrasound image for the
homogeneous and heterogeneous phantoms.

The mean and standard deviation were calculated from all the samples within each region

of interest, both spatially and in the time domain. Following that, the bias, Coefficient of

Variation (CV), and the elastographic Contrast-to-Noise Ratio (CNR) [46] were calculated

using the formulas in Equations 3.9, 3.10 and 3.11, where µ and σ denote the mean and

standard deviation, respectively, of SWS measurements inside each region.

Bias =
µ− cs
µ

, (3.9)

CV =
σ

µ
, (3.10)

CNR = 20 log10
2(µinc − µback)

σ2
inc + σ2

back

. (3.11)

The bias was only calculated for the heterogeneous phantoms, where ground-truth

measurements were available. In addition, resolution is measured using the R2080 value,

defined as the distance required for the SWS to change between the 20% and 80% of a

transition zone between two interfaces, as in [45]. To accurately calculate this number, lateral
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SWS lines between a 1 cm distance from the center of the inclusion were averaged to obtain a

SWS line. This was fit to a double sigmoid curve defined by Equation 3.12, where c0 and cf

are the mean SWS measured in the background and the inclusion, respectively, and x1 and x2

indicate the position of the left and right transitions between the two media.

c(x) = c0 + (cf − c0)

(
1

1 + e−(x−x1)/λ1

)(
1

1 + e(x−x2)/λ2

)
, (3.12)

An illustration of this fit can be observed in Figure 3.9. Then, the resolution can be evaluated

quantitatively with R2080 = 2λi ln 4 [47]. Values from the left and right transition zones of the

inclusion are averaged.

Figure 3.9: Averaged lateral profile of SWS measurements using PD and a sigmoid fit.
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Chapter 4

Results

4.1 Homogeneous phantoms

The proposed algorithms, based on the STFT and the CWT were used to generate a SWS map

for each vibration frequency. For displaying and comparison purposes, the mean value across

all frames is computed and a single shear wave image is generated. The SWS maps generated

for a vibration frequency of 400 Hz are shown on top of the B-mode image in Figure 4.1.

Figure 4.1: SWS maps on top of the B-mode ultrasound image obtained with a vibration
frequency of 400 Hz. The left, middle, and right columns show the results for the phantoms
with an 8%, 12%, and 20% gelatin concentration, respectively.

These maps correspond to a homogeneous medium and the estimated SWS goes according
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to what is found in the literature, meaning a higher gelatin concentration corresponds to a higher

SWS. Some artifacts can be observed at the bottom of the image in the 8% gelatin phantom and

the 20% gelatin phantom. Nevertheless, they only occupy a small fraction of it for this particular

case.

Figure 4.2: Mean SWS for each gelatin concentration. The limits for the vertical bars are given
by the mean plus or minus the standard deviation.

Summarized results for vibration frequencies ranging from 200 Hz to 500 Hz are shown in

Figure 4.2. The figure also shows results for two additional estimators available in the literature:

PD [22] and R-WAVE [24]. A clear distinction in the shear speed can be observed for each

gelatin concentration. No trend was found between SWS and vibration frequency, indicating

the phantom does not exhibit viscoelastic behavior [8]. According to the figure, the proposed

estimators have similar mean SWS across all samples and the results are consistent with the

other two.
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The CV can be observed in Figure 4.3. For the 8% and the 12% gelatin concentration

phantom, R-WAVE has the lowest CV and PD the highest for almost all frequencies. Both the

estimators based on the STFT and the CWT have similar performances, although the latter is

slightly better. In the 20% gelatin phantom, PD has CV up to 90% for the 300 Hz sample. For

vibration frequencies higher than 300 Hz, R-WAVE has a higher CV than both the STFT and

the CWT, which remain under 10%.

Figure 4.3: CV for all frequencies in the three manufactured gelatin phantoms, shown as a
percentage

All results showed in the plots for the homogeneous phantoms are summarized in Table 4.1

for PD, Table 4.2 for R-WAVE, Table 4.3 for the STFT, and Table 4.4 for the CWT.

