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Resumen

En la presente tesis se estudia el potencial del DUNE Near Detector (DUNEND) para
establecer límites a neutrinos pesados (HNL). Esto es realizado a través de un estudio de
cómo los HNL afectan las tasas de producción y las distribuciones angulares de los neutrinos
activos. Se demuestra que la producción de HNL en DUNE produce un déficit de eventos
de corriente cargada (CC) en el Liquid Argon Time Proyection Chamber (LArTPC) de
DUNEND y se utiliza esto para estimar la sensibilidad de DUNE a HNLs. Nuestro análisis
revela que la sensibilidad depende fuertemente de las incertidumbres sistemáticas en las
predicciones del flujo de neutrinos de DUNE. Asumiendo 10 años de operación (5 en modo
neutrino y 5 en modo antineutrino) se obtienen los límites |Uµ4|2 < 9× 10−3(4× 10−2)

y |Ue4|2 < 7× 10−3(3× 10−2) para masas por debajo de 10 MeV y una incertidumbre
del 5%(20%) en la normalización de la predicción de los eventos de corriente cargada
de neutrinos. Estos límites son mejores que aquellos que pueden ser alcanzados por las
búsquedas directas en DUNE para masas por debajo de los 2(10) MeV. Para el caso de una
incertidumbre conservadora del 20%, los límites obtenidos solo pueden mejorar los límites
experimentales actuales en |Ue4|2 por un factor de 3 en una pequeña región alrededor de 5 eV
y establecer límites en |Uµ4|2 en una región de masas libre de restricciones (40 eV - 1 MeV)

Palabras clave: Fenomenología de neutrinos, neutrinos pesados, experimento DUNE.
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Abstract

In the present thesis we study the potential of the DUNE Near Detector (DUNEND) for
establishing bounds for heavy neutral leptons (HNL). This is achieved by studying how the
presence of HNLs affects the production rates and angular distributions of active neutrinos.
We show that HNL production at DUNE creates a deficit in the neutrino charged current
(CC) events at the Liquid Argon Time Proyection Chamer (LArTPC) of the DUNEND
and use this to estimate the sensitivity of DUNE to HNLs. Our analysis reveals that the
sensitivity is heavily dependent on the systematic uncertainties in the DUNE neutrino flux
predictions. For 10 years of operation (5 in neutrino and antineutrino mode) we obtain limits
of |Uµ4|2 < 9×10−3(4×10−2) and |Ue4|2 < 7×10−3(3×10−2) for masses below 10 MeV
and a 5%(20%) overall normalization uncertainty in the neutrino charged current event rates
prediction. These limits are better than those that can be achieved by DUNE direct searches
for the case of a 5%(20%) uncertainty within the region of masses below 2(10) MeV. When
a conservative 20% uncertainty is present, the limits obtained can only improve current
experimental constraints on |Ue4|2 by up to a factor of 3 in a small region around 5 eV and
set limits on |Uµ4|2 in a mass region free of constraints (40 eV - 1 MeV).

Keywords: Neutrino phenomenology, heavy neutral leptons, DUNE experiment.
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Introduction

The study of the fundamental composition of matter has been a recurring subject in the
history of the Western world. The "physicists" of ancient Greece tried to give rational
explanations for the existence of matter and its properties based mostly on clever reasoning
and deduction. However, it was not until the XVI century, with the development of the
scientific method, that an empirically rigorous study of the microscopic world truly began.
This endeavor over centuries eventually gave birth to one of the most precise theories in the
history of science: the Standard Model (SM) of particle physics. The Standard Model is a
quantum field theory framework formulated within the context of the local gauge symmetry
group SU(3)c × SU(2)L ×U(1)Y . The fields of the SM are composed of six quarks (up,
down, charm, strange, top, bottom), three charged leptons (electron, muon and tau), three
neutrinos (electron, muon and tau neutrino), six gauge bosons (photon, W±, Z and eight
gluons) and the Higgs field. Although the SM has proven to be a very successful and precise
theory, there are still some open questions about the nature of some interactions and particle
properties. For instance, neutrinos are considered to be massless in the SM. However, it has
been observed that neutrinos can spontaneously change their flavors, a phenomenon known as
neutrino oscillations [12, 13, 39]. These oscillations can be explained if one considers that the
neutrino states that participate in the weak interactions (weak eigenstates) are different from
the eigenstates of the neutrino Hamiltonian (mass eigenstates). This gives rise to neutrino
mixing, where each weak eigenstate is a superposition of the mass eigenstates. This mixing
cannot occur if all neutrinos are massless. The analysis of neutrino oscillations has led to the
conclusion that not all neutrinos can have a zero mass [54].

To account for the existence of neutrino mass, one must add neutrino mass terms to the
SM lagrangian. The most straightforward way to achieve this is to add a coupling between
the Higgs field and the neutrino fields in a way that is similar to what is done in the quark
sector for the d, s and b quarks. In principle, the introduction of this Dirac mass can explain
the existence of neutrino masses and should solve the neutrino mass problem completely.
However, experiments have shown that the values of the neutrino masses are very small, on
the order of 0.1 eV [61], and these mass scales can only be achieved if the couplings between

1



2 List of tables

the Higgs and neutrino fields are several orders of magnitude smaller than the couplings
of the Higgs to the rest particles of the SM. These unnaturally small coupling constants
suggest that there might be another mechanism responsible for the generation of neutrino
masses that does not require fine-tuning of the coupling constants. There is another way
to introduce neutrino masses to the SM lagrangian. Since neutrinos are not charged under
the electromagnetic interaction, it is possible to directly add to the lagrangian a term that
couples two neutrino fields. To preserve the SU(2)L symmetry of the SM, these neutrino
fields must be right-handed, so that they do not directly participate in the weak interaction.
This so-called Majorana mass term can explain the existence of neutrino masses, but at the
same time violates lepton number conservation by two units. Majorana neutrinos would also
be their own antiparticles, so their existence would open the possibility for new interesting
physics beyond the SM.

In general, one can add both Dirac and Majorana mass terms to the SM lagrangian, and
the values of the physical neutrino masses can be obtained from the diagonalization of the
neutrino mass matrix. However, the problem of the smallness of neutrino masses remains
open and one still needs a mechanism to generate very small neutrino masses to avoid fine
tuning. This can be achieved if one adds extra neutrino fields to the SM lagrangian with
masses that are much larger than the masses of the three neutrinos of the SM. These extra
neutrino fields must be also sterile in the sense that, in contrast to the active neutrinos of
the SM, they do not participate in the weak interaction, a condition that can be achieved if
they have right-handed chirality. After the diagonalization of the mass matrix, the presence
of these sterile neutrinos affects the mass of the active neutrinos of the SM in a way that
the active neutrino masses decrease as the sterile neutrino masses increase. This seesaw
mechanism [62] can naturally explain the smallness of the active neutrino masses if one
admits the existence of heavier sterile neutrino states. However, the scale of the masses of
the sterile neutrinos is not completely fixed because it depends on the scale of their coupling
constants. If the coupling constants are of order 1, then the scale of the new physics is very
large, around 1014 GeV. This high-scale seesaw is attractive because it might be connected to
GUT theories and leptogenesis, but it also introduces a destabilization of the Higgs mass and
is not testable in the near future. On the other hand, if the coupling constants are sufficiently
small, then the scale of new physics can be small enough to get sterile neutrinos with masses
that range from eV to TeV. This low-scale seesaw is particularly interesting because the sterile
neutrinos can be produced at energies that are accessible to experiment in the present or near
future. In particular, if the sterile neutrino has a mass much larger than 1 eV, then it can also
decay into other SM particles and its decay products can in principle be detected in current
accelerator experiments. These heavy neutral leptons (HNL) have become increasingly more
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interesting because they might be detected in next-generation neutrino experiments. The
confirmation of the existence of HNLs or sterile neutrinos, in general, would be a giant
step towards the understanding of the mechanisms for mass generation in nature beyond the
standard model.

One of the more promising experiments for the study of HNLs is the Deep Under-
ground Neutrino Experiment (DUNE) [4]. DUNE will produce the world’s most intense
neutrino beam, which will be pointed towards two liquid argon detectors: the Near Detector
(DUNEND) and the Far Detector (DUNEFD), located at 574 m and 1300 km from the DUNE
target, respectively. The main goal of the DUNE experiment is to study neutrino oscillations
and precisely measure the parameters involved in the neutrino physics of the SM. However,
the high intensity of the DUNE neutrino beam will also let us study neutrino physics beyond
the SM. DUNE will be able to produce a significant amount of HNLs with masses up to
GeV. If these HNLs decay inside one of the DUNE detectors, it would be possible to detect
their decay products, confirming their existence and opening a window beyond standard
model physics. However, the production of HNLs at DUNE will also have other effects that
can indirectly detect the presence of HNLs. For instance, the production of one HNL can
only be possible if it replaces the production of an active neutrino. Therefore, if HNLs are
produced at DUNE, then the number of active neutrinos produced necessarily decreases.
This phenomenon, which is independent of neutrino oscillations, translates into a deficit of
neutrino charged current (CC) events at the DUNE detectors. In this work, we conduct a
detailed study of this possible CC events deficit at the DUNEND due to HNL production.
We show that this CC deficit can be interpreted as an indirect signal of the presence of HNLs
at DUNE. We calculate the significance of this deficit in different configurations and show
that, if no significant CC deficit is found at DUNE, this can be used to estimate limits on the
HNL’s mass and mixing to active neutrinos.

This thesis is organized as follows. In the first chapter, we make a brief review of the
standard model and then proceed to explain some possible mechanisms for neutrino mass
generations and neutrino oscillations. In the second chapter, we focus on HNLs and review
how these particles might be created from meson and lepton decays, their possible decay
products, lifetimes and also neutrino oscillations that involve HNLs. In the third chapter,
we explain the configuration for our simulations of the DUNE neutrino flux, as well as the
implementation of HNL production and decay. In the fourth chapter, we show our results for
the change in the neutrino flux at DUNE due to the production of HNLs. We also estimate
the sensitivity of DUNE to HNLs and the possible limits that DUNE might be able to set to
the HNL mass and its mixing with active neutrinos. Finally, in the last section, we show our
conclusions and the possible extensions of our work.
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Chapter 1

Neutrinos and the Standard Model

1.1 The Standard Model

The standard model (SM) of particle physics is considered one of the most successful
theories of physics and at present represents our most fundamental understanding of the
phenomena observed in particle physics. The Standard Model is a quantum field theory
framework formulated within the context of local gauge symmetries, specifically the group
SU(3)c × SU(2)L ×U(1)Y that describes the electromagnetic, weak, and strong nuclear
forces and their interactions with matter fields. The subscripts C, L and Y refer to the color,
left-handed (LH) chirality and weak hypercharge, respectively. The weak interaction related
to the SU(2)L symmetry affects only left-handed chiral particle estates, which are organized
in doublets, while the right-handed chiral states are organized in singles and hence are not
affected by the symmetry transformation The SM postulates the existence of fermionic matter
fields, which include six quark flavors and three generations of leptons, each with associated
antiparticles. The matter fields interact through the exchange of gauge bosons produced by
the gauge invariance of the theory: photons (γ), W (W±) and Z bosons, and eight gluons.
Also, the model incorporates the Higgs mechanism, characterized by a scalar Higgs field
with a non-zero vacuum expectation value, which spontaneously breaks the electroweak
symmetry and gives mass to the fermion fields. Figure 1.1 shows all the particles that are
part of the standard model, where fermions participate in the weak interaction, only charged
particles interact electromagnetically and all quarks participate in the strong interaction.

In the standard model, all left-handed leptons transform trivially under SU(3)C (and there-
fore do not participate in the strong interaction) and transform as a doublet under SU(2)L.
On the other hand, the quarks transform as a triplet under SU(3), where the components
are labeled as colors red, green and blue. Due to the nature of the SU(2)L symmetry, which
treats LH and right-handed (RH) chiral states differently, the SM partity is explicitly broken.

5
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Fig. 1.1 Particles of the Standard Model of Particle Physics. The figure is based on Ref. [60]

This is particularly important for neutrinos because in the SM they are massless and hence
the right-handed chiral components are not required to appear in the Lagrangian.

The standard model Lagrangian can be written as

LSM = LGauge +LFermion +LHiggs +LYukawa, . (1.1)

The term LGauge represents the kinetic terms of the gauge fields and is explicitly given by

LGauge =−1
4

BµνBµν − 1
4

W i
µνW i,µν − 1

4
Ga

µνGa,µν , (1.2)

where
Bµν = ∂µBν −∂νBµ ,

W i
µν = ∂µW i

ν −∂νW i
µ +gεi jkW

j
µW k

ν ,

Ga
µν = ∂µGa

ν −∂νGa
µ +gs fabcGb

µGc
ν .

(1.3)

The fields Bµ and W i
µ represent the gauge fields of the SU(2)L ×U(1)Y electroweak symme-

try and the g the SU(2)L coupling constant. The fields Ga
µ represent the gauge fields of the
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SU(3)C symmetry and Gs the coupling constant of the strong interaction. The terms εi jk and
fabc are the structure constants of the SU(2) and SU(3) groups, respectively. These gauge
fields are spin-one bosons that are necessary to maintain the symmetry of the SM lagrangian
under SU(3)C ×SU(2)L ×U(1)Y .

