PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

DISEÑO DE UN VEHÍCULO AÉREO NO TRIPULADO PARA HIDROLAVADO DE FACHADAS DE EDIFICACIONES EN LIMA METROPOLITANA

Tesis para obtener el título profesional de Ingeniero Mecatrónico

AUTOR: Joaquín Ignacio Melgarejo Ponce

ASESOR:

M.Eng. Roberto Sumiyoshi Furukawa Fukuda

Lima, Agosto, 2024

Informe de Similitud

Yo, Roberto Sumiyoshi Furukawa Fukuda, docente de la Facultad de Ciencias e Ingeniería de la Pontificia Universidad Católica del Perú, asesor de la tesis titulado DISEÑO DE UN VEHÍCULO AÉREO NO TRIPULADO PARA HIDROLAVADO DE FACHADAS DE EDIFICACIONES EN LIMA METROPOLITANA,

del autor

Joaquín Ignacio Melgarejo Ponce

dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 10%. Así lo consigna el reporte de similitud emitido por el software *Turnitin* el <u>22/07/2024</u>.
- He revisado con detalle dicho reporte y la Tesis o Trabajo de Suficiencia Profesional, y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima 31/07/2024

Apellidos y nombres del asesor / de la asesora: Furukawa Fukuda, Roberto Sumiyoshi	-	
DNI: 41787019	Firma	
ORCID:		27
		110

RESUMEN

El servicio de limpieza de exteriores en altura en el territorio limeño continúa siendo rudimentario. Esto se da en el sentido que, dentro del sector privado se emplean métodos tradicionales de elevamiento como andamios, causantes de accidentes en altura mientras que se implica el uso de maquinaria costosa como plataformas de elevación. A raíz de esto, en el extranjero se han diseño drones capaces de integrar la pistola a presión con la técnica del *hidrolavado*. No obstante, esta primera respuesta no ha sido lo suficientemente eficiente como para ejecutar un lavado profesional por un tiempo superior al de media hora debido a la duración de vuelo que garantizan las baterías LiPo.

La presente tesis tiene como objetivo el diseño de un dron que pueda ejecutar el mismo servicio de lavado a presión en las fachadas de edificaciones, garantizando una autonomía de vuelo superior a 1 hora que pueda compensar las falencias de tiempo de vuelo de otras propuestas comerciales. Para ello, se emplea la metodología VDI 2221 con la finalidad de integrar los dominios: mecánico, electrónico y de control.

Como resultado, se cuenta con una propuesta innovadora a las tecnologías de limpieza contemporáneas que se nutre de una fuente de energía limpia: el hidrógeno. Dicha sustitución de la batería tradicional LiPo a la celda de hidrógeno refleja una reingeniería de la estructura y parámetros de vuelo del dron. No obstante, el diseño obtenido contempla un peso competitivo de 8 kg con carga útil y una autonomía de 1 hora y 17 minutos; así como también la resistencia mecánica suficiente para ejercer un lavado de hasta 69 bares, concluyendo ser una alternativa viable de limpieza en el mercado.

AGRADECIMIENTOS

Agradezco a mi asesor de tesis, el M.Eng. Roberto Furukawa, por su apoyo durante toda la investigación y elaboración de mi tesis. Igualmente, agradezco a mis padres y compañeros por su apoyo siempre presente para culminar el trabajo.

INDICE DE CONTENIDO

RESUMEN	i
AGRADECIMIENTOS i	i
INDICE DE TABLAS vi	i
INDICE DE FIGURAS	K
GLOSARIO DE TÉRMINOS xv	i
INTRODUCCIÓN	1
1 PROBLEMÁTICA	,
1.1 Problemática	2
1.1.1 Consecuencias de un crecimiento explosivo	2
1.1.2. Plan de limpieza pública actual	-
1.1.3. Plan de limpieza privada actual	5
1.1.4. Metodología de limpieza en altura	6
1.1.5. Zona de operación	7
1.1.6. Resumen de parámetros operativos para limpieza en altura	9
1.2. Objetivo principal)
1.3. Objetivos específicos)
1.3.1. Objetivos de investigación)
1.3.2. Objetivos de tesis	0
1.4. Alcance	1
1.5. Metodología1	1
2. ESTADO DEL ARTE12	2
2.1. Drones de servicio en el ámbito comercial1.	3
2.1.1. C1 Cleaning Drone	3
2.1.2. Hercules 10 v1.7 TETHERED SPRAY	1
2.1.3. AERONES AD28 Heavy Lift UAS14	1
2.1.4. Comparación de drones de servicio1	5
2.2. Fuentes de energia	5
2.2.1. Baterías eléctricas	5
2.2.2. Motores de combustión	/
2.2.3. Celdas de Hidrógeno	7
2.2.4. Comparación de fuentes de energía18	3

Pág.

2.3. Fus	selaje	20
2.3.1.	Configuraciones multirotores	20
2.3.2.	Perfil de los brazos	21
2.3.3.	Materiales	21
2.4. Teo	cnologías para el lavado de fachadas	22
2.4.1.	Lavado a alta presión: Pressure Washing	22
2.4.2.	Lavado suave: Soft Washing	23
2.4.3.	Estrategia de lavado	23
2.4.4.	Instrumentos para el lavado	24
2.4.5.	Comparación entre tecnologías de lavado	25

3. DISEÑO CONCEPTUAL	26
3.1. Requerimientos del sistema general	26
3.1.1. Requerimientos físico - mecánicos	26
3.1.2. Requerimientos electrónicos	27
3.1.3. Requerimientos de control	28
3.2. Funciones del sistema	28
3.2.1. Identificación de entradas y salidas	29
3.2.2. Fases de operación	29
3.2.3. Estructura de funciones integrada	30
3.3. Matriz morfológica	32
3.4. Evaluación técnico-económica	36
3.5. Concepto de solución óptimo	

4.	DISEÑO	D DEL SISTEMA MECATRÓNICO	41
	4.1. Sis	tema de propulsión	41
	4.1.1.	Estimación del pesaje de la aeronave	42
	4.1.2.	Selección de Motores y Hélices	44
	4.1.3.	Selección de Pila y Cilindro de combustible	46
	4.1.4.	Cálculo de autonomía de vuelo	49
	4.2. Dis	seño Mecánico	50
	4.2.1.	Modelo Completo	50
	4.2.2.	Materiales y procesos de fabricación	51
	4.2.3.	Montaje brazo-fuselaje	52
	4.2.4.	Montaje de motores	53
	4.2.5.	Integración del sistema de propulsión	54
	4.2.6.	Tren de aterrizaje	60

4.2.7. Integration de carga util	1
4.3. Diseño Electrónico6	5
4.3.1. Diagrama de bloques electrónico6	5
4.3.2. Selección de Controlador Electrónico de Velocidad (ESC)6	6
4.3.3. Selección de Autopiloto6	7
4.3.4. Selección de GPS6	8
4.3.5. Selección Transmisor y receptor de video (FPV)6	9
4.3.6. Selección de Cámara7	0
4.3.7. Selección de dispositivos de mando y teleoperación7	1
4.3.8. Selección de Controlador secundario y reguladores de voltaje7	'3
4.3.9. Cálculo de Batería LiPo para componentes internos7	5
4.3.10. Selección y configuración de módulo de potencia7	6
4.3.11. Reevaluación de estimaciones y dimensionamiento7	7
4.4. Diseño de Control	0
4.4.1. Diagrama de flujo del sistema mecatrónico8	0
4.4.2. Estrategia de control de vuelo	6
4.4.3. Simulación durante vuelo8	57
4.4.4. Control durante operación9	0
	_
5. ANALISIS DE COSTOS	3
5.1. Costos electrónicos	3
5.2. Costos mecánicos y de fabricación9	4
5.3. Costo de diseño9	5
5.4. Costos totales9	6
5.5. Viabilidad económica competitiva9	6
5.5.1. Batería LiPo equivalente	6
5.5.2. Costo del hidrógeno9	7י
5.5.3. Comparación de alternativas9	8
5.5.4. Rentabilidad del proyecto9	9
CONCLUSIONES)1
RECOMENDACIONES10	4
	5
BIBLIOGRAFIA	5
ANEXOS11	3
Anexo A: Parámetros de operación, autorizaciones y condiciones de trabajo11	3
Anexo B: Aplicación de Metodología11	6

Anexo C: Detalles de sistemas internos del VANT	118
Anexo D: Tecnologías alternativas de elevación	122
Anexo E: Requerimientos del proyecto	125
Anexo F: Entradas y Salidas del sistema	127
Anexo G: Conceptos solución	129
Anexo H: Evaluación técnica	136
Anexo I: Evaluación económica	138
Anexo J: Descripción del funcionamiento de la configuración HEXA X	K140
Anexo K: Tablas de ensayo de vuelo por motor y propela	143
Anexo L: Detalle de Estructura de Funciones	144
Anexo M: Análisis de resistencia de brazos	152
Anexo N: Análisis de resistencia de aplastamiento de cilindro	157
Anexo O: Análisis de impacto	162
Anexo P: Análisis de resistencia por retroceso del disparo	165
Anexo Q: Análisis aerodinámico	170
Anexo R: Dimensionamiento estructural	174
Anexo S: Selección y ubicación de paracaídas	178
Anexo T: Distribución de componentes electrónicos	
Anexo U: Modelo matemático	183
Anexo V: Tipos de lavado según materiales	189
Anexo W: Diagrama de bloques del hexacóptero	190
Anexo X: Hojas de datos	191
Anexo Y: Cotizaciones	213
Anexo Z: Planos	217

INDICE DE TABLAS

Pág.

Tabla 1.1: Parámetros de operación para servicio de limpieza en altura9
Tabla 2.1: Comparación de características de drones de servicio comerciales15
Tabla 2.2: Comparación de baterías eléctricas más comerciales Li-Ion y Li-Po16
Tabla 2.3: Comparación de motores de combustión17
Tabla 2.4: Comparación de características de fuentes de energía (adaptación)19
Tabla 2.5: Comparación de ratios de fuentes de energía (adaptación) 19
Tabla 2.6: Principales materiales para la construcción del fuselaje
Tabla 2.7: Evaluación de ventajas de tecnologías de lavado25
Tabla 3.1: Matriz morfológica del dominio mecánico32
Tabla 3.2: Matriz morfológica del dominio de actuadores. 34
Tabla 3.3: Matriz morfológica del dominio de sensores
Tabla 3.4: Matriz morfológica del dominio de comunicación34
Tabla 3.5: Matriz morfológica del dominio de la interfaz del usuario. 35
Tabla 3.6: Matriz morfológica del dominio de control35
Tabla 3.7: Matriz morfológica del dominio eléctrico-electrónico 35
Tabla 3.8: Puntuación asignada a los criterios 'p' y 'g' - VDI 222536
Tabla 3.9: Evaluación del desempeño técnico 36
Tabla 3.10: Evaluación del desempeño económico
Tabla 4.1: Tabla de pesos estimados de la carga útil43
Tabla 4.2: Selección conjunto Motor-Propela 46
Tabla 4.3: Tabla de requerimientos para pila46
Tabla 4.4: Principales modelos comerciales de pilas de combustible (Adaptación)47
Tabla 4.5: Componentes de IE-SOAR 800 W
Tabla 4.6: Cilindros compuestos de AMS
Tabla 4.7: Componentes del sistema de propulsión49

Tabla 4.8: Materiales y procesos de fabricación
Tabla 4.9: Abrazadera de sujeción para brazo 52
Tabla 4.10: Juego de rieles TL9601455
Tabla 4.11: Juego de abrazaderas TL96016 56
Tabla 4.12: Elementos de limpieza a presión62
Tabla 4.13: Requerimientos para elección del ESC
Tabla 4.14: Características de KDEXF-UAS55 67
Tabla 4.15: Características de Matek PDB-HEX X Class 12S67
Tabla 4.16: Requerimientos para elección del autopiloto68
Tabla 4.17: Modelos comerciales de autopilotos
Tabla 4.18: Modelos comerciales de GPS 69
Tabla 4.19: Requerimientos para VTX y RTX70
Tabla 4.20: Modelos comerciales de VTX70
Tabla 4.21: Modelos comerciales de VRX 70
Tabla 4.22: Modelos comerciales de cámaras RGB 71
Tabla 4.23: Requerimientos para RC y recibidor71
Tabla 4.24: Alternativas de recibidores RC71
Tabla 4.25: Alternativas de radio controladores 72
Tabla 4.26: Función por canal 72
Tabla 4.27: Requerimientos de controlador secundario 73
Tabla 4.28: Alternativas de microcontroladores
Tabla 4.29: Driver de electroválvula74
Tabla 4.30: Datos de consumo de dispositivos
Tabla 4.31: Batería para componentes internos
Tabla 4.32: Módulo de potencia para batería76
Tabla 4.33: Sumatoria de pesos de componentes electrónicos
Tabla 4.34: Sumatoria de pesos de componentes mecánicos 78

Tabla 4.35: Tabla de RPM2/106 vs Empuje [N]	88
Tabla 4.36: Parámetros de simulación	88
Tabla 5.1: Costos electrónicos y misceláneos	94
Tabla 5.2: Costos mecánicos	94
Tabla 5.3: Costos de fabricación	95
Tabla 5.4: Costos de ingeniería	95
Tabla 5.5: Costos totales	96
Tabla 5.6: Amperaje por empuje de MN5008-KV170	97
Tabla 5.7: Batería equivalente seleccionada	97
Tabla 5.8: Costo de balón de hidrógeno	98
Tabla 5.9: Evaluación de alternativas energéticas	98
Tabla C.1: Comparación de frecuencias de control más comunes	120
Tabla C.2: Comparación de frecuencias de transmisión FPV (Adaptación)	120
Tabla E.1: Tabla de requerimientos del proyecto	125
Tabla H.1: Justificación de valoración de 'g' – Evaluación técnica	137
Tabla H.2: Justificación de asignación de puntajes para valor técnico	137
Tabla I.1: Justificación de valoración de 'g' – Evaluación económica	139
Tabla I.2: Justificación de asignación de puntajes para valor económico	139
Tabla K.1: Ensayo de vuelo MN5008-KV170	143
Tabla S.1: Requerimientos de paracaídas	178
Tabla S.2: Opciones comerciales de paracaídas	178

INDICE DE FIGURAS

Pá	g.
Figura 1.1: Evolución demográfica limeña	.3
Figura 1.2: Contaminación Vehicular y smog en Lima	.4
Figura 1.3: Suciedad acumulada en exteriores de estructuras	.4
Figura 1.4: Servicios privados de hidrolavado en altura	.5
Figura 1.5: Accidentes de trabajo más repetidos del 2016	.5
Figura 1.6: Uso de equipos de seguridad para limpieza en altura	.6
Figura 1.7: Focos de contaminación en Lima Metropolitana	.7
Figura 1.8: Mapa eólico del Departamento de Lima	.8
Figura 1.9: Promedio de temperatura normal para LIMA OESTE	.9
Figura 2.1: Operación de C1 Cleaning Drone	13
Figura 2.2: Operación de Hercules 10 v1.7 TETHERED SPRAY	4
Figura 2.3: Operación de AERONES AD28	4
Figura 2.4: Funcionamiento de celda de hidrógeno	8
Figura 2.5: Intelligent Energy FC UAV.	8
Figura 2.6: Hexacóptero diseñado para el lavado domiciliario2	20
Figura 2.7: Perfiles estructurales para brazos2	21
Figura 2.8: Unidad hidrolavadora Kärcher HDS 13/20-4S2	22
Figura 2.9: Anclaje y aseguramiento de base	23
Figura 2.10: Posiciones de la fuente de abastecimiento	24
Figura 3.1: Caja negra del sistema total	29
Figura 3.2: Estructura de funciones integrada del sistema mecatrónico	31
Figura 3.3: Diagrama de evaluación técnico-económico según VDI 2225	37
Figura 3.4: Concepto óptimo de solución	38
Figura 3.5: Vista de perfil del VANT.	39
Figura 3.6: Servomecanismo disparador de gatillo	39

Figura 3.7: Estructura de unión	40
Figura 3.8: Integración de piezas destinadas al lavado	40
Figura 3.9: Distribución de componentes	40
Figura 4.1: Metodología utilizada para el sistema de propulsión	42
Figura 4.2: Ensayo de vuelo de MN5008 KV170 con P17*5.8" CF	45
Figura 4.3: Ensayo de vuelo de MN5008 KV170 con P18*6.1" CF	45
Figura 4.4: Diseño culminado del sistema mecatrónico	51
Figura 4.5: Montaje brazo – fuselaje.	52
Figura 4.6: Dimensiones de la base de MN5008 170KV.	53
Figura 4.7: Base del Motor.	53
Figura 4.8: Disposición final del motor y ESC	53
Figura 4.9: Vista de planta de módulo IE-SOAR 800 W	54
Figura 4.10: Diámetro aproximado del VANT	55
Figura 4.11: Bosquejo del sujetador de la pila de hidrógeno	56
Figura 4.12: Sujetador de pila de hidrógeno	57
Figura 4.13: Sujeción de pila mediante riel de tubos	57
Figura 4.14: Distribución de abrazaderas en base inferior	57
Figura 4.15: Integración de la pila de hidrógeno	58
Figura 4.16: Modelo del cilindro AMS MC3	59
Figura 4.17: Bosquejo del despliegue del sujetador	59
Figura 4.18: Tren de aterrizaje ensamblado	60
Figura 4.19: Tren de aterrizaje integrado	61
Figura 4.20: Integración de componentes de lavado	62
Figura 4.21: Dimensionamiento de elemento de unión	63
Figura 4.22: Dimensionamiento de soporte integrador	64
Figura 4.23: Integración final de elementos	64
Figura 4.24: Sistema de lavado a presión	64

Figura 4.25: Diagrama de bloques electrónico
Figura 4.26: Canales a emplear para el radio controlador72
Figura 4.27: Aplicación de regulador LM780574
Figura 4.28: Aplicación de regulador LM781274
Figura 4.29: Alimentación y regulación de voltaje del autopiloto77
Figura 4.30: Diagrama de flujo principal81
Figura 4.31: Diagrama de flujo de inicialización del VANT82
Figura 4.32: Diagrama de flujo de maniobra del VANT83
Figura 4.33: Diagrama de flujo de revisión de estado de motores
Figura 4.34: Diagrama de flujo de rutina de operación
Figura 4.35: Diagrama de flujo de sistema de emergencia
Figura 4.36: Diagrama de estrategia de control
Figura 4.37: Diagrama de controlador del Hexacóptero
Figura 4.38: Gráfico de coeficiente de sustentación
Figura 4.39: Resultados de simulación por caso de movimiento
Figura 4.40: Aplicación de modo Loiter91
Figura 4.41: Configuración de parámetros Loiter en Mission Planner92
Figura 5.1: Flujo de caja del proyecto
Figura 5.2: Tabla de cálculo de TIR100
Figura A.1: Ejemplo de facturación por limpieza de fachadas115
Figura C.1: módulo HERE 3 RTK GNSS WITH BASE118
Figura C.2: Novatel OEMStar Receiver
Figura C.3: FrSky Taranis X9D Plus 2.4G Drone Transmitter119
Figura C.4: RipaFire FPV 1.2G 1500mW 8CH 1.2GHz120
Figura C.5: Distribución de componentes entrelazados con controlador PixHawk 121
Figura D.1: Dirigibles de interior y de exterior
Figura D.2: Gas industrial hidrógeno comercial124

Figura G.1: Vista isométrica completa del concepto solución 1	129
Figura G.2: Vista de perfil de la lanza acoplada en L	130
Figura G.3: Organización interna de componentes	131
Figura G.4: Vista isométrica completa del concepto solución 2	132
Figura G.5: Distribución de componentes y mecanismo de disparo	133
Figura G.6: Vista isométrica completa del concepto solución 3	134
Figura G.7: Integración de pistola comercial con gatillo desactivado	135
Figura G.8: Organización de componentes	135
Figura J.1: Sentido de giro de hélices de un hexacóptero	140
Figura J.2: Maniobra Throttle	141
Figura J.3: Maniobra Pitch	141
Figura J.4: Maniobra Roll	141
Figura J.5: Maniobra Yaw	141
Figura L.1: Dominio Mecánico	144
Figura L.2: Dominio de Actuadores	145
Figura L.3: Dominio Eléctrico-Electrónico	146
Figura L.4: Dominio de Sensores	147
Figura L.5: Dominio de Control	148
Figura L.6: Dominio de interfaz de usuario	149
Figura L.7: Dominio de comunicación	150
Figura M.1: Perfil del brazo	152
Figura M.2: Diagrama de fuerzas – brazo	153
Figura M.3: Diagramas de fuerza cortante y momento flector	153
Figura M.4: Curvas de deformación del brazo	154
Figura M.5: Análisis de esfuerzo del brazo en Nastran	156
Figura M.6: Análisis de deformación del brazo en Nastran	156
Figura N.1: Aplastamiento por cilindro	157

Figura N.2: Vista de planta de la base superior	157
Figura N.3: Margen para el refuerzo del cilindro	158
Figura N.4: Efecto de caída crítica de cilindro	158
Figura N.5: Análisis de esfuerzo del refuerzo lateral en Nastran	160
Figura N.6: Análisis de deformación del refuerzo lateral en Nastran	160
Figura N.7: Análisis de esfuerzo de base superior en Nastran	161
Figura N.8: Análisis de deformación de base superior en Nastran	161
Figura O.1: Análisis de esfuerzo de tren de aterrizaje en Nastran	163
Figura O.2: Análisis de deformación de tren de aterrizaje en Nastran	164
Figura P.1: Esquema de fuerza de retroceso	165
Figura P.2. Fuerza cortante provocada por el retroceso	166
Figura P.3: Análisis de esfuerzo de soporte integrador en Nastran	167
Figura P.4: Análisis de deformación de soporte integrador en Nastran	167
Figura P.5: Análisis de esfuerzo de base inferior en Nastran	168
Figura P.6: Análisis de deformación de base inferior en Nastran	168
Figura P.7: Análisis de esfuerzo de elemento de unión en Nastran	169
Figura P.8: Análisis de deformación de elemento de unión en Nastran	169
Figura Q.1: DCL del VANT - vuelo horizontal	171
Figura Q.2: Simulación oposición a viento de 6.94 m/s 170	171
Figura Q.3: Área proyectada y área frontal del VANT	172
Figura R.1: Relación de radios de un hexacóptero	174
Figura R.2: Dimensiones y forma general de bases	175
Figura R.3: Modelo final de bases	176
Figura R.4: Dimensionamiento del brazo	176
Figura R.5: Medidas principales del tren de aterrizaje	177
Figura S.1: Integración del paracaídas	179
Figura T.1: Espacio para componentes internos	180

Figura T.2: Ubicación de la cámara
Figura T.3: Distribución de componentes
Figura T.4: Ventanas de policarbonato182
Figura U.1: Sistemas de referencia de un hexacóptero183
Figura U.2: Ángulos de Euler184
Figura V.1: Tipos de lavado según materiales189
Figura W.1: Diagrama de bloques del hexacóptero190
Figura X.1: Intelligent Energy SOAR 800W191
Figura X.2: Tiger-Motor MN5008 KV170192
Figura X.3: ESC KDEXF-UAS55194
Figura X.4: PIXHAWK PX4196
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP198
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP198 Figura X.6: GPG-01K G1/8" válvula solenoide NC D16021199
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP198 Figura X.6: GPG-01K G1/8" válvula solenoide NC D16021199 Figura X.7: ARDUINO UNO
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP
Figura X.5: CAMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP

GLOSARIO DE TÉRMINOS

#S	: Capacidad LiPo
a	· Ángulo de inclinación
0	: Densidad del aire
P	· Densidad del agua
n agua	: Pitch – Cabeceo alrededor de eie x
θ	: Roll – Balanceo alrededor de eje x
W	: Yaw – Guiñada alrededor de eje z
Ψ	· Fsfuerzo
τ_{ϕ}	: Torque ejercido sobre el eje x
ψ τ_0	: Torque ejercido sobre el eje v
τ	: Torque ejercido sobre el eje z
¢ψ ω:	: Velocidad angular de motor i
	: Fie de coordenadas inercial filo a tierra
X_{1} X_{1} Z_{1}	: Eje de coordenadas relativo al cuerno
A_0, y_0, z_0	: A celeración
Δ	: Amperio
	: Área hase central y provectada de los brazos
	: Área frontal
Δ	: Área provectada
h	: Coeficiente de arrastre
bar	: presión
	: Coeficiente de arrastre teórico
CF	: Fibra de carbono
CFRP	· Polímero reforzado con fibra de carbono
CGR	: Contraloría General de la República del Perú
d	: Distancia
DGAC	: Dirección General de Aeronáutica Civil
EPP	: Equipo de Protección Personal
ESC	: Controlador Electrónico de Velocidad
Fa	: Fuerza de arrastre
FPV	: Vista en Primera Persona
GHz	: gigahercio
GNSS	: Sistema Global de Navegación Satelital
GPIO	: Entrada/Salida de Propósito General
GPS	: Sistema de Posicionamiento Global
h	: horas
HFC	: Celda de combustible de hidrógeno
IMU	: Unidad de Medición Inercial
INEI	: Instituto Nacional de Estadística e Informática
IP	: Grados de protección
I _{xx}	: Momento de inercia respecto a eje x
I _{yy}	: Momento de inercia respecto a eje y
Izz	: Momento de inercia respecto a eje z
J	: Joule
k	: Coeficiente de sustentación
kg	: kilogramo
m	: metro
mA	: miliamperio

mAh	: miliamperios por hora
min	: minutos
mm	: milímetros
MPa	: Megapascal
Ν	: newton
Nm	: newton-metro
NTC	: Normas Técnicas Complementarias
р	: Pitch – Cabeceo alrededor de eje xb
P	: Momento generado por disparo
PDB	: Tarjeta de distribución de potencia
PEMFC	: Celda de intercambio de protones
PSI	: Libra por pulgada cuadrada
PWM	: Modulación por ancho de pulso
q	: Roll – Balanceo alrededor de eje yb
Q	: Caudal
R	: Yaw – Guiñada alrededor de eje z _b
RC	: Radio Control
RNE	: Reglamento Nacional de Edificaciones
RPAS	: Aeronave pilotada remotamente
RTK	: Navegación cinética en tiempo real
S	: segundos
SBUS	: Bus serial
SENAMHI	: Servicio Nacional de Meteorología e Hidrología del Perú
Т	: Empuje vertical total generado
UART	: Transmisor-receptor asíncrono universal
V	: Velocidad máxima en oposición alcanzable
V	: Voltio
VANT	: Vehículo Aéreo No tripulado
$V_{\rm f}$: Velocidad final
V_i	: Velocidad inicial
VRX	: Video receptor
VTX	: Video transmisor
W	: Vatio

INTRODUCCIÓN

Durante las últimas dos décadas, el despegue poblacional y urbanístico ha derivado en un incremento del parque automotor limeño (Hurtado, 2018, p.45). Este último, llegando al colapso, es el principal responsable de la contaminación aérea de la ciudad. Tal como RPP noticias señala, "Lima es la séptima ciudad con más polución de aire en Latinoamérica" (RPP, 2020). Ello perjudica la estética y en la degradación progresiva de las construcciones tanto públicas como privadas al manifestarse como *smog* fotoquímico (Lujan, 2019).

Este contaminante impregnado en paredes suele ser abordado a través del método del lavado con agua a presión o hidrolavado (GRUPO ABELLAN, 2021); cuyas operaciones son tercerizadas por empresas privadas e involucran normalmente la instalación de todo un equipo de operación en altura. De esta manera, el presente proyecto de investigación propone la adaptación del método del hidrolavado a través de un vehículo aéreo no tripulado o VANT diseñado para obrar en las condiciones costeras de Lima Metropolitana. Así, se optimizarían los tiempos de servicios tercerizados, así como la viabilidad de su contratación y principalmente se conseguiría eliminar el riesgo de accidente por caída al reducir el factor humano únicamente a la teleoperación del VANT.

CAPÍTULO 1

PROBLEMÁTICA

En el presente capítulo se procederá a describir la problemática existente para la necesidad de desarrollar drones enfocados en la limpieza de estructuras, la metodología de limpieza a emplear y las delimitaciones de la zona de operación sobre la cual se basarán los requerimientos de diseño posteriores.

1.1 Problemática

La problemática puntual de esta tesis es la necesidad de limpieza de las fachadas de construcciones ante el incremento de la contaminación del aire en la ciudad de Lima y los inconvenientes que los métodos de limpieza tradicional en altura acarrean.

1.1.1. Consecuencias de un crecimiento explosivo

Dentro de los últimos 15 años, "Lima y sus alrededores han sido partícipes de un crecimiento explosivo, disperso y espontáneo" (Hurtado, 2018, p.45); de acuerdo con las cifras del INEI, llegando en el 2015 a un aproximado de 9 903 935 habitantes en Lima Metropolitana (Hurtado, 2018, p.24). Este crecimiento se ha debido principalmente a migraciones de la serranía peruana debido a la búsqueda de oportunidades y mejor calidad de vida (Hurtado, 2018, p.7). Con el paso del tiempo, se ha acentuado la dispersión urbana en las afueras de la ciudad Lima,

disminuyendo la densidad en la zona centro tal como se observa en la figura 1.1. Tal como Clara Hurtado (2018) denota, una mayor dispersión genera el alargamiento de los desplazamientos de los ciudadanos para la vida cotidiana, resultando en una mayor dependencia del automóvil y del consumo energético que este implica. Es así como el número de vehículos se disparó a un total de 1 752 919 vehículos en Lima y Callao en el 2016 (Cámara de Comercio de Lima, 2018).

Figura 1.1: Evolución demográfica limeña. Extraído de Hurtado, 2018, p.25.

Evidentemente, un número ingente de vehículos conlleva a la liberación de contaminantes atmosféricos, producida por el dióxido de carbono en la mayoría de los vehículos y en la combustión incompleta de algunos de estos. A raíz de ello, en el 2012 se procedió a calcular la huella de carbono de Lima y Callao resultando en 15 432 105 toneladas de CO2, lo cual representa el 12% de las emisiones a nivel nacional (Hurtado, 2018, p.27). Se forma un efecto de bola de nieve entonces, ya que, el clima templado limeño permite el fenómeno de la inversión térmica (Hurtado, 2018, p.76), bajo el cual el aire no puede ascender y los contaminantes quedan atrapados en baja altitud, derivando entonces en la creación de *smog* (ver figura 1.2). Este, consiste en un conglomerado de "humo, niebla y diversas partículas" (Concepto Definición, 2021) el cual, aparte de tener efectos perjudiciales para el humano,

afecta también a las construcciones ya que las degrada con el tiempo. De esta forma, las partículas de polvo, contaminantes y la humedad terminan por impregnarse en los edificios, ennegreciéndolos y corroyéndolos con el tiempo (ACNUSA, s. f.).

Figura 1.2: Contaminación Vehicular y smog en Lima. Extraído de Luján, 2019.

1.1.2. Plan de limpieza pública actual

Por su parte, el plan de limpieza pública peruano, tal como el análisis realizado por Rivera, Jiménez, Quispe y Ramirez (2020) indica, "comprende desde la recolección hasta la disposición final de los residuos sólidos". Es decir, ejercen un manejo total de la gestión de residuos físicos en todo el territorio nacional. No obstante, la limpieza exterior de edificaciones no forma parte de este programa ya que el estado suele tercerizar estas actividades a empresas como SERMANSA SAC. Más aún, esto no se realiza bajo un régimen programado por lo que es ocasionalmente bajo contratación, es decir, cuando la situación lo requiera, validando la actitud de despreocupación por el paisaje urbano que Hurtado (2018) afirmó. Ello se puede apreciar en la figura 1.3.

Figura 1.3: Suciedad acumulada en exteriores de estructuras. Extraído de Google Maps, 2023.

1.1.3. Plan de limpieza privada actual

Tal como fue mencionado, el ejercicio de limpieza de fachadas externas en altura lo realiza enteramente el sector privado. Este, por su parte, emplea tecnología tradicional tal como arneses, andamios y plataformas elevadoras, siendo esta última la opción más costosa (MANSERCOM SAC, 2021) tal como se observa en la figura 1.4. Ello también resulta en una demora de la operación debido a la instalación previa y a la ejecución humana. Adicionalmente, el principal inconveniente es el peligro de caída de personas a distinto nivel. Más aun, los trabajos en altura que pasan los 1.8 metros son considerados como trabajos de alto riesgo (Cero Accidentes, 2018). Según un artículo publicado por la ESAN en el 2018 respecto a los accidentes de trabajo en el Perú, el Ministerio de Trabajo y Promoción del Empleo reveló que en el 2016 se registraron 20.876 accidentes laborales en territorio nacional, siendo Lima Metropolitana el principal foco con 14.931. En adición, según la forma de accidente y entre un total de 30, la caída de personal de altura es la sexta más repetida con un 5.49% tal como se observa en la figura 1.5.

Figura 1.4: Servicios privados de hidrolavado en altura. Extraído de MANSERCOM SAC, 2023.

Figura 1.5: Accidentes de trabajo más repetidos del 2016. Adaptación realizada de ESAN, 2018.

1.1.4. Metodología de limpieza en altura

A diferencia de la limpieza en plataformas fijas o a nivel terrestre, este tipo de limpieza involucra normalmente plataformas constructivas para ganar altura como son los andamios, así como el EPP respectivo para asegurar que el trabajador tenga soporte en caso de un accidente de caída, siendo el arnés el más popular (ver figura 1.6). Por otra parte, si se habla de limpieza y tratamiento de fachadas y estructuras, el método por excelencia para la remoción de suciedad es la limpieza con agua a presión, más comúnmente conocida como hidrolavado. Con ella, se garantiza la "eliminación de grasas y aceites existentes en estructuras, depósitos y fachadas" (GRUPO ABELLAN, 2021) ya que desprende toda suciedad sin dañar el muro (normalmente este siendo concreto armado). El método de aplicación, por su parte, es sencillo. Tal como la empresa chilena LIMFE menciona, la limpieza de estructuras se realiza "primeramente con un lavado de muros mediante máquinas hidrolavadoras de alta presión" (LIMFE, s. f.). Luego, se reduce la presión para un riegue o "chorreado" de la superfície que garantice la caída de la suciedad removida. Para mayores detalles sobre el servicio de hidrolavado, consultar el Anexo

Figura 1.6: Uso de equipos de seguridad para limpieza en altura. Extraído de LIMFE, s.f.

1.1.5. Zona de operación

En primer lugar, yace la zona de operación la cual es Lima Metropolitana. Esta "se divide en 43 distritos, distribuidos en cuatro zonas, la zona norte, sur, este y centro" (Hurtado, 2018, p.20). Se ve en la figura 1.7 una distribución del 2018 del nivel de congestión vehicular, y por ende, los focos de contaminación aérea. En efecto, son las zonas emergentes periféricas al centro de la ciudad con los mayores índices de contaminación: Lima Sur, con los parques industriales de Villa María del Triunfo y Villa el Salvador (mayores concentraciones de particulado menor a 2.5 micras - PM2.5) con particulado industrial residual como hollín, plomo y derivados; Lima Este, con altas concentraciones de SO₂ en Ate y Santa Anita, teniendo alta frecuencia de buses interprovinciales (Chumpitaz, Del Mar y Zuta, 2020, p.22); y la zona noreste con "San Juan de Lurigancho, el distrito más contaminado de Lima" (Chumpitaz et al., 2022, p.19). Se delimita entonces la periferia de la ciudad como nuestro segmento objetivo.

Figura 1.7: Focos de contaminación en Lima Metropolitana. Extraído de DIARIO CORREO, 2018.

En segundo lugar, se rescata el rango de altura del área edificada registrada del segmento objetivo. De acuerdo con la Cámara Peruana de Construcción (CAPECO), "el 86% del área edificada en Lima Metropolitana corresponde a edificios de 4 pisos o más" (CAPECO, 2014, p.11) con Lima Norte y Sur teniendo un promedio de 4.3 pisos. (CAPECO, 2014, p.11). Por otro lado, de acuerdo con la norma E.070:2019-Albañilería del Reglamento Nacional de Edificaciones (RNE), se establece "edificación baja" hasta 7.5 m o 3 pisos y "edificación mediana" hasta 15 m o 5 pisos. Así, se define que el rango de altura del segmento objetivo está en la clasificación de mediano (3 – 5 pisos) y asumiendo una altura de 2.5 m por piso para abarcar viviendas y oficinas (RNE A.010:2021 artículo 18), se tendría una altura máxima de operación de 15 m, siendo el límite de vuelo 152.4 m de altura dictado por la NTC 001 – 2015.

En tercer lugar, se debe mencionar las condiciones climáticas de la región a encarar. Esta región presenta un clima templado con vientos promedio anuales rondando la capital desde los 11.7 km/h a los 15.4 km/h y ráfagas intempestivas de hasta 25 km/h aproximadamente (Weather Spark, s. f.). En adición, la velocidad del viento se incrementa considerablemente con la altura. Considerando el peor escenario climático, se rescata la velocidad de viento máxima medida a los 80 m en la estación más ventosa la cual es en inverno. En el siguiente mapa eólico, se aprecia que en la zona centro puede llegar hasta 6 m/s (21.6 km/h) a 80m (Ver figura 1.8).

Figura 1.8: Mapa eólico del Departamento de Lima. Extraído de Atlas Eólico del Perú, 2008.

Finalmente, se cuenta con la temperatura a enfrentar el VANT en Lima Metropolitana, la cual, según el SENAMHI va desde 14.6°C (aprox. 14°C según Weather Spark) hasta 26.5°C (aprox. 27°C según Weather Spark). En efecto, esto se observa en la figura 1.9 siendo la línea azul la temperatura promedio mínima y la línea roja la temperatura promedio máxima. Evidentemente, ambas tienden a subir en los primeros meses del año correspondientes al verano y decrecen a sus menores valores en la temporada de junio a octubre (otoño-invierno). También, se tiene una probabilidad del 1% diaria (Weather Spark, s.f.) de que llueva mientras que la precipitación con mayor intensidad se da en el mes de julio (1.8 mm/mes) (SENAMHI, 2021).

Figura 1.9: Promedio de temperatura normal para LIMA OESTE. Extraído de SENAMHI, 2021.

1.1.6. Resumen de parámetros operativos para limpieza en altura

A continuación, en la tabla 1.1 se consolidan los parámetros de operación para servicios de limpieza en altura del sistema a elaborar para la zona objetivo.

Característica	SERVICIO DE LIMPIEZA EN ALTURA (Aprox. 0-15m)	
Viento común	Común:11.7 km/h - 15.4 km/h	
	Ráfagas súbitas: 25 km/h	
Precipitación	Probabilidad: 1% Diaria	
	Intensidad: 1.8 mm/mes	
Temperatura	14°C-27°C	
Material de edificación	Hormigón, concreto reforzado, calamina, mármol, acero.	
Periodo del día	Día.	
Duración del servicio	Jornada de una hora para trabajo promedio.	
Altura de operación	0 - 15 m (5 pisos)	
Costo aproximado (Fachada de 5 pisos)	Alrededor de S/.5000 @ 5 pisos – 15 m.	

 Tabla 1.1: Parámetros de operación para servicio de limpieza en altura.

Nota. Elaboración propia con datos recopilados del presente capítulo y del Anexo A.

1.2. Objetivo principal

El objetivo principal de la siguiente tesis consiste en diseñar un prototipo de vehículo aéreo no tripulado con autonomía energética mayor o igual a una hora orientado al servicio de la limpieza de fachadas de edificaciones de mediana altura a través del método del hidrolavado. De esta forma, dicho VANT ofrece una propuesta de mejora al servicio de limpieza pública en Lima Metropolitana así como una alternativa comercial para el sector privado al velar por la seguridad del trabajador y reducir tiempos de operación.

1.3 Objetivos específicos

1.3.1 Objetivos de investigación

- Investigar sobre la necesidad de mejorar el servicio de limpieza a raíz del incremento del parque automotor, el nicho existente en la limpieza de altura y el beneficio obtenido mediante la implementación de drones.
- Investigar sobre el estado del arte con la finalidad de analizar el estado actual de los drones de servicio.
- Definir los requerimientos necesarios para que el VANT propuesto cumpla con el objetivo principal.
- Emplear la metodología VDI 2221 para el diseño conceptual del VANT.

1.3.2 Objetivos de tesis

- Elaborar el diseño mecánico del dron, incluyendo el dimensionamiento, memorias de cálculo, diseño estructural y análisis de resistencia y aerodinámico.
- Elaborar el diseño eléctrico-electrónico seleccionando sensores y actuadores y otros componentes que permitan la operación del dron.
- Implementar una fuente energética que garantice la autonomía deseada del dron así como estandarizar su método de selección.

- Establecer un modelo matemático para garantizar la estabilidad del dron durante el vuelo, sustentándose de las simulaciones respectivas.
- Elaborar de planos y diagramas de los dominios mecánico, eléctrico/electrónico junto con el algoritmo de funcionamiento del sistema.
- Determinar la viabilidad económica del presente proyecto frente a otras tecnologías utilizadas en la búsqueda de la óptima autonomía energética.

1.4 Alcance

Dentro del alcance de la tesis, no se incluye la fabricación del prototipo, así como la programación de los controladores y componentes involucrados. Se llevará a cabo el diseño del fuselaje, brazos y trenes de aterrizaje así como la selección y adaptación del conjunto de lavado (conexión y lanza mas no manguera e hidrolavadora). Esto, incluye la elaboración de los respectivos planos del diseño mecánico, esquemas eléctricos/electrónicos, algoritmo de operación, estrategias de control y diagramas de conexión. Finalmente, se justificará el diseño mecánico mediante análisis por simulación para evaluar la aerodinámica del VANT.

1.5 Metodología

En la siguiente tesis se procederá a emplear la metodología de diseño de la norma VDI 2221. Para ahondar en detalle del procedimiento, en el Anexo B yacen las fases principales que brindarán los lineamientos de cómo se abordó el proyecto en etapas.

CAPÍTULO 2

ESTADO DEL ARTE

En el presente capítulo se explora la tecnología existente de los VANT de servicio y técnicas de lavado. Cabe resaltar que, debido a la función del presente dron, se ahondó informativamente en la parte mecánica de este, dejando aspectos como navegación, comunicación y control de vuelo como parte complementaria a verse en el Anexo C.

En primera instancia, se puede recurrir a la delimitación inicial para la utilización de drones que separa aquellos drones de entretenimiento con los de servicio indicada por Quan Quan. Y es que, aquellos orientados al servicio, normalmente bajo un propósito militar o de aplicación civil, se espera que cumplan una función particular, sobre la cual su diseño es enfocado. Es decir, el cumplimiento de su misión sobre la recreación (Quan, 2017, p.5). No obstante, para poder delimitar mejor los tipos de drones de servicio, se ha de prestar énfasis en aquello que define la aplicación del VANT: su carga útil. Se define como: "todos los elementos del RPAS que no son necesarios para volar pero que son transportados para el cumplimiento de la misión específica" (Aerocamaras, 2023). De acuerdo con Valavanis (2015): la carga útil dicta la usabilidad y valor del mercado del VANT (p.15). Asimismo, este distingue dos tipos de carga útil en general: carga destinada a la navegación de la aeronave y carga destinada al

cumplimiento de tareas. Bajo esta premisa, se ha identificado tres principales tipos de VANT de servicio, tomando en consideración la función de su carga útil (Grupo One Air Aviación S.L., s. f.):

- Drones de inspección y monitoreo (énfasis en la(s) cámaras).
- Drones de transporte (énfasis en transportar la carga a un destino).
- Drones de accionamiento (énfasis en la aplicación física que la carga puede realizar).

2.1. Drones de servicio en el ámbito comercial

En este caso, la función de lavado se acomoda más a la categoría de drones de accionamiento, haciendo énfasis en la función que su carga puede realizar. En los tres ejemplos comerciales a mostrarse, se comparte el mismo método de suministro de líquido: Mediante manguera.

2.1.1. C1 Cleaning Drone

El siguiente hexacóptero americano fue diseñado y es utilizado actualmente por la empresa Lucid Drone Technologies, enfocada en soluciones de limpieza de estructuras de hasta 120 pies (aprox. 36.576 m) (Kumparak, 2019). En este caso, el dron desarrollado ofrece el servicio de *soft cleaning*, el cual ataca la suciedad impregnada en estructuras con un regado suave; empero potente ya que se vale de fuertes químicos para la remoción (Lucid Drone Tech., 2021). Es decir, enfatiza la solución química sobre la presión del disparo. Por otra parte, es teleoperado remotamente y cuenta con una cámara HD como único componente de video para facilitar al operador el regado. También, tal como se aprecia en la figura 2.1, enfatiza la estabilidad al usar 6 rotores y equipamiento de aterrizaje (Lucid Drone Tech., 2021).

Figura 2.1: Operación de C1 Cleaning Drone. Adaptado de Lucid Drone Tech., 2021.

2.1.2. Hercules 10 v1.7 TETHERED SPRAY

Este octocóptero francés mostrado en la figura 2.2 se vale de una extensión frontal horizontal que consta de 4 desembocaduras sobre las cuales riega (Drone Volt, 2021). Nuevamente, usa el método de *soft cleaning* pero optimiza el lavado al incrementar su área de regado con la extensión. Opera a mediana altura y emplea una configuración X8 (ver figura 2.9) para resaltar la estabilidad del proceso de regado así como equipamiento de aterrizaje desplegable.

Figura 2.2: Operación de Hercules 10 v1.7 TETHERED SPRAY. Adaptado de Drone Volt, 2021.

2.1.3. AERONES AD28 Heavy Lift UAS

Este prototipo único desarrollado por la empresa letona AERONES ha operado en San Francisco y Riga con su principal objetivo de limpiar ventanas de edificios de hasta 350m (Towne, 2018) con una velocidad de 20 veces más que un humano (Collins, 2020). Su funcionamiento es único ya que posee una duración de uso ilimitada debido a que es alimentada directamente a una fuente de energía eléctrica en tierra o en la cima del edificio mediante un cable extenso. De igual forma funciona su suministro de fluido limpiador mediante una manguera. Se lo puede ver en acción en la figura 2.3.

Figura 2.3: AERONES AD28. Extraído de AERONES, 2018.

2.1.4. Comparación de drones de servicio

	C1 Cleaning	Hercules 10 v1.7	Aerones AD28 Heavy Lift UAS
	Drone		
Tipo de Aeronave	Hexacóptero	Octocóptero	Multicóptero (14 rotores)
Medidas [m]	1 x 1	0.9 x 0.9 x 0.58	3 x 3
Peso de la máquina (con	13.61	8.5	90
batería) [kg]			
Vel. máxima [km/h]	No especifica	90	119.091
Forma de operación	Teleoperado	Teleoperado	Teleoperado
Sistema de regado	Soft cleaning –	Soft cleaning –	Soft cleaning –
	una boquilla –	Múltiples boquillas -	Boquillas múltiples y
	pistola completa	varilla modulable	automáticas
Altura máx. vuelo [m]	36.576	50	350
Fuente de energía	Batería Li-Po	Batería Li-Po	Ilimitada – Conectada a fuente
Material	Fibra de carbono	Fibra de carbono	Estructura de fibra de carbono
Tiempo de vuelo (con	30 min	15 min	Ilimitado
máx. carga útil)			

Tabla 2.1: Comparación de características de drones de servicio comerciales.

Nota. Elaboración propia con datos recopilados de modelos comerciales.

De la tabla 2.1 se puede concluir que los drones de accionamiento ya mencionados requieren un mayor uso de rotores debido a que necesitan enfatizar tanto en el empuje para poder levantar la carga útil, así como también en la estabilidad para realizar el proceso de lavado. Por ello, incrementan el número de rotores para levantar mayores cargas. Por otro lado, los múltiples rotores les permiten alcanzar mayores alturas y todas cuentan con materiales estructurales resistentes y de bajo peso, como se da con la fibra de carbono.

2.2. Fuentes de energía

Dado que la autonomía energética forma parte del objetivo principal, se procede a destacar las fuentes de energía comerciales más comunes así como brindar una comparativa entre estas. Para ello, se referencia el artículo comparativo realizado por Townsend, Jiya, Martinson, Bessarabov y Gouws para la revista científica Heliyon, el cual nos indica la importancia de este factor en el VANT en el sentido que afecta aspectos tales como la distribución de pesos, tiempos de recarga, tamaño, capacidad de carga útil y densidad de energía y de potencia (Townsend et al., 2020).

Los dos últimos términos son los más comúnmente usados para detallar el impacto de una fuente de energía. Aunque normalmente confundibles, representan conceptos distintos. Se entiende entonces por densidad de energía como "aquella que se puede almacenar dentro de la fuente y por lo tanto cuánto tiempo esta cantidad puede ser entregada [W*h/kg]" (Townsend et al., 2020, p.2); mientras que, densidad de potencia alude a la "cantidad de potencia que la fuente puede proveer en un instante específico [W/kg]" (Townsend et al., 2020, p.2). Así, por ejemplo, se pueden tener drones que provean grandes cantidades de potencia (80-75000 W/kg) pero por periodos cortos de tiempo (0.09-0.10 Wh/kg) (Townsend et al., 2020, p.2); igualmente, funciona en el sentido inverso.

2.2.1. Baterías eléctricas

Son las más comunes en el mercado, dado a su amplio uso desde la recreación hasta el soporte de drones de servicio. Más aún, las baterías más comunes son las de Li-Po y Li-Ion (Townsend et al., 2020). Las principales ventajas de las baterías sobre el resto de las fuentes son el poder ser recargadas en casi cualquier espacio y su facilidad de transporte debido a su reducido tamaño. No obstante, como se corroboró en la tabla 2.2, su principal desventaja yace en la baja cantidad de ciclos de recarga y baja densidad energética (Townsend et al., 2020).

	Li-Ion	Li-Po
Voltaje nominal de la celda (V)	3.6-3.85	2.7-3
Densidad de energía (Wh/kg)	100-265	100-265
Densidad de potencia (W/kg)	250-340	245-430
Eficiencia carga/descarga (%)	80-90	90
Tasa de autodescarga (%)	0.35-2.5	0.3
Costo (US\$/Wh)	0.9361	2.3095

Tabla 2.2: Comparación de baterías eléctricas más comerciales Li-Ion y Li-Po.

Nota. Adaptado de *A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements* por Townsend et al., 2020, p.3.

Se aprecia en los datos de la tabla 2.2 que las baterías Li-Po ofrecen una mayor cantidad de potencia al instante que las de Li-Ion pero mantiene la misma duración de entrega de energía que esta ya que ambos tienen una densidad de energía igual. Asimismo, posee una mayor eficiencia de carga/descarga y una tasa menor de fuga energética, justificando así, un mayor costo en dólares por vatios hora que su contendiente.

2.2.2. Motores de combustión

Para drones de mayor peso y mayor duración de vuelo, los motores de gasolina y Diesel (véase tabla 2.3) destacan al presentarse de forma compacta en motores de dos tiempos (Townsend et al., 2020); siendo esta la configuración comercial más común de esta clase de fuente. Por su parte, los motores de combustión ofrecen tiempos de vuelo mayores, robustez y consumo moderado de combustible.

Tabla 2.3. Comparación de motores de combusitón.			
	Gasolina	Diesel	
Ignición	Requiere de bujías	Autoencendido bajo presión extrema	
Velocidad rotacional	Mayor	Menor	
Robustez	Menor	Mayor	
Peso	Menor	Mayor	
Espacio	Menor	Mavor	

Tabla 2.3: Comparación de motores de combustión.

Nota. Adaptado de características mencionadas en *A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements* por Townsend et al., 2020, p.4.

2.2.3. Celdas de Hidrógeno

Las celdas de hidrógeno (*Hydrogen Fuel Cell – HFC*) se posicionan como las más innovadoras dado su reciente surgimiento. La energía es generada por medio de reacciones electroquímicas sin combustión, favoreciendo un proceso limpio y sin emisión de gases (Townsend et al., 2020). Consta de una pila en la que se ingresa hidrógeno como combustible y, separado por una membrana y conectado por un electrolito, se tiene oxígeno del aire con el cual se combina generando un flujo de electrones y agua como subproducto (Intelligent Energy, 2021), tal como se ve en las figuras 2.4 y 2.5

Figura 2.4: Funcionamiento de celda de hidrógeno. Extraído de Intelligent Energy, 2021.

Figura 2.5: Intelligent Energy FC UAV. Extraído de Intelligent Energy, 2021.

Cabe resaltar la *Proton Exchange Membrane Fuel Cell*, mejor conocida abreviadamente en el mercado como PEMFC. En esta, el electrolito es una membrana de polímero sólido conductor de protones, presentando así grandes densidades de potencia (Intelligent Energy, 2021) haciéndolo una opción viable y competitiva para los VANT. No obstante, dentro de sus falencias, a comparación de sus competidoras, requiere de una mejor distribución de espacios ya que debe cargar un cilindro de hidrógeno, tal como se observa en la implementación hecha por la marca Intelligent Energy (figura 2.8).

2.2.4. Comparación de fuentes de energía

En la tabla 2.4 se muestra una comparación estandarizada basada en la información provista por Townsend et al. de las características de vuelo de los tipos de fuentes de energía comerciales más comunes tomando como punto de referencia el levantamiento de una carga útil de 5kg. Más aún, Townsend et al. sugiere una comparación más exhaustiva calculando las ratios estándares indicadas en la subsiguiente tabla 2.5.

Product name*	LiPo Battery/	Hydrogen FC/	Gasoline/
	DJI Matrice 600	BMPower 1 kW	Yeair!
Specific energy (Wh/kg)	9.99	646	2600
Flight time (min)	20	250	120
Weight (kg)	10	6.5	4.9
Payload (kg)	5	5	5
Recharge/discharge time (min)	92	Refuel time	Refuel time
Cost (USD from 2019 figures)	5699	13410	1550

Tabla 2.4: Comparación de características de fuentes de energía.

Nota. Adaptado de Tabla 3 de *A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements* por Townsend et al., 2020, p.6.

 Tabla 2.5: Comparación de ratios de fuentes de energía.

	Ratios					
	Flight time (min)	Payload (kg)	Payload (kg)	Flight time (min)	Flight time (min)	
	Weight(kg)	Flight time (min)	Weight (kg)	Cost (USD)	Recharge time (min)	
Battery	2	0.25	0.5	0.003509	0.217391	
Hydrogen FC	38.46154	0.02	0.769231	0.018643	<250	
Combustion	24.4898	0.041667	1.020408	0.077419	<120	

Nota. Adaptado de Tabla 4 de *A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements* por Townsend et al., 2020, p.6.

Revisando las ratios desde la izquierda, se concluye que (Townsend et al., 2020):

- 1er ratio: El VANT portando la HFC tiene menores pérdidas ya que su tiempo de vuelo es el menos afectado por el peso. Este, puede durar hasta 19 veces más que la batería comercial Li-Po.
- 2do ratio: El VANT portando Li-Po refleja un vuelo apropiado incluyendo una carga significante, otorgándole mayor versatilidad. Para la misma duración de vuelo, soporta la carga útil 12.5 más que la HFC.
- 3er ratio: El VANT portando Motor a gasolina muestra un mayor potencial (el doble) al cargar un mayor peso adicional al del dron.
- 4to ratio: El VANT portando Motor a gasolina presenta el mayor tiempo de vuelo por el menor costo (aprox. 22 veces más que Li-Po), seguido del HFC (aprox. 5.3 veces más que Li-Po).
- 5to ratio: El VANT portando HFC soporta un mayor tiempo de vuelo por necesidad de recarga.

2.3. Fuselaje

El fuselaje o chasis consiste en el cuerpo físico del VANT, ya que actúa como una plataforma para el carguío de todos los equipamientos y componentes. Su importancia radica en que "la seguridad, durabilidad, usabilidad y el rendimiento del multicóptero dependen mayormente de la configuración de su fuselaje." (Quan, 2017, p.31). Dos factores que se deben considerar son el peso del fuselaje y su resistencia. Estos parámetros son variados por el diseñador dando lugar a configuraciones personalizadas para aplicaciones específicas. En cuanto al fuselaje, siempre se va a buscar que su peso sea el menos posible, dando cabida a mayor carga útil restante (Quan, 2017); y también que sea lo más resistente posible.

2.3.1. Configuraciones multirotores

Respecto a las configuraciones existentes, se destacan algunas configuraciones básicas de los multicópteros en la figura 2.6. Cabe resaltar que al variar el número y disposición de rotores afecta la forma de vuelo del VANT. Por ejemplo, a mayor número de estos, mayor es la potencia y la capacidad de levantamiento, permitiendo llevar mayor carga útil así como una mejor estabilidad y redundancia en caso de fallas (PROMETEC, 2021). No obstante, un mayor número también implica un mayor coste y menor eficiencia de la potencia utilizada (PROMETEC, 2021).

Figura 2.6: Hexacóptero diseñado para el lavado domiciliario. Extraído de Quan, 2017.

2.3.2. Perfil de los brazos

Por su parte, se pueden encontrar distintas configuraciones de perfiles (ver imagen 2.7) que tienen efecto directo en la aerodinámica del VANT. Tal como Ruben Tabuchi destaca en su tesis, el perfil circular es aquel que tiene el menor coeficiente de arrastre aerodinámico, minimizando las pérdidas de potencia. Este último también resalta la importancia de determinar la rigidez del dron al definir el diámetro y espesor del tubo (Tabuchi, 2015).

Figura 2.7: Perfiles estructurales para brazos. Extraído de Tabuchi, 2015.

2.3.3. Materiales

De acuerdo con lo postulado por Quan Quan, los materiales apropiados para el diseño de un VANT deben de considerar tres factores: rigidez (medido en Msi), esfuerzo a la tracción (medido en Ksi) y costo (Quan, 2017, p.35). Evidentemente, priorizando los dos primeros conseguimos un aumento del costo, más aún cuando algunos materiales conservan su densidad relativamente baja pese a ofrecer estas dos ventajas.

	Carbon fiber	Fiberglass	Polycarbonate	Acrylic	Aluminium	Balsa
))	0.05	0.07	0.05	0.04	0.1	0.0027-0.0081
IS	9.3	2.7	0.75	0.38	10.3	0.16-0.9
	120	15-50	8–16	8-11	15-75	1-4.6
st)	1	6	9	9	7	10
	3	7	6	7	7	10
st)	120 1 3	6 7	8–10 9 6	9 7	7	-/5

Tabla 2.6: Principales materiales para la construcción del fuselaje.

Nota: Extraído de Tabla 2.1 de Introduction to Multicopter Design and Control por Quan Quan, 2017, p.36.

En efecto, tal como se aprecia en la tabla 2.6, la fibra de carbono corrobora lo dicho ya que se posiciona como el material que ofrece mayor rigidez (9.3 Msi) y esfuerzo a la tracción pero al mismo tiempo es el más costoso, siendo de utilidad para drones con necesidad de mayor carga útil. Caso contrario, se tiene al plástico acrílico (0.38 Msi), el cual es destinado a juguetes o drones de menor tamaño (Quan, 2017, p.35).

2.4. Tecnologías para el lavado de fachadas

El Hidrolavado puede separarse en dos técnicas principales, las cuales varían su efectividad dependiendo de la cantidad de presión aplicada al fluido y del material que buscan limpiar.

2.4.1. Lavado a alta presión: Pressure Washing

Esta técnica, tal como su nombre lo describe, consiste en aplicar agua a alta presión para el lavado principalmente de superficies duras (mayormente concreto). Para ello, una "corriente de agua es proyectada mediante un flujo controlado" (Washh, 2021) quitando la suciedad instantáneamente. Esto se logra a una presión mayor a los 1000 PSI (69 bar aprox.) (Washh, 2021). No obstante, el principal riesgo de esto se da en la mala aplicación sobre superficies no tan resistentes llegando a dañarlas.

Con la finalidad de conseguir una remoción total de la suciedad impregnada en fachadas, empresas privadas nacionales tales como National Cleaning SA, SPIDER E.I.R.L, Vertical Services E.I.R.L, etc se valen del uso de la hidrolavadora (ver figura 2.8) para brindar el servicio de lavado a presión en general. Esta pequeña unidad consiste en un equipo que recibe el agua de una fuente (directamente si es agua fría) y mediante una motobomba, envía el fluido con un mayor caudal y presión a través a de una manguera hacia la "pistola" o "lanza" la cual, al accionarse, permite el disparo del líquido a alta presión (Kärcher, 2021). No obstante, se puede regular manualmente para también realizar regados a baja presión.

Figura 2.8: Unidad hidrolavadora Kärcher HDS 13/20-4S. Extraído de Kärcher, 2021.

2.4.2. Lavado suave: Soft Washing

Esta es considerada una técnica más reciente debido a que no se vale de la presión en sí para realizar su trabajo, sino que enfatiza el uso de aditivos al agua que ya posee. Es decir, emplea una solución química añadida al agua para lograr la remoción de la suciedad. Por lo tanto, se riega a una menor presión de los 1000 PSI (69 bar aprox.) (Washh, 2021). Esta técnica cuenta con la ventaja de evitar el daño directo en el impacto, no obstante, su efectividad decrece ante materiales tales como el concreto y pavimento (Washh, 2021). Cabe resaltar que aún esta técnica hace uso de la hidrolavadora, ya que a éstas se les puede tanto ajustar la presión como adaptarle una boquilla especial para menor presión (Eric, s.f.).

2.4.3. Estrategia de lavado

Para la ejecución del lavado en sí, se deben seguir estrategias de tal forma que el servicio se realice de forma rápida y segura. Primeramente, se trata de evitar "andamios" por un tema de sobrecosto, por lo que la técnica principal es el acceso vertical (Acceso Vertical, 2023). Esta consiste en partir desde la parte superior de la estructura e ir descendiendo hasta la base (RESCUEJIM, 2021). Ya que se cuenta con un equipo de trabajadores, estos pueden abarcar todo el ancho de la fachada, de tal forma que la ejecución se vuelve rápida. Así, se trata de un barrido de limpieza descendente. Para ello, se realiza un anclaje en la azotea del edificio tal como se ve en la figura 2.9 y se confirma la sujeción en la base (Universitat de Lleida, s.f.). En efecto, esta técnica es la más utilizada debido a que no disturba a los transeúntes en la calle, es práctica y efectiva; empero, es la que más riesgo le atribuye al trabajador.

Figura 2.9: Anclaje y aseguramiento de base. Extraído de Universitat de Lleida, s.f.

Por otro lado, la fuente de abastecimiento (agua, fungicida, químico, etc) puede ser cargada por los mismos trabajadores (Acceso Vertical, 2023) (figura 2.10) así como ser instalada en una plataforma colgante, andamio o situada en la base o en la azotea del edificio, siendo estas dos últimas alternativas más específicas ya que se deben implementar extensiones para la manguera en caso se realice lavado con agua a baja o alta presión.

Figura 2.10: Posiciones de la fuente de abastecimiento. Extraído de Acceso Vertical, 2023.

2.4.4. Instrumentos para el lavado

Para la ejecución del lavado, la instrumentación y el método requerido depende precisamente del tipo de estructura al cual se está enfrentando. Esto se puede observar con mayor detalle en el Anexo V. No obstante, según LIMTEK SERVICIOS INTEGRALES S.A dentro de los utensilios más comunes se pueden encontrar los siguientes (LIMTEK, 2021):

- Paños industriales
- Jalador limpiavidrios
- Cepillo de alambre
- Cepillo profesional
- Hidrolavadora

2.4.5. Comparación entre tecnologías de lavado

A medida de síntesis, se realizó una comparación cualitativa en la tabla 2.7 entre los distintos tipos de tecnologías de lavado comerciales mencionados, incluyendo el ya reconocido método tradicional visto en el capítulo 1.

	Lavado	C1 Cleaning	Hercules 10 v1.7	AERONES AD28
	tradicional	Drone		
Estructura	Cualquier	Estructuras de	Techados, superficies	Edificios de altura
objetivo	estructura	mediana altura	inclinadas	
Instalación	Requiere de toda	Rápida instalación	Rápida instalación	Instalación moderada
	una etapa de	(<15 min según	(no definido)	(no definido)
	preparación del	video promocional)		
	equipo y despeje			
	de la zona			
Mano de	Equipo de 3 o 4	1 operario	1 operario	2 operarios
obra	personas con			
	experiencia			
Riesgo	Caída en altura de	Malfuncionamiento	Malfuncionamiento	Malfuncionamiento
	operarios	del VANT	del VANT	del VANT
Técnica de	Soft y Pressure	Soft-Washing: Una	Soft Washing:	Soft y Pressure
riegue	Washing	sola boquilla para	Múltiples boquillas	Washing: Múltiples
		riegue		boquillas automáticas
Proporción	1	0.5	0.5	1.5
del costo				
de servicio				
(1:x)				

Tabla 2.7: Evaluación de ventajas de tecnologías de lavado.

Nota: Elaboración propia en base a recopilación de información de modelos comerciales y tecnología tradicional actual de limpieza.

Se observa que, pese a un relativo menor costo del servicio que ofrecen firmas del mercado (Drone Volt y Lucid Drone Tech.), el método tradicional muestra un mayor dominio de la técnica debido a la capacitación de sus operarios. No obstante, mediante el uso de mejores métodos para automatizar el regado: acoples móviles, ajustables y automatizados, un VANT puede alcanzar una calidad cercana a la de un equipo experimentado. Por último, también se han explorado tecnologías alternativas de elevación que pueden verse a mayor detalle en el Anexo D.

CAPÍTULO 3

DISEÑO CONCEPTUAL

Dentro de la presente sección, en base al bagaje recopilado en el capítulo anterior, se procederán a trabajar los apartados referentes al diseño preliminar del VANT. Así, de forma cualitativa se tomarán en cuenta requerimientos, bosquejos, la disposición de las piezas, consideraciones técnicas y económicas, etc; de tal forma que se pueda concebir un concepto de solución óptimo al finalizar el capítulo.

3.1. Requerimientos del sistema general

A continuación se muestran los requerimientos para la elaboración del sistema mecatrónico. A mayor detalle se puede apreciar la importancia de cada uno de estos en el Anexo E, siendo clasificados como deseos o exigencias.

3.1.1. Requerimientos físico – mecánicos

- El VANT contará con las dimensiones máximas de 1.2 metros de ancho, 1.2 metros de largo y 1 metro de altura. Estas medidas se eligieron tomando en consideración las propuestas comerciales mostradas.
- El diseño debe ser simétrico para garantizar estabilidad.

- El peso debe ser inferior a los 25 kg según la norma NTC 001 2015 de la DGAC.
- Se llevará a cabo una correcta elección de rotores de tal forma que puedan generar sustentación necesaria para mantener al VANT estable en vuelo. De esta manera, se procurará una distribución de potencia equitativa.
- El VANT debe poder soportar en el aire corrientes mayores a 25 km/h, la cual es la máxima ráfaga en territorio limeño.
- Se elegirá la fibra de carbón como material para el fuselaje y los brazos del VANT debido a que este es resistente y ligero. Asimismo, los componentes internos deben encontrarse protegidos con un grado de protección IP-X3 y el soporte de la varilla o lanza de riegue debe ser lo suficientemente ligero.
- Se diseñará un tren de aterrizaje para evitar comprometer a la estructura.
- El diseño debe ofrecer un rápido y sencillo desarme para facilitar la limpieza y la intercambiabilidad de piezas.
- Durante el vuelo debe permanecer estable durante un lavado de baja presión convencional de por lo menos 69 bares y debe poder ejecutar su misión en edificaciones de por lo menos 4 pisos de altura para estar en el promedio de la sección 1.1.5. hasta un máximo de 15 m.

3.1.2. Requerimientos electrónicos

- El controlador de vuelo debe ser compatible, integrar los componentes electrónicos y permitir un control preciso de los motores. También, debe contar con un arreglo de sensores que le permitan al VANT determinar su posición y orientación.
- El VANT debe contar con un dispositivo de transmisión de video que le otorgue al operario un control vía FPV para una mejor observación del objetivo a ser lavado.

También debe contar con un dispositivo GPS el cual le permita determinar su posición global.

• El diseño debe disponer de rotores con alta eficiencia energética para enfatizar la extensión de vuelo. Mas aún, se debe priorizar una operación con duración mayor al de una jornada de trabajo promedio de lavado tradicional, es decir, ofrecer una autonomía energética mayor o igual a media hora (siendo este el tiempo de operación comercial referencial de los drones de lavado).

3.1.3. Requerimientos de control

- El controlador debe de poder garantizar un vuelo estable para vientos de 25 km/h.
- El controlador debe poder comunicarse con el operador en tierra empleando las siguientes frecuencias: 2.4 GHz para el Radio Control y 5.8 GHz para la transmisión de vídeo a un rango de 0.1 km.
- Se diseñará un algoritmo que permita controlar tanto la dirección de vuelo como la orientación del VANT durante este.
- El VANT debe contar con un sistema de posicionamiento que le permita ubicarse en la posición deseada definida por el operario con respecto a un punto de referencia.

3.2. Funciones del sistema

Dentro de la presente sección se procederá a definir las funciones concernientes al proyecto a elaborar, de tal forma que puedan ser agrupadas en dominios comunes mediante secuencias de funcionamiento. Se empieza por una abstracción inicial para definir entradas y salidas, se describen las fases generales de los procesos y se presentan los dominios elegidos junto con sus respectivas funciones, terminando en una estructura de funciones integral.

3.2.1. Identificación de entradas y salidas

En el siguiente apartado se llevará a cabo una abstracción inicial en forma de caja negra respecto a las entradas y salidas del sistema total (figura 3.1). Se separa en señales, energía y materia para una mejor delimitación. La descripción de dichos elementos se puede encontrar en el Anexo F.

Señales Señal de encendido/apagado		
Señal de parada 💷 🕨		🗭 Señal de video
Señal de comandos 🕨		🗭 Estado de fuente de energi
Señal de accionamiento • • • • • ►	VANT PARA	🖕 Tiempo de vuelo
Señal de emergencia · · · · · Þ	HIDROLAVADO DE	
Energía eléctrica	EDIFICACIONES EN LIMA METROPOLITANA	Ruido, vibraciones, calor
Materia Fluido a presión		Fluido a presión proyectado
Humedad, viento, particulados		Humedad, viento, particulados

Figura 3.1: Caja negra del sistema total. Fuente: Elaboración propia

3.2.2. Fases de operación

El funcionamiento general de la máquina a diseñar se puede dividir en las siguientes fases

consecuentes:

Preparación:

- 1. Posicionar al VANT en una superficie despejada de personas para su despegue.
- 2. Calibrar los sensores del dron.
- 3. Encender el VANT.

Ejecución:

- 4. Activar las hélices.
- 5. Movilizar al VANT a la posición respectiva de trabajo (parte superior de la

fachada según técnica) para su descenso progresivo.

- 6. Esperar flujo de agua desde tierra.
- 7. Habilitar disparo del fluido a presión.
- 8. Desplazar al VANT para el regado.
- 9. Transmitir el video al operador en tierra.
- 10. Regresar al VANT a su posición inicial.
- 11. Apagar el VANT.

Control:

- 12. Verificar condiciones iniciales del VANT.
- 13. Controlar la posición para el desplazamiento.
- 14. Controlar la altura del vuelo.
- 15. Controlar la velocidad de cada motor.

16. Controlar los cambios de altura, velocidad y desplazamiento ante fuerza ejercida

por la corriente de agua.

17. Activar equipo de emergencia ante pérdida de elevación súbita.

3.2.3 Estructura de funciones integrada

A continuación se presenta la estructura de funciones integrada del sistema mecatrónico en la figura 3.2. La documentación por dominios así como de funciones puede ser visualizada a mayor detalle en el Anexo L.

Figura 3.2: Estructura de funciones integrada del sistema mecatrónico. Fuente: Elaboración propia.

3.3. Matriz morfológica

Se procede entonces a examinar los portadores de solución por cada función mencionada, es decir, las alternativas que pueden llevar a cabo la función. De esta forma, mediante los portadores escogidos se podrá encaminar a la formulación de conceptos de solución, detallados en el Anexo G. A continuación, se ha procedido a evaluar las 3 alternativas por cada dominio mencionado en la sección anterior, teniendo un total de 7 por cada dominio indicado en las tablas 3.1 a 3.7.

Concepto de solución 1: Concepto de solución 2: Concepto de solución 3:

]	Función	Alternativa 1	Alternativa 2	Alternativa 3
Propulsar VANT		QUAD X 4 Propelas –	HEXA X 6 Propelas –	OCTO X 8 Propelas – Configuración OCTO X
Soportar empuje	Forma	Perfil circular	Perfil cuadrado	Armadura triangular
	Material	Fibra de carbono	Fibra de vidrio	Aluminio 6061 T6
portar estructura base	Forma	Cuadrada	Fibra de vidrio	Rectangular
So	waterial			

Tabla 3.1: Matriz morfológica del dominio mecánico.

Nota: Elaboración propia.

Función	Alternativa 1	Alternativa 2	Alternativa 3
Accionar actuador de rotación de propelas	Motor DC Brushless	Motor DC con escobillas	
Accionar actuador de disparo	Servomotor de alto torque - habilitador de gatillo	Control Nulo – Accionamiento manual desde hidrolavadora	Válvula de control automático remoto
Accionar aterrizaje de emergencia	Servomotor de alto torque integrado a paracaídas	NERA	
Nota: Elaboración propia.			

Tabla 3.2: Matriz morfológica del dominio de actuadores.

Nota: Elaboración propia.

Tabla 3.3: Matriz morfológica del dominio de sensores.

Función	Alternativa 1	Alternativa 2	Alternativa 3
Detectar	Electronic Speed		
velocidad de	Controller (ESC)		
rotación			
Detectar altura	Sensor de presión	Sensor ultrasónico	Sonar
	barométrica		
Detectar	Módulo GPS	Unidad de medición inercial	
posicionamiento			
Detectar	Unidad de medición	Acelerómetro	Medición inercial del
orientación	inercial		Autopiloto
		du	
Revisar estado	Sensor de voltaje	Sensor de voltaje en módulo	Sensor de corriente
de la fuente de	externo	de potencia	
energía			

Nota: Elaboración propia.

Tabla 3.4: Matriz morfológica del dominio de comunicación.

Función	Alternativa 1	Alternativa 2	Alternativa 3
Transmitir señales de	Telemetría Wi-Fi -	Telemetría Wi-Fi -	Red Wi-Fi
comandos	Transmisor RC 5.8 GHz	Transmisor RC 2.4 GHz	
(desde tierra)			
Recibir señales de	Telemetría Wi-Fi -	Telemetría Wi-Fi -	
comandos	Recibidor RC 5.8 GHz	Recibidor RC 2.4 GHz	
(en vuelo)			
Transmitir señal de	Red Wi-Fi	Telemetría RC directa con	accionamiento
apertura/cierre del		el Autopiloto (Canal	manual desde tierra
flujo (desde tierra)		configurado)	
		-	
Recibir señal de	Módulo Wi-Fi externo +	Configuración de canal	accionamiento
disparo del fluido	microcontrolador	enlazado con	manual desde tierra
(en vuelo)		microcontrolador	
		-	
Registrar video	Cámara VGA	Cámara HD	Cámara Mini FPV
(en vuelo)			
Transmitir video	VTX (1.2 GHz)	VTX (2.4 GHz)	VTX (5.8 GHz)
(desde vuelo)			

Recibir transmisión de video (en tierra)	RTX (1.2 GHz)	RTX (2.4 GHz)	RTX (5.8 GHz)
Transmitir señal de disparo de paracaídas (desde tierra)	Red Wi-Fi	Telemetría RC directa con el Autopiloto (Canal configurado)	

Nota: Elaboración propia.

Tabla 3.5: Matriz morfológica del dominio de la interfaz del usuario.

Función	Alternativa 1	Alternativa 2	Alternativa 3
Registrar señal de	Radio Controller	Laptop	Tablet
encendido			•
Registrar	Radio Controller	Laptop	Tablet
instrucciones de			
control de pilotaje			
Mostrar información	Radio Controller	Laptop	Tablet 🔴 🔵
Mostrar transmisión	FPV Monitor +	Monitor FPV adaptado	Pantalla propia del
de video	Goggles	al mando	dispositivo
		•	

Nota: Elaboración propia.

Tabla 3.6: Matriz morfológica del dominio de control.

J	Función	Alternativa 1	Alternativa 2	Alternativa 3
Hardware	Controlar vuelo	Autopiloto		1
	Controlar velocidad de rotación	Control PID (Integrado en el ESC)		
	Controlar altura	Control PID	Control Difuso	Control PI
Software	Controlar posición	Control PID	Control Difuso	Control PI
	Controlar orientación	Control PID	Control Difuso	Control PI
	Obtener estado de fuente de energía	Procesamiento interno del autopiloto	Algoritmo en código abierto subido al autopiloto	

Nota: Elaboración propia.

Tabla 3.7: Matriz morfológica del dominio eléctrico-electrónico.

Función	Alternativa 1	Alternativa 2	Alternativa 3
Almacenar energía	Batería LiPo	Cilindro de hidrógeno	Batería Li-Ion
Alimentar propulsión	Batería LiPo	Celda de hidrógeno	Batería Li-Ion
Acondicionar voltaje	Módulo de potencia		
para actuador de			
rotación de propelas			
Alimentar	Batería LiPo	Celda de hidrógeno	Batería Li-Ion
controlador, sensores			
y actuadores			
Acondicionar voltaje	Módulo de potencia		
para controlador,			
sensores y actuadores			

Nota: Elaboración propia.

3.4. Evaluación técnica-económica

En la siguiente sección se procede a realizar una evaluación formal de los conceptos de solución resultantes de la etapa anterior en base a criterios técnicos y económicos (Anexos H e I). Para ello, se procederá a utilizar el formato VDI 2225 para el análisis técnico (tabla 3.9) y económico (tabla 3.10) que considera una valoración de criterios ya establecidos, los cuales se pueden observar plenamente en la tabla 3.8 a continuación.

Tabla 3.8: Puntuación asignada a los criterios 'p' y 'g' - VDI 2225.

Valoración	Puntaje de satisfacción para 'p'	Peso ponderado para 'g'
0	No satisface	Pobre
1	Aceptable a las justas	Poco útil
2	Suficiente	Útil
3	Bien	Importante
4	Muy bien (ideal)	Muy importante

	I abla 3.9: Evaluacion del desempeno tecnico.									
	Valor técnico (x _i)									
Varia	ntes de conceptos		Co	ncepto	Co	ncepto	Concepto		Solu	ıción
			de		de		de		idea	ıl
			sol	ución	sol	ución	sol	ución		
			1		2		3			
N°	Criterio de evaluación	g	р	gp	р	gp	р	gp	р	gp
1	Función principal	4	3	12	3	12	2	8	4	16
2	Forma	3	2	6	3	9	1	3	4	12
3	Diseño	3	3	9	3	9	2	6	4	16
4	Estabilidad	4	2	8	3	12	2	8	4	16
5	Seguridad	2	3	6	3	6	3	6	4	8
6	Fabricación	2	2	4	2	4	3	6	4	8
7	Montaje	3	3	9	3	9	3	9	4	12
8	Uso de energía	4	3	12	1	4	3	12	4	16
9	Peso	4	2	8	2	8	3	12	4	16
Puntaje máximo total 29			74		73		70	36	120	
Valor	técnico (x _i)			0.638		0.629		0.603		

Nota. Elaboración propia.

Tabla 3.10: Evaluación del desempeño económico.

Valor económico (yi)										
Varia	ntes de conceptos		Concepto		Concepto		Concepto		Solución	
			de		de		de	de		1
			so	lución	so	lución	so	lución		
			1		2	-	3			
N°	Criterio de evaluación	g	p	gp	p	gp	p	gp	р	gp
1	Costo inicial de la tecnología	4	2	8	3	12	3	12	4	16
2	Costo energético	4	2	8	3	12	3	12	4	16
3	Costo de operación	2	3	6	3	6	3	6	4	8
4	Costo de fabricación	3	2	6	3	9	3	9	4	12
5	Rentabilidad futura	3	3	9	2	6	2	6	4	12
6	Costo de mantenimiento	3	3	9	2	6	2	6	4	12
Puntaje máximo total 19				46		51		51	24	76
Valor	económico (y _i)			0.605		0.671		0.671		

Nota. Elaboración propia.

Figura 3.3: Diagrama de evaluación técnico-económico según VDI 2225. Fuente: Elaboración propia.

Como se puede observar en la figura 3.3, la solución de mayor puntaje más próxima a la solución ideal es la solución 2 (Hexacóptero) dado que en promedio destaca en los aspectos técnico y económico. No obstante, las otras dos se encuentran bastante cerca por lo que la solución óptima deberá rescatar características de ambas soluciones.

La solución 1 pierde en lo que respecta al ámbito económico al ser tecnología de punta que quizás una empresa mediana de limpieza no esté dispuesta a invertir en la actualidad. No obstante, hay que considerar que el costo de la tecnología tiende a abaratarse con el pasar de los años y por ello, esta alternativa (bajo el criterio de proyección económica) muy probablemente será más rentable en un futuro cercano. Asimismo, se debe tomar en cuenta que, como visto en la tabla comparativa de la sección 2.2.4, la celda de hidrógeno puede aportar hasta 19 veces más en duración de vuelo que la batería LiPo y esta última, en su presentación de máxima capacidad comercial (22000mAh – 2.5kg aprox.) puede pesar más que un módulo HFC completo (IE SOAR 800W – 1.5 kg aprox.) (Intelligent Energy, 2021).

Por otro lado, la solución 3 empata en el aspecto económico con la solución de mayor puntaje dado que ambas usan baterías LiPo de gran capacidad y los costos de fabricación, mantenimiento y operación vienen a ser iguales. No obstante, carece en el aspecto técnico dado que se trata de un cuadricóptero, el cual puede verse más afectado por la contrafuerza ejercida por el disparo a presión así como las ráfagas súbitas de viento en mediana altura derivando en un mayor esfuerzo de sus motores para compensar el vuelo.

3.5. Concepto de solución óptimo

Esta solución enfatiza la estabilidad (6 rotores) de la solución ganadora, una mayor duración de vuelo provisto por la celda de hidrógeno de la solución 1 y un diseño ligero de la solución 3. Sin embargo, el cambio más importante es la sustitución de la batería LiPo para la propulsión por un sistema integrado cilindro-celda de hidrógeno dado que el propósito de la misión de este VANT es el de llevar a cabo una sesión completa de lavado a presión por más de una hora en vuelo. Pueden observarse los detalles en las figuras 3.4 y 3.5.

Figura 3.4: Concepto óptimo de solución. Fuente: Elaboración propia.

Figura 3.5: Vista de perfil del VANT. Fuente: Elaboración propia

La modificación de la pistola se consigue mediante el reemplazo de la pistola completa por componentes más compactos que armados conforman un disparador. Por ejemplo, se sustituyó la lanza de plástico por la lanza comercial acoplada de acero inoxidable y latón del concepto solución 3 (340 g). Asimismo, se detalla el servomecanismo disparador de gatillo. Esto se observa con detalle en la figura 3.6.

Figura 3.6: Servomecanismo disparador de gatillo. Fuente: Elaboración propia.

La integración de la pistola con la varilla también se detalla mediante el uso de una pieza que sirva de unión (figura 3.7), de manera que la integración total quedaría como en la figura 3.8.

Figura 3.7: Estructura de unión. Fuente: Elaboración propia.

Figura 3.8: Integración de piezas destinadas al lavado. Fuente: Elaboración propia.

Por otro lado, tal como se ve en la figura 3.9, se definió un diseño hexagonal para la base. De esta forma, puede albergar mayor espacio por lo que se pueden distribuir mejor los componentes. Asimismo, se retiró el sensor IMU externo para aprovechar que el propio autopiloto pueda realizar su función. Finalmente, se retiró la montura aisladora de vibración adicional que se tenía para la cámara y se movió la cámara a la estructura base.

Figura 3.9: Distribución de componentes. Fuente: Elaboración propia.

CAPÍTULO 4

DISEÑO DEL SISTEMA MECATRÓNICO

En el presente capítulo se procede a desarrollar el sistema mecatrónico del proyecto de tesis. Para ello, primeramente se presentará el sistema de propulsión, mientras que el funcionamiento se ve en el Anexo J. A continuación, se realiza el diseño mecánico, en el que se empieza con un dimensionamiento inicial, se justifica la integración de las partes mediante cálculos y finalmente se elabora el modelo 3D. Después, se lleva a cabo el diseño electrónico, dentro del cual se seleccionan los componentes electrónicos internos, se define el cableado de estos y se explica su interacción y organización mediante planos y diagramas electrónicos. Finalmente, se realiza el diseño de control, donde se explica la lógica del autopiloto mediante un diagrama de flujo así como también se postula la estrategia de control a seguir del VANT.

4.1. Sistema de propulsión

En primera instancia, se debe enfatizar que al tratarse el VANT de un sistema intrínsecamente integrado cuyos dominios no son exclusivamente aislados, sino que interaccionan entre sí, se debe recurrir a un procedimiento iterativo. Por ello, se debe partir de una estimación del peso total de la máquina con el objetivo de encontrar una aproximación de la fuerza de sustentación que el motor debe generar (derivando en la hélice óptima acompañada sugerida por el fabricante) (Flores, 2021, p.67). Una vez tenido este dato, se realiza una regresión polinomial para estimar la potencia requerida en función a la fuerza, siendo los datos obtenidos de las tablas del fabricante (León, 2018, p.16). Luego, dicha potencia es multiplicada por el número de rotores y en base a la gama comercial de pilas de combustible se procede a escoger una que provea la potencia nominal suficiente para el conjunto. Este dato, junto con las horas deseadas de vuelo servirán finalmente para estimar la masa de hidrógeno requerida.

Cabe resaltar que las dimensiones de la fuente energética, motores y hélices sirven como entradas para un correcto dimensionamiento posterior del fuselaje. Para una mejor comprensión de esta etapa, en la figura 4.1 se muestra la metodología empleada para la elección de una pila de combustible.

Figura 4.1: Metodología utilizada para el sistema de propulsión. Fuente: Elaboración propia

4.1.1. Estimación del pesaje de la aeronave

Efectivamente, inicia el proceso de diseño mediante la estimación del peso total de la aeronave en base los datos comerciales y lista de requerimientos. Conste que el resultado obtenido de la ecuación 4.1 deberá ser verificado a posteriori. Así, se empieza definiendo la masa total preliminar del conjunto $m_{TOT-pre}$, la cual es el resultado de la suma de diferentes masas cruciales (Flores, 2021, p.98).

$$m_{TOT-p} = m_{estr} + m_{prop} + m_{comp} + m_{cu}$$
 (Ecuación 4.1)

Donde:

 m_{estr} : Masa de la estructura (Fuselaje, brazos y tren de aterrizaje)

 m_{prop} : Masa del sistema de propulsión (celda, cilindro y conjunto motor-propela)

m_{comp}: Masa de componentes electrónicos (Autopiloto, sensores y actuadores)

 m_{cu} : Masa de la carga útil (pistola y manguera comercial)

No obstante, el peso total del VANT debe calcularse en función de su carga útil, por ende será analizado este peso primero y se sugiere, para modelos de transporte modernos, que no exceda de 1/3 del peso total (Quan, 2017, p. 60). En cuanto a la masa de la carga útil, esta se encuentra compuesta por la pistola, su lanza y la manguera. Consultando modelos comerciales se puede tener una primera estimación (tabla 4.1).

Ítem	Consideración - Referencia	Peso estimado [g]
Conjunto Pistola y varilla comercial.	Peso de producto de repuesto del fabricante DUSICHIN DUS-022 (Mo. Item #: 2127037).	1360
Manguera aproximada (15 m)	Peso de manguera Kaercher considerando extensiones.	1100
Total		2460

Tabla 4.1: Tabla de pesos estimados de la carga útil.

Nota. Elaboración propia.

Para la masa del resto de componentes, se tomará en consideración la recomendación de Quan Quan y la exigencia de la ley N° 29088 (\leq 25 kg). Hay que considerar que el VANT debe poder ser cargado por una persona. Entonces, se toma en cuenta el peso estimado de la carga útil como base para obtener el peso estimado del VANT.

$$m_{cu} \le \frac{m_{TOT-pre}}{3}$$

Se cumple que $m_{VANT} \ge 3(m_{cu})$. Por ende, $m_{TOT-pre} \ge 7.380$ kg.

Se usa un factor de seguridad de 1.1 haciendo alusión al agua retenida así como los accesorios del conjunto pistola-varilla.

$$m_{TOT-pre} = 8.118 \text{ kg} (8.2 \text{ kg})$$

Se tiene que el peso total estimado es de 8.2 kg, lo cual es un buen indicio dado que es similar a pesos de modelos comerciales vistos en la sección 2.1.