Vibration Frequency [Hz]
Gelatin concentration 200 250 300 350 400 450 500

20%
Mean [m/s] 7.94 8.40 13.77 9.32 8.57 8.44 8.29
Std [m/s] 0.64 1.03 12.41 2.47 0.95 0.86 0.72
CV [%] 8.03 12.30 90.10 26.46 11.12 10.23 8.63

12%
Mean [m/s] 5.88 5.57 5.53 5.33 5.34 5.38 5.36
Std [m/s] 0.50 0.66 0.76 0.24 0.21 0.21 0.24
CV [%] 8.44 11.79 13.82 4.48 3.88 3.98 4.50

8%
Mean [m/s] 4.49 4.61 4.59 4.24 4.29 4.07 4.13
Std [m/s] 0.84 0.74 0.64 1.29 0.95 0.73 0.95
CV [%] 18.59 16.09 13.88 30.45 22.06 17.88 23.05

Table 4.1: Results for PD in homogeneous phantoms
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Vibration Frequency [Hz]
Gelatin concentration 200 250 300 350 400 450 500

20%
Mean [m/s] 7.61 7.64 6.97 6.95 8.24 7.68 7.27
Std [m/s] 0.32 0.23 2.04 2.17 0.88 1.28 1.56
CV [%] 4.19 2.96 29.33 31.25 10.72 16.72 21.40

12%
Mean [m/s] 5.60 5.30 5.40 5.29 5.29 5.30 5.32
Std [m/s] 0.13 0.15 0.43 0.14 0.08 0.11 0.17
CV [%] 2.27 2.92 7.89 2.61 1.48 2.16 3.11

8%
Mean [m/s] 4.11 4.40 4.37 4.04 4.07 3.98 3.73
Std [m/s] 0.27 0.52 0.48 0.25 0.48 0.49 0.47
CV [%] 6.56 11.74 10.90 6.15 11.77 12.33 12.60

Table 4.2: Results for R-WAVE in homogeneous phantoms

Vibration Frequency [Hz]
Gelatin concentration 200 250 300 350 400 450 500

20%
Mean [m/s] 7.94 8.34 9.26 8.87 8.48 8.37 8.25
Std [m/s] 0.36 0.53 0.87 0.76 0.80 0.65 0.59
CV [%] 4.58 6.33 9.35 8.56 9.44 7.75 7.12

12%
Mean [m/s] 5.67 5.76 5.77 5.34 5.34 5.38 5.36
Std [m/s] 0.34 0.47 0.56 0.20 0.15 0.17 0.20
CV [%] 6.02 8.10 9.68 3.75 2.87 3.16 3.79

8%
Mean [m/s] 4.42 4.55 4.56 4.18 4.26 4.07 4.22
Std [m/s] 0.53 0.62 0.54 0.48 0.68 0.59 0.95
CV [%] 11.87 13.65 11.73 11.36 16.02 14.59 22.40

Table 4.3: Results for the STFT in homogeneous phantoms

Vibration Frequency [Hz]
Gelatin concentration 200 250 300 350 400 450 500

20%
Mean [m/s] 7.59 7.82 9.10 8.75 8.38 8.26 8.11
Std [m/s] 0.41 0.29 0.91 0.77 0.77 0.64 0.65
CV [%] 5.46 3.77 10.05 8.86 9.24 7.74 8.00

12%
Mean [m/s] 5.58 5.73 5.67 5.35 5.33 5.32 5.34
Std [m/s] 0.23 0.39 0.47 0.26 0.15 0.16 0.19
CV [%] 4.03 6.88 8.33 4.87 2.89 3.10 3.56

8%
Mean [m/s] 4.35 4.48 4.50 4.17 4.25 4.06 4.20
Std [m/s] 0.49 0.57 0.48 0.44 0.67 0.61 0.92
CV [%] 11.18 12.78 10.64 10.66 15.87 15.09 21.85

Table 4.4: Results for the CWT in homogeneous phantoms
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4.2 Heterogeneous phantoms

As with the homogeneous phantoms, SWS maps for all frequencies were generated using the

previously mentioned estimators. The mean value across all frames was used to generate the

images using the STFT and the CWT. A representative result is presented in Figure 4.4. The

SWS map is overlapped on top of the B-mode ultrasound. These results are consistent and the

harder inclusion can be easily recognized in all images, although some artifacts can be observed

at the top part. The SWS map generated via PD seems to be more noisy in comparison with the

others, especially in the inclusion.

Figure 4.4: SWS maps overlaid on top of B-mode images for each method from
sonoelastography data obtained at a vibration frequency of 340 Hz.

Results for several frequencies are summarized in Figure 4.5. In all the generated images

there is a clear distinction between the SWS in the inclusion and the background. In addition,

the mean SWS with the four estimators does not correlate with vibration frequency, as expected

for non-viscoelastic materials [8].

The PD method is the one with the greatest standard deviation, as in the homogeneous data.
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Figure 4.5: Mean SWS and standard deviation at several frequencies from the assessed SWS
estimators. The dotted lines indicate the ground-truth SWS.