The term LFermion represents the kinetic term of the fermions. Due to the SU(2)L

symmetry of the SM lagrangian, the LH chiral components of leptons are organized in
isospin doublets of the form

Lℓ =

(
ν
ℓ
L

ℓL

)
(1.4)

and the RH chiral components are organized in the singlets ℓR, where the index ℓ= e,µ,τ
represents the flavour of the lepton. The LH chiral components of quarks are also organized
in the isospin doublets

Qi
a =

(
ui

L,a

di
L,a

)
, (1.5)

where the index i represents the generation of the quark, a its color and one must remember
that the doublets contain the weak eigenstates of the quarks. Additionally, the remain-
ing quarks are organized in isospin singlets of the form ui

R,a and di
R,a. The gauge fields

must also be present in the LFermion term because the spacetime derivates are replaced by
the corresponding covariant derivatives that maintain the lagrangian invariant under local
transformations. The total expression for the kinetic term of fermions is

LFermion =
3

∑
ℓ=1

iL̄ℓ
γ

µ

(
∂µ − ig′YLBµ − ig

τi

2
W i

µ

)
Lℓ

+
3

∑
q=1

iQ̄q
γ

µ

(
∂µ − ig′YQBµ − ig

τi

2
W i

µ − igs
λa

2
Ga

µ

)
Qq

+
3

∑
ℓ=1

iℓRγ
µ
(
∂µ − iYℓRg′Bµ

)
ℓR +

6

∑
q=1

iqRγ
µ
(
∂µ − iYqRg′Bµ

)
qR,

(1.6)

where τi and λa are the generators of SU(2) and SU(3), respectively, g′ the coupling constant
of SU(1)Y and YL the hypercharge of the field. So far, all the fields have been considered
massless but we know from experiments that the charged fermions and the W and Z bosons
are massive (as well as the neutrinos, which we will treat in more detail later). One might be
tempted to add terms of the form m2L̄L to the SM lagrangian. However, these terms would
violate the gauge invariance of the theory because they couple left and right-handed chiral
states, which are part of different representations. This problem is solved by the introduction
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of the Higgs field H, which is a scalar field with a non-zero vacuum expectation value that
couples to the gauge bosons and the fermions. The term LHiggs in the SM lagrangian, which
contains the kinetic term of the Higgs field as well as its couplings to the gauge bosons and
its potential, is given by

LHiggs =H†
(

∂µ +
i
2

g′Bµ + ig
τa

2
W a

µ

)(
∂

µ − i
2

g′Bµ − ig
τb

2
W b,µ

)
H

−µ
2H†H +λ

(
H†H

)2
,

, (1.7)

where λ and µ
2 represent two parameters that define the shape of the Higgs potential, which

has a minimum when the field takes the vacuum expectation value ⟨H⟩ = v =
µ√
λ

. In

principle, the Higgs field has an infinite number of states where the Higgs potential takes
its minimum value. However, in practice, nature randomly selects one of these states as
the physical vacuum and therefore the symmetry of the final state does not have the same
symmetry as the lagrangian. This process is known as spontaneous symmetry breaking and
is responsible for the generation of mass in the standard model. The final form of the SM
lagrangian after symmetry breaking can be obtained by making the substitution

H(x) =
1√
2

(
0

v+h(x)

)
, (1.8)

where h is a real scalar field that represents the physical Higgs field. After substitution in
(1.7), the Higgs sector of the SM lagrangian takes the form

LHiggs =
1
2

∂µh∂
µh−λv2h2 −λvh3 − 1

4
λh4

+
1
8
(h+ v)2

[
2g2v2W+,µW−

µ +
(

gW 3
µ −g′Bµ

)(
gW 3,µ −g′Bµ

)]
.

(1.9)

From (1.9) we can conclude that the Higgs mass is mH =
√

2λv. The physical gauge bosons
of the weak interactions are

W±
µ =

1√
2

(
W 1

µ ∓W 2
µ

)
Zµ =

1√
g2 +g′2

(
gW 3

µ −g′Bµ

) (1.10)
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and have masses mW =
1
2

gv and mZ =
1
2

v
√

g2 +g′2. The experimental values of the masses
of the Higgs and the weak bosons are [61]:

mH = 125.11±0.11 GeV,

mW = 80.377±0.012 GeV,

mZ = 91.187±0.0021 GeV.

(1.11)

The physical photon is also present in the Higgs sector (1.9) as the field

Aµ =
1√

g2 +g′2

(
g′W 3

µ +Bµ

)
(1.12)

which, as required, remains massless after the electroweak symmetry breaking. The gluons
also remain massless since they are not affected by SU(2)L.

Finally, the term LYukawa in (1.1) represents the Yukawa interactions between the Higgs
field and the fermion fields. After electroweak symmetry breaking, the Yukawa sector has
the form

LYukawa =−
3

∑
ℓ=1

mℓℓ̄LℓR −
3

∑
i, j=1

mu
i jū

i
Lu j

R −
3

∑
i, j=1

md
i jd̄

i
Ld j

R + h.c. , (1.13)

where mℓ are the lepton masses and mu
i j and md

i j are 3×3 matrices. The quark fields present in
(1.13) are the weak eigenstates and hence are not eigenstates of the Hamiltonian, also known
as mass eigenstates. These mass eigenstates can be obtained by diagonalizing the matrices
present in (1.13). Rewriting the Yukawa quark sector in terms of the mass eigenstates has a
particularly important effect on the charged current weak interaction of quarks. For instance,
the coupling of the quark fields with the W− boson takes the form

3

∑
i=1

g√
2

W−
µ d̄i

Lγ
µui

L + h.c. →
3

∑
i=1

g√
2

W−
µ

(
3

∑
m=1

UdL
im d′

L

)
γ

µ

(
3

∑
n=1

UuL
in u′nL

)
+ h.c.

=
3

∑
m,n=1

g√
2

[
3

∑
i=1

UdL∗
im UuL

in

]
W−

µ d̄′m
L γ

µu′nL + h.c. ,

(1.14)

where the matrices U are unitary matrices that transform the weak eigenstates into mass
eigenstates represented by the primed fields. Equation (1.14) shows that it is possible to have
transitions between an up and a strange quark although they belong to different generations.
The amplitude of this transition is proportional to the elements of the matrix between brackets
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in Eq. (1.14), which is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix:

VCKM =UdL† ·UuL. (1.15)

This matrix represents the observable effects of the mixing in the quark sector and can be
parametrized by three real mixing angles (θ12 ≥ 0, θ13 and θ23 ≤ π/2 ) and one complex
phase 0 ≤ δCP ≤ 2π:

VCKM =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23

s12s23 − c12s13c23eiδCP −c12S23 − s12s13c23eiδCP c13c23

 , (1.16)

where si j = sinθi j and ci j = cosθi j.

1.2 Neutrino mass generation

Neutrinos are considered massless in the Standard Model. However, the observation of
neutrino oscillations implies that they cannot be massless, an indication that the standard
model is incomplete. The most straightforward way to introduce neutrino masses is to add
a neutrino mass term to the lagrangian similar to the up-quark mass terms. This requires
the introduction of three RH neutrino states νR, which are not present in the standard model.
After electroweak symmetry breaking, the mass term for the neutrinos has the form

LD =−
3

∑
i, j=1

mν
i jν̄

i
Lν

j
R + h.c. , (1.17)

where mν
i j represents a 3×3 matrix. Equation (1.17) is known as a neutrino Dirac mass term

and it is originated by the Yukawa coupling of the Higgs field to the neutrino field. In order to
express the lagrangian in terms of the mass eigenstates ν

′ we have to diagonalize the matrix
mi j. This process affects the weak interaction charged current:

3

∑
i=1

g√
2

W+
µ ℓ̄i

Lγ
µ

ν
i
L + h.c. →

3

∑
i=1

g√
2

W+
µ

(
3

∑
m=1

UℓL
im ℓ′mL

)
γ

µ

(
3

∑
n=1

UνL
in ν

′n
L

)
+ h.c.

=
3

∑
m,n=1

g√
2

[
3

∑
i=1

UℓL∗
im UνL

in

]
W+

µ ℓ̄′mL γ
µ

ν
′n
L + h.c. ,

(1.18)
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where the matrix
UPMNS =UℓL† ·UνL (1.19)

is known as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. In the standard
model, we take UℓL = diag(1,1,1) and therefore the PMNS matrix relates the neutrino flavor
eigenstates to the mass eigenstates νe

νµ

ντ

=

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ·

 ν1

ν2

ν3

 , (1.20)

where Uαi represent the elements of the PMNS matrix and νi represent the mass eigenstates.
Equation (1.20) is usually written in the form

να = ∑
i

Uαiνi, (1.21)

where α denotes the flavor of the neutrino. The PMNS matrix can be parametrized by three
real mixing angles (θ12 ≥ 0, θ13 and θ23 ≤ π/2 ) and one complex phase 0 ≤ δCP ≤ 2π:

UPMNS =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12S13s23eiδCP c12c23 − s12s13s23eiδCP c13S23

s12S23 − c12S13c23eiδCP −c12S23 − s12s13c23eiδCP c13c23

 , (1.22)

where si j = sin(θi j), ci j = cos(θi j).

The Dirac mass term in Eq. (1.17) introduces a RH neutrino field. However, it is also
possible to construct a mass term for neutrinos that only involves LH chiral fields. We define
the charge-conjugated spinor as

Ψ
c =CΨ̄

T , (1.23)

where C = iγ0γ2 is the charge conjugation matrix. We can now build a Majorana mass term
of the form

LM =
1
2

3

∑
i, j=1

mν
i jν

c
L

i
ν

j
L + h.c. =

1
2

3

∑
i, j=1

mν
i jν

i,T
L Cν

j
L + h.c. , (1.24)

where the mν is a symmetric complex 3×3 mass matrix and the sum is over all the lepton
generations. We see that the Majorana mass in (1.24) couples neutrinos with antineutrinos
and hence violates lepton number conservation by 2 units. We can follow a procedure similar
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to the Dirac case and diagonalize the Majorana mass matrix as

diag(mν1,mν2,mν3) =Uν ,T ·mν ·Uν , (1.25)

where Uν is a 3×3 unitary matrix. In this case, the Majorana PMNS matrix is given by

UMajorana
PMNS =UDirac

PMNS ·diag
(

1,eiφ1,eiφ2
)
, (1.26)

where 0 ≤ φ1,2 ≤ 2π are two Majorana phases. Equation (1.24) includes only LH chiral fields,
but it cannot be introduced directly in the SM lagrangian because left-handed leptons must
be organized in isospin doublets. This would imply adding a term of the form mi jLiT L j to
the SM lagrangian, which would also add a Majorana mass term for the electrons and break
electric charge conservation. One alternative is to add to the SM lagrangian the dimension-5
effective Weinberg operator[59] given by

LWeinberg =
1
2

3

∑
i, j=1

ci j

ΛNP

(
Li ·H

)T (
L j ·H

)
+ h.c. , (1.27)

where ci j are dimensionless coupling constants and ΛNP is an effective operator scale related
to new physics. After electroweak symmetry breaking, the Weinberg operator becomes

1
2

3

∑
i, j=1

ci j

ΛNP

(
Li ·H

)T (
L j ·H

)
+ h.c. → 1

2

3

∑
i, j=1

mν
i jν

i,T
L Cν

j
L + h.c. , (1.28)

which is identical to the Majorana mass of Eq. (1.24). The Weinberg operator is gauge
invariant and generates the neutrino masses

mν =
v2

2ΛNP
c, (1.29)

where v is the vacuum expectation value of the Higgs field. The neutrino masses depend
inversely on the new physics scale ΛNP and can be made as small as desired provided the
value of ΛNP is very large. For instance, for c ∼ 1, in order order get mν ∼ 0.1 GeV one
needs ΛNP ∼O(1014) GeV.

The Majorana mass term in (1.24) was built using LH chiral neutrino fields. However,
one could also introduce to the SM lagrangian a bare mass term for RH chiral fields of the
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form

LM =
1
2

3

∑
i, j=1

mν
i jν

c
R

i
ν

j
R + h.c. =

1
2

3

∑
i, j=1

mν
i j
(
ν

i
R
)T

Cν
j

R + h.c. . (1.30)

Since RH particles and LH antiparticles transform as singlets under SU(2)L, the mass term
in (1.30) is gauge invariant, although it still couples particles with antiparticles and hence
violates lepton number conservation by two units. In general, one can combine (1.17) and
(1.30) to build a mass term for neutrinos that, after electroweak symmetry breaking, has the
form

LSeesaw =−∑
i j

mD
i jν̄

i
Lν

j
R +

1
2 ∑

i j
Mi j
(
ν

i
R
)T

Cν
j

R + h.c. , (1.31)

where mD is called the Dirac neutrino mass mixing. If we define the 6-dimensional vector

n =

(
ν

i
L

ν
i
R

)
(1.32)

we can write the Seesaw lagrangian of (1.31) as

LSeesaw =

(
ν

i
L

ν
i
R

)T

·

(
0 mD(

mD)T
M

)
︸ ︷︷ ︸

M

·

(
ν

i
L

ν
i
R

)
, (1.33)

where the matrix M is a 6×6 matrix. We can diagonalize this matrix in order to obtain the
mass eigenstates n′ of the Seesaw lagrangian

UT ·M·U = diag(mν1,mν2,mν3,mN1,mN2 ,mN3) , (1.34)

where n = Un′, the mνi are the light neutrinos masses and the mNi are the heavy neutrino
masses. If one considers only one generation it is easy to show that the diagonalization of
the mass matrix can be expressed as(

cosθ sinθ

−sinθ cosθ

)
·

(
0 mD

mD M

)
·

(
cosθ −sinθ

sinθ cosθ

)
=

(
mν 0
0 mN

)
(1.35)

and its eigenvalues are

mν =
1
2

(
M−

√
M2 +4m2

D

)
, mN =

1
2

(
M+

√
M2 +4m2

D

)
. (1.36)
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Phenomenologically, the value of M is expected to be much larger than the light neutrino
mass mD, which is expected to be of the order of the electroweak scale, mD ≲ 100GeV. In
this case, we have

mν =−m2
D

M
+O

(
m4

D
M3

)
, mN = M+

m2
D

M
−O

(
m4

D
M3

)
(1.37)

and

θ ≈ tanθ =
mD

M
−O

(
m3

D
M3

)
. (1.38)

Using mD ∼ 100 GeV we have a relation between the light and heavy neutrino masses

mν

0.1eV
=

1014GeV
M

, (1.39)

which means that the light neutrino mass decreases as the heavy neutrino mass increases.
This is known as the seesaw mechanism. In this limit, the mixing angle θ is very small and
the weak eigenstates are

νL = cosθν − sinθN ≈ ν −θN,

νR = sinθν + cosθN ≈ N +θν .
(1.40)

This implies that the RH neutrinos are not truly sterile and couple to the SM charged current,
although the coupling is heavily suppressed by the small mixing angle. For the more general
case of three neutrino generations, although the algebra is much more complex, it is also
possible to diagonalize the mass matrix

mν =−mD ·M−1 ·
(
mD)T

(1.41)

and also obtain an expression for the mixing angles between the gauge eigenstates of the
active neutrinos and the sterile neutrinos,

Θ = mD ·M−1. (1.42)

Again, if the RH neutrinos have MNi ∼ 1014GeV, it is possible to obtain very small values
for the masses of the light neutrinos.