4.1.2. Selección de Motores y Hélices

A continuación, se determina el empuje necesario que cada motor debe ejercer. Esto se consigue dividiendo el peso entre N cantidad de motores. Si el peso total es de 8.2 kg y N=6, entonces:

$$Empuje = \frac{8200}{6} = 1366.66 \ g \ (13.39 \ N)$$

Para la selección del motor y hélice, normalmente los fabricantes adjuntan una hoja de evaluación de rendimiento de sus motores empleando distintas hélices. Así, para el presente caso se procederá a consultar al fabricante T-Motor. Primeramente, dado que se trata de un VANT de considerable peso, se recurrirá a la categoría "Antigravity Type". Se elige la gama MN5008 debido a su óptimo rendimiento para aplicaciones de mayor carga en cuadricópteros y hexacópteros. A continuación, se debe correlacionar la potencia consumida por el empuje requerido (13.39 N) por motor del VANT. Ya que el fabricante ha realizado ensayos normalizados con cada hélice, tal como sugiere la tesis de Heser León, se realiza una gráfica de regresión polinomial entre la potencia y el empuje con la finalidad de tener una expresión de la potencia estimada en función a la fuerza (León, 2018, p.16). Se escoge entonces el modelo KV170 al ser el de menor consumo, donde los ensayos por propela pueden observarse en la tabla K.1 (en base al Anexo K) junto con sus respectivas regresiones polinomiales en las figuras 4.2 y 4.3.

Figura 4.2: Ensayo de vuelo de MN5008 KV170 con P17*5.8" CF. Fuente: Elaboración propia.

Figura 4.3: Ensayo de vuelo de MN5008 KV170 con P18*6.1" CF. Fuente: Elaboración propia.

De esta forma, se obtienen las expresiones 4.2 y 4.3:

$$P_{P17} = 0.2241F^2 + 8.8902F - 15.788$$
 (Ecuación 4.2)
$$P_{P18} = 0.2666F^2 + 6.3101F - 0.2688$$
 (Ecuación 4.3)

Reemplazando entonces el empuje (13.39 N) en las ecuaciones 4.2 y 4.3 se puede determinar qué propela es más eficiente al consumir menos potencia.

$$P_{P1} = 143.43 W$$

 $P_{P18} = 132.02 W$

Se concluye que la propela P18 consume menor potencia a un mayor diámetro.

No obstante, se tienen 6 motores en total, por lo que la potencia requerida será:

$$P_{total} = 6(P_{P18}) = 792.12 W$$

En cuanto a la hélice, Quan Quan indica que el incremento en el tamaño de la propela (momento de inercia) hará que su respuesta sea lenta aunque ofrecerá una mejor sustentación debido a que abarca una mayor área para el empuje (p.64). Asimismo, conforme más rígida sea, mayor es la fatiga que el efecto de aleteo de las palas traen al cubo del rotor por lo que la temperatura incrementa, tal como se ve en la tabla K.1. Como se observó en los ensayos, la propela con mejor rendimiento en vuelo con el motor MN5008 KV170 es la P18*6.1" CF de fibra de carbono con un diámetro aproximado de 45.72 cm (véase tabla 4.2).

Modelo		P18*6.1" CF
Alimentación [S-Lipo]	6S-12S	
Corriente máxima [A]	15	
Peso [g]	128	31.5 por cuchilla
Dimensiones [mm]	D55.6 x 32	457.2 x 25.4
IP	35 (protección contra jets de agua)	
Costo [\$]	89.99 por unidad	82.90 por par

Tabla 4 2. Selección conjunto Motor-Propela

Nota. Adaptado de Antigravity Type. MN5008 por T-Motor, 2021.

4.1.3. Selección de la pila y cilindro de combustible

Dada la necesidad de una autonomía de vuelo superior con respecto al peso, es necesario disponer de una fuente alternativa de energía: la pila de hidrógeno. En contraste con el proceso de selección de una batería, la mayoría de las pilas de combustible comerciales se identifican por su vataje en lugar de su amperaje. Dicho esto, se resumen los requerimientos que se deben cumplir en la tabla 4.3.

Tabla 4.3: Tabla de requerimientos para pila.

Requerimientos para selección de pila						
Potencia total	> 792.12 W					
Peso	< Mitad del peso estimado (4.1 kg)					
Vota Eleboración propio						

Nota. Elaboración propia.

Respecto a las pilas de combustible, se hará énfasis en las pilas de hidrógeno tipo PEM tal como se vio a detalle en la sección 2.2 debido a su mayor accesibilidad comercial. Asimismo, al momento de la selección se debe tomar en consideración un balance entre la autonomía (poco peso y volumen) y el costo (debido a que se trata de una tecnología reciente). Por ende, en la siguiente tabla 4.4 se pueden observar a detalle las opciones comerciales y sus principales características.

Tabla 4.4: Principales modelos comerciales de pilas de combustible.								
Modelo	H-1000 PEMFC	HES Aerostak 1000 – LV	IE – Soar 800 W					
		EI	e helipert farty					
Potencia [W]	1000	1000	800					
Masa [g]	4000	2036	930					
Dimensiones [mm]	254x170x130	268x219x122.5	196x100x140					
Voltaje entregado [V]	12	30 - 47.5	19.6 - 25.2					
Costo [\$]	5899	6490	5605					

Nota. Alternativas sugeridas en Diseño de un dron con pila de hidrógeno para transporte de paquetería – Memoria [Tesis de Maestría] por Cesar Flores, 2021, p76.

Se tiene entonces que la opción con menor peso así como el vataje necesario es la pila de hidrógeno tipo PEM de la marca Intelligent Energy modelo IE-SOAR 800 W. Este, sin embargo, incluye los siguientes elementos de la tabla 4.5.

Tabla 4.5: Componentes de IE-SOAR 800 W.					
Ítem (cables incluidos)	Peso [g]				
Pila de combustible (FCPM)	930				
Regulador de hidrógeno	250				

Tabla 4.5: Componentes de IE-SOAR 800 W	W.
---	----

Nota. Extraído de Compact Hydrogen and PEM Fuel Cells for UAVs and Drones por Intelligent Energy, 2023.

Respecto al combustible, como ya se mencionó en la sección 2.9, se necesita de hidrógeno comprimido. Este, si bien se adquiere mediante la compra o recarga de bombonas industriales, se almacena dentro del VANT en un cilindro de menor tamaño y usualmente de material de fibra de carbono o composite. No obstante, antes de determinar las dimensiones, fabricante y material del cilindro, se ha de calcular la cantidad de hidrógeno requerido para la operación. De esta forma, se garantizará la autonomía solicitada. Para el presente caso, Intelligent Energy *(IE)* provee la siguiente fórmula vista en la ecuación 4.4 para determinar el consumo horario de combustible:

The fuel consumption
$$\left(\frac{g}{h}\right) = \frac{Power(W)}{Energy \ content \ of \ hydrogen(\frac{Wh}{g}) \times Efficiency}$$
 (Ecuación 4.4)

Donde, se tiene una potencia de 800 W del módulo elegido, una eficiencia de 0.53 (fabricante) y el contenido energético del hidrógeno de 33 Wh/g (fabricante). Así, reemplazando se tiene:

Consumo de combustible =
$$\frac{800}{33.3 \times 0.53}$$
 = 45.33 g/h

Por otro lado, se necesita definir la autonomía deseada del proyecto (1 h). Mediante esta y el consumo de combustible, se puede emplear la ecuación 4.5 para hallar la masa de hidrógeno requerida.

Autonomía (h) =
$$\frac{Masa \ de \ hidrógeno \ (g)}{Consumo \ de \ combustible \ (\frac{g}{h})}$$
 (Ecuación 4.5)

Masa de hidrógeno =
$$1h \times 45.33 \frac{g}{h} = 45.33 g$$

Dentro de la lista de tablas de múltiples empresas del rubro que brinda *Intelligent Energy*, se destaca la firma AMS que elabora cilindros compuestos, los cuales son de menor peso que aquellos fabricados de fibra de carbono. Se elige entonces aquel cilindro con la capacidad de albergar la masa requerida como se ve en la tabla 4.6 el cual es el modelo MC3 con 1.7 kg de peso total y puede contener hasta 61.9 g de hidrógeno.

Tabla 4.6: Cilindros compuestos de AMS.

Cylinder Name	Design Standard	Certification	Туре	Volume (L)	Dia (mm)	Length (mm)	Mass (g)	Pressure (bar)	Mass of hydrogen (g)	wt%H2	Electrical Energy (Wh)	Thread
MCO.8	ISO 11119-2	TPED, DOT	E	0.8	109	185	800	BODE	6.3	20	271	Misx15
MCI	150 11119-2	TPED, DOT	3	1.0	99	235	860	300	20,6	23	343	M18 x 1.5
CF88UL (Stock)	ISO 11119-2	TPED, DOT	3	1.4	112	252	940	300	29,7	3,1	495	M18 x 1.5
CF98UL	ISO 11119-2	TPED, DOT	в	16	112	273	1000	300	33.0	3.2	550	MTEXT.5
MCZŁ (Stock)	150 11119-2	TPED, D'DT	3	'2.0'	101	386	1300	300	취크	5.1	687	M18×15
MCa	150 11119-2	TPED, DOT	ŝ	3,0	115	425	1700	300	61.9	3,5	1030	MIEX15
B CF.	150 11119-2	TPED, DOT	3	3.0	115	425	1620	300	61.9	3.2	1030	Misials
MC5	50 11119-2	TPED, DOT	ž	5,0	15B	405	3300	300	103.1	3,0	1717	M18 x 1.5
MC6.8	ISO 11119-2	TPED, DOT	Ē	8,8	160	524	3900	DOE	140.3	3,5	2336	M18 x 1.5

Nota. Extraído de Cylinder options for UAVs por Intelligent Energy, 2023.

4.1.4. Cálculo de autonomía de vuelo

Puesto que se ha elegido un cilindro con una masa de hidrógeno superior al requerido, se procede a determinar la autonomía exacta del conjunto. Para ello, se emplea un segundo método el cual es mediante la energía almacenada Wh dentro del cilindro seleccionado la cual es 1030 Wh (Flores, 2021). Si se sabe que 1 Wh son 3600 J entonces se cumple que:

Energía (
$$J$$
) = 1030 × 3600 = 3.708 × 10⁶ J

A continuación, se convierte la potencia continua que consume el motor y se procede a determinar nuevamente la autonomía.

$$800 W \rightarrow 800 \frac{f}{s}$$

Autonomía = $\frac{3.708 \times 10^6 J}{800 \frac{J}{s}} = 4635 s \times \frac{1 \min}{60 s} = 77.25 \min (1 h \operatorname{con} 17 \min y \, 15 s)$

Se concluye entonces que se satisface el requerimiento de autonomía de vuelo mínimo (1 h) dejando un margen de 17 min con 15 s dentro del cual el VANT podría verse afectado por el arrastre en vuelo o pérdidas de eficiencia de las partes mecánicas. Finalmente, la tabla 4.7 resume los componentes seleccionados para el sistema de propulsión.

Ítem	Modelo	Fabricante
Motor brushless	MN5008 KV170	T-Motor
Hélice	T-MOTOR P18x6.1 CF	T-Motor
Pila de hidrógeno	IE-SOAR 800 W	Intelligent Energy
Cilindro de hidrógeno	MC3	AMS

Tabla 4.7: Componentes del sistema de propulsión.

Nota. Elaboración propia.

4.2. Diseño Mecánico

A continuación, en esta sección se presenta el diseño del cuerpo físico del VANT. Para ello, durante cada etapa del diseño se empieza con un dimensionamiento de las partes críticas: fuselaje, brazos y tren de aterrizaje; presentado en el Anexo R. Seguido de esto, se justifican los procesos de fabricación y materiales. Luego, se realizan cálculos preliminares de resistencia y de impacto de tal forma que se permita justificar la integridad de las piezas ya sea debido al vuelo mismo del dron, el efecto de su peso o el disparo a presión. Finalmente, se realiza un análisis por elementos finitos de la resistencia de las piezas así como un análisis aerodinámico, visto en el Anexo Q, para validar la integridad física del sistema.

4.2.1. Modelo Completo

El hexacóptero consiste en un fuselaje principal (base hexagonal donde ramifican lo brazos), brazos con montajes para motores, un tren de aterrizaje, dos soportes superiores para albergar el cilindro de hidrógeno seleccionado y un soporte inferior para la integración de una pistola y varilla comercial; de tal forma que pueda ejecutar un lavado a presión (véase figura 4.4). En cuanto a sus materiales constructivos, la fibra de carbono es predominante en las partes estructurales mencionadas debido a su baja densidad y alta resistencia. Por otro lado, emplea tornillos de aluminio para la unión de partes debido a su facilidad de comercialización y alta resistencia. Consta de 6 brazos tubulares con un montaje para los motores MN5008 KV170 elegidos así como sus controladores de velocidad correspondientes. En la parte inferior porta un juego de rieles comerciales para sostener la pila de hidrógeno. Finalmente y no menos importante, cumpliendo con los requerimientos de seguridad, cuenta con un sistema paracaídas en la parte superior posterior (véase Anexo S). Asimismo, cumple el estándar IP-X3 al aislar los componentes electrónicos internos mediante ventanas de policarbonato (véase Anexo T).

Figura 4.4: Diseño culminado del sistema mecatrónico. Fuente: Elaboración propia.

4.2.2. Materiales y procesos de fabricación

Todos los detalles de materiales de las piezas pueden observarse en la tabla 4.8.

Tabla 4.8. Muler lules y procesos de jubricación.				
Item(s)	Material	Proceso de fabricación		
F	uselaje (Estructura central y	v brazos)		
Base inferior, Base superior	CFRP (Carbon Fiber	Entrega en plancha estándar de 1 cm. Fresado y		
	Reinforced Polymer)	corte láser CNC.		
Tubo-Brazos	CFRP	Moldeo por compresión.		
Ventanas de protección	Policarbonato	Moldeo por inyección.		
Sistem	a de propulsión (Motores, p	ila y cilindro)		
Base Motor-ESC	CFRP	Entrega en plancha estándar de 1 cm. Fresado y		
	100000	corte láser CNC.		
Sujetador de pila	Aluminio 6061-T6	Entrega en plancha estándar de 1 cm. Fresado.		
Sujetador vertical cilindro	CFRP	Entrega en plancha seguido de doblado en		
		caliente o moldeo por compresión.		
Sujetador lateral cilindro	CFRP	Entrega en plancha seguido de doblado en		
		caliente o moldeo por compresión.		
	Carga útil	1		
Soporte vertical en V	CFRP	Entrega en plancha de grosor 2 cm. Fresado y		
-		corte láser CNC.		
Adaptador M22 Hembra-Macho	Latón alfa amarillo	Entrega en tubo normalizado. Torneado interno		
	C26000	y externo de la pieza.		
Plataforma de extensión del paracaídas	Policarbonato	Entrega en plancha de 1 cm. Corte láser.		
	Tren de aterrizaje			
Tubo soporte vertical	CFRP	Moldeo por compresión.		
Barra soporte horizontal	CFRP	Entrega en barra normalizada. Moldeo por		
		compresión.		
Unión T	ABS	Impresión 3D o moldeo por inyección.		
Placa base	CFRP	Moldeo por compresión		

TT 1 1 4 0 1 6 1		1	C1 · · · /
Tabla 4 8. Materiales	v nrocesos	de	tabricacion
ruota no. materiales	y procesos	uc.	juoricación

Nota. Elaboración propia.

4.2.3. Montaje brazo-fuselaje

Los brazos consisten en perfiles tubulares de 430 mm de largo, 25 mm de diámetro y 2 mm de espesor. Respecto a su colación, se dejaron 7 cm para llevarse a cabo el montaje del brazo. Para ello, se optará por usar abrazaderas de aluminio 6061-T6 estandarizadas de 25 mm con orificio central para tornillo de seguro, las cuales permiten la apropiada integración al fuselaje. Para el presente diseño, se eligen abrazaderas personalizadas por la marca UAVRC con las características mostradas en la tabla 4.9.

Modelo	TUBE CLAMP 25MM METAL-RED (Mo. DIY-BCD25MM)
Dimensiones [mm]	38x 7.0 x 30mm
Peso [g]	10
Material	Aluminio 6061-T6 procesado con CNC
Costo [\$]	5 c/par

Una vez comprobada la integridad mecánica del brazo por resistencia y deflexión, cuyo análisis fue detallado en el Anexo M, se lleva al modelado 3D donde se aprecia visualmente cómo se fijan los brazos a la base. Por ende, la integración de los brazos a la estructura base queda tal como se observa en la figura 4.5.

Figura 4.5: Montaje brazo - fuselaje. Fuente: Elaboración Propia.

4.2.4 Montaje de motores

El proceso empieza tomando en consideración las medidas de la base del motor, las cuales se muestran en la figura 4.6. Para ello, se debe procurar mantener un espacio destinado a que quepa una circunferencia de 25 mm para 4 agujeros M3.

Figura 4.6: Dimensiones de la base de MN5008 170KV. Extraído de T-Motor, 2021.

Para la sujeción se ha propuesto usar el mismo método del uso de abrazaderas. No obstante, estas cargarán una pequeña plataforma de fibra de carbono lo suficientemente extensa para permitir que el motor y su ESC quepan en esta tal como se observa en la figura 4.7. El motor irá atornillado a su base mientras que el ESC puede sujetarse fácilmente mediante cintillas de seguridad.

Figura 4.7: Base del Motor. Fuente: Elaboración propia.

Finalmente, se lleva a cabo el modelado 3D incluyendo al motor y al ESC en sus posiciones respectivas. Ello se puede apreciar en la figura 4.8.

Figura 4.8: Disposición final del motor y ESC. Fuente: Elaboración propia.
4.2.5. Integración del sistema de propulsión

Dado que se tiene elegida la pila de hidrógeno, se rescata que esta misma posee agujeros roscados tanto en la parte inferior como superior los cuales le permiten ser integrado a una estructura de montaje. En el presente caso, dado que la base superior del VANT será utilizada para albergar el cilindro de hidrógeno ya que este consume un mayor espacio que la pila, se debe considerar la parte baja del VANT para situar la pila de hidrógeno. De esta forma, la pila tendría que ser "cargada" mediante los agujeros roscados M2.5 superiores los cuales se observan en la figura 4.9.

Figura 4.9: Vista de planta de módulo IE-SOAR 800 W. Fuente: Elaboración propia.

Por otro lado, para la sujeción en general de múltiples cargas se recomienda el uso de rieles predeterminados que consisten en un par de tubos de fibra de carbono sobre los cuales, mediante abrazaderas con goma amortiguadora permiten la integración de las cargas Asimismo, estos rieles se unen a la base del VANT de la misma forma. Dado que las gomas son de un diámetro menor que el de los tubos, permiten su ingreso y ajuste en vuelo en la posición deseada. En este caso, para la elección de los rieles se recomienda que la longitud de estos sea menor o igual a la mitad del diámetro del VANT el cual es aproximadamente 900 mm como se observa en la figura 4.10 (FlyingTech, 2023). Esto es con la finalidad de que una excesiva longitud no afecte la maniobra del VANT en vuelo.

Figura 4.10: Diámetro aproximado del VANT. Fuente: Elaboración propia.

Por ende, en este caso sería óptimo un juego de rieles de 450 mm a menos. Para ello, se ha consultado la firma FlyingTech los cuales disponen de un juego de rieles de 440 mm de longitud y 12 mm de diámetro con 4 abrazaderas con goma amortiguadora para cargas medias y pesadas. A continuación, en la tabla 4.10 se muestran las especificaciones del conjunto seleccionado.

	Tabla 4.10: Juego de rieles TL96014.
Modelo	Tarot 12mm Load Rail Mount kit, for Gimbals and other Payloads – TL96014
Piezas	 4 abrazaderas pequeñas con gomas para tubos 12 mm 2 tubos CFRP
Medidas [mm]	 Abrazaderas de 25x24x8 Tubos de 12x440
Materiales	 Abrazaderas de Aluminio 6061 Tubos de fibra de carbono
Peso del conjunto [g]	- 76 g
Costo [\$]	40

Nota. Información comercial extraída de FlyingTech.com, 2023.

Una vez que se tiene armada esta estructura con las medidas y modelos proporcionados por el fabricante, se puede pensar en integrar la pila como una carga usando abrazaderas nuevamente. Para ello, tomando en cuenta las medidas recogidas de la figura 4.9 se plantea el esquema de una pieza que pueda unir abrazaderas provenientes del par de tubos e igualmente unirse a los agujeros superiores M2.5 de la pila. Se da cabida entonces al siguiente bosquejo mostrado en la figura 4.11.

Figura 4.11: Bosquejo del sujetador de la pila de hidrógeno. Fuente: Elaboración propia.

No obstante, para esta forma convendría que fuese de aluminio 6061 dado a la facilidad durante el mecanizado para su elaboración así como su reducido costo en contraste a si fuese de fibra de carbono reforzado. Además, se sabe que el aluminio 6061 también es empleado en estructuras de vehículos y bastidores de aeronaves por su relativa baja densidad y alto límite de fluencia de 275 MPa (Lean, 2019). Tomando en consideración la facilidad con que pueden integrarse las cargas al riel mediante abrazaderas con goma amortiguadora se elige un segundo juego de abrazaderas de igual tamaño para adjuntar el sujetador al riel. De esta forma, quedaría como la imagen mostrada en la tabla 4.11. Cabe resaltar que estas abrazaderas son prefabricadas de aluminio 6061 para uso exclusivo de drones de carga pesada tal como la firma FlyingTech especifica.

Tabla 4.11: Juego de abrazaderas 11.90010.			
Modelo	Tarot Aluminium Tube Clamp with Shock Absorbing Rubber Damper 12mm -		
	2Pcs TL96016		
Piezas	- 2 abrazaderas pequeñas con gomas para tubos 12 mm.		
	- 4 tornillos hexagonales M2.5 x 6.5		
Medidas [mm]	- Abrazaderas de 25.5 x 23.5 x 8		
	- Distancia de 14 mm entre agujeros		
Materiales	- Abrazaderas de Aluminio 6061		
Peso [g]	- 6 por pieza		
Costo [\$]	14		

Nota. Información comercial extraída de FlyingTech.com, 2023.

Tomando en consideración la distancia entre agujeros de la figura 4.11. se termina de definir el sujetador el cual se observa en la figura 4.12.

Figura 4.12: Sujetador de pila de hidrógeno. Fuente: Elaboración propia.

Se ensambla el riel con la pila tal como se puede apreciar en la figura 4.13. con una distancia entre tubos de 106 mm.

Figura 4.13: Sujeción de pila mediante riel de tubos. Fuente: Elaboración propia.

No obstante, se debe colocar el conjunto mediante las abrazaderas de la tabla 4.18 debajo de la base inferior del fuselaje. Las 4 abrazaderas deben distribuirse de manera simétrica de tal forma que afecte lo menor posible el centro de gravedad del VANT. Tal como se ve en la figura 4.14, partiendo de la mitad de la base, se dispone a que las abrazaderas estén a 80 mm, dejando un tramo de 140 mm libre para que se sitúe la pila.

Figura 4.14: Distribución de abrazaderas en base inferior. Fuente: Elaboración propia.

Finalmente, llevando las medidas a *Autodesk Inventor* se puede integrar el sistema de rieles en la parte inferior de la base tal como se dispone en la figura 4.15. La distancia a la cual puede ubicarse la pila puede variar dado que es acomodable y los amortiguadores permiten un buen ajuste antideslizamientos.

Figura 4.15: Integración de la pila de hidrógeno. Fuente: Elaboración propia.

Por el contrario, para la sujeción del cilindro AMS se debe implementar un soporte situado en la base superior, junto con ranuras para permitir el paso de correas de seguridad. En primera instancia, se toman las medidas del cilindro seleccionado el cual tiene una longitud total de 425 mm y un diámetro de 115 mm, pesando 1761.9 gramos finales si está lleno de hidrógeno. Para su sujeción, existen diversos métodos tales como moldes, soportes y correas. Sin embargo, debe procurarse priorizar siempre la sujeción de los lados para que evite "rodar" y la sujeción contra la base para que evite "saltar" (véase figura 4.16). En el caso de los costados, también es viable el uso de soportes, sin embargo, se emplean refuerzos únicamente dado que los multicópteros de trabajo no llevan a cabo movimientos bruscos hacia los costados por la naturaleza de su operación dado que priorizan movimientos suaves para mantener la estabilidad de su carga. Mas aún, el peso del propio cilindro actúa como anclaje ante deslizamientos. Para el presente VANT, será recomendable el uso de refuerzos ya que el disparo de agua podría causar deslizamientos del cilindro.

Figura 4.16: Modelo del cilindro AMS MC3. Fuente: Elaboración propia.

De esta forma, empezando con la sujeción principal que es contra el rodamiento, se propuso inicialmente el uso de termoplásticos resistentes a los impactos tales como el policarbonato, sin embargo, estos comercialmente solo son vendidos en planchas de hasta 20 mm, dificultando su mecanizado. Así, se cambió de alternativa a la fibra de carbono nuevamente pero esta vez en una estructura hecha de una plancha de CFRP de 2 mm de espesor, con doblado en caliente con un radio de 1 mm por doblez tal como se observa en la figura 4.17. Finalmente, el análisis de resistencia por aplastamiento del cilindro en los sujetadores puede apreciarse en el Anexo N.

Figura 4.17: Bosquejo del despliegue del sujetador. Fuente: Elaboración propia

4.2.6. Tren de aterrizaje

Como ya se evaluó en la matriz morfológica, el tipo de tren es de dos soportes (dos patas) tradicional, los cuales se integrarán directamente a la base inferior del VANT. Dado que el diseño de este conjunto ya es conocido, se puede decir que consiste en 5 piezas ensambladas en orden específico: una placa base, el soporte vertical, la unión en T, el soporte horizontal y 2 regatones de caucho como se observa en la figura 4.18. En adición, se emplea una unión en T de ABS con el propósito de unir el soporte vertical con el soporte horizontal, ambos con dos pernos M2.5 para cada uno. Más aún, en los extremos se estila siempre colocar una pieza amortiguadora, por lo que se usará dos regatones redondos de caucho de 15 mm de diámetro interno y 22 mm de diámetro externo. Uniendo las partes mencionadas, se tiene la forma final del tren de aterrizaje en la figura 4.18.

Figura 4.18: Tren de aterrizaje ensamblado. Fuente: Elaboración propia.

Respecto a la placa base, esta se inserta a la base inferior del VANT mediante 4 agujeros para tornillos M3 (véase figura 4.19). Una vez que se integra el conjunto al ensamble principal, se observa que la proyección de la base se encuentra dentro del área que abarca el tren de aterrizaje, cumpliendo con la solicitud. La integridad de este conjunto es corroborada mediante un análisis de impacto, simulando un aterrizaje crítico sobre un solo soporte. Dicho análisis puede apreciarse en el Anexo O.

Figura 4.19: Tren de aterrizaje integrado. Fuente: Elaboración propia.

4.2.7. Integración de carga útil

A continuación, se lleva a cabo la integración del medio físico de riegue el cual es una electroválvula y una varilla comercial, los cuales deben poder acoplarse en una estructura integrada a la base inferior del VANT. Cabe resaltar que se sustituyó el mecanismo de pistola planteado inicialmente debido a la complicación del diseño y a su desventaja funcional respecto a una electroválvula. La elección de la manguera comercial es puramente referencial.

En primer lugar, se seleccionan los modelos comerciales y accesorios. Sin embargo, los modelos a ser elegidos serán de la categoría de repuestos mas no modelos de primera línea debido a la particularidad y variedad de diseño de estos. Esto se debe a que los repuestos suelen tener formas y medidas estándares de acuerdo con cierto tamaño de rosca. De esta forma, se garantiza una mayor intercambiabilidad de partes al momento de hacer mantenimiento y montajes. Por ende, cabe mencionar que como principales requerimientos se tiene que todos los elementos puedan soportar una presión de 69 bar (1000 PSI). Así, los componentes a utilizarse se observan en la tabla 4.12 mientras que el análisis de resistencia por retroceso del disparo y su efecto en las partes estructurales se puede apreciar en el Anexo P.

Ítem	Modelo	Características
Electroválvula	GPG-01K G1/8" válvula solenoide NC D16021	 Rosca G 1/8" x H14 (Rosca de 9.728 mm). Presión máxima de 90 bar. Latón Voltaje 12 VDC Dimensiones: 94x49x122 Peso de 150 g (Alibaba.com) \$60
Varilla	PEGGAS – 16" Pressure Washer Wand	 Rosca de Rosca de M22 – 14 (Macho) ¼ " conector rápido para accesorios (Hembra) Peso de 211.7 g (Ubuy.com) Acero/Latón Hasta 4000 PSI (276 bar) Costo: \$12 Diámetro interior de 10 mm
Manguera	15M KAERCHER K SERIES M22 15M	 Longitud de 15 m ¼ " conector rápido (Hembra) Adaptador macho-macho con rosca de M22- 14 Peso de 1 kg (Alibaba.com) Hasta 5800 PSI (400 bar) Costo: \$103 (Se va a usar como referencia debido al peso que involucra).

Tabla 4.12: Elementos de limpieza a presión.

Nota. Elaboración propia.

Una vez elegidos los elementos de lavado, se realiza su integración. En la figura 4.20 se puede apreciar cómo se insertarían normalmente y el elemento de unión a diseñar para permitir que el conjunto pueda integrarse al VANT. Conste que la terminación "-M" o "-H" hace referencia a macho u hembra. También, ya que la electroválvula está usando una rosca Whitworth G 1/8 ", el elemento a diseñar deberá tener una entrada con esta misma configuración. Por ende, este elemento básicamente es un adaptador.

Figura 4.20: Integración de componentes de lavado. Fuente: Elaboración propia.

Entonces, el elemento a diseñar es equivalente a un adaptador hembra-macho de rosca M22 fabricado de un estándar de latón α amarillo 65Cu-35Zn (Código UNS - C26000) debido a su elevada resistencia mecánica y dureza (320 MPa – 62 HB) y a su particularidad de uso en trabajos con agua, plomería y fontanería (Lean, 2019). Considerando que el tamaño de rosca hembra es M22, se ha propuesto una estructura tipo brida para unir la varilla con el adaptador, donde los 4 agujeros (de diámetro 2.5 mm) para acoplarse se ubicarían en un diámetro de 36 mm. En la parte frontal habría un agujero M22 correspondiente a la rosca hembra. Luego, se dispone de una profundidad de 30 mm tal como se observa en la figura 4.21, de tal manera que los soportes vayan a cada lado (partes celestes) y finalmente en la parte posterior se encuentre la rosca G 1/8 ".

Figura 4.21: Dimensionamiento de elemento de unión. Fuente: Elaboración propia.

Seguidamente, se definen los soportes (figura 4.22) que permitirán integrar este elemento con el VANT. Se ha propuesto que estos sean de fibra de carbono con un grosor de 8 mm y un largo de 15 mm, siendo de mayores dimensiones puesto que estos deben aguantar el empuje que genera el disparo a presión. Se ha dispuesto la forma en V de manera que tenga mayor estabilidad al integrarse a la base y una distancia entre la base y el eje central de 155 mm (superior a los 133 mm de la figura 4.15) para evitar que colisione con la pila de hidrógeno.

Figura 4.22: Dimensionamiento de soporte integrador. Fuente: Elaboración propia.

Cabe resaltar que para la elaboración del conjunto se ha considerado las medidas reales de la electroválvula las cuales son 94x49x122 mm. Llevando las medidas de las figuras 4.21 y 4.22 a *Autodesk Inventor* se integran los elementos comerciales teniendo la configuración de la figura 4.23. Finalmente, se puede apreciar en la figura 4.24 la integración en la base inferior mediante pernos 2 pernos M3 por cada pie del soporte.

Figura 4.23: Integración final de elementos. Fuente: Elaboración propia.

Figura 4.24: Sistema de lavado a presión. Fuente: Elaboración propia.

4.3. Diseño electrónico

En esta sección, tomando en consideración el diseño preliminar de los elementos mecánicos, se lleva a cabo la realización de cálculos para el respectivo diseño o elección de componentes electrónicos. Estos dispositivos deben aportar a la conversión y distribución energética a los motores, la determinación de los parámetros de posición y orientación del VANT y la comunicación con el operador en tierra (revisar hojas de datos en Anexo X).

4.3.1. Diagrama de bloques electrónico

A continuación, en la figura 4.25 se muestra el diagrama de bloques electrónico a emplearse dentro del sistema mecatrónico. Este, muestra tanto la arquitectura híbrida-electrónica (dado que se cuenta con una pila de hidrógeno) así como también la distribución energética y las formas de comunicación con los distintos componentes.

Figura 4.25: Diagrama de bloques electrónico. Fuente: Elaboración propia

4.3.2 Selección de Controlador Electrónico de Velocidad (ESC)

Este circuito integrado se encarga del control de velocidad de los motores ya que actúa como un inversor que recibe voltaje continuo de alimentación proveniente de la fuente de energía y una señal PWM del autopiloto de tal forma que se puede variar la corriente alterna trifásica en la salida. En cuanto a su selección, esta debe obedecer al motor elegido. Así, su amperaje debe superar en un 30% al exigido por el motor (Factor de seguridad de 1.3). En segundo lugar, su tensión debe poder aguantar la tensión que ingresa al motor. El amperaje máximo que puede soportar el motor MN5008 KV170 es de 15 A. Asimismo, su tensión de alimentación es un equivalente de 6S LiPo con 25.2V máximo. Estos requerimientos se visualizan en la tabla 4.13.

$$I_{ESC} = I_{M-max} \times 1.3 = 19.5 A$$

Tabla 4.13: Requerimientos para elección del ESC.

Requerimiento del ESC	Criterio	
Tensión de alimentación	≥25.2 V (o 6S LiPo)	
Corriente de alimentación	≥ 19.5 A	

Nota. Elaboración propia.

Una vez que se han aclarado los requerimientos, se procede a consultar a la firma de renombre KDE Direct, la cual se especializa en la producción de equipos y accesorios para drones multirotores. En su apartado para ESC's, se pueden identificar fácilmente dado que dentro de sus nombres se halla la corriente continua máxima (KDE – XXX[A]XXX) (KDE Direct, 2023). De esta forma, se ubica al modelo KDEXF-UAS55 cuyas características de interés se muestran en la tabla 4.14. Cabe resaltar que dicho modelo ya cuenta con un disipador de calor integrado de aluminio 6061-T6 unido térmicamente con epoxi así como una espuma anti vibradora (Flying Tech, 2021). De esta forma, se evita el sobrecalentamiento del equipo electrónico en funcionamiento al ofrecer una protección de hasta 95°C mientras que la temperatura máxima de operación a 100% de la capacidad del motor MN5008 KV170 es 89°C (Anexo K).

Tabla 4.14. Curacleristicus de RDEAT-OA555.			
Modelo	KDEXF-UAS55		
Rango de voltaje [V]	7.4-34.8		
Corriente continua máxima [A]	55		
Peso [g]	32		
Costo [\$]	90.95		

Tabla 4.14: Características de KDEXF-UAS55.

Nota: Elaboración propia.

Finalmente, cabe resaltar que se necesita de un módulo que pueda repartir la potencia entregada por la pila igualmente entre los motores. Para ello, se emplea un *Power Distribution Board (PDB)*, cuya única función es la de distribuir el voltaje entre los motores para tener una instalación más limpia al ahorrar el cableado excedente. Al igual que con el ESC, debe cumplir con los requerimientos de la tabla 4.13. Se tiene entonces la placa **Matek PDB-HEX X Class 12S** (véase tabla 4.15) para la propia distribución de potencia.

1 abia 4.15. Curucierisicus de Mulek FDD-IIEA A Cluss 125.			
Modelo	Matek PDB-HEX X Class 128 PDB		
Voltaje [S - Lipo]	2-128		
Peso [g]	12		
Costo [\$]	27		

Tabla 4.15: Características de Matek PDB-HEX X Class 12S.

Nota. Elaboración propia.

4.3.3. Selección de Autopiloto

Coloquialmente conocido como el cerebro del VANT, el siguiente dispositivo se encarga de la gestión de instrucciones y comunicación entre los demás dispositivos del sistema así como de aquellos externos que yacen con el operador en tierra. Dado que utilizan un microcontrolador, en estos se ejecuta el algoritmo de control que se encarga de retroalimentar los valores de velocidad angular, posicionamiento, altura y las instrucciones del operador para garantizar estabilidad en vuelo. En cuanto a su selección, deben considerarse los siguientes

requerimientos mostrados en la tabla 4.16 mientras que en la tabla 4.17 se muestran las opciones comerciales más destacadas

Tabla 4.10. Requerimientos para elección del autopitolo.			
Requerimiento del autopiloto	Criterio		
N° de entradas PWM (ESCs)	>= 6 pines		
Sensores	Contener sensores esenciales (Giroscopio, acelerómetro y barómetro)		
Puertos de comunicación	Contar con interfaces UART/I2C		
Aislamiento	PCB protegido o encapsulado		

Table 1 16: Requerimientos para elección del autopiloto

Nota. Elaboración propia

Tabla 4.17: Modelos comerciales de autopilotos.				
Modelo	Multiwii	Pixhawk PX4	Ardupilot APM 2.8	
		File D	Che Che	
Entradas PWM	6 pines	8 pines	8 pines	
Puertos de comunicación	UART, I2C	UART, I2C, SPI, CAN	UART, I2C, SPI, CAN	
Sensores	Giroscopio,	Giroscopio, Acelerómetro,	Giroscopio, Acelerómetro,	
	Acelerómetro,	Barómetro, Magnetómetro	Barómetro, Magnetómetro	
	Barómetro,			
	Magnetómetro			
Protección	Ninguna	Polímero	Polímero	
Alimentación [V]	5	3.3-6.6	12-16	
Peso	9.8	38	82	
Costo [\$]	38	80	41	
τ. ΓΙΙ '' '				

Nota. Elaboración propia

Se descarta en primer lugar al Multiwii debido a la falta de protección de su PCB. Luego, si bien las dos opciones restantes cumplen con todos los requerimientos, el costo superior del Pixhawk PX4 justifica la reducción de peso en comparación al Ardupilot APM 2.8. Por ende, se escoge al Pixhawk PX4 como controlador del VANT el cual ya cuenta con un barómetro interno MEAS MS5611 (ROS Components, 2021).

4.3.4. Selección de GPS

Si bien el autopiloto seleccionado cuenta con sensores integrados, no posee un módulo GPS, el cual debe ser instalado externamente. Este módulo independiente se conecta al autopiloto de forma serial mediante el protocolo I2C o mediante una toma de conexión directa en los modelos más modernos. Tal como ya se describe en el Anexo C, el módulo GPS emplea el método de la triangulación para enlazarse con satélites, los cuales le brindan su posición en el espacio en tiempo real. De preferencia, como requerimiento, este debe tener un bajo peso y debe ser un módulo integrado, es decir, deben encontrarse sus partes encapsuladas. En la tabla 4.18 se observan las opciones comerciales.

Modelo	3DR uBlox GPS with	CUAV NEO V2	HolyBro Pixhawk 4 Neo-M8N
	JOR DE	A CONTRACTOR	Grs
Alimentación [V]	3	4.7-5.2	5 (Conexión directa)
Dimensiones [mm]	38 x 38 x 8.5	60 x 60 x 16	d = 50, h = 14.5
Peso [g]	16.8	33	32 (68 con varilla)
Costo [\$]	90	160	76

Nota. Elaboración propia

Se elige entonces el modelo **3DR uBlox GPS** debido a su afinidad con el controlador seleccionado así como su relativo bajo peso y costo moderado.

4.3.5. Selección de Transmisor y receptor de video (FPV)

Imprescindible para un trabajo de lavado, es necesario que se cuente con ojos en el VANT de tal forma que el operador en tierra pueda ver qué secciones de una fachada se encuentra lavando. Para los dispositivos VTX y VRX, tal como se mencionó en la lista de requerimientos, la principal exigencia es poder trabajar a 5.8GHz en comunicación por video. Se eligió esta frecuencia dado que se está trabajando en un ambiente exterior y no hay necesidad de penetración. Por el contrario, se requiere de un VTX compacto y de bajo peso así como de un VRX que también opere en 5.8GHz y que cuente con la disposición de poder adaptar un monitor FPV. Estos requerimientos se resumen en la tabla 4.19 mientras que en las tablas 4.20 y 4.21 se evalúan las alternativas comerciales.

Requerimiento VTX	Criterio
Frecuencia de trabajo	5.8 GHz
Peso	<100 g
Requerimiento RTX	Criterio
Frecuencia de trabajo	5.8 GHz
FPV	Contar con pantalla con resolución mínima de 1024 x 600

T 11 4 10 D

Nota. Elaboración propia.

Modelo	TS5828S	TS832	T\$352
			A Read
Frecuencia [GHz]	5.8	5.8	5.8
Voltaje [V]	7-24	7-16	7-15
Corriente [mA]	280	220	500
Dimensiones [mm]	39x19x8	54x32x10	62x26x28
Peso [g]	15.5	22	55
Costo [\$]	25.4	20	34

Nota. Elaboración propia.

Tabla 4.21: Modelos comerciales de VRX.

Modelo	Flysight RC801	Lilliput 339D/W	Fosa FPV Monitor 5.8GHz
Frecuencia [GHz]	5.8	5.8	5.8
Resolución pantalla	Pantalla 1024 x 600	Pantalla 1280 x 800	Pantalla 800 x 480
Costo [\$]	153	250	105

Nota. Elaboración propia.

Se elige como VTX al módulo TS832 debido a su menor peso y costo y en el caso del VRX se

elige el Lilliput 339D/W debido a su mayor resolución de pantalla a un costo moderado.

4.3.6. Selección de Cámara

Respecto a la cámara, esta debe ser RGB con la finalidad de que el operador pueda observar enteramente la superficie de trabajo frente al VANT. Esta se conecta directamente al video transmisor. Para su selección únicamente debe cumplirse una resolución horizontal igual o superior a los 800 TVL (Corrigan, 2020), además de un peso y dimensiones lo más compactas posibles. Se tiene entonces en la tabla 4.22 las opciones comerciales para este elemento. Se elige la alternativa Foxeer Razer Mini debido que compensa su costo moderado mediante una resolución TVL mayor así como un menor peso y dimensiones. Igualmente, según el fabricante, este modelo opera con una humedad de trabajo de entre 20 a 80% con humedad relativa de RH90% MAX, siendo apropiado para posibles salpicaduras en operación.

Modelo	Foxeer Razer Mini	1000TVL 1/3 CCD	RunCam Eagle 2 Pro
	1/3 CMOS HD 5MP		
Resolución [TVL]	1200	1000	800
Dimensiones [mm]	21.8 x 21.8	24 x 28 x 17	28 x 26 x 28.8
Peso [g]	12	15	15
Costo [\$]	32	16.30	66.5

מסת

Nota. Elaboración propia.

4.3.7. Selección de dispositivos de mando y teleoperación

Cabe resaltar que, la comunicación del radio controlador (RC) y el recibidor debe darse a otra frecuencia que la establecida con los módulos VTX y VRX para evitar interferencias. Por ende, según la lista de requerimientos se estableció que ambos dispositivos cuenten con la frecuencia de 2.4 GHz dado que ofrece mayor cobertura (Anexo C). Por otro lado, el RC debe contar con más de 12 canales de operación para realizar todas sus funciones. Estos requerimientos se resumen en la tabla 4.23 y las alternativas comerciales se evalúan en las tablas 4.24 y 4.25.

Tabla 4.23: Requerimientos para RC y recibidor.			
Requerimiento RC	Criterio		
Frecuencia de trabajo	2.4 GHz		
N° Canales	>=12		
Requerimiento Recibidor	Criterio		
Frecuencia de trabajo	2.4 GHz		
Peso	<15 g		

.1 . 1

D O

Nota. Elaboración propia.

Modelo	RadioLink R12DS	FrSKY X8R	FTr12B
	Addulink R12DS		
Frecuencia [GHz]	2.4	2.4	2.4
N° Canales	16	16	12
Dimensiones [mm]	50x31.514.5	46.25 x 26.6 x 14.2	39 x 32 x 15
Peso [g]	14	12.1	15
Costo [\$]	28	32	63

Nota. Elaboración propia.

Tabla 4.25: Alternativas de radio controladores.			
Modelo	FrSky Taranis X9D	FrSky Horus x10	RadioMaster TX16S
	Plus		
	010		
Frecuencia [GHz]	2.4	2.4	2.4
N° Canales	16	16	16
Costo [\$]	256	456	285

Nota. Elaboración propia.

En efecto, como recibidor se escoge el módulo de menor peso el cual es el *FrSKY X8R*, acompañado de una radio de telemetría (antena) *Holybro - SiK*. Asimismo, para el transmisor es preferible escoger un radio controlador del mismo fabricante. Por ello, se elige el *FrSky Taranis X9D Plus*. A continuación, se muestran los canales empleados que se utilizarán para este controlador en la figura 4.26 y en la tabla 4.26 su descripción.

Figura 4.26: Canales a emplear para el radio controlador. Fuente: Elaboración propia.