This is reflected in the CV, shown in Figure 4.6. Taking into account all vibration frequencies,

the average CV with PD is 10.1% for the inclusion and 8.1% for the background, whereas with

CWT is 4.7% for the inclusion and 6.7% for the background. At frequencies lower than 300

Hz, the two proposed algorithms based on the CWT and the STFT exhibit lower variation in

the inclusion than R-WAVE and PD.

For the bias, displayed in Figure 4.7, similar results for the estimators can be observed.

In the inclusion, PD has the highest bias on average, which is 7.6%, and the STFT has the

lowest negative bias, which is -1.8%. In the background, all estimators have a positive bias,

meaning they estimate a higher SWS, reaching values greater than 15%. The STFT seems to

have a more positive bias, which is 10.4% on average, and the rest of the estimators have similar

performances.

The CNR, displayed in Figure 4.8 is also of high relevance. CWT and R-WAVE have a
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Figure 4.6: CV for all frequencies in the inclusion and the background of the heterogeneous
phantom, shown as a percentage

Figure 4.7: Bias for all frequencies in the inclusion and the background of the heterogeneous
phantom, shown as a percentage

higher CNR than the other two estimators, reaching almost 40 dB at 360 Hz. PD has the worst

CNR, with a minimum of 10 dB at 220 Hz. On average, the mean CNR of each estimator was

21.8 dB for PD, 27.7 dB for R-WAVE, 30 dB for CWT, and 26.2 dB for STFT. The estimator

based on the CWT has a higher CNR than the one based on the STFT in almost all frequencies.

In addition, an overall upward trend with frequency can be observed in all estimators.

Lastly, resolution, as defined in the previous chapter, is shown in Figure 4.8. PD had the

lowest R2080 values from most frequencies, meaning that a sharper image border can be

captured (average is 1.76 mm). On the contrary, the STFT approach had the largest R2080 in

five out of nine frequencies, averaging 2.93 mm. In addition, a clear trend can be observed for

the CWT, where higher vibration frequencies correspond to a sharper resolution.
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Figure 4.8: CNR and resolution for all frequencies of the heterogeneous phantom

Numerical values of the mean, standard deviation, CV, and bias for each region and each

vibration frequency are displayed in Table 4.5 for PD, Table 4.6 for R-WAVE, Table 4.7 for the

STFT, and Table 4.8 for the CWT.

Vibration Frequency [Hz]
ROI 200 220 240 260 280 300 320 340 360

Inclusion

Mean [m/s] 5.18 4.93 5.21 5.54 5.29 5.21 4.94 5.25 5.14
Std [m/s] 1.03 0.78 0.52 0.58 0.50 0.66 0.18 0.21 0.25
CV [%] 19.82 15.90 9.94 10.44 9.40 12.71 3.71 4.08 4.83
Bias [%] 1.59 -3.40 2.10 8.56 3.70 2.13 -3.21 2.96 0.77

Background

Mean [m/s] 3.55 3.87 3.71 3.69 3.56 3.88 3.74 3.74 3.68
Std [m/s] 0.37 0.20 0.37 0.35 0.51 0.39 0.24 0.29 0.21
CV [%] 10.46 5.21 9.88 9.42 14.44 10.17 6.30 7.71 5.82
Bias [%] 2.80 12.28 7.53 6.92 3.28 12.49 8.38 8.47 6.64

Table 4.5: Results for PD in heterogeneous phantom
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Vibration Frequency [Hz]
ROI 200 220 240 260 280 300 320 340 360

Inclusion

Mean [m/s] 5.04 4.79 5.07 5.31 5.16 5.06 4.96 5.19 5.14
Std [m/s] 0.56 0.50 0.38 0.45 0.41 0.35 0.13 0.16 0.16
CV [%] 11.11 10.50 7.49 8.44 8.02 6.96 2.70 3.07 3.10
Bias [%] -1.21 -6.13 -0.61 4.09 1.20 -0.73 -2.74 1.69 0.82

Background

Mean [m/s] 3.88 4.00 3.64 3.70 3.69 3.76 3.75 3.70 3.67
Std [m/s] 0.27 0.18 0.19 0.24 0.30 0.21 0.15 0.16 0.12
CV [%] 7.08 4.56 5.23 6.41 8.22 5.52 4.08 4.20 3.14
Bias [%] 12.44 15.88 5.64 7.14 6.87 9.08 8.71 7.27 6.28