There are alternative mechanisms similar to the type-I seesaw mechanism that modify
the SM lagrangian in order to generate Weinberg operators at the tree level. For instance,
the Type-II seesaw mechanism adds a heavy scalar ∆ =

(
∆

0,∆+,∆++
)T

that transforms as
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an SU(2)L triplet. This scalar field couples to the SM electroweak gauge bosons. After
electroweak symmetry breaking, the component ∆

0 gains a nonzero vacuum expectation
value 〈

∆
0〉= µv2

2m2
∆

, (1.43)

where v represents the Higgs VEV and m∆ the bare mass of the triplet. This in turn induces a
Majorana mass term for the neutrinos with

mν = y∆
〈
∆

0〉= µv2

m2
∆

y∆, (1.44)

where y∆ is a matrix of Yukawa couplings of the triplet scalar with the SM lepton doublets
and µ is a coupling constant between the Higgs and the scalar triplet. Finally, in the type-III
seesaw mechanism, three triplet fermions F i =

(
F−,F0,F+

)
that couple to the SM leptons

and the Higgs are added to the SM lagrangian:

LSM →LSM +∑
i, j

yF
i j
(
Li)T ·F j ·H +∑

i, j
mF

i j
(
F i)T

F j. (1.45)

If the fermion mass term mF is much larger than the electroweak scale, we obtain an effective
Majorana mass matrix for the light neutrinos

mν =
(
yF)T ·

(
mF)−1 · yF . (1.46)

1.3 Neutrino oscillations

The neutrino mass generation mechanisms discussed in the previous section show that the
neutrino weak eigenstates that participate in the weak interaction are not the mass eigenstates
of the Hamiltonian. In the standard model, the weak and mass eigenstates are related by the
equation

να =
3

∑
i=1

Uαiνi, (1.47)

where α = e,µ,τ represents the flavour of the neutrino, Uαi are the elements of the PMNS
matrix and the index i = 1,2,3 refer to the three mass eingestates. Since neutrinos are stable
particles, the mixing in the neutrino sector makes it possible for oscillation between different
flavor states. These oscillations have been observed in
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The phenomenon of neutrino oscillation can be easily understood in the two-generation
framework, where only electron and muon neutrinos are considered. In this case, the mixing
matrix can be parametrized by only one parameter θ :(

ve

vµ

)
=

(
cosθ sinθ

−sinθ cosθ

)(
v1

v2

)
. (1.48)

If the initial state of the particle is given by

|ψ(0)⟩= |ve⟩ ≡ cosθ |v1⟩+ sinθ |v2⟩ (1.49)

then at time T , when the neutrino has traveled a distance L, the wave function has the form

|ψ(x, t)⟩= cosθ |v1⟩e−iφ1 + sinθ |v2⟩e−iφ2, (1.50)

where φi = pi · x and pi represent the momenta of the mass eigenstates. Inverting Eq. (1.48)
one can express the mass eigenstates in terms of the weak eigenstates and replace them in Eq.
(1.50) to obtain

|ψ(L,T )⟩= cosθ
(
cosθ |ve⟩− sinθ

∣∣vµ

〉)
e−iφ1 + sinθ

(
sinθ |ve⟩+ cosθ

∣∣vµ

〉)
e−iφ2

= e−iφ1
[(

cos2
θ + ei∆φ12 sin2

θ

)
|ve⟩−

(
1− ei∆φ12

)
cosθ sinθ

∣∣vµ

〉]
,

(1.51)
where ∆φ12 = φ1 − φ2 = (E1 −E2)T − (p1 − p2)L. We see in Eq. (1.51) that the wave
function that was initially an electron neutrino now can develop a muon neutrino component
as long as ∆φ12 ̸= 0. The oscillation probability of νe → νµ is defined as

P
(
ve → vµ

)
=
〈
νµ |Ψ(L,T )

〉
= sin2(2θ)sin2

(
∆φ12

2

)
. (1.52)

The term ∆φ12 can be expressed in terms of the masses of eigenstates. This can be achieved
by a wave-packet treatment or, equivalently, by setting p1 = p2, E1 = E2 or β1 = β2, where
βi are the Lorentz factors of the mass eigenstates. In each case one obtains

∆φ12 ≈
m2

1 −m2
2

2E
L (1.53)

and the two-flavour oscillation probability becomes

P
(
ve → vµ

)
= sin2(2θ)sin2

((
m2

1 −m2
2
)

L
4Ev

)
. (1.54)
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If we express L in km, ∆m2 = m2
1 −m2

2 in eV2 and Eν in GeV we have

P
(
ve → vµ

)
= sin2(2θ)sin2

(
1.27

∆m2 [eV2]L[ km]

Ev[GeV]

)
. (1.55)

By conservation of probability, the neutrino survival probability, P(ve → ve), takes the form

P(ve → ve) = 1− sin2(2θ)sin2

((
m2

1 −m2
2
)

L
4Ev

)
. (1.56)

In both cases, the wavelengths of the oscillations are given by

λosc[km] =
πEv[GeV]

1.27∆m2
[
eV2] . (1.57)

In the case of three generations of neutrinos, one must use the 3×3 PMNS matrix ve

vµ

vτ

=

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 v1

v2

v3

 . (1.58)

The mixing matrix in the three neutrino framework can be parametrized in terms of three
mixing angles θ13 and one angle δ presenting CP violation

U =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


=

 1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e−iδ

0 1 0
−s13e−iδ 0 c13


 c12 s12 0

−s12 c12 0
0 0 1


 eiα1/2 0 0

0 eiα2/2 0
0 0 1


=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 eiα1/2 0 0

0 eiα2/2 0
0 0 1

 ,

(1.59)
where ci j = cosθi j, si j = sinθi j, δ determines CP violation and the phases αi are relevant
if neutrinos are Majorada because they contribute to CP violation. However, in neutrino
oscillations, these act as global phases and hence they do not affect the results of neutrino
oscillations.
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The neutrino oscillation and survival probabilities in the three-generation scenario can be
calculated following the same procedure used in the case of two generations. In general, the
formula for the oscillation probability in the three flavors scenario is given by [42]:

Pνα→νβ
(L,Eν) = δαβ −4 ∑

k> j
ℜe
[
U∗

αkUβkUα jU∗
β j

]
sin2

(
1.27

∆m2
k j

[
eV2]L[km]

Ev[GeV]

)

+2 ∑
k> j

ℑm
[
U∗

αkUβkUα jU∗
β j

]
sin

(
2.54

∆m2
k j

[
eV2]L[km]

Ev[GeV]

)
.

(1.60)

Figure 1.2 shows the survival probabilities P(νµ → νµ) and P(νe → νe) of muon and electron
neutrinos as a function of the neutrino energy for L = 574 m and L = 1300 km, which are the
positions of the two detectors of the DUNE experiment. We see that the largest oscillations
will be present for muon neutrinos, particularly at around 2.5 GeV, which, as we will see in
the next sections, is exactly the position of the peak of the muon neutrino flux at DUNE.

In principle, the labelings of ν1, ν2 and ν3 are arbitrary. However, it is conventional to
label the mass states in order of increasing content of νe, where ν1 has the most νe content
and ν3 the least. Historically, oscillations were first studied using neutrino fluxes coming
from the Sun and the Earth’s atmosphere. The studies of atmospheric neutrinos are sensitive
to θ23 and ∆m2

32, where the sign of the mass splitting cannot be measured. On the other
hand, solar neutrinos are sensitive to θ12 and ∆m2

21 and the matter effects on the oscillation
make it possible to set the sign of ∆m2

21. This uncertainty in the sign of the mass expliting in
atmospheric neutrinos opens the possibility for two neutrino mass orderings, which are shown
in Figure 1.3. In the normal ordering (NO) ∆m2

32 > 0 and the m1 < m2 < m3. This implies
that the mass eigenstate ν3 with the least electron neutrino content is the heaviest of the three.
On the other hand, in the inverse ordering (IO) we have ∆m2

32 < 0 and m3 < m1 < m2, which
indicates that ν3 is the lightest neutrino mass eigenstate.
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Fig. 1.2 Muon (top) and electron (bottom) neutrino survival probabilities as a function of the
neutrino energy for L = 574 m and L = 1300 km.

Global analyses of neutrino experiments have constrained the values of the main parame-
ters of the neutrino sector [61]. Current constraints at 1 sigma uncertainty are

∆m2
21 =

(
7.53+0.20

−0.16

)
×10−5 eV2,

∣∣∆m2
32
∣∣=

(
2.449+0.032

−0.030
)
×10−3 eV2 (NO)(

2.509+0.032
−0.032

)
×10−3 eV2 (IO)

,

sin2
θ12 = 3.10+0.13

−0.12 ×10−1,

sin2
θ23 =

{
5.58+0.20

−0.33 ×10−1 (NO)

5.63+0.19
−0.26 ×10−1 (IO)

,

sin2
θ13 =

2.241+0.066
−0.065 ×10−2 (NO)

2.261+0.067
−0.064 ×10−2 (IO)

,

δCP =

222◦+38◦
−28◦ (NO)

285◦+24◦
−26◦ (IO)

.

(1.61)
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Fig. 1.3 Representation of the two mass ordering of neutrinos. The figure was adapted from
[55].

It is interesting to note that for neutrinos the mixing angles θ12 and θ23 are quite large
while θ23 is very small, a situation which is very different to the mixing in the quark sector.
Additionally, there is still a large uncertainty in the CP-violating phase.



Chapter 2

Heavy neutral leptons

Neutrinos are fundamental particles in the Standard Model (SM) that are charged only under
weak interactions. Since only left-handed chiral neutrinos have been detected so far, right-
handed chiral neutrinos are not included in the SM. This implies that neutrinos do not interact
with the Higgs field and a neutrino mass term is not necessary. For this reason, neutrinos are
considered massless in the Standard Model. However, in chapter 1 we discussed that there
are several ways to give mass to SM neutrinos, such as the seesaw mechanism. Furthermore,
we discussed the phenomenon of neutrino oscillations, which require that neutrinos have
mass. The existence of the neutrino mass can be explained by adding several right-handed
neutrinos to the SM, as is explained in chapter 1. If the right-handed neutrino mass mN

satisfies mM ≫ eV, we refer to this neutrino as a Heavy Neutral Lepton (HNL). Even if they
exist, the mass scale of HNLs is yet unknown. However, it is possible that these sterile states
might be observed in current and near-future experiments, which makes the study of these
particles an important subject of current theoretical and phenomenological physics.

2.1 Mass scale of HNLs

In the context of the seesaw mechanism, the phenomenology of HNLs depends crucially
on the mass scale of the new physics. As we explained in chapter 1, the mass of the light
neutrinos mν in type-I seesaw has the form

mν =
v2

2ΛNP
c, (2.1)

21
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where v represents the vacuum expectation value of the Higgs, ΛNP the scale of the new
physics and c a coupling constant from the Weinberg operator.

If the coupling constant is of order 1, then we need large values of ΛNP ∼ 1014 GeV to
reproduce the small scale of mν . This approach, known as high scale seesaw, is interesting
because it can be embedded into GUT theories and leptogenesis. However, high scale seesaw
seems to give rise to destabilization of the Higgs mass and, more crucially, is not testable
at current and near-future experiments, except for some indirect hits such as proton decay
and gravitational waves due to cosmis strings [53, 52, 38]. If we let the coupling constant c
in Eq. (2.1) to be small with c ≪ 1, then the value of ∆NP can be sufficiently small so that
the new particles can in principle be detected at current experiment as long as their coupling
to the SM is sufficiently large. This particular scenario corresponds to low-scale seesaw
models where, depending on the values of the coupling constants, HNLs can have masses
ranging from eV to TeV. Finally, it is also possible to generate light neutrino masses even
when the coupling c ∼ 1 and ΛNP is not very large. The existence of Majorana masses would
be evidence that lepton symmetry is broken. Hence, it is possible to argue that the breaking
of lepton symmetry might be responsible for the smallness of the neutrino mass, which is
produced by the systematic cancellation of the contributions of several HNLs. This principle
is present in the inverse, linear and extended seesaw models [41, 14]. In these theories, it is
possible to have HNLs with masses in the MeV-TeV range and large mixings, which opens
the possibility for detection in current or near future experiments.

In chapter 1 we studied some possible mechanisms for neutrino mass generation. In
particular, we concluded that it is possible to add a right-handed neutrino field to the SM
lagrangian since it transforms as a singlet under SU(2)L. From now on, we will label as
N this new sterile neutrino field which will represent a HNL. In terms of the field N, it is
possible to write down an expression for the sterile neutrino sector similar to Eq. 1.31

LHNL = iN̄ /∂N +MD
α ν̄αN − MN

2
N̄cN + h.c. . (2.2)

Although the HNL cannot participate directly in the weak interaction, due to the mixing of N
with the active neutrinos it couples to the SM fields with the interaction lagrangian

LHNL
int =

g√
2

W+
µ Nc ∑

α

U∗
α4γ

µ (1− γ5)ℓ
−
α +

g
2cosθW

ZµNc ∑
α

U∗
α4γ

µ (1− γ5)να + h.c. ,

(2.3)
where the couplings are suppressed by the mixing angles Uα4 between the HNL and the
active neutrinos, which are expected to be small, and ℓα represents the charged SM leptons.
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It is important to note that, in principle, the number of HNLs is not defined. However, if the
masses of the HNLs are all different, they are produced and decay independently and do not
oscillate between themselves and therefore, at least from a phenomenological point of view,
it is reasonable to consider only 1 sterile neutrino. Moreover, we will be mainly interested in
HNLs produced in collider experiments, which are only sensitive to the HNL mass mN and
mixing squared |Uα4|2. For these reasons, our study of HNLs in beam dump experiments
will focus mainly on the analysis of the values of the HNL mass and the mixing parameter of
the HNL to active neutrinos.

2.2 Production of HNLs

The production of HNLs at beam dump experiments such as DUNE or SHiP [19] depends
on the decay rates of mesons into HNLs. These decays are possible because HNLs mix
with active neutrinos. However, the decay rates depend on the value of the HNL mass and
the mixing parameter to active neutrinos. In this section, we summarize the formulas for
calculating the decay rates of charged leptons and mesons into HNL. For more details about
the formulas, we refer the reader to Refs. [30, 25, 24, 43].

2.2.1 Charged lepton three-body decay

HNLs can be produced in charged lepton decays through mixing with the acting neutrinos.
In the context of the DUNE experiment, this production will be mostly linked to decays of a
charged lepton ℓ+α into a HNL given by [24]

Γ±
(
ℓ+α → ℓ+

β
νN
)
=

G2
Fm5

α

192π3

[
|Uα4|2 I±ℓ

(
y2

N ,y
2
ℓβ
,0
)
+
∣∣Uβ4

∣∣2 I±
ℓ̄

(
0,y2

ℓβ
,y2

N

)]
, (2.4)

where mα represents the mass of the parent charged lepton, yN = mN/mα , yℓβ
= mℓβ

/mN ,
|Uα4|2 and |Uβ4|2 are the mixing parameters squared with neutrinos of flavour α and β ,
respectively, and

I±ℓ (x,y,z) = 12
∫ (1−√

z)2

(
√

x+
√

y)2

ds
s
(1+ z− s)

[
s− x− y∓λ

1
2 (s,x,y)

]
×λ

1
2 (s,x,y)λ

1
2 (1,s,z),

I±
ℓ̄
(x,y,z) = 12

∫ (1−√
z)2

(
√

x+
√

y)2

ds
s

[
1+ z− s∓λ

1
2 (1,s,z)

]
(s− x− y)×λ

1
2 (s,y,z)λ

1
2 (1,s,z).

(2.5)
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2.2.2 Leptonic decay of pseudoscalar meson

Pseudoscalar mesons such as π
±, K±, K0 are the main sources of HNL production via

mixing with electron and muon neutrinos at DUNE. Additionally, the decays of the heavy
pseudoscalar mesons D±, D0 and D±

S are important for HNL production via tau mixing. The
decay rate of a pseudoscalar meson h into a charged lepton ℓα and a HNL N is given by [30]

Γ(h → ℓαN) =
G2

F f 2
h m3

h
8π

|VUD|2 |Uα4|2
[
y2

N + y2
ℓ −
(
y2

N − y2
ℓ

)2
]√

λ
(
1,y2

N ,y
2
ℓ

)
, (2.6)

where fH is the decay constant of the parent meson, mh is the mass of the parent meson,
yN = mN/mh, yℓ = mℓ/mh, VUD the corresponding entry on the CKM matrix (which depends
on the internal structure of the meson) and the function λ (a,b,c) is the Källén function

λ (a,b,c) = a2 +b2 + c2 −2ab−2ac−2bc. (2.7)

2.2.3 Semileptonic decay of pseudoscalar meson

At DUNE, semileptonic decays of kaons and D mesons play an important role in the
production of HNLs via electron and muon mixing for the kaon and tau mixing for the D
meson. The equations for the decay rates depend on the nature of the parent pseudoscalar
meson and on the final state meson.

Pseudoscalar meson in final state

The simplest case is the decay of the form h → h′+ ℓ+N, where a pseudoscalar meson h
decays into another pseudoscalar meson h′, a charged lepton ℓ and a heavy neutral lepton N.
In this case, the decay rate of the semileptonic decay of the pseudoscalar meson into HNLs
is given by [30]

Γ
(
h → h′PℓαN

)
=

G2
Fm5

h
64π3 C2

K |VUD|2 |Uα4|2 (IP,1 + IP,2 + IP,3 + IP,4) , (2.8)

where mh is the mass of the parent meson, CK = 1/
√

2 for decays into π
0 and CK = 1 for all

other cases, VUD is the relevant CMK matrix element that depends on the meson structure.
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The integrals IP.i are given by

IP,1 =
∫ (1−yh′)

2

(yℓ+yN)
2

dξ

3ξ 3

∣∣ f+ (q2)∣∣2 Λ
3(ξ ),

IP,2 =
∫ (yℓ+yN)

2

(1−yh′)
2

dξ

2ξ 3

∣∣ f+ (q2)∣∣2 Λ(ξ )G−(ξ )λ
(
1,y2

h′,ξ
)
,

IP,3 =
∫ (1−yh′)

2

(yℓ+yN)
2

dξ

2ξ 3

∣∣ f0
(
q2)∣∣2 Λ(ξ )G−(ξ )

(
1− y2

h′
)2
,

IP,4 =0,

(2.9)

where
Λ(ξ ) = λ

1/2 (1,y2
h′,ξ

)
λ

1/2 (
ξ ,y2

N ,y
2
ℓ

)
G−(ξ ) = ξ

(
y2

N + y2
ℓ

)
−
(
y2

N − y2
ℓ

)2
,

(2.10)

yi =
mi

mh
, ξ =

q2

m2
h

and the function λ (a,b,c) is defined by Eq. (2.7). The functions f (q2)

depend on the type of parent and daughter mesons. All the values of the parameters for these
functions that are used in this work were taken from [30].

1. For K → π decays, we have

f Kπ
+,0
(
q2)= f Kπ

+,0(0)

(
1+λ+,0

q2

m2
π+

)
, (2.11)

where

h,h′ f+,0(0) λ+ λ0

K0,π+ 0.970 0.0267 0.0117
K+,π0 0.970 0.0277 0.0183

2. In the case of D → K and D → π decays, we have

f
(
q2)= f (0)− c

(
z
(
q2)− z0

)(
1+

z(q2)+z0
2

)
1−Pq2 , (2.12)



26 Heavy neutral leptons

where

z
(
q2)= √t+−q2 −

√
t+− t0√

t+−q2 +
√

t+− t0
t+ = (mh +mh′)

2

t0 = (mh +mh′)(
√

mh −
√

mh′)
2

(2.13)

and

f f (0) c P
(
GeV−2)

f DK
+ 0.7647 0.066 0.224

f DK
0 0.7647 2.084 0

f Dπ
+ 0.6117 1.985 0.1314

f Dπ
0 0.6117 1.188 0.0342

.

3. Finally, for D → η decays, we have

f Dsη
+

(
q2)= f Dsη

+ (0)(
1−q2/m2

D∗
s

)(
1−α

Dsη
+ q2/m2

D∗
s

) ,
f Dsη
0

(
q2)= f Dsη

0 (0)

1−α
Dsη
0 q2/m2

D∗
s

,

(2.14)

where f Dsη
+ (0) = 0.495, α

Dsη
+ = 0.198, mD∗

S
= 2.112 GeV, f Dsη

0 (0) = f Dsη
+ (0) and

α
Dsη
0 = 0.

Vector meson in final state

A more complicated case is given by h → h′V + ℓ+N, where a pseudoscalar meson h decays
into a vector meson h′V , a charged lepton ℓ and a heavy neutral lepton N. In this case, the
decay rate of the semileptonic decay of the pseudoscalar meson into HNLs is given by [30]

Γ
(
h → h′V ℓαN

)
=

G2
Fm7

h

64π3m2
h′

C2
K |VUD|2 |Uα |2

(
IV,g2 + IV, f 2 + IV,a2

+
+ IV,a2

−
+

+IV,g f + IV,ga+ + IV,ga− + IV, f a+ + IV, f a− + IV,a+a−
)
,

(2.15)
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where CK = 1/
√

2 for hV = ρ
0 and CK = 0 otherwise in this work. Although there are several

integrals IV,i, it turns out that the only nonvanishing integrals are:

IV,g2 =
m2

hy2
h′

3

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 2 g2 (q2)
Λ(ξ )F(ξ )

(
2ξ

2 −G+(ξ )
)
,

IV, f 2 =
1

24m2
h

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 3 f 2 (q2)
Λ(ξ )×

×
(

3F(ξ )
[
ξ

2 −
(
y2
ℓ − y2

N
)2
]
−Λ

2(ξ )+12y2
h′ξ
[
2ξ

2 −G+(ξ )
])

,

IV,a2
+
=

m2
h

24

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 3 a2
+

(
q2)

Λ(ξ )F(ξ )
(

F(ξ )
[
2ξ

2 −G+(ξ )
]
+3G−(ξ )

[
1− y2

h′
]2)

,

IV,a2
−
=

m2
h

8

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ
a2
−
(
q2)

Λ(ξ )F(ξ )G−(ξ ),

IV, f a+ =
1

12

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 3 f
(
q2)a+

(
q2)

Λ(ξ )×

×
(

3ξ F(ξ )G−(ξ )+
(
1−ξ − y2

h′
)[

3F(ξ )
(

ξ
2 −
(
y2

l − y2
N
)2
)
−Λ

2(ξ )
])

,

IV, f a− =
1
4

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 2 f
(
q2)a−

(
q2)

Λ(ξ )F(ξ )G−(ξ ),

IV,a+a− =
m2

h
4

∫ (1−yh′)
2

(yℓ+yN)
2

dξ

ξ 2 a+
(
q2)a−

(
q2)

Λ(ξ )F(ξ )G−(ξ )
(
1− y2

h′
)
,

(2.16)
where the notations are similar to the previous cases and

F(ξ ) = (1−ξ )2 −2y2
h′(1+ξ )+ y4

h′,

G+(ξ ) = ξ
(
y2

N + y2
ℓ

)
+
(
y2

N − y2
ℓ

)2
.

(2.17)

2.2.4 Tau decays

Although at experiments such as DUNE the main contribution to the HNL productions will
come from electron and muon mixing, it is important to implement HNL production from
tau decays. In general, the tau leptons can be created directly at the target or as the decay of
a heavy meson, such as Ds. In both cases, the tau lepton decay into HNLs represents a probe
to the value of the mixing Uτ4.
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Tau lepton two-body decays

The tau lepton can decay via τ → hP/V N, where hP represents a pseudoscalar meson and hV

a vector meson. The expressions for the decay rates of the tau for each case are given by [30]

Γ(τ → hPN) =
G2

F f 2
h m3

τ

16π
|VUD|2 |Uτ4|2

[(
1− y2

N
)2 − y2

h
(
1+ y2

N
)]√

λ
(
1,y2

N ,y
2
h

)
,

Γ(τ → hV N) =
G2

Fg2
hm3

τ

16πm2
h
|VUD|2 |Uτ4|2

[(
1− y2

N
)2 − y2

h
(
1+ y2

N −2y2
h
)]√

λ
(
1,y2

N ,y
2
h

)
,

(2.18)
where yi =

mi

mτ

, λ is defined in (2.7) and fh is the decay constant of the meson.

Tau lepton three-body decays

Due to its large mass, the tau lepton can also have three body decays.

The first decay has the form τ → Nℓα ν̄α . In this case, the tau lepton decays into a HNL
and a W boson via tau mixing and then the W boson decays into a lepton pair. The decay
rate for this process is

Γ(τ → Nℓα ν̄α) =
G2

Fm5
τ

96π3 |Uτ4|2
∫ (1−yN)

2

y2
ℓ

dξ

ξ 3

(
ξ − y2

ℓ

)2
√

λ
(
1,ξ ,y2

N
)
×

×
((

ξ +2y2
ℓ

)[
1− y2

N
]2
+ξ

(
ξ − y2

ℓ

)[
1+ y2

N − y2
ℓ

]
−ξ y4

ℓ −2ξ
3
)

≈ G2
Fm5

τ

192π3 |Uτ4|2
[
1−8y2

N +8y6
N − y8

N −12y4
N log

(
y2

N
)]

, for yl → 0
(2.19)

The tau lepton can also decay via τ → ντℓαN, where the tau decays into a tau neutrino
and a W boson and then the W boson decays into a charged lepton and a HNL. The decay
rate for this process is

Γ(τ → ντℓαN) =
G2

Fm5
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96π3 |Uα4|2
∫ 1
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, for yl → 0
(2.20)
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Finally, the tau lepton can also decay to pions via τ
+ → π

+
π

0N. In this work, we treat
this decay only at the phase space level. The decay rate of this process is:

Γ(τ+ → π
+

π
0N) =Γ(τ+ → π

+
π

0
ν̄τ)ττ |Uτ4|2
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√
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2(m2
π0 +m2

N)

x
+

(m2
π0 −m2

N)
2

x2

 , (2.21)

where ττ is the lifetime of the tau lepton. The integral in Eq. (2.21) represents a rescaling of
the decay rate of tau into pions due to the mass of the heavy neutral lepton.

2.3 Decay of HNLs

Heavy neutral leptons can decay via mixing with the active neutrinos of the SM. There
are several HNL decay channels with rates that depend on the final states of the process,
the value of the HNL mass and the mixing parameters. In this section, we summarize
the formulas for calculating the decay rates of HNLs into several final states and we label
them for convenience. For more details about the formulas, we refer the reader to Refs.
[30, 25, 24, 43].

2.3.1 Decays into three leptons

A heavy neutral lepton can decay into a neutrino and two charged leptons. The decay rate
will depend on the nature of the charged leptons.

Decay 1: N → ℓ−α νβ ℓ
+
β

These decays are defined by N → ℓ−α νβ ℓ
+
β

with α ̸= β . In this case, the HNL decays into a
charged lepton and a W boson, which decays into a lepton pair. This process is mediated
only by charged currents. The decay rate for this process is

Γ1

(
N → ℓ−α νβ ℓ

+
β

)
=

G2
Fm5

N
192π3 |Uα4|2 I

(
xνβ

,xℓβ
,xℓα

)
, (2.22)
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where xi =
mi

mN
,

I (a,b,c)≡ 12
∫ (1−a)2

(b+c)2

dx
x

(
x− c2 −b2)(1+a2 − x

)√
λ (x,c2,b2)λ (1,x,a2) (2.23)

and λ (a,b,c) is defined by (2.7).

Decay 2a: N → ναℓ
+
β
ℓ−

β

These decays are defined by N → ναℓ
+
β
ℓ−

β
. In this case, the HNL decays into a light neutrino

and a Z boson, which decays into a charged lepton pair. This decay is mediated by the neutral
weak current and its rate is given by
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(2.24)

where x=
mℓβ

mN
, L(x)= log
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)

and θW represents the Weinberg angle. Equation (2.24)is
valid for Dirac HNLs. However, for Majorana HNLs, the presence of the neutral current adds
a factor of 2 to the decay rate.

Decay 2b: N → ναℓ
+
α ℓ

−
α

These decays are identified by the process N → ναℓ
+
α ℓ

−
α . In this case, the HNL decays into a

light neutrino and a Z boson, which decays into a charged lepton pair of the same flavor of
the neutrino. Since all the leptons have the same flavor, this decay has diagrams that involve
neutral and charged weak currents. The rate of this process is given by
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)
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where x=
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and θW represents the Weinberg angle. Equation (2.25)
is valid for Dirac HNLs. However, for Majorana HNLs, the presence of the neutral current
adds a factor of 2 to the decay rate.

Decay 3a: N → να ν̄β νβ

The HNL decays into one neutrino and a Z boson, which decays into a neutrino-antineutrino
pair with a flavor that is different from the first neutrino. The rate of this process is given by

Γ3a
(
N → νανβ ν̄β

)
=

G2
FM5

N
768π3 |Uα |2 (2.26)

Equation (2.26) is valid for Dirac HNLs. However, for Majorana HNLs, the presence of the
neutral current adds a factor of 2 to the decay rate.

Decay 3b: N → να ν̄ανα

The HNL decays into one neutrino and a Z boson, which decays into a neutrino-antineutrino
pair with the same as the first neutrino. The rate of this process is given by

Γ3b
(
N → νανβ ν̄β

)
=

G2
FM5

N
384π3 |Uα |2 (2.27)

Equation (2.27) is valid for Dirac HNLs. However, for Majorana HNLs, the presence of the
neutral current adds a factor of 2 to the decay rate.

2.3.2 Charged pseudoscalar meson and charged lepton

If the neutrino is heavy enough, it can decay into mesons and charged leptons. This decay is
important because it can provide a signature of HNL at collider experiments.

Decay 4: N → l−α h+P

The HNL decays into one lepton and a W boson, which decays into a quark pair that
hadronizes into a charged pseudoscalar meson. The decay rate is given by

Γ4
(
N → ℓ−α h+P

)
=
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2
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)
, (2.28)
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where fh is the decay constant of the meson, VUD the respective element of the CKM matrix,
xi =

mi

mN
and λ (a,b,c) is given by Eq. (2.7).

2.3.3 Neutral pseudoscalar meson and neutrino

Decay 5: N → ναh0
P

The HNL decays into one neutrino and a Z boson, which decays into a quark-antiquark pair
that hadronizes into a neutral pseudoscalar meson. The decay rate is given by

Γ5
(
N → ναh0

P
)
=

G2
F f 2

h m3
N

32π
|Uα |2

(
1− x2

h
)2
, (2.29)

where fh is the decay constant of the meson and xh =
mh

mN
.

2.3.4 Charged vector meson and charged lepton

Decay 6: N → ℓ−α h+V

The HNL decays into one charged lepton and a W boson, which decays into a quark pair that
hadronizes into a charged vector meson. The decay rate is given by

Γ6
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N → ℓ−α h+V

)
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(2.30)
where gh is the decay constant of the vector meson, xh =

mh

mN
and λ (a,b,c) is defined by Eq.

(2.7).

2.3.5 Neutral vector meson and neutrino

Decay 7: N → ναV 0

The HNL decays into one neutrino and a Z boson, which decays into a quark-antiquark pair
that hadronizes into a neutral vector meson. The decay rate is given by

Γ7
(
N → ναh0

V
)
=

G2
Fκ2

h g2
ρ |Uα |2 m3

N

32πm2
h
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h
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(2.31)
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where gρ is the decay constant of the ρ
0 meson, xh =

mh

mN
and the parameter κh depends on

the meson. For the ρ
0 and φ mesons we have:

κρ0 = 1−2sin2
θW , (2.32)

κφ =
4
3

sin2
θW −1. (2.33)

2.4 HNL total decay rate and lifetime

In Section 2.3 we discussed the decay channels of the HNL. In this section, we will find
expressions for the total width and lifetime of the HNL. For a Dirac HNL, the total decay
rate is given by

Γ
Dirac
Total = Γ1 +Γ2a +Γ2b +Γ3a +Γ3b +Γ4 +Γ5 +Γ6 +Γ7 (2.34)

and its lifetime is
τN =

1
ΓTotal

, (2.35)

where the decay rates Γi represent the decays presented in Section 2.3.

Since, in general, neutrinos can be Dirac or Majorana in nature, the available decay
channels of a heavy neutral lepton will depend on its Dirac or Majorana nature. For instance,
a Dirac HNL can decay via N → e−π

+, but a Majorana HNL can decay via both N → e−π
+

and N → e+π
− since it is its own antiparticle. This extends to all the charged current HNL

decays, which implies that the total charged current decay rate of Majorana is twice the
charged current decay rate of Dirac HNLs. Additionally, the decay rates that involve neutral
currents for Majorana HNLs are also twice the corresponding decay rates of Dirac HNLs.
Therefore, we can conclude that the total decay rate of Majorana HNLs is twice the total
decay rate of Dirac HNLs:

Γ
Majorana
Total = 2Γ

Dirac
Total . (2.36)

Additionally, the lifetimes are related by

τMajorana =
1
2

τDirac, (2.37)

which implies that Majorana HNLs decay faster than Dirac ones.
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2.5 Oscillations into HNLs

Heavy neutral leptons mix with the active neutrinos of the standard model. Therefore, it is
possible for HNLs to oscillate into active neutrinos. In general, the structure of the survival
probability of a neutrino να can be expressed as [40]:

Pνα→να
= Pinv

να→να
+Papp

να→να
, (2.38)

The first term Pinv
να→να

in Eq. (2.38) is called invisible and takes into account the oscillation
of να into unobservable states such as a HNL. The second term Papp

να→να
is called appearance

and represents the case when να oscillates into other states and then oscillates back to its
original flavor α .

We are mainly interested in the case where the active neutrino να disappears due to
oscillations to HNLs; therefore, we will focus on the invisible term of the survival probability.
Considering mN ≫ mνα

, the general formula for the invisible term is

Pinv
να→να

=−4
(

1−|Uα4|2
)
|Uα4|2 sin2 (1.27m2

NL/Eνα

)
exp(−ΓNL/2)

+2
(

1−|Uα4|2
)
|Uα4|2 exp(−ΓNL/2)

+
(

1−|Uα4|2
)2

+ |Uα4|4 exp(−ΓNL) ,

(2.39)

where ΓN represent the total decay rate of the HNL, L the distance traveled by the active
neutrino and Eνα

its energy. Note that we are considering the possibility that the active
neutrino oscillates into a sterile neutrino. If we set in ΓN = 0 or ΓNL → 0 in Eq. (2.39), we
get:

Pinv
να→να

= 1−4
(

1−|Uα4|2
)
|Uα4|2 sin2 (1.27m2

NL/Eνα

)
(2.40)

and for ΓNL ≫ 1 we obtain:

Pinv
να→να

=
(

1−|Uα4|2
)2

. (2.41)

In this work, we are considering HNL masses starting from 1 eV, but we are mainly interested
in heavy neutral leptons where mN ≫ 1 eV. In this mass range, it is not possible to directly
observe the behavior of the oscillations of active neutrinos into HNLs at collider experiments,
but the average out of the oscillation will still have an effect on the active neutrino flux,
effectively decreasing the number of active neutrinos that reach the detector. If we take the
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average out in Eq. (2.39) we get:

Pinv
να→να

=
(

1−|Uα4|2
)2

+ |Uα4|4 exp(−ΓNL) , (2.42)

which, in the limit Γ4L ≪ 1, becomes

Pinv
να→να

= 1−2
(

1−|Uα4|2
)
|Uα4|2 . (2.43)
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Chapter 3

Experimental and simulation framework

3.1 The DUNE Experiment

Neutrino physics is currently one of the most important research fields of high energy physics.
One of the main reasons for this interest in neutrinos is that several of their properties such
as their mass scale, mixing angles, CP violation phase and Dirac/Majorana nature are still
partially or totally unknown. Current and future neutrino experiments aim to measure these
and other neutrino parameters with enough precision to determine exactly how the current
Standard Model of particle physics must be extended to incorporate the neutrino properties
discovered in the last decades. One of these is the Deep Underground Neutrino Experiment
(DUNE) [4, 6–9], which will make use of the world’s most intense neutrino beam to conduct
a high precision study of neutrino oscillations and also look for beyond standard model
signals in its detectors. In this section, we will describe the main features of DUNE, with
particular interest in its Near Detector Complex.

3.1.1 DUNE Facilities

The DUNE experiment will consist of three main facilities: the Long-Baseline Neutrino Facil-
ity (LBNF), the DUNE Near Detector (DUNEND), and the DUNE Far Detector (DUNEFD).

1. Long-Baseline Neutrino Facility
The Long-Baseline Neutrino Facility (LNBF) will be located at Fermilab and will
produce the world’s most intense neutrino beam. This beam will be produced in a
series of steps. First, the PIP-II linear particle accelerator [1, 23] and the rest of the
Fermilab accelerator chain will provide a high luminosity proton beam with a power
between 1.0 and 1.2 MW over a wide energy band of 60 GeV to 120 GeV. This proton

37



38 Experimental and simulation framework

Fig. 3.1 DUNE Facilities. Image taken from [6].

beam will then collide with a graphite target located at the Target Hall Complex, with
around 1.47×1021 POTs expected each year. Each collision will produce mesons and
other particles capable of decaying into neutrinos. The charged particles produced
will immediately be deflected by a set of magnetic horns, which will operate in two
different configurations: one that favors the presence of neutrinos in the beam (neutrino
mode) and another that favors antineutrinos (antineutrino mode). After leaving the
magnetic horns, the particles will travel inside a decay pipe, where they will decay on
flight. Finally, all undesired particles will be absorbed by a set of shielding facilities so
that the final beam that arrives at the detectors is composed only of neutrinos.

2. DUNE Near Detector
The DUNE Near Detector (DUNEND) [4] complex is located at 574 m from the target
and its main goal is to constraint systematic uncertainties in neutrino oscillations by
precisely measuring the spectra of the neutrino beam produced by the LBNF. The
DUNEND complex consists of three detectors. The first one, named ArgonCube, is a
liquid argon time proyection chamber (LArTPC). It has a width of 7 m, a height of 3
m (both transverse to the beam direction), a length of 5 m in the beam direction and
is filled with a fiducial mass of 50 tons of liquid argon. Its technology is very similar
to the one used by the far detector, which helps to decrease systematic errors related
to nuclear effects. The second detector is the multi-purpose detector (MPD), which
consists of a high-pressure argon TPC surrounded by an electromagnetic calorimeter
(ECAL) in a 0.5 T magnetic field. The MPD’s goal is to measure the momentum and
charge of the muons that exit ArgonCube. Both ArgonCube and the MPD can move
horizontally from the beam axis by a distance of up to 33 m, a configuration known as
DUNE PRISM. These off-axis positions make it possible to study the neutrino beam
at larger angular distributions, where the beam is more monochromatic. Finally, the
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DUNEND also includes the System for on-Axis Neutrino Detection (SAND) [58],
which is a beam monitor that always stays on-axis and acts as a systematic crosscheck
for the flux measured by ArgonCube.

3. DUNE Far Detector The DUNE Far Detector (DUNEFD) will be located 1300 km
from the DUNEND, at the Underground Particle Detector of the Sanford Underground
Research Facility, which is located 1.5 km underground. It will consist of four LArTPC
detector modules with a combined total of 40 kt of liquid argon fiducial mass. Each
LArTPC is located inside a cryostat of dimensions 15.1 m × 14.0 m × 62.0 m. The
main goal of the DUNEFD is to measure the spectra of incoming neutrinos in order
to derive neutrino oscillation parameters. The DUNEFD will be able to reconstruct
neutrino interactions with unprecedented resolution and its large fiducial mass will
provide high statistics capable of conducting precision measurements of neutrino
oscillations. Currently, there are two LArTPC technologies being developed for the
DUNEFD. In the first one, known as single-phase [9], the ionization charges drift
horizontally within the liquid argon towards a vertical anode due to the action of an
electric field. In this case, no signal amplification occurs inside the cryostat; hence,
very low-noise electronics are needed to achieve a good signal-to-noise ratio. In
the second one, known as double-phase [5], the ionization charges drift vertically
upward towards a layer of argon gas above the liquid. The signal in the gas is then
amplified before reaching a horizontal anode. This amplification of the signal reduces
the requirements of low-noise electronics in comparison to the single-phase technology.
The DUNE collaboration is currently developing both technologies to implement them
in the experiment.

3.1.2 DUNE Physics

The DUNE experiment will explore several areas involving neutrino physics [7], but its main
research interest will be related to the phenomenology of neutrino oscillations, a phenomenon
that implies flavor-mixing in the neutrino sector as well as nonzero neutrino masses. The
scale and value of these masses are still unknown and are beyond the reach of any neutrino
oscillation experiment, including DUNE. However, the mass ordering of neutrinos, as well
as the values of the mixing angles and the CP violating phase can and will be tested by
DUNE with unprecedented precision: the mixing angles θ23 and θ13 will be measured at the
few percent level and the CP violation phase δCP at the 10% level. In particular, the value
of δCP is crucial in determining the matter-antimatter asymmetry in the universe; finding
CP violation at DUNE would favor the leptogenesis mechanism as the origin of the baryon
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asymmetry of the universe [34]. The precise values of the mixing parameters to be obtained
by DUNE are also important for beyond the standard model theories, such as Gran Unified
Theories, where high precision experiments are needed in order to test their predictions
[21, 25].

Due to its excellent reconstruction capabilities, DUNE will also be able to look for signals
that are beyond neutrino oscillations. For instance, DUNE will be sensitive to proton decays
and to neutron-antineutron oscillations, two processes that involve baryon number violation,
a phenomenon that is crucial for Gran Unified Theories [51, 37]. DUNE will also be able to
measure the neutrino bursts produced in closeby supernovae and extract precise information
about the collapses of these stars [50, 46]. Additionally, DUNE will look for evidence of
beyond standard model theories such as active-sterile neutrino mixing [33], nonunitarity
of the PMNS matrix [20], nonstandard interactions [2], CPT or Lorentz violation [48, 49],
neutrino trident production [17], dark matter [45] and heavy neutral leptons [3].

3.2 Simulation Configuration for DUNEND

The DUNE experiment will have several facilities, each with its own particular experimental
configuration. In this work, we are interested in the details that are relevant for the simulation
of neutrino events at the DUNEND facility [10]. As mentioned in section 3.1, the DUNEND
will consist of three detectors: ArgonCube, the MPD and SAND. Since the role of SAND
is only to monitor the beam stability, we will focus on ArgonCube and the MPD. Besides,
since we are only interested in the neutrino-argon CC event rates, our main interests are the
masses of the detectors and their geometrical acceptance. Fig. 3.2 shows schematically the
distribution of the detectors at the DUNEND. The following describes the exact parameters
of the DUNEND configuration assumed in our simulations.

The LBNF will provide a 120 GeV proton beam, which will collide into a graphite target,
producing 1.47× 1021 POTs each year. At each collision, several mesons are produced,
including mostly pions, kaons and charmed mesons. The muons and other long-lived charged
particles (mostly pions and kaons) are deflected by magnetic horns located right after the
target; as a consequence, the trajectories of some of them end up preferably oriented along
the beam axis, as shown schematically in Fig. 3.2. The magnetic horns can work in two
modes: a neutrino mode, which focuses positively charged particles along the beam axis
and hence favors the presence of neutrinos in the beam, and an antineutrino mode, which
focuses negatively charged particles and hence favors the presence of antineutrinos in the
beam. On the other hand, the trajectories of neutral and short-lived are not affected by the
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Fig. 3.2 Configuration of DUNEND used in simulations.

magnetic focusing horns. After their production at the target, most particles decay on flight
inside the decay pipe, a cylinder with a length of 230 m and a diameter of 2 m. However,
a small number of long-lived particles reach the end of the decay pipe and decay at rest at
its surface. The decays of these particles produce a neutrino beam that is mostly focused
towards the DUNEND detectors.

The first detector along the beamline is ArgonCube, a LArTPC containing a fiducial mass
of 50 tons of liquid argon. It has a height of 3 m, a width of 7 m (both perpendicular to the
beam axis) and a length of 5 m along the beam axis, as shown in Fig. 3.2. It is located at 574
m from the target. The second detector along the beamline is the multi-purpose detector, a
high-pressure argon TPC containing 1 ton of gaseous argon. It has the shape of a cylinder,
with a diameter of 5 m and a length of 5 m. The axis of the cylinder is perpendicular to the
beam axis, as shown in Fig. 3.2. The MPD is positioned right after ArgonCube and at a
distance of 579 m from the target. Both ArgonCube and the MPD are capable of moving
horizontally to different off-axis positions, with a maximum of 30 m from the beam axis.

3.3 Meson and lepton production at DUNE

The production of the neutrino beam at DUNE will depend on the number of particles
produced at the target that are capable of decaying into neutrinos, which from now on we will
refer to as "parents". We will divide the possible neutrino parents into three categories: light
parents (muons, pions and kaons), D mesons and tau leptons. Each kind of parent will have a
different production rate and therefore will make a different contribution to the total neutrino
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flux. Of course, there will be other particles produced at the target that, in principle, will also
be able to decay into neutrinos; however, we will ignore them since their contributions to the
neutrino flux are comparatively negligible.

3.3.1 Light parents

The DUNE neutrino beam will be produced by the decays of particles produced at the DUNE
target. In each proton-on-target, several types of particles will be produced, but only some of
them will have decay channels with final state neutrinos and even fewer will have branching
ratios into neutrinos above a few percent. For instance, both K0

L and K0
S will be produced at

the same rate at the DUNE target; however, while the former has semileptonic decays with
branching ratios above 60%, the semileptonic decays of the latter have branching ratios below
0.1%. This means that the contribution of K0

S to the DUNE neutrino flux is small enough
to be considered negligible. When one takes into account both the production rate and the
branching ratios with final state neutrinos, only a handful of particles make up for almost the
entire neutrino flux at DUNE. These particles are what we call light parents and are listed
in Table 3.1, where we include their masses and lifetimes. One of the main properties of
these particles is that they have small masses, which means that they will be sensitive to the
deflections of the magnetic horns. Additionally, their large lifetimes will allow them to decay
further away from the LBNF target.

Table 3.1 Light parents considered in this work.

m [MeV] τ [10−8 s]

µ
± 105.66 219.70

π
± 139.57 2.60

K± 493.68 1.24
K0

L 497.61 5.12

Among these light parents, some of them will be produced more copiously than others
due to the nature of the LBNF proton beam and target. In order to estimate which particles
will be more relevant to the neutrino flux, we calculated an estimate of the average number
of these particles to be produced at the DUNE target per POT. These estimates were obtained
with a simulation in the software PYTHIA8 [57], where we used the flag SoftQCD:all
and collided a beam of 120 GeV protons into protons and neutrons at rest. Our results are
consistent with [27]. We can conclude that pions will be the most abundant light parents at
DUNE, followed by kaons and finally muons.
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Table 3.2 Particles that dominate the electron and muon neutrino flux at DUNE, with an
estimate of the average number of these particles produced per POT when 120 GeV protons
hit protons or neutrons.

Particles per POT

120 GeV pp 120 GeV pn
π
+ 2.8 2.4

π
− 2.2 2.5

K+ 0.23 0.23
K0

L 0.19 0.19
K− 0.18 0.19
µ
+ 9.75×10−4 2.36×10−4

µ
− 8.94×10−4 2.09×10−4

Right after the light parents are produced at the DUNE target, they immediately enter a
set of magnetic horns. The presence of these horns will affect the trajectory of the charged
parents and hence will affect their contributions to the neutrino flux. The magnetic horns can
act in two different configurations.

• Neutrino mode: In this configuration, the magnetic horns will focus the positively
charged particles along the beam axis, while the negatively charged particles will be
deflected away from the beam. This configuration favors the presence of electron and
muon neutrinos in the flux.

• Antineutrino mode: The magnetic horns can also act in a second configuration that
focuses the negatively charged particles along the beam axis and deflects the positively
charged particles away from the beamline. This configuration favors the presence of
antineutrinos in the flux.

In order to take into account the effect of the magnetic horns, we used the data provided
by the DUNE Beam Interface Working Group [35], which makes use of GEANT4 [11, 16]
and FLUKA [36, 28]. This data contains all the information about the energies, momenta,
vertices and weights of the light parents after they exit the magnetic horns, both in neutrino
and antineutrino mode. Figure 3.3 shows the spectra of light parents after they exit the
magnetic horns in neutrino mode, where different bin widths have been used for different
species for clarity purposes. The plot shows that muons peak around 0.2 GeV, pions around
0.3 GeV and kaons around 0.6 GeV. It is also quite clear that pions dominate over the other
particles and muons are the least abundant light parents at DUNE.
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Fig. 3.3 Spectra of light parents leaving the magnetic horns at DUNE in neutrino mode.

The magnetic horns will not only affect the energy of the particles produced at DUNE but,
more importantly, their propagation directions. Figure 3.4 displays the angular distribution
of the charged light parents produced at the DUNE target after they exit the magnetic horns.
We see that these particles are mostly oriented at very small angles. For pions and kaons,
the angular distributions peak at around 0.4◦ and for muons they peak at around 0.5◦. These
small angles are evidence of the focusing effect of the magnetic horns on positively charged
parents when they operate in neutrino mode.
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Fig. 3.4 Angular distributions of charged light parents after they exit the magnetic horns in
neutrino mode.
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As already mentioned, the magnetic horns can also act in antineutrino mode. In this
setup, the negatively charged particles will be focused along the beam axis, favoring the
production of antineutrinos. Figure 3.5 shows a comparison between the angular distributions
of positively charged pions in neutrino and antineutrino mode. In antineutrino mode (blue),
the positively charged pions are deflected away from the beam axis and its angular distribution
peaks at around 25◦. It is also relevant to compare the different effects that the magnetic
horns have on different particle species. Since the kaons are more massive than the pions, it is
natural to expect that their larger inertia will tend to attenuate the amount of deflection caused
by the magnetic horns. This effect is seen in Figure 3.6, where the angular distributions of
both pions and kaons are shown. The distance between the peaks of the angular distributions
of π

+ and π
− is larger than the one between K+ and K−, which indicates that the pions are

more sensitive to the deflection.
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Fig. 3.5 Comparison between angular distributions of π
+ in neutrino (red) and antineutrino

(blue) mode.

After leaving the magnetic horns, all these light particles will decay on flight inside the
decay pipe. The decay vertices of these particles will be determined by their energies and
their lifetimes. Table 3.1 lists the lifetimes of the light particles considered in this work.
Muons will have the largest lifetimes and hence will propagate a larger distance before
decaying into neutrinos.

Depending on the decay channels available for each specimen, some will dominate the
electron or the muon neutrino flux. Table 3.3 shows the main branching ratios to neutrinos
of the light parents considered in this work. We see that the charged pions will dominate
the muon neutrino production at DUNE, followed by kaons. On the other hand, kaons and
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Fig. 3.6 Comparison between angular distributions of pions and kaons after they exit the
magnetic horns acting in neutrino mode.

muons will dominate the electron neutrino production. A similar reasoning can be made
for the antineutrinos. We have to consider that the exact contribution of each parent to the
neutrino flux will also depend on the particle’s direction of propagation, boost and decay
vertex.

Table 3.3 Dominant branching ratios to neutrinos of light parents considered in this work.

Channel BR (%)

π
+ → µ

+
νµ 99.987

e+νe 0.012
K+ → µ

+
νµ 63.56

π
0e+νe 5.07

π
0
µ
+

νµ 3.35
e+νe 0.002

K0
L → π

±e∓νe 40.55
π
±

µ
∓

νµ 27.04
µ
+ → e+νeν̄µ 100.00

3.3.2 Heavy mesons

Besides light mesons such as pions and kaons, other heavier mesons capable of decaying
into neutrinos will also be produced at DUNE. The creation of these heavier mesons will
involve the production of heavy quarks, which is heavily suppressed due to the low cc̄ and
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bb̄ production cross sections at DUNE energies. Still, the cc̄ production rate is high enough
to take into consideration the contribution of D mesons, especially because their decays will
make up for virtually all the tau neutrino flux at DUNE. The heavy parents considered in this
work are shown in Table 3.4. These mesons have short lifetimes, so they will not propagate
large distances in the decay pipe. On the other hand, their large masses will be relevant when
we consider the possibility of heavy neutral lepton production from their decays.

Table 3.4 Lifetimes of heavy mesons considered in this work.

m [MeV] τ [10−15 s]

D0 1864.83 410
D± 1869.65 1040
D±

s 1968.27 500

In order to test how relevant these mesons will be for neutrino production at DUNE,
we calculated their production rates at DUNE energies. Table 3.5 shows an estimate of the
number of heavy mesons produced at DUNE per POT. These estimates were calculated with
a simulation in PYTHIA8, in which we collided 120 GeV protons into protons and neutrons
at rest with the flag SoftQCD:all. Our results are consistent with [27]. We note that neutral
mesons are more abundant, followed by the charged mesons and finally the charged strange
mesons. If we compare tables 3.2 and 3.5, we can conclude that the production rates of heavy
mesons are several orders of magnitude smaller than that of the lighter parents, which will
then dominate the electron and neutrino flux. Still, the heavy parents are important because
they will be the only ones capable of producing tau neutrinos and also because they can
produce heavy neutral leptons with masses larger than the kaon mass.

Table 3.5 Most abundant heavy particles at DUNE that can decay into neutrinos, with an
estimate of the average number of these particles produced per POT when 120 GeV protons
hit protons or neutrons.

Particles per POT

120 GeV pp 120 GeV pn
D̄0 1.1×10−5 1.2×10−5

D0 6.8×10−6 6.7×10−6

D− 5.7×10−6 6.1×10−6

D+ 3.6×10−6 3.6×10−6

D−
s 1.5×10−6 1.7×10−6

D+
s 1.1×10−6 1.1×10−6
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Although some of the D mesons produced at the DUNE target are charged, the magnetic
horns will not have any effect on their trajectories because, according to Table 3.4, their
lifetimes are so small that they decay almost instantaneously after being produced. This also
implies that the momenta of these particles is the same when the horns operate in neutrino
and antineutrino mode. Due to their small production rate, the simulation of the production
of heavy mesons in PYTHIA8 can be quite computationally expensive. In order to obtain
good statistics for the momentum distributions of these particles, we decided to obtain the
energy and momenta of these particles from parametrization formulas. The production
cross-section of charmed mesons in proton-proton collisions at beam energies of 400 GeV
can be parametrized in the center of mass frame by the empirical form

d2σ

dxFd p2
T

∝ (1−|xF |)e−bp2
T , (3.1)

where xF = 2pz
√

s, pz is the longitudinal momentum of the particle, pT the transverse
momentum, n = 6.1±0.7 and b = 1.08±0.09 [18]. The values of these parameters were
fitted from the E769 experiment, which operated at beam energies of 400 GeV, greater
than those typical of DUNE. In order to study the effects of this energy difference, we
simulated fixed-target proton on proton collisions at beam energies of 400 GeV and 120
GeV in PYTHIA8 with the flag SoftQCD:all. As expected, Eq. 3.1 works well for beam
energies of 400 GeV. However, we found that the simulated data at 120 GeV is not properly
represented by 3.1. This discrepancy arises from the charmed meson production cross-section
dependence on xF , which is no longer accurately described by the function (1−|xF |)n. On
the other hand, the exponential dependence on p2

T was corroborated, albeit with a different
value for the parameter b. In order to obtain a more reliable parametrization for charmed
meson production at DUNE energies, we fitted the simulated data provided by PYTHIA8 to
the parametrization formula

d2σ

dxFd p2
T

∝

√
a
π

e−ax2
F e−bp2

T , (3.2)

where the xF dependence is now modeled by a Gaussian distribution. The values obtained
for the parameters a and b for each meson flavor are shown in Table 3.6.

Figure 3.7 compares the data produced by PYTHIA8 with the best fits of the parametriza-
tion formulas 3.1 and 3.1. We note that the equation 3.2 is a much better representation of
the data produced by PYTHIA8. In this work, we generated all the charmed meson energy
and momenta by making use of the parametrization formula of Eq. 3.2 and the values of
Table 3.6.
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Table 3.6 Values of the parameters a and b of parametrization formula (3.2) obtained by
fitting to simulated data produced with PYTHIA8.

a b

D+ 15.282±0.113 0.721±0.015
D− 12.959±0.163 0.923±0.021
D+

s 16.886±0.166 0.627±0.009
D−

s 15.176±0.228 0.784±0.017
D0 16.203±0.107 0.744±0.014
D̄0 13.013±0.160 0.957±0.022

(a) caption (b) caption

Fig. 3.7 Differential cross sections for D meson production at DUNE energies in PYTHIA8
(red) and parametrizations (3.2) (solid black) and (3.1) (dashed black).

With the help of the parametrization formulas, we produced a large dataset of D mesons
that provided sufficiently high statistics to test their contributions to the DUNE neutrino
flux. Figure 3.8 shows the spectra of D mesons produced at the DUNE target. Since all the
heavy parents are D mesons, their spectra are quite similar, although with differences in their
abundances and peak energies. For instance, D̄0 is the most abundant heavy parent and D+

s

is the most energetic. It is important to remember that these particles will not be affected
by the magnetic horns and, therefore, they are not sensitive to the neutrino or antineutrino
configurations.

In this work, we will assume that, after being produced at the DUNE target, these heavy
mesons will decay promptly right after the target. This approach is motivated by the small
lifetime of D mesons, which is shown in Table 3.4. The largest lifetime is on the order of
O(10−15) s, which is much smaller than the lifetimes of lighter particles, which are around
O(10−8) s, seven order of magnitudes larger.
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Fig. 3.8 Spectra of heavy parents at DUNE.

Finally, we will list the decay channels we considered for the heavy mesons. Since they
don’t have dominant channels into neutrinos, we decided to include a large variety of possible
decays. Table 3.7 shows the branching ratios of these decay channels. Almost all of them
are below 10% and most of them are on the order of a few percent. The largest branching
ratio belongs to the decay D+

s → φe+νe, which is around 24%. We have also included some
branching ratios that are very small because they might still be relevant if these mesons decay
into HNLs.

3.4 Active neutrino flux at DUNE

In the last section, we discussed the production of the particles at the DUNE target that
are responsible for the largest contributions to the neutrino flux. These particles will travel
through the magnetic horns and then will decay on flight inside the decay pipe into neutrinos
and other particles. The contribution of each particle species to the neutrino flux will
depend on its lifetime, which determines its decay vertex, and decay channels. In order to
calculate the neutrino flux at the DUNEND, we used a simulation in PYTHIA8. We gave
PYTHIA all the relevant information about the parents (masses, lifetimes, decay channels,
branching ratios, energies, momenta and production vertices) and then let it handle all the
decay kinematics. In this way, we obtained a dataset that contains information about all
the neutrinos produced at DUNE. Finally, we used a custom script to store the kinematic
information of the active neutrinos that lie within the geometrical acceptance of the detectors
at DUNEND. This script takes into account the tridimensional shapes of the detectors,
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Table 3.7 Dominant branching ratios to neutrinos of light parents considered in this work.

Channel BR (%) Channel BR (%)

D+
s → e+νe 8.3×10−3 D+ → e+νe 8.8×10−4

µ
+

νµ 0.55 µ
+

νµ 3.7×10−4

τ
+

ντ 5.48 τ
+

ντ 0.12
ηe+νe 2.32 K0e+νe 8.73
ηµ

+
νµ 2.40 K0

µ
+

νµ 8.74
η
′e+νe 0.80 K̄∗0e+νe 5.40

η
′
µ
+

νµ 1.10 K̄∗0
µ
+

νµ 5.25
φe+νe 23.9
φ µ

+
νµ 1.90

D0 → K−e+νe 3.53
K−

µ
+

νµ 3.31
K∗−e+νe 2.15
K∗−

µ
+

νµ 1.86

including the fact that the multi-purpose detector has the shape of a cylinder with its axis
perpendicular to the beamline. Figure 3.9 shows our results for the νµ flux at ArgonCube
produced by the decays of π

+ when the horns are working in neutrino mode. The flux has
a peak around 2.3 MeV which, as we will see, represents the peak of the muon neutrino
flux at DUNE. Due to their larger abundancy and better orientation along the beamline, the
contribution of the positive pions dominates the νµ flux at DUNE, producing a total flux
at ArgonCube of around 9.4×10−8

νµ/POT/cm2, which, assuming 1.47×1021 POTs per
year, translates into 29×1018 muon neutrinos hitting ArgonCube each year. The other light
parents will also contribute to the muon neutrino flux, albeit with much lower intensity.
Figure 3.10 displays our results for the νµ flux at ArgonCube produced by several light
parents when the horns operate in neutrino mode. It is clear from the plot that the charged
pions dominate the νµ flux below 5 MeV, which is the region where the peak is located.
Above 10 MeV, the contribution of charged kaons becomes dominant and they account for
virtually all the muon neutrino flux at higher energies. In comparison, the flux produced by
muons and neutral kaons is completely overshadowed by pions over the entire energy range.

Although DUNE is optimized for muon neutrino production, a large amount of electron
neutrinos will also be produced, although at a much lower rate. Figure 3.11 shows the results
of our calculations of the expected electron neutrino flux at ArgonCube. First, we note that
the νe flux is around 2 orders of magnitude smaller than the νµ flux. This difference is
considerable, but, as we will see in the next sections, the electron neutrino flux is still high
enough to provide good statistics for heavy neutral lepton searches. We also note that muons
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Fig. 3.9 Muon neutrino flux at ArgonCube produced by π
+ decays when the horns operate

in neutrino mode. The peak is around 2.3 GeV.
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Fig. 3.10 Muon neutrino flux at ArgonCube produced by light parents when the horns operate
in neutrino mode. The black line represents the total flux.

are the main source of electron neutrinos. This is in agreement with Table 3.3, where one
can verify that the only particles capable of decaying into electron neutrinos are K0

LL, K+

and µ
+. Of these three particles, the muons, although less abundant, decay exclusively into

electron neutrinos, hence dominating the electron neutrino flux.
As we saw in the last section, the heavy mesons will also have decay channels into

neutrinos and, therefore, will also contribute to the neutrino flux. However, due to their much
smaller production rate, their contributions are expected to be much smaller. Figure 3.12
shows the contributions of heavy parents to the muon neutrino flux at ArgonCube in neutrino
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Fig. 3.11 Electron neutrino flux at ArgonCube produced by light parents when the horns
operate in neutrino mode. The black line represents the total flux.

mode. Comparing Figures 3.10 and 3.12 we see that the contributions of heavy mesons are
about 5 orders of magnitude smaller than the ones from light parents. For this reason, these
particles will have a negligible contribution to the muon neutrino flux. The same happens for
the electron neutrino flux, which is totally dominated by the decays of light particles.
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Fig. 3.12 Muon neutrino flux at ArgonCube produced by heavy parents. The black line
represents the total flux.

Heavy mesons become relevant when one studies the tau neutrino flux at DUNE. From
Table 3.7 we can infer there are two ways to produce tau neutrinos at DUNE: by direct
decays of D+ or D+

s or by tau lepton decays. In the first case, due to the larger branching
ratio, more neutrinos are produced, but they are less energetic because most of the meson
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energy is expended in creating the tau lepton. In the second, the production rate is lower,
but the neutrinos are more energetic since a large part of the tau lepton energy goes into the
tau neutrino. Figure 3.13 displays the contributions of the heavy mesons considered in this
work to the ντ flux at AgonCube. The tau neutrino production peaks at energies around 3.5
GeV and then decreases slowly. We also note that the ντ flux is much smaller than the νµ

and νe flux. This is expected because the LBNF works at energies that favor muon neutrino
production, but are not high enough to produce a large amount of tau neutrinos.
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Fig. 3.13 Tau neutrino flux at ArgonCube produced by heavy parents. The black line
represents the total flux.

We also included in our simulations the possibility of moving ArgonCube and the MPD
horizontally up to a distance of 30 m from the beamline. This setup allows us to calculate the
neutrino fluxes at different off-axis positions. Figure 3.14 shows a comparison between the
muon neutrino on-axis and at an off-axis position of 30 m. The off-axis configuration has
three effects on the neutrino flux. The first and more obvious one is that the neutrino flux
will be smaller at off-axis positions since most of the neutrinos will be focused along the
beamline. The second one is that the flux peaks at lower energies, around 1 GeV. The final
one is that the neutrino peak is much more focused; in this sense, we say that the neutrino
flux is more monochromatic at off-axis positions.

3.5 Neutrino charged current events

The neutrino flux at ArgonCube will interact with the liquid argon at the time projection
chamber and will generate several neutrino interactions. In this work, we will focus on the
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Fig. 3.14 Comparison between the muon neutrino fluxes at ArgonCube in on-axis (red) and
30 m off-axis (blue) configurations.

neutrino-argon charged-current (CC) events that occur in the ArgonCube detector of the
DUNEND. In order to calculate these CC event rates, we extracted the inclusive neutrino-
Argon cross-section data from Ref. [10]. Figure 3.15 shows the dependence of the neutrino-
argon cross-section on the energy of the incident neutrino. The plot shows that the electron
and muon neutrinos have the largest cross sections while the tau neutrino cross sections are
the smallest.
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Fig. 3.15 Neutrino-argon inclusive charged current cross sections per nucleon.
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In order to calculate the total neutrino CC event rates at DUNEND, we convoluted the
neutrino-argon cross sections with the neutrino fluxes calculated previously. Figure 3.16
shows the inclusive neutrino CC event rates at ArgonCube in one year of operation in neutrino
mode. The muon neutrino cross sections are by far the dominant events. In total, around
8×108

νµ CC events and 9×106
νe CC events are expected at DUNE assuming 10 years

of operation in neutrino mode. For the tau neutrinos, one must keep in mind that both their
production rate and their cross sections with argon are very low at DUNE energies. This
translates into a very small number of ντ CC events at ArgonCube, around 3 in 10 years of
operation in neutrino mode.
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Fig. 3.16 Muon neutrino charged current events at ArgonCube in one year of operation in
neutrino mode and on-axis position.

3.6 Heavy neutral lepton production at DUNE

In the last section, we discussed the production, flux and CC event rates of neutrinos at
DUNE. In this section, we will explain how heavy neutral leptons can be produced at DUNE
and the signals that they might leave in the near detector. In general, heavy neutral leptons
can be produced in any decay that involves the production of an active neutrino. We will
be interested in heavy neutral leptons produced in the decays of light and heaver parents
discussed in previous sections. Table 3.8 shows the HNL production channels considered in
this work, where we have included channels where the HNL is produced in a tau lepton decay.
At DUNE energies, the direct production of tau leptons at the target is heavily suppressed, so
we are only considering tau leptons that are produced in D meson decays. We also display
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the maximum value allowed for the HNL mass in each channel. As we discussed in previous
sections, the light mesons will dominate active neutrino production at DUNE; hence, they
will also dominate HNL production for masses below the kaon mass, which is around 493
MeV. Above the kaon mass, only heavy particles such as D mesons and tau leptons will be
kinematically allowed to decay into HNLs. However, due to the low production rate of the
heavy parents, the production of HNLs with masses above the kaon mass will be heavily
suppressed.

Table 3.8 Channels considered for the production of heavy neutral leptons. The maximum
mass allowed for the heavy neutral lepton for each channel is shown. Charged conjugate
channels were also considered.

Light parents

Channel mN [MeV] Channel mN [MeV]

µ
+ → e+νeν̄µ 105.14 K+ → µ

+
νµ 387.81

π
+ → µ

+
νµ 33.91 π

0e+νe 358.19
e+νe 139.06 π

0
µ
+

νµ 253.04
K0

L → π
±e∓νe 357.12 e+νe 493.17

π
±

µ
∓

νµ 252.38

Heavy parents

Channel mN [MeV] Channel mN [MeV]

D+
s → e+νe 1967.83 D+ → e+νe 1869.07

µ
+

νµ 1862.68 µ
+

νµ 1763.92
τ
+

ντ 191.48 τ
+

ντ 92.72
ηe+νe 1419.97 K0e+νe 1371.46
ηµ

+
νµ 1314.82 K0

µ
+

νµ 1266.31
η
′e+νe 1010.05 K̄∗0e+νe 973.52

η
′
µ
+

νµ 904.90 K̄∗0
µ
+

νµ 868.37
φe+νe 948.37 τ

+ → π
+

ν̄τ 1637.29
φ µ

+
νµ 843.22 K+

ν̄τ 1283.16
D0 → K−e+νe 1370.64 K∗+

ν̄τ 881.31
K−

µ
+

νµ 1265.49 ρ
+

ν̄τ 1001.6
K∗−e+νe 968.77 π

+
π

0
ν̄τ 1502.31

K∗−
µ
+

νµ 863.62 ν̄τe−ν̄e 1776.35

In order to calculate the branching ratios for HNL production, we made use of the
equations presented in Ref. [30] to calculate the rates of all the channels of Table 3.8.
The production of HNLs via semileptonic decays involves hadronic currents that cannot be
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calculated from first principles due to the non-perturbative nature of QCD at low energies.
Therefore, the dynamics of these decays are modeled by form factors that represent the
momentum distribution of the quarks inside the mesons and parametrize the momentum
transfer between the hadronic current and the lepton pair [56]. For most of the semileptonic
decays in Table 3.8, we used the form factors presented in [30]. The only exception was the
decay D+

s → φ l+α να , where we used the parametrizations of the form factors from [15].
All the decay rates were calculated in the software Wolfram Mathematica [47] with a

script that takes as arguments the mass of the HNL and its mixing parameters and returns the
corresponding decay rate. For simplicity, we have assumed that only one mixing parameter
to active neutrinos |Uα4|2 is non-zero at a time, although our scripts are capable of calculat-
ing the HNL production rates in the more complicated case in which two or three mixing
parameters are different than zero.

We used the decay rates of the parents into heavy neutral leptons to calculate the branching
ratios of the decay channels in Table 3.8. As a rule of thumb, the branching ratios of the HNL
production channels will decrease with their mass and increase with their mixings to active
neutrinos. However, this is not always true, since the mass dependence of the branching ratios
is sometimes nontrivial. Figure 3.17 branching ratios of HNL production from light parents
when |Uµ4|2 = 1 and the other mixing are set to zero. We see that HNL production from
pion decays peaks at low energies but then decays rapidly because it becomes kinematically
suppressed. The same happens for the semileptonic decays of charged and neutral kaons,
although the kinematic suppressions are less pronounced. An interesting scenario occurs for
the leptonic decays of charged kaons, where there is a peak at around 260 MeV and then the
branching ratio decreases due to kinematic effects.

Another aspect that one has to take into account in order to simulate the HNL flux at
DUNE is the Dirac or Majorana nature of neutrinos. For Dirac neutrinos, there will be
additional restrictions on the possible production channels of heavy neutral leptons. For
instance, the decay π

+ → Nµ
+ will produce heavy neutral leptons states N, but the charge

conjugate decay π
− → N̄µ

− will produce the corresponding antiparticle, N̄. In both cases,
the decay rates of the pions are the same; therefore, if we have an equal amount of π

+ and
π
− at DUNE, we will obtain the same number of N and N̄. However, as we have seen in

previous sections, this is not the case: at DUNE, more π
+ will be produced at the target in

comparison to π
−, and the magnetic horns might add an extra effect that will favor even

more the presence of π
+ in the beamline. Therefore, if the HNLs are Dirac, it is expected to

have more N than N̄ traveling along the decay pipe. This effect is important because these
HNLs will have very different decay channels: the N states will decay into active neutrinos
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Fig. 3.17 Mass dependence of the branching ratios of HNL production from light parents for
|Uµ4|2 = 1.

and charged antileptons, while the N̄ states will decay into active antineutrinos and charged
leptons; hence if neutrinos are Dirac, more charged antileptons will be produced from the
HNL decays in neutrino mode. On the other hand, if the neutrinos are Majorana, both decays
π
+ → Nµ

+ and π
− → Nµ

− are possible and have the same rate. Even if the number of π
+

and π
− mesons are different, both will produce the same N states, which will decay into

charged leptons or antileptos with the same rate. Hence, if neutrinos are Majorana, the same
amount of charged leptons and antileptons will be produced from HNL decays in neutrino
mode. This distinction in the decay rates will be relevant when discussing the decays of
HNLs inside one of the detectors of the DUNEND.

3.7 Heavy neutral lepton decay

After their production, the HNLs will decay into states that involve active neutrinos and other
particles such as leptons and mesons. Table 3.9 shows the HNL decay channels considered
in this work, where we also include the minimum mass of the HNL. Since we are only
considering the case where only one mixing is nonzero at a time, one must keep in mind that,
in practice, not all the decay channels displayed will be active at the same time. For instance,
if only the muon mixing |U |µ4 is nonzero, then only decays involving final muons or muon
neutrinos are possible.

The Dirac or Majorana nature of the HNL is also important when one wants to simulate
the decay of these particles. For instance, a Dirac HNL can decay via N → µ

−
π
+, but a
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Table 3.9 Heavy neutral lepton decay channels considered in this work. The minimum mass
of the heavy neutral lepton for each channel is shown.

Channel mN [MeV] Channel mN [MeV]

ννν 10−9 e∓ρ
± 775.77

νe+e− 1.02 νω 782.65
νe±µ

∓ 106.17 µ
∓

ρ
± 880.92

νπ
0 134.98 e∓K∗± 892.27

e∓π
± 140.08 νη

′ 957.78
νµ

+
µ
− 211.32 µ

∓K∗± 997.42
µ
∓

π
± 245.23 νφ 1019.46

e∓K± 494.19 νe±τ
∓ 1777.37

νη 547.86 e∓D± 1870.09
µ
∓K± 599.34 νµ

±
τ
∓ 1882.52

νρ
0 775.26 τ

∓
π
± 1916.43

Majorana HNL can decay via both N → µ
−

π
+ and N → µ

+
π
−. Additionally, the decay

rates of charged current mediated channels are the same for Dirac and Majorana, but rates of
the neutral current mediated channels of Majorana HNls are twice as big as the rates of Dirac
neutrinos. We took this distinction into account when calculating the rates of all the decays
displayed in Table 3.9.

In order to simulate the decays of heavy neutral leptons, we made use of the formulas
presented in [30] to design a script in the software Wolfram Mathematica that takes as an
input the value of the HNL mass, its Dirac or Majorana nature and the value of the mixing
parameter and returned the decay rates of all its channels. Figure 3.18 shows our results
for the branching ratios of the decay channels considered in this work as a function of the
HNL mass mN for |Uα4|2 = 1. In the plot of the charged current decays (top), we have added
the rates of charged conjugate channels, so that the branching ratios are valid for Dirac and
Majorana neutrinos. For masses below the electron mass, the dominant and only available
decay for the HNLs is the NC-mediated channel N → ννν . This channel is important
because it is present along the entire mass range and also because it is the only direct way in
which a HNL can decay into more than one neutrino, a phenomenon that might in principle
increase by two the number of active neutrinos at DUNE. It is also important to note that a
HNL can produce active neutrinos if it directly decays into active neutrinos, but it can also
do it in an indirect way if its decay products eventually decay into active neutrinos.

After calculating the rates and branching ratios of all the aforementioned HNL decay
channels, we designed a script in Wolfram Mathematica that creates a PYTHIA8 configu-
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Fig. 3.18 Branching ratios of charged current (top) and neutral current (bottom) mediated
decays of HNLs for |Uα4|2 = 1.

ration file that contains all the information that PYTHIA needs to handle the kinematics of
the HNL decay. This information includes the heavy neutral lepton mass, possible decay
channels with their respective branching ratios and also a flag that tells PYTHIA that all
the HNL decay products are also allowed to decay. We also set the HNL lifetime to zero in
PYTHIA so that the HNL production and decay vertices are the same. We do this because,
as we will see in the next sections, we are interested in handling the kinematics of the HNL
propagation ourselves. We then let PYTHIA handle the HNL decay chain kinematics and
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stored, on a event by event basis, what we considered the most relevant information of the
HNL decay chain:

1. The mass, energy, momentum and production/decay vertex of the HNL.
2. The flavor, energy, momentum and production vertex of the active neutrinos directly

produced in the HNL decay.
3. The flavor, energy, momentum and production vertex of the active neutrinos indirectly

produced in the HNL decay, that is, neutrinos that are produced when the HNL decay
products decay themselves into active neutrinos.

We used this information to calculate two different probabilities that are necessary to estimate
the signals of the presence of heavy neutral leptons at DUNE.

3.7.1 Active neutrino flux from HNLs

All heavy neutral leptons produced at DUNE will be able to decay into active neutrinos.
These neutrinos will be part of the DUNE neutrino flux and hence can, in principle, increase
or decrease the number of CC event rates at the detectors of the DUNEND complex. In order
to simulate the production and detection of these active neutrinos, we separated them into
two categories. The first category contains all the active neutrinos that are produced directly
in a HNL decay. Among these neutrinos, we are interested only in the ones that traverse
one of the detectors of the DUNEND because they can produce CC interactions with the
argon present inside them. Figure 3.19 shows schematically how an active neutrino produced
directly in the HNL decay may hit ArgonCube and hence produce a CC event signal. If the
HNL decays in position A, the active neutrino’s trajectory will not cross ArgonCube. On
the other hand, if the HNL decays between points B and C, the active neutrino will hit the
detector. The points B and C can also be identified by the distances d1 and d2 along the HNL
propagation line. We designed two functions in C++ (one for ArgonCube and one for the
MPD) that take as input the production vertex of the HNL, its momentum, the momentum of
the active neutrino and the off-axis position of the detector and returns the distances d1 and
d2. Again, we took into account all the possible ways in which the active neutrino might cross
the detectors, which also include cases where the HNL traverses the detectors. With these
distances at hand, we calculated the probability for the HNL to decay within the distances d1

and d2 with the formula

w(d1,d2) = exp
(
− d1

vγτ0

)
− exp

(
− d2

vγτ0

)
, (3.3)
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where v is the HNL’s velocity, γ its Lorentz factor and τ0 its proper lifetime. This probability
was used to add an extra weight to the active neutrino when we calculated its contribution to
the CC event rates at DUNEND.

HNL 
production

Not detected

A
B

C

Fig. 3.19 Schematic representation of the distances d1 and d2 that a HNL must travel so that
an active neutrino produced directly in its decay may hit ArgonCube.

The second category contains the active neutrinos that are produced indirectly in a HNL
decay, that is, neutrinos that are produced by decays of other particles along the decay chain
of the HNL. Figure 3.20 displays schematically how an active neutrino can be indirectly
produced in a HNL decay for the case when a HNL decays into a charged pion. Here, we are
assuming that the momentum and propagation distance of the pion and the momentum of the
muon neutrino are fixed, so that the only free variable is the distance that the HNL propagates
before decaying. The final trajectory of the muon neutrino depends on the decay position
of the heavy neutral lepton. If the HNL decays at position A the muon neutrino cannot
be detected. On the other hand, if the HNL decays between points B and C, then the final
muon neutrino hits ArgonCube. We designed two a custom function, one for ArgonCube and
one for the MPD, that take as inputs the production vertex of the HNL, the momentum and
propagation distance of the active neutrino’s parent, the momentum of the active neutrino and
the off-axis position of the detector and returns the distances d1 and d2. Again, we considered
all the possible ways in which these indirect neutrinos can be detected and tested our function
against a randomly generated one. Finally, we used Eq. 3.3 to calculate the probability that
the HNL decays between the distances d1 and d2 and used this to add an extra weight to all
the active neutrinos produced indirectly in HNL decays.
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HNL 
production

Not detected

A

B

C

Fig. 3.20 Schematic representation of the distances d1 and d2 that a HNL must travel to leave
an indirect neutrino signal at ArgonCube.

3.8 Neutrino flux in the presence of HNLs

In the previous sections, we discussed the production and decay of HNLs at DUNE. Since our
work is mainly interested in charged-current neutrino events at DUNEND, we will discuss
how the total active neutrino flux at DUNE is formed when HNLs are present.

Standard model active neutrinos These are the neutrinos that are produced in decay
chains that do not involve the production of a HNL in any step. Examples of these neutrinos
are the ones produced by decays of light and heavy parents produced at the target, such as
π
+ → µ

+
νµ . When we turn off the production of heavy neutral leptons, these neutrinos

compose the entirety of the DUNE neutrino flux. On the other hand, if we activate the
production of HNLs at DUNE, their parents will have additional decay channels. For
instance, if |Uα4|2 ̸= 0, the charged pions will have the additional decay channel π

+ → µ
+N.

This means that the branching ratio of the standard model decay π
+ → µ

+
νµ will decrease,

which will, in turn, decrease the number of standard model active neutrinos produced in pion
decays. In general, whenever a HNL is produced, it is replacing the production of a standard
model active neutrino. For this reason, the production of HNLs tends to decrease the number
of standard model active neutrinos at DUNE. As we will discuss in the next sections, this
effect can be quite relevant and directly affect the number of neutrino charged current events
at the DUNEND complex.
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Beyond standard model active neutrinos These are the neutrinos produced along the
decay chain of a HNL. They can be produced directly in the HNL decay or indirectly when
one of the decay products of the HNL decays on flight. Since each HNL produced is replacing
the production of an otherwise active neutrino, these neutrinos coming from HNL decays
can, in principle, make up for the initial loss of the active neutrino. However, since these
BSM active neutrinos are produced later in the decay chain of the light and heavy parents,
their angular distributions might be heavily affected, to the point that their trajectories do not
intersect the detectors at the DUNEND complex. Still, some BSM neutrinos are expected
to hit the detectors at the DUNEND, particularly when the HNL decays near the detector.
Also, since, according to Table 3.9, the HNLs can decay into three neutrinos via N → ννν ,
it might even be possible for these BSM neutrinos to increase the number of active neutrinos
at DUNE. All the effects discussed in this section were included and our simulations and
will be discussed in the next sections.
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Chapter 4

Results and discussion

4.1 HNL production and propagation

The rates at which heavy neutral leptons will be produced at DUNE will depend on several
factors: the abundance of the HNL parents, the branching ratios of the decay channels of these
parents into heavy neutral leptons, the HNL mass mN and the value of the mixing parameter
involved |Uα4|2. Figure 4.1 illustrates our results for the total number of HNLs that will be
produced each year at DUNE from each parent as a function of mN when |Uµ4|2 = 10−4 and
the other mixings are set to zero. The plot is valid for both Dirac and Majorana neutrinos.
We see that pions have the largest contribution to the HNL flux at DUNE. After production
from pions is kinematically forbidden, HNL production from kaons dominates up until the
charged kaon mass. We also note that HNL production from heavy mesons is completely
overshadowed by production from light parents and only becomes relevant above the kaon
mass, where the only possible contribution comes from charmed mesons.

The HNLs produced at DUNE will propagate and then decay on flight. The position of
the decay vertex of a particular HNL will depend on the momentum of its parent and the
kinematics of its decay. There are three possible scenarios for the decay of a heavy neutral
lepton at DUNE:

1. The HNL decays before DUNEND. In this case, the HNL will decay into active
neutrinos and other particles, such as mesons or charged leptons. The active neutrinos
produced by these HNLs might, in principle, hit the detectors at DUNEND, especially
if the HNL decays close to ArgonCube. On the other hand, the charged particles
or mesons produced in the HNL decay will not leave any sensible trace and, for all
purposes, their information will be completely lost.

67
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Fig. 4.1 Heavy Neutral leptons produced from mesons in one year in neutrino mode for
|Uµ4|2 = 10−4.

2. The HNL decays inside DUNEND. In this second scenario, all the products of the HNL
decay will propagate inside a detector of DUNEND. In particular, the charged particles
will leave traces inside the time projection chambers of ArgonCube and the MPD,
which will count as signals that might allow us to identify the energy and momentum
of the HNL. This scenario has already been studied in Refs. [24, 27, 31] and used to
estimate the future limits that DUNE will be able to set on the values of mN and |Uα4|2.

3. The HNL decays behind DUNEND. In this last scenario, all the HNL decay products
are completely lost since none of them will propagate inside ArgonCube or the MPD.
Since each HNL produced at DUNE is replacing the production of an active neutrino,
when a HNL decays behind DUNEND and all its decay products are lost the DUNE
flux at DUNEND is effectively losing one active neutrino. As we will discuss in the
next sections, this effect can be used to indirectly study the production of HNLs at
DUNE.

Figure 4.2 shows the average z position of the decay vertex of the HNLs produced at
DUNE as a function of mN for |Uµ4|2 = 10−4 and |Uµ4|2 = 10−1, where the position of the
LArTPