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Reaction front propagation with heat induced flow

Propagación de frentes de reacción con flujo inducido por

calor

Resumen

Estudiamos la propagación de frentes qúımicos acoplados a efectos de

convección debido a gradientes térmicos. Los frentes de reacción separan

fluidos de diferentes densidades debido a gradientes térmicos y de com-

posición. Estas diferencias de densidad puede causar convección. Los frentes

pueden describirse mediante una aproximación de frente delgado que separa

producto y reactivo en el fluido. Para describir inestabilidades difusivas,

el frente evoluciona según la ecuación de Kuramoto-Sivashinsky. Encon-

tramos que el calor producido por la reacción genera convección en frentes

exotérmicos que se propagan hacia arriba. Si el fluido de mayor densidad

se encuentra encima el fluido de menor densidad, las fuerzas de flotación

pueden generar convección. Encontramos que puede aparecer convección si

el frente se propaga hacia abajo. Este caso describe fluido de menor densi-

dad en la parte superior. También estudiamos la evolución no lineal de la

ecuación de Kuramoto-Sivashinsky acoplada a hidrodinámica. Observamos

aumento de velocidad para frentes que se propagan en canales estrechos

debido a la convección. Analizamos el efecto de las pérdidas de calor en la

propagación de frentes de reacción. La pérdida de calor depende del número

de Biot, que representa la cantidad de flujo de calor a través de las fronteras.

Para frentes que se propagan verticalmente, encontramos transiciones entre

frentes axisimétricos y no axisimétricos, además de regiones de bistabilidad

entre ellos. Para frentes que se propagan horizontalmente, la velocidad del

frente aumenta a medida que aumentamos el ancho del canal, pero la razón

de aumento es más rápida para números de Biot bajos.
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Reaction front propagation with thermal driven

convection

Abstract

We study chemical front propagation coupled to convection driven by

thermal gradients. Reaction fronts separate fluids of different densities due

to thermal and compositional gradients. We analyze the presence of con-

vection due to these density differences. Reaction fronts can be described

by a thin front approximation that separates reacted from unreacted fluid.

For fronts undergoing diffusive instabilities, the front evolution equation

corresponds to a Kuramoto-Sivashinsky equation. A horizontal flat front

propagating in the vertical direction can exhibit additional instabilities due

to density gradients. We found that heat released by the reaction at the

front leads to convection for exothermic fronts propagating upward. A pos-

itive thermal expansion coefficient will place a higher density fluid above

a fluid of lower density, therefore buoyancy forces may lead to convection.

However, we also found that convection can appear if the front propagates

downward, having the lower density fluid on top. We also solved the non-

linear evolution for the Kuramoto-Sivashinsky equation coupled to hydro-

dynamics. This shows an increase of speed for fronts propagating in narrow

channels due to convection. We also analyze the effect of heat losses on

the propagation of reaction fronts. Heat losses depend on a Biot number,

which represents the amount of heat flow through the boundary. For vertical

propagating fronts, we find transitions between axisymmetric and nonax-

isymmetric fronts, and regions of bistability between them. For horizontal

propagating fronts, the speed of the front increases as we increase the layer

width, but the rate of increase is faster for low Biot numbers.
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Introduction

This work studies the propagation of chemical fronts in fluids. Chemical reactions

convert reactants into products, they can be modeled by time evolution equations

that show the changes in chemical concentrations. In some cases, their evolution

can lead to steady states, oscillatory states or chemical chaos [1, 2, 3, 4]. Systems

that show chemical turbulence appeared in the early theoretical model developed

by Kuramoto [5, 6]. The coupling of chemical reactions and molecular diffusion

can result in the propagation of a reaction front. These reaction-diffusion models,

led by the pioneering work of Turing, show instabilities that result in pattern

formation. About forty years later, experiments verified this prediction [7, 8,

9]. This work focuses on the problem of front propagation, where the boundary

between reacted and unreacted substances defines a propagating reaction front

[10]. As fronts propagate in liquids, their evolution will also depend on fluid

motion. To fully account for the front dynamics, we will consider advection-

reaction-diffusion equations that involve the fluid velocity.

Front propagation is present in many types of macroscopic phenomena. It de-

scribes the evolution of different states of the system along a spatially extended

domain. In the context of chemical reactions, front propagation determines the

evolution of a flame. Experiments in flame fronts have shown the formation of

cellular patterns. The theoretical studies of these fronts led Sivashinsky to de-

velop an equation that describes diffusive instabilities in combustion. This model

described experiments that show self-turbulizing behavior of flames [11, 12, 13].

Models for forest fire describe the evolution of the boundary between burnt and

unburnt vegetation interacting with the surrounding air, as well as the type of

terrain. [14]. The polymerization of a monomer phase also propagates as a front

that separates these two phases, these kinds of reactions show advantages in in-

dustrial applications [15]. Front propagation also describes the spatial evolution

of phase transitions such as solidification in crystal growth. This wavefront can

have a planar propagating shape, but this shape can be unstable due to diffusion

or thermal effects. Instabilities in propagation and cellular pattern formation are

also observed in dendritic crystal growth, which is an important problem to solve

in the development of modern batteries [16, 17, 18]. In the context of biological

systems, the evolution and spread of a virus is also a front propagation problem.

Models for the hepatitis B virus can characterize the conditions when front prop-

agation takes place. In the case of Alzheimer disease, some models consider the

evolution of the disease as a propagating front of toxic proteins in the brain. The

identification of spiral patterns of chemical activity in the heart is important to

8



predict tachycardia and fibrillation [19, 20, 21, 22].

Chemical fronts describe the spatial propagation of a chemical substance in an spa-

tially extended domain. Several reactions exhibit propagating fronts of chemical

activity, such as the chlorite-tetrathionate (CT) reaction, chlorite-iodate malonic

acid (CIMA) reaction, iron(II)-nitric acid reaction, and the iodate-arsenous acid

(IAA) reaction [23, 24, 25, 26]. One classic example is the Belousov-Zhabotinsky

(BZ) reaction, which is described by a set of differential equations known as the

oregonator model. The stirred BZ reaction shows oscillations that helped to estab-

lish the validity of the model, which coupled to diffusion describes front propaga-

tion in the unstirred reaction. Later experiments showed the formation of Turing

patterns in a BZ reaction. Circular symmetry appears in the form of target pat-

terns around a center due to the oscillatory nature of the reaction [27, 28, 29, 30].

Experiments in the BZ reaction also show more complex behaviors such as rotat-

ing spiral shapes, and chaotic dynamics. Theoretical models help to explain these

complex behaviors [31, 32, 33].

Fluid flow can affect the propagation of chemical fronts in liquids. Fronts prop-

agating inside narrow tubes can be affected by external flow due to an external

pressure gradient. This flow, known as the Poiseuille flow, causes advection in the

concentration of the species and modifies the speed and shape of the front. Exper-

iments and theories for fronts in the IAA reaction with Poiseuille flow show curved

fronts of constant shape that travel with speeds higher than a simple addition of

an average fluid velocity [34, 35]. More complex flow dynamics, like the Aref blink-

ing vortex, have been studied in the evolution of the BZ reaction [36]. The fluid

flow can also arise due to density changes induced by the chemical reaction itself.

Experiments have shown that in the absence of externally imposed flow, reaction

fronts can have higher speeds due to density driven convection [37]. This requires

considering the hydrodynamic interaction with the chemical properties involved

in the reaction. The different chemical compositions in the liquid lead to different

densities. Buoyancy forces will induce the less dense fluid to rise above a denser

fluid, generating convective flow. In the case of the Rayleigh-Taylor (RT) insta-

bility, heavy fluid lies on top of less dense fluid, therefore small perturbations will

grow, generating convection. Vertical propagation in the BZ reaction shows that

convection takes place only when the width of the domain is higher than a critical

value. The IAA reaction shows different front speeds depending on orientation

because of density gradients across the front [38, 39, 40]. Theoretical studies of

IAA reaction fronts in a Hele-Shaw cell show good agreement with experiments

for the RT instability. The IAA reaction in horizontal propagation also shows
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that velocity depends on the width of the tube due to density driven convection.

Theoretical studies for the CT reaction showed that the RT instability induces

fingering shapes on the front [41, 42, 43].

The instability due to density gradients may also arise due to the temperature

differences in the fluid. In the case of the Rayleigh-Bénard experiment, heated

fluid in the bottom a liquid layer causes convection due to thermal expansion

[44]. This instability can lead to convective rolls, or convective patterns known as

Bénard cells [45]. The evolution of chemical front must consider the enthalpy of the

reaction, which affects the temperature of the fluid. An exothermic reaction rises

the temperature of the fluid behind the front heating up the unreacted fluid near

the front. Experiments in the CT reaction showed the influence of temperature

in three dimensional front propagation [46]. Fronts in both the iron(II)-nitric acid

reaction and the chlorite-thiosulfate reaction exhibit changes in shape and speed

of the front due to temperature gradients [47]. The influence of heat loss within

the fluid can affect the temperature distribution of the fluid. Experiments have

shown that temperature decays behind the front for the CT reaction due to heat

losses [48]. Theories for vertical propagation in Hele-Shaw cells predict thermal

convection even if the fluid of lesser density is above the denser fluid [49]. Further

studies showed that the instability also takes place in an unbounded viscous fluids

described by the Navier-Stokes equation [50].

Propagating fronts in open layers induce fluid flow due to changes in surface tension

across the front. This effect, known as Marangoni flow, changes the front shape

in the IAA reaction, and in the BZ reaction [51, 52]. Microgravity experiments on

board the European Space Agency sounding rocket MASER 13 isolated this effect

from density driven flow [53]. The theoretical description of the IAA reaction

coupled with surface tension driven flow accounts for these changes in shape and

speed. It also shows that the direction of the surface tension gradient has different

effects on the front propagation [54, 55].

Reaction-diffusion models for front propagation account for the front width and

velocity in the absence of fluid flow. Since the front width is very thin, the front

can be considered as an evolving interface that separates reactants from prod-

ucts. A corresponding front evolution equation involving the surface derivatives

describes its propagation. One such equation, an eikonal relation between normal

speed and curvature, describes spiral waves in the BZ reaction [56]. The eikonal

relation provides a front evolution equation independent of the underlying reac-
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tion mechanisms. This relation coupled to hydrodynamics described convection

due to density gradients, and surface tension differences across the front [57, 58].

A linear stability analysis of flat fronts propagating in cylindrical tubes predicted

transitions to axisymmetric and nonaxisymmetric convection. These transitions

were later observed in experiments [59, 60].

In addition to hydrodynamic instabilities, experiments in the IAA reaction showed

instability caused by differences in diffusivity between the chemical species. These

diffusive instabilities can be modeled by coupled diffusion-reaction equations with

different diffusivities, or a front evolution equation similar to the Kuramoto-

Sivashinsky (KS) equation [61, 62, 63]. This instability leads to curved fronts

depending on the width of the domain. An externally imposed flow changes the

conditions of instability, depending on whether this flow supports or opposes the

front propagation. Further theoretical work has focused on the interaction between

diffusive and hydrodynamic instabilities [64, 65, 66]. Theoretical work determined

the stability of fronts described by the KS equation, with either density driven

convection, an external Poiseuille flow and Marangoni flow [67, 68, 69].

This thesis focuses on thermal driven convection of chemical fronts. Autocatalytic

reaction fronts are exothermic, modifying the temperature of the fluid as they

propagate. Here we develop a theoretical framework for the study of reaction-

diffusion fronts in the presence of heat release. In these models, we include density

changes due to thermal effects, and the possibility of thermal losses through the

side boundaries of the domain. In the latter case, heat flow across the walls leads

to changes in the shape and the speed of the fronts. This theoretical analysis

of thermal losses gives insight into its influence on experimental results, where

thermal losses might be unavoidable. Additionally, it shows the possibility of

different shapes of fronts and bistability between them. We also study the effect

of both thermal and compositional gradients in the KS equation. This aims to

describe the effect of convection on diffusive instabilities. We carry out a linear

stability analysis that predicts an unexpected instability with a lesser dense fluid

on top of a denser fluid. This instability previously appeared in reaction-diffusion

models. The thin front approximation shows that the instability is possible for

a different description of front propagation. Our numerical studies of the full

nonlinear KS equation coupled to hydrodynamics agree with the linear stability

analysis.

This thesis is organized as follows. In chapter 1, we develop the mathematical tools
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necessary for the theoretical description introduced in this work. This includes a

brief description of numerical methods used throughout this work. In chapter 2, we

introduce the theory of fluid dynamics from first principles when possible. These

equations are complemented with useful approximations related to the hydrody-

namics of front propagation. In chapter 3, we include a short description of heat

transport. These equations describe the temperature changes due to heat release

at the front, which in turn generates thermally driven convection. Chapter 4 deals

with the description of chemical fronts. We present reaction-diffusion-advection

equations describing front propagation in the presence of fluid flow. In these mod-

els, a cubic reaction term coupled to diffusion describes the front propagation in

the IAA reaction. We also include a description using a thin front approximation

based on an eikonal relation, as well as a brief section on the KS equation. In

these cases, heat is released at the front, leading to an analytical solution for the

temperature profile of a flat thin front. The last two sections of the chapter deal

with the main topics of research of this thesis. For the first problem, we consider

the influence of heat losses through the boundary of the domain on the evolution

of the reaction front. The second problem is the study of compositional and ther-

mal driven convection on a thin front modeled by the KS equation. In chapter

5, we show the results of the heat loss model, including its effects on the vertical

instability of a propagating front. In addition, we find a region of bistability for

vertical propagation. We also describe the horizontal propagation with heat loss.

These results have been published in reference [70]. In chapter 6, we show the

results for the thin front model. The results include dispersion curves from the

linear stability analysis, and nonlinear simulations of the system. We find how

the conditions for instability depend on the thermal and compositional Rayleigh

numbers. The nonlinear results show the increase of speed, the shape of the front,

and the fluid velocity field. We published these results in reference [71]. In chapter

7, we summarize this research and present the corresponding conclusions.
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1 Mathematical background

The theoretical framework for the description of chemical fronts requires a par-

ticular set of mathematical tools. In this chapter, we aim to describe the most

important principles that appear in the study of the physical systems. Problems

in fluid dynamics require the use of a convective derivative. This procedure is an

application of the chain rule in a moving medium, thus receiving its particular

name. Most equations relate conservation principles, which require derivatives

of conserved quantities to obtain a corresponding transport equation. Reynold’s

transport theorem describes such procedures that applies to a test volume, surface

or line. We introduce Fourier series that allow the solution of partial differential

equations (PDE) in a particular domain. In addition, we describe the properties

of the Dirac delta function and the Heaviside step function in the context of the

theory of distributions. These distributions will be useful in the description of

abrupt changes in a continuum problem. For instance, to describe the separation

of liquids with different densities and to describe the position of a localized thin

interface. The last part of this section shows concepts from numerical analysis

that are useful for our work. We introduce finite difference approximations for

derivatives and integrals. This allows the numerical solution of PDEs in a discrete

grid using a fixed time step. In this manner, we develop the necessary algorithms

that can be implemented in a computer.

1.1 Convective (or material) derivative

Physical properties of fluids are described by functions that depend on space and

time as f = f(x, y, z, t). These scalar functions can describe the local tempera-

ture, density or concentration of a small volume of fluid located at coordinates

(x, y, z). In this case, the calculation of the time derivative of f has to account for

the velocity of the fluid. A small test volume at the position (x, y, z) will move

according to the fluid velocity such that at a small time later δt the test volume

is at the new position (x + vxδt, y + vyδt, z + vzδt). Any property defined within

the fluid, like momentum, density or temperature requires taking into account the

displacement of the test volume which has this property. The calculation of the

time derivative of any extensive quantity f in the fluid has to consider that the

positions are functions of time f = f(x(t), y(t), z(t), t). In this case, the total time

derivative of the function accounts for the change of positions in time with the

chain rule as
df

dt
= ∂tf + ∂xf

dx

dt
+ ∂yf

dy

dt
+ ∂yf

dz

dt
. (1.1)
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This particular form of the derivative is called the convective derivative, as it

includes a convective term that depends on the velocity of the fluid

v⃗ =
dx

dt
x̂+

dy

dt
ŷ +

dz

dt
ẑ. (1.2)

The convective derivative is more compactly written as

df

dt
= ∂tf + v⃗ · ∇f, (1.3)

in terms of the velocity field v⃗ of the fluid.

1.1.1 Reynold’s transport theorem

Physical properties calculated over a certain volume requires an integration over

this volume. In a moving medium, the boundaries may evolve in time. Therefore,

time derivatives should take into account this change in volume. Reynold’s theo-

rem relates the derivatives of a physical quantity with flow across the boundaries

[72, 73]. If the medium does not change in time, the change of the property F

integrated over a fixed volume is

d

dt

∫
V

FdV =

∫
V

(∂tF ) dV, (1.4)

where F = F (x, y, z, t). However, in a moving medium, its velocity affects the

boundaries of the domain of integration. We can take this into account with the

approximation of the change of dV over a small time δt as

dV |t+δt = dV +∇ · v⃗ dV δt, (1.5)

which is calculated with the Jacobian rule for the change of coordinates [73] or

with the algebra of differential forms [74, 75, 76]. On the other hand, the evolution

of F is approximated in terms of the convective derivative as

F |t+δt = F + ∂tFδt+ v⃗ · ∇Fδt. (1.6)

The following derivative is calculated by using these approximations and keeping

terms to first order in δt to obtain

d

dt

∫
V (t)

FdV =

∫
V

(∂tF +∇ · (F v⃗)) dV. (1.7)

This result is known as Reynold’s transport theorem. Using Gauss’s theorem on

the divergence term leads to

d

dt

∫
V (t)

FdV =

∫
V

∂tFdV +

∫
∂V

F v⃗dS. (1.8)

14



The last term of this equation is a convective term that takes into account the

possibility of flow of the property F across the boundary of V transported due

to the velocity field v⃗. We will use this result extensively to describe dynamics

within fluids.

Using a similar procedure, the time derivative of the flux integral in a moving

medium becomes

d

dt

∫
S(t)

F⃗ · dS⃗ =

∫
S

(
d

dt
F⃗ + F⃗ (∇ · v⃗)− (F⃗ · ∇)v⃗

)
· dS⃗. (1.9)

Using Stokes theorem, this result can also be written as

d

dt

∫
S(t)

F⃗ · dS⃗ =

∫
S

(
∂tF⃗ + (∇ · F⃗ )v⃗

)
· dS⃗ −

∫
∂S

(v⃗ × F⃗ ) · dℓ⃗. (1.10)

In this case, the last term of eq. (1.10) represents the rotation of the surface

element as time evolves. Additionally, this procedure also applies to integration

over a moving line [72].

1.2 Fourier series

We often use the representation of functions as series of sines or cosines when

working with differential equations. In the case of a periodic function f(x), we

have the Fourier series

f(x) =
a0
2

+
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx. (1.11)

The coefficients of these series are obtained from integration [77]. These series

are useful to solve problems such as the evolution of temperature T in a one

dimensional domain. As an example, we will use a Fourier series expansion to

solve the heat equation, which is a partial differential equation . In this case, the

evolution of the temperature T is determined by

∂tT = α∂2xT, (1.12)

over a one dimensional domain described by x ∈ [0, L]. We impose no heat flow

through the boundaries of the domain setting

∂xT = 0. (1.13)

The solution involves separation of variables, where the Laplacian operator allows

for the solution with a basis of orthogonal functions [78]. This allows to expand

T with only a corresponding Fourier cosine series

T (x, t) =
∑
n

T̃n(t) cos(nqx), (1.14)
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with q = π/L. This expansion transforms the problem into a set of ordinary

differential equations for T̃n. Introducing the series into eq. (1.12) we obtain∑
n

cos(nqx)
d

dt
T̃n =

∑
n

α(nq)2(− cos(nqx))T̃n. (1.15)

Since the cosines form a set of linearly independent functions, the expansion co-

efficients should be equal term by term, therefore

d

dt
T̃n = −α(nq)2T̃n. (1.16)

The solution of each equation corresponds to an exponential function. Introducing

these results into the Fourier series, we obtain the general solution of the heat

equation with insulating boundary conditions

T (x, t) =
∑
n

T̃n(0) exp(−n2q2αt) cos(nqx). (1.17)

The initial condition T (x, 0) determines the coefficients T̃n(0). In this example,

we obtain the coefficients using linear independence. However, we will deal with

more extensive differential equations where we might need to explicitly find pro-

jections over the desired basis. In such cases, we might need to impose orthogonal

conditions of the basis:

2

L

∫ L

0

cos(lqx) cos(mqx)dx = δl,m, (1.18)

and
2

L

∫ L

0

sin(lqx) sin(mqx)dx = δl,m, (1.19)

where δl,m is the Kronecker delta [77]. It is useful to consider integrals where the

cosine and sine terms are multiplied. Here we have

2

L

∫ L

0

cos(mqx) sin(nqx)dx =

0 if m = n

2n
π(m2−n2)

((−1)m+n − 1) if m ̸= n
. (1.20)

For our work, we will also make use of the following integrals

2

L

∫ L

0

cos(lqx) sin(mqx) sin(nqx)dx =

δm,n if l = 0

1
2
(δ|m−n|,l − δm+n,l) if l ≥ 1

,

(1.21)

and

2

L

∫ L

0

cos(lqx) cos(mqx) cos(nqx)dx =

δm,n if l = 0

1
2
(δ|m−n|,l + δm+n,l) if l ≥ 1

.

(1.22)
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These triple product integrals are useful when dealing with nonlinear terms. Con-

sider for instance the inviscid Burgers equation for u = u(x, t) as

∂tu+ u∂xu = 0. (1.23)

This equation is a model for the propagation shock waves [79, 80]. As an example,

we introduce u(x, t) as a fourier series in the spatial variable

u =
∑

ũn(t) sin(nqx), (1.24)

similar as with the heat diffusion equation. Introducing the series into the differ-

ential equation, we get

dũn
dt

sin(nqx) + ũnũm sin(nqx)(mq) cos(mqx) = 0. (1.25)

The corresponding equations for ũn are obtained by projecting over the basis

function as

dũn
dt

∫ L

0

sin(nqx) sin(kqx)dx+ ũnũm(−mq)
∫ L

0

sin(nqx) cos(mqx) sin(kqx)dx = 0.

(1.26)

These triple product integrals are known results, and the differential equation for

each term can be explicitly calculated.

1.3 Delta and step functions

The Dirac delta function δ(x) is an object defined by the sifting property∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0), (1.27)

for any well-behaved function f [81]. In this section, we will omit the limits of

integration and assume the integrals are taken over the whole real line. We then

write the sifting property as∫
f(x)δ(x− x0)dx = f(x0). (1.28)

The Dirac delta is useful in electromagnetism to describe point charges, and in

mechanics it describes impulsive forces. It also appears in the study of impulsive

signals in the brain and their interactions [82].

The Dirac delta function δ(x) is formally described as a distribution, which is a

generalized function where classical derivative may not exist [83]. In this manner,
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it allows for the integration with standard functions. For example, the definition

of the derivatives of the Dirac delta function is obtained from integration by parts∫
f(x)δ′(x)dx = fδ′|∞−∞ −

∫
f ′(x)δ(x) = −f ′(0), (1.29)

where we have assumed that f goes to zero outside a compact domain. This is

generalized for higher order derivatives as∫ ((
d

dx

)n

δ(x)

)
fdx = (−1)nf (n)(0), (1.30)

with iteration of integration by parts as shown in [84]. The superscript (n) denotes

the n-th derivative.

Another useful distribution is the unitary step function Θ(x) (or Heaviside func-

tion) defined as

Θ(x) =

0 if −∞ < x < 0

1 if 0 ≤ x <∞
. (1.31)

Some definitions consider the value at zero as Θ(0) = 1/2 [85]. Its weak derivative

Θ′(x) is the Dirac delta δ(x) [83]. This can be shown by its action on an integral

as ∫ ∞

−∞
fΘ′dx = −

∫ ∞

−∞
f ′Θ = −

∫ ∞

0

f ′ = f(0). (1.32)

This is the sifting property that defines the Dirac delta. We conclude that Θ′(x) =

δ(x).

Other important properties include the composition of distributions with standard

functions [86]. All of these tools will help us describe models where the physical

description includes sharp or abrupt structure such as surfaces and points in a three

dimensional domain. Moreover, distributions are useful to describe discontinuities

in functions such as in the case of reaction fronts.

1.4 Numerical differentiation

The solution of nonlinear differential equations will require the development of

algorithms that approximate the solutions of these equations. They will be pro-

grammed later in a digital computer. We apply the method of finite differences

to approximate the derivatives on a discrete grid. Accordingly, we choose a set of

points xi uniformly distributed on the x axis with a spacing equal to ∆x between
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adjacent points. The values of the function f evaluated at discrete points xi are

represented as

fi = f(xi). (1.33)

This notation will be used to describe numerical algorithms associated with the

function f .

Using a truncated Taylor expansion, we find that the first derivative of the function

at the point xi can be approximated by a forward finite difference scheme

df

dx
|xi

=
fi+1 − fi

∆x
+O(∆x). (1.34)

Here O(∆x) indicates terms of order ∆x and higher. Another useful scheme is

the backward difference formula

df

dx
|xi

=
fi − fi−1

∆x
+O(∆x), (1.35)

which is an approximation of the same order as before. A higher order approxi-

mation can be achieved with a centered difference formula

df

dx
|xi

=
fi+1 − fi−1

2∆x
+O(∆x2), (1.36)

which has an error of quadratic order and higher [87].

The second derivative can be approximated by a central three point scheme

d2f

dx2
|xi

=
fi+1 + fi−1 − 2fi

∆x2
+O(∆x2). (1.37)

This is accurate to order ∆x2 [87].

1.5 Numerical integration

Integrals can also be approximated using a discretized grid. The solution can be

carried out by calculating the area under the curve with polynomial approxima-

tions of the curve. The first algorithm uses two points to get a linear approximation

and calculate the area of the trapezoid. This results in the approximation for the

integral as ∫ b

a

f(x)dx =
∆x

2

n−1∑
i=0

(fi + fi+1). (1.38)

Where we have n+1 points that divide the domain (a, b) into n uniform segments

of uniform width ∆x = (a− b)/n.
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More accurate results rely on quadratic approximation of the curve, using three

consecutive points on the grid to fit a parabola. This procedure results in Simp-

son’s rule [88], which for an odd number of points in the grid corresponds to∫ b

a

f(x)dx =
∆x

3

n/2−1∑
i=0

(f2i + 4f2i+1 + f2i+2). (1.39)

With a similar expression if the number of points is even. This method provides

a higher accuracy compared to the trapezoidal rule [89].

1.6 Numerical representation of delta distribution

The numerical integration method can be used to define the representation of the

delta distribution. Using the sifting property, we require that the numerical delta

δ(x) satisfies ∫
f(x)δ(x− xj)dx = fj. (1.40)

Evaluating the integral over a discrete uniformly spaced grid leads to∑
i

fiδi,j∆x = fj, (1.41)

defining a numerical representation of the delta function as

δi,j =

0 if i ̸= j

1
∆x

if i = j
. (1.42)

This approach also applies for the numerical representation of the derivatives of

the delta function [84]. For the first derivative, the numerical integral can be

represented by ∑
i

fiδ
′
ij∆x =

fj−1 − fj+1

2∆x
. (1.43)

Where we have used the centered difference formula. This corresponds to the rule

δ′ij =


1

2∆x2 if i = j − 1

− 1
2∆x2 if i = j + 1

0 if i ̸= j ± 1

. (1.44)

For the second derivative, we have∑
i

fiδ
′′
ij∆x =

fj+1 + fj−1 − 2fj
∆x

. (1.45)
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Which corresponds to the rule

δ′′ij =



1
∆x2 if i = j + 1

1
∆x2 if i = j − 1

− 2
∆x2 if i = j

0 other cases

. (1.46)

These representations will become useful in the numerical solution of problems

involving discontinuities.

1.7 Numerical solution of differential equations

We will approximate the differential equations using numerical finite differences

for the derivatives. The resulting algorithms can be implemented in a digital

computer. From the many possible methods, the chosen algorithm should bal-

ance simplicity, accuracy and stability. In this section, we discuss finite difference

algorithms applied to differential equations.

1.7.1 First order ordinary differential equation

For the first order ordinary differential equation (ODE) given by

dy

dt
= g(y, t), (1.47)

where g is a known function, we can find a numerical solution by considering a

discretized time domain. Using a time step ∆t, the derivative can be approximated

by a forward difference formula and the function g is evaluated at the present time

g(yi, ti) = gi. We obtain the discretization

yi+1 − yi
∆t

= gi, (1.48)

with yi = y(ti). This leads into an iterative algorithm for the evolution of f(t) as

yi+1 = yi + gi∆t. (1.49)

This algorithm is referred to as the explicit (or forward) Euler method [90]. It

requires the explicit evaluation of g at the present time step i.

Using different finite difference approximations will lead to different algorithms.

For example, applying a backwards difference formula we have

yi − yi−1

∆t
= gi, (1.50)
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which can be rewritten by shifting each index as

yi+1 − yi
∆t

= gi+1. (1.51)

This backward difference formula requires knowledge of g at the future time step

gi+1. This algorithm is known as the implicit (or backward) Euler method, where

the evaluation of g is implicit.

Another important aspect to consider is the stability of the algorithm. This stabil-

ity property refers to the convergence of the solutions after a long time. The choice

of algorithm will be restricted by this property. In some cases, it can be controlled

by choosing an appropriate value for the time step ∆t. In other cases, choosing

backward Euler instead of forward Euler will minimize possible instabilities [90].

1.7.2 Second order ODE

This type of equation involves the second derivative of the unknown function.

In addition to time evolution equations, we find second order boundary value

problems. For the time evolution equation, the initial state and its derivative are

known, whereas the boundary value problem requires knowledge of the function

on the boundaries of a domain. One such equation is the one dimensional Poisson

equation defined as
d2f

dx2
= g, (1.52)

where g = g(x) is known.

This problem can be treated numerically by discretizing the second derivative as

fi−1 − 2fi + fi+1

∆x2
= gi, (1.53)

with two additional equations that represent the boundary conditions. These con-

ditions specify the values of the function at the boundary, or the values of the

derivatives, or a combination of both. The unknown function values fi describe a

tridiagonal system of equations. This system can be solved by Thomas algorithm

[91], which is an efficient method for solving this system of equations. It is an

explicit version of a gaussian elimination procedure in the special case of tridiag-

onal systems. This algorithm inverts the matrix of order n× n with a number of

operations proportional to order n, whereas the most general gaussian elimination

is of order n3 [92]. The set of equations obtained from eq. (1.53) corresponds to

n unknowns fi, considering that the boundaries determine expressions for f0 and

fn+1. This leads to a tridiagonal system for n unknowns xi = fi determined by

aixi−1 + bixi + cixi+1 = di, (1.54)
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with a1 = 0 and cn = 0. The solution proceeds by first scaling the equations. The

first equation takes the form

x1 +
c1
b1
x2 =

d1
b1
, (1.55)

then we scale the second equation and eliminate x1 to obtain

x2 +
c2

b2 − c′1a2
x3 =

d2 − a2d
′
1

b2 − c′1a2
. (1.56)

Where c′1 = c1/b1 and d′1 = d1/b1. The rest of the equations can be recursively

reduced by

c′i =
ci

bi − c′i−1ai
, and d′i =

di − aid
′
i−1

bi − c′i−1ai
. (1.57)

The corresponding equations now read

xi + c′ixi+1 = d′i. (1.58)

Since the last equation corresponds to xn = d′n, it allows the solution by backward

substitution with the known values of c′i and d
′
i using xi−1 = d′i − c′ixi.

The Thomas algorithm has allowed us to directly solve the Poisson equation.

However, this limits us to use the three point formula for the second derivative.

Any other representation of the derivative results in a different system of equations.

An alternative method is the relaxation algorithm. We show how to introduce the

relaxation method for the discretization defined in eq. (1.53). This method is

based in a Jacobi iteration scheme [90], where the function f is assumed to be an

initial guess, and the values are iterated such that

fn
i−1 − 2fn+1

i + fn
i+1

∆x2
= gi. (1.59)

Here fn represents the function at the n-th iteration of the method. These it-

erations continue until convergence, where fn = fn+1, therefore satisfying the

original Poisson equation eq. (1.53). The algorithm for updating fi according to

this discretization is

fn+1
i =

1

2
(fn

i−1 + fn
i+1 −∆x2gi). (1.60)

For points near the boundary, we require equations that describe the appropriate

boundary conditions. The solution of problems with a relaxation algorithm can

be optimized by introducing an appropriate initial guess for f .
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1.7.3 Advection equation PDE

In physical situations, we are interested in equations where the unknown function

depends on space and time. One important example is the advection equation

∂tf + v∂xf = 0. (1.61)

This equation represents the advection of the function f by a constant velocity field

v. The solution for f corresponds to the initial condition given by f0 = f(x, 0),

displaced by a distance vt:

f(x, t) = f0(x− vt, t). (1.62)

The numerical solution of this problem involves discretization in space and time.

We describe the discretized function with two indices f(xi, tn) = fn
i , approximat-

ing the derivatives with two point algorithms. With the function advecting to the

right (v > 0), we choose the spatial derivative in the opposite direction. This leads

to the iterative algorithm for f

fn+1
i − fn

i

∆t
+ v

fn
i − fn

i−1

∆x
= 0. (1.63)

This choice of algorithm helps avoid numerical instabilities as compared to other

choices such as a downwind scheme [90]. The upwind differentiation scheme gives

an iteration equation for the function at every time step as

fn+1
i = fn

i +
v∆t

∆x

(
fn
i − fn

i−1

)
. (1.64)

This algorithm has a slight inconvenience. It can be shown that this finite differ-

ence scheme represents an additional diffusion term [90]. This scheme is satisfied

by the same advection equation, but with an additional diffusive term as

∂tf + v∂xf =
v

2
(∆x− v∆t)∂2xf. (1.65)

The diffusive term depends on the size of the grid and can be made sufficiently

small by increasing the number of points in the grid. But the diffusive behavior

might still be present if the evolution is carried out on a long time scale.

The analysis of the stability for the advection problem leads to a constraint on the

grid values named Courant-Friedrichs-Lewy (CFL) condition [93]. In the scheme

we proposed, the von Neumann analysis gives the following CFL condition

0 < v
∆t

∆x
< 1. (1.66)
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When this condition is not met, the iterative procedure diverges. It is interesting

to note that the sign of v is important, since we have the condition that this

scheme is only stable for advection towards the positive axis. This stability is

what characterizes the upwind differentiation scheme. The CFL condition imposes

a balance on the choice of the discretization in both time and space. It might be

useful to have good spatial resolution with small ∆x. However, this forces ∆t to

be also very small to avoid numerical instability. As a heuristic rule, we might

remember this as having a grid velocity, defined as ∆x/∆t, greater than the speed

of the advection.

1.7.4 Diffusion equation

We turn our attention to a higher order partial differential equation (PDE), a

parabolic equation that represents the diffusion process:

∂tf = D∂2xf. (1.67)

Where D is a constant that represents the diffusion coefficient. Similarly to the

advection equation, we have to develop a combined scheme with derivatives in

time and in space. The simplest algorithm corresponds to a forward simple Euler

time derivative combined with a central finite difference approximation for the

spatial derivative

fn+1
i − fn

i

∆t
=

D

∆x2
(
fn
i+1 + fn

i−1 − 2fn
i

)
, (1.68)

with the indices as f(xi, tn) = fn
i . The solution relies on iterating this scheme as

fn+1
i = fn

i +
D∆t

∆x2
(
fn
i+1 + fn

i−1 − 2fn
i

)
. (1.69)

This algorithm requires choosing small time steps to avoid numerical instabilities

[87]. A more robust method is the Crank-Nicholson algorithm, which calculates

the second derivative as the mean of the derivative between the time steps as

fn+1
i − fn

i

∆t
=
D

2

(
∂2xf

n+1 + ∂2xf
n
)
, (1.70)

however this requires solving for the unknowns fn+1
i . This can be achieved using

the Thomas algorithm for the tridiagonal system of equations. Writing the spatial

derivatives explicitly we have

fn+1
i − fn

i

∆t
=

D

2∆x2
(
fn
i+1 + fn

i−1 − 2fn
i + fn+1

i+1 + fn+1
i−1 − 2fn+1

i

)
. (1.71)
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Reordering the terms, we find a tridiagonal system of equations(
− D

2∆x2

)
fn+1
i−1 +

(
1

∆t
+

D

2∆x2

)
fn+1
i +

(
− D

2∆x2

)
fn+1
i+1 =

fn
i

∆t
+
D

2
∂2xf

n, (1.72)

which can be readily solved with the algorithm described for eq. (1.54).