Tabla 4.26: Función por canal.			
Canal	Función	Canal	Función
1	Pitch up	8	Yaw right
2	Pitch down	9	Paracaídas activado
3	Roll left	10	Paracaídas desactivado
4	Roll right	11	Abrir válvula
5	Throttle up	12	Cerrar válvula
6	Throttle down	13	Activar Loiter Mode
7	Yaw left	14	Desactivar Loiter Mode

Nota. Elaboración propia.

4.3.8. Selección de controlador secundario y reguladores de voltaje

A continuación, se seleccionan aquellos elementos pertenecientes al accionar de la carga útil que porta el VANT. Para ello, se emplea un controlador secundario que gobierna el solenoide de la electroválvula y el servomotor del paracaídas. Por ende, para su selección se deben tomar en consideración el número de pines GPIO y PWM que pueda ofrecer así como el menor precio y peso posible. En las tablas 4.27 y 4.28 se puede observar la justificación.

Requerimiento	Condición
Pines GPIO	>1
Pines PWM	>1
UART	Sí
Precio	< \$30
Peso	<50 g

Tabla 4.27: <i>F</i>	<i>lequerimientos</i>	de controlado	r secundario.

Nota. Elaboración propia.

Tabla 4.28: Alternativas de microcontroladores.

Modelo	A-Star 32U4 Mini ULV (Pololu Robotics)	Arduino UNO	Tiva Launchpad - TM4C123GH6PM
N° pines GPIO	26	14	43
N° pines PWM	7	6	16
Peso [g]	3.4	25	25
Comunicación	USART, SPI, I2C	UART, SPI, I2C	UART, SPI, I2C
Alimentación [V]	0.5-5.5	5-12	5-12
Costo [\$]	19	16	16

Nota. Elaboración propia.

Se selecciona el **Arduino UNO** debido a su menor precio y a su compatibilidad con el protocolo UART el cual el A-Star no posee. Seguidamente, se debe seleccionar un controlador para el accionamiento de la electroválvula elegida en la sección 4.2.7 puesto que el controlador necesita de un intermediario para controlar dicho dispositivo. Como requerimiento es que se cuente con un sistema de aislamiento eléctrico. De esta forma, debido a su facilidad de adquisición y popularidad se selecciona el Módulo Rele 12V de 1 Canal **TAR SRD 12-VDC** (protegido con optoacoplador) como se puede observar en la tabla 4.29.

1 abla 4.29: Driver de electrovalvula.		
Modelo	TAR SRD-12VDC (Con optoacoplador)	
Alimentación [V]	12	
Canal de disparo	1	
Protección	Optoacoplador (sigmaelectronica.net)	
Peso [g]	3	
Costo [\$]	9	

1.1

1 00 D

Nota. Elaboración propia.

Dado que los actuadores pertenecen al sistema de potencia, se sugiere su alimentación por parte de la pila de forma que el microcontrolador solo se encargue de enviar señales de control. El voltaje de salida de la pila es de 19.6 – 25.2V por lo que se necesitará acondicionar los ingresos de la electroválvula (12VDC) y el servomotor (5VDC) mediante reguladores de voltaje positivo como los LM7805 y LM7812 de STMicroelectronics. De esta forma, el regulador LM7805 (figura 4.27) brinda una salida de 5V soporta hasta una entrada de 35V, cumpliendo con la solicitud.

Figura 4.27: Aplicación de regulador LM7805. Fuente: Elaboración propia.

Por otro lado, emplea el regulador LM7812 (figura 4.28) que para brindar una salida de 12V soporta hasta una entrada de 35V igualmente, cumpliendo con la solicitud.

Figura 4.28: Aplicación de regulador LM7812. Fuente: Elaboración propia.

4.3.9 Cálculo de batería LiPo para componentes internos

Se dispone de una separación de alimentación energética donde la pila provee la máxima autonomía únicamente a los elementos de potencia (motores, electroválvula y servomotor), mientras que una batería secundaria alimenta a los elementos de control, de esta forma protegiendo el autopiloto de ruidos, picos y perturbaciones. Por ende, en primer lugar se deben listar estos dispositivos junto con el máximo consumo de corriente por hora efectuado, su consumo promedio (de operación) y el respectivo voltaje (tabla 4.30).

			X7 1/ ' FX7
Dispositivo	Maximo consumo de	Consumo promedio de	Voltaje [V]
	corriente [mAh]	corriente [mA]	
Cámara RGB Foxeer Razer Mini	64	34	12
Controlador Arduino UNO	40	40	12
Recibidor FrSKY X8R	100	60	5
VTX TS832	200	150	12
3DR uBlox GPS	35	20	5
Controlador Pixhawk PX4	50	25	5
Total	489	329	

Tabla 4.30: Datos de consumo de dispositivos.

Nota. Elaboración propia.

El máximo consumo de corriente es de 489mAh (611.25 mAh considerando carga máxima de 80% de la batería), por lo que se debe seleccionar una batería LiPo que provea una autonomía de control superior al del sistema de potencia por seguridad (Tabla 4.31).

Sia 4.51: Baleria para componentes internos.		
Batería LiPo Zippy Compact 1500 mAh 4S 25C		
14.8		
1500		
182		
105 x 34 x 28		
14.70		

Nota. Elaboración propia.

Se realiza entonces un cálculo de autonomía en base a la capacidad de la batería seleccionada

dividida sobre el consumo promedio de corriente obtenido en la tabla 4.48.

T11 421 D / /

Autonomía (h) = $\frac{1500 \text{ mAh}}{329 \text{ mA}}$ Autonomía (h) = 4.56 h De esta manera, se tiene que su autonomía supera las 1.2875 horas que provee la pila, lo cual brinda seguridad de que el sistema de control se encuentre siempre funcionando y que la batería no sea necesaria de sustituir al momento de repostar.

4.3.10. Selección y configuración de módulo de potencia

Con la finalidad de conectar la batería seleccionada al autopiloto, tener una lectura del voltaje de esta y al mismo tiempo proveer puertos de salida con voltaje regulados, se hace uso de una placa de módulo de poder. Esta, tiene como funcionalidad servir de intermediario entre la batería y el autopiloto sirviendo como un regulador de voltaje con la funcionalidad adicional de otorgar lecturas de voltaje y corriente, ahorrando la necesidad de tener reguladores y sensores de voltaje por separado. De esta forma, se debe considerar la capacidad de un voltaje de entrada 4S de la batería ya seleccionada y salidas de 5V y 12V en consonancia con la tabla 4.29. Se empleará entonces el módulo recomendado por ArduPiltot (2021), el cual es el *Airbot Power Module* como se ve en la tabla 4.32. A medida de mayor ilustración de dicha pieza, se puede apreciar la figura 4.34.

Tabla 4.32: Modulo de potencia para bateria.			
Modelo	Airbot Power Module PCB		
Voltaje entrada	≥4S		
Voltajes de salida	2 x 5V/3.5A – 1 x 12V/3.5A		
Peso [g]	21		
Dimensiones [mm]	50 x 50		
Costo [\$]	88		

Nota. Elaboración propia.

Figura 4.34: Esquema de configuración del Airbot Power board. Extraído de ArduPilot, 2023.

Sin embargo, por sugerencia de ArduPilot, es necesaria la implementación de un filtro con regulador Zener de 5W en el riel del autopiloto Pixhawk junto con un capacitor de 330uF. Esto es necesario dado que recorta cualquier pico de voltaje por encima de los 5.6 V que se realimentarían al riel del Pixhawk desde dispositivos externos (ArduPilot, 2023). De esta forma, en la figura 4.29 se puede observar de derecha a izquierda la conexión de la batería LiPo 4S al módulo PDB el cual alimenta directamente al autopiloto e igualmente provee de un terminal de 5V y 12V para la alimentación de otros dispositivos.

Figura 4.29: Alimentación y regulación de voltaje del autopiloto. Fuente: Elaboración propia.

4.3.11. Reevaluación de estimaciones y dimensionamiento

Finalmente, se lleva a cabo la sumatoria de pesos de todas las partes mecánicas, electrónicas y accesorios del VANT con la finalidad de corroborar si el valor se encuentra dentro de la estimación realizada inicialmente en la sección 4.1.1. La sumatoria de pesos puede apreciarse en las tablas 4.33 y 4.34. Cabe resaltar que los pesos de los elementos mecánicos son rescatados de *Autodesk Inventor* dado que este provee el valor del peso por material configurado.

Ítem	Cantidad	Peso u. [g]	Peso total [g]
ESC KDEXF-UAS55	6	32	192
Cámara Foxeer Razer Mini 1/3 CMOS HD 5MP	1	12	12
Batería ZIPPY 4S 1500mAh	1	182	182
Recibidor FrSKY X8R	1	12.1	12.1
PDB Matek PDB-HEX X Class 12S	1	12	12
Pixhawk PX4	1	38	38
3DR uBlox GPS with compass kit	1	16.8	16.8
SiK Telemetry Radio	1	10	10
VTX TS832	1	22	22
Arduino UNO	1	25	25
TAR SRD-12VDC	1	2	2
Regulador LM78	2	1	2
Airbot Power Module PCB	1	21	21
Total			546.9
<i>lota</i> . Elaboración propia.	NE6	D,	

Tabla 4.33: Sumatoria de pesos de componentes electrónicos.

Nota. Elaboración propia.

Ítem	Cantidad	Peso u. [g]	Peso total [g]
Base inferior	1	143	143
Base superior	1	126	126
Brazo	6	60	360
Abrazadera DIY-BCD25MM	48	10	480
Soporte de cámara ABS	1	4	4
Base Motor	6	9	54
Motor MN5008 KV170	6	128	768
Propela T-MOTOR P18x6.1 (CF)	6	31.5	189
Sujetador base de aluminio pila	2	9	18
Sujetador vertical cilindro	2	28	56
Sujetador lateral cilindro	4	5	20
Tubo de riel 2mm	2	14	28
Abrazadera Tarot TL96016	8	6	48
Pila IE 800W SOAR	1	930	930
Cilindro AMS MC3 (con hidrógeno lleno)	1	1761.9	1761.9
Regulador de hidrógeno	1	250	250
Paracaídas Foxtech	1	400	400
Plataforma de extensión de policarbonato	1	9	9
Soporte en V para carga	2	18	36
Electroválvula GPG-01K G1/8"	1	150	150
Varilla PEGGAS -16"	1	211.7	211.7
Manguera 15 M (Referencia carga)	1	1000	1000
Adaptador de unión	1	43	43
Ventanas de policarbonato	6	1	6
Pernos/Tornillos de Aluminio M2.5	-	23	23
Pernos/Tornillos de Aluminio M3	-	29	29
Placa base del tren de aterrizaje	2	12	24
Soporte Vertical tren de aterrizaje	2	56	112
Soporte Horizontal tren de aterrizaje	2	66	132
Regatón de caucho	4	3	12
Unión T	2	12	24
Total			7447.6

Tabla 4.34: Sumatoria de pesos de componentes mecánicos.

Nota. Elaboración propia.

Sumando los pesos obtenidos por cada tabla, se tiene un total de 7994.5 g lo cual indica que se encuentra dentro de los 8.2 kg estimados. Por ende, se puede decir que cumple con la estimación inicial y el método de iteración ha funcionado para proveer una apropiada selección de componentes. Como sugerencia, con el propósito de aumentar la holgura del valor estimado con el valor real se puede optar por un motor brushless de mayor capacidad ya que este va a esforzarse menos para cierto valor de fuerza que uno de menor capacidad.

Ahora, se procede a calcular la carga útil neta en vuelo. Esto quiere decir, cuánto el VANT es capaz de cargar efectivamente a un máximo empuje en vuelo. El objetivo de esta verificación será el de hallar la carga útil neta o efectiva así como el peso final de la carga útil que incluye los utensilios de limpieza más el volumen de agua en ascenso. Se toma el procedimiento entonces de Al Jaber et al. para un adecuado desarrollo (Al Jaber et al., 2021). Así, se considera un 90% de *throttle*, lo cual según la tabla del motor seleccionado corresponde a un empuje de 3.8 kg por motor, teniendo un total de 22.8 kg por los 6 motores.

Capacidad de carguío total (peso) =
$$\frac{22.8}{2}$$
 = 11.4 kg

Se sabe que el peso real del VANT es de 8 kg. Por ende, la carga útil neta o efectiva es:

$$Carga$$
 útil neta = $11.4 - 8 = 3.4 kg$

También, el peso del agua cargada a 15 m es:

$$W = \rho_{aaua} \cdot V = 1000 \cdot 1.178 \times 10^{-3} m^3 = 1.178 kg$$

Asimismo, si se sabe que el conjunto de limpieza (varilla-válvula-manguera) tiene un peso de 1.3617 kg. Por ende, el peso total a cargar es:

$$W_T = 1.178 + 1.3617 = 2.5397 \ kg$$

 $\therefore 2.5397 < 3.4 \ kg$

Se cumple entonces que el VANT es capaz de levantar la carga útil y el agua en servicio durante la operación a un 90% de capacidad por motor.

4.4. Diseño de control

Se lleva a cabo el diseño de la lógica de control y se propone la estrategia de control que se utilizará para el vuelo del VANT. Ello empezará primeramente con un modelamiento de su algoritmo de vuelo libre. Una vez se concluya esta etapa, se procede a añadir el efecto de la fuerza de retroceso en los parámetros de vuelo del VANT. Cabe resaltar que las simulaciones se realizarán en el software *Matlab Simulink*.

4.4.1. Diagramas de flujo del sistema mecatrónico

A continuación se muestra el diagrama de flujo principal en la figura 4.30 donde se aprecia que la trayectoria inicia con el proceso de inicialización de componentes internos así como la calibración y enlazamiento automático del GPS. Seguidamente, inicia la transmisión de video mediante el canal seleccionado al receptor en tierra. Una vez conseguido esto, el operario procede a realizar la rutina de maniobra, la cual incluye las acciones de despegue y aterrizaje, dado que estas son subproducto de la activación de comandos del radio control en tierra. Efectivamente, una vez dirigido el VANT hacia la zona de trabajo, se realiza la rutina de operación donde el operario decide si activar o desactivar la electroválvula para habilitar el disparo de agua; efectuando, al mismo tiempo, correcciones adicionales de vuelo por la fuerza involucrada. Finalmente se repite la rutina de maniobra donde se teledirige al VANT hacia la zona de aterrizaje. Cabe resaltar que las señales transmitidas por el VANT al operario se expresan mediante TX y las recibidas por el radio control mediante RX.

Figura 4.30: Diagrama de flujo principal. Fuente: Elaboración propia.

La siguiente etapa consiste en el encendido, enlazamiento y calibración de los componentes internos del VANT. Tal como se ve en la figura 4.31, el sistema inicia con la conexión física de la batería al módulo de potencia, el cual alimenta a los componentes internos. El autopiloto realiza una calibración automática del GPS, barómetro y sensor inercial internos. También, se enlaza la conexión del video transmisor con la pantalla del video recibidor en tierra. Este proceso demora por lo que una vez completado, se lleva a cabo la alimentación de motores. Físicamente, se conecta el cilindro de hidrógeno a la pila. Esta última espera y envía la señal fuel_cell_read al autopiloto para confirmar la conexión. Una vez confirmado, se ponen todos los motores en 0% de velocidad (pwm) por seguridad y se transmite una señal de notificación al operador (TX) diciendo que ya está listo para el despegue.

Figura 4.31: Diagrama de flujo de inicialización del VANT. Fuente: Elaboración propia.

A continuación, se tiene el diagrama de maniobra (figura 4.32). La rutina empieza con la obtención de los parámetros fundamentales de vuelo: altura (barómetro), posición (GPS) y orientación (sensor inercial). Seguidamente, el VANT espera el comando RC_loiter_on el cual, accionado desde el radio controlador, mantiene una posición estática en vuelo. En caso no se opte por esta opción, espera uno de los ocho comandos de maniobra (RC_command). Cualquiera fuese, involucra una actualización inmediata de los valores pwm que el autopiloto envía a los motores ya que cada acción conlleva a una configuración distinta de velocidades en ciertos motores. Luego, se realiza el proceso de revisión de estado de motores, el cual indica si hay fallas para liberar el paracaídas. Finalmente, lee nuevamente los parámetros de vuelo y estima el error de estos nuevos valores con los antiguos.

Figura 4.32: Diagrama de flujo de maniobra del VANT. Fuente: Elaboración propia.

Mencionado en la figura anterior, la siguiente lógica (figura 4.33) tiene como objetivo monitorear el estado de cada uno de los 6 motores, cambiando el valor lógico de la señal brush_falla a verdadero en caso se detecte más de 1 motor fallado. La falla es detectada internamente como un pulso de la señal SIGNALN (cable blanco – ver diagrama esquemático) del ESC, el cual indica un paro o defecto en el funcionamiento del motor. Para ello, se establece un contador A, el cual indica el número de motores fallados. Basta con que más de 1 se encuentre inoperativo para poner a 1 la señal brush_falla.

Figura 4.33: Diagrama de flujo de revisión de estado de motores. Fuente: Elaboración propia.

El diagrama de flujo de la rutina de operación (figura 4.34) comienza una vez se recibe la señal del radio controlador en tierra para activar el disparo (Abrir_válvula - tabla 4.44). Tal comando permite que signal_disparo tenga un valor de 1, habilitando la apertura de la electroválvula por medio del relé.

Figura 4.34: Diagrama de flujo de rutina de operación. Fuente: Elaboración propia.

Finalmente, se tiene el diagrama de flujo referente a la activación del paracaídas (figura 4.35). Cabe resaltar que este se considera una interrupción dado que puede ejecutarse en cualquier instante del vuelo. Al comienzo se tiene que el servo no está accionado (0%) por lo que la compuerta permanece cerrada. Tal como fue mencionado antes, una vez que se detecte el fallo en más de un motor, brush_falla se pondrá en 1. Se dispone de la rutina de maniobra seguidamente dado que el VANT puede aún maniobrar (de manera inestable) teniendo motores defectuosos. El factor determinante lo entrega el barómetro dado que si detecta un cambio en la altitud súbito de más de 2m, procede a notificar inmediatamente al operario para que este envíe una señal y pueda activarse. Para ello, primeramente se detienen todos los motores y a continuación se acciona al 100% el servomotor del paracaídas.

Figura 4.35: Diagrama de flujo de sistema de emergencia. Fuente: Elaboración propia

4.4.2. Estrategia de control de vuelo

En la siguiente sección se muestra la estrategia de control del hexacóptero en vuelo. Cabe resaltar que para el planteamiento se recurre a la tesis de Kuldeep Singh y el modelamiento matemático de un hexacóptero por Alaimo et al. mostrado detalladamente en el Anexo U. A continuación, se establece el diagrama de lazo cerrado (figura 4.36) que se empleará en la simulación del VANT para la estrategia de control.

Figura 4.36: Diagrama de estrategia de control. Fuente: Elaboración Propia.

El diagrama trata de emular el cambio de una posición corriente $(z, \emptyset, \theta, \psi)$ a una posición deseada $X_{ref} = (z_d, \phi_d, \theta_d, \psi_d)$ lo cual se consigue mediante la estimación del error entre el estado deseado y el actual. En efecto, el controlador se encarga de procesar el error entre las variables de estado deseadas y corrientes obteniendo las variables de control $(T, \tau_{\phi}, \tau_{\theta}, \tau_{\psi})$. Estas son convertidas en el bloque 'dinámica del hexacóptero' en las 6 velocidades angulares respectivas para facilitar el cálculo y luego se emplea la ecuación U.27 para obtener los estados actuales, los cuales son retroalimentados para conseguir minimizar el error.

El controlador se encarga de generar en sí las variables de control $(T, \tau_{\phi}, \tau_{\theta}, \tau_{\psi})$, definidas en la ecuación U.24, en base al error entre la posición deseada y la actual. Por su parte, el empuje total *T* mantiene al hexacóptero en flote al influenciar la aceleración en z mientras que los torques de Euler tienen efecto en la aceleración de cada ángulo. (Singh, 2018, p.33). Asimismo, se empleará controladores PID tal como se sugirió en la matriz morfológica debido a su buen desempeño, su enfoque en la estabilidad y a que suele ser de los más utilizados para el vuelo de un multicóptero. La dinámica del hexacóptero consta de dos etapas, la transformación de las variables de control que recibe del controlador en las 6 velocidades angulares W_i y el uso de dichas velocidades para el cálculo matricial de la ecuación U.27 y obtener las derivadas de los valores p, q y r; los cuales mediante un integrador se convierten en los valores definidos por la ecuación U.8, siendo esta la forma de obtener las posiciones. Por su parte, usando las ecuaciones U.7 y U.8 se obtienen los ángulos de Euler actuales. Cabe resaltar que en esta etapa se emplearán parámetros propios del controlador obtenidos de *Autodesk Inventor*.

Los sensores, por su lado, vienen a representar los diversos dispositivos con los que cuenta el VANT para medir los parámetros de vuelo: Unidad inercial (Giroscopio-Acelerómetro) y barómetro. De esta forma, se obtienen los valores actuales y son retroalimentados para ser comparados finalmente con los valores deseados.

4.4.3. Simulación durante vuelo

El modelo de control dispone de 6 controladores PID acordes con cada una de las variables de estado ($x, y, z, \emptyset, \theta, \psi$). De esta forma, se lleva a cabo la diferencia entre los valores deseados y los corrientes que proveen los sensores. El algoritmo PID recibe esta diferencia para convertirla en ($T, \tau_{\phi}, \tau_{\theta}, \tau_{\psi}$). Una forma más precisa de mostrar el ordenamiento (figura 4.37) lo expone Juan Paredes en su tesis (p.79), que sigue un procedimiento similar con un número menor de rotores.

Figura 4.37: Diagrama de controlador del Hexacóptero. Extraído de Paredes, 2015, p.79.

En la siguiente etapa, se lleva a cabo la simulación por lo que se necesita disponer de propiedades inherentes del hexacóptero. Para ello, falta únicamente hallar el coeficiente de sustentación teórico del VANT, por ende, se realiza una aproximación lineal entre el empuje y los $RPM^2/10^6$ del ensayo del motor elegido como se ve en la tabla 4.35 y figura 4.38.

RPM ² /10 ⁶	Empuje (N)
7.88	8.52
9.73	10.75
12.09	13.17
14.58	16.02
17.02	18.89
19.45	21.87
21.74	24.71
24.45	27.67
27.12	30.96
32.67	37.35
35.56	40.22

Tabla 4.35: Tabla de $RPM^2/10^6$ vs Empuje [N].

Figura 4.38: Gráfico de coeficiente de sustentación. Fuente: Elaboración Propia.

Se obtiene entonces que el valor del coeficiente de sustentación k es:

$$k = 1.1584 \times 10^{-6} \frac{N}{RPM^2}$$

Es posible indicar todos los parámetros del VANT a considerar en la simulación (tabla 4.36).

Tabla 4.50: Parametros de simulación.						
Parámetro	Descripción	Valor	Unidad			
g	Gravedad	9.81	m/s ²			
m	Masa	8.2	kg			
1	Distancia centro de gravedad - rotor	0.459	m			
k	Coeficiente de sustentación	1.1584 x 10 ⁻⁶	-			
b	Coeficiente de arrastre	0.97	-			
I _{xx}	Inercia respecto eje x	0.02063	kgm ²			
I _{yy}	Inercia respecto eje y	0.02715	kgm ²			
Izz	Inercia respecto eje z	0.02126	kgm ²			
Ir	Inercia rotacional	84.6 x 10 ⁻⁷	kgm ²			

Tabla 4.36: Parámetros de simulación

Nota. Elaboración propia.

En el Anexo W se aprecia el diagrama de bloques realizado para la simulación. Cabe resaltar que se estará analizando las variables de estado (z, ϕ, θ, ψ) debido a que z está directamente relacionado al empuje total T generado y los otros ángulos representan el balanceo, cabeceo y guiñada. En simples términos, estos 4 parámetros representan las acciones del VANT en el radio controlador. En los bloques de función expuestos se manejaron las ecuaciones correspondientes. Así, en el bloque conv_control_w se implementó la ecuación U.27, en el bloque conv_w_pqr la ecuación U.8 y en el bloque conv_pqr_angles la ecuación U.7.

Se evalúan entonces los 4 casos de movimiento esenciales del VANT por separado. Es decir, se ingresará una señal escalón de cierto valor para observar la respuesta. Para el empuje en z (altura), se simulará la altura de operación de 15 m mientras que para los ángulos *roll, pitch* y *yaw* se simularán 20°, 30° y 40° de inclinación respectivamente (figura 4.39).

Figura 4.39: Resultados de simulación por caso de movimiento. Fuente: Elaboración Propia.
En los 4 escenarios se tiene un tiempo de estabilización menor a los 5 s dentro del límite para un óptimo funcionamiento (Singh, 2018, p.36). Sin embargo, esto conlleva a un sobreimpulso mayor alrededor de los 0.9 segundos para el control de los ángulos. El error en estado estable es 0 para todos los casos. Se observa igualmente que el control para la altura demora más en estabilizar, con un tiempo de respuesta de 1.4 s. Por otro lado, los tiempos de respuesta para los ángulos son inferiores a 1 s, lo cual es favorable para la corrección en vuelo.

4.4.4. Control durante operación

En este último apartado se lleva a cabo la descripción de una propuesta sobre cómo abordar el efecto que conlleva realizar el disparo a presión. Para ello, se recurrirá a citar al estudio de Al Jaber dado que su diseño de octocóptero ya implementado realiza una operación similar: Liberar agua a presión (apagar incendios en su caso). Se establece que el problema se debe abordar mediante la selección del modo de vuelo "Loiter Mode" con una configuración experimental de los parámetros PID en el software *Mission Planner* del controlador (Al Jaber, 2021, p.676). Dicho de otra manera, el VANT puede ser capaz de trabajar normalmente con el disparo a presión si se encuentra operando bajo este modo de vuelo.

El modo Loiter viene a ser una configuración de vuelo predeterminada propia de un VANT que combina los modos de vuelo *Stabilize* y *Altitude Hold*. En efecto, *Loiter Mode* mantiene automáticamente la posición actual, su dirección y altitud, de tal forma que si el operador suelta el comando, el VANT se detiene (ArduPilot, 2023); en lo que parecería mantenerse "estático" en el aire (figura 4.40). Este modo, por ello se emplea en drones donde su carga útil requiera realizar una acción ya que de esta forma, el operador puede dejar de concentrarse en controlar el vuelo de la aeronave y enfocarse en el control de la carga. Su principal requerimiento es el de un enlace GPS efectivo y bajas vibraciones durante la operación.

Figura 4.40: Aplicación de modo Loiter. Extraído de: Google Imágenes.

Puesto que el controlador a utilizarse es un Pixhawk PX4, cuenta con el entorno de configuración – estación de control denominado *Mission Planner*. Dentro de esta, se pueden llevar a cabo configuraciones internas del VANT tales como ajustes del GPS, descarga de programas directos al controlador, sintonización de parámetros PID, etc (ArduPilot, 2023):

- 1. Descargar el software: Proceder a descargar el software de configuración y conectar el Pixhawk PX4 a una PC.
- 2. Abrir Mission Planner: Abrir el software mencionado y dirigirse a la sección *Extended Tuning* en el lado izquierdo del entorno.
- 3. Configurar *Loiter speed*: Se ingresa la velocidad promedio que se espera ejecutar en dicho modo (4.3 m/s Lima) (figura 4.41). Dicha velocidad representará el límite máximo al que podría llegar en tal modo por lo que una velocidad superior ocasionaría que el VANT se detenga. Finalmente, mediante vuelos de prueba es posible obtener los parámetros PID de la velocidad XY.

Mission Planner 1.3.59.3 bu	ild 1.3.6878.40	374 ArduCopt	er V3.7-dev (d	cd93049)						×
	CONFIGTUNER		TERMINAL		A	ODM8 Stats	COM3-1-0	UADROTOR	•	
Flight Modes GeoFence	Stabilize Roll	(Error to Rate)- #500	Stabili:	e Pitch (Error to F 4500	Rate) P	Yew Error 1 450	o Rate)	Position XY(1 000	a)
Basic Tuning	Rate Boll	and Roll Values	-Rate F	Ntch				-Velocity XYO	/el to Accel	,
Extended Tuning	P	0135		0135	P P	01810	e 😫	P	2 000	-
Standard Params	D	0 090		0.090		0.01		L D	1.000	÷.
Advanced Params	IMAX	0.5	: IMAX	05	e IMAX	0.5	\$	IMAX	100	÷
Full Parameter List	FILT	20 000	FILT	20.000	FILT	2.50	· 🗧			
Full Parameter Tree	Throttle Acc	el (Accel to mot	tor) Thrott	le Rate (VSpd to a 5 000	Altitude	Hold (Alt to	olimbrate)—	-WPNav (cm's) Speed	500.000	÷
Planner	i.	1 000				None		Redus	500000	÷
	D	0.000	s		Min 0	000	1.000	Speed Up Speed Dn	150,000	
	IMAX	80	•		Ch7 Opt	-	-	Loiter Speed	1250.000	
					Ch8 Opt	2	-			
				Write F	of TWC		Refeat	Screen		

Figura 4.41: Configuración de parámetros Loiter en Mission Planner. Extraído de ArduPilot, 2023.

Si bien, este modo de vuelo sugerido representa una alternativa a la operación planteada, cuenta con limitaciones que deben considerarse adicionalmente (ArduPilot, 2023):

- Requiere de un enlace con el GPS estable y permanente durante toda la operación. El GPS es el principal responsable de que este modo funcione correctamente.
- Las vibraciones de la operación deben ser bajas debido a que valores elevados causarían interferencia en la conexión del GPS.

Asimismo, se tienen las siguientes consideraciones:

- Aunque no forma parte del estudio de esta tesis, convendría la realización de un análisis de vibraciones del VANT. Si bien para tener noción de que el modo Loiter puede soportar la operación de limpieza se deberían realizar pruebas físicas, un análisis modal daría conocimiento de cómo se comportaría la estructura de la aeronave afectada por cierta fuerza.
- Se sugiere el uso de amortiguadores o dispositivos de aislamiento para el GPS dado que es el equipo crucial para un manejo óptimo del modo Loiter. Protegiendo este dispositivo resultaría en una mejora en la estabilidad de dicho modo de vuelo.

CAPÍTULO 5

ANÁLISIS DE COSTOS

En el siguiente capítulo se lleva a cabo la documentación de los costos respectivos de los componentes del hexacóptero. Por su parte, las cotizaciones (Anexo Y) para las piezas estándares y modeladas yacen en el anexo mientras que aquellas fabricadas por impresión 3D fueron calculadas mediante un estimador en línea (Hubs.com, 2021). Cabe resaltar que para el costo por envío, se ha considerado un 20% de los componentes a ser importados. De igual manera, los montos presentados están en dólares americanos con un tipo de cambio de 4.

5.1. Costos electrónicos

Se presentan a continuación los costos electrónicos del VANT en la tabla 5.1. Cabe mencionar que dentro de estos se han incluido los costos pertenecientes a los dispositivos de conversión y almacenamiento energético (Celda de hidrógeno y cilindro de hidrógeno). Asimismo, se está incluyendo el costo de los elementos de sujeción para los componentes electrónicos. No obstante, no se está incluyendo el costo del hidrógeno en sí, ni de su balón de suministro general a comprar. Dichos elementos serán analizados en el punto 5.5.

Artículo	Precio Unitario	Cantidad	Precio Completo
	[\$]		[\$]
T-Motor MN5008 KV170	89.99	6	539.44
P18*6.1" CF (par)	82.99	3	248.97
ESC KDEXF-UAS55	90.95	6	545.70
Cámara Foxeer Razer Mini 1/3 CMOS HD 5MP	32.00	1	32.00
Batería ZIPPY 4S 1500mAh	14.70	1	14.70
Regulador LM78 STMicroelectronics	10.00	2	20.00
Recibidor FrSKY X8R	32.00	1	32.00
PDB Matek PDB-HEX X Class 12S	27.00	1	27.00
Pixhawk PX4	80.00	1	80.00
3DR uBlox GPS with compass kit	90.00	1	90.00
SiK Telemetry Radio	39.95	1	39.95
VTX TS832	20.00	1	20.00
Arduino UNO	16.00	1	16.00
TAR SRD-12VDC	9.00	1	9.00
GPG-01K G1/8" válvula solenoide NC D16021	60.00	1	60.00
Airbot Power Module PCB	80.00	1	80.00
FrSky Taranis X9D Plus	256.00	1	256.00
Lilliput 339D/W	250.00	1	250.00
Diodo Zener 5W	0.80	1	0.80
Condensador 330uF	0.50	2	0.50
Cinta Velcro	3.49	2	3.49
Cinta doble contacto 3M	33.00	2	33.00
Brida reutilizable para cable nylon (20 unidades)	5.00		5.00
Correa de sujeción Rux Hobby 300 mm	7.00	2	14.00
Cables varios	40.00	- / 0	40.00
Intelligent Energy SOAR 800W	5605.00	1	5605.00
AMS MC3 Composite Cylinder	350.00	1	350
Costos por envío			1682.51
Total			10095.06

Tabla 5.1: Costos electrónicos y misceláneos.

Nota. Elaboración propia.

5.2. Costos mecánicos y de fabricación

Seguidamente, se separan los costos mecánicos en aquellos que son comerciales que pueden

adquirirse mediante proveedores (tabla 5.2) y aquellos que deben fabricarse tabla 5.3.

Artículo	Precio	Cantidad	Precio Completo
	Unitario [\$]		[\$]
TUBE CLAMP 25MM METAL-RED (Mo. DIY-	5.00	24	120.00
BCD25MM) (par)			
Tarot Aluminium Tube Clamp with Shock Absorbing	14.00	2	28.00
Rubber Damper 12mm - 2Pcs TL96016			
Tarot 12mm Load Rail Mount kit, for Gimbals and	40.00	1	40.00
other Payloads – TL96014			
PEGGAS – 16" Pressure Washer Wand	12.00	1	12.00
Foxtech Parachute with Ejector System for 10kg UAV	1099.00	1	1099.00
Regatón estándar D16	1.50	4	6.00
ANSI B18.3.1.M M2.5 x 0.45 x 25	0.45	2	0.90
ANSI B18.3.1.M M2.5 x 0.45 x 50	0.50	4	2.00
ANSI B18.3.4M M3 x 0.5 x 40	0.50	36	18.00
DIN 7985 (H) M3 x 8	0.20	8	1.60
ISO 4035 M2.5	0.20	26	5.20

ISO 4035 M3	0.20	100	20.00
ISO 4762 M2.5 x 25	0.25	4	1.00
ISO 4762 M2.5 x 8	0.20	16	3.20
ISO 4762 M3 x 10	0.20	8	1.60
ISO 4762 M3 x 6	0.20	2	0.40
ISO 7045 M2.5 x 10 – 4.8 – H	0.35	8	2.80
ISO 7045 M2.5 x 14 – 4.8 – H	0.35	6	2.10
ISO 7045 M3 x 4	0.20	4	0.80
ISO 7380-1 M3 x 10	0.20	4	0.80
ISO 7380-1 M3 x 6	0.20	24	4.80
SFS 2219 M3 x 35	0.40	36	14.40
SFS 2219 M3 x 8	0.40	16	6.40
Costos por envío			278.20
Total			1669.20

Nota. Elaboración propia.

Ítem	Código Plano	Proveedor	Precio Unitario	Cant.	Precio Total
	Thint		[\$]		[\$]
Brazo	A3-D8	ClipCarbono (3 sets de 1000 mm)	68.60	3	205.8
Soporte tren vertical	A3-D11	ClipCarbono (1 set de 1000 mm)	57.00	1	57
Soporte tren horizontal	A3-D10	ClipCarbono (1 set de 1000 mm)	43.00	1	43
Placa base tren	A3-D7	Hubs.com	264.73	2	529.26
Base inferior	A2-D2	DGtalic	72.00	1	72
Base superior	A2-D5	DGtalic	71.00	1	71
Base Motor-ESC	A3-D3	DGtalic	8.00	6	48
Sujetador vertical cilindro	A2-D14	Hubs.com	396.03	2	792.06
Sujetador lateral	A3-D12	DGtalic	6.00	4	24
Soporte adaptador	A3-D8	Hubs.com	589.78	2	1179.56
Adaptador Unión	A3-D1	Hubs.com	34.05	1	34.05
Sujetador Pila	A3-D13	Hubs.com	198.17	1	198.17
Ventana	A3-D16	Hubs.com	8.12	6	48.72
Base soporte paracaídas	A3-D4	Hubs.com	10.04	1	10.04
Soporte cámara	A3-D9	Hubs.com	7.27	1	7.27
Unión T	A3-D15	Hubs.com	11.02	2	22.04
Costos por envío					668.43
Total					4010.60

Nota. Elaboración propia.

5.3. Costo de diseño

Se presentan los costos de ingeniería en la tabla 5.4. Durante los dos semestres donde se trabaja

el proyecto se han considerado un total de 380 horas invertidas.

Autor	Tareas	Total de horas	Precio por hora [\$]	Precio total [\$]
	Diseño completo del sistema de propulsión			
	Diseño preliminar de estructura con simulaciones]		
Profesional de	mecánica y aerodinámica			
Ingeniería	Elaboración de disposición y conexiones	380	12.00	4560.00
Mecatrónica	electrónicas			
	Implementación de algoritmo matemático y			
	simulación de comportamiento de vuelo			

Tabla 5.4: Costos de ingeniería.

Nota. Elaboración propia.

5.4. Costos totales

Se presentan todos los totales obtenidos anteriormente para tener el total final destinado al proyecto así como su equivalente en soles. Esto se ve en la tabla 5.5.

Tabla 5.5: Costos totales			
Concepto	Costo [\$]		
Costos electrónicos	10095.06		
Costos mecánicos	1669.20		
Costo de fabricación	4010.60		
Costo de diseño	4560.00		
Total en [\$]	20334.86		
Total en [S/.]	81339.44		

Nota. Elaboración propia.

5.5. Viabilidad económica competitiva

Se evalúa fundamentalmente la viabilidad de emplear una celda de hidrógeno para la operación requerida en un mercado aún dominado por las comerciales baterías LiPo.

5.5.1. Batería LiPo equivalente

A continuación, se realiza una selección rápida de una batería LiPo que ofrezca la misma autonomía energética para proveer de la energía necesaria a los 6 rotores en vuelo. En otras palabras, sería el caso en que se hubiese optado por una batería LiPo de alta capacidad en lugar de la celda de hidrógeno. Dicho esto, empieza el proceso destacando que a diferencia de la celda, la selección de una capacidad X de batería LiPo se basa en la descarga de amperaje que conlleva el uso de un motor Y bajo un empuje Z (ecuación 5.1) (Euribe, 2016, p.30).

$$Tiempo \ de \ des \ carga = \frac{Carga \ eléctrica \ de \ la \ batería}{Consumo \ total \ de \ motores}$$
(Ecuación 5.1)

Se parte entonces del supuesto que el tiempo de descarga debe ser 80 min para compararse con las 1.2875 h (77.25 min) obtenidas de la celda. También, el empuje por motor ya calculado es de 1366.66 g. No obstante, para baterías se recomienda que los motores trabajen al 80% de su capacidad como máximo, teniendo 1708.325 g. Empleando la tabla 4.2 se extraen los datos de amperaje vs empuje concernientes a la propela P18*6.1" CF. Así, en la tabla 5.6 se aprecia la evaluación.

Tabla 5.6: Amperaje por empuje de MN5008-KV170.

Amperaje [A]	Empuje [g]
3.63	1633
Х	1708.325
4.57	1926

Nota. Elaboración propia.

Interpolando,

$$\frac{4.57 - 3.63}{4.57 - x} = \frac{1926 - 1633}{1926 - 1708.325}$$
$$x = 3.87 A$$

Reemplazando en la ecuación 5.1, se tiene:

$$80\ min = \frac{X\ Ah \times \frac{60\ min}{1\ h}}{3.87\ \times 6}$$

Despejando X, se obtiene la capacidad de la batería equivalente: 30.96 Ah. Por ende, la batería equivalente debería ser de un valor superior: 32000 mAh. En la tabla 5.7 yace la batería equivalente seleccionada.

Modelo	TATTU LiPo Baterry 32000 Mah 6s
	32000
	10C 22.8V 65 32000 AS150
Voltaje [LiPo S]	10C 22.8V 65 32000 AS150 6S (22.8 V)
Voltaje [LiPo S] Capacidad [mAh]	10G 22.8V 65 52000 AS150 6S (22.8 V) 32000
Voltaje [LiPo S] Capacidad [mAh] Peso [g]	10C 22.8V 68 82000 A\$150 6S (22.8 V) 32000 3605

Nota. Elaboración propia.

5.5.2. Costo del hidrógeno

Dentro del Perú, los principales distribuidores de hidrógeno comercial son **Linde** (antiguo Praxair) e **Indura**. Como se aprecia en el Anexo D, el hidrógeno comercial se adquiere en formato de bombonas o balones medidos en litros. Se recuerda que el cilindro AMS MC3 elegido tiene una capacidad máxima de 3 L. Para el presente caso, se ha cotizado un cilindro de 7L de *Air Products*, distribuidor de Indura, de donde podrían realizarse 2 llenados completos. En la tabla 5.8 se muestran los datos.

Tabla 5.8: Costo de balón de hidrógeno.				
Producto	Cilindro hidrógeno 7L SAP AP:200261			
	PRODUCTS			
Capacidad [L]	7			
Presión [bar]	154.5 - 350			
Costo unitario [\$]	50.26			
Costo 100 – 200 u [\$]	25			

Nota. Elaboración propia.

Las recargas pueden realizarse con la misma firma o con minoristas. Sin embargo, este monto

suele variar entre los 30 a 45 soles en el mercado (\$11.3 máximo) (Peru Gas, 2020).

5.5.3. Comparación de alternativas

Una vez ya obtenidos los costos adicionales requeridos para la operación completa del VANT, se realiza una comparación entre el uso de la celda de hidrógeno propuesta frente a configuraciones de batería LiPo (véase tabla 5.9).

Aspecto	IE SOAR 800W + AMS MC3	TATTU 32000mAh	2 LiPo 16000 mAh en paralelo
Costo inicial [\$]	5955.00	706.37	497.56
Costo por recarga [\$]	12.00	11110	-
Costos adicionales [\$]	25.00		
Tiempo de recarga [min]	3-5	60	60
Vida útil [años]	10 (pila), 15 (cilindro)	1-3	1-3
Peso del conjunto [kg]	2.880	3.605	3.84
Dimensiones [mm]	196x100x140	218x120x61	2x(173x74x68)
Repuestos	Extranjero	Local	Local

Tabla 5.9: Evaluación de alternativas energéticas.

Nota. Elaboración propia.

De la comparación se pueden destacar los siguientes puntos:

- Si bien la celda de hidrógeno (junto con el cilindro) involucra una fuerte inversión inicial de casi 9 veces el costo de su una batería equivalente tiene un repostaje más rápido y una vida útil 3 veces superior.
- Si bien la celda de hidrógeno ocupa un mayor espacio que ambas configuraciones que emplean baterías, esta ofrece un menor peso. Aproximadamente, el peso aumenta en 700 g si se usa una batería equivalente y en 900 g si se emplea una configuración en paralelo.

- La adquisición de repuestos, lo que vendría a ser otros ejemplares en el caso de las baterías, puede darse fácilmente en un medio local. Sin embargo, en el caso de la celda, se requiere de importación y un tiempo de espera de llegada.
- Con una bombona de 7L de hidrógeno pueden realizarse 2 servicios de limpieza de 80 minutos. Es decir, un total de 160 minutos casi continuos con el rápido repostaje.
- Con una batería igualmente se consiguen los 80 minutos pero para tener un rápido repostaje se requiere comprar una batería adicional para un intercambio instantáneo.

5.5.4. Rentabilidad del proyecto

Finalmente, se procede a evaluar la rentabilidad de la inversión empleando el método de la tasa interna de retorno (TIR) bajo la consideración que este se trata de un proyecto de inversión con una tasa mínima atractiva de retorno (TMAR) equivalente a un estándar de 6.5% (financiera oh!) (Comparabien.com, 2023). Para ello, se ha propuesto el siguiente flujo de caja económico donde se indica el monto invertido inicialmente y un monto de ganancia equivalente al servicio de limpieza de fachada descrito en el Anexo A de 5000 soles o 1250.78 dólares.

El mercado objetivo para el servicio propuesto es el conjunto de edificaciones urbanas de mediana altura (3 – 5 pisos) en Lima Metropolitana, lo cual incluye: departamentos, monumentos, estatuas, tanques de agua, edificios públicos, etc. Cabe resaltar que si bien no se cuenta con el número exacto de cada uno de estos, se tiene el indicador del censo del 2017 sobre la cantidad de viviendas de mediana altura que es un total de 644 280 (INEI, 2017, p.288) y aumentando debido a la tendencia del crecimiento inmobiliario vertical (Vega, 2021) por lo que existe posibilidad de encontrar trabajo con frecuencia.

El mantenimiento preventivo es el empleado para las edificaciones modernas en general, donde su periodicidad varía entre 1 a 5 años dependiendo del material de la fachada. Asimismo, las principales actividades son la limpieza a presión y el repintado en casos críticos (Integral Services, 2021).

A continuación, se hace la acotación que este análisis está hecho para una unidad y se ha considerado la cotización realizada en la problemática (fachada de 5 pisos de 30 x 20 m por 1250.78 dólares) como una referencia de cuanta área de limpieza por hidrolavado puede realizar un VANT en un periodo equivalente de 1 hora. Dicho esto, se postula una usabilidad mínima de 1 vez al mes, con un margen de ganancia de 1250.78 dólares mensuales. Como parte de la inversión inicial (20334.86) se añaden los costos adicionales: 12 vuelos al año representan 1 cilindro de 7L de 50 dólares con 5 recargas cada dos meses por 11.3 dólares siendo un total de 106.5. De esta forma, se tiene el siguiente flujo de caja en la figura 5.1 y su evaluación en Excel en la figura 5.2.

Figura 5.1: Flujo de caja del proyecto. Fuente: Elaboración propia.

					ŀ	lorizon	te					
MES	1	2	З	4	5	6	7	8	9	10	11	12
Flujo	-20441.36	6254	6254	6254	6254	6254	6254	6254	6254	6254	6254	6254
		-		~								
TIR (12 meses)	29%											
TIR (5 meses)	9%											
TIR (4 meses)	-4%											

Figura 5.2: Tabla de cálculo de TIR. Fuente: Elaboración propia.

Se observa que el TIR obtenido es superior al TMAR propuesto, por ende el proyecto es rentable con utilidades a partir del 6to mes con un horizonte de 12 meses. Por otro lado, evaluado en 5 meses también es rentable, empero, lo es en menor grado ya que el TIR es próximo al TMAR. Para 4 meses, el proyecto es inviable.

CONCLUSIONES

- Empleando la metodología VDI 2221 se consiguió el diseño conceptual de un vehículo aéreo no tripulado enfocado en el lavado a presión de fachadas de edificaciones en altura. Para ello, se siguieron las etapas de la metodología del diseño propuestas por el estándar alemán para la culminación de un concepto óptimo de solución que cumple con los requisitos del sistema mecatrónico.
- Se consolidó la celda de hidrógeno como fuente de energía capaz de proveer las exigencias de autonomía energética propuestas en la lista de requerimientos derivadas de la problemática en sí.
- 3. Lima Metropolitana representa el foco de emisiones de CO2 (12% del territorio nacional) siendo las zonas periféricas las más críticas. Igualmente, es un foco de accidentes laborales donde se distingue como el sexto más común: la caída de personal de altura. De esta forma, se justifica un nicho existente para una propuesta innovadora que promueva el lavado de fachadas a presión con la suficiente autonomía energética de trabajo así como el acatamiento de las normas de seguridad de la NTC 001 2015.
- 4. El diseño preliminar del presente hexacóptero cumple con los requisitos de autonomía energética superior a la hora equivalente de un equipo profesional de limpiadores. Para ello, se vale de un sistema de propulsión que emplea el uso de hidrógeno como combustible y una pila como medio de conversión a energía eléctrica. Se obtuvo un aproximado de 1 hora con 17 minutos y 15 s de autonomía de vuelo.
- 5. El diseño preliminar cumple con los requisitos dimensionales y de ergonomía al tener medidas finales de 1m x 1m x 0.5m, dentro del margen establecido; de esta forma, resulta compacto y permite un traslado sencillo.

- 6. Se consiguió realizar un diseño estructural íntegro mediante el cumplimiento de las solicitudes mecánicas y aerodinámicas exigidas en los requerimientos. Para ello, el empleo de la fibra de carbono fue esencial en la elaboración del fuselaje principal así como de otros elementos sujetos a cargas críticas. Respecto al uso, el diseño preliminar del subsistema de lavado puede ejecutar un lavado de baja presión a 69 bares, sin embargo, no cumple con el deseo de 100 bares ya que la unión de latón soporta una presión máxima de 87 bares mientras que la electroválvula soporta solo hasta 70 bares.
- 7. El método de selección del sistema de propulsión propuesto basado en la estimación de pesos fue exitoso, logrando un peso final del VANT de 8.091 kg por debajo de los 8.2 estimados. De esta forma, se validó la viabilidad constructiva del conjunto. Asimismo, se confirmó que dicho VANT es capaz de sostener los 2.54 kg que representa la carga actual, con posibilidad de ampliación hasta los 3.4 kg efectivos. En adición, cumple con la exigencia de pesar menos de 25 kg. No obstante, no cumple con el deseo de pesar hasta 6 kg según la NTC para una carga útil de 2.5 kg con 77.25 min de vuelo continuo.
- 8. Se consiguió establecer un modelo matemático que describa la estabilidad del VANT en vuelo. Para ello, se usó un controlador PID, llegando a cumplir en las simulaciones con las solicitudes de ejemplares similares al tener tiempos de respuesta y estabilización bajos. Para el análisis de estabilidad durante la operación se procedió a proponer un modo de vuelo empleado comercialmente denominado *Loiter Mode*, el cual fue probado en aplicaciones similares de liberación de fluido a presión.
- 9. Se seleccionaron los dispositivos electrónicos y hardware de control apropiados para la obtención de parámetros de vuelo de forma continua. Asimismo, estos elementos fueron introducidos dentro del espacio interior del fuselaje para su protección. Todos los elementos eléctrico-electrónicos fueron documentados propiamente mediante un plano electrónico.

- 10. Se llevó a cabo el cumplimiento de los requisitos de seguridad de vuelo y de operación. Es decir, se consiguió introducir un mecanismo de paracaídas dentro del VANT sin afectar la estimación del peso final. Asimismo, se elaboraron ventanas de protección para el interior del VANT, obteniendo un espacio hermético para cumplir con el requerimiento de protección IP-X3.
- 11. El dron diseñado con una carga útil neta de 3.4 kg es capaz de cargar 2.5 kg de manguera, conexiones y agua suministrada a 15 m de altura, cumpliendo con labor en el rango de altura destinado, abarcando edificaciones de "mediana altura".
- 12. El diseño preliminar no cumple con los deseos de fabricación y mantenimiento referidos a la dependencia de piezas importadas. Esto se debe a la ausencia de elementos constructivos y electrónicos en el mercado nacional.
- 13. El costo final del VANT cumple con la exigencia correspondiente dado que el monto obtenido es inferior a los \$25000 proyectados en proyectos similares. Esto se debe probablemente al abaratamiento gradual de la tecnología HFC ya que los proyectos referentes fueron elaborados hace aproximadamente 3 años.

RECOMENDACIONES

Como recomendaciones para futuros desarrollos relacionados se destaca como un adicional al diseño mecánico la realización de un análisis modal de tal forma que se pueda tener un indicador de las vibraciones presentes y si éstas pueden perjudicar la integridad del VANT. Asimismo, el agregado de dispositivos amortiguadores para los componentes electrónicos sería una sugerencia importante considerando el efecto que la vibración puede causar al GPS.

En caso de querer aumentar la autonomía a por ejemplo, 10 horas, sería cuestión de añadir más hidrógeno, es decir, un tanque más grande. Sin embargo, esto incrementaría el peso total del VANT y por ende, el empuje que requiere cada motor. Por lo tanto, se debería revisar si es que la suma de potencias consumidas por cada motor puede ser suministrada por la pila actual. En caso no pueda, se debe iterar el proceso y seleccionar una pila de mayor capacidad. Por otro lado, sobre el cumplimiento de la norma NTC para uso urbano (hasta 6 kg) se recomienda cambiar la fuente de energía por una de menor capacidad para reducir el peso, ya que los demás elementos se mantienen fijos para la aplicación de estudio a 15 m; esto sin embargo conllevaría a una reducción de su autonomía energética.

Respecto al diseño de control, se recomienda ahondar en la simulación durante la operación en sí para observar el efecto directo que tiene el disparo de agua, aunque este haya sido declarado no crítico en proyectos de similar envergadura, ya que el modo Loiter es capaz de soportarlo y porque el valor del empuje calculado ha sido de 7.87 N. De esta forma, se tendría una mejor noción de cómo cambia la respuesta del controlador. Finalmente, se recomienda para el análisis de costo estimar el valor en producción ya que el costo obtenido ha sido por solo una unidad. No obstante, si se plantease un número específico de unidades se podría ver cómo el costo del diseño se abarataría.

BIBLIOGRAFÍA

- Acceso Vertical. (2023). *Limpieza de fachada*. Recuperado el 1 de mayo del 2023 de <u>https://accesoverticalperu.com/urbano/</u>
- ACNUSA. (s. f.). *Efectos de la contaminación atmosférica*. Recuperado el 24 de marzo del 2021 de <u>https://www.acnusa.fr/es/efectos-de-la-contaminacion-atomosferica-/89</u>
- Aero21. (2016, 8 de setiembre). ¿Qué es un aerostato? Recuperado el 11 de mayo del 2021 de https://www.aero21.com/2016/09/que-es-un-aerostato/
- Aerocamaras. (2021, 12 de marzo). ¿Qué es la carga útil o carga de pago? Recuperado el 10 de abril del 2023 de <u>https://aerocamaras.es/que-es-la-carga-util-o-carga-de-pago/#:~:text=Se%20denomina%20carga%20%C3%Batil%20°,misi%C3%B3n%20espec%C3%Adfica%20que%20tienen%20encomendada</u>
- Aero Drum Ltd. (2023). *Blimps, Aerostats and Custom LTA*. Recuperado el 11 de mayo del 2023 de https://www.rc-zeppelin.com/es/index.html
- AERONES. (2018). AD28 User Manual. Introduction & Feature Highlights.
- Alaimo, A., Artale, V., Milazzo, C., Ricciardello, A. y Trefiletti, L. (2013). Mathematical modeling and control of a hexacopter, 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 2013, pp. 1043-1050, doi: 10.1109/ICUAS.2013.6564793.
- Al Jaber, R., Sikder, M. S., Hossain, R. A., Malia, K. F. N. y Rahman, M. A. (2021). Unmanned Aerial Vehicle for Cleaning and Firefighting Purposes, 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), DHAKA, Bangladesh, 2021, pp. 673-677, doi: 10.1109/ICREST51555.2021.9331147.
- AltiGator (2023). *HERE 3 RTK GNSS WITH BASE*. Recuperado el 20 de abril del 2023 de https://drones.altigator.com/here-3-rtk-gnss-with-base-p-42805.html
- ArduPilot (2023). *AirbotPower Power Module*. Recuperado el 26 de agosto del 2023 de <u>https://ardupilot.org/copter/docs/common-airbotpower-power-module.html</u>
- ArduPilot (2021). Connect ESCs and Motors. Recuperado el 24 de agosto del 2021 de https://ardupilot.org/copter/docs/connect-escs-and-motors.html
- ArduPilot (2021). *Loiter Mode*. Recuperado el 5 de noviembre del 2021 de <u>https://ardupilot.org/copter/docs/loiter-mode.html</u>
- Atlas Eólico del Perú (2008, octubre). VIENTO MEDIO ANUAL A 80 m Departamento de Lima. Velocidad de Viento por Departamento. Ministerio de Energía y Minas. DeltaVolt. Recuperado el 10 de abril del 2021 de https://deltavolt.pe/phocadownload/lima.pdf

- Briceño, G. (s. f.). *Dirigible*. Euston. Recuperado el 11 de mayo del 2023 de <u>https://www.euston96.com/dirigible/#:~:text=El%20dirigible%20es%20un%20aerost</u> <u>ato,resistencia%20aerodin%C3%A1mica%20en%20su%20avance</u>
- Brown, J. (s. f.). *Drone uses: The awesome benefits of drone technology*. Recuperado el 10 de abril del 2021 de <u>https://www.mydronelab.com/blog/drone-uses.html</u>
- Cámara de Comercio de Lima. (2018, 26 de febrero). *Aumento continuo del parque automotor, un problema que urge solucionar*. Recuperado el 24 de marzo del 2021 de <u>https://apps.camaralima.org.pe/repositorioaps/0/0/par/r816_3/comercio%20exterior.p</u><u>df</u>
- CAPECO. (2014). *INFORME ECONÓMICO DE LA CONSTRUCCIÓN N° 1 SEPTIEMBRE 2014*. Cámara Peruana de la Construcción. Recuperado el 30 de noviembre del 2021 de <u>https://issuu.com/capeco.org/docs/iec_1_setiembre_2014</u>
- Cero Accidentes. (2018, 18 de enero). ¿Qué ocasiona una caída en trabajos en altura? Recuperado el 10 de abril del 2021 de <u>https://www.ceroaccidentes.pe/que-ocasiona-una-caida-en-trabajos-en-altura/</u>
- Chumpitaz, J., Del Mar, K. y Zuta, L. (2020). Contaminación del aire en Lima Metropolitana. Universidad Tecnológica del Perú. Facultad de Ingeniería Industrial. Recuperado el 30 de noviembre del 2021 de <u>https://www.studocu.com/pe/document/universidadtecnologica-del-peru/quimica-general-17871/contaminacion-del-aire-en-limametropolitana-final/30477478</u>
- Collins, A. (2020, 29 de julio). Aerones Window Cleaning Drone Cost, Specs & More. Recuperado el 10 de abril del 2021 de <u>https://websta.me/aerones-window-cleaning-drone-cost-specs/</u>
- Comparabien. (2023). *DPF OH!* Recuperado el 16 de noviembre del 2023 de <u>https://comparabien.com.pe/producto/depositos-plazo/dpf-oh</u>
- Construmática. (s. f.). Recomendaciones sobre la elección del Sistema de Limpieza en fachadas. Recuperado el 1 de mayo del 2021 de https://www.construmatica.com/construpedia/Recomendaciones_sobre_la_Elecci%C3 %B3n_del_Sistema_de_Limpieza_en_Fachadas
- Corrigan, F. (2020, 5 de octubre). *What is FPV Camera Technology In Drones And Best Uses*. Dronezon. Recuperado el 26 de septiembre del 2021 de <u>https://www.dronezon.com/learn-about-drones-quadcopters/what-is-fpv-camera-fov-tvl-cmos-ccd-technology-in-drones/</u>
- CYPE INGENIEROS S.A. (2021). PARTIDA FZC010: LIMPIEZA QUÍMICA DE FACHADAS CON LANZA DE AGUA Y DETERGENTE. Generador de Precios. Análisis de precios unitarios. Recuperado el 25 de abril del 2023 de http://www.peru.generadordeprecios.info/rehabilitacion/calculaprecio.asp?Valor=1|0| 3|FZC010|fzc limp deterg: 4 2 2 0 0 0

De Máquinas y Herramientas. (2016, 27 de octubre). ¿*Cómo elegir y qué tener en cuenta para el buen uso de una hidrolavadora?* Recuperado el 27 de marzo del 2021 de <u>https://www.demaquinasyherramientas.com/herramientas-electricas-y-accesorios/como-elegir-hidrolavadora#:~:text=Presi%C3%B3n%20necesaria%20seg%C3%Ban%20la%20apl icaci%C3%B3n%20ª%20ejecutar%3ª&text=Camiones%2C%20trailers%2C%20tract ores%2C%20chasis,Superficies%20extensas%2C%20patios%203000%20PSI</u>

- DIARIO CORREO. (2018, 19 de mayo). *Tráfico en Lima: Conozca los 45 puntos críticos que aquejan a la ciudadanía (INFOGRAFÍA)*. Recuperado el 19 de marzo del 2021 de <u>https://diariocorreo.pe/edicion/lima/trafico-lima-conozcq-45-puntos-criticos-aquejan-ciudadania-infografia-819767/</u>
- DirectIndustry. (2021). *Gas industrial hidrógeno*. Recuperado el 20 de junio del 2021 de <u>https://www.directindustry.es/prod/praxair/product-22856-53052.html</u>
- Drone Volt. (2021). *Hercules 10 v1.7*. Recuperado el 26 de abril del 2021 de <u>https://www.dronevolt.com/wp-</u>content/uploads/leafletfiles/Hercules 10 v1.7 EN Web format.pdf
- Droneomega. (2021). Drone Range How Far Can a Drone Fly. Recuperado el 24 de abril del 2021 de https://www.droneomega.com/how-far-can-a-drone-fly/
- Dronethusiast. (2019, 18 de noviembre). Best FPV Goggles & Gadgets (Updated Holidays 2019) Killer FPV Drones & Systems Guide! Recuperado el 24 de abril del 2021 de https://www.dronethusiast.com/the-ultimate-fpv-system-guide/
- Engineers Edge. (2021). ABS Plastic Filament Engineer Information. 3D Printing. Recuperado el 14 de octubre del 2023 de https://www.engineersedge.com/3D_Printing/abs_plastic_filament_engineering_infor mation_14211.htm
- Eric. (s. f.). *Can you use a Pressure Washer to Soft Wash?* Pressure Washers. Recuperado el 7 de mayo del 2021 de https://readytodiy.com
- ESAN. (2018, 19 de enero). Accidentes de trabajo en el Perú: ¿qué dicen las estadísticas? Recuperado el 10 de abril del 2021 de: <u>https://www.esan.edu.pe/apuntes-</u> empresariales/2018/01/accidentes-de-trabajo-en-el-peru-que-dicen-las-estadísticas/
- Escobar, W. y Vallejo, J. (2023). Diseño y Simulación de un Prototipo de Dron Fumigador con Capacidad de Ocho Litros para Cultivo de Frutilla. Universidad Politécnica Salesiana. Quito. Ecuador. Recuperado el 25 de noviembre del 2023 de https://dspace.ups.edu.ec/handle/123456789/25867
- Euribe, A. (2016). *Diseño de un VANT para prevención de plagas y enfermedades en el cultivo del mango en la región de Piura*. Trabajo de fin de carrera. Pontificia Universidad Católica del Perú. Recuperado el 12 de noviembre del 2023 de <u>https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/12284</u>

Flores, C. (2021). Diseño de un dron con pila de hidrógeno para transporte de paquetería – Memoria. Universidad Politécnica de Catalunya. Recuperado el 29 de agosto del 2023 de https://upcommons.upc.edu/bitstream/handle/2117/349018/TFM%20C%C3%A9sar%

20Flores%20-%20Memoria.pdf?sequence=5

- FlyingTech. (2021). Frames, Parts & Props. Recuperado el 12 de septiembre del 2023 de <u>http://www.flyingtech.co.uk/collection/frames-props-parts</u>
- FlyingTech. (2021). *KDEXF-UAS55 XF UAS Multirotor Speed Controller (ESC), 55A+2S-8S OPTO.* Recuperado el 22 de octubre del 2023 de <u>https://www.flyingtech.co.uk/electronics/kde-direct-xf-uas-multirotor-esc-55a-2s-8s-opto</u>
- Garrido-Villén, N. (2014, 9 de setiembre). *Sistemas GNSS*. Introducción a los sistemas de posicionamiento global (4). Recuperado el 20 de abril del 2021 de <u>https://nagarvil.webs.upv.es/sistemas-gnss-introduccion/</u>
- Goodfellow. (2021). Carbon/Epoxy Composite Material information. Recuperado el 12 de septiembre del 2021 de http://www.goodfellow.com/E/Carbon-Epoxy-Composite.html
 GRUPO ABELLAN. (2021). Limpieza y tratamiento de fachadas y estructuras. Recuperado
- el 26 de marzo del 2021 de <u>http://www.abellanpintors.com/servicios-pintura-industrial/limpieza-tratamiento-fachadas-estructuras/</u>
- Grupo One Air Aviación S.L. (s. f.). Servicios con Drones: Un universo de posibilidades. Agencia Estatal de Seguridad Aérea. España. Recuperado el 10 de abril del 2021 de <u>https://www.dronesmalaga.net/trabajo/servicios-con-</u> <u>drones/#el_futuro_de_los_servicios_con_drones</u>
- Hibbeler, R.C. (2017). *Mecánica de Materiales* (9. Ed.). Apéndice C: Pendientes y deflexiones en vigas. México: Pearson Education.
- Hubs.co (2020). Order custom parts online. Get Instant Quote. Recuperado el 12 de noviembre del 2023 de <u>https://www.hubs.com/</u>
- Hurtado, C. (2018, 16 de enero). *Lima y su caos: La insostenibilidad urbana de Magdalena del Mar*. Escuela Técnica Superior de Arquitectura de Madrid. Recuperado el 24 de marzo del 2021 de https://core.ac.uk/download/pdf/154933661.pdf
- INEI. (2017). Perú: Perfil Sociodemográfico. Perú: Viviendas particulares, por tipo de vivienda según departamento. Instituto Nacional de Estadística e Informática. Capítulo 4. p.288. Cuadro N°4.7. Recuperado el 30 de noviembre del 2021 de <u>https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1539/ cap04.pdf</u>
- Integral Services. (2021). *Mantenimiento de fachadas ¿Cada cuanto debe realizarse?* Recuperado el 30 de noviembre del 2021 de <u>http://integralservicesltda.com/mantenimiento-de-fachadas-cada-cuanto-debe-realizarse/</u>

- Intelligent Energy. (2023). Compact Hydrogen and PEM Fuel Cells for UAVs and Drones. Recuperado el 31 de octubre del 2023 de <u>https://www.unmannedsystemstechnology.com/company/intelligent-energy/</u>
- Intelligent Energy. (2023). Cylinder options for UAVs. Recuperado el 31 de octubre del 2023 de <u>https://www.intelligent-energy.com/wp-content/uploads/2022/11/Cylinder-Guide-1.pdf</u>
- Kärcher. (2021). *Limpiadoras de alta presión*. Professional. Recuperado el 25 de abril del 2021 de <u>https://www.kaercher.com/pe/professional/limpiadoras-de-alta-presion.html</u>
- KDE Direct. (2021). *KDEXF-UAS55*. Recuperado el 26 de septiembre del 2023 de <u>https://www.kdedirect.com/collections/uas-multi-rotor-electronics/products/kdexf-uas55</u>
- Kumparak, G. (2019, 27 de agosto). *Lucid drone is built to clean the outside of your house or office*. Recuperado el 26 de abril del 2021 de <u>https://techcrunch.com/2019/08/27/lucids-drone-is-built-to-clean-the-outside-of-your-house-or-office/</u>
- Lean, P. (2019). *Ingeniería de materiales*. Facultad de Ciencias e Ingeniería. Especialidad de Ingeniería Mecánica. Pontificia Universidad Católica del Perú.
- León, H. (2018). *Diseño de hexacóptero autónomo para mantenimiento en líneas eléctricas*. Pontificia Universidad Católica del Perú. Anexos. Recuperado el 29 de agosto del 2023 de <u>https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/12407</u>
- LIMFE. (s. f.). *Nuestro Médodo*. Servicios: Hidrolavado de Estructuras. Recuperado el 27 de marzo del 2021 de <u>https://limfe.cl/hidrolavado-de-</u> <u>estructuras/#:~:text=La%20Limpieza%20de%20Fachadas%2C%20estructuras,est%C</u> <u>3%A9n%20en%20mala%20condici%C3%B3n%20y%20%C2%BA</u>
- LIMTEK. (2021). ¿Cómo limpiar la fachada de un edificio? Recuperado el 1 de mayo del 2021 de <u>https://www.limtek.pe/blog/como-limpiar-la-fachada-de-un-edificio</u>
- Linde. (2021). Adquisición de gas hidrógeno (H2) comprimido o líquido. Hidrógeno. Perú. Recuperado el 20 de junio del 2021 de https://www.linde.pe/gases/hydrogen?tab=pureza-y-mezclas
- Lucid Drone Technologies. (2021). *C1 Cleaning Drone*. Recuperado el 26 de abril del 2021 de <u>https://www.luciddronetech.com/cleaning-drone/</u>
- Lujan, L. (2019, 7 de junio). ¿Qué hacer para descontaminar el aire de Lima? Recuperado el 24 de marzo del 2021 de <u>https://www.iagua.es/blogs/luis-lujan-cardenas/que-hacer-descontaminar-aire-lima</u>
- MANSERCOM SAC. (2021). *Limpieza y mantenimiento en altura*. Servicios. Recuperado el 10 de abril del 2021 de <u>http://manserperu.com/galeria.htm</u>
- Ministerio de Transporte y Comunicaciones. (2015). NORMA TÉCNICA COMPLEMENTARIA NTC 001-2015.

- Mori, B. (2020). Diseño de un vehículo aéreo-terrestre no tripulado con autonomía de funcionamiento de larga duración orientado a operaciones de búsqueda y rescate.
 Pontificia Universidad Católica del Perú. pp 93-96. Recuperado el 24 de octubre del 2023 de https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/16731
- National Cleaning S.A. (2021). *Limpieza de fachadas*. Recuperado el 25 de abril del 2021 de <u>https://nationalcleaning.pe/limpieza-de-fachadas/</u>
- Paredes, J. (2015). *Diseño de un Cuadricóptero para Transporte de Medicina en la Amazonía Peruana*. Pontificia Universidad Católica del Perú. Recuperado el 5 de noviembre del 2021 de https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/8120
- Peru Gas. (2020). *Gases industriales*. Recuperado el 12 de noviembre del 2021 de <u>http://peru-gas.org.pe/gases industriales.html</u>
- PROMETEC. (2021). Distintas configuraciones para los multirotores. Recuperado el 19 de abril del 2021 de https://www.prometec.net/configuraciones-multirrotores/
- Quan, Q. (2017). Introduction to Multicopter Design and Control. Department of Automatic Control. Beijing. China. Springer. Recuperado el 12 de abril del 2023 de <u>https://doiorg/10.1007/978-981-10-3382-7</u>
- Orna, J. y Dávila, P. (2015). *Diseño, Construcción y Control de un Hexacóptero de Monitoreo.* Facultad de Ingeniería Mecánica. Escuela Politécnica Nacional. Quito. Ecuador. Recuperado el 1 de noviembre del 2023 de <u>https://bibdigital.epn.edu.ec/handle/15000/10924</u>
- Reglamento Nacional de Edificaciones. (2021). NORMA TÉCNICA A.010 CONDICIONES GENERALES DE DISEÑO DEL REGLAMENTO NACIONAL DE EDIFICACIONES.

Reglamento Nacional de Edificaciones. (2019). NORMA TÉCNICA E.070 ALBAÑILERIA

- RESCUEJIM. (2021). *Limpieza suave de fachadas*. Recuperado el 25 de abril del 2021 de <u>https://rescuejimaltura.com/limpieza-de-fachadas</u>
- Rivera, G., Jiménez, W., Quispe, E. y Ramírez, H. (2020, junio). *La prestación del servicio de limpieza pública en el Perú: Un análisis de los determinantes de su eficiencia.* Contraloría General de la República del Perú. Recuperado el 24 de marzo del 2021 de <u>https://www.enc.edu.pe/encimages/SEI/ICLP1.pdf</u>
- ROS Components. (2021). *RC Pixhawk*. Recuperado el 3 de octubre del 2021 de <u>https://www.roscomponents.com/es/imus/146-rc-pixhawk.html</u>
- RPP (2020, 21 de enero). *Lima es la séptima ciudad con más polución de aire en Latinoamérica*. Recuperado el 24 de marzo del 2021 de <u>https://rpp.pe/lima/actualidad/lima-es-la-septima-ciudad-con-mas-polucion-de-aire-en-latinoamerica-noticia-1240870?ref=rpp</u>

- RumboMinero. (2014, 12 de noviembre). *Praxair suministrará hidrógeno a Repsol en el Perú*. Recuperado el 20 de junio del 2021 de <u>https://www.rumbominero.com/peru/noticias/mineria/praxair-suministrara-hidrogeno-a-repsol-en-el-peru/</u>
- Salazar, L. (2020, 20 de febrero). *Nuevos sistemas de navegación para drones en entornos sin GPS*. Recuperado el 20 de abril del 2021 de <u>https://a21.com.mx/un-espacio-para-los-no-tripulados/2020/02/20/nuevos-sistemas-de-navegacion-para-drones-en-entornos</u>
- SENAMHI. (2021). Pronóstico del tiempo para LIMA OESTE (Lima). Recuperado el 25 de abril del 2021 de <u>https://www.senamhi.gob.pe/main.php?p=pronostico-detalle&dp=lima&localidad=0001</u>
- SERMANSA. (2021). *Excelencia en servicio de mantenimiento y limpieza*. Recuperado el 26 de marzo del 2021 de <u>https://www.sermansa.net/nosotros.php</u>
- Singh, K. (2018). *Modelling and Controls of a Hexacopter*. Texas A&M University. Kingsville. Estados Unidos. Recuperado el 5 de noviembre del 2023 de <u>https://tamuk.contentdm.oclc.org/digital/collection/p16771coll2/id/562/</u>
- SPIDER E.I.R.L. (s. f.). *Hidrolavado de Exteriores e Interiores*. Recuperado el 27 de marzo del 2021 de <u>http://spidermantenimiento.com/hidrolavado-profesional/</u>
- Tabuchi, R. (2015). *Diseño de un Vehículo Aéreo no Tripulado de cuatro rotores para una carga útil de 1kg*. Pontificia Universidad Católica del Perú. pp 34-35. Recuperado el 19 de abril del 2023 de <u>http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/6105</u>
- T-Motor. (2021). Antigravity Type. MN5008. Recuperado el 28 de agosto del 2021 de https://store.tmotor.com/goods.php?id=998
- Towne, J. (2018, 23 de noviembre). *Wash your windows with an Aerones drone*. Recuperado el 10 de abril del 2021 de https://dronedj.com/2018/11/23/aerones-drone/
- Townsend, A., Jiya, I., Martinson, C., Bessarabov, D. y Gouws, R. (2020). A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon. Vol. 6, Número 11. Recuperado el 16 de abril del 2023 de <u>https://www.sciencedirect.com/science/article/pii/S2405844020321289</u>
- UAVRC. (2021). *Tube Clamp 25mm Metal Red.* Recuperado el 4 de septiembre del 2021 de <u>https://uavrc.com/tubeclamps-Selfie-Drone-Robots-Camera-Gimbal-GPS-Stabilize-</u> <u>RTH-IOC-Flight-Controller-Multirotors-Gimbal</u>
- Universitat de Lleida. (s. f.). *Trabajos en alturas Protocolo de Limpieza de fachada*. Recuperado el 1 de mayo del 2021 de <u>https://diagnosticoprlconstruccion.files.wordpress.com/2015/06/04-protocolo-limpieza-de-fachada.pdf</u>
- Unmanned Systems Technology. (2021). GPS & GNSS Navigation Systems for Unmanned Vehicles, UAVs, Robotics. NOVATEL. Recuperado el 20 de abril del 2021 de https://www.unmannedsystemstechnology.com/company/novatel/

- Valavanis, K. (2015). *Handbook of Unmanned Aerial Vehicles*. Denver. Springer. Recuperado el 10 de abril del 2021 de https://doi-org/10.1007/978-90-481-9707-1
- Vega, E. (2021). Crecimiento inmobiliario vertical de Lima muestra comportamientos diferenciados. El Comercio. Recuperado el 30 de noviembre del 2021 de <u>https://elcomercio.pe/economia/negocios/crecimiento-inmobiliario-vertical-de-lima-</u> <u>muestra-comportamientos-diferenciados-mercado-inmobiliario-capeco-tinsa-ncze-</u> noticia/
- Vertical Services E.I.R.L. (2021). *Limpieza de vidrios en altura*. Servicios. Recuperado el 25 de abril del 2021 de <u>https://www.verticalservices.pe/</u>
- VueloArtificial. (2021). Los principios básicos de vuelo. Recuperado el 24 de agosto del 2021 de <u>https://vueloartificial.com/introduccion/toma-de-contacto/principios-basicos-de-vuelo/</u>
- Washh. (2021). Soft Washing vs Power Washing: What's the Difference? Recuperado el 7 de mayo del 2021 de <u>https://washh.com/washh-resources/soft-washing-vs-power-washing/</u>
- Weather Spark. (s. f.). *El clima promedio en Lima*. Recuperado el 29 de marzo del 2021 de <u>https://es.weatherspark.com/y/20441/Clima-promedio-en-Lima-Per%C3%BA-</u><u>durante-todo-el-a%C3%B1o</u>

ANEXOS

Anexo A

Parámetros de operación, autorizaciones y condiciones de trabajo

Procedimiento:

1) Planeamiento y Coordinación: Según la información brindada de Vertical Services E.I.R.L (2021), luego de la oferta del servicio por el área comercial de la empresa, se procede a solicitar al cliente una inspección de la zona para establecer el equipo que se utilizará, la complejidad así como el costo total.

2) Preparación: A continuación, se procede a "realizar el correcto llenado del ATS y los permisos de trabajo" (National Cleaning S.A., 2021). Dependiendo de la dificultad, la complejidad de los equipos escala desde accesos verticales, andamios ligeros, andamios mayores hasta "manlifts" ya que influye significativamente la ubicación de la fachada para la base sobre la cual se instalará el servicio de limpieza, incrementando el costo.

3) Condiciones previas: Para el soporte, se debe considerar "que no se están realizando trabajos en la zona a limpiar." (CYPE Ingenieros S.A., 2021) Y, respecto a lo ambiental, "se suspenderán los trabajos cuando llueva con intensidad, nieve o exista viento excesivo". (CYPE Ingenieros S.A., 2021).

4) Ejecución: Llegado el momento de operación, se procede a delimitar la zona base mediante señalización para instalar los equipos de elevación (National Cleaning S.A., 2021), así como para alistar con el EPP necesario a un equipo de entre 3 a 4 individuos para una tarea de duración media (1 h). Se estila el trabajo durante el día sobre la noche debido a la facilidad del secado mediante regado con baja presión y para evitar, según lo consultado con la empresa RESCUEJIM, ráfagas súbitas o mayores vientos durante la noche. Igualmente, la empresa LIMTEK confirma esta preferencia: "Debemos escoger el mejor momento para limpiar, como

un fin de semana, día soleado, con poco tránsito y especialmente a primera hora de la mañana" (LIMTEK, 2021).

Seguros, normativas y estándares de calidad:

Primeramente, la empresa debe asegurarse de que su personal cuente con Seguro Complementario de Trabajo de Riesgo según la ley 26790. Asimismo, la entidad privada debe de certificarse (costo adicional) bajo el Sistema de Gestión ISO 9001, el cual establece un estándar de calidad para la prestación de servicios de riesgo (Vertical Services E.I.R.L, 2021) o bajo el Sistema de Gestión OHSAS 18001 (National Cleaning S.A., 2021). De esta forma, la empresa se encuentra acreditada de que podrá realizar un servicio de calidad. Finalmente, empresas profesionales tales como National Cleaning S.A. resaltan su trayectoria al mostrar que sus trabajadores cuentan con más de 5 años de experiencia en el rubro de la limpieza (National Cleaning S.A., 2021).

Costeo del servicio:

La cantidad de personal y el tiempo dependen de la complejidad de la geometría y el material de construcción, ya que ambos determinan el tiempo de operación y por ende, el costo del servicio. De acuerdo con lo consultado con empresas del sector, se tienen dos formas de costeo:

1) Costeo por metro cuadrado de la fachada (Costo variable): Esta forma es más usada para edificaciones de baja altura (de hasta 7.5 m o tres pisos según norma RNE E.070). dado que se puede estimar mejor el total que se requiere limpiar. Como referencia se procedió a consultar en el mercado al proveedor LIMTEK para la limpieza de hollín de una fachada de 5 pisos en el distrito de Lurigancho (2022) y se obtuvo un aproximado de S/. 5000 por un servicio completo de lavado químico a presión con una duración aproximada de 1 hora. Para mayor

precisión se requiere una inspección presencial del lugar ya que afectan factores como: la zona, material de construcción, posicionamiento de equipos, etc. Por otro lado, el tamaño de la estructura aumenta el precio del servicio. Un ejemplo de esto se puede observar en la facturación de un servicio de pintura en altura brindada por la empresa RESCUEJIM para el local institucional Sencico (Ver figura A.1), el cual abarca las fachadas de 3 patios exteriores por un precio superior a los S/.12000.

Fecha de Vencimiento : Fecha de Emisión : 24/11/2020 Señor(es) : Señor(es) : Señor(es) : CONSTRUCCION RUC : Dirección del Cliente : CDRA 15 DE LA AV CANADA LIMA-LIMA-SAN BORJA		
()DEED/3C/OD		
Cantidad Unidad Medida Descripción	Valor Unitario	
Valor de Venta de Operaciones Gratuitas : S/ 0.00 SON: DOCE MIL QUINIENTOS NOVENTA Y OCHO Y 90/100 SOLES Örden de Compra : 0000084	Sub Total Ventas Anticípos : Descuentos : Valor Venta ISC : IGV : ICBPER : Otros Cargos Tributos Importe Total	S/ 10,677.03 S/ 0.00 S/ 0.00 S/ 10,677.03 S/ 0.00 S/ 1,921.83 S/ 0.00 S/ 0.00 S/ 0.00 S/ 0.00 S/ 12,598.90

Figura A.1: Ejemplo de facturación por limpieza de fachadas. Extraído de RESCUEJIM, 2021.

2) Costos fijos por tipo de estructura: Son costos preestablecidos ya por las empresas para superficies extensas, edificios, fachadas grandes, etc.

Anexo B

Aplicación de Metodología

Comprensión de la Solicitud: Se hará énfasis en la contextualización de la problemática para justificar la necesidad de la propuesta de solución. Es decir, se inicia indagando el parque automotor limeño y su efecto en la contaminación de las edificaciones, sumado a la respuesta pública y privada derivada de esto. Asimismo, se investiga acerca del estado del arte concerniente a la limpieza de fachadas. Se recopilan proyectos de índole comercial y académico que empleen el uso de la tecnología UAV para solucionar problemas de limpieza.

Concepto de Solución: Se elaboran los conceptos de ingeniería en base al bagaje recolectado en la etapa anterior con la finalidad de concebir un concepto de solución óptimo. Con el aporte de los modelos y técnicas encontrados es posible determinar las funciones principales del VANT a ser realizadas, las cuales se documentan en una estructura de funciones integrada. Luego, en base a las opciones comerciales y académicas se procede a nombrar alternativas por cada función. Finalmente, se homologan conjuntos de soluciones denominados conceptos de solución para ser evaluados cualitativamente derivando en un concepto de solución óptimo.

Elaboración del proyecto: Primeramente, se hace un dimensionamiento y se evalúan las formas y disposiciones de las piezas más importantes de la estructura principal tales como el fuselaje, brazos, soportes, etc. Luego, mediante cálculos, procedimientos y recomendaciones de autores se dispone una forma preliminar, la cual es mostrada mediante *Autodesk Inventor*. En el aspecto electrónico, se seleccionan los componentes en base a alternativas comerciales y en caso fuese necesario se diseña un circuito específico. Por otro lado, respecto al proyecto en sí, se lleva a cabo un proceso iterativo general que parte desde la estimación de un peso inicial para la elección de los componentes del sistema de propulsión y se trabaja en ello hasta

culminar el dominio mecánico y electrónico, donde se reevalúa el peso de la máquina y se confirma la correcta elección de componentes.

Elaboración de detalles: Se realiza la ingeniería de detalles. Se justifican y documentan las piezas mecánicas por el método FEM con *Inventor Nastran* y se evalúa brevemente la forma final del VANT mediante un análisis por simulación aerodinámico. En esta etapa final se obtienen todos los planos para la fabricación y montaje, así como el diagrama de bloques del sistema y el plano electrónico esquemático. Mas aún, se inicia con el dominio de control, el cual parte de la forma física final del sistema y mediante los parámetros de vuelo del VANT se realiza la simulación en *Simulink*, inicialmente en un vuelo libre y finalmente mediante la acción de la fuerza lineal que ejerce el disparo a presión.

Anexo C

Detalles de sistemas internos del VANT

Sistemas de navegación

Se muestran a continuación los dos elementos fundamentales para la ubicación del VANT en el espacio: Equipo GPS y la unidad inercial; ya que ambos permiten ubicar a la aeronave en un mapa georreferenciado en tiempo real (Salazar, 2020). Más aún, tal como Salazar indica: "Es posible obtener información de altura o altitud real, velocidad terrestre (Ground Speed), régimen de ascenso o descenso, así como indicación de rumbo" (Salazar, 2020).

i. Equipo GPS: Opera bajo el principio de triangulación, mediante el cual, el recibidor GPS instalado en el VANT obtiene los datos de localización enlazándose con múltiples satélites en la órbita terrestre (Salazar, 2020). Se destaca el GNSS (Global Navigation Satellite System), el cual un término genérico para referirse a los "Sistemas de Navegación por Satélite que proporcionan un posicionamiento geoespacial con cobertura global, tanto de forma autónoma, como con sistemas de aumentación" (Garrido-Villén, 2014), que abarca de forma genérica los estándares GPS, GLONASS, GALILEO, etc. Dentro del mercado, se pueden encontrar como placas recibidoras (figura C.2) o módulos RTK (Real-Time Kinematic) (figura C.1).

Figura C.1: módulo HERE 3 RTK GNSS WITH BASE. Extraído de AltiGator, 2023.

Figura C.2: Novatel OEMStar Receiver. Extraído de Unmanned Systems Technology, 2021.

ii. Unidad Inercial: Es un sistema autónomo el cual consta de un giroscopio en cada uno de los ejes x,y,z así como tres acelerómetros (Salazar, 2020). Su funcionamiento radica en primeramente registrar las aceleraciones lineales a las que el VANT se expone en los tres ejes, las cuales son integradas para obtener las velocidades de desplazamiento con respecto al suelo. Luego, conociendo la duración de estas, se obtienen las distancias recorridas siempre que se parta desde una posición inicial (Salazar, 2020).

Sistemas de comunicación

i. Transmisor y receptor RC (Radio Control TX & RX): Consiste en dos dispositivos que trabajan conjuntamente. En primera instancia, tenemos el transmisor RC, el cual transmite comandos del piloto en tierra a su correspondiente recibidor en el VANT. En seguida, actúa el recibidor RC, el cual capta y pasa el comando al control de vuelo luego de decodificarlo Ambos se comunican por ondas de radio, con las más comunes de 5.8 GHz y 2.4 GHz (ver tabla C.1), siendo la última la más comercial (Droneomega, 2021). Cabe resaltar que estas frecuencias definen el rango de operación. Una regla para considerar es que a mayor frecuencia, mejor es la transmisión de datos pero menor es el rango de operación, dado que las mayores frecuencias no pueden penetrar objetos sólidos (Droneomega, 2021). Por otro lado, dentro de los productos encontrados se destacan el FrSky Taranis X9d Plus (2.4GHz) junto con el recibidor FrSky X8R tal como se muestra en la figura C.3.

Figura C.3: *FrSky Taranis X9D Plus 2.4G Drone Transmitter With X8R Drone Receiver*. Extraído de Unmanned Systems Technology, 2021.

	2.4 GHz	5.8 GHz		
Rango	Gran cobertura	Cobertura media		
Velocidad de transmisión	Baja	Alta		
Canales	11	23		
Principal inconveniente	Interferencia con otros dispositivos	Interferencia con objetos sólidos		
	debido a congestionamiento.	limita su operación		

Tabla C.1: Comparación de frecuencias de control más comunes.

Nota: Datos extraídos de Droneomega, 2021.

ii. Sistema FPV (First Person View)

De funcionamiento similar al sistema anterior mencionado, el conjunto video transmisor y receptor se comunican para brindar la visión en primera persona al operador. Los tres componentes básicos de un sistema FPV son: la cámara, el transmisor de video (VTX) y el receptor de video (VRX) (Dronethusiast, 2019). La cámara va conectada directamente con el VTX, el cual envía señales a una longitud de onda de radio específica al VRX (Dronethusiast, 2019). Así, la cámara captura, el VTX decodifica y envía los datos al receptor en tierra. Nuevamente, resalta la importancia de la frecuencia de operación, la cual depende de la aplicación (Dronethusiast, 2019). Por ejemplo en la figura C.4 se puede apreciar un conjunto VTX/VRX que trabaja con 1.2GHz y 8 canales. Finalmente, en la tabla C.2 yacen las frecuencias más demandadas así como sus características principales de operación.

Figura C.4: *RipaFire FPV 1.2G 1500mW 8CH 1.2GHz Wireless Digital Audio Video AV Transmitter Receiver System Set.* Extraído de Dronethusiast, 2019.

	Tuota C.2. Comparación	ue freeueneius u		ipiación).
Frecuencia	900 MHz	1.2 GHz	2.4 GHz	5.8 GHz
Ventajas	-Rango y penetración	-Gran rango y	-Buen rango	-Rango moderado
	excelentes	penetración	-Costo accesible	-Equipo compacto
Desventajas	-Ilegal en algunos	-Ilegal en	-Wifi y Bluetooth	-Baja penetración
	países	algunos países	también lo usan	
	-Misma frecuencia que	-Frecuencias	-Bastante	
	celulares	compartidas	posibilidad de	
	-Antena larga		interferencia	

Tabla C.2: Comparación de frecuencias de transmisión FPV (Adaptación).

Nota: Datos extraídos de Dronethusiast, 2021.

Control de vuelo

Este dispositivo viene a ser la unidad central que controla básicamente el funcionamiento del dron en sí. El *Autopilot* "es un sistema de control de vuelo utilizado para controlar la altitud, posición y trayectoria de un multicóptero" (Quan, 2017, p.50); ya que se encarga del procesamiento, organización y envío de información entre los dispositivos conectados tal como se observa en la figura C.5 con un controlador PixHawk. Este puede ser semi automático como también totalmente autónomo, siendo el más común el primero por sus usos de operación remota. Asimismo, se puede destacar que la estrategia de control más común es la de sintonización por PID (Quan, 2017, p.50).

Figura C.5: Distribución de componentes entrelazados con controlador PixHawk. Extraído de Quan, 2017.

Anexo D

Tecnologías alternativas de elevación

Sustentación por diferencia de densidades

Una alternativa paralela, tentativa y poco mencionada es la del sistema de elevación del aerostato. Este último hace referencia a una "aeronave provista de uno o más recipientes llenos de un gas más ligero (de menor densidad) que el aire" (Aero21, 2016) la cual se vale de la sustentación aerostática, siendo esta la fuerza de flotación que no requiere movimiento entre la masa de aire, a diferencia de las aeronaves convencionales las cuales usan sustentación aerodinámica (Aero21, 2016). Dentro del grupo de los aerostatos se pueden destacar dos: globos aerostáticos, los cuales no son ni propulsados ni dirigibles, mientras que los dirigibles (de mayor interés para el proyecto), son propulsados y guiados (Aero21, 2016).

Por ello, haciendo hincapié en el dirigible, se destaca que este se vale del helio principalmente como medio para controlar su flotabilidad en el aire. Este, a diferencia del hidrógeno, no es inflamable y, es controlado mediante la apertura de compartimientos de aire dentro de la nave (Briceño, 2018). Es decir, en el despegue el piloto libera un compartimiento de este gas el cual flota "positivamente en el aire circundante, por lo que el dirigible se eleva" (Briceño, 2018). Si bien su uso se ha limitado mayormente a la publicidad, cuenta con la ventaja de levantar grandes cargas (Briceño, 2018) en comparación a los VANT.

No obstante, su principal desventaja viene a ser el tamaño, el cual incrementa a mayor medida con la necesidad de mayor altura, estabilidad y requerimiento de carga. Por ello, tal como la empresa Aero Drum Ltd muestra, algunos dirigibles teledirigidos para interiores pueden llegar a medir hasta 4.5 m de largo con una capacidad de carga de 700 g, en contraste con los dirigibles para exteriores con 7 m de largo y hasta 2.5 kg de capacidad de carga (véase figura D.1).

Figura D.1: Dirigibles de interior y de exterior. Extraído de Aero Drum Ltd, 2023.

Hidrógeno verde en el mercado actual

Otra tecnología que está despegando en la actualidad y ve su auge en un futuro cercano es el uso de hidrógeno verde como combustible para celdas de hidrógeno (FCM). De esta forma, en la presente sección se procede a mencionar su desenvolvimiento y disponibilidad en el mercado peruano que es de interés para este trabajo.

El Perú recién se encuentra en una primera etapa de desarrollo de tecnologías verdes de energía. Si bien existe la facilidad de producción y distribución de hidrógeno, carece de impacto comercial dentro del mercado debido a que no hay gran cantidad de demanda de este. Sin embargo, existe evidencia que dentro de un futuro cercano es muy probable el despegue de esta fuente como un producto comercial más asequible. Un claro ejemplo de ello fue la incursión de la empresa PRAXAIR para la producción y distribución de hidrógeno a REPSOL en aras de "hacer frente a la tendencia mundial de la adopción de tecnologías más sostenibles" (RumboMinero. 2014).

Por su parte, en la fecha actual PRAXAIR, ahora perteneciente al grupo LINDE, ofrece abiertamente la comercialización de hidrógeno verde presurizado en el Perú. Este puede adquirirse en formato industrial (ver figura D.2) como hidrógeno comprimido o líquido mediante una cotización en su página oficial (linde.pe) para su pronta distribución (Linde, 2021). Así, en caso se implementase la tecnología de pilas de combustible en territorio

nacional, la empresa tendría que comprarle a este principal distribuidor cilindros de hidrógeno comprimido y tenerlos en bombonas industriales portátiles para facilitar su transporte. Si bien aún no es común esta tecnología, promete bastante en un futuro cercano.

Figura D.2: Gas industrial hidrógeno comercial. Extraído de DirectIndustry, 2021.

Anexo E

Requerimientos del proyecto

Deseo /Exigencia	Requerimientos
Е	Función Principal - Ejecutar un lavado a presión de forma constante, estable y precisa en estructuras de mediana altura. Además, debe poder soportar las condiciones climáticas anuales de Lima Metropolitana
	Geometría
E	- Diseño con dimensiones no superiores a 1.2 m x 1.2 m x 1 m.
Ē	- Diseño simétrico para garantizar mayor estabilidad en altura.
Ē	- Diseño que integre la boquilla de riegue al respetar un espacio para evitar
	interferencia entre la estructura y la salida de agua a presión.
Е	- Geometría que ofrezca resistencia ligera al viento.
	Cinemática
E	- Desplazamiento aéreo debe soportar corrientes de 25 km/h (máxima ráfaga en
	territorio limeño).
	Fuerzas
E	- Peso del VANT \leq 25 kg (LEY N° 29088) para facilitar su transporte.
D	- Peso del VANT \leq 6 kg (NTC: 001-2015) peso muy inferior comparado con
	alternativas comerciales de aplicaciones similares.
E	- Correcta elección de rotores capaces de generar sustentación necesaria para
	mantener en vuelo a la estructura y sus componentes.
	Energía
E	- La fuente de energía debe permitir un tiempo de operación con duración
	equiparable al de una jornada de trabajo promedio de lavado tradicional. (1 h \leq
	Autonomía energética).
E	- La distribución de potencia entre sus rotores debe ser equitativa para mantener la
	estabilidad durante el vuelo.
	Senales (Informacion)
	Entrada:
	-Senar de encendido/apagado para energizar y apagar los componentes
	Señal de comandos para el control de vuelo del VANT en el aire
F	-Señal de parada para detener el VANT en medio vuelo
	-Señal de accionamiento para liberar el riegue a presión por la varilla
	Salida
	-Tiempo total de vuelo para indicar el tiempo de operación.
	-Vídeo transmitido para facilitar el trabajo al operario.
	-Batería restante para indicarle al operario la disponibilidad de energía.
	Material
E	- Fuselaje resistente y ligero: Fibra de carbono.
E	- Brazos del VANT resistentes y ligeros: Fibra de carbono.
E	- Componentes internos protegidos por una cubierta de ABS ante posibilidad de
	precipitación.
E	- Soporte de la varilla de riegue con material ligero para disminuir el peso de la
	carga útil.
	Control
E	- Controlador debe garantizar un vuelo estable para vientos de 25 km/h.

Tabla E.1: Tabla de requerimientos del proyecto.
Е	- Algoritmo que permita controlar la dirección de vuelo.							
Е	- Algoritmo que permita controlar la orientación del VANT.							
Е	- Sistema de posicionamiento que le permita ubicarse en la posición deseada							
	definida por el operario con respecto a un punto de referencia.							
	Electrónico							
Е	- Controlador de vuelo compatible que integre los componentes electrónicos v							
	permita un control preciso de los motores.							
Е	- Debe contar con un dispositivo de transmisión de video que le otorgue al operario							
	un control vía FPV.							
E	- Debe contar con un arreglo de sensores que le permitan al VANT determinar su							
	posición v orientación.							
E	- Necesita disponer de rotores con alta eficiencia energética para enfatizar la							
	extensión del vuelo.							
	Comunicaciones							
E	- Debe contar con un dispositivo GPS que permita determinar la posición global del							
	VANT							
E	- La comunicación con el operador debe darse por radiofrecuencia con valores de:							
	2 4 GHz para el Radio Control y 5 8 GHz para la transmisión de video garantizados							
	para una distancia de 0.1 km							
	Seguridad							
E	- Diseño que disponga de equipamiento de aterrizaje para evitar comprometer a la							
	estructura v componentes.							
E	- Aviso en el recibidor de video del consumo de combustible.							
Ē	- Los sensores y el controlador deben encontrarse separados de la fuente de energía.							
	- Debe contar con protección para los componentes internos ante el viento y la							
Е	precipitación (IP-X3 según norma CEI 60529).							
	Ergonomía							
D	- Diseño compacto con facilidad de transporte.							
Е	- Facilidad de integración de instrumento de riegue.							
	Fabricación							
Е	- Se deben de considerar las tolerancias para el diseño del VANT.							
D	- Procurar utilizar materiales disponibles dentro del mercado nacional.							
	Mantenimiento							
D	- Diseño debe ofrecer un rápido y sencillo desarme para facilitar la limpieza y la							
	intercambiabilidad de piezas.							
D	- Emplear partes con gran disponibilidad en el mercado de tal forma que facilite la							
	compra rápida de repuestos.							
	Uso							
E	- Debe ser teleoperado por medio de radio control.							
E	- Manipulación de controles sencilla para un operario de limpieza.							
D	- Rango de temperatura a soportar: $0^{\circ}C - 27^{\circ}$.							
E	- Ejecutar lavado de baja presión hasta 69 bares.							
D	- Ejecutar lavado de alta presión hasta 100 bares.							
E	- Ejecutar lavado en edificaciones de por lo menos 4 pisos de altura.							
E	- Ejecutar lavado en edificaciones de hasta 5 pisos de altura (15 m).							
	Costos							
E	- El costo total debe rondar entre los \$25000 a \$30000 teniendo como referencia el							
	modelo BSHARK de HFC (Hydrogen Fuel Cell) con precio inicial de \$6800 y							
	proyectos de diseño similares.							

Nota: Elaboración propia.

Anexo F

Entradas y Salidas del sistema

Entradas:

• Señales:

- Señal de encendido/apagado: Se encarga del encendido y el apagado de los componentes eléctricos/electrónicos del VANT, dejándolo listo para partir vuelo.

- Señal de parada: Se encarga de la detención del VANT mientras se encuentra volando, dejándolo en una posición fija en el aire.

- Señal de comandos: Vienen a ser los 4 comandos elementales: *Throttle, Yaw, Pitch y Roll* enviados desde el radiocontrol en tierra, permiten el manejo en vuelo del dron.

- Señal de accionamiento: Habilita la salida del flujo de agua a presión en vuelo, permitiendo cumplir la misión del dron: lavar.

- Señal de emergencia: Habilita la liberación de un paracaídas de seguridad instalado en caso de caída o pérdida de vuelo.

• Energía:

- Energía eléctrica: Viene a ser la alimentación energética para el vuelo del VANT y su carga.

• Materia:

- Fluido a presión: Fluido (agua o solución química) enviado a cierta presión proveniente de una unidad de lavado.

- Humedad, viento, particulados: Material presente o indeseado que se encuentra el VANT durante el vuelo.

Salidas:

• Señales:

- Señal de video: Video transmitido por la cámara para el operador.

- Estado de fuente de energía: Muestra un referente de la carga restante del suministro energético.

- Tiempo de vuelo: Indica el tiempo de operación del VANT luego de su despegue.

• Energía:

- Ruido, vibraciones, calor: Energía que viene a ser liberada debido al funcionamiento y transformación interna del proceso.

• Materia:

- Fluido a presión proyectado: Fluido a presión dirigido hacia un objetivo para su lavado.

- Humedad, viento, particulados: Flujo de aire generado por la propulsión del multicóptero así como subproductos derivados.

Anexo G

Conceptos solución

En la presente sección se procederá a mencionar los conceptos de solución integrados derivados de la elección de alternativas. Asimismo, se dispondrá de una breve descripción por cada uno de estos, resaltando sus características más importantes y modos de operación.

Concepto solución 1

Este concepto consiste en un cuadricóptero de configuración QUAD X, es decir, con la cámara ininterrumpida por uno de los cuatro brazos. El uso de cuatro rotores con propelas más grandes compensa el peso adicional que recibe al usar una celda y un cilindro de hidrógeno tal como se puede apreciar en la figura G.1.

Figura G.1: Vista isométrica completa del concepto solución 1. Fuente: Elaboración propia.

Otra medida que se lleva a cabo para corregir el sobrepeso es el uso de una lanza acoplada mediante un acople en L directamente a la manguera que recibe de la hidrolavadora. De esta forma, ahorra material polimérico de haberse usado una pistola completa convencional. Esto se puede ver en la figura G.2 con mayor detalle. Asimismo, se sustituye un tren de aterrizaje de 2 patas por columnas de soporte en las monturas de los motores, ahorrando más peso inclusive y aportando a la estabilidad del VANT durante el vuelo al descentralizar el peso acumulado en la base de este.

Figura G.2: Vista de perfil de la lanza acoplada en L. Fuente: Elaboración propia.

Si bien su diseño es compacto, cuenta con la posibilidad de una duración de vuelo superior debido al cilindro de hidrógeno (aproximadamente 2 o hasta 3 veces más que una batería LiPo), no obstante, carece de espacio en cuanto a la organización de sus componentes. Se emplea un diseño modular para enjaular a los componentes principales y no se requiere una cubierta exterior puesto que el agua nebulizada producto del rociado a presión no afecta al cilindro de hidrógeno o a la celda de carga, tal como se ve en la figura G.3.

Figura G.3: Organización interna de componentes. Fuente: Elaboración propia.

Su funcionamiento es el siguiente: Durante el vuelo, el cilindro de hidrógeno provee de este elemento a la celda de hidrógeno, la cual absorbe el oxígeno del ambiente y mediante reacciones electroquímicas se combina el hidrógeno con el oxígeno del ambiente para generar un flujo de electrones (corriente de interés), aire y agua nebulizada, siendo estos últimos subproductos.

Concepto solución 2

El siguiente concepto destaca por su estabilidad sobre su duración de vuelo. Al ser la única alternativa que utiliza una configuración HEXA X (6 rotores), cuenta con una mayor fuerza de sustentación y por ende, estabilidad durante el vuelo, no viéndose afectado a gran medida por ráfagas y la fuerza ejercida por el disparo a presión. Ver figura G.4.

Figura G.4: Vista isométrica completa del concepto solución 2. Fuente: Elaboración propia.

No obstante, emplea baterías de LiPO de mediana carga, lo cual le brinda una duración aproximada de vuelo de entre 30 a 40 minutos. Debido a esto, usa una carcasa superior de protección para evitar las salpicaduras sobre las baterías y las conexiones. Asimismo, el diseño modular cubre los componentes internos y la forma hexagonal de la base aporta a una buena distribución de estos como también a una mayor estabilidad. Respecto a su método de disparo a presión, a comparación del VANT de hidrógeno, este diseño puede darse la comodidad de adjuntar una pistola completa convencional de hidrolavadora, la cual puede modificarse para sustituir la acción del dedo humano al activar el gatillo con un mecanismo sencillo que involucre un servomotor de alto torque. Este, jala el husillo de la válvula de restricción y deja pasar el fluido a presión. Así, gana autonomía remota ya que el operador en tierra puede enviar la señal del disparo al autopiloto y este comunicarle a un microcontrolador (el cual tiene

conectado el servomotor) para accionar la rotación de este y liberar el flujo durante el vuelo. Se puede ver la distribución de componentes en la figura G.5.

Figura G.5: Distribución de componentes y mecanismo de disparo. Fuente: Elaboración propia.

Concepto solución 3

Finalmente, se tiene el último concepto el cual destaca por su simpleza y ligereza sobre su estabilidad, contando una duración de vuelo mayor al segundo concepto y menor al primero. En primer lugar, dado que se encuentra utilizando una configuración QUAD X de 4 rotores, tiene una mayor holgura respecto al peso el cual puede ser llenado con el uso de baterías de LiPo de mayor capacidad (mayor peso proporcional) sin que afecte su peso total, en contraste del concepto 2, el cual está más limitado en este aspecto. De esta forma, incrementa su duración

de vuelo de 40 a 50 minutos aproximadamente. No obstante, es un cuadricóptero y por ende, tiene menor estabilidad en altura que un VANT de mayor número de rotores. Cuenta, por su parte, de un tren de aterrizaje de 2 patas y de una cámara fijada en una montura interna dentro de la estructura base, ahorrando material en soportes adicionales como se observa en la figura G.6.

Figura G.6: Vista isométrica completa del concepto solución 3. Fuente: Elaboración propia.

Otro factor para tomar en consideración es el uso de una pistola completa desactivada, es decir, con el gatillo removido para facilitar la integración de la manguera con la pistola, la cual es sostenida por medio de un soporte fijado a la parte inferior de la estructura base. Ello, pese a que le resta autonomía al funcionamiento debido a que ahora el operador debe de activar el disparo desde la hidrolavadora, lo compensa en cuanto a su montaje y desmontaje al ser relativamente sencilla la integración y el retiro de la manguera y de la pistola, permitiendo adaptar distintos modelos de pistolas comerciales (véase figura G.7).

Figura G.7: Integración de pistola comercial con gatillo desactivado. Fuente: Elaboración propia.

De esta forma, se tiene a un VANT integral de diseño modular compacto (componentes integrados como en la figura G.8), gran ligereza y construcción intuitiva el cual puede cumplir con su trabajo durante un mayor tiempo que una opción de 6 rotores (debido también al menor consumo de energía en la rotación de propelas).

Figura G.8: Organización de componentes. Fuente: Elaboración propia.

Anexo H

Evaluación técnica

A continuación, se presenta cada criterio de evaluación empleado para la evaluación técnica (ver evaluación en tablas H.1 y H.2):

- Función principal: Se evalúa la capacidad de realizar el vuelo mientras ejecuta la función solicitada de lavado a presión.
- Forma: Se compara el tamaño y las distribuciones de espacio con el objetivo de mantener un vuelo estable en todo momento.
- Diseño: Se considera el diseño general del VANT, haciendo énfasis en la integración del medio disparador a presión.
- Estabilidad: Se evalúa la solidez de la configuración del VANT, su resistencia ante ráfagas, estabilidad durante vuelo y riego a presión así como su duración de vuelo.
- Seguridad: Se evalúa la integridad del VANT y su respuesta ante fallos durante el vuelo.
- Fabricación: Se evalúa la facilidad con la que se puede fabricar el VANT. Esto concierne a la disponibilidad de los procesos de fabricación para los componentes a ser diseñados.
- Montaje: Se evalúa la facilidad con la que se puede ensamblar el VANT desde sus partes.
- Uso de energía: Se evalúa la utilización eficiente de la fuente de energía para garantizar la mayor duración de vuelo posible.
- Peso: Se compara en primera instancia el pesaje aproximado que abarcaría cada alternativa dado que el peso debe ser el menor posible.

Criterio	g	Justificación
Función	4	Es considerado como muy importante dado que consiste en una exigencia primaria así
principal		como también representa la solución a la problemática descrita en el primer capítulo.
Forma	3	Considerado como importante puesto que influye en la distribución de espacios y
		organización de componentes, así como también en la aerodinámica y estabilidad en
		vuelo.
Diseño	3	Este es importante dado que refleja la integración del medio físico disparador con la
		estructura base del VANT de tal forma que no comprometa su vuelo.
Estabilidad	4	Considerado como muy importante dado que el VANT no solo debe mantenerse estable
		durante el vuelo normal sino también durante el regado a presión.
Seguridad	2	Este criterio se considera útil o de menor importancia dado que todas las propuestas ya
		cumplen con el uso de un paracaídas.
Fabricación	2	Este criterio si bien toma en consideración la disponibilidad de materiales y los procesos
		de fabricación, es menos importante ya que existen estándares para su realización.
Montaje	3	Este criterio es importante ya que la lista de exigencias sugiere un ensamblaje rápido y de
_		sencilla realización.
Uso de	4	Parte de los requisitos energéticos exigen una duración de vuelo lo más larga posible para
energía		competir con una jornada mínima de trabajo de un equipo completo de limpiadores.
Peso	4	Este factor es muy importante puesto que debe poder soportar los componentes así como
		el disparador integrado.

Tabla H.1: Justificación de valoración de 'g' – Evaluación técnica.

Nota: Elaboración propia.

Tabla H.2: Justificación de asignación de puntajes para valor técnico.

Criterio	Concepto	p	Justificación					
	solución							
Función principal	1	3	Si bien la solución 3 puede realizar la misión, su ligereza en peso a					
	2	3	como simpleza de diseño para el disparo la hacen perder robustez,					
	3	2	empleando mayor energía en los motores para correcciones de vuelo					
Forma	1	2	La configuración de 6 rotores (hexacóptero), base hexagonal,					
	2	3	patas, diseño modular de componentes y brazos de perfil circular					
	3	1	ofrecer mayor aerodinámica.					
Diseño	1	3	Las soluciones 1 y 2 ofrecen mayor robustez en su diseño así como					
	2	3	mejor integración entre sus partes.					
	3	2	000					
Estabilidad	1	2	Un hexacóptero ofrecerá mayor estabilidad que un cuadricóptero,					
	2	3	más aún ante la fuerza generada por el disparo a presión en altura					
	3	2	sumado a ráfagas de viento.					
Seguridad	1	3	Las tres soluciones cumplen con el requisito de portar un paracaídas					
	2	3	de emergencia.					
	3	3						
Fabricación	1	2	La tercera solución, al emplear un menor número de partes para su					
	2	2	composición, así como partes menos complejas para la integración					
	3	3	del disparador, destaca en este aspecto.					
Montaje	1	3	Las tres soluciones ofrecen un montaje accesible para					
	2	3	construcción y desarme.					
	3	3						
Uso de energía	1	3	La segunda solución al ser un hexacóptero, exige un mayor consumo					
	2	1	de energía debido a su mayor número de motores.					
	3	3						
Peso	1	2	Todos los componentes de la celda de hidrógeno mas el cilindro					
	2	2	lleno de hidrógeno generan un peso aproximadamente mayor al de					
	2	2	una batería LiPo de máxima capacidad (solución 2). La solución 3					
	3	5	tiene la ventaja de haber reducido su peso mediante una estructura					
			base cuadrada y 4 motores solamente.					

Nota: Elaboración propia.

Anexo I

Evaluación económica

A continuación, se presenta cada criterio de evaluación empleado para la evaluación económica (ver evaluación en tablas I.1 y I.2):

- Costo inicial de la tecnología: Se analiza el costo inicial de inversión por la propuesta tecnológica presentada, el cual depende directamente del aporte innovador que presenta la propuesta así como de su complejidad.
- Costo energético: Se evalúa el costo de la recarga de la fuente de energía durante el vuelo (*refilling*). Es decir, que tan accesible económicamente es disponer de fuentes adicionales, suministros y cantidad de recargas durante el vuelo del VANT.
- Costo de operación: Se evalúa el costo que conlleva al usuario en tierra teleoperar el VANT.
 Se toma en consideración la complejidad de manejo y el costo por capacitación.
- Costo de fabricación: Se analiza el costo por la fabricación de las piezas a ser diseñadas para cada propuesta de VANT.
- Costo de materiales: Se analiza el costo asociado con la utilización de materiales específicos para garantizar el cumplimiento de la función principal
- Costo de mantenimiento: Se evalúa el costo por el montaje y desmontaje del VANT, la facilidad en la accesibilidad de sus partes y la disponibilidad de repuestos.

Criterio	g	Justificación					
Costo inicial de la	4	Este criterio es muy importante ya que representa el costo por inversión					
tecnología		inicial directamente relacionado con la complejidad de la tecnología					
		emplear.					
Costo energético	4	Es muy importante puesto que hace referencia al costo económico por la					
		dquisición, suministro y/o recarga de la fuente de energía que se empleará					
		dentro del mercado nacional.					
Costo de operación	2	Este criterio es de menor importancia dado que la teleoperación remota de					
_		rones es bastante intuitiva así como los programas de capacitación en el					
		mercado nacional.					
Costo de fabricación	3	Este criterio es importante puesto que influye en la cantidad de partes a					
		diseñar que conforman el VANT.					
Proyección económica	3	Este criterio es importante ya que responde al valor de la tecnología en un					
		futuro cercano (10 años aproximados).					
Costo de mantenimiento	3	Este criterio representa un costo indirecto para el VANT dado que se espera					
		que el montaje y desmontaje sean sencillos así como la disponibilidad de					
		repuestos en el mercado nacional.					

Tabla I.1: Justificación de valoración de 'g' – Evaluación económica.

Nota: Elaboración propia.

Criterio	Concepto solución		p	Justificación
Costo inicial	1		1	La tecnología para llevar a cabo el suministro de energía a base de
de la	2		3	hidrógeno es reciente a nivel mundial y poco frecuente a nivel nacional.
tecnología	3		3	Se necesita de una mayor inversión de capital para su importación.
Costo	1		2	De la misma manera, existe dificultad para encontrar un proveedor fijo
energético	2		3	nacional que brinde el hidrógeno ya preparado para presurizarlo en un
	3		3	cilindro de recarga. Pocos proveedores, mayor precio.
Costo de	1		3	La operación de un VANT no es compleja y existen variedad de entidades
operación	2		3	públicas y privadas para capacitar nuevos operadores. Mayor variedad de
	3		3	precios.
Costo de	1		2	Las piezas para fabricar no son de geometría compleja. No obstante, se
fabricación	2		3	requieren de piezas adicionales para la sujeción del cilindro de hidrógeno.
	3	-	3	
Rentabilidad	1		3	Debido al abaratamiento natural de la tecnología, si bien la celda de
futura	2		2	hidrógeno no es altamente competitiva en la actualidad, en un futuro
	3		2	cercano podrá compensar la fuerte inversión inicial que conlleva.
				Asimismo, la tendencia mundial hacia energías más renovables apoyará
				su desarrollo.
Costo de	1		3	Las soluciones que emplean baterías LiPo poseen mayor número de
mantenimiento	2		2	componentes electrónicos y corren el peligro de no descargarse
	2		2	totalmente, hincharse o consumirse, necesitando reponerse por nuevas
	3		Ζ	baterías. Por otro lado, la celda de hidrógeno así como su cilindro se
				limpian externamente.

Tabla I.2: Justificación de asignación de puntajes para valor económico.

Nota: Elaboración propia.

Anexo J

Descripción del funcionamiento de la configuración HEXA X

A continuación, se establece la configuración estándar a ser utilizada y se explaya al lector la maniobra de vuelo general del VANT.

Configuración seleccionada

El presente VANT desarrollado está construido bajo la configuración estándar: HEXA X, es decir, su parte frontal (donde va ubicada la cámara) está despejada de un brazo. También, a diferencia de un cuadricóptero, este cuenta con el giro asimétrico de 3 propelas contrario al de los 3 restantes, cancelando los torques opuestos y garantizando estabilidad al darse empujes de la misma magnitud en los 6 motores. De esta forma, tal como se ve en la figura J.1, las propelas 1, 3 y 6 giran en sentido contrario a las propelas 2, 4 y 5.

Figura J.1: Sentido de giro de hélices de un hexacóptero. Extraído de ArduPilot, 2021.

Maniobra en vuelo

El VANT ejecuta 4 movimientos fundamentales que le permiten maniobrar con facilidad durante el vuelo: *Throttle, Pitch, Roll y Yaw.* Estos se consiguen mediante la variación de velocidad en diferentes motores (VueloArtificial, 2021). A continuación, se ilustra en las figuras J.2 a J.5 más claramente las combinaciones e intensidades de velocidad respectivas, donde el verde es baja velocidad, amarilla es media y roja es alta.

Throttle: Implica una traslación vertical directa ya sea en sentido ascendente (rotores a mayor velocidad) o descendente (rotores a menor velocidad).

Figura J.2: Maniobra Throttle. Exraído de VueloArtificial, 2021.

Pitch: Implica la traslación hacia adelante o hacia atrás. Esto se consigue al incrementar la velocidad de los dos rotores traseros para ir hacia adelante y los dos rotores delanteros para ir en sentido contrario. Los dos rotores del costado restantes mantienen una velocidad media.

Roll: Implica la traslación hacia los costados del VANT. Para ello, se incrementa la velocidad de los 3 rotores izquierdos para que el VANT se desplace hacia la derecha mientras que un aumento de los 3 rotores derechos ocasiona un desplazamiento hacia la izquierda.

Figura J.4: Maniobra Roll. Extraído de VueloArtificial, 2021.

Yaw: Consiste en la rotación del VANT sobre su propio eje vertical. Para ello se aumenta la velocidad de 3 rotores que giren en un mismo sentido.

Figura J.5: Maniobra Yaw. Extraído de VueloArtificial, 2021.

Anexo K

Tablas de ensayo de vuelo por motor y propela

Test Report										
Туре	Propeller	Throttle	Voltage (V)	Current (A)	Power (W)	RPM	Torque (N*m)	Thrust (g)	Efficiency (g/W)	Operating Temperature (°C)
		40%	47.41	1.17	55	2868	0.13	682	12.34	63
		45%	47.39	1.57	74	3207	0.17	849	11.43	
		50%	47.36	2.10	100	3588	0.21	1058	10.62	
		55%	47,34	2.76	131	3952	0.26	1285	9.84	
		60%	47.31	3.46	164	4279	0.29	1515	9.25	
	T-MOTOR P17*5.8" CF	65%	47.28	4.23	200	4579	0.34	1739	8.7	
		70%	47.24	5,11	242	4872	0.39	1991	8.24	
		75%	47.21	6.10	288	5172	0.44	2234	7.76	
		80%	47.17	7.20	340	5465	0.50	2509	7.38	
		90%	47.08	9.91	466	6025	0.62	3116	6.68	
MN5008		100%	47.03	11.46	539	6294	0.69	3449	6.4	
KV170	T-MOTOR	40%	47.39	1.51	71	2807	0.19	868	12.15	89
		45%	47.37	2.05	97	3120	0.24	1096	11.28	
		50%	47.34	2.74	130	3477	0.29	1343	10.34	
		55%	47.30	3.63	171	3819	0.36	1633	9.52	
		60%	47.27	4.57	216	4125	0.42	1926	8,93	
		65%	47.23	5,63	266	4410	0.48	2229	8.39	
		70%	47.19	6.73	317	4663	0.53	2519	7.94	
		75%	47.15	8.01	378	4945	0.60	2821	7.47	
		80%	47.10	9.48	446	5208	0.67	3156	7.07	
		90%	46.99	12.85	604	5716	0.81	3807	6.3	
		100%	46.94	14.63	687	5963	0.87	4100	5.97	

Tabla K.1: Ensayo de vuelo MN5008-KV170.

Nota: Extraído de T-Motor, 2021.

Anexo L

Detalle de Estructura de Funciones

Dominio Mecánico

El siguiente dominio, indicado en la figura L.1, tiene como propósitos principales el albergar todos los componentes y soportar estructuralmente las ráfagas de viento cuando el VANT se encuentra en movimiento en altura. De esta forma, este dominio recibe como entrada el fluido a presión transportado de una unidad de lavado y, mediante un soporte estructural y un medio físico para direccionar el disparo, es capaz de ejecutar el lavado durante su vuelo. Asimismo, durante su desplazamiento, el dominio de sensores se encarga de detectar los parámetros principales: velocidad, altura, posicionamiento y orientación.

Figura L.1: Dominio Mecánico. Fuente: Elaboración propia.

- Aterrizar VANT: El VANT emplea un descenso vertical apoyándose en un equipo de aterrizaje instalado en este.
- Aterrizar de emergencia: El VANT aterriza luego de haberse activado el paracaídas.
- Estabilizar imagen: Soportar el enfoque de la cámara durante el vuelo para un trabajo óptimo.
- Liberar flujo a presión: Permitir la salida del fluido direccionado a través de un medio físico.
- Proteger componentes: Aislar físicamente los componentes electrónicos de acuerdo con la IP-33 ante agua nebulizada producto del rociado.

- Propulsar VANT: Se utiliza el movimiento rotacional generado por el actuador en un medio físico para generar sustentación.
- Soportar paso del fluido: Sujetar medio físico direccionador del riegue mediante estructura adicional acoplada a la estructura base.
- Soportar estructura base: El VANT dispone de una estructura central (lo suficientemente ligera y resistente) la cual alberga al controlador y los componentes electrónicos e igualmente soporta el sujetador del disparador.
- Soportar empuje: El VANT dispone de brazos ligeros y resistentes donde se instalan los actuadores de propulsión para el posterior movimiento de este en vuelo.
- Recibir fluido transportado: Utilizar una conexión con la manguera comercial extensa para habilitar el paso del fluido a presión enviado desde la unidad de lavado.

Dominio de Actuadores

Este pequeño bloque (figura L.2) cuenta con los medios para activar las funciones principales del VANT: Sustentarse en el aire y proyectar el fluido a presión. Por ello, se encuentra entre los dominios eléctrico-electrónico y de control, consiguiendo ser la etapa intermedia. Por otro lado, el dominio de sensores recopila datos de la velocidad rotacional con la que giran los actuadores de propulsión para informarle al dominio de control.

Figura L.2: Dominio de Actuadores. Fuente: Elaboración propia.

• Accionar actuador de disparo: Habilitar el paso del fluido a presión que viene desde la manguera hasta el medio direccionador.

- Accionar actuador de rotación de propelas: Transformar energía eléctrica en energía mecánica para la rotación de las propelas.
- Accionar aterrizaje de emergencia: Desprende el equipo de paracaídas ante pérdida de elevación súbita o malfuncionamiento.

Dominio Eléctrico-Electrónico

Este dominio (figura L.3) se encarga del provisionamiento y acondicionamiento de energía a los componentes, así como de albergar dispositivos electrónicos de registro, envío y recepción de datos durante el vuelo. Para una mejor distribución energética, se ha separado la alimentación en dos vías: la primera, hacia el actuador de propulsión (el cual requiere de mayor demanda energética) mientras que la segunda se encarga de proveer energía al controlador, a los sensores, actuadores y demás componentes del VANT.

Figura L.3: Dominio Eléctrico-Electrónico. Fuente: Elaboración propia.

- Acondicionar voltaje para controlador, sensores y actuadores: Regular el voltaje de la fuente de energía a uno apropiado para energizar al controlador, a los sensores y los actuadores del VANT.
- Acondicionar voltaje para actuador de rotación de propelas: Regular el voltaje de la fuente de energía a uno apropiado para energizar únicamente a los motores.

- Alimentar controlador, sensores y actuadores: Emplear una fuente de energía destinada aparte al controlador, los sensores y actuadores para priorizar mayor autonomía energética en los motores.
- Alimentar propulsión: Emplear una fuente de energía destinada a los motores priorizando la autonomía energética requerida.
- Almacenar energía: Medio utilizado para el albergue y disposición de energía.

Dominio de Sensores

El siguiente dominio, visto en la figura L.4, tiene la función principal de detectar los parámetros principales de vuelo del VANT: velocidad, posición, altura y orientación, así como el nivel que tiene la fuente de energía. Todos estos sensores reciben energización del dominio eléctrico-electrónico y están conectados directamente (son controlados) por el dominio de control ya que reportan directamente las variaciones de los parámetros al controlador.

Figura L.4: Dominio de Sensores. Fuente: Elaboración propia.

- Detectar velocidad de rotación: El VANT percibe la velocidad rotacional generada directamente por los actuadores de rotación.
- Detectar altura: El VANT percibe la distancia desde la tierra hasta su posición actual en vuelo.
- Detectar orientación: El VANT percibe los cambios inerciales en los tres ejes coordenados.
- Detectar posicionamiento: El VANT percibe su ubicación global.
- Revisar estado de la fuente de energía: Detectar la cantidad de energía restante.

Dominio de Control

Con la función esencial de controlar el vuelo, el dominio de control (figura L.5) recibe los parámetros principales del dominio de sensores, los cuales son controlados mediante subfunciones distintas las cuales reportan a la principal, la cual realiza los ajustes/correcciones de vuelo a la función de desplazamiento del dominio mecánico (C). Asimismo, el controlador de pilotaje en tierra recibe estos cambios en los parámetros principales en forma de correcciones de vuelo, datos y estados del vuelo.

Figura L.5: Dominio de Control. Fuente: Elaboración propia.

- Controlar velocidad de rotación: A través del ESC (*Electronic Speed Controller*) el controlador de vuelo monitorea la velocidad de los motores, así como también decide si aumentarla o disminuirla dependiendo de los parámetros que reciba en vuelo.
- Controlar altura: Procesar los cambios en altitud percibidos por el sensor de altura.
- Controlar orientación: Procesar los cambios inerciales captados por el detector de orientación.
- Controlar posición: Procesar la información recibida de la ubicación global del VANT.
- Controlar vuelo: Todo VANT dispone de un controlador de vuelo que recopila las actualizaciones de los parámetros de vuelo recibidos por los sensores, toma decisiones respecto a la trayectoria y corrige las variaciones en los parámetros: posición, velocidad, orientación y altura.

• Obtener estado de fuente de energía: Procesar la información del detector del nivel de voltaje.

Dominio de interfaz del usuario

El siguiente dominio, como se ve en la figura L.6, refleja la interacción que posee el VANT con el operador en tierra. El operador controla remotamente al VANT mediante un medio físico de teleoperación, el cual se encarga de enviar las señales de acciones y comandos así como también de recibir la transmisión de video del transmisor del VANT. Por otro lado, recibe los ajustes de vuelo por parte del controlador y también se encarga de mostrar la información relevante así como el video en vivo del vuelo del VANT.

Figura L.6: Dominio de interfaz de usuario. Fuente: Elaboración propia.

- Registrar señales de encendido: El operario en tierra le indica al controlador del VANT el parámetro de encendido/apagado inicializando todos los componentes y calibrando los sensores automáticamente.
- Mostrar información: Las señales de salidas son mostradas en una interfaz al operario en tierra.
- Mostrar transmisión de video: Mostrar el video transmitido por el VANT al operador en tierra.
- Registrar instrucciones de control de pilotaje: Comandar el pilotaje remoto del VANT.

Dominio de Comunicación

El siguiente dominio (figura L.7) se encarga del recibimiento y transmisión de las señales que envía tanto el operador en tierra como la transmisión de video que este recibe por parte del VANT en vuelo. Asimismo, las señales que recibe el VANT del operador son utilizadas directamente a los actuadores de vuelo y liberación del fluido.

Figura L.7: Dominio de comunicación. Fuente: Elaboración propia.

- Recibir señal de disparo del fluido: El VANT recibe la señal de accionamiento dirigida por el mando en tierra.
- Recibir señales de comandos: El VANT recibe las señales *Throttle, Yaw, Pitch* y *Roll* provenientes del mando en tierra.
- Recibir transmisión de video: Proyectar la señal de video recibida del video transmisor en el VANT al operario.
- Registrar video: La cámara registra el video en vuelo para brindar una operación vía FPV.
- Transmitir señal de apertura/cierre de flujo: El mando en tierra envía una señal para la habilitación o cancelación del paso de flujo en el VANT.
- Transmitir señal de disparo de paracaídas: El operario en tierra envía una señal para la activación del paracaídas en caso de pérdida de control sobre el vehículo

- Transmitir señales de comandos: El operario en tierra envía las señales concernientes a los movimientos principales: *Throttle, Yaw, Pitch* y *Roll.*
- Transmitir video: Recibir la señal de video registrada por la cámara para enviarla luego a un recibidor en tierra.

Anexo M

Análisis de resistencia de brazos

Cálculo de resistencia del brazo

Una vez obtenidas las dimensiones del brazo, se realiza un cálculo de flexión para corroborar que los brazos pueden soportar la carga ejercida sobre estos. Cabe resaltar que la fuerza de empuje ejercida por un motor fue obtenida en la subsección 4.1.2 y es de 13.39 N. Primero, se establecen los datos principales del perfil tubular de 25 mm de diámetro y 2 mm de espesor (figura M.1) considerando que el material es fibra de carbono con una densidad de 1.6 g/cm³ ($1.6 \times 10^{-6} \text{ kg/mm}^3$) y un límite de fluencia de 570 MPa (Goodfellow, 2021).

Figura M.1: Perfil del brazo. Fuente: Elaboración Propia.

Cálculos del perfil

 $Vol_{brazo} = \pi (12.5^2 - 10.5^2) 430 = 62140.70 \ mm^3$ Inercia (I_Z) = $\frac{\pi}{64} (25^4 - 21^4) = 9628.196 \ mm^4$ $A_{brazo} = \pi (12.5^2 - 10.5^2) = 144.51 \ mm^2$

Cálculos del peso

 $W_{brazo} = Vol_{brazo} \times (1.6 \times 10^{-6}) = 0.099 \, kg$ $F_{puntual} = 0.099 \times 9.8 = 0.974 \, N$

$$q = F_{distribuida} = \frac{0.974}{430} = 2.266 \times 10^{-3} \frac{N}{mm}$$

Para el modelamiento, se considera el brazo como una barra empotrada de tal forma que se elabora el diagrama de fuerzas que se observa en la figura M.2.

Figura M.2: Diagrama de fuerzas - brazo. Fuente: Elaboración Propia.

Donde, realizando sumatoria de fuerzas y momentos se tiene:

$$\sum F = 0; \quad 13.39 = q(430) + F_c$$

$$F_c = 12.42 N$$

$$\sum M_A = 0; \quad 13.39(430) - q(430)(215) - M = 0$$

$$M = 5757.21 Nmm$$

Se realizan los diagramas de fuerza cortante y momento flector que se pueden apreciar en la figura M.3.

Figura M.3: Diagramas de fuerza cortante y momento flector. Fuente: Elaboración Propia.

Se identifica que el punto crítico es A con un momento de 5757.21 *Nmm* en el empotramiento y por ende, se procede a analizar si falla por resistencia. Empleando la fórmula de Von Mises (Ecuación M.1) se encuentra el esfuerzo equivalente.

$$\sigma_{eq-VM} = \sqrt{\sigma_f^2 + 3\tau_c^2}$$
 (Ecuación M.1)

Donde,

$$\sigma_f = \frac{M \times y_{max}}{I_Z} \frac{5757.21 \times 12.5}{9628.196} = 7.47 MPa$$
$$\tau_C = \frac{F_c}{A_{brazo}} = \frac{12.42}{144.51} = 0.086 MPa$$

Reemplazando, se tiene: $\sigma_{eq-VM} = \sqrt{7.47^2 + 3(0.086)^2} = 7.47 MPa$ Se emplea un factor de seguridad de 1.1.

$$FS = \frac{\sigma_{falla}}{\sigma_{adm}}$$
$$1.1 = \frac{570}{\sigma_{adm}}$$

$$\sigma_{adm} = 518.18 MPa$$

Se debe cumplir:

 $\sigma_{eq-VM} < \sigma_{adm}$

Por ende, se confirma que el brazo no falla ni se deforma plásticamente.

Cálculo de deflexión del brazo

Dado que la fuerza de empuje tiende a doblar el brazo, es de importancia verificar cuánta es la deflexión total que sufre el brazo. Así, se plantean los siguientes diagramas de fuerzas con las curvas de deformación vistas en la figura M.4.

Figura M.4: Curvas de deformación del brazo. Fuente: Elaboración propia.

Para hallar la deflexión total se deben sumar ambas v. Para ello, se consulta el apéndice C del libro de Resistencia de Materiales de Hibbeler sobre las pendientes y deflexiones en vigas (Hibbeler, 2017). Se determina que la deflexión final es la suma de las deflexiones vistas en la figura M.4. Cabe considerar que no se encontró un módulo de elasticidad preciso para el CFRP por lo que se está usando el estandarizado del software Inventor (E = 133 GPa).

$$v_{total} = v_{max1} + v_{max2}$$

Donde,

$$v_{max} = \frac{-wL^4}{8EI} = -\frac{2.266 \times 10^{-3} (430)^4}{8(133000)(9628.196)} = -0.00756 \text{ mm}$$
$$v_{max2} = \frac{PL^3}{3EI} = \frac{13.39(430)^3}{3(133000)(9628.196)} = 0.277 \text{ mm}$$

Sumando, se tiene que v_{total} es de 0.269 mm, lo cual es un valor significativamente pequeño y por ende, se puede decir que el brazo no sufre de una flexión excesiva y el dimensionamiento es el apropiado.

Simulación por elementos finitos del brazo

Se fija (empotra) la pieza en las posiciones de las abrazaderas y se simula una carga de sustentación de 13.39 N provista por el motor brushless. Respecto al análisis de esfuerzos se observa en la figura M.5 que se consigue un valor máximo de 40.97 MPa, lo cual da un FS de 7.32. Se tiene entonces que este valor es inferior al límite elástico del CFRP que es 570 MPa (Goodfellow, 2021). Por ende, cumple con la solicitud.

Figura M.5: Análisis de esfuerzo del brazo en Nastran. Fuente: Elaboración Propia.

De igual forma, se procede a realizar el análisis de la deformación total de la pieza, cuyo resultado en la simulación brinda un valor de 0.2362 mm, lo cual es cercano al valor calculado previamente de 0.269 mm. En efecto, la máxima deformación obtenida se da en el lado del motor, dado que la fuerza de sustentación tiende a alzar esta parte sobre el otro extremo del brazo empotrado en el fuselaje del VANT (véase figura M.6). Debido a que se obtuvo un valor máximo de 0.2362, se puede decir que es insignificante y el brazo no sufrirá de ningún daño en la operación.

Figura M.6: Análisis de deformación del brazo en Nastran. Fuente: Elaboración Propia.

Anexo N

Análisis de resistencia de aplastamiento de cilindro

Respecto al aplastamiento generado por el cilindro de hidrógeno, utilizando dos sujetadores, cada pieza recibiría 884.5 g del peso total del cilindro. Más aún, sufrirían de un esfuerzo de aplastamiento que se puede calcular considerando las superficies en contacto con el cilindro como se aprecia en la figura N.1.

Figura N.1: Aplastamiento por cilindro. Fuente: Elaboración propia.

Area en contacto =
$$2 \times ((2 \times \pi \times 57.5) \times 2) = 1445.13 \text{ mm}^2$$

$$\sigma_{aplast} = \frac{F}{Area \text{ en contacto}} = \frac{0.8845 \times 9.8}{1445.13} = 0.006 \text{ MPa}$$

Rápidamente, se puede obtener este valor de esfuerzo, el cual es inferior en gran medida al esfuerzo de falla del CFRP (570 MPa) y el que servirá para determinar la deformación más adelante. Dispuesta ya la sujeción contra la rodadura del cilindro, la sujeción en contra del salto puede solucionarse mediante el uso de correas, para lo cual se diseñaron ranuras de longitud 26 mm entre centros y un radio de 2.5 mm como se aprecia en la figura N.2.

Figura N.2: Vista de planta de la base superior. Fuente: Elaboración propia.

Finalmente, para encarar el posible deslizamiento se emplean refuerzos. Para empezar se toman las medidas en la posición central aproximada del cilindro donde se observa (véase figura N.3) que se debe dar un margen mayor a 60 mm entre el borde de la base al extremo del cilindro.

Figura N.3: Margen para el refuerzo del cilindro. Fuente: Elaboración propia.

Se emplea el uso de una plancha de 2 mm de fibra de carbono a ser doblada con un radio de 0.5 mm. También, por cada lado del VANT se emplearán dos refuerzos. Asimismo, se plantea el peor escenario posible el cual es que el VANT voltee en 45° y cada brazo tenga que soportar la mitad del peso del cilindro (8.67 N). De esta forma, trasladando la fuerza como se aprecia en la figura N.4, se tiene que en el punto A, la sección sufre un esfuerzo de tracción mientras que en B se da compresión. Considerando que la sección es rectangular de área 12 mm², se analizan las cargas combinadas en los extremos A y B.

Figura N.4: Efecto de caída crítica de cilindro. Fuente: Elaboración propia.

El momento de inercia de la sección es:

$$I_z = \frac{bh^3}{12} = 36 mm^4$$

Y se sabe que la carga combinada se calcula con: $\sigma_x = \frac{F}{A} - \frac{M_z y}{I_z}$

• Cargas combinadas en A:

Se tiene un momento de $55 \times 8.67 = 476.85 Nmm$

$$\sigma_A = \frac{8.67}{12} - \frac{-476.85(3)}{36} = 40.46 \, MPa$$

Considerando FS=1.1, $\sigma_{adm-CFRP} = 518.18 MPa$

El refuerzo resiste dado que: 40.46 < 518.18 MPa

• Cargas combinadas en B:

Se tiene un momento de $107 \times 8.67 = 927.69 Nmm$

$$\sigma_B = -\frac{8.67}{12} - \frac{-927.69(-3)}{36} = 78.03MPa$$

Considerando FS=1.1, $\sigma_{adm-CFRP} = 518.18 MPa$

El refuerzo resiste dado que: 78.03 < 518.18 MPa

Simulación por elementos finitos de elementos de sujeción del cilindro

En primer lugar, se pone a prueba el escenario de deslizamiento lateral descrito, donde cada refuerzo debe soportar la mitad del peso del cilindro (es decir una fuerza final de 8.67 N). Para dicho escenario, se procedió a fijar la superficie que va atornillada a la base superior, la cual puede verse como una marca de pie en la figura N.5. Realizando el análisis de esfuerzos, se obtiene como resultado que el esfuerzo máximo es de 55.72 MPa con un FS de 5.8, siendo un valor inferior al límite de fluencia del CFRP, concluyendo que este refuerzo lateral es capaz de mantener al cilindro en posición en un escenario de inclinación crítica.

Figura N.5: Análisis de esfuerzo del refuerzo lateral en Nastran. Fuente: Elaboración Propia.

De igual forma, se lleva a cabo el análisis de deformación con lo que se obtiene un valor de deformación de 0.08328 mm (figura N.6), siendo virtualmente insignificante para vulnerar la integridad de la pieza.

Figura N.6: Análisis de deformación del refuerzo lateral en Nastran. Fuente: Elaboración Propia.

Por otro lado, es la base superior del VANT la que debe soportar los 1.7 kg del cilindro, los 400 g del paracaídas, la masa de los soportes verticales y las fuerzas de sustentación ejercidas por los 6 motores (transmitidas por los brazos). Se consideraron estas cargas al momento de la simulación y se fijaron los agujeros de los 6 bordes donde se empotrarían los brazos; teniendo como resultado que esta pieza sufrirá de un esfuerzo máximo de 21.71 MPa, con un FS de

13.82 tal como se ve en la figura N.7. Por ende, no sufrirá inconveniente debido a que es inferior al límite de fluencia del CFRP.

Figura N.7: Análisis de esfuerzo de base superior en Nastran. Fuente: Elaboración Propia.

En cuanto al análisis de deformación, se puede observar que la deformación máxima se concentra en el centro de la pieza (figura N.8). Sin embargo, el valor resultante es de 0.03369 mm por lo que se concluye que la pieza no sufrirá de algún daño por deformación.

Figura N.8: Análisis de deformación de base superior en Nastran. Fuente: Elaboración Propia.
Anexo O

Análisis de impacto

Es de suma importancia analizar el comportamiento del tren de aterrizaje al momento de golpear el piso considerando el peor escenario posible, propuesto en la tesis de Tabuchi, donde se deja un margen de caída libre entre el VANT y el piso de 20 cm pero donde solo impacte uno de los dos conjuntos (Tabuchi, 2015, p.70). El objetivo es encontrar la fuerza al momento de impactar contra el piso de tal forma que se pueda analizar la resistencia y deformación sobre el tren y sobre la base inferior. De esta forma, se emplea la fórmula de la velocidad final (ecuación O.1) para hallar primero la velocidad antes del impacto.

$$V_f^2 = V_i^2 + 2ad$$

(Ecuación O.1)

Donde:

- V_f = Velocidad final [m/s]
- V_i = Velocidad inicial [m/s]
- $a = \text{Aceleración} [\text{m/s}^2]$
- d = Distancia [m]

Entonces, en un supuesto que se suelte ($V_i = 0 \text{ m/s}$) a una altura d = 0.2 m donde la aceleración acompañante es la de la gravedad (g = 9.8 m/s²), se tiene que:

$$V_f = \sqrt{2ad} = \sqrt{2(9.8)(0.2)} = 1.97 \ m/s$$

Una vez que se tiene la velocidad antes de impactar, se analiza el valor de la distancia de desaceleración, la cual, al no saber sobre qué superficie podría impactar, se asumirá un valor de 2 mm (Tabuchi, 2015, p.72). Así, en un segundo escenario se vuelve a usar la ecuación O.1 para hallar la aceleración en el momento del impacto, considerando una distancia de profundidad d = 0.02 mm, la velocidad inicial que sería la final encontrada previamente (V_i = 1.97 m/s) y la velocidad final que sería nula ya que el dron ha aterrizado (V_f = 0 m/s).

$$|a_{impacto}| = \frac{V_f^2 - V_i^2}{2d} = 97.02 \text{ m/s}^2$$

Ahora, considerando la masa supuesta del VANT, la cual es de 8.2 kg, se puede hallar la fuerza del impacto que éste tendrá que soportar.

$$F = ma = (8.2)(97.02) = 795.564 N$$

Simulación por elementos finitos de escenario de impacto

Los 795.564 N se introducen en un extremo del tren, haciendo alusión al escenario de impacto postulado. Para ello, en el caso del conjunto del tren, se ha procedido a fijar la placa base dado que esta es atornillada a la base inferior del VANT. Por otro lado en el caso de la unión T, se procedió a fijar el interior del tubo central. Se obtiene en la figura O.1 que el esfuerzo máximo sobre este conjunto es de 283.5 MPa, siendo un valor considerable dado que el límite de fluencia del CFRP es de 570 MPa. No obstante, se encuentra dentro del rango con un FS de 1.64, cumpliendo la solicitud. Se puede decir entonces que pese al considerable valor de impacto, el conjunto resiste. Respecto a la unión T, se replica la misma fuerza en los extremos de este, dando un esfuerzo máximo de 9.66 MPa, inferior al límite de fluencia de una fibra de ABS el cual es de 18.5 MPa con un FS de 2.07. (Engineers Edge, 2023).

Figura O.1: Análisis de esfuerzo de tren de aterrizaje en Nastran. Fuente: Elaboración Propia.

El análisis de deformación también se realiza tomando en consideración este escenario y se obtiene una deformación máxima en los extremos del tren de 1.05 mm y 0.1136 mm en la unión T (figura O.2), lo cual es un valor relativamente pequeño y esperado considerando el torque que esta parte del conjunto genera sobre la placa base. Dicho esto, se concluye que el tren de aterrizaje pasa la prueba de impacto propuesta.

Figura O.2: Análisis de deformación de tren de aterrizaje en Nastran. Fuente: Elaboración Propia.

Anexo P

Análisis de resistencia por retroceso del disparo

Para calcular la "patada" se debe considerar el lugar de acción de ésta, el cual viene a ser el punto en el que se conecta el soporte que sujeta al elemento de unión con la varilla. Tal como se observa en la figura P.1, la flecha celeste indica el disparo a presión, lo cual se manifiesta como una fuerza al salir. Una forma precisa para calcular la fuerza de retroceso es considerando el flujo de agua de subida y el diámetro interior de la manguera. Para este cálculo, como referencia se considera un caudal de $12.2 \text{ L/min} (2.03 \times 10^{-4} \text{ m}^3/\text{s})$ de la hidrolavadora industrial Barovo HL 701-2 de 100 bares así como un diámetro interno de la manguera seleccionada de 10 mm (0.010 m) con área de 7.85 x 10^{-5} m^2 .

Figura P.1: Esquema de fuerza de retroceso. Fuente: Elaboración propia.

Se realiza la secuencia de cálculos de acuerdo con el estudio de Al Jaber et al. sobre un UAV para servicios de bombero (Al Jaber et al., 2021, p.676). Entonces, de la fórmula del caudal se puede hallar la velocidad del fluido:

$$Q = Av \rightarrow v = \frac{Q}{A} = \frac{2.03 \times 10^{-4}}{7.85 \times 10^{-5}} = 2.59 \text{ m/s}$$

Ya que la altura máxima es de 15 m, se calcula el volumen de agua requerido:

$$V = \pi \times h \times \frac{D^2}{4} = \pi \times 15 \times \frac{0.010^2}{4} = 1.178 \times 10^{-3} m^3$$

Asimismo, el momento generado P se define como:

$$P = \rho_{agua} \times V \times v = 1000 \times (1.178 \times 10^{-3}) \times 2.58 = 3.039 \frac{kg \cdot m}{s}$$

Asumiendo que el disparo se realiza por seguridad a un metro de la edificación:

$$t = \frac{1}{2.59} = 0.386 \, s$$

Finalmente, la fuerza de retroceso se obtiene como:

$$F = \left(\frac{Dp}{Dt}\right) = \frac{3.039}{0.386} = 7.87 \, N$$

La distancia base inferior – varilla es de 155 mm. Se crea un torque en la base de:

$$T = 7.87 \times 0.155 = 1.22 Nm$$

Dichos valores deberán ser considerados al momento de analizar la resistencia del soporte así como su deformación respectiva. A continuación, se analiza si los pernos M3 utilizados pueden soportar la fuerza de corte V que produce el retroceso, tal como se observa en la figura P.2.

Figura P.2. Fuerza cortante provocada por el retroceso. Fuente: Elaboración propia.

Si se sabe que la fuerza se repartirá entre 8 pernos de diámetro 3 mm, se tiene:

$$\tau = \frac{\frac{7.87}{8}}{\pi (1.5)^2} = 0.139 \text{ MPa}$$

El módulo de fluencia de los pernos de aluminio (AA2024-T4) utilizados en drones es de 325 MPa (Lean, 2019). Por ende, con un FS=1.1, se tiene que:

$$0.139 \text{ MPa} \le \frac{325}{1.1}$$

 $0.139 \text{ MPa} \le 295.45 \text{ MPa}$

La disposición de pernos elegidos para el soporte cumple con la solicitación.

Simulación por elementos finitos de acción de disparo a presión

A continuación, se realiza el análisis de las piezas críticas involucradas en la acción de disparo

a presión durante la operación de lavado: el soporte integrador y la base inferior del VANT.

En primer lugar, se tiene que el soporte integrador es aquel elemento que recibe directamente la fuerza de retroceso por parte de la varilla. Llevado a *Inventor Nastran*, se simula la fuerza de 7.87 N la cual afecta el centro de la parte circular de la estructura. Se han considerado fijas las dos bases de esta estructura dado que van atornilladas a la base inferior. Se obtiene entonces un valor de 4.61 MPa con un FS de 15, lo cual efectivamente es inferior al límite de fluencia del CFRP. Tal como se ve en la figura P.3, la parte superior de la pieza es la más afectada. Sin embargo, resiste la acción de disparo.

Figura P.3: Análisis de esfuerzo de soporte integrador en Nastran. Fuente: Elaboración Propia.

De igual forma, respecto a la deformación se obtiene que el extremo se desplaza 0.02647 mm máximo de su posición original (figura P.4), lo cual es un valor mínimo y permite concluir que esta pieza podrá soportar la acción de disparo.

Figura P.4: Análisis de deformación de soporte integrador en Nastran. Fuente: Elaboración Propia.

No obstante, la base inferior es una pieza critica considerable del sistema mecatrónico debido que esta debe soportar en sí todo el peso del VANT así como el momento generado de 1.22 Nm debido a la flexión del soporte de la varilla. Por ende, se fijan los agujeros donde se ensamblarían las abrazaderas para adjuntar los brazos (ver marcas de pie en la figura P.4) y se simula una carga central del peso del VANT, 6 fuerzas de sustentación en los extremos y el momento debido al disparo a presión. Tal como se ve en la figura P.5, se obtiene un valor de 56.4 MPa (con un FS = 5.32), inferior al límite de fluencia del CFRP, lo cual significa que la pieza resiste todas las cargas aplicadas a esta.

Figura P.5: Análisis de esfuerzo de base inferior en Nastran. Fuente: Elaboración Propia.

De igual forma, en el análisis de deformación mostrado en la figura P.6 se puede apreciar la zona afecta debido al momento generado por el disparo a presión (zona roja). No obstante, la pieza consigue deformarse un máximo de 0.1381 mm. Por ende, se concluye que la base inferior es capaz de resistir las cargas de operación generadas sin daño alguno.

Figura P.6: Análisis de deformación de base inferior en Nastran. Fuente: Elaboración Propia.

Finalmente, se evalúa el elemento de unión de latón amarillo el cual debe soportar la presión del agua. Por ende, se fijaron las superficies donde se atornillan los soportes integradores en V y se simuló una presión interna de 69 bares en las superficies cilíndricas interiores. En el análisis de esfuerzos se obtuvo un valor máximo de 60.4 MPa, inferior al límite del latón (320 MPa) con un FS de 1.78 como se ve en la figura P.7. Se concluye entonces que no falla en este aspecto.

Figura P.7: Análisis de esfuerzo de elemento de unión en Nastran. Fuente: Elaboración Propia.

Respecto a su deformación, es insignificante con un valor de 0.004419 mm (Ver figura P.8) lo cual indica que el componente no se verá comprometido con una presión de servicio constante y máxima de 69 bares, sin embargo, a los 87 bares se descubre el límite de este elemento ya que su FS se vuelve 1.

Figura P.8: Análisis de deformación de elemento de unión en Nastran. Fuente: Elaboración Propia.

Anexo Q

Análisis aerodinámico

A continuación, se encuentra el análisis aerodinámico del VANT. La finalidad es verificar que la aeronave sea capaz de sustentarse en vuelo así como de soportar las ráfagas intempestivas de 25 km/h (Ver lista de requerimientos). Por ende, para ello se debe seguir un procedimiento que empieza con la determinación del ángulo de inclinación del VANT, seguido de su simulación en *Autodesk Flow Simulator* para hallar el coeficiente de arrastre. Finalmente, se utiliza la ecuación de resistencia aerodinámica para hallar la máxima velocidad en oposición alcanzable (Ecuación Q.1) y ver si esta supera la velocidad de solicitación ($v_{solicitación} = 6.94$ m/s) (Tabuchi, 2015, p.74).

$$C_d = \frac{F_d}{0.5 \times \rho \times \nu^2 \times A_p}$$

(Ecuación Q.1)

Donde:

 C_d = Coeficiente de arrastre

 F_d = Fuerza de arrastre [N]

 ρ = Densidad del aire [kg/m³]

v = Velocidad máxima en oposición alcanzable [m/s]

 $A_p = \text{Årea proyectada } [\text{m}^2]$

De esta forma, empieza el análisis tomando en consideración el peso estimado y ya evaluado de la aeronave (8.2 kg – 80.36 N) así como el empuje de cada motor. En este caso, el motor KV5008 KV170 seleccionado puede proveer un empuje máximo de 4100 g (40.18 N). Sin embargo, considerando que no debe llegar al 100% de su capacidad sino a un 75% para óptimo desempeño (Mori, 2020, p.93) se tiene 30.135 N por motor, lo cual daría un empuje total de 180.81 N. En la siguiente figura Q.1 se observa el DCL del VANT en vuelo horizontal dado que este representa el escenario más crítico al tener el viento en directa oposición. Cabe resaltar que se ha considerado que el VANT se encuentra en un estado aproximado de equilibrio al moverse a velocidad constante.

Figura Q.1: DCL del VANT - vuelo horizontal. Fuente: Elaboración propia.

Se tiene entonces:

$$\sum F_y = 0: \quad F\cos(\alpha) = W$$

$$\alpha = \cos^{-1}(\frac{80.36}{180.81}) = 63.61^{\circ}$$

$$\sum F_x = 0: \quad F\sin(\alpha) = F_d$$

$$F_d = 180.81\sin(63.61) = 161.97 N$$

Seguidamente, se lleva a cabo la determinación del coeficiente de arrastre. Para ello se introduce el modelo del VANT elaborado al software de simulación estableciendo las siguientes condiciones: Inclinación de 63.61° y flujo de aire de 6.94 m/s (figura Q.2).

Figura Q.2: Simulación oposición a viento de 6.94 m/s. Fuente: Elaboración propia.

Se obtiene entonces de la simulación que el coeficiente de arrastre es de 0.97. En adición, se puede apreciar que la zona delantera del VANT es la más afectada, en especial la parte superior frontal la cual es plana, por lo que el viento impacta directamente en esta zona. También, se ve que la varilla no es afectada debido a su menor área superficial en contraste con el cuerpo de la base y brazos. Los brazos tampoco se ven bastante afectados debido al perfil circular aerodinámico elegido. Continuando con el análisis, se considera una densidad de aire promedio de 1.2 a 25°C en la ciudad de Lima a nivel del mar. También, para hallar el área proyectada, se debe primero hallar el área frontal al flujo (figura Q.3).

Figura Q.3: Área proyectada y área frontal del VANT. Fuente: Elaboración propia.

Asimismo, se tienen las siguientes ecuaciones Q.2 y Q.3 para denotar la relación de ambas áreas:

$$A_f = 6\left(\frac{1}{4}k\pi D^2\right) + A_o \qquad (\text{Ecuación Q.2})$$

Donde:

 $A_o =$ Área base central y proyectada de tubos

 $6\left(\frac{1}{4}k\pi D^2\right) =$ Área barrida por hélices

k = Factor de permeabilidad (0-1)

$$A_p = A_f sin(\alpha)$$
 (Ecuación Q.3)

De esta manera, se considera un factor de permeabilidad del 50% que indica el flujo de aire pasante por las hélices. El diámetro D se sabe que es 457.2 mm (0.457 m). Para la placa central,

se considerará el área de un dodecágono (lado de 7.47 mm y apotema de 135.23 mm) multiplicado por 1.1 haciendo alusión a las partes salientes del cilindro. En cuanto a los brazos, se recuerda que estos miden 430 mm pero 70 mm se empotran dentro de la base así que se tiene una longitud efectiva de 360 mm (0.360 m). Evaluando las ecuaciones se tiene:

$$A_o = \frac{12 \times 72.47 \times 135.23}{2} + 6 \times 360 \times 25 = 112800.71 \, mm^2 \, (0.1128 \, m^2)$$
$$A_f = 6 \left(\frac{1}{4} 0.5\pi 0.457^2\right) + 0.1128 = 0.604 \, m^2$$
$$A_p = 0.604 \sin(63.61) = 0.54185 \, m^2$$

Una vez que se tienen todas las variables, se procede a calcular la velocidad máxima en oposición v.

$$0.97 = \frac{161.97}{0.5 \times 1.2 \times v^2 \times 0.54185}$$
$$v = 22.66 \text{ m/s}$$
$$\therefore v > v_{\text{solicitation}}$$

Cabe resaltar que dicho análisis fue realizado con la intención conocer las condiciones con las que va a operar de forma adecuada dado que en sí el presente VANT no está destinado a trasladarse a altas velocidades. Por el contrario, para ejecutar el lavado, se traslada lentamente a velocidad constante y paralelo a la superficie de la fachada respetando una distancia. Por estas condiciones, se ha considerado el análisis de este en un estado "cuasi-estable" (Tabuchi, 2015, p.74) donde la intención es indagar sobre el efecto de las ráfagas en operación.

En conclusión, se tiene que el VANT diseñado es capaz de mantener vuelo soportando vientos en oposición (ráfagas) de hasta 25 km/h mientras que los vientos promedio en Lima a una altura alrededor de los 20 m alcanzan máximo hasta los 15.4 km/h – 4.3 m/s (véase sección 1.1.5 – zona de operación), cumpliendo entonces con el requerimiento aerodinámico de diseño.

Anexo R

Dimensionamiento estructural

Diseño de fuselaje

La presente estructura concierne a las bases inferior y superior centrales del VANT, las cuales alojan todos los componentes internos, unen los brazos mediante acoples y sostienen el peso de la carga útil y tren de aterrizaje.

Dimensionamiento general

Primeramente, tal como Quan Quan rescata (p.62), el tamaño de un multicóptero se relaciona directamente con el tamaño de sus propelas y el ángulo entre brazos (el cual varía dependiendo del número de estos). De esta forma, para el presente hexacóptero se tiene la disposición vista en la figura R.1.

Figura R.1: Relación de radios de un hexacóptero. Extraído de Quan, 2017, p.62.

Se define *R* como el radio de la aeronave y r_{max} como el radio máximo de propela, los cuales se relacionan mediante la ecuación R.1.

$$R = \frac{r_{max}}{\left(\frac{\sin\theta}{2}\right)}$$
(Ecuación R.1)

Asimismo, Quan Q. sugiere que para lograr una mayor compactibilidad de la aeronave sin sacrificar eficiencia, se debe cumplir la ecuación R.2.

$$r_{max} = 1.05r_p \sim 1.2r_p \tag{Ecuación R.2}$$

Donde r_p es el radio de la propela seleccionada. Así, con $r_p = \frac{45.72}{2} = 22.86$ (radio de propela elegida), se reemplaza en las ecuaciones R.1 y R.2.

$$r_{max} = 1.05(22.86) = 24.003$$

 $R_{max} = \frac{24.003}{(\frac{\sin 60^{\circ}}{2})} = 55.43 \ cm$

Se tiene entonces el radio máximo recomendado de la aeronave para una óptima eficiencia durante el vuelo.

Base inferior y base superior

Una vez que se tiene el radio de la aeronave como referencia, continúa elegir la forma y dimensiones generales de las bases. Para ello, se emplea una forma poligonal de 12 lados para ambas bases y se empieza con un diámetro de 28 cm con un espesor de 2.5 mm como se aprecia en la figura R.2. Cabe mencionar que se ha escogido la fibra de carbono como principal material estructural y a medida que se realizan las demás piezas será necesario optimizar material haciendo aperturas en las bases para el paso de cables, elementos de unión y aligeramiento del conjunto.

Figura R.2: Dimensiones y forma general de bases. Fuente: Elaboración Propia.

Se muestra en la figura AXU14.3 el modelo 3D de ambas piezas. La forma de polígono de 12 lados garantiza mayor rigidez así como el uso de fibra de carbono común en este tipo de aeronaves debido a sus superiores propiedades mecánicas.

Figura R.3: Modelo final de bases. Fuente: Elaboración Propia.

Diseño de brazos

Estos elementos se encargan principalmente de transmitir la sustentación generada por los motores localizados en un extremo a la estructura central ajustada en el extremo opuesto. De esta forma, permiten la elevación de todo el conjunto.

Dimensionamiento y forma

Se toma en consideración la forma circular para el perfil del brazo ya que este genera menor arrastre y consumo de potencia. Asimismo, tal como se observa en la figura R.4, se consideró el radio máximo de la aeronave R = 55.43 cm de tal forma que el brazo debe medir aproximadamente 43 cm, así como tener un diámetro de 2.5 cm y 2 mm de espesor. Así, en la figura se muestra la hélice en celeste y se observa que hay 7 cm del brazo en la base de tal forma que se pueda llevar a cabo su montaje mediante abrazaderas.

Figura R.4: Dimensionamiento del brazo. Fuente: Elaboración Propia.

Diseño de tren de aterrizaje

Dimensionamiento

Para un dimensionamiento inicial hace falta rescatar el ángulo de inclinación que tendrá la placa base con el soporte vertical, el cual debe oscilar entre 70 a 85°. Esto es para evitar que se encuentren muy esparcidos los soportes horizontales y también que estén muy juntos ya que no abarcarían un área suficiente de aterrizaje. Se busca que la proyección de la base inferior se encuentre dentro del área de aterrizaje. Se elige entonces un ángulo de 80° con un soporte vertical tubular de fibra de carbono de 300 mm de largo, 16 mm de diámetro interno y 20 mm de diámetro externo; el cual se insertará en la placa base de 40 x 50 mm con espesor de 2 mm a través de dos pernos M2.5. Por otro lado, el soporte horizontal será una barra de fibra de carbono de 16 mm de diámetro y 300 mm de largo. La distribución se observa en la figura R.5.

Figura R.5: Medidas principales del tren de aterrizaje. Fuente: Elaboración propia.

Anexo S

Selección y ubicación de paracaídas

Finalmente, se realiza la selección del dispositivo paracaídas, el cual debe ser capaz de activarse una vez notificada la señal al autopiloto cuando este detecte un descenso súbito en su barómetro o cuando el operador remotamente lo decida. Los principales requerimientos se listan entonces en la tabla S.1 y las opciones comerciales en la tabla S.2.

|--|

Requerimiento del paracaídas	Criterio
Capacidad de carga	8.2 kg
Peso	< 500 g
Nota: Elaboración propia.	ENERA
Tabla S 2: Onc	ciones comerciales de paracaídas

Modelo	SKYCAT BUNDLE ULTRA LIGHT - 22LBS (10KG) @ 15FPS	Galaxy GBS 10/150	Foxtech Parachute with Ejector System for 10kg UAV
Capacidad de carga [kg]	10	10	10
Peso	469	405	400
Método de disparo	Conexión directa al PDB. PWM	Servomotor 5V- PWM	Servomotor 5V- PWM
Dimensiones [mm]	D68 x 230	D100 x 110	111x89x79
Costo [\$]	1056.71	1059	1099

Nota: Elaboración propia.

Se elige el modelo Foxtech Parachute debido a que ofrece el menor peso y a que no hay significativa diferencia entre costos. Para ello, el fabricante ya cuenta con medidas para acoplar el paracaídas directamente a la superficie del VANT, mediante 4 pernos M3 en la parte inferior de la caja, por lo que se realizará una plataforma adicional de espesor 2 mm para que este quepa en la parte trasera de la base superior usando separadores de 3 mm. (véase figura S.1). El material usado será policarbonato, debido a su baja densidad (1.2 g/cm³) y alta resistencia a impactos.

Figura S.1: Integración del paracaídas. Fuente: Elaboración propia.

Anexo T

Distribución de componentes electrónicos

En esta sección se menciona la organización de los componentes electrónicos dentro del fuselaje así como también la posición sugerida para la pila de hidrógeno dentro del riel de carga. Cabe resaltar que para esta sección se tomarán en cuenta aquellos componentes de mayor tamaño significativo, pasando los 20 x 20 x 20 mm, de forma que se puedan visualizar más efectivamente en el modelo 3D.

Distribución general de componentes

En general, los componentes electrónicos significativos se encontrarán ubicados dentro del espacio confinado entre la base inferior, los brazos y la base superior tal como se puede observar en la figura T.1.

Figura T.1: Espacio para componentes internos. Fuente: Elaboración propia.

Sujeción de cámara

En el caso de la cámara, se realizará un soporte de ABS a la medida del modelo elegido con la finalidad de sujetar el módulo de la cámara. Tal como se puede observar, la forma de esta pieza es simple dado que solo debe coincidir con el sujetador con el que viene la cámara. Además, irá posicionada en la parte frontal pero inferior de la base del VANT como se en la figura T.2 mediante tornillos de diámetro 2.5 mm.

Figura T.2: Ubicación de la cámara. Fuente: Elaboración propia.

Sujeción del resto de componentes electrónicos

Respecto al resto de componentes, estos se ubicarán en las zonas libres situadas entre los brazos mediante sujeción por cinta de doble contacto 3M, evitando la necesidad de atornillar bases para cada uno y facilitando su inserción a la base. La distribución resulta como se observa en la figura T.3.

Figura T.3: Distribución de componentes. Fuente: Elaboración propia.

Aislamiento ante particulados de agua

Como se estableció en los requerimientos, los componentes internos deben estar completamente aislados de las posibles salpicaduras al momento de la operación, para ello se están usando ventanas de policarbonato transparente debido a su significativo bajo peso. En este caso, serán insertadas por clavijas o "pegs" en sus bases de forma que puedan ser colocadas fácilmente sin la necesidad de atornillar. Esto se puede observar en la figura T.4.

Figura T.4: Ventanas de policarbonato. Fuente: Elaboración propia.

Anexo U

Modelo matemático

Primeramente, se debe empezar definiendo en qué consiste el sistema de referencia de un hexacóptero. Para lo cual, se recurre a la parametrización de Euler donde la orientación del cuerpo de una aeronave es descrita con los 3 ángulos de Euler (Alaimo et al., 2013, p.1043). Sin embargo, dicho modelo presenta singularidades las cuales son abordadas mediante los cuaterniones (Teorema de rotación de Euler). Cabe resaltar que para la representación del hexacóptero se lo ha considerado como un cuerpo rígido, omitiendo la dinámica individual de cada motor así como la flexibilidad de las propelas.

Ángulos de Euler

Para la descripción del movimiento del hexacóptero se necesitan 2 sistemas de referencia: Un sistema fijo a tierra absoluto o "sistema inercial" (x, y, z) y un sistema fijo al cuerpo (x_B, y_B, z_B) (véase figura U.1). Por otro lado, la posición angular del sistema fijo al cuerpo con respecto al sistema fijo a tierra se define mediante los ángulos de Euler: Roll-balanceo (\emptyset), Pitch-cabeceo (θ) y Yaw-guiñada (ψ) (figura U.2) (Alaimo et al., 2013, p.1044).

Figura U.1: Sistemas de referencia de un hexacóptero. Extraído de Alaimo et al.,2013, p.1044.

Figura U.2: Ángulos de Euler. Extraído de Orna & Dávila, 2015, p.132.

Dicho esto, se definen los vectores posición inercial (ξ) y angular de Euler (η).

 $\xi = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ (Ecuación U.1) $\eta = \begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix}$ (Ecuación U.2)

Se tiene que la matriz de transformación del sistema fijo al cuerpo hacia el inercial es:

 $R = \begin{bmatrix} \cos\theta \cos\psi & \cos\psi \sin\theta \sin\phi - \cos\phi \sin\psi & \cos\phi \cos\psi \sin\theta + \sin\phi \sin\psi \\ \cos\theta \sin\psi & \cos\phi \cos\psi + \sin\theta \sin\phi \sin\psi & \cos\phi \sin\theta \sin\psi - \cos\psi \sin\phi \\ -\sin\theta & \cos\theta \sin\phi & \cos\theta \cos\phi \end{bmatrix}$ (Ecuación U.3)

Mientras que la matriz de transformación para velocidades angulares del sistema inercial al sistema fijo al cuerpo es:

$$W_{\eta} = \begin{bmatrix} 1 & 0 & -sen\theta \\ 0 & cos\phi & cos\theta sen\phi \\ 0 & -sen\phi & cos\theta cos\phi \end{bmatrix}$$
(Ecuación U.4)

Y viceversa, W_n^{-1} :

$$W_{\eta}^{-1} = \begin{bmatrix} 1 & sen\phi tan\theta & cos\phi tan\theta \\ 0 & cos\phi & -sen\phi \\ 0 & sec\theta sen\phi & cos\phi sec\theta \end{bmatrix}$$
(Ecuación U.5)

Se tiene entonces que las leyes de transformación son:

$$v = W_{\eta} \dot{\eta}$$
 (Ecuación U.6)

$$\dot{\eta} = W_n^{-1} v \qquad (\text{Ecuación U.7})$$

Donde la velocidad angular se define como:

$$v = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
 (Ecuación U.8)

Sin embargo, W_{η}^{-1} solo puede ser definido si $\theta \neq \frac{\pi}{2} + k\pi$ ($k \in Z$). Esto se traduce al efecto de bloqueo de ejes, causando una limitante en el modelo tradicional de Euler. Por ende, se debe considerar otra representación de la orientación del hexacóptero en el espacio. Para ello, se emplea el teorema de rotación de Euler, donde la rotación de la aeronave de un sistema de referencia a otro es identificada por cuatro parámetros, he ahí el nombre de cuaternión. (Alaimo et al., 2013, p.1044).

Cuaterniones

Tal como fue mencionado, este artilugio se realiza con la finalidad de simplificar el cálculo al momento de computar el traslado del VANT de un marco de referencia a otro. Este concepto está ligado intrínsecamente al teorema de rotación de Euler, el cual establece que cualquier desplazamiento de un cuerpo rígido donde un punto es fijado es equivalente a una rotación. En efecto, al concebir el desplazamiento de esta forma se elimina el problema del bloqueo. Esto se debe a que, a diferencia de los ángulos tradicionales de Euler que requieren un conjunto de ejes de rotación pre-definidos, los cuaterniones pueden cambiar su eje continuamente. Puesto que el método de rotar sobre una dirección arbitraria solo tiene un eje de rotación, no puede ocurrir el bloqueo de ejes (Alaimo et al., 2013, p.1044).

Aclarada la re-parametrización, la representación de un cuaternión puede darse como un vector columnar de 4 componentes que describen una rotación en 3 dimensiones.

$$q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$
(Ecuación U.9)

Cuya ecuación de restricción es:

$$q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$$
 (Ecuación U.10)

Por otro lado, la transformación del conjunto de velocidades traslacionales del sistema fijo al cuerpo al inercial puede darse mediante:

$$\xi = Q\xi_B \tag{Ecuación U.11}$$

Donde:

$$Q = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$
(Ecuación U.12)

Asimismo, la transformación de las velocidades angulares puede darse mediante:

$$\dot{q} = Sv$$
 (Ecuación U.13)

Donde la matriz S depende del siguiente arreglo de cuaterniones:

$$S = \frac{1}{2} \begin{bmatrix} -q_1 & -q_2 & -q_3 \\ q_0 & -q_3 & q_2 \\ q_3 & q_0 & -q_1 \\ -q_2 & q_1 & q_0 \end{bmatrix}$$
(Ecuación U.14)

Ecuaciones Newton-Euler

Una vez definidas las herramientas para el modelado, se resalta nuevamente que el hexacóptero será considerado como un cuerpo rígido. Por ende, su movimiento puede ser descompuesto en las componentes traslacional y rotacional y se pueden aplicar las ecuaciones de movimiento linear y angular de Newton-Euler (Alaimo et al., 2013, p.1045). Así, empieza el modelamiento definiendo la fuerza que actúa sobre el hexacóptero en vuelo:

$$F = \frac{d(mv_B)}{dt} + v \times (mv_B)$$
 (Ecuación U.15)

Se asume una masa m constante. Por su parte cada rotor gira con una velocidad angular W_i orientado en el eje Z generando una fuerza f_i en dicha dirección. Esta fuerza consiste en la constante de sustentación k y la velocidad angular.

$$f_i = \begin{bmatrix} 0 \ 0 \ kW_i \ ^2 \end{bmatrix}^T$$
 (Ecuación U.16)

Mediante la suma de las 6 fuerzas f_i se obtiene el empuje total del hexacóptero.

Т

$$T_B = \begin{bmatrix} 0\\0\\T \end{bmatrix}$$
 (Ecuación U.17)
$$= \sum_{i=1}^6 f_i = k \sum_{i=1}^6 W_i^2$$

Donde:

A continuación, se tiene también que la fuerza actuante sobre el VANT puede ser definida como el empuje total más la fuerza gravitacional.

$$F = Q^T F_g + T_B$$
 (Ecuación U.18)

Así, se igualan las ecuaciones U.18 y U.15, se multica ambos lados por Q y se descarta el efecto de la fuerza centrífuga $Q[v \times (mv_B)]$ debido a que el sistema inercial no rota.

$$\frac{d(mv_B)}{dt} + v \times (mv_B) = Q^T F_g + T_B$$

$$m\ddot{\xi} + Q[v \times (mv_B)] = F_g + QT_B$$

$$m\ddot{\xi} = F_g + QT_B$$
 (Ecuación U.19)

Lo cual puede ser expresado en forma matricial.

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = -g \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \frac{T}{m} \begin{bmatrix} 2(q_0q_2 + q_1q_3) \\ 2(q_2q_3 - q_0q_1) \\ q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$
(Ecuación U.20)

Asimismo, tomando en cuenta la estructura simétrica en los tres ejes del hexacóptero, la matriz de inercia I se define como diagonal.

$$I = \begin{bmatrix} I_{xx} & 0 & 0\\ 0 & I_{yy} & 0\\ 0 & 0 & I_{zz} \end{bmatrix}$$
 (Ecuación U.21)

Una vez analizada la fuerza actuante, se analiza el momento actuante M sobre el VANT, definido como:

$$M = \frac{d}{dt}(Iv) + v \times (Iv)$$
 (Ecuación U.22)

Además, la velocidad angular y la aceleración de cada rotor crea un torque τ_{M_i} sobre el eje del rotor.

$$\tau_{M_i} = bw_i^2 + I_{M_i} \dot{w}_i \qquad (\text{Ecuación U.23})$$

Donde b es la constante de arrastre e I_{M_i} representa el momento de inercia de cada rotor. En adición, cabe mencionar que a través de la expresión U.23 es posible obtener información sobre *Roll, Pitch* y *Yaw*.

$$\begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \begin{bmatrix} \frac{\frac{3}{4}kl(w_{2}^{2} + w_{3}^{2} - w_{5}^{2} - w_{6}^{2}) \\ kl(-w_{1}^{2} - \frac{w_{2}^{2}}{4} + \frac{w_{3}^{2}}{4} + w_{4}^{2} + \frac{w_{5}^{2}}{4} - \frac{w_{6}^{2}}{4}) \\ b(-w_{2}^{2} + w_{2}^{2} - w_{2}^{2} + w_{2}^{2} - w_{2}^{2} + w_{2}^{2}) + I_{M}(\dot{w}_{1} + \dot{w}_{2} + \dot{w}_{3} + \dot{w}_{4} + \dot{w}_{5} + \dot{w}_{6}) \end{bmatrix}$$
(Ecuación U.24)

Por su parte, la ecuación de la dinámica rotacional del VANT se da por:

$$I\dot{v} + v \times (Iv) + \Gamma = \tau_B$$
 (Ecuación U.25)

Donde: $\tau_B = \begin{bmatrix} \tau_\phi & \tau_\theta & \tau_\psi \end{bmatrix}^T$

Se despeja entonces la ecuación U.25.

$$\dot{v} = I^{-1} \begin{pmatrix} p \\ q \\ r \end{pmatrix} \times \begin{bmatrix} I_{xx}p \\ I_{yy}q \\ I_{zz}r \end{bmatrix} - I_r \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} W_{\Gamma} + \tau_B)$$
(Ecuación U.26)
$$W_{\Gamma} = W_1 - W_2 + W_3 - W_4 + W_5 - W_6$$

Donde:

Finalmente, la ecuación U.26 puede escribirse de la siguiente forma:

с.

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{(I_{yy} - I_{zz})qr}{I_{xx}} \\ \frac{(I_{zz} - I_{xx})pr}{I_{yy}} \\ \frac{(I_{xx} - I_{yy})pq}{I_{zz}} \end{bmatrix} - I_r \begin{bmatrix} \frac{q}{I_{xx}} \\ -\frac{p}{I_{yy}} \\ 0 \end{bmatrix} W_{\Gamma} + \begin{bmatrix} \frac{\tau_{\phi}}{I_{xx}} \\ \frac{\tau_{\theta}}{I_{yy}} \\ \frac{\tau_{\psi}}{I_{zz}} \end{bmatrix}$$
(Ecuación U.27)

Donde la aceleración angular en el sistema inercial puede ser hallada mediante:

$$\dot{q} = \frac{d}{dt}(Sv)$$
 (Ecuación U.28)

De esta manera, se obtienen las expresiones de la ecuación U.27 lo cual servirá para la

elaboración de la simulación por bloques en Simulink.

Anexo V

Tipos de lavado según materiales

Tipo de fachada		Importancia de la suciedad							
			Baja			Media			Alta
Piedra calcárea	Blanda con partes trabaja- das o en mal estado Blandas en buen estado y	1 7a 1	2a 7b 3c	3a 9b	1+8a 7a 1+8a	a 3a 7b a 4	9b	1+8a 7b 1+8a	7a 9b 4
	sólidas o duras	4 2c 4	7b 3c 7c		3c 2c+8 4	7b 3b 6a	3c 7c	3b+8b 3c+8b 6b	7b 4 7c
Piedra de cantera		4	7c		6b	7c		6b	7c
Ladrillos	De carga (rugosos) De revestimiento (amarillos o rojos)	4 2b 4	7b 3b 7a		4 3b 6a	6a 4 7a	7b	1 6a 3b+8b 7b	7b 6a
	Sílico-calcáreos	2a 4	3a 7a	7b	2a 4	3a 7a	7b	3a 7a	4 7b
Revestimiento continuo	Cemento o mixto (cemento + cal hidráulica)	2b 7c	Зb		2b 7c	Зb		2b+8a 3b+8a	7c
	Cal aérea (o cal grasa)	1	7b		1	7b		2a+8a 3a+8a	7b
	Con yeso o yeso y cal	7a	9a		7a	9a		7a	9a
1 Chorro de aqu	ia + cepillado								
2 Proyección de	agua fría 2a 2b 20	a aba o apre o aalt	ja presi esión a presic	ión ón					
3 Proyección de	agua caliente 3a 3t 3d	a aba o apro c aalt	ja presi esión a presió	ión ón					
4 Proyección de	agua sobrecalentada a presión								
5 Arena en seco	•								
6 Arena humectada (sistema hidroneumático)		a ligen > nom	a nal						
7 Procedimiento (proyección de	Thomann-Hanry 7a polvo de vidrio micronizado) 7b 7	a con o con c con	superfii microfic fino	no o					
8 Aplicación de productos químicos		a dete o otro:	rgentes s produ	s ictos					
9 Procedimiento	os mecánicos 9a	a cepi	llado +	lavado	con leji	a			

9b pulido o rascada sobre partes no trabajadas

Figura V.1: Tipos de lavado según materiales. Extraído de Construmática, s. f.

Anexo W

Diagrama de bloques del hexacóptero

Figura W.1: Diagrama de bloques del hexacóptero. Fuente: Elaboración propia.

Anexo X

Hojas de datos

A continuación, se muestran las hojas de datos de los componentes electrónicos empleados en

el sistema mecatrónico.

X.1 Intelligent Energy SOAR 800W

IE-Soar™ 800W

Lightweight fuel cell power module for UAVs and other portable applications

Intelligent Energy is a fuel cell engineering company focused on the development and commercialisation of its PEM fuel cell technologies for a range of markets including automotive, stationary power and UAVs. We are headquartered in the UK, with additional offices and representation in the US, Japan, South Korea and China.

Intelligent Energy provides a unique solution to extend flight times to drones presently constrained by the limitations of batteries,

Flight durations of over three times that provided by batteries have been achieved and fuel cells provide a natural solution for manufacturers moving to larger drones and heavier payloads.

Intelligent Energy's air cooled fuel cell systems run on hydrogen and ambient air to produce clean DC power in a simple, cost-effective, robust and lightweight package, They have a higher energy to mass ratio than battery based systems and can be refuelled in a few minutes.

Applications

- Survey and inspection
- Search and rescue
 High quality aerial photography
- Precision agriculture
- Parcel delivery
- Warehouse inventory
 - Law enforcement
- Military
- · Robotics
- Portable power

Please contact us for availability and pricing.

IE-Soar™ 800W specifications

Maximum continuous power		SDOW
Maximum peak power		1400W
Output voltage		19.6V to 25.2V
Fuel Cell Power Module (FCPM)	Dimensions	196×100×140mm
	Mass	930g
Hydrogen Regulator	Mass	250g
	Maximum regulator (cylinder) pressure	350 bar/5000 psi
	Output pressure	0.5 bat ± 0.25 bat/7 pst ± 3 psi
	PRV set pressure	2 bar/29 psi
	Burst disc set pressure	450 bat/6500 psi
	Maximum cylinder mass	TOkg
Hybrid battery	Dimensions	120 × 35 × 40mm
	Mass	300g
	Capacity	1800mAh
	Emergency flight time	2 minutes
Environmental operating conditions	Operating temperature	5°C to 35°C1
	Maximum altitude	3000m
	Storage temperature	-10°C to 70°C
	System lifetime	1000 hours
Safety features	Automatic failure detection system and backup battery	
	Certification of IE-Soar** 800W	CE and FCC
Other features	Internal data storage for firmware update, performance and diagnostics	SD card
	Communication port; to UAV fuel cell power module or accessories	TRAU
	Output electrical connector	XT-60

¹It may be possible to widen the operating temperature envelope depending on customer power requirements.

X.2 Tiger-Motor MN5008 KV170

Specifications

Motor Size	Φ55.6*32mm						
Stator	Imported silicon steel sheet; Anti-rust treatment; 180°C high temperature-resisting coatings						
Configuration	24N28P						
Shaft Diameter	IN: 6mm						
Bearing	Imported 696ZZ						
Magnet Level	150°C high temperature resistance: Level E						
Lead Cable	80mm						
Copper Wire	180°C high temperature resistance: Level H						
Coil Insulation Test	500V						
Centrifugal Cooling Design	YES ≤15mg						
Rotor Dynamic Balance Standard							
Motor Dynamic Balance Standard	≤10mg						
IP	IP35						
Packing Size	106*81*35mm						
KV 170	Rated Voltage (Lipo) 6-12S						
Idle Current (22V) 0.4A	ESC Recommendation FLAME 60A 12S						
Peak Current (180s) 15A	Propeller Recommendation P17-18"						
Max. Power (180s) 720W	Motor Weight (Incl. Cable) 128g						
Internal Resistance 270mΩ	Package Weight 190g						

X.3 ESC KDEXF-UAS55

KDE DIRECT UAS ELECTRONIC SPEED CONTROLLER SERIES TECHNOLOGY REVIEW

INDUSTRY-LEADING PERFORMANCE

The KDE Direct UAS Series Electronic Speed Controllers (ESC) are optimized for commercial and industrial-level UAS and Multi-Rotor applications; incorporating the latest market-leading technologies and advanced motor control algorithms for optimal flight performance. The ESCs are specifically tuned to the KDE Direct UAS Multi-Rotor Brushless Motors for peak performance and plug-and-play operation.

NDUSTRIAL-QUALITY COMPONENT

All UAS Electronic Speed Controllers use the highest-grade, extremely-low resistance (0.9 mΩ) MOSFETs for industry-leading performance and maximum efficiency. 10,000+ hour, long-life and low-ESR Aluminum Electrolytic Capacitors are used for high-durability and maximum protection of the internal circuitry for optimal operation.

The new series comes pre-loaded with the latest production firmware, including a host of new, market-leading technologies such as:

- Regenerative Braking active braking during motor deceleration phase, providing instantaneous response to the flight controller commands and matched-control speed to acceleration profiles (less "float" during flight).
- Temperature-Controlled Synchronous Rectification new proprietary algorithm for smooth running motors at low-throttle and improved, faster response under high-peak loads; all while significantly increasing flight-time efficiency and reducing operating temperatures ("active-freewheeling").

t,

DETAILED CONSTRUCTION

Critical internal components are protected by the thermal-epoxy bonded Aluminum 6061-T6 heat-sink and a vibration-damping, foam-composite backing; allowing the ESCs to be installed into a wide-range of applications, without detrimental effects to the lifespan and performance of the electronics.

SILICON-WIRE POWER LEADS

High-temperature (200°C/392°F), silicon-wire power leads and 24K gold-plated bullet connectors provided for easy, hassle-free installation. Bullet connectors come pre-soldered and heat-shrink urranged at the motor leads; saving valuable time and simplifying connection to the

ies for plug-and-play compatibility.

Full Specifications:

Refresh Rate	600 Hz (50 - 600Hz Adaptive)
Maximum Peak Current	95 A (5 s)
Maximum Peak Power	2,810 W (5 s)
Maximum Continuous Current*	55 A (180 s)
Maximum Continuous Power*	1,630 W (180 s)
Maximum Temperature*	95°C
Maximum DC wire length*	12 inches
Maximum Efficiency	> 98%
Voltage Range	7.4 V (2S LIPo) - 34.8 V (8S LIHV)
Internal BEC	None (Opto-Isolation)
Maximum RPM	360,000 rpm (2-Pole)
PWM Rate	Adaptive Dynamic Algorithm
Advance Timing	22° - 30° Dynamic Algorithm
PCB Size	25 mm (W) x 58 mm (L)
ESC Weight	32 g (60 g with Wires/Bullets)
Power Leads	13 AWG, 200°C
Motor Leads	15 AWG, 200°C
ESC Control Lead	22 AWG, 3-Wire JR (W-R-B)
ESC Programming Lead	22 AWG, 3-Wire JR (O-R-B)
Power Connects	ф3.5 / ф4.0 mm Matched Pair
Motor Connects	ф3.5 mm Female

* ESC requires consistent airflow (5 mph or greater) across the heatsink to maintain maximum continuous current and power ratings during operation, specified at full-load condition (100% throttie). Increasing airflow or adding additional cooling can further increase the capabilities of the controller and extend the lifespan of the critical Internal components.

* ESC actively monitors internal hardware components to protect its circuitry. Overtemperature protection ensures safe and reliable operation by limiting the maximum RPM when the temperature rises above the maximum temperature rating. Overtemperature protection decreases an ESCs operating temperature and will bring the ESC back to safe operating conditions.

*: Extending the ESC power leads is at your own risk and voids the warranty. Additional capecitance must be added if the DC wire length between the ESC and power source is longer than 12 inches

PORTS

1 Spektrum DSM receiver

- 2 Telemetry (radio telemetry)
- 3 Telemetry (on-screen display)
- 4 USB
- 5 SPI (serial peripheral interface) bus
- 6 Power module
- 7 Safety switch button
- 8 Buzzer
- 9 Serial
- 10 GPS module
- 11 CAN (controller area network) bus
- 12 PC splitter or compass module
- 13 Analog to digital converter 6.6 V
- 14 Analog to digital converter 3.3 V
- 15 LED indicator

1 Input/output reset button 2 SD card 3 Flight management reset button 4 Micro-USB port

1 Radio control receiver input 2 S.Bus output 3 Main outputs 4 Auxiliary outputs

signal <

IMPORTANT NOTE

Please note that these instructions describe basic setup for Pixhawk and do not represent the complete set of configuration procedures required to build a copter, plane, or rover.

For more information on ESC calibration, battery monitoring, failsafes, mode descriptions, and more, visit <u>ardupilot.com</u>. Do not operate your vehicle without a complete understanding of the online instructions.

SPECIFICATIONS

Processor

32-bit ARM Cortex M4 core with FPU 168 Mhz/256 KB RAM/2 MB Flash 32-bit failsafe co-processor

Sensors

ST Micro 16-bit gyroscope ST Micro 14-bit accelerometer/magnetometer MEAS barometer MPU6000 accelerometer/magnetometer Power Ideal diode controller with automatic failover Servo rail high-power (7 V) and high-current ready All peripheral outputs over-current protected, all inputs ESC protected Interfaces 5x UART serial ports, 1 high-power capable, 2x with HW flow control Spektrum DSM/DSM2/DSM-X Satellite input Futaba S.BUS input and output PPM sum signal RSSI (PWM or voltage) input FC, SPI, 2x CAN, USB 3.3 and 6.6 ADC inputs

Dimensions

Weight 38 g (1.3 oz) Width 50 mm (2.0") Height 15.5 mm (.6") Length 81.5 mm (3.2")

SUPPORT

For more information about Pixhawk and other documentation, visit <u>3dccom/learn</u>. For more instruction on using APM firmware and planner software, visit <u>ardupilot.com</u>

For customer support, contact us at help@3dr.com or call our support line at +1 (858) 225-1414 Monday through Friday, 8 am to 5 pm, P5T.
X.5 CÁMARA FOXEER RAZER MINI 1/3 CMOS HD 5MP

Descripción del producto

Tamaño:Razer Mini

Specifications: Sensor: 1/3 CMOS Scale: 16:9 TV System: PAL/NTSC Switchable Resolution: 1200TVL FOV: 4:3 FOV-H 125 FOV-D 150°, 16:9 FOV-H 125°FOV-D 140° Shutter Speed:PAL:1/25-1/10000 sec; NTSC:1/30-1/10000 sec Video Out: CVBS Min.Illumination:0.01Lux White Balance: Auto DNR: 3DNR WDR:90db Day/Night Shift: EXT/Auto/Color/B&W Power Requirement:DC 4.5V-25V Working Temperature:-10°C- +50°C Working Humidity:20-80% Storage Temperature:-20°C- +70°C Storage Humidity:20-95% Dimensions:19mm x 18.7mm Weight:12g

Package Included:

1 x Razer Mini Cam Cable 1 x Bracket(21 to 28) 1 x Servo Cable 1 x 2pin OSD Cable 1 x OSD Board 1 x Manual 1 x Screws

X.6 GPG-01K G1/8" válvula solenoide NC D16021

GOGO 70bar compresor de aire válvula solenoide NC D16021 bobina Válvula de agua de latón de alta presión para máquina de soplado Modelo: GPG-15 G1/2 "orificio 15mm GPG-20 G3/4 "orificio 20mm GPG-25 G1 "orificio 25mm Sellos: FKM Presión de trabajo: 0,5 ~ 70Bar

Seleccione China Post Air Mail, tenga en cuenta

El correo aéreo de China Post presenta un problema de alto riesgo de pérdida de paquetes y largo tiempo, Le sugerimos que utilice transporte exprés (EMS/DHL/Fedex/TNT/UPS) Seguro y rápido.

Voltaje: 110V, 220V CA, 12V CC, 24V CC.

Válvula eslenoide de alta presión serie GPG

1. Especificación

Patrón:	Dos puertos y dos posiciones
Principio:	Tipo piloto de diafragma
Modo de Control:	Normalmente cerrado
Cuerpo de la válvula:	Latón
Material del diafragma:	FKM
Presión de funcionamiento:	0,5 ~ 70bar
Presión máxima:	70bar
Voltaje:	220V CA 110V cc 12V CC 24V
Medio:	Aire, agua, agua caliente, aceite, etc.
Aplicación:	Sistema de control de agua de aire normalmente de gran flujo de alta presión y alta temperatura

Modelo	Tubo	Orificio Mm	CV	Prensa mínima	Presión AC Aire	n máxima o Agua	de funcion Aceite	DC Aire	o (bar) Agua	Aceite	Bobina
	El cuerp	o de latón si	gue:								
GPG-15	1/2"	15	4,6	0.5	70	70	50	70	70	50	
GPG-20	3/4"	20	8,5	0,5	70	70	50	70	70	50	D16021
GPG-25	1"	25	12	0,5	70	70	50	70	70	50	

2. Imagen

X.7 ARDUINO UNO

 Θ

Arduino® UNO R3

Product Reference Manual SKU: A000066

Description

The Arduino UNO R3 is the perfect board to get familiar with electronics and coding. This versatile microcontroller is equipped with the well-known ATmega328P and the ATMega 16U2 Processor. This board will give you a great first experience within the world of Arduino.

Target areas:

Maker, introduction, industries

\odot

Arduino® UNO R3

Features

ATMega328P Processor

Memory

- AVR CPU at up to 16 MHz
- 32KB Flash
- 2KB SRAM 1KB EEPROM
- THE EET NO

Security

- Power On Reset (POR)
- Brown Out Detection (BOD)

Peripherals

- 2x 8-bit Timer/Counter with a dedicated period register and compare channels
- 1x 16-bit Timer/Counter with a dedicated period register, input capture and compare channels
- 1x USART with fractional baud rate generator and start-of-frame detection
- 1x controller/peripheral Serial Peripheral Interface (SPI)
- 1x Dual mode controller/peripheral I2C
- 1x Analog Comparator (AC) with a scalable reference input
- Watchdog Timer with separate on-chip oscillator
- Six PWM channels
- Interrupt and wake-up on pin change
- ATMega16U2 Processor
 - 8-bit AVR® RISC-based microcontroller
- Memory
 - 16 KB ISP Flash
 - 512B EEPROM
 - 512B SRAM
 - debugWIRE interface for on-chip debugging and programming
- Power
 - 2.7-5.5 volts

Arduino® UNO R3

5.1 JANALOG

 Θ

Pin	Function	Туре	Description
1	NC	NC	Not connected
2	IOREF	IOREF	Reference for digital logic V - connected to 5V
3	Reset	Reset	Reset
4	+3V3	Power	+3V3 Power Rail
5	+5V	Power	+5V Power Rail
6	GND	Power	Ground
7	GND	Power	Ground
8	VIN	Power	Voltage Input
9	AO	Analog/GPIO	Analog input 0 /GPIO
10	A1	Analog/GPIO	Analog input 1 /GPIO
11	A2	Analog/GPIO	Analog input 2 /GPIO
12	A3	Analog/GPIO	Analog input 3 /GPIO
13	A4/SDA	Analog input/I2C	Analog input 4/I2C Data line
14	A5/SCL	Analog input/I2C	Analog input 5/12C Clock line

5.2 JDIGITAL

Pin	Function	Туре	Description	
1	D0	Digital/GPIO	Digital pin 0/GPIO	
2	D1	Digital/GPIO	Digital pin 1/GPIO	
3	D2	Digital/GPIO	Digital pin 2/GPIO	-
4	D3	Digital/GPIO	Digital pin 3/GPIO	
5	D4	Digital/GPIO	Digital pin 4/GPIO	
6	D5	Digital/GPIO	Digital pin 5/GPIO	
7	D6	Digital/GPIO	Digital pin 6/GPIO	
8	D7	Digital/GPIO	Digital pin 7/GPIO	
9	D8	Digital/GPIO	Digital pin 8/GPIO	-
10	D9	Digital/GPIO	Digital pin 9/GPIO	
11	SS	Digital	SPI Chip Select	
12	MOSI	Digital	SPI1 Main Out Secondary In	
13	MISO	Digital	SPI Main In Secondary Out	
14	SCK	Digital	SPI serial clock output	
15	GND	Power	Ground	
16	AREF	Digital	Analog reference voltage	
17	A4/SD4	Digital	Analog input 4/I2C Data line (duplicated)	
18	A5/SD5	Digital	Analog input 5/I2C Clock line (duplicated)	

X.8 FrSKY X8R

203

Note: After binding procedure is completed, recycle the power and check if the receiver is really under control by linked transmitter.

Receiver Mode and Binding Operation:

(i) Please be attention that the Smart Port Protocol is only running in D16 mode.

Mode of X8R		in a bour own	Receiver Mode select & Bind Operation			
	Telemetry	Channel Output	Jumped before Bind (signal pins)	F/S Button		
Mode 1(D8)	N.	CH1~CH8	CH7&CH8	connect the battery to any available channel output (no need to hold the F/S button on X8R)		
Mode 2(D16)	ĸ	CH1~CH8	CH3&CH4			
Mode 3(D16)		CH9~CH16	CH1&CH2	connect the battery to any available channel output while holding the F/S		
Mode 4(D16)	V	CH9~CH16	CH1&CH2, CH3&CH4	button on X8R		
Mode 5(D16)	N	CH1~CH8	No Jumper			

When combine two X8R to become a 16CH receiver, you need to disable telemetry on either one of the two X8R's as above chart.

X8R-EU version only works with FrSky Taranis X9D Plus-EU version/XJT-EU version in D16-EU mode.

Range Check

A pre-flight range check should be done before each flying session. Reflections from nearby metal fences, concrete buildings or tress can cause loss of signal both during range check and during the flight. Follow the steps below to perform the range check.

- 1. Place the model at least 60cm (two feet) above non-metal contaminated ground (e.g. on a wooden bench)
- 2. The receiver antennas should be separated in the model, and do not touch the ground.
- 3. The module antenna should be in a vertical position.

 Turn on the transmitter and the receiver, press the F/S button on the XJT module for 4 seconds to enter range check mode, the RED LED will be off, GREEN LED will flash rapidly. The effective distance will be decreased to 1/30 (at least 30m).

Walk away from the model while simultaneously operating the controls on the transmitter to confirm all controls' normal operation.

Press the F/S button on the XJT module for 1~2 seconds to exit range check mode, RED LED will be back on, indicating normal operation is back.

Failsafe

Failsafe is a useful feature in which all controls move to a preset position whenever the control signal is lost for a period of time. X8R supports failsafe function for all channels. Follow the steps below to set failsafe positions for each channel:

- 1. Bind the receiver first and turn on both the transmitter and the receiver;
- Move the controls to the desired fails afe position for all channels;

3. Press briefly the F/S button on the receiver (less than 1 second). The Green LED will flash twice, indicating the fails are position has been set in the receiver.

To disable the failsafe function, re-bind the receiver.

Failsafe is recommended to set when system is firstly used, or receiver has been re-bound. Follow steps below to set failsafe.

Option-1 How to set failsafe to a user-determined state on lost signal:

- 1) Bind the receiver to the transmitter module first and turn on both the transmitter and the receiver;
- 2) Move the controls to desired fails afe position for all channels,
- 3) Press briefly the F/S button on the receiver and you are done.

Option-2. How to set failsafe for no pulses on lost signal:

1) Turn off the transmitter, power on the receiver, and then press briefly the F/S button on the receiver.

Note: If failsafe is not set, failsafe default will hold last position before signal is lost. In this case, there exists risk that your model will fly away or cause injury.

For more details, please check the complete manual for X8R from <u>www.frsky-rc.com</u> - Download -Manual. Should you have other questions, please send e-mails to FrSky technical support <u>sales4tech@gmail.com</u>.

FrSky Electronic Co., Ltd

Website www.frsky-rc.com

E-mail: frsky@frsky-rc.com

Technical Support: sales4tech@gmail.com

- Ú

www.niskowit _____

X.9 3DR uBlox GPS with compass kit

3DR GPS-KIT-0003 Specs

Update Rate	5 Hz
Filters	LNA SAW
Voltage Regulator	3.3 VDC, low noise
Backup Battery	3 VDC, lithium
Memory	I2C EEPROM (for configuration storage)
Indicators	LEDs Power Fix
Connectivity	APM compatible 6-pin DF13 connector
	Note: Exposed RX, TX, 5V, and GND pad
Dimensions	Ceramic Patch Antenna 1 x 1 x 0.2" / 25 x 25 x 4 mm Overall: 1.5 x 1.5 x 0.3" / 38 x 38 x 8,5 mm
Weight	0.6 oz / 16.8 g

PRODUCT SPECIFICATION

MO	MODEL: TS832							
	5.8G (500mW 32 Chanr	els AV Tr	ansmitter	Module			
	Modulate		Wideband FM Modulate					
	Video For	NTSC/PAL						
	Characteristics Output Impedance			Value	Units			
			Min.	Тур.	Max.			
1				50	()	Ohm		
2	Output Power		27	27.5	28	dBm		
3	Frequency range	Channel Frequency						
		CH1		5865		MHz		
		CH2		5845		MHz		
		СНЗ		5825		MHz		
		CH4		5805		MHz		
	FRIOR(A)	CH5		5785		MHz		
		CH6		5765	8 -	MHz		
		CH7		5745	· ·	MHz		
		CH8		5725	((MHz		
		CH1		5733		MHz		
		CH2		5752		MHz		
		CH3		5771		MHz		
	EP2 or (P)	CH4		5790		MHz		
		CH5		5809		MHz		
		CH6		5828	·	MHz		
		CH7		5847		MHz		
		CH8		5866		MHz		

Date: 2013/05/21

3		CH1		5707		MHz
		CH2		5685		MHz
		СНЗ		5665		MHz
	FR3 or (E) FR4 or (F)	CH4		5645		MHz
		CH5		5885		MHz
		CH6		5905		MHz
		CH7		5925		MHz
		CH8		5945		MHz
		CH1		5740		MHz
		CH2		5760		MHz
		СНЗ		5780		MHz
		CH4		5800		MHz
		CH5		5820	(MHz
		CH6		5840		MHz
		CH7		5860	<u></u> -	MHz
		CH8		5880		MHz
4	Operating Vol	tage	7.0	12	16	V
5	Supply curren	ıt		220		mA
6	Operating Ter	nperature	-10		+85	°C
7	Video Band W	idth	0		8.0	MHz
8	Audio carrier F	Frequency		6.5	(Transfer	MHz
9	Video Input Le	vel	0.8	1.0	1.2	Vp-p
10	Video Input Im	pedance		75		Ohm
11	Audio Input Level		0.5		2.0	Vp-p
12	Audio Input Im	ipedance		10K		Ohm
13	Weight			22		g
14	Antenna Conn	ector	SMA Connector			
15	Dimensions	(L x W x H)		54	x32x10mm	
1						

Date: 2013/05/21

Frequency and channel frequency table

Date: 2013/05/21

X.11 Holybro - SiK Telemetry Radio

Telemetry Radio V3

Quick Start Guide

Overview

A Holybro Telemetry Radio is a small, light and inexpensive open source radio platform that typically allows ranges of better than 300m "out of the box" (the range can be extended to several kilometres with the use of a patch antenna on the ground). The radio uses open source firmware which has been specially designed to work well with MAVLink packets and to be integrated with the Mission Planner, Copter, Rover and Plane.

The radios can be either 915Mhz or 433Mhz and you should purchase the model which is appropriate for your country/region.

SPECIFICATIONS

Processing

100 mW maximum output power (adjustable) -117 dBm receive sensitivity Open-source SIK firmware RP-SMA connector 2-way full-duplex communication through adaptive TDM UART interface Transparent serial link MAVLink protocol framing Frequency Hopping Spread Spectrum (FHSS) Configurable duty cycle Error correction corrects up to 25% of bit errors Open-source SIK firmware Configurable through Mission Planner & APM Planner FT230X is a USB to BASIC UART IC

Features

Interchangeable air and ground modules 915 or 433 mHz Micro-USB port 4-position JST-GH connector

Dimensions

26 x 53 x 10.7mm (without antenna)

Power

Supply voltage: 5V DC (from USB or JST-GH) Transmit current: 100 mA at 20dBm Receive current: 25 mA Serial interface: 3.3 V UART

Status LEDs

The radios have 2 status LEDs, one red and one green. The meaning of the different LED states is: Green LED blinking - searching for another radio Green LED solid - link is established with another radio Red LED flashing - transmitting data Red LED solid - in firmware update mode

Connect to Pixhawk

Use the 4 pin JST-GH connector that should have come with the radio to connect the radio to your Pixhawk's "Telem 1" ("Telem 2" can also be used but the default recommendation is "Telem 1").

Connect to a PC

Connecting the radio to your Windows PC is as simple as connecting the micro USB cable (which should have been included with the radio) to your PC. The necessary drivers should be installed automatically and the radio will appear as a new "USB Serial Port" in the Windows Device Manager under Ports (COM & LPT). The Mission Planner's COM Port selection drop-down should also contain the same new COM port.

Connect to TABLET

Connect the ground module to your tablet using the Android adapter cable. Connect the colored end to the tablet and the black end to the radio.

Holybro is a registered trademark of Holybro, registered in the U.S. and other countries. ©Copyright 2018 Holybro. All Rights Reserved.

Anexo Y

Cotizaciones

A continuación, se presentan las cotizaciones de algunas piezas para su fabricación y compra.

Y.1 Cotización de partes adicionales en fibra de carbono.

DGtalic Sales

para mi 📼

Buenas tardes Joaquin,

Adjunto te envio el desglose por pieza. La cotización esta basada en material Nylon con Fibra de Carbono.

#	DGID	Archivo	QTY	Uni. 2		Sub-Total		
1		BASE SUPERIOR.stl	1	¢	45,000.00	¢	45,000.00	
2		BASE-MOTOR.stl	1	¢	5,000.00	¢	5,000.00	
3		BASE.stl	1	¢	46,000.00	¢	46,000.00	
4		SUJETADOR LATERAL.stl	1	¢	3,500.00	¢	3,500.00	
			-	-	¢ 99,5	00.	00	

Y.2 Cotización de cilindro compuesto AMS MC3.

鄧曉靜 <emmydeng@amsys.com.tw> para mi 👻

🛪 inglés - > español - Traducir mensaje

Hi Joaquin,

This is Emmy from AMS. Thank you for your enquiry.

Here is what I can offer and price will be USD 350/pcs under Ex Work Term. Could you pls advise how many qty you will need and I can quote the freight charge accordingly. If qty not too big, I suggest to use courier service and I need know the address details for a quotation. Thank you.

3.0L_15years Life Time(2-C-601) Type III Carbon Fiber Composite Cylinder Water Capacity: 3.000L Thread: M18x1.5 PW 310.0 Bar,PH 465.0 Bar Dia. 113.6 mm,Length 426.00 mm TPED Certification 19TW4482 02 00 DOT_UN Certification

Pared: 2mm. (Tolerancia ±0,2mm.)
Peso: 166gr (Tolerancia ±5gr.)

Resistente al calor (Estabilidad térmica 180°)
Fibra de carbono: 3K 200 gr/m2 Tejido Sarga 2x2 (Twill)

Dado que estos tubos están realizados en fibra de carbono 100%, y con un espesor muy constante, son perfectos para trabajos de precisión o estructurales.

· Orientación de las fibras: Bidireccional

Y.3 Cotización de perfiles tubulares y barra de fibra de carbono.

214

		Cont
ibo de fibra de carbono malla v	rista (25mm. Ø exterior - 21mm. Ø Interior) 1000mm.	
1000	Surgister (Self	
fighting.		
	A DECEMBER OF	1
		-
-		
59,90 € (49,50 € sin IVA		
59,90 € (49,50 € sin IVA		
59,90 € (48,50 € sin IVA) Centidad: 1		
59,90 € (49,50 € sin IVA Centidad:		
59,90 € (48,50 € sin IVA) Centidad:		
59,90 € (49,50 € sin IVA Centidad:		
59,90 € (48,50 € sin IVA) Centidad: 1 FICHA TÉCNICA	,	
59,90 € (49,50 € sin IVA Centidad: 1 FICHA TÉCNICA MATERIAL	Tibra de carbono	
59,90 € (49,50 € sin IVA) Cantidad: 1 FICHA TÉCNICA MATERIAL LARGO	Fibra de carbono 1000 mm.	
59,90 € (49,50 € sin IVA Cantidad: 1 FICHA TÉCNICA MATERIAL LARGO DIÁMETRO EXTERIOR	Fibra de caroono 1000 mm. 25 mm.	

CARACTERÍSTICAS:

Í

- · Longitud: 1000mm. (Tolerancia ±10mm.)
- Diámetro exterior: 25mm. (Tolerancia ±0,2mm.)
- Diámetro interior: 21mm. (Tolerancia ±0,2mm.)
- Pared: 2mm. (Tolerancia ±0,2mm.)
- · Peso: 212gr (Tolerancia ±5gr.)
- · Resistente al calor (Estabilidad térmica 180º)
- Fibra de carbono: 3K 200 gr/m2 Tejido Sarga 2x2 (Twill)
- Orientación de las fibras: Bidireccional

Dado que estos tubos están realizados en fibra de carbono 100%, y con un espesor muy constante, son perfectos para trabajos de precisión o estructurales.

ACABADO	Liso
LARGO	1000 mm.
DIÁMETRO	16 mm.

CARACTERÍSTICAS:

- Longitud: 1000mm. (Tolerancia ±5mm.)
- Diámetro exterior: 16mm. (Tolerancia ±0,2mm.)
- Peso: 305gr (Tolerancia ±10gr.)
- Fibra de carbono HM con resina Epoxy
- Fabricada por pultrusión

Anexo Z

Planos

A continuación, se presentan los planos del sistema mecatrónico, los cuales engloban los planos mecánicos y el plano electrónico.

N°	CANT	DESCRIPCION		MODELO	1	
26	1	REGL	JLADOR 12V	LM7812 STMicroelectronics	1	
25	1	REGL	JLADOR 5V	LM7805 STMicroelectronics	1	
24	2	CONE	DENSADOR 0.1uF	GENERICO	1	
23	2	CONE	DENSADOR 0.33uF	GENERICO	1	
22	1	BATE	RIA INTERNA MONITOR	Lilliput 2600mAh-7.4V	T	
21	1	MON	ITOR FPV	Lilliput 339D/W	1	
20	1	RADI	O CONTROLADOR	FrSky Taranis X9D	1	
19	1	BATE	RIA LIPO	GENERICO 3000mAh/2S]	
18	1	RECI	BIDOR	FrSky X8R		
17	1	RADI	O DE TELEMETRIA	SiK		
16	1	BATE	RIA LIPO	ZIPPY 1500mAh/4S		
15	1	MOD	ULO DE POTENCIA	AirbotPower PDB	╢	
14	1	GPS		3DR uBlox GPS with compass		
13	1	AUTC	PPILOTO	PIXHAWK PX4 2.4.8		
12	1	CAMA	ARA	FOXEER RAZER MINI		
11	1	VIDE	O TRANSMISOR	TS832		
10	1	DIOD	DO ZENER	GENERICO 5W		
9	2	CONE	DENSADOR POLARIZADO	GENERICO 330uF		
8	1	ELEC	TROVALVULA	GPG-01K G1/8"		
7	1	RELA	Y	TAR SRD-12VDC		
6	1	SERV	OMOTOR	FOXTECH PARACHUTE 10 kg		
5	1	MICR	COCONTROLADOR	ARDUINO UNO		
4	6	ΜΟΤΟ	OR BRUSHLESS	MN5008 KV170		
3	6	CONT	FROLADOR DE VELOCIDAD	KDEXF-UAS55		
2	1	PLAC	A DE DISTRIBUCION	MATEK PDB-HEX X CLASS 12S		
1	1	CELD	A DE HIDROGENO	IE-SOAR 800W		
TITL	TITLE: DIAGRAMA ESQUEMATICO DEL SISTEMA MECATRONICO REV: 1/1					
Ρ	Company: Pontificia Universidad Catolica del Peru Sheet: A3					
Date: 2023-10-04 Drawn By: Joaquin Melgarejo Ponce						

PARTS LIST						
31	24	TORNILLO CABEZA CILÍNDRICA AROMRADA — M3 x 6	<i>ISO 7380-1</i>	ALUMINIO		
30	4	TORNIIIO CABEZA AMOLADA - M3 x 4	ISO 7045	AI UMINIQ		
29	8	TORNILLO ROSCA MÉTRICA CABEZA	DIN 7985	ALUMINIO		
		AMOLADA - M3x8 - H	(H)			
28	2	PERNO ALLEN CILÍNDRICO - M3 x 6	ISO 4762	ALUMINIO		
27	1	BASE SOPORTE PARACAIDAS		POLICARBONATO		
26	6	ESC KDEXF-UAS55A			KDE Direct	
25	1	FOXEER RAZER MINI 1/3 CMOS HD 5MP			FOXEER	
24	1	SOPORTE CAMARA		ABS		
23	6	VENTANA		POLICARBONATO		
22	4	TORNILLO CABEZA CILÍNDRICA	ISO 7380-1	ALUMINIO		
		ABOMBADA - M3 x 10				
21	4	SEPARADOR 3MM		POLICARBONATO		
20	1	PARACAÍDAS FOXTECH 10 kg			FOXTECH	
19	36	TORNILLO CABEZA HUECA HEXAGONAL –	ANS/	ALUMINIO		
		M3 x 0.5 x 40, FHSBHCSM	B18.3.4M			
18	8	PERNO ALLEN CILÍNDRICO — M3 x 10	ISO 4762	ALUMINIO		
17	1	SUB SISTEMA DISPARO A PRESIÓN			A2-3	
16	2	SUBSISTEMA TREN DE ATERRIZAJE			A3–2	
15	16	TUERCA HEXAGONAL – M2.5	ISO 4035	SSt		
14	16	PERNO ALLEN CILÍNDRICO - M2.5 x 8	ISO 4762	ALUMINIO		
13	4	SUJETADOR LATERAL		CFRP		
12	1	SUB SISTEMA CILINDRO HIDRÓGENO			A2-2	
11	1	SUB SISTEMA PILA HIDRÓGENO			A2-1	
10	4	ABRAZADERA PEQUEÑA TL96016		AA6061-T6	TAROT	
9	60	TUERCA HEXAGONAL - M3	ISO 4035	SSt		
8	12	TORNILLO CABEZA CILÍNDRICA — M3 x 35	SFS 2219	ALUMINIO		
7	3	PROPELA T-MOTOR P18*6.1" CF-CCW		CFRP	TIGER MOTOR	
6	3	PROPELA T-MOTOR P18*6.1" CF-CW		CFRP	TIGER MOTOR	
5	6	MOTOR BRUSHLESS ANTIGRAVITY MN5008			TIGER MOTOR	
		170KV				
4	6	SUBSISTEMA MONTAJE DE MOTOR			A3-1	
3	6	BRAZO		CFRP	L=400,De=25,Di=21	
2	24	ABRAZADERA 25MM DIY-BCD25MM		AA6061-T6	UAVRC	
1	1	BASE INFERIOR		CFRP		
POS,	CANT.	DESCRIPCIÓN	NORMA	MATERIAL	OB SERVACIONES	
	PC	NTIFICIA UNIVERSIDA	D CAT	ÓLICA DI _{CA}	EL PERÚ	
MÉTO	ם ססר	E PROYECCIÓN 1M	TR02-10 M 1		ESCALA	
6	5	VANT PARA	HIDROLA	VADO DE	1.5	
\mathcal{T}	ヤ	FACHADAS D	E EDIFIC	CACIONES	1:5	
	201	62292 MELGAREJO PON	CE, JOAG	QUÍN IGNAC	10 FECHA: 2023 10 8	
		I			LÁMINA:	
ĺ					AO	

PART.	S LIST		
A –	ANSI	ALUMINIO	
	B18.3.1M		
5	ISO 4035	ALUMINIO	
5 x 25	ISO 4762	ALUMINIO	
		CAUCHO	
		CFRP	
		CFRP	
		ABS	
		CFRP	
	NORMA	MATERIAL	OB SERVACIONES
SIDA	D CATO MECATRÓNIO	ÓLICA DE	EL PERÚ
1 M 7	R02—10 M 1		ESCALA
STE	MA TH	REN DE	
ATEF	RRIZAL	IE	1:2
PON	CE, JOAG	O FECHA: 2023.10.23	
			LÁMINA: A3-2

PARTS LIST							
6	8	TORNILLO CABL	EZA CILÍNDRICA	ISO 7045	ALUMINIO		
		REDONDEADA -	- M2.5 x 10 - 4.8 - H				
5	4	ABRAZADERA P	EQUEÑA TL96014		AA6061-T6	RIEL TAROT TL96014	
4	6	TORNILLO CABL	EZA CILÍNDRICA	ISO 7045	ALUMINIO		
		REDONDEADA -	- M2.5 x 14 - 4.8 - H				
3	2	TUBO ESTÁNDA	R 12 MM		CFRP	RIEL TAROT TL96014	
2	2	SUJETADOR PIL	A		AA6061-T6		
1	1	PILA IE-SOAR	800W			Intelligent Energy	
POS.	POS. CANT. DESCRIPCIÓN				MATERIAL	OB SERVACIONES	
	PC	NTIFIC I	A UNIVERSIDA INGENIERÍA I	D CAT MECATRÓNI	ÓLICA DI	EL PERÚ	
MÉTO	DO DE	E PROYECCIÓN	1 M 7	TR02-10 M 1		ESCALA	
	5						
1	HIDRÓGENO						
	20162292 MELGAREJO PONCE, JOAQUIN IGNACIO						
	LÁMINA: A2-1						

PART.	'S LIST					
	ISO 4035	SSt				
M3 x	SFS 2219	ALUMINIO				
1		AA6061-T6	UA	VRC		
		CFRP				
	NORMA	MATERIAL		OB SERVACIONES		
SIDA	SIDAD CATÓLICA DEL PERÚ					
1 M 7	TRO2—10 M 1			ESCALA		
STE	MA M	ONTAJE	-	1.1		
DE	MOTC	PR		, , ,		
PON	CE, JOAG	FECHA: 2023.10.8				
				LÁMINA: A3—1		

	PARTS LIST							
5	16	TUERCA HEXAG	GONAL BAJA 4035 — M3	ISO 4035	ALUMINIO			
4	16	TORNILLO DE C	CIERRE – M3 x 8	SFS 2219	ALUMINIO			
3	1	AMS MC3 CYLI	INDER		CFRP-COMPOSI	AMS COMPOSITE		
					TE	C YLINDERS		
2	2	SUJETADOR VEI	RTICAL CILINDRO		CFRP			
1	1	BASE SUPERIO	R		CFRP			
POS.	POS. CANT. DESCRIPCIÓN				MATERIAL	OB SERVACIONES		
	PC	NTIFIC I	A UNIVERSIDA INGENIERÍA	D CAT MECATRÓNI	ÓLICA DI	EL PERÚ		
MÉTODO DE PROYECCIÓN 1MTRO2-10M1						ESCALA		
	SUB SISTE				ILINDRO	$\frac{1}{1\cdot 2}$		
	φ		HIDF	RÓGEN	VO	1+2		
	201	62292	MELGAREJO PON	CE, JOAG	QUIN IGNAC	10 FECHA: 2023.23.10		

PARTS	5 <i>LIST</i>	
6 1 ELECTROVALVULA GPG-01K G1/8"		
5 4 TUERCA HEXAGONAL BAJA – M2.5	150 4035 SSt ANSI St	
T T TURIVILLU LADELA HUELA METRILA - M2.5x0.45 x 50. FSHC.SM	B18.3.1M	
3 1 PEGGAS - 16" PRESSURE WASHER WAND		EGGAS
2 1 ADAPTADOR UNION	Latón C26000	
1 2 SOPORTE ADAPTADOR	CFRP	
POS. CANT. DESCRIPCIÓN	NORMA MATERIAL	OB SERVACIONES
PONTIFICIA UNIVERSIDA	D CATÓLICA DEL MECATRÓNICA	PERÚ
MÉTODO DE PROYECCIÓN 1MT.	R02-10M1	ESCALA
SUB SISTEMA D	ISPARO A PRESIÓN	1:2
20162292 MELGAREJO PONO	CE, JOAQUIN IGNACIO	FECHA:
		LÁMINA:
		A2-3

ANCIA GENERAL MATE DIN 7168 FIBRA DE	ERIAL CARBONO
SIDAD CATÓLICA DEL	PERÚ
1MTR02-10M1	ESCALA
PIECE BRAZO	1:2
PONCE, JOAQUIN IGNACIO	FECHA: 2023.10.23
	LÁ M INA: A3–D6

VISTA A-A

VISTA B-B

TOLERANCIAS DI M ENSIONALES SEGÚN DIN 7168						
	Más de					
GRADO DE	0.5	3	6	30	120	
EXAC TITUD	hasta	hasta	hasta	hasta	hasta	
	3	6	30	120	400	
BASTO	±0.15	±0.2	±0.5	±0.8	±1.2	

ACABADO SUPERFIC Ra 6.3	ACABADO SUPERFICIAL			
PONTIFICI	4 L	INIVERS		
MÉTODO DE PROYECCIÓN				
	D	ESPIECE		
20162292	MEL	.GAREJO		

0

ANCIA GENERAL MATL DIN 7168 FIBRA DF	ERIAL CARBONO
SIDAD CATÓLICA DEL	PERÚ
IERÍA MECATRÓNICA 1MTR02–10M1	ESCALA
E PLACA BASE TREN	1:1
PONCE, JOAQUIN IGNACIO	FECHA: 2023.10.23
	LÁ M INA: A3–D7

		32	78,2			Ø2.5(2x)		
			2		2,3		CET	
							PONTIFIC I	CIAL TOLERAI
TOLERANO	CIAS DIM	ENSIONA	LES SEC	GÚN DIN	7168		MÉTODO DE PROYECCIÓN	DESPI
GRADO DE	Más de 0.5	Más de 3	Más de 6	Más de 30	Más de 120			
EXACTITUD	hasta 3	hasta 6	hasta 30	hasta 120	hasta 400			MELGAREJU
BASTO	±0.15	±0.2	±0.5	±0.8	±1.2			

ANCIA GENERAL MA DIN 7168	ATERIAL ABS
SIDAD CATÓLICA DE	EL PERÚ
1MTR02-10M1	ESCALA
CAMARA	2:1
PONCE, JOAQUIN IGNACI	0 FECHA: 2023.10.24
	LÁMINA: 43-D9

VCIA GENERAL VIN 7168	MATE FIBRA DE	ERIAL CARBONO
SIDAD CATO Ería <u>meca</u> trónio	ÓLICA DEL	PERÚ
IMTRO2-10M1 CE SUJI LATERAL	ETADOR	escala 1:1
PONCE, JOAG	DUIN IGNACIO	FECHA: 2023.10.24 LÁMINA:
		A3–D12

TOLERANCIAS DI M ENSIONALES SEGÚN DIN 7168									?	
	Más (de	Más	de	Más	de	Más	de	Más	de
GRADO DE	0.5		0.5 3		6		30		120	
EXAC TITUD	hast	a	has	ta	hasta		hasta		has	ta
	3		6		30)	12	0	40	0
MEDIO	±0.1		±0.1		±0.	.2	±0.	.3	±0.	.5

	ACABADO SUPERFICIAL		TOLERANCIA GENERAL	MATERIAL				
			DIN 7168	FIBRA DE CARBONO				
	PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ INGENIERÍA MECATRÓNICA							
	MÉTODO DE PROYECCIÓN		1MTR02-10M1		ESCALA			
		D	ESPIECE SUJI	ETADOR	1.1			
			VERTICAL CIL	INDRO	/./			
	20162292	MEL	GAREJO PONCE, JOAG	DUIN IGNACIO	FEC HA: 2023.10.24			
					LÁ M INA: A2–D14			

TOLERANCIAS DI M ENSIONALES SEGÚN DIN 7168								
	Más de							
GRADO DE	0.5	3	6	30	120			
EXAC TITUD	hasta	hasta	hasta	hasta	hasta			
	3	6	30	120	400			
BASTO	±0.15	±0.2	±0.5	±0.8	±1.2			