Table 4.6: Results for R-WAVE in heterogeneous phantom

Vibration Frequency [Hz]
ROI 200 220 240 260 280 300 320 340 360

Inclusion

Mean [m/s] 4.93 4.69 4.98 5.29 5.11 5.05 4.85 5.13 5.06
Std [m/s] 0.37 0.36 0.14 0.25 0.24 0.41 0.15 0.21 0.20
CV [%] 7.41 7.72 2.83 4.77 4.60 8.04 3.15 4.16 3.96
Bias [%] -3.40 -7.96 -2.40 3.67 0.18 -1.05 -4.85 0.57 -0.75

Background

Mean [m/s] 3.67 4.05 3.76 3.76 3.79 3.84 3.84 3.84 3.75
Std [m/s] 0.27 0.20 0.43 0.30 0.38 0.23 0.17 0.20 0.16
CV [%] 7.45 4.92 11.49 8.08 9.98 6.09 4.49 5.33 4.32
Bias [%] 6.40 17.35 8.84 9.06 9.94 11.29 11.27 11.21 8.56

Table 4.7: Results for the STFT in heterogeneous phantom

Vibration Frequency [Hz]
ROI 200 220 240 260 280 300 320 340 360

Inclusion

Mean [m/s] 4.96 4.80 5.02 5.20 5.11 5.02 4.91 5.10 5.07
Std [m/s] 0.33 0.37 0.16 0.26 0.20 0.27 0.15 0.20 0.19
CV [%] 6.66 7.62 3.24 4.92 4.00 5.29 3.15 3.90 3.70
Bias [%] -2.83 -5.83 -1.59 2.06 0.16 -1.54 -3.66 -0.04 -0.50

Background

Mean [m/s] 3.54 3.77 3.60 3.69 3.66 3.79 3.73 3.72 3.67
Std [m/s] 0.30 0.22 0.30 0.33 0.35 0.26 0.16 0.16 0.13
CV [%] 8.38 5.75 8.39 8.84 9.69 6.95 4.21 4.20 3.54
Bias [%] 2.53 9.40 4.46 7.02 6.05 9.76 8.10 7.86 6.39

Table 4.8: Results for the CWT in heterogeneous phantom
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4.3 SWS from a single frame

The developed estimators can generate a SWS map from a single sonoelastography frame. To

assess the possibility of implementing them in real time, their accuracy must be tested when

obtaining a single SWS image without the directional filter, which involves the use of many

frames. Some resulting SWS images can be observed in Figure 4.9.

Figure 4.9: SWS maps on top of the B-mode ultrasound image obtained with a vibration
frequency of 400 Hz from a single sonoelastography frame and no directional filtering. The
left, middle, and right columns show the results for the phantoms with an 8%, 12%, and 20%
gelatin concentration, respectively.

Results from all vibration frequencies are shown in Figure 4.10. The mean SWS is still

distinct for each gelatin concentration and the dispersion is comparable to the estimators that

use the whole set of frames (PD and R-WAVE).

4.4 Discussion

Homogeneous phantom experiments were performed and the performance of the proposed

algorithms, based on the STFT and the CWT, was evaluated. In terms of the CV, both

estimators show similar performance. This behavior is expected given that both estimators

work with the same principle, which is space-frequency decomposition. Results are

comparable with estimators in the state of the art (PD and R-WAVE). In the 20% gelatin
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Figure 4.10: Mean SWS for each gelatin concentration. The limits for the vertical bars are
given by the mean plus or minus the standard deviation.

concentration phantom, it can be appreciated that the SWS exhibits an abnormally high

variation with PD and R-WAVE, with different mean values when comparing results from

other frequencies and a higher CV. Results from the proposed estimators are most consistent.

Two possible causes for the improvement were identified. The first one is that higher

stiffness of the tissue leads to increased attenuation of the shear waves, resulting in a

diminished signal-to-noise ratio. This issue has a major impact on the images generated by

PD, which is more sensitive to noise due to its nature because differentiation intrinsically

amplifies noise. This observation is supported by the results for the CV, which showed higher

results in almost all cases for PD, as shown in Table 4.1. The second cause is that a higher

SWS implies that a longer wavelength is generated. R-WAVE is based on the measurement of

the wavelengths in the spatial domain through a peak detection algorithm. Longer

wavelengths can be problematic for the algorithm, leading to potential errors [24].

The results with the heterogeneous phantom are also consistent with what was previously

mentioned. PD and R-WAVE give more spread-out results in the inclusion, which has a higher

SWS. This is reflected in the CV, especially at lower frequencies, as shown in Tables 4.5 and

4.6.

According to the results from the bias, the STFT overestimates the SWS in the background

and underestimates it in the inclusion more than the other estimators. This can happen due to

low resolution: longer wavelengths require longer windows, which decreases spatial resolution.

However, the CWT is less affected by these effects, because it employs wavelets that can adapt
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their size to match the local frequency content of the signal. This flexibility allows the CWT to

achieve better frequency resolution for high-frequency components and better time resolution

for low-frequency components simultaneously. This is also the reason why it has a higher CNR

ratio than the STFT. Measurements of R2080 also confirm the higher resolution that can be

achieved with CWT when using higher vibration frequencies.

Lastly, one of the most notable features of the proposed algorithms is they can still be

applied in one dimension. In Figure 4.9, some artifacts can be seen in the image generated by

the STFT, but the CWT gives more accurate results. In general, across most frequencies, the

CWT allows the generation of images with low dispersion in the region of interest even without

filtering. This implies that a SWS map can be generated from a single sonoelastography frame

with this technique, an achievement that other methods in the literature were unable to attain.

As a consequence, the visualization of a SWS map in real time could be possible when using

this method, as compared with the other algorithms, which usually need more information.

Future work may include other algorithms for space-frequency decomposition
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Conclusions

• The results of the experiments conducted in gelatin homogeneous phantoms confirmed

the successful implementation of the algorithms. The average SWS was inside the desired

range, from 2 to 9 m/s, and the proposed algorithms demonstrated an average coefficient

of variation lower than 10%, surpassing the performance of estimators found in current

literature.

• In the heterogeneous phantoms, the bias, CV, and resolution showed similar performance

of the proposed algorithms compared to the existing ones. This confirms their reliability

and accuracy in estimating shear wave speed. The CWT achieved a higher CNR than

the other analyzed estimators, reaching 30 dB on average, which indicates that it allows

better discrimination of regions with different shear wave speeds.

• The robustness of the implemented algorithms was assessed in challenging scenarios with

noisy sonoelastography data and higher shear wave speeds. The algorithms exhibited a

higher CNR and a lower CV under these conditions, indicating that they are more robust.
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Recommendations

• The algorithm based on the CWT is recommended over the STFT, due to its superior

performance on average in terms of CNR and resolution.

• The implemented algorithms address the limitation of needing several sonoelastography

frames and are recommended for real-time visualization of SWS images. This would

provide valuable feedback to the operator during the acquisition process, facilitating its

use in clinical applications.

• The completion of this research highlights the potential of Crawling Waves

Sonoelastography as a valuable technique for the non-invasive assessment of tissue

elasticity. The proposed algorithms contribute to the advancement of this field by

providing reliable and robust shear wave speed estimation, which is crucial for various

clinical applications such as tumor detection, liver fibrosis staging, and musculoskeletal

tissue evaluation.

• Future studies should be focused on evaluating new estimators based on a single

sonoelasticity frame value, real-time implementation, and tissue characterization.
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sonoelastografı́a,”

[30] K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the

elastic properties of tissue,” The Journal of the Acoustical Society of America, vol. 117,

no. 5, pp. 2705–2712, 2005.

[31] K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue:

the 20 year perspective,” Physics in medicine & biology, vol. 56, no. 1, p. R1, 2010.

[32] R. Rojas, J. Ormachea, A. Salo, P. Rodrı́guez, K. J. Parker, and B. Castaneda, “Crawling

waves speed estimation based on the dominant component analysis paradigm,” Ultrasonic

imaging, vol. 37, no. 4, pp. 341–355, 2015.

[33] D.-Y. Liu, O. Gibaru, and W. Perruquetti, “Error analysis of jacobi derivative estimators

for noisy signals,” Numerical Algorithms, vol. 58, no. 1, pp. 53–83, 2011.

[34] B. Castaneda, L. An, S. Wu, L. L. Baxter, J. L. Yao, J. V. Joseph, K. Hoyt, J. Strang,

D. J. Rubens, and K. J. Parker, “Prostate cancer detection using crawling wave

sonoelastography,” in Medical Imaging 2009: Ultrasonic Imaging and Signal Processing,

vol. 7265, pp. 338–347, SPIE, 2009.

[35] L. Cohen, Time-frequency analysis, vol. 778. Prentice Hall PTR New Jersey, 1995.

[36] M. H. Hayes, Statistical digital signal processing and modeling. John Wiley & Sons,

1996.

46



[37] L. Chun-Lin, “A tutorial of the wavelet transform,” NTUEE, Taiwan, vol. 21, no. 22, p. 2,

2010.

[38] J. M. Lilly, “Element analysis: a wavelet-based method for analysing time-localized

events in noisy time series,” Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, vol. 473, no. 2200, p. 20160776, 2017.
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