We can develop a similar method for the solution for the two dimensional diffusion

problem

∂tf = D∂2xf +D∂2yf. (1.73)

In this case, instead of averaging the derivative, we can treat only one dimension

implicitly at each half time step. Then the algorithm requires two steps, first

fn+1
i − fn

i

(∆t/2)
= D∂2xf

n+1 +D∂2yf
n (1.74)

where the x derivative is calculated implicitly, and later the y derivative is con-

sidered implicitly:
fn+1
i − fn

i

(∆t/2)
= D∂2xf

n +D∂2yf
n+1. (1.75)

This algorithm is called alternate direction implicit (ADI) [94]. Using this scheme,

we allow for more numerical stability and the time step is not restricted to a very

small value. This is very valuable in two dimensional problems, as the computa-

tional time increases rapidly depending on the size of the grid.
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2 Fluid mechanics

In this thesis we consider the propagation of reaction fronts in liquids. In these

cases, fluid flow modifies the dynamics of the reaction. This flow may be caused by

an external pressure gradient, such as fluid flowing in a tube with a corresponding

Poiseuille flow profile. In other cases, the reaction itself can induce density changes

resulting in convection. This change in density can be caused by changes in the

chemical compositions, as well as changes in temperature due to heat released or

absorbed by the reaction. The interaction between the reaction and the fluid re-

quires the use of dynamic relations for the fluid velocity field. In this chapter, we

will introduce the Navier-Stokes equation for the evolution of viscous flow. This

equation is derived considering the momentum transport in the fluid. The induced

flow can be described using the Boussinesq approximation, where the change in

density appears only in the large gravity term. To eliminate the pressure from the

equations, we will develop a vector potential description for the velocity field. In

this context, the velocity will be described by a vorticity and a stream functions.

The NS equations can be simplified depending on the specific situation. Reaction

experiments carried out in Hele-Shaw cells allow for a simplified description us-

ing Darcy’s law. The experimental parameters of interest may allow additional

simplifications, for instance if viscosity is large, we may use a Stokes flow approx-

imation. In order to use the appropriate models for the problem we have to take

into account the scaling of the equations.

2.1 Mass conservation

The evolution of a fluid medium requires developing properties for the scalar and

vector fields within the domain. The first property we describe is mass conser-

vation. The mass in any volume element can be calculated from a density field

as ∫
ρdV =M. (2.1)

The condition of mass conservation requires that M behave as a constant. This

is described by a zero derivative, with the derivative following Reynolds transport

theorem (eq. (1.7)) as

d

dt
M = 0 =

d

dt

∫
ρdV =

∫
∂tρ+∇ · (ρv⃗)dV. (2.2)

This equation leads to the following equivalent statement∫
∂tρdV = −

∫
∇ · (ρv⃗)dV, (2.3)
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such that changes in density within a volume is only possible if it is transported

by a velocity field. Using the Stokes theorem we also have∫
V

∂tρdV = −
∫
S

ρv⃗ · dA⃗, (2.4)

which provides the change in density by calculating how much mass flows outwards

from the domain. From the conservation of mass given by∫
(∂tρ+∇ · (ρv⃗)) dV = 0, (2.5)

we obtain a differential form of the conservation law. This expression must be

zero for any volume, thus the expression inside the integral must be always zero

∂tρ+∇ · (ρv⃗) = 0. (2.6)

This is the continuity equation which guarantees mass conservation. In the case

of incompressible flow, the density is assumed as a constant. This simplifies the

equation into the condition that the velocity field is divergenceless

∇ · v⃗ = 0. (2.7)

2.2 Momentum transport

We analyze the mass of a small volume of fluid to measure the momentum transfer

[95]. In the test volume, forces provide its acceleration, as stated by Newton’s

second law

F⃗tot =
d

dt
(mv⃗). (2.8)

When this is applied to the test mass, we have the change of momentum as an

integral
d

dt
p⃗ =

d

dt

(∫
v⃗dm

)
=

d

dt

(∫
v⃗ρdV

)
. (2.9)

Additionally, forces can act distributed over the whole volume of the test mass,

and also distributed over the surface of the test mass. The force F⃗tot is described

as the sum of two components which are the vectors f⃗ and T⃗ . The first term f⃗

describes the force per unit mass distributed over the volume of the test mass. The

second term T⃗ measures the force distributed over the surface of the test mass.

The total force is described by the sum(
F⃗tot

)
=

∫
f⃗dm+

∫
T⃗ dS. (2.10)
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The surface force is considered as arising from the stress tensor σij, such that the

components of T⃗ are Ti = σijnj, with nj the components a normal unit vector to

the surface. In this expression, and from now on, we assume Einstein’s summation

convention for the indices, such that if an index appears twice in an expression,

it implies a sum over the repeated index. The total force takes the new form in

terms of components

(Ftot)i =

∫
fiρdV +

∫
σijnjdS. (2.11)

This expression can be further simplified using Gauss’s theorem

(Ftot)i =

∫
fiρdV +

∫
∂jσijdV. (2.12)

The final result is the dynamical equation for a test mass contained in a small

volume dV , therefore the change in momentum is equal to the total forces

d

dt

∫
ρvidV =

∫
fiρdV +

∫
∂jσijdV. (2.13)

The time derivative is carried out as in the Reynolds transport theorem (eq. (1.7))

to obtain ∫
(∂t(ρvi) + ∂j(ρvivj)) dV =

∫
fiρdV +

∫
∂jσijdV. (2.14)

For any volume element the integrals have to be equal, therefore we obtain a

differential form for the dynamical equation

∂t(ρvi) + ∂j(ρvivj) = fiρ+ ∂jσij. (2.15)

This can be simplified by using the mass conservation condition (eq. (2.6)) in the

left hand side of this equation

∂t(ρvi) + ∂j(ρvivj) = vi(∂tρ+ ∂j(ρvj)) + ρ∂tvi + ρvj∂jvi. (2.16)

Here the factor of vi in the right hand side is the continuity equation, since this

factor is zero, we obtain

∂t(ρvi) + ∂j(ρvivj) = ρ∂tvi + ρvj∂jvi. (2.17)

This results in Cauchy’s momentum equation

ρ∂tvi + ρvj∂jvi. = fiρ+ ∂jσij. (2.18)

The evolution equation requires knowledge of the force distribution fi and the

stress tensor σij. For certain fluids, such as water at room temperature, the stress

tensor can be described by Newton’s viscosity [96].
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2.3 Newton’s viscosity

To apply Cauchy’s momentum equation, we need to account for the stress tensor

σij. In general, the stress tensor will depend on the thermodynamic state in terms

of internal energy (temperature), the mass density, and on the velocity gradients.

Assuming a linear dependence on the velocity gradient, the simplest form for the

tensor gives

σij = Aij +Bijkl∂kvl. (2.19)

This is further simplified by the assumption that the tensor has to be isotropic.

That is, independent of the rotation of coordinates. This assumption is related to

the conservation of angular momentum for small volume elements. The possibility

of angular momentum change at small scales requires a different approach [73].

In this case, the stress tensor involves a second order tensor component A, and

a fourth order component B. The only possible isotropic two order tensor is any

multiple of the Kronecker delta δij as

Aij = αδij, (2.20)

and the only possible fourth order tensor is composed of products of Kronecker

deltas [97]. This general fourth order isotropic tensor is

Bijkl = λδijδkl + µ (δikδjl + δilδjk) + ν (δikδjl − δilδjk) . (2.21)

Where λ, µ and ν are arbitrary scalars. Each component has a geometrical mean-

ing [98]. In the case of the stress tensor, the third term ν vanishes when multiplied

with ∂kvl in eq. (2.19). The resulting form of the tensor becomes

σij = −pδij + λ∂kvkδij + µ (∂ivj + ∂jvi) . (2.22)

The first term is the thermodynamic pressure p that is present even in the absence

of flow. We also define the mechanical pressure as the mean of the eigenvalues of

the stress tensor

pm = −1

3
σii. (2.23)

The difference between these pressures is that mechanical pressure is only related

to the translational energy of the molecules, whereas the thermodynamic pressure

accounts for the additional degrees of freedom such as rotation or vibration [99].

The term proportional to µ relates to a change of shape for a small volume of fluid,

therefore this term is proportional to the strain rate tensor Sij = (∂ivj + ∂jvi)/2.

The stress tensor is further simplified under the Stokes assumption [73], which

states that the thermodynamic pressure and the mechanical pressure are equal.
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Thus, in the relation

−pm = −p+
(
λ+

2

3
µ

)
∂ivi, (2.24)

we get a condition between λ and µ. The Stokes assumption requires λ = −2
3
µ.

In this way, we obtain Newton’s viscosity law

σij = −pδij −
2

3
µ∂kvkδij + 2µSij, (2.25)

here µ corresponds to the coefficient of dynamic viscosity.

2.4 Incompressible Navier-Stokes equation

The Navier-Stokes (NS) equation describes the momentumm transport coupled to

Newton’s viscosity law. The general form is

ρ∂tvi + ρvj∂jvi = fiρ+ ∂j

(
−pδij −

2

3
µ∂kvkδij + 2µSij

)
. (2.26)

We can reduce the equation further assuming constant µ and constant ρ, which

leads to the incompressibility condition ∂ivi = 0. Therefore, the rectangular com-

ponents of the NS equation are

ρ∂tvi + ρvj∂jvi = fiρ− ∂ip+ µ∂j∂jvi. (2.27)

In vector form, we write

ρ∂tv⃗ + ρ(v⃗ · ∇)v⃗ = ρf⃗ −∇p+ µ∇2v⃗. (2.28)

When the only external force acting on the fluid is gravity, we use f⃗ = g⃗, with g⃗

being the gravitational acceleration. In order to solve the equations we need to

obtain four functions: three velocity components and one pressure term. The full

solution of the system would require solving the dynamical equation along with

the incompressibility condition.

2.5 Boussinesq approximation

In the study of convection, experiments show that density gradients cause convec-

tion due to buoyancy forces. The NS equation can be studied using the Boussinesq

approximation, which assumes that the density is constant except when it multi-

plies the gravity term [100, 101]

ρ0∂tv⃗ + ρ0(v⃗ · ∇)v⃗ = ρg⃗ −∇p+ µ∇2v⃗. (2.29)
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Here ρ0 is a constant reference density. The variation in density is written as

ρ = ρ0 +∆ρ. This results in

∂tv⃗ + (v⃗ · ∇)v⃗ =

(
1 +

∆ρ

ρ0

)
g⃗ − 1

ρ0
∇p+ ν∇2v⃗. (2.30)

With ν the kinematic viscosity defined as ν = µ/ρ0. We define the reduced

pressure pr = p + ρ0gz, with gravity pointing in the negative z direction as g⃗ =

−gk̂. With these definitions, the NS equation becomes

∂tv⃗ + (v⃗ · ∇)v⃗ =
∆ρ

ρ0
g⃗ − 1

ρ0
∇pr + ν∇2v⃗. (2.31)

2.6 Stream function and vorticity

The incompressibility condition

∇ · v⃗ = 0, (2.32)

allows the use of a vector potential such that

v⃗ = ∇× ψ⃗. (2.33)

The vector ψ⃗ is referred to as the stream function. We also define the vorticity

vector as

ω⃗ = ∇× v⃗. (2.34)

The vorticity measures the rotation of the fluid velocity and the stream function

is associated with mass continuity in an imcompressible flow.

The evolution of the velocity field can be expressed in terms of the stream function

and vorticity using appropriate vector identities [102]. Introducing the identity

1

2
∇(v⃗ · v⃗) = (v⃗ · ∇)v⃗ + v⃗ × (∇× v⃗) (2.35)

into the NS equation, and considering the definition of vorticity, we find

∂tv⃗ +
1

2
∇(v⃗ · v⃗)− v⃗ × ω⃗ = ν∇2v⃗ − 1

ρ0
∇pr −

∆ρ

ρ0
gẑ. (2.36)

This NS equation takes into account the Boussinesq approximation for the density

term. Taking the curl of this equation, we find an evolution equation for the

vorticity. The unknown pressure will be eliminated from the vorticity equation

since the rotational of a gradient is zero. We make use of the identity

∇× (v⃗ × ω⃗) = v⃗ (∇ · ω⃗)− ω⃗ (∇ · v⃗) + (ω⃗ · ∇)v⃗ − (v⃗ · ∇)ω⃗, (2.37)

32



to account for the curl of v⃗ × ω⃗ appearing in eq. (2.36). This is further simplified

to

∇× (v⃗ × ω⃗) = (ω⃗ · ∇)v⃗ − (v⃗ · ∇)ω⃗, (2.38)

using ∇ · v⃗ = 0 and ∇ · ω⃗ = 0. Finally, we arrive at

∂tω⃗ + (v⃗ · ∇)ω⃗ − (ω⃗ · ∇)v⃗ = ν∇2ω⃗ −∇×
(
∆ρ

ρ0
gẑ

)
. (2.39)

This equation, known as the vorticity transport equation, expresses the evolution

of the vorticity. We observe that the term involving the viscosity ν has the effect of

diffusing the vortices. The vorticity transport equation appears to be a modified

advection-diffusion equation with extra terms associated with vortex stretching

[103].

We can find a relation between the stream and the vorticity by taking the curl to

the definition of the stream function

∇× v⃗ = ∇× (∇× ψ⃗). (2.40)

Using vector identities, this reduces to

ω⃗ = ∇(∇ · ψ⃗)−∇2ψ⃗. (2.41)

We have arrived at two equations, eqs. (2.39) and (2.41), that completely describe

the evolution of the vorticity. These equations allow us to obtain ψ and ω without

the need for a pressure term. However, they are coupled, involving nonlinear terms.

Another disadvantage is the implementation of boundary conditions, which is not

always straightforward in terms of the vorticity.

2.7 Two-dimensional flow

The equations for two-dimensional flow in terms of the vorticity and stream

functions allow for a simpler description. The first simplification is the reduc-

tion of these functions into scalar fields. Since the velocity field corresponds to

v⃗ = vxx̂+vyŷ, we only need the z component of the vorticity and stream functions.

The stream potential has the form ψ⃗ = ψ(x, y)ẑ, it depends only on x and y. The

vorticity is also reduced to its z component ω = ω(x, y).

The stream function defines a geometric property of the flow. The velocity vectors

are tangent to the lines of constant stream ψ defined as streamlines. This fact is

readily seen from the definition. For a line of constant ψ we have

0 = dψ = ∂xψdx+ ∂yψdy. (2.42)
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The velocity components are now obtained from vx = ∂yψ and vy = −∂xψ. There-
fore, the slope of the streamline is given by

dy

dx
= −∂xψ

∂yψ
=
vy
vx
, (2.43)

the ratio of the components of the velocity. Consequently, the velocity field is

tangent to the streamlines.

The vorticity is obtained from the definition as ω = ∂xvy − ∂yvx. Since vorticity

and stream functions involve only the z component, we can simplify their relation,

eq. (2.41), where

ωẑ = ∇(∇ · (ψẑ))−∇2(ψẑ). (2.44)

The first term is zero, as it is evaluated for this case ∂zψ(x, y) = 0. Therefore,

eq. (2.41) becomes a Poisson equation for the vorticity

ω = −∇2ψ, (2.45)

with the laplacian term in two dimensions. We turn now to simplify the vorticity

transport for two-dimensional flow with gravity in the negative y direction

∂tω + (v⃗ · ∇)ω − (ω∂z)v⃗ = ν∇2ω −∇×
(
∆ρ

ρ0
gŷ

)
, (2.46)

where the density term considers the Boussinesq approximation. In this case, the

∂z on the velocity also evaluates to zero. Then, we have the equation

∂tω + (v⃗ · ∇)ω = ν∇2ω −∇×
(
∆ρ

ρ0
gŷ

)
. (2.47)

Writing the velocity components in terms of the stream function we arrive to

∂tω + ∂yψ∂xω − ∂xψ∂yω = ν∇2ω −∇×
(
∆ρ

ρ0
gŷ

)
. (2.48)

2.8 Euler equations and Stokes flow

The NS equation can be simplified under viscosity assumptions for the system.

One usual assumption is that viscosity dominates the evolution. To be precise,

we have to define what it means for viscosity to be large. We introduce a natural

system of units for a flow problem with the definition of a length scale L and a

time scale T . The process of identifying the correct scales for the problem was

introduced by Froude [104] and famously used by Taylor [105, 106]. We use the

typical example of flow around an object. The length scale depends on the size
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of the object. For a sphere, the length scale L is the diameter. The time scale

is obtained indirectly, as it is not available from the problem itself. The flow far

away from the object is a uniform field of magnitude |v⃗| = U . We are interested

in how the velocity changes with respect to this reference velocity. The time scale

for the problem is defined from the reference velocity as T = L/U . Introducing

the dimensionless variables

x̃ = x/L , t̃ = t/T , ṽx = vx/U , ∂x̃ = L∂x. (2.49)

We find that the incompressible NS equation without gravity becomes

∂tv⃗ + (v⃗ · ∇)v⃗ = −∆p

ρ0

T 2

L2
∇pr + ν

T

L2
∇2v⃗. (2.50)

Where the tilde has been dropped from all variables and we have introduced a

reference pressure difference ∆p for the units of p̃r. The viscosity factor defines

the Reynolds number Re as

Re =
LU

ν
. (2.51)

It is a dimensionless number that describes the influence of viscosity in the flow.

It gives a description of the strength of the viscosity independent of units. The

dimensionless equation becomes

∂tv⃗ + (v⃗ · ∇)v⃗ = − ∆p

ρ0U2
∇pr +

1

Re
∇2v⃗. (2.52)

It is in this dimensionless form where we are able to express the limit cases. If

the viscosity dominates the evolution of the systems, the Reynolds number will be

low [107]. When this is the case, all the terms of the left hand side are considered

small. The pressure term depends on the scale of ∆p which is not negligible

and should not be discarded as it guarantees the incompressibility condition. We

finally arrive at a Poisson equation for the velocity

∇2v⃗ = −Re∆p

ρ0U2
∇pr, (2.53)

which is known as Stokes flow.

On the other hand, we might be interested in a fluid with low viscosity. This case

is represented by a high Reynolds number. As before, the pressure term is kept

and the laplacian term in the velocity can be dropped to obtain

∂tv⃗ + (v⃗ · ∇)v⃗ = − ∆p

ρ0U2
∇pr. (2.54)

This is the Euler equation for fluid flow. Since viscosity is low, we observe that

the Euler equations describe a fluid without dissipation of energy.
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2.9 Darcy’s law

Darcy’s law relates fluid velocity with the pressure inside a porous medium. This

was originally a phenomenological law for groundwater, nevertheless it can be

derived from the NS equation. We outline a derivation for this law. It is assumed,

following [108], that the forces of the pore resistance, including the viscosity term,

can be represented with a resistive force of the form

R⃗ = − µ

C
v⃗. (2.55)

Therefore, the NS equation can be expressed as

ρ∂tv⃗ + ρ(v⃗ · ∇)v⃗ = − µ

C
v⃗ + ρg⃗ −∇p. (2.56)

Here the constant C is the pore conductance. Assuming a large viscosity, we can

use the same approximations that justified Stokes flow (eq. (2.53)), which in this

case lead us to Darcy’s law
µ

C
v⃗ = −∇p+ ρg⃗. (2.57)

2.10 Flow in a Hele-Shaw cell

Experimental investigations of two-dimensional flow are carried out using a Hele-

Shaw cell. This experimental set-up consists of two parallel flat plates separated

by a width d. This width is typically very small to allow to approximate the flow

as a two-dimensional fluid within the gap. This array is useful to study fluid flow

and instabilities analogous to flow in porous medium [109]. When viscosity is high

between the fluids and the plates, the flow in the transverse direction between

the plates is similar to Poiseuille flow [110]. Taking the average in the transverse

direction, the NS equation can be reduced to

v⃗ = − d2

12µ
(∇p− ρg⃗). (2.58)

Resulting in a governing equation for flow in a Hele-Shaw cell. The equation is

the same as Darcy’s law for porous media replacing the pore conductance with

C = d2/12. Other models of flow in a Hele-Shaw cell include the fluid viscosity

term
µ

C
v⃗ = −∇p+ ρg⃗ + µ∇2v⃗. (2.59)

This model is known as the Brinkmann correction [111].
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3 Heat transport

Fluid convection arises from density changes due to compositional or thermal

gradients. This temperature distribution will be determined by an advective heat

equation. In the context of chemical fronts, a reaction taking place at the front will

change the temperature depending on its enthalpy. We are interested in studying

the evolution of the temperature because convection will affect the shape and

speed of the chemical front. The density of the fluid will change due to the thermal

dilation or contraction. Density gradients can cause convection due to buoyancy

forces present in the fluid. The temperature evolution of the fluid depends on two

mechanisms, fluid advection and heat conduction through matter. The latter is

determined by Fourier’s law of conduction. It describes how heat flows from a high

temperature region to a lower temperature region. In this chapter, we develop

a heat equation based on this law. For an object at a different temperature

with respect to the medium, we will need to describe the heat flow across its

boundaries, leading to Newton’s cooling law. These equations combined will lead

to a diffusion equation for the temperature distribution within the fluid’s volume,

using appropriate boundary conditions.

3.1 Fourier’s Law

Objects at a temperature different from the room temperature will evolve to an

equilibrium state. Such equilibrium is attained when there is no thermal flux

between the object and the environment. Heat flows from higher to lower temper-

ature according to Fourier’s law

q⃗ = −k∇T. (3.1)

Where the heat flux q is the heat rate per unit area, and k is the thermal con-

ductivity. The property k is assumed to be constant, but it may depend on the

temperature gradient ∆T , and the type of material [112].

3.2 Newton’s cooling law

Newton’s cooling law describes an object in a heat bath of room temperature T∞

[113]. The heat bath has the property of keeping the room temperature constant.

It is considered as the temperature on a region far away from the object. As a

simplifying assumption, we consider that the temperature profile of the object is

uniform. Its temperature is described by a single value of T which may depend on

time. We also ignore the convective transfer of temperature with the surround-

ing medium. The change of the internal energy of an object can be calculated
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accounting for the heat flux through its surface. According to Fourier’s law we

have
d

dt
U =

∫
q⃗ · dA⃗ = −h̄A(T − T∞). (3.2)

Where h̄ is a transfer coefficient which depends on the specific characteristics of

the problem, such as geometry, materials and heat diffusion in the domain. The

object has surface area A. Assuming that the internal energy depends linearly on

the temperature, we arrive to Newton’s cooling law

ρcV
d

dt
T = −h̄A(T − T∞). (3.3)

With ρ the density of the object and V its volume. The relation between energy

and temperature is described by the specific heat capacity at constant volume c.

This equation can be solved by introducing a dimensionless variable θ such that

T = T∞(1 + θ). The resulting equation for θ is

d

dt
θ = − h̄A

ρcV
θ. (3.4)

For the time t = 0 we consider an initial known value θ0, and the differential

equation is solved in terms of the exponential function

θ = θ0 exp

(
− h̄A

ρcV
t

)
. (3.5)

The evolution for θ gives the following result for the temperature

T = T∞

(
1 + θ0 exp

(
− h̄A

ρcV
t

))
(3.6)

Therefore, the temperature decreases exponentially towards the room tempera-

ture.

3.3 Heat diffusion-advection in a fluid

We will now describe the evolution of temperature distribution within an object.

For this, we set up a volume element and the heat equation on this element. There

is heat transfer from this volume element to the outside according to Fourier’s law.

The heat transfer is measured in terms of the specific internal energy u which

measures the energy per unit mass. This internal energy can change only due

to changes in temperature du = cdT . This approach is valid for incompressible

fluids. The Fourier law for a volume element with surface S

d

dt
U =

d

dt

(∫
ρudV

)
= −

∫
(−k∇T ) · dA⃗ (3.7)

38



The time derivative is calculated with Reynold’s transport theorem (eq. (1.7)),

changing the surface integral into a volume integral with the help of Gauss’s

theorem. We obtain the following equation∫
(∂t(ρu) +∇ · (ρuv⃗)) dV =

∫
(∇ · (k∇T ))dV. (3.8)

Here v⃗ is the fluid velocity field, and k the conduction coefficient considered a

constant. We obtain a local equation which is valid for any volume element dV as

∂t(ρu) +∇ · (ρuv⃗) = k∇2T. (3.9)

Using mass conservation and relating the energy and temperature as du = cdT we

obtain

∂tT + v⃗ · ∇T =

(
k

ρc

)
∇2T. (3.10)

This is a diffusion-advection equation for the temperature in the fluid with thermal

diffusivity DT = k/ρc.
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4 Chemical reaction fronts

In this thesis, we study the evolution of chemical reaction fronts in fluids. We are

interested in the interaction between fluid flow and the propagation of reaction

fronts. Thus, we develop a theory that couples the reaction-diffusion mechanisms

with the dynamics of the heat and momentum transfer of the fluid. An early

reaction-diffusion mechanism, describing front propagation without advection, led

to the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation. In reaction-

diffusion equations, the concentration transport is described by Fick’s law, which

is analogous to Fourier’s law for temperature. Similarly, Fick’s law leads to a

diffusion equation for the concentration. Additionally, the concentration of the

substance may change due to chemical reactions. The reactive term is what al-

lows for the front dynamics observed in the FKPP equation and other models

that followed. In the FKPP model, the reaction term is a quadratic equation

joining two steady states. In other systems, such as the iodate-arsenous acid reac-

tion, the model requires a cubic reaction term. These types of reaction-diffusion

models require the solution of three-dimensional PDEs for the concentration. An

alternative model is to describe the front as an infinitesimally thin interface be-

tween reacted and unreacted fluids. This description requires the evolution of a

surface, instead of providing the chemical concentration everywhere in the fluid.

For example, fronts in the IAA reaction can be modeled with an eikonal relation

between the normal front velocity and its curvature. This model is independent

of the underlying chemical mechanisms. In other systems, differences in diffusiv-

ity between chemical species gives rise to instabilities in the shape and speed of

the front. Nevertheless, they can be modeled by the Kuramoto-Sivashinsky (KS)

equation, which is a nonlinear fourth order front evolution equation. This equa-

tion also appears in the propagation of flame fronts in combustion, allowing for

the description of front instabilities.

4.1 Chemical transport by diffusion

Diffusion helps us describe the transport of the concentration of molecules. A

high concentration of molecules in a small region of space is thermodynamically

unstable due to the high entropy of the distribution. This observation led Fick to

establish the law for the flux J⃗ of concentration c

J⃗ = −D∇c, (4.1)

whereD is a diffusivity constant which depends on the medium where the molecules

are free to travel [114]. This is the main process to consider when other external
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transport mechanisms are absent, such as advection or external forces like electric

fields. The law of mass conservation provides the second Fick’s law for the evolu-

tion of the concentration c. The change of number of molecules in a test volume

depends on the flux outside of this volume as

d

dt

∫
cdV = −

∫
J⃗ · dS⃗. (4.2)

This is equivalent to the mass conservation law in terms of number of molecules.

The surface integral of the flux changes to a volume integral with the use of Gauss’s

theorem, we have ∫
∂tcdV = −

∫
∇ · J⃗dV. (4.3)

Here we do not consider the possibility of advection. For an arbitrary volume

element, we get a local equation for the concentration

∂tc = ∇ · (D∇c), (4.4)

which corresponds to Fick’s second law, also known as the diffusion equation [115].

When the diffusivity is constant, we get the commonly used form of the equation

as

∂tc = D∇2c. (4.5)

This model can also be obtained by considering random walks of the molecules

[116]. This allows us to interpret the diffusion coefficient in terms of the micro-

scopic properties of molecular dynamics.

4.2 Quadratic FKPP front equation

Propagating fronts depend on diffusion and a specific reaction mechanism. One of

the earliest reactions considered was a model introduced by Fisher to analyze the

propagation of a gene in a population [117, 118]. This model involved a quadratic

reaction term. Kolmogorov, Petrovskii, and Piskunov studied a similar problem

[119]. In the study of chemical waves, we find a two variable quadratic model

describing front propagation in the Belousov-Zhabotinsky (BZ) reaction [30]. A

reaction-diffusion model for a chemical concentration c considers a function f(c)

that describes the reaction mechanism

∂tc = D∇2c+ f(c). (4.6)

As a first example, we consider the FKPP model that involves a quadratic reaction

term

∂tc = D∇2c+ c(1− c). (4.7)
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This equation is considered the first model that showed reaction diffusion fronts.

The reaction term is similar to the logistic map, which describes the evolution

of population subject to a limiting growth factor. Theoretical studies developed

analytical forms of solutions for this equation [120, 121]. While this equation arises

from population dynamics, R. Luther was the first to propose similar ideas for the

propagation of chemical waves [122].

4.3 Cubic autocatalytic reaction front

Another important reaction-diffusion model involves a cubic autocatalytic reaction

mechanism. This model explained the conditions for front propagation in the

iodate-arsenous acid (IAA) reaction [26]. The equation for a cubic autocatalytic

reaction front describing the evolution of the concentration field c in one dimension

is

∂tc = D∂2xc+ αc2(1− c). (4.8)

The exact distribution of concentration and speed of the front can be obtained by

solving the equation for c. We begin by using a reference frame moving with the

front. In this frame the concentration is a steady state described by

−v∂xc = D∂2xc+ αc2(1− c), (4.9)

where v is the front speed. We consider boundary conditions as c = 1 at x→ −∞
and c = 0 at∞. This corresponds to having fresh reactants (c = 0) far ahead of the

front, and products (c = 1) far behind. With these conditions, the concentration of

products moves towards the positive x axis as the reaction consumes the reactants.

We follow the solution as in [28]. Introducing a new variable G = dc/dx, eq. (4.9)

becomes

−vG = DGG′ + αc2(1− c). (4.10)

We substitute the function G using a power series in c of the form G =
∑
anc

n.

Because the equation includes terms of at most c3, the power series must terminate

at degree n = 2. This makes the factor GG′ a third degree polynomial, therefore

G has the form

G(c) = a0 + a1c+ a2c
2, (4.11)

which can be simplified by considering that the value of c does not change in

regions away from the front. This implies that the function G must be zero far

away from the front, thus

G = g(1− c)c, (4.12)
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with g an undetermined scalar. We introduce this form of G into the original

differential equation. Factoring out the (1− c)c terms, we get an equation for the

coefficients

0 = (Dg2 + vg) + c(α− 2Dg2). (4.13)

In this equation, the terms in parentheses must be zero. Since we assume that the

front moves in the positive x direction (v > 0), this results in a front speed

v =

√
αD

2
, (4.14)

with the function G being

G =

√
α

2D
(c− 1)c. (4.15)

Since G is the derivative of c, we obtain after doing the integration

c(x) =
1

1 + exp(
√

α
2D

(x− x0))
. (4.16)

This is the concentration profile in the moving reference frame. In two dimensions,

curved fronts will show dependence on y and z, which may be unstable states for

this system. In the presence of fluid flow, these fronts obey a reaction-diffusion-

advection equation that involves the local fluid velocity v⃗

∂tc+ v⃗ · ∇c = D∇2c+ αc2(1− c). (4.17)

The flat front solution corresponds to the one-dimensional solution discussed

above. In this thesis, we study the stability of these flat fronts interacting with

gravitationally driven fluid motion.

4.4 Fronts in the IAA reaction

The cubic autocatalytic reaction-diffusion equation describes the evolution of

fronts in the IAA reaction. The reaction describes the oxidation of arsenous acid

by iodate

IO3
− + 3H3AsO3 −−→ I− + 3H3AsO4. (4.18)

This form of the reaction takes place when the concentration of arsenous acid is

much higher than the concentration of iodate. The kinetics of this reaction follows

a combination of the kinetics of the Dushman and Roebuck reactions [26, 123].

The evolution of the normalized iodide (I– ) concentration c = [I−]/[IO3
−] in one

dimension is given by

∂tc = D∂2xc+ αc(c+ cs)(1− c). (4.19)
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A typical value of the constant cs is 0.0027, which is small and can be ignored [41].

The theoretical characterization of the fronts with and without cs are equivalent

when cs < 0.5 [124]. The experimental front speed for this reaction is about

23.6µm/s, in agreement with the theoretical value [26]. The presence of advection

changes the shape and speed of the front as observed in experiments [40].

4.5 Thin front approximation

Experiments and theory for fronts in the IAA reaction show that the region sepa-

rating reacted from unreacted substances is very thin. For flat fronts, this region

is quantified defining a mixing length as the distance between the positions where

c = 0.01 and c = 0.99 across the front [125]. Using the analytic solution for a

cubic front, the mixing length can be estimated to be about Lm = 13
√
D/α. The

value of α can be estimated from the experimental flat front speed. The diffusion

coefficient D corresponds to the molecular diffusivity of water. The width of the

region is approximately 0.06cm for the parameters of the IAA reaction [126]. If

this transverse length is smaller than the longitudinal wave of the front or other

dimensions in the experiment, we may consider the front as being infinitesimally

thin. This interface corresponds to a mathematical surface in three-dimensional

space. The problem of front propagation requires the solution of the chemical

concentration c all over the space. Using a thin front approximation, we focus

on a level set surface that describes the front. Fronts that are nearly flat can be

described by a height function H. If the front propagates along the z direction,

we can write the height function as z = H(x, y, t), describing the surface that

separates reacted from unreacted fluids. The evolution of the height has been

studied in the context of propagation of front instabilities [127]. A very useful

approximation for fronts in the IAA reaction and the BZ reaction is the eikonal

relation. This relation provides a normal front velocity as a function of the flat

front speed and its curvature [128, 129]. This approximation has been useful in

predicting convective instabilities due to a density discontinuity across the front

[126]. The results of the thin front approximation compare well to results obtained

using a reaction-diffusion equation for front propagation [130, 58, 131].

We show an outline of a derivation for the eikonal relation in the context of

reaction-diffusion fronts [132]. Consider the most general relation

∂tc = D∇2c+ f(c). (4.20)
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Figure 1: Coordinate system, with origin o, on a level set that represents the

convex chemical front propagating with normal speed vn.

For simplicity, we only consider propagation in a two dimensional domain. The

coordinate system with origin o is shown in fig. 1. The direction of x is normal to

the front and y is along a tangent. As a first approximation, the front is considered

to be nearly flat. The local evolution in the flat front approximation is

∂tc = D∂2xc+ f(c). (4.21)

We set a moving frame o′ moving with the flat front speed v0. Therefore, the

equation becomes

∂tc = v0∂x′c+D∂2x′c+ f(c). (4.22)

In this reference frame, the concentration does not change with time, then

−v0∂x′c = D∂2x′c+ f(c). (4.23)

The first correction to the flat front approximation follows from considering a

slight curvature to the front.

The front is approximated with a circle of radius R related to the local curvature

κ of the front. This is defined as the osculating circle and the radius is related

to the curvature as R = |κ|−1. In fig. 2, the coordinate system o′′ is set at the

center of the circle. Using polar coordinates centered in o′′ the evolution of the

concentration is given by

∂tc = D
(
∂2r c+ r−2∂2θc+ r−1∂rc

)
+ f(c). (4.24)

Around the original coordinate system o, centered at the level set, the equation

can be described with r = R. The equation is equivalent to

∂tc = D
(
∂2xc+ |κ|∂xc+ |κ|2∂2θc

)
+ f(c). (4.25)
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Figure 2: Coordinate system centered in the osculating circle for a convex front.

Assuming small curvatures, we can neglect terms of order |κ|2 and higher. This

leads to

∂tc = D
(
∂2xc+ |κ|∂xc

)
+ f(c). (4.26)

We can rewrite this equation as

∂tc−D|κ|∂xc = D∂2xc+ f(c), (4.27)

which shows that the curvature acts like an advective term. This front moves with

speed vn. In the reference frame moving with the slightly curved front, we have

−vn∂xc−D|κ|∂xc = D∂2xc+ f(c). (4.28)

The right hand side is related to the flat front speed from eq. (4.23). This results

in the eikonal relation for the normal velocity

vn = v0 −D|κ|. (4.29)

This equation has been derived for a convex front, we will assume the convention

followed by Edwards [126], where they assume that the center of curvature is in

the unreacted fluid. Therefore, since |κ| = −κ, the equation becomes

vn = v0 +Dκ. (4.30)

Here, v0 is the speed of the flat front, D corresponds to the diffusivity and κ is the

curvature. In this case, the curvature decreases the normal velocity of the front

because diffusion in the tangential direction tends to flatten the front.

The eikonal relation is used to construct an equation for the evolution of the height

function H = H(x, t) in the presence of fluid velocity v⃗. The normal front velocity

vn relative to the moving fluid is related to H as

vn = n̂ · ŷ∂tH − n̂ · v⃗. (4.31)
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Using the eikonal approximation (eq. (4.30)), we have

n̂ · ŷ∂tH = v0 +Dκ+ n̂ · v⃗. (4.32)

In two dimensions, we consider a normal vector to the height function H(x, t) as

n̂ =
ŷ − x̂∂xH√
1 + (∂xH)2

, (4.33)

and the local curvature can be calculated in terms of H as

κ =
∂2xH

(1 + (∂xH)2)3/2
. (4.34)

Then we arrive at the following evolution equation for the front height

∂tH = v0
(
1 + (∂xH)2

)1/2
+D

∂2xH

1 + (∂xH)2
+ vy − vx∂xH. (4.35)

We can further simplify this equation by considering that the front curves only

slightly, therefore ∂xH is small. In this approximation, we keep terms up to order

(∂xH)2 to obtain

∂tH = v0 +D∂2xH +
v0
2
(∂xH)2 + vy − vx∂xH. (4.36)

This evolution, without fluid flow, has the form of a deterministic Kardar-Parisi-

Zhang (KPZ) equation [133].

4.6 Thin front KS equation

In the previous description, it was assumed that the reaction can be represented by

a uniform diffusivity D, independent of the chemical species. However, reactions

may involve two or more chemical species with different diffusitivies. This may lead

to instabilities, such as the case of the Turing instability [8]. Different diffusivities

can also lead to front instabilities, such as the case of the IAA reaction inside gels

[61]. This system can be studied using reaction-diffusion equations, but it can

also be described with a thin front approximation. In this case, the front evolves

following the Kuramoto-Sivashinsky (KS) equation [63, 134, 110]. In terms of the

height function H, the KS equation in a moving fluid corresponds to

∂tH = v0 + V∂2xH −K∂4xH +
v0
2
(∂xH)2 + n̂ · v⃗ (4.37)

The value of V can be either positive or negative. Its value, as well as the value

of K, depends on the details of the reaction. The height function describes a flat

front solution of speed v0 and includes advection of the fluid with velocity v⃗. The
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sign of V determines the instability of the flat front solution in the absence of

convection. The diffusive term stabilizes the solutions when it is positive, as in

the case of the diffusion equation. However, when it is negative, the term acts as

a feedback term which makes places with high concentration to accumulate even

more concentration. In the KS equation, the negative diffusion is stabilized by the

fourth derivative term. The competition of these two mechanisms depends on the

wavelength of the perturbations, resulting in instabilities for large wavelengths.

The KS equation describes a stable flat fronts in confined domains. It can also

show steady patterns, oscillatory fronts, and spatiotemporal chaos [135].

4.7 Temperature distribution for a thin flat front

In the thin front approximation, the temperature distribution for a flat front mov-

ing with constant velocity can be obtained in analytic form. In this case, a one

dimensional equation describes the temperature of the medium as the concentra-

tion c varies

∂tT = DT∂
2
xT +Qf(c). (4.38)

This is described in terms of two constants, the thermal diffusivity DT = k/ρc̃

and Q = ∆U/ρc̃∆t. Where k is the conductivity, ρ the density, c̃ the specific

heat capacity, and ∆U/∆t is the heat rate given by the reaction. The thin front

approximation assumes that the reaction takes place exactly at the location of the

height function H(x, t). This is modeled using a delta function centered at the

front as the heat source

∂tT = D∂2xT +Qδ(x−H). (4.39)

We use a moving reference frame with speed equal to v0, the flat front speed. These

coordinates transform as x′ = x − v0t, with H = v0t. Accordingly, we transform

the differential equation (eq. (4.39)) and drop the primes for convenience

−v0∂xT = D∂2xT +Qδ(x). (4.40)

As the front travels, it heats the fluid behind it. Far behind the front the boundary

condition will consider no heat flow ∂xT = 0. On the other extreme of the domain,

we consider that the fresh unreacted fluid is at an ambient temperature T0. The

equation eq. (4.40) is equal to

−v0∂xT = D∂2xT, (4.41)

everywhere except at x = 0, due to the Dirac delta function. The delta function

introduces a discontinuity at x = 0. We obtain the discontinuity integrating
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eq. (4.39) from x = −ϵ to x = ϵ, with ϵ→ 0, leading to

−v[T ] = D[∂xT ] +Q. (4.42)

Here [f ] = (f+ − f−), with f+ and f− are the functions evaluated just above and

just below x = 0 respectively. The general solution of eq. (4.41) is

T (x) = A+B exp
(
− v

D
x
)
, (4.43)

with A and B arbitrary constants, which can be different in each part of the

domain. For x < 0 we require a bounded solution, therefore

T− = A. (4.44)

For x > 0, the ambient temperature condition gives the solution for T+ as

T+ = T0 +B exp
(
− v

D
x
)
. (4.45)

Since the temperature is continuous, we have [T ] = 0. Using the discontinuity of

the derivative from eq. (4.42), we have

[∂xT ] =
(
−B v

D
− 0

)
= −Q

D
. (4.46)

The full solution for T (x) is

T (x) =

T0 + Q
v

x < 0

T0 +
Q
v
exp

(
− v

D
x
)
. x ≥ 0

(4.47)

In this solution, we find that the temperature behind the front is higher by ∆T =

Q/v. This relation allows the identification of Q with the temperature.

4.8 Front propagation with heat loss

4.8.1 Equations of motion

We study the propagation of a chemical reaction front in a liquid confined in a two

dimensional rectangular domain resembling a narrow tube. This domain is placed

vertically, with the acceleration of gravity pointing in the negative y direction.

In this chapter, we will study both vertical and horizontal propagation. In the

former, the front propagates upwards against gravity and, in the latter, the front

propagates sideways along the length of the domain.

As the front propagates inside the fluid, the chemical concentration c(x, y, t) fol-

lows an advection-reaction-diffusion equation. In this chapter, we consider a cubic
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reaction term describing fronts in the IAA reaction [136, 137]. For the correspond-

ing equation

∂tc+ V⃗ · ∇c = D∇2c+ αc2(1− c), (4.48)

an initial concentration c = 0 becomes a normalized concentration c = 1 as the

front propagates [138]. The parameter D is the diffusion coefficient for the chem-

ical reactants, and α measures the chemical reaction rate. The advection term

couples the reactant concentration with the fluid velocity V⃗ . In the absence of

fluid flow, the equation has an analytical solution describing a flat front propagat-

ing with constant speed vf =
√
Dα/2 [136].

The fluid temperature T (x, y, t) changes across the front due to heat released by

the reaction. In our model, we consider a thermal advection-diffusion equation

with a heat source generated by the reaction. The corresponding equation is

∂tT + V⃗ · ∇T = DT∇2T +Qc2(1− c), (4.49)

where DT is the thermal diffusivity and Q measures the amount of heat released

by the reaction [136].

The fluid velocity V⃗ (x, y, t) evolves due to buoyancy forces caused by density

gradients. In the Boussinesq approximation, the density changes affect only the

large gravity term [139]. Consequently, the fluid velocity is determined by the

Navier-Stokes equation

∂tV⃗ + V⃗ · ∇V⃗ = ν∇2V⃗ − 1

ρ0
∇P − ρ

ρ0
gŷ, (4.50)

and the continuity equation for velocity

∇ · V⃗ = 0. (4.51)

Here ν is the kinematic viscosity and ρ0 is the density of the fluid at constant

ambient temperature T0. The density depends on the temperature as ρ = ρ0(1−
αT (T − T0)), where αT is the coefficient of thermal expansion. Introducing the

temperature dependence and the reduced pressure Pr = P + ρ0gy, we get the

equation

∂tV⃗ + V⃗ · ∇V⃗ = ν∇2V⃗ − 1

ρ0
∇Pr + αTg(T − T0)ŷ. (4.52)

We analyze the equations introducing dimensionless variables arising from the

chemical properties of the front. The unit of length corresponds to L =
√
D/α and

the unit of time is τ = 1/α. In these units, the dimensionless velocity is v⃗ = τ V⃗ /L.
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Therefore, the corresponding dimensionless advection-reaction-diffusion equation

becomes

∂tc+ v⃗ · ∇c = ∇2c+ c2(1− c). (4.53)

For the local fluid temperature, we introduce a dimensionless variable θ such that

T = T0 + ∆Tθ. The factor ∆T = Qτ corresponds to the temperature difference

between reacted and unreacted fluid for a flat convectionless front. With these

variables, the evolution for the dimensionless temperature θ becomes

∂tθ + v⃗ · ∇θ = Le∇2θ + c2(1− c). (4.54)

Where Le = DT/D is the Lewis number. The Navier-Stokes equation (4.52)

becomes

∂tv⃗ + v⃗ · ∇v⃗ = Sc(∇2v⃗ −∇P̃ +Raθŷ). (4.55)

Here Sc and Ra are two dimensionless numbers defined as the Schmidt number

Sc = ν/D and the Rayleigh number Ra = DαTg∆Tτ
2/νL. The dimensionless

reduced pressure P̃ is measured in units of νρ0/Lτ . We consider a system where

the Schmidt number is large [126], therefore equation (4.68) simplifies to the Stokes

equation

∇2v⃗ = ∇P̃ − Raθŷ. (4.56)

Because of the continuity equation (4.51), we can introduce a stream function ψ,

such that the components of the velocity correspond to vx = ∂yψ, and vy = −∂xψ.
Defining a vorticity function ω such that

∇2ψ = −ω, (4.57)

will allow us to eliminate the pressure by taking the curl of equation (4.56). This

leads to an equation for the vorticity involving the dimensionless temperature

∇2ω = −Ra∂xθ. (4.58)

The evolution of the system obeys equations (4.53), (4.54), (4.57) and (4.58) si-

multaneously. In this model, we set stress free boundary conditions for the fluid

velocity, this allows us to make the stream function and the vorticity equal to zero

at the boundaries.

The reaction front propagates along the length of a narrow rectangular domain.

The boundary conditions for the concentration correspond to reacted fluid c = 1

behind the front and fresh reactants c = 0 ahead of the front. For the long sides
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across the width of the domain, there is no concentration flow. Therefore, the

normal derivatives of the concentration are zero ∂nc = 0.

For the temperature, we consider a constant room temperature θ = 0 at the

domain side ahead of the front, and no heat flow ∂nθ = 0 on the side behind the

front. On the long sides confining the fluid layer, we allow for heat losses through

the walls, leading to conductive boundary condition for T

−k∂nT = h(T − T0), (4.59)

where the normal n direction points outside of the domain. This equation char-

acterizes transfer of heat using a conductivity k and a transfer coefficient h [140].

In dimensionless units, this boundary condition becomes

−∂nθ = Biθ. (4.60)

This equation introduces a dimensionless Biot number Bi = hL/k. The boundary

condition describes insulating walls when Bi = 0, with no heat flowing to the envi-

ronment. For large values of Bi, the high conductivity will fix the temperature at

the walls to the ambient temperature. In the case of insulating walls without con-

vection, the temperature changes across the front, depending only on the length

of the domain, without gradients in the transverse direction. In contrast, for con-

ducting walls, the temperature near the front will be higher halfway between the

walls. As the front propagates, the temperature far behind the front is constant,

having a higher temperature for insulating walls, while having a temperature equal

to the ambient temperature otherwise.

4.8.2 Numerical methods

We solve the governing equations using a finite difference approximation for the

spatial derivatives in a rectangular grid. To describe a front propagating in the

vertical direction, we use a rectangular domain with a narrow horizontal width.

Cartesian coordiantes are set with the x axis along the horizontal direction, and

the acceleration of gravity pointing in the negative y direction. We define the

axis as the line parallel to the length of the domain going through the center of

the rectangle. The relatively high value of the thermal diffusivity requires the use

of a large domain in the direction of propagation, therefore its length is set to

Lp = 1050. We vary the width on the transverse direction to study convection

for different dimensions of the domain. Vertical propagation corresponds to prop-

agation along the length of the domain in the y direction, while the x direction

becomes the transverse direction. For horizontal propagation, the rectangle is ro-

tated such that the x axis is now along its length. The domain is discretized with
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uniform grid size ∆x = ∆y = 0.35. The evolution is carried out using an Euler

algorithm with ∆t = 0.01. We use a five point discretization for the laplacian,

which is accurate to order ∆x2. The Euler algorithm is of order ∆t. To avoid

numerical instabilities from the advective terms, we implement an upwind scheme

of order ∆x. For the numerical instabilities arising from the diffusive term, we use

an alternate direction implicit (ADI) method for the evolution of the temperature

and the chemical concentration [90]. We tested the results for different values of

∆x and ∆t without much variation in the front velocities. A relaxation technique

provides solutions for the stream function and vorticity, eqs. (4.57) and (4.58)

respectively. For insulating walls, we use as the initial condition for the concen-

tration the analytic solution of eq. (4.53) for a flat front without convection [141],

while for the temperature we use an exponential decay function based on a thin

front approximation [126]. To allow the fronts to reach an asymptotic state, we

let them propagate for a small finite time and shift the front backwards, keeping

its average position away from the top and bottom boundaries. After shifting

the front, we fill the top of the domain with unreacted fluid at the ambient tem-

perature. In this manner, we avoid interactions between the front and the fixed

boundaries. For highly conductive walls, a zero temperature initial condition is set

because heat losses lead to a low temperature state. The stability of the flat front

is tested by adding random small perturbations to the variables near the front.

In this chapter, we fix the value of the Rayleigh number to Ra = 0.2, estimated

from constants in IAA experiments [126]. In all calculations, the corresponding

value of the Lewis number is set to Le = 72 [126]. As Biot numbers are varied

successively, the solutions previously obtained become the initial conditions for a

new Biot number.

4.9 Thin front with thermal and compositional gradients

4.9.1 Equations of motion

In this chapter, we consider a thin reaction front propagating in a two-dimensional

fluid. The spatial domain is described using Cartesian coordinates with the x

axis along the horizontal direction and the y axis pointing in the upward vertical

direction. A height function H = H(x, t) describes the position of the front at

time t, without fluid motion the normal front velocity Cn is a function of H and

its derivatives. When fluid motion is present, the normal fluid velocity adds to

Cn. Here, we study fronts described by the Kuramoto-Sivashinsky (KS) equation

in the presence of fluid flow

∂tH = C0 + V∂2xH −K∂4xH +
C0

2
(∂xH)2 + n̂ · V⃗ |y=H , (4.61)
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with the fluid velocity V⃗ evaluated at the front. Here n̂ corresponds to the unit

normal vector to the front and C0 is the convectionless flat front speed. In this

equation, the values of V and K depend on the specific characteristics of the

physical system. For fronts exhibiting diffusive instabilities, these parameters

involve reaction rates and different diffusion coefficients. [63] We focus our work

on instabilities that take place when the coefficient V is negative.

Density gradients near the propagating front can lead to convective fluid motion.

We describe the velocity field using the Navier-Stokes equation in the Boussinesq

approximation

∂tV⃗ + V⃗ · ∇V⃗ = ν∇2V⃗ − 1

ρ0
∇P − ρ

ρ0
gŷ, (4.62)

with mass conservation given by

∇ · V⃗ = 0. (4.63)

Where ν is the kinematic viscosity of the fluid and ρ is the density of the fluid.

In our system, we consider small density variations with respect to a reference

density ρ0. The density of the fluid is affected by the fluid temperature T (x, y, t)

and the composition of the reactants. In this chapter, we assume that the fluid

density depends linearly on the temperature through an expansion coefficient αT .

[126] The front separates reacted from unreacted fluids of different composition,

resulting in an additional density difference ∆ρ = αCρ0 across the front. The

equation for the density ρ becomes

ρ = ρ0(1− αT (T − T0) + αCΘ(y −H)). (4.64)

Here Θ(y) is the Heaviside unit step function, taking the value of 1 when y > 0

and 0 otherwise. [81] Inserting this expression for the density in Eq. 4.62 we

obtain

∂tV⃗ + V⃗ · ∇V⃗ = ν∇2V⃗ − 1

ρ0
∇Pr + αTg(T − T0)ŷ − αCgΘ(y −H)ŷ. (4.65)

In this equation, we introduced the reduced pressure Pr = P + ρ0gy. Since the

chemical reaction releases or absorbs heat at the front, the temperature obeys a

heat diffusion-advection equation with a source term proportional to a Dirac delta

function centered at the front y = H

∂tT + V⃗ · ∇T = DT∇2T +Qδ(y −H). (4.66)

Here DT corresponds to the thermal diffusivity and Q is proportional to the

amount of heat required for the temperature change ∆T behind a convectionless

front. The value of Q corresponds to C0∆T .
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We use dimensionless variables using a length scale L = DT/C0 and a time scale

τ = DT/C
2
0 . The temperature is measured using a dimensionless variable θ, such

that T = T0 +∆Tθ, where T0 is the ambient temperature. The equation for θ is

∂tθ + v⃗ · ∇θ = ∇2θ + δ(y − h). (4.67)

In this system of units, lowercase v⃗ = V⃗ τ/L and h = H/L are the velocity and

height function respectively. The evolution equation for the velocity in dimension-

less variables becomes

∂tv⃗ + v⃗ · ∇v⃗ = P∇2v⃗ −∇P̃r + PRT θŷ − PRCΘ(y − h)ŷ. (4.68)

Here we have introduced three dimensionless numbers: a Prandtl number P =

ν/DT , compositional Rayleigh numberRC = αCgD
2
T/C

3
0ν, and a thermal Rayleigh

number RT = αTg∆TD
2
T/C

3
0ν. The reduced pressure P̃r is measured in units of

ρ0C
3
0/DT . Since the velocity field is divergenceless, we introduce a stream function

ψ which relates to the velocity in terms of vx = ∂yψ and vy = −∂xψ. We also

define the vorticity ω as

∇2ψ = −ω. (4.69)

Taking the curl of Eq. 4.68, we can eliminate the reduced pressure leading to

∂tω = −∂yψ∂xω + ∂xψ∂yω + P
(
∇2ω +RT∂xθ +RC∂xhδ(y − h)

)
. (4.70)

The front evolution in dimensionless form is

∂th = 1 +
V
DT

∂2xh− K
DTL2

∂4xh+
1

2
(∂xh)

2 + n̂ · v⃗. (4.71)

The parameter V for diffusive instabilities is a negative linear combination of differ-

ent diffusion coefficients, therefore we define a positive Lewis number L = DT/|V|.
We choose K to investigate the case of the KS equation where the coefficient of

the second and fourth spatial derivatives are equal. The resulting front equation

for this system is

∂th = 1− 1

L∂
2
xh− 1

L∂
4
xh+

1

2
(∂xh)

2 + n̂ · v⃗. (4.72)

We choose the Prandtl and the Lewis number from values used for the iodate-

arsenous acid reaction. [142] We will study the stability and the evolution of

the system in terms of different Rayleigh numbers, while keeping the fixed values

P = 6.34 and L = 72.5.
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4.9.2 Linear stability analysis

The equations of motion allow a flat front solution unbounded in the horizontal x

direction. This convectionless front propagates upwards in the vertical y direction

with a constant speed equal to one. In this section, we use a superindex 0 to

designate a zeroth order solution for the unperturbed front

h(0) = t. (4.73)

The associated velocity field is equal to v⃗(0) = 0, while the temperature corresponds

to

θ(0) =

1 if y < 0,

exp(−y) if y ≥ 0.
(4.74)

We will determine the stability of this solution by analyzing the evolution of small

perturbations. We set a reference frame co-moving with the flat front defined

by y′ = y − t and then drop the prime. Introducing small perturbations to all

variables and neglecting terms of order two or higher, we arrive at a set of linear

equations for the perturbed variables

∂th
(1) = − 1

L∂
2
xh

(1) − 1

L∂
4
xh

(1) + v(1)y |y=0, (4.75a)

∂tθ
(1) + v⃗ (1) · ∇θ(0) − ∂yθ

(1) = ∇2θ(1) − h(1)δ′(y), (4.75b)

∂tω
(1) − ∂yω

(1) = P∇2ω(1) + PRT∂xθ
(1) + PRC∂xh

(1)δ(y), (4.75c)

∇2ψ(1) = −ω(1). (4.75d)

Here the superindex (1) represents the first order perturbation to the correspond-

ing variable. We combine equations 4.75c and 4.75d into a single equation for the

y component of the velocity w ≡ vy = −∂xψ. This results in

∂t∇2w(1) − ∂y∇2w(1) = P∇2∇2w(1) + PRT∂
2
xθ

(1) + PRC∂
2
xh

(1)δ(y). (4.76)

The linearized system of equations admits plane wave solutions of the form exp(iqx+

σt), defining a wavenumber q and a growth rate σ. The perturbations are written

as

h(1) = h̃ exp(iqx+ σt), (4.77a)

θ(1) = θ̃(y) exp(iqx+ σt), (4.77b)

w(1) = w̃(y) exp(iqx+ σt). (4.77c)

Substituting these perturbations in Eqs. 4.75a, 4.75b and 4.76. we obtain a set of

equations for the variables h̃, θ̃ and w̃. Dropping the y from the derivative ∂y = ∂,

we obtain

(∂2 − q2)(P∂2 + ∂ − Pq2 − σ)w̃ − q2PRT θ̃ − q2PRC h̃δ(y) = 0, (4.78a)
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(∂2 − ∂ − q2 − σ)θ̃ − w̃∂θ(0) − h̃δ′(y) = 0, (4.78b)

w̃(0) =

(
σ − q2

L +
q4

L

)
h̃. (4.78c)

Integrating the equations just above and just below the front, we replace the delta

functions with a set of jump conditions for the corresponding variables. Therefore,

the equations become

(∂2 − q2)(P∂2 + ∂ − Pq2 − σ)w̃ − q2PRT θ̃ = 0, (4.79a)

(∂2 − ∂ − q2 − σ)θ̃ − w̃∂θ(0) = 0, (4.79b)

w̃(0) =

(
σ − q2

L +
q4

L

)
h̃, (4.79c)

with jump conditions

[w̃] = 0, (4.80a)

[∂w̃] = 0, (4.80b)

[∂2w̃] = 0, (4.80c)

[∂3w̃] = q2RC h̃, (4.80d)

[θ̃] = h̃, (4.80e)

[∂θ̃] = −h̃. (4.80f)

The jumps at y = 0 for an arbitrary function f are represented as

[f ] = lim
ϵ→0+

f(ϵ)− lim
ϵ→0−

f(ϵ). (4.81)

We eliminate θ̃ by combining equations 4.79a and 4.79b to obtain an equation

only for the velocity w̃

(∂2 + ∂ − q2 − σ)(∂2 − q2)(P∂2 + ∂ − Pq2 − σ)w̃ − q2PRT∂θ
(0)w̃ = 0, (4.82)

and the jump conditions for the temperature (Eqs. 4.80e and 4.80f) are replaced

as conditions for the derivatives of w̃. These are

[∂4w̃] =

(
RT − RC

P

)
q2, (4.83a)

[∂5w̃] =

(
1

P2
+
σ

P + 2q2
)
q2RC −

(
1

P + 1

)
q2RT . (4.83b)

Requiring a non-trivial solution for the equations, we arrive to a dispersion relation

between a wavenumber q and growth rate σ. For y < 0, θ(0) is constant, therefore
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the solution for w̃ consists of a linear combination of exponential functions. Since

the solution must remain finite in this region, we obtain

w̃ = A exp(k4y) +B exp(k5y) + C exp(k6y), (4.84)

where

k4 = q, (4.85a)

k5 = −1

2
+

(
1

4
+ q2 + σ

)1/2

, (4.85b)

k6 = − 1

2P +

(
1

4P + q2 +
σ

P

)1/2

. (4.85c)

For the region y > 0, the temperature θ(0) decreases exponentially in the vertical

direction. We proceed to construct a power series of exponential functions as

described in [142], therefore w̃ is written as

w̃ =
3∑

i=1

∞∑
m=0

Dm(ki) exp((ki −m)z). (4.86)

The series uses exponential terms with coefficients k1 = −q, k2 = −1 − k5 and

k3 = −1/P − k6. The coefficients Dm(ki) are obtained from a recursion relation

Dm(ki) =
−q2PDm−1(ki)

((m+ ki)2 − q2)F (P ,m, k)F (1,m, k) . (4.87)

Where the F is shorthand for

F (P ,m, k) = (P(m+ ki)
2 − (m+ ki)− Pq2 − σ). (4.88)

These solutions are valid as long as k1,k2, and k3 are distinct and do not differ by

an integer. Any solution with these properties will be excluded from the results.

The velocity w̃ and its derivatives must satisfy the jump conditions at y = 0, given

by Eqs. 4.80 and 4.83. Using the expressions of w̃ from Eq. 4.84 and 4.86, we

find a linear system of equations for the coefficients A, B, C, H̃, D0(k1), D0(k2),

and D0(k3). These equations take the form LU = 0 with

L =



a0 b0 c0 0 0 0 L1,7

−a0 −b0 −c0 1 1 1 0

−a1 −b1 −c1 k4 k5 k6 0

−a2 −b2 −c2 k24 k25 k26 0

−a3 −b3 −c3 k34 k35 k36 L5,7

−a4 −b4 −c4 k44 k45 k46 L6,7

−a5 −b5 −c5 k54 k55 k56 L7,7


, (4.89)
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and

U =



D0(k1)

D0(k2)

D0(k3)

A

B

C

H̃


. (4.90)

The matrix requires evaluating the series

an =
∞∑

m=0

(−1)n(k1 +m)nDn(k1), (4.91a)

bn =
∞∑

m=0

(−1)n(k2 +m)nDn(k2), (4.91b)

cn =
∞∑

m=0

(−1)n(k3 +m)nDn(k3), (4.91c)

and the remaining terms in the last column of the matrix L correspond to

L1,7 = −
(
σ − 1

L
(
q2 − q4

))
, (4.92a)

L5,7 = RCq
2, (4.92b)

L6,7 =

(
RT − RC

P

)
q2, (4.92c)

L7,7 =

(
1

P2
+
σ

P + 2q2
)
q2RC −

(
1

P + 1

)
q2RT . (4.92d)

The determinant of L should vanish to allow a nontrivial solution to the linear set

of equations. This condition leads to a dispersion relation between the wavenumber

q and the growth rate σ, which can be a complex number. The dispersion relation

determines the stability of the front, if the real part of σ is positive for certain

Rayleigh numbers, the front is unstable. We explore the dispersion relation for

different values of the Rayleigh numbers, calculating the determinant numerically

using routines from LAPACK [143].

4.9.3 Weakly nonlinear regime

We study the nonlinear front propagation in a narrow rectangular domain resem-

bling a two-dimensional tube. It is helpful to define a moving coordinate system

y′ = y − h̄(t), where h̄(t) is the spatial front average. The mean front velocity
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is vh = dh̄/dt, while the front height corresponds to h′ = h − h̄. We focus on

the propagation of the front near the onset of convection, therefore we expand

the corresponding equations to include only terms up to order o(h′2). The weakly

nonlinear equations correspond to

∂th = 1− vh −
1

L∂
2
xh− 1

L∂
4
xh+

1

2
(∂xh)

2 − ∂xψ|y=0 − ∂xh∂yψ|y=0, (4.93a)

∂tθ = ∇2θ − ∂yψ∂xθ + ∂xψ∂yθ + vh∂yθ + δ(y)− δ′(y)h+
1

2
δ′′(y)h2, (4.93b)

∂tω = P∇2ω − ∂yψ∂xω + ∂xψ∂yω + vh∂yω + PRT∂xθ + PRC∂xh (δ(y)− hδ′(y)) ,

(4.93c)

where we dropped the primes. The stream function ψ follows from the vorticity

(Eq. 4.69). The vertical walls are insulating boundaries with no chemical flow.

We consider stress-free boundaries for the fluid velocity, this allows to compare

the transition to convection from the previous linear stability analysis. These

boundaries allow the use of Fourier series to expand the corresponding variables

h =
∞∑
n=1

hn(t) cos(nqx), (4.94a)

θ =
∞∑
n=1

θn(y, t) cos(nqx), (4.94b)

ψ =
∞∑
n=1

ψn(y, t) sin(nqx), (4.94c)

ω =
∞∑
n=1

ωn(y, t) sin(nqx). (4.94d)

These series are introduced into the system and projected into the corresponding

basis functions. This procedure leads to a system of equations for the Fourier

coefficient that depend on y. We use a finite difference method on a uniform grid

to evaluate the spatial derivatives, as well as the expressions for the delta function

and its derivatives. [84] The evolution of the coefficients is evaluated using implicit

and explicit forms of the Euler method. [90]
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5 Exothermic reaction fronts in liquids confined

between conductive walls

Exothermic autocatalytic reaction fronts propagating between two conductive

walls shows an increase of speed and change in shape due to buoyancy driven con-

vection. We modeled the system using reaction-diffusion-advection equations for

chemical concentration and temperature. In these equations, a cubic autocatalytic

exothermic reaction leads to a propagating front. The fluid flow is determined by

the Stokes equation allowing for density changes due to thermal expansion. The

front propagates in a liquid confined in a narrow rectangular domain resembling

a two dimensional tube. Fluid motion enhances the front speed and modifies its

curvature. In vertical domains, a transition to a nonaxisymmetric front takes place

as the width increases. Heat conductivity across the walls delays the transition

to larger critical widths. We find regions of bistability between nonaxisymmet-

ric fronts and lower speed fronts at different values of conductivity. Heat losses

diminish convection in horizontal tubes, resulting in a decrease of front speed.

Chemical reaction fronts propagate in liquids generate density gradients across

the front. These gradients arise due to changes in temperature and chemical

composition that may lead to convection. Several experiments have established the

presence of fluid convection near reaction fronts. Heat release in polymerization

fronts leads to density gradients that generate buoyancy driven convection [144,

15]. In the IAA reaction, the propagating front is a thin interface that separates

reacted from unreacted fluid. Experiments in thin vertical cylinders show that

this interface can have a symmetric or nonaxisymmetric shape with respect to the

longitudinal axis of the cylinder [60]. In the case of the symmetric shape, the

highest position of the interface (its maximum height), lies on the longitudinal

axis. Whereas in the non-axisymmetric shape, the maximum height is near the

wall. These experiments show a transition between these two types of fronts as

the diameter of the tube increases. These results can be accounted for in the

limit of infinite thermal diffusivity, where the unreacted fluid is set at the higher

temperature of the reacted fluid [126, 145]. The effects of heat release in the IAA

reaction led to the formation of three dimensional structures traveling in horizontal

channels [146]. Experiments for the chlorite-tetrathionate (CT) reaction in Hele-

Shaw cells observed fingering due to thermal and multicomponent convection [147,

148]. Three dimensional structures propagating in the CT reaction developed their

shape due to thermal and compositional convection [46].
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Theoretical work analyzed the effect of combined heat and compositional changes.

A linear stability analysis of flat fronts propagating vertically showed thermal and

compositional driven convection with unexpected configurations of density gradi-

ents [49, 141]. In horizontal layers, exothermic fronts can exhibit oscillations due

to convection [136]. Theories on thin reaction fronts with heat release showed

instabilities leading to an increase in front speed [149]. Muhkerjee and Paul ex-

plored autocatalytic front propagation with compositional and thermal gradients

traveling in steady and chaotic flows [150, 151].

Heat losses play an important role in the propagation of exothermic reaction fronts

in liquids. Experiments by Martin et al. measuring the temperature profile of

reaction fronts in the CT reaction showed good agreement with a model that in-

cluded heat losses [48]. Studies of polymerization fronts including convective heat

losses showed an extended range of more complex instabilities for front propaga-

tion [152]. Theoretical studies in Hele-Shaw cells used Darcy’s law hydrodynamics

and Newton’s cooling law to account for heat losses. In these theories, a linear

stability analysis showed that heat losses modify the stability of a system with

perfectly insulating walls depending on the density gradients and the direction of

front propagation [153]. In the nonlinear regime, heat losses led to tip splitting for

fingering in reaction fronts [154, 155]. Further experimental and theoretical work

in the IAA reaction analyzed the velocity field during tip splitting [156]. These

studies showed new instabilities and complex behaviors generated by heat loss.

In this chapter, we consider an exothermic autocatalytic reaction front propagat-

ing in a fluid confined between conductive walls. In our case, heat flows through

the boundaries, leading to a temperature gradient between the walls. The hydro-

dynamics is modeled using the Stokes equations in a two dimensional domain that

resembles a long tube. In vertical tubes, convection always take place due to a

horizontal density gradient induced by heat losses. We will show that a state of

low convective flow will lose stability to a nonaxisymmetric state as the distance

between the walls increases. Fronts propagating in horizontal layers will change

their speed and shape due to convection.

5.1 Results

5.1.1 Vertical propagation

A convectionless flat front progataing between insulating walls (with Biot number

Bi = 0) can become unstable due to density gradients across the front. This
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buoyancy driven convection appears when the width is increased beyond a critical

value. Beyond this threshold, convection sets in, leading to an asymptotic state,

consisting of a nonaxisymmetric curved front of constant shape, traveling with a

constant speed higher than the speed of the flat front (Fig. 3). In the asymptotic

state, since the front propagates with constant speed along the y direction, we

can obtain this speed calculating vf = −∂tc/∂yc near c = 0.5. The front is not

symmetric with respect to a vertical line through the middle of the domain width,

defined here as the axis. The convective fluid flow consists of two counter rotating

rolls one above the other, with the reaction front inserted between the two rolls,

as shown in Fig. 4.
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Figure 3: Front speed as a function of width for vertical propagation, using wallls

of different conductivities (different Bi values).
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Figure 4: Concentration (a), temperature (b) and velocity fields (c) for width of

Lx = 49. The boundary condition corresponds to insulating walls (Bi=0).

For non-zero Biot numbers, there is always a horizontal thermal gradient due to

heat flow across the confining walls. This leads to a horizontal density gradient,

resulting in convection, inhibiting the formation of a flat front. For small Biot

numbers and very narrow widths, convection will be very small due to fluid vis-

cosity, thus its shape is nearly flat. In this case, the speed of the front is very close

to the speed of the flat front, as shown in Fig. 3. Increasing the width will also

result in a transition to nonaxisymmetric convection, however this takes place at

higher width values. In the case of insulating walls the transition takes place at

around Lx = 38, while for Bi = 0.0015 it is close to Lx = 42, indicating that a

small Biot number will have a high impact in this critical value. The speed of the

nonaxisymmetric fronts increase rapidly as a function of width. For larger widths,

the front becomes very elongated, requiring the use of a much larger computational

domain, therefore we study fronts for widths up to Lx = 49. Using these widths,

we found no transitions to nonaxisymmetric fronts for Biot numbers larger than

Bi = 0.012. Before the transition, the speed of the front is close to the flat front

speed, increasing as the Biot number is increased. This increment is significant

for Bi = 1.0, with the speed also increasing as a function of width, as seen in Fig.

3. The speed of the fronts does not change significantly for Biot numbers larger

than one. In this cases, the wall temperature becomes very close to the ambient

temperature. The region where the deformation of the front is more pronounced

and the flow more intense can be described with the mixing length [157, 158].

In Fig. 5 we show the mixing length as a function of domain width for different

Biot numbers. We notice large increase of mixing length in the case of insulating
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walls. The increase is smaller for large Biot numbers, which shows less intense

convective flow. The values of the mixing length range from about 13 for the

convectionless flat front to about 90 for the nonaxisymmetric front. These values

are small compared to the length of the computational domain (Ly = 1050). The

behavior of mixing length as a function of width is similar to the description of

the front velocity with respect to the width as shown in Fig. 3.
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Figure 5: Mixing length as a function of width for vertical propagation, using

wallls of different conductivities (different Bi values).

The speed and shape of the fronts for a fixed width depends on the Biot number.

In fig. 6, we display the speed of the front as a function of Biot number for a

fixed width of Lx = 40.6. This figure shows an initial nonaxisymmetric front for

insulating walls (Bi = 0) displaying a decrease of speed as the Biot number in-

creases. This behavior continues until it reaches a value where the front curvature

becomes small, with a maximum height near the axis, and a speed close to the flat

front speed. Increasing the Biot number further increases the speed of the front,

without changing the characteristics of the shape. Fixing the length to Lx = 43.4,

also results in an initial nonaxisymmetric front for insulating walls which reduces

its speed as the Biot number increases as shown in Fig. 7. The front changes

speed abruptly at Bi = 0.0022, where it becomes a low curvature front. Further

increases in Biot number increases the speed only slightly. The abrupt change

corresponds to a region of bistability between the two types of fronts. Starting

above the transition, and then reducing the Biot number leads to a stable front

of low curvature, with a lower speed. This takes place until Bi = 0.0019, where

there is a transition to the nonaxisymmetric front. The same behavior is observed
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Figure 6: Front speed in vertical propagation for varying Bi numbers and fixed

width Lx=40.6.

at Lx = 49, showing a region of bistability between the two types of fronts (Fig.

8). However, in this case the region of bistability is wider, taking place at higher

Biot numbers.

We display the different front shapes in the bistable region together with their as-

sociated fluid velocities in Figs. 9 and 10. Both types of front appear for the same

width and Biot number but using different initial conditions. The nonaxisymmet-

ric front in Fig. 9 resembles the front for insulating walls of Fig. 10. In both cases,

the fronts have a maximum height on one side of the domain and a minimum on

the opposite side. However, the distance between the maximum and minimum

heights is smaller for the front with non-zero Biot number due to heat losses. In

both cases, the fluid velocity field consists of two counter rotating rolls supporting

a similar nonaxisymmetric shape. For insulating walls, the temperature far be-

hind the front takes a constant value higher than the ambient temperature. While

for conductive walls, the temperature behind the front eventually decays to the

ambient temperature. The overall maximum local temperature within the domain

is higher for insulating walls T = 1.018, compared to T = 0.310 for conductive

walls. We also notice a hotspot on the lower side of the front with insulating walls

(Fig. 4), but for a finite Biot number the hotspot appears near the middle of the

domain, away from the wall. We display in Fig. 10 the other stable front for the

same parameters in the bistable region. In this case, the front is higher near the

domain axis, having a local minimum on each wall. The distance between these

maximum and minimum heights is small compared to the nonaxisymmetric case.
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Figure 7: Front speed in vertical propagation for varying Bi numbers and fixed

width Lx=43.4. Vertical lines describe the region of bistability

The fluid velocity field near the front consists of counter rotating rolls one next to

the other. The fluid rises along the axis and falls on the sides, shaping the front.

Below the front, we notice smaller convective rolls underneath the rolls previously

discussed. As in the previous case, the temperature far behind the front becomes

the ambient temperature due to heat losses. The maximum temperature in the

domain takes place near the middle (T = 0.238), which is lower than the one

obtained for the nonaxisymmetric front.
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Figure 9: Concentration (a), temperature (b) and velocity fields (c) for width of

Lx = 49. The boundary condition includes heat loss (Bi=0.01). These parameters

allow bistability.
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Figure 10: Concentration (a), temperature (b) and velocity fields (c) for width of

Lx = 49. The boundary condition includes heat loss (Bi=0.01). These parameters

allow bistability.
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5.1.2 Horizontal propagation

As the front propagates horizontally, convection will always be present enhancing

the speed of the front. In very narrow tubes, this effect is negligible because

the fluid viscosity sets a weak convective flow. When the width Ly increases,

convection becomes significant, increasing the speed of the front as shown in fig.

11. The speed increases faster for insulating walls (Bi = 0). For conductive
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Figure 11: Front speed as a function of width for horizontal propagation using

walls of different conductivities (different Bi values).

walls having non-zero Biot numbers, the increase of speed is slower for larger Biot

numbers. For Bi = 1, the temperature of the walls are nearly at the ambient

temperature as shown in Fig. 12. Therefore this result is similar to setting the

boundaries at the ambient temperature. The temperature far behind the front

corresponds to the ambient temperature, due to heat losses through the walls.

The temperature is higher close to the axis of the domain, with a local maximum

of T = 0.078. This value is smaller than ∆T = 1, the change in temperature

across a convectionless fronts. The front has a leading edge at the top boundary,

placing reacted fluid above unreacted fluid. The velocity field consists of two

counter rotating rolls travelling with the front (fig. 12). Although the jump in

temperature is small, the convective flow is strong enough to support a significant

curvature.
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Figure 12: Concentration (a), temperature (b) and velocity fields (c) for width of

Ly=40. The boundary condition includes heat loss (Bi=0.01). These parameters

allow bistability.

5.2 Summary and discussion

In this chapter, we analyzed transitions between convective fronts propagating

in narrow two-dimensional rectangular domains, accounting for heat losses. We

considered convection arising from temperature gradients due to exothermic chem-

ical reaction fronts. In the case of a vertical domain with insulating walls, a flat

front can propagate without convection, however this is not possible for conductive

walls. Heat losses imply that the fluid near the axis is at a higher temperature than

near the walls. This provides a horizontal density gradient, which always leads to

convection. If the width is small, the front is slightly curved, and its speed is close

to the flat front speed. For a vertical rectangular domain with insulating walls,

increasing the width beyond a critical value results in a transition to convection.

For widths above the transition, the front acquires a nonaxisymmetric shape due

to convection. The transition to this state is modified due to heat losses, with the

critical width changing significantly even for small Biot numbers. We found no

transition considering Biot numbers larger than Bi = 1 for widths below Lx = 48.

For conductive walls, the fluid temperature far behind the front becomes the am-

bient temperature as heat dissipates through the walls. We observe regions of

bistability between nonaxisymmetric fronts and low curvature fronts for vertical

propagation. This bistability appears only for large enough widths, over a range

of Biot numbers.
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For horizontal propagation, we find that the speed of the front will always increase

as we increase the width. However, the increase of speed as a function of width

is smaller for large Biot numbers. In these cases, fluid velocities will be smaller

due to heat losses, resulting in lower temperatures driving convection. The fronts

always have a nonaxisymmetric shape, with a leading edge on the top boundary.

Our calculations showed the importance of conductive boundaries in analyzing

experiments for exothermic reaction fronts. Particularly because the inner region

of the domain is warmer than the walls, setting a density gradient between the

walls. The transition between states can be explored in experiments using narrow

tubes using materials of different conductive properties. Future work can include

a detailed comparison between theory and experiment, which requires new calcu-

lations to account for three dimensional effects.
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6 Front instabilities in the presence of convec-

tion due to thermal and compositional gradi-

ents

Reaction fronts separate fluids of different densities due to thermal and composi-

tional gradients that may lead to convection. The stability of convectionless flat

fronts propagating in the vertical direction depends not only on the fluid proper-

ties, but also in the dynamics of a front evolution equation. In this chapter, we

analyze fronts described by the Kuramoto-Sivashinsky (KS) equation coupled to

hydrodynamics. Without density gradients, the KS equation has a flat front so-

lution that is unstable to perturbations of long wavelengths. Buoyancy enhances

this instability if a fluid of lower density is underneath a denser fluid. In the

reverse situation, with the denser fluid underneath, the front can be stabilized

with the appropriate thermal and compositional gradients. However, in this situ-

ation, a different instability develops for large enough thermal gradients. We also

solve numerically the nonlinear KS equation coupled to the Navier-Stokes equa-

tions to analyze the front propagation in two-dimensional rectangular domains.

As convection takes place, the reaction front curves, increasing its velocity.

Propagating reaction fronts in fluids separate reacted from unreacted substances.

The fronts can be considered as thin interfaces subject to a particular front evolu-

tion equation. We study the effects of convection on front instabilities described

by the Kuramoto-Sivashinsky (KS) equation. Across a front, density gradients de-

velop due to changes in temperature and chemical composition. These gradients

may lead to convective fluid motion, which modifies the front shape and speed.

Without fluid flow, the flat front solutions described by the KS equation are un-

stable, but in fluids they can be stabilized with a fluid of lower density above the

front. However, even in this case, instabilities can appear if the thermal density

gradient is strong enough. We also solve numerically the nonlinear equations to

determine the changes in front shape and speed.

Reaction fronts propagating in liquids generate density gradients leading to convec-

tion. Several experiments in capillary tubes and Hele-Shaw cells have determined

the influence of fluid flow in the shape and speed of the fronts. [60, 159, 160] The

density gradients arise from the different chemical compositions between reacted

and unreacted fluids, or from temperature changes across the front. In narrow

tubes, convective fronts of constant shape travel with a speed faster than flat

fronts without convection. [60] Experiments for horizontally travelling fronts in
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the CT reaction confined in Hele-Shaw cells reveal spatiotemporal dynamics due

to thermal and compositional effects on density gradients. [161] Experiments and

theory in a three-dimensional medium revealed the influence of thermal effects on

convective front propagation. [46]

Theoretical work using thin front approximations and reaction-diffusion-advection

equations accounted for the front instabilities and increase of speed in the IAA

reaction. [126, 59, 162, 163] These studies approximated the heat effects using

the limit of infinite thermal diffusivity. Further theoretical studies for reaction-

diffusion-advection fronts involving heat resulted in novel types of hydrodynamic

instabilities. [164] Heat loss explained finger splitting in exothermic reaction-

diffusion-advection fronts inside Hele-Shaw cells. [165] Front propagation in hori-

zontal layers depends on whether convection is driven by compositional or thermal

gradients. [150] Diffusive instabilities in reaction fronts are inhibited in a liquid

if the less dense fluid is above the front. [166] Instabilities in thin reaction fronts

without convection can lead to steady shapes, oscillatory instabilities, and chaos

due to compositional gradients across the front. [67, 167, 168]

In this chapter, we consider reaction fronts described by the Kuramoto-Sivashinsky

(KS) equation inside a fluid. In the absence of convection, the KS equation allows

for a flat front solution that is unstable for perturbations of large wavelength. This

equation can be applied to several physical systems such as combustion flames [12],

chemical waves [169], or reaction-diffusion-advection fronts with diffusive instabil-

ities. [63, 170] Recent applications of the KS equation involving hydrodynamics

include falling film flows [171], Rayleigh-Bénard instabilities in the Earth’s upper

mantle [172], and a network analysis for the Rayleigh-Taylor instability. [173]

Fronts propagating in liquids can lead to density gradients caused by thermal

or chemical composition, resulting in convection. As these fronts propagate in

liquids, they can lead to density gradients caused by thermal or chemical compo-

sition, resulting in convection. The instability of flat fronts in the KS equation

is enhanced by buoyant compositional density gradients, as the front separates

fluids of different density. In addition, curved fronts and extended structures can

be stabilized with decreasing density in the upward vertical direction. [67] For

Navier—Stokes hydrodynamics, oscillatory transitions to convection can appear

due to a change in composition across the front. [168] Here we will explore the

influence of thermal and compositional driven convection on fronts described by

the KS equation. Our results will show that if the lighter fluid is underneath a

heavier fluid, the front will always be unstable. However, in the opposite case, an

instability can also appear driven by thermal effects. This work also includes the
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nonlinear propagation for fronts near the onset of the instabilities inside narrow

rectangular domains.

6.1 Results

6.1.1 Linear stability analysis

The growth rate σ determines the stability of a perturbation with a fixed wavenum-

ber q. If the real part of σ is positive, the amplitude of the perturbation will grow,

otherwise it will decay. We obtain a dispersion relation σ vs q requiring that the

determinant of the matrix L vanishes (Eq. 4.89). This condition leads to several

solutions for σ, some of them may even be complex. Therefore, the front stability

is determined by the largest real part of the growth rate

The KS equation without advection exhibits instabilities for wavenumbers q < 1 as

shown in Fig. 13. The presence of density driven flow will alter the corresponding

dispersion relation. We show two cases, one with convection driven only by thermal

expansion, and the other only by a compositional density gradient. In both cases

we use small positive Rayleigh numbers indicating a lower density fluid below

a higher density fluid. In the case of compositional density gradient, the range

of wavenumbers with positive growth rate increases significantly. Whereas, for

thermal density gradients, the range of wavenumbers with positive growth rate

is similar to the convectionless KS front In both cases, the maximum growth

rate becomes larger at a lower wavenumber q. In this chapter, we analyze the

interactions between thermal and compositional density changes as represented

by the Rayleigh numbers RT and RC . If both Rayleigh numbers have the same

sign, the system is referred to as cooperative, while opposite signs are referred to

as antagonistic. [174] In figure 13 we identify the stability of the flat fronts for

different values of the Rayleigh numbers RT and RC . Near the origin, the flat

front is unstable, which is also the case of the instability in the convectionless

KS equation. In the case of RT = 0, the front is unstable for positive RC , but

decreasingRC below a negative threshold will stabilize the front. In the latter case,

having the lower density fluid on top presents a stabilizing mechanism. Similarly,

for RC = 0, the front is unstable for positive RT , but decreasing RT below a

negative threshold stabilizes the front. If RT is decreased further, below a second

negative threshold, the front becomes unstable again. This unexpected result

also appears in buoyancy driven instabilities for propagating reaction-diffusion-

advection fronts with hydrodynamics described by Darcy’s law. [164]
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Figure 13: Dispersion relations for different positive Rayleigh numbers. Without

density gradients (RT = RC = 0), the front is unstable for perturbations of small

wavenumbers q. Positive Rayleigh numbers enhance the instability of the front

The combined effects of the thermal and compositional Rayleigh numbers on the

front stability can be classified according to their signs. When both Rayleigh

numbers are positive (corresponding to values in the first quadrant of Fig. 14.),

their combined effect is cooperative. In each case, they represent positive density

gradients in the vertical direction, where a lower density fluid is underneath a

denser fluid. In this quadrant, the maximum growth rate for a fixed value of

the Rayleigh numbers is real and positive. Therefore, all fronts in this quadrant

are unstable, with buoyancy forces contributing to the instability. In the fourth

quadrant of Fig. 14, where RT is positive and RC is negative, the stability of the

front depends on the particular values of the Rayleigh numbers. In this quadrant,

a negative RC will tend to stabilize the convectionless KS front. A stabilized

front with a negative RC can be destabilized by increasing RT beyond a critical

value. This positive RT represents the destabilizing buoyancy forces induced by

thermal gradients. Increasing the magnitude of negative RC requires a larger

RT to destabilize the front. When both Rayleigh numbers are negative (third

quadrant of Fig. 14, their cooperative effect indicates a fluid of lower density

above the front. However, in this quadrant, instability reappears for negative

values of RT with magnitude larger than 0.985. This counterintuitive result was

previously shown in reaction-diffusion-advection fronts of finite thickness, in our

case the front is infinitesimally thin evolving under the KS equation. [164] In the

second quadrant (whereRC is positive andRT is negative), the fronts are unstable

for large enough RC , regardless of the value of RT . Similarly, for large enough
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magnitudes of negative RT the fronts will be unstable. However, if RC is small

enough, there is a range of values of RT that can stabilize the front.
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Figure 14: Stability map for flat fronts. The shaded region corresponds to stable

flat fronts. The numbers correspond to selected values of Rayleigh numbers for

dispersion relations shown in in Figs. 15 and 16.

We show dispersion relations for some values of Rayleigh numbers in Fig. 15,

keeping RT positive. These values are labeled with numbered points in the stabil-

ity map (Fig. 14), corresponding to numbered dispersion relations shown in Fig.

15. In the first quadrant, we chose RT = 0.5 and RC = 0.2, corresponding to

point 1 in the stability map. Curve 1 (Fig. 14) indicates real maximum growth

rates as a function of the wavenumber q. The growth rate is positive for q close

to zero, increasing to a maximum value as q increases. Increasing q further, the

growth rate decreases, reaching negative values for large q. There is a critical

wavenumber qc where the growth rate is zero. Perturbations with a wavenumber

above qc will decay. In the fourth quadrant, we chose RT = 0.5 and RC = −0.2,

corresponding to point 2 in the stability map. Curve 2 (Fig. 15) shows a similar

behavior as curve 1, but with smaller growth rates and a smaller critical wavenum-

ber qc. The antagonistic effect of negative RC tends to stabilize the front. For

curve 3 (RT = 0.1 and RC = −0.4 ), the maximum real part of the growth rate is

always negative, represented by the solid curve. These growth rates have a non-

zero imaginary part for small q, becoming real numbers for larger q. The dotted

line represents only the positive imaginary part, with its complex conjugate also

present in the dispersion relation.

In Fig.16 we show dispersion relations for some selected values of Rayleigh numbers
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Figure 15: Dispersion relations for different values of RC and positive RT . The

numbers correspond to different points in Fig. 2. The solid lines are the largest

real part of the growth rate. Line 3 also displays the second largest real part of

the growth rate. The dotted line 3i displays the non-zero imaginary part of the

growth rate for point 3.

with RT negative. When the magnitude of negative RT is small, a negative RC

value leads to a stable front, as shown in the dispersion relation for RC = −0.4

and RT = −0.1 (curve 4). Keeping the magnitude of RT small, the front can

become unstable with a large enough RC as displayed in curve 7 (RT = −0.5

and RC = 0.15). In this curve, we find negative growth rates for small q and

positive growth rates in a finite range of wavenumbers. The stable front can also

become unstable if RT is large enough regardless of the value of RC , as shown

in curves 5 and 6. The values of the Rayleigh numbers for curve 5 are RT = −2

and RC = −0.3, and for curve 6 they are RT = −2.1 and RC = 0.2. In both

curves, we find positive growth rates near q = 0, with each curve having two

relative maximums. The maximum closer to q = 0 is positive in both curves. The

other maximum is positive only in curve 6, setting an additional range of positive

growth rates.
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Figure 16: Dispersion relations for points with negative RT . The curve numbers

correspond to the points displayed in Fig. 2. The solid lines are the largest real

part of the growth rate. All the corresponding growth rates have no imaginary

part.

6.1.2 Nonlinear results

We solve the system of equations (4.93) in a vertical rectangular domain resem-

bling a two-dimensional tube. If the domain is narrow, a convectionless flat front

can propagate against gravity in the vertical y direction. The width of the tube L

allows only perturbations of wavenumber q greater than π/L, which have a nega-

tive growth rate for large q. Increasing the width of the tube allows perturbations

of smaller wavenumbers that may include positive growth rates. This takes place

if the unbounded flat front is unstable, as determined by its dispersion relation.

For tubes of width below a critical value Lc, all the allowed perturbations decay,

consequently the front becomes flat. The flat front is unstable when the tube is

wider than the critical value Lc. Near the transition, tubes wider than Lc lead to

a curved front of steady shape propagating with constant speed. This is shown

in Fig. 17 for different pairs of Rayleigh numbers having dispersion relations that

allow instabilities. In this figure, we show the front speed relative to the flat front

speed as a function of ∆L = L − Lc, the difference between tube width and the

corresponding critical value. Here we fix RT = 0.5 considering three different val-

ues of RC . For RC = 0.2 the critical width is LC = 2.05, for RC = 0 it becomes

LC = 2.6, and for RC = −0.2 it corresponds to LC = 6.3. These values show

that decreasing RC increases LC , a consequence of having a lower density fluid

below the front. For values of L slightly above the critical value, all curves show

an increase of speed. A higher value of RC also results in a higher speed due
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to increased convection. Away from the transition, we notice different behaviors

in each case. For RC = 0.2, the change of speed shows an inflection point not

observed in the other curves. For a width just above the transition, we obtain a

nonaxisymmetric curved front, as displayed in Fig. 18. In this figure RC = 0.2,

with the other cases of 17 having similar shapes. In Fig. 18 (a), we show the

velocity field in a region near the front. Here we observe a single convective roll

centered just above the front. The fluid flow modifies the front, resulting in a non-

axisymmetric shape. Figure 18 (b) shows the stream function on a larger region,

exhibiting two convective rolls.
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Figure 17: Front speed relative to the flat front speed as a function of ∆L = L−LC

for different values ofRC and positiveRT . We also display the caseRC = RT = 0.

In the case of RT = −2 and RC = −0.3, the linear stability analysis shows that

the front is unstable to convection even though the denser fluid is underneath the

front. For these values, the nonlinear behavior is similar to the previous cases

with positive RT . As we increase the tube width beyond a critical width, the

front evolves into a constant nonaxisymmetric shape. This front propagates with

a constant speed higher than the flat front speed (Fig. 19). The fluid velocity

field develops two convective counter rotating rolls, one on top of the other, with

the front located between the rolls (Fig. 20 (a)). In Fig. 20 (b), we display the

stream function near the front, showing a faster rotation for the lower roll.

Changing the compositional Rayleigh number to a positive value (RC = 0.15),

we find that the transition to convection takes place at a lower critical width

than the previous negative RC (Fig. 21). This is a consequence of the increased

buoyancy caused by the compositional changes on the density gradient. Near the

transition, the speed of the front initially increases as a function of L, reaching a
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Figure 18: Velocity field and front profile (a) for RT = 0.5 and RC = 0.2, corre-

sponding to point 1 of figure 14. The color map (b) shows the stream function on

a longer region centered at the front, showing two convective rolls. This domain

has width Lx = 2.28.

relative maximum. This increase and decrease of speed as a function of width is

a similar behavior for fronts in the convectionless KS equation. [175, 176, 68] A

second relative maximum appears as the width increases further. The shape of

the front near the transition is nonaxisymmetric (Fig. 22), with the fluid motion

corresponding to two counterrotating rolls, one above the other. The front is

located inside the lower roll, with fluid rising on one side of the front, and falling

on the opposite side. As the width of the tube increases, the shape of the front

becomes axisymmetric, with the front tip near the center of the tube (Fig. 23

(a)). The front is located within two counterrotating rolls, with fluid rising near

the center of the tube and falling near the sides. Two additional rolls form above

the front as shown in Fig. 23 (b), with weaker convection than the lower rolls.
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Figure 19: Front speed relative to the flat front speed as a function of the width

L, for RT = −2 and RC = −0.3. Corresponding to point 5 of the figure 14.
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Figure 20: Velocity field and front profile (a) for RT = −2 and RC = −0.3,

corresponding to point 5 of figure 14. The color map (b) shows the stream function

on a longer region centered at the front, showing two convective rolls. This domain

has width Lx = 13.52.

82



0

0.001

0.002

0.003

0.004

2 4 6 8

F
ro
n
t
sp
ee
d

Width

Figure 21: Front speed relative to the flat front speed as a function of the width

L, for RT = −0.5 and RC = 0.15. Corresponding to point 7 of the figure 14.
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Figure 22: Velocity field and front profile (a) for RT = −0.5 and RC = 0.15,

corresponding to point 7 of figure 14. The color map (b) shows the stream function

on a longer region centered at the front, showing two convective rolls. This domain

has width Lx = 2.89.
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Figure 23: Velocity field and front profile (a) for RT = −0.5 and RC = 0.15,

corresponding to point 7 of figure 14. The color map (b) shows the stream function

on a longer region centered at the front, showing four convective rolls. This domain

has width Lx = 5.74.
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6.2 Summary and discussion

In this chapter, we studied the effects of fluid motion driven by density gradients on

the stability of flat fronts. These fronts are described by the Kuramoto-Sivashinsky

(KS) equation coupled to hydrodynamics. In this chapter, the unbounded KS front

without convection exhibits instabilities with respect to small perturbations. The

front separates fluids of different chemical concentrations and temperature, leading

to density gradients across the front. Positive Rayleigh numbers for composition

and temperature, representing a higher density above the front, enhance the front

instability. In these cases, decreasing the density of the fluid below the front

lead to instabilities. A negative compositional Rayleigh number tends to stabilize

the front. Increasing the magnitude of a negative thermal Rayleigh number can

initially help to stabilize the front. However, increasing it further results in an

unstable front. In this configuration, the instability results from a denser fluid

underneath a less dense fluid, contrary to what is expected. This result is similar

to previous results for reaction-diffusion-advection fronts where the hydrodynamics

was described by Darcy’s law. [164]

The stability of a flat front propagating inside a two-dimensional narrow rectan-

gular tube depends on the width. Flat fronts propagating inside narrow tubes

are stable. In this case, the width of the tube only allows perturbations of short

wavelengths, which always decay. When the width is increased, our nonlinear cal-

culations show fronts of constant shape propagating with constant speed higher

than the flat front speed. Near the transition to convection, the front is nonax-

isymmetric, with fluid motion corresponding to two counter rotating rolls one on

top of the other. In some cases, we found that increasing the width results in

a maximum speed for the nonaxisymmetric front (Fig. 21). Increasing it even

further results in a front shape with a tip near the middle, propagating with four

convective rolls.

Our results showed that density gradients can stabilize reaction fronts such as the

ones observed in diffusive instabilities. But at the same time, they can lead to un-

expected instabilities for negative RT numbers, where the less dense fluid is above

the denser fluid. Here we studied the interaction between instabilities in a front

evolution equation and density driven convection. The transition to instability

with RC = 0 corresponds to RT = −0.985, with a critical value of q near zero,

corresponding to a large critical wavelength. An estimate using the parameters

of the IAA reaction [126], assuming V to be the molecular diffusivity, leads to a

critical wavelength of 0.48 cm. The corresponding value of RT is -898, beyond the
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onset of the instability. This estimate leaves out the fact that convectionless flat

fronts in the IAA reaction are stable, which is not the case for fronts in the KS

equation. A detailed comparison with experiments would require accurate knowl-

edge of the fluid parameters, such as compositional and thermal density changes,

heat losses, and three-dimensional effects. Further theoretical work, such as us-

ing unstable reaction-diffusion-advection fronts with different Lewis and Prandtl

numbers, may reveal new dynamics.
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7 Conclusions

This thesis showed new instabilities in the propagation of chemical fronts in viscous

fluids. They arise from heat effects due to the chemical reaction, changing the

density of the fluid.

In chapter 5, we showed the effects of heat loss through the boundaries of the

domain, changing the temperature profile of the reaction front. We defined a

dimensionless Biot number that describes the amount of heat loss through the

boundaries. For insulating walls, the Biot number is zero and the temperature

behind the front is constant. However, for nonzero Biot numbers the temperature

behind the front decreases as heat is lost through the container walls. The tem-

perature shows a maximum value halfway between the walls and near the reaction

front. Thus for vertical propagation, there is a horizontal temperature gradient.

This results in convection for all nonzero Biot numbers. In the presence of heat

loss, we find a solution that has an axisymmetric shape, but close to the flat front

solution with Bi = 0. For insulating walls (Bi = 0), the flat front solution is stable

for small domain widths. As the Biot number increases, the front remains stable

but becomes slightly axisymmetric. Increasing the width of the domain beyond a

critical value, the stable state is a nonaxisymmetric front with speed higher than

the flat front. The critical width for this transition increases as the Biot number

increases. This means that small heat losses can inhibit the transition to the highly

convective state with a nonaxisymmetric shape. For high Biot numbers, we did

not find the transition for widths less than Lx = 49, but it can still take place at

larger widths. We also studied the front propagation as a function of Biot number

keeping the width constant. For a small domain width, the nonaxisymmetric front

shape exists in a finite range of values of Biot numbers. Beyond a critical value

of Biot numbers, there is only a low convection front with an almost symmetric

shape. Increasing the Biot number further causes higher convection, but with a

small increase in front velocity. For a higher domain width, we find a region of

bistability between the nonaxisymmetric state and the slower axisymmetric front.

In this bistability region, the final state of the system depends on the initial shape

of the front and the temperature distribution. The region of bistability increases

at larger domain widths, taking place at higher Biot numbers. In horizontal propa-

gation, the front always has a nonaxisymmetric shape. For larger domain widths,

the front speed shows an abrupt speed increase. The Biot number affects this

transition to a high speed front, as was the case of vertical propagation.

In chapter 6, we described a thin front propagating in a viscous fluid according to
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the KS equation. In this case, fluid flow is driven by thermal and compositional

density changes. Two dimensionless Rayleigh numbers characterize the system,

one for thermal and another for compositional effects. The KS equation describes

an unstable flat front in the absence of convection, since perturbations of large

wavelength have a positive growth rate. This instability persists for very small

Rayleigh numbers independent of their sign. The flat front remains unstable if

both Rayleigh numbers are positive. Positive Rayleigh numbers represent a fluid of

higher density on top of a fluid of lower density, which is an unstable configuration.

Therefore, we expect negative Rayleigh numbers to help to stabilize the front. We

find that a negative compositional Rayleigh number by itself (RT = 0) can stabilize

the flat front. However, using only a negative thermal Rayleigh number (RC = 0)

can stabilize the front in a finite range of values. Initially, a certain value of

negative thermal Rayleigh number leads to a stable flat front. However, decreasing

beyond a critical value, the flat front becomes unstable. In this situation, the

less dense fluid above the front induces the instability. In addition to the linear

stability analysis, we study solutions of the nonlinear front evolution equation. As

we increase the domain width, we find slight increases of speed beyond a critical

value. The critical width is consistent with the predicition of the linear stability

theory. The increase of speed is very small for negative thermal Rayleigh numbers.

The shape of the convective pattern depends on the specific values of the Rayleigh

numbers. While all of them exhibit two rolls around the front, the front position

can be near the top roll, or near the bottom roll, or somewhere in between the

rolls.

This thesis focused on the effects of thermal and compositional density gradients

in propagating fronts with convection. The presence of heat loss is unavoidable

in experiments. Our theory describes these effects using a dimensionless Biot

number. We found that heat loss may lead to a bistability between two shapes

of fronts. In the thin front approximation, the KS equation can be stabilized for

some values of Rayleigh numbers. The linear stability analysis shows transitions

to convection due to thermal and compositional density gradients. Thermal effects

can generate an instability with a lesser dense fluid above a denser fluid separated

by the front. These theoretical results aim to motivate experiments to test our

predictions. Further theoretical work can lead to a better understanding of these

instabilities.
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Interaction of Pure Marangoni Convection with a Propagating Reactive In-

terface under Microgravity. Phys. Rev. Lett., 121(2):024501, July 2018.

[54] L. Rongy, A. De Wit, and G. M. Homsy. Asymptotic structure of steady

nonlinear reaction-diffusion-Marangoni convection fronts. Physics of Fluids,

20(7):072103, July 2008.

[55] Roberto Guzman and Desiderio A. Vasquez. Surface tension driven flow

on a thin reaction front. The European Physical Journal Special Topics,

225(13-14):2573–2580, November 2016.

[56] James P. Keener and John J. Tyson. Spiral waves in the Belousov-

Zhabotinskii reaction. Physica D: Nonlinear Phenomena, 21(2-3):307–324,

September 1986.

[57] Jie Huang, Desiderio A. Vasquez, Boyd F. Edwards, and Paul Kolodner.

Onset of convection for autocatalytic reaction fronts in a vertical slab. Phys.

Rev. E, 48(6):4378–4386, December 1993.

[58] Roberto Guzman and Desiderio A. Vasquez. Marangoni flow traveling with

reaction fronts: Eikonal approximation. Chaos, 27(10):103121, October

2017.

[59] Desiderio A. Vasquez, Joseph W. Wilder, and Boyd F. Edwards. Convective

94



instability of autocatalytic reaction fronts in vertical cylinders. Physics of

Fluids A: Fluid Dynamics, 4(11):2410–2414, November 1992.

[60] Jonathan Masere, Desiderio A. Vasquez, Boyd F. Edwards, Joseph W.

Wilder, and Kenneth Showalter. Nonaxisymmetric and Axisymmetric

Convection in Propagating Reaction-Diffusion Fronts. J. Phys. Chem.,

98(26):6505–6508, June 1994.
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[86] Lars Hörmander. The Analysis of Linear Partial Differential Operators.

1: Distribution Theory and Fourier Analysis. Classics in Mathematics.

Springer, Berlin Heidelberg, repr. of the 2. ed edition, 2003.

[87] Steven E.. Koonin and Dawn C.. Meredith. Computional Physics: Fortran

Version. London : New York : CRC Press, Boca Raton, 2019.

[88] Tao Pang. An Introduction to Computational Physics. Cambridge University

Press, Cambridge, 2nd ed edition, 2006.

[89] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration.

Computer Science and Applied Mathematics. Academic Press, Orlando, 2nd

ed edition, 1984.

[90] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial

Differential Equations: Steady-State and Time-Dependent Problems. Society

97



for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor

6, Philadelphia, PA 19104), Philadelphia, Pa., 2007.
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[111] Jie Zeng, Yannis C. Yortsos, and Dominique Salin. On the Brinkman correc-

99



tion in unidirectional Hele-Shaw flows. Physics of Fluids, 15(12):3829–3836,

December 2003.

[112] John H. Lienhard and John H. Lienhard. A Heat Transfer Textbook. Dover

Publications, Inc, Mineola, New York, fifth edition edition, 2019.

[113] K. C. Cheng. Some Observations on the Origins of Newton’s Law of Cool-

ing and Its Influences on Thermofluid Science. Applied Mechanics Reviews,

62(6):060803, November 2009.

[114] E. L. Cussler. Diffusion: Mass Transfer in Fluid Systems. Cambridge Uni-

versity Press, Cambridge ; New York, 3rd ed edition, 2009.

[115] John Crank. The Mathematics of Diffusion. Univ. Pr, Oxford, 2. ed., repr

edition, 2011.

[116] Raj K. Pathria and Paul D. Beale. Statistical Mechanics. Academic Press,

an imprint of Elsevier, London San Diego Cambridge, MA Oxford, fourth

edition edition, 2022.

[117] R. A. Fisher. The Wave of Advance of Advantageous Genes. Annals of

Eugenics, 7(4):355–369, June 1937.

[118] Kenneth Showalter. Quadratic and Cubic Reaction–Diffusion Fronts. Non-

linear Science Today, 4(4):8, 1995.

[119] A. N. Kolmogorov. Selected Works I: Mathematics and Mechanics. Springer,

The Netherlands, 2019.

[120] Mark J. Ablowitz and Anthony Zeppetella. Explicit solutions of Fisher’s

equation for a special wave speed. Bltn Mathcal Biology, 41(6):835–840,

November 1979.

[121] John J. Tyson and Pavel K. Brazhnik. On Traveling Wave Solutions

of Fisher’s Equation in Two Spatial Dimensions. SIAM J. Appl. Math.,

60(2):371–391, January 2000.

[122] Kenneth Showalter and John J. Tyson. Luther’s 1906 discovery and analysis

100



of chemical waves. J. Chem. Educ., 64(9):742, September 1987.
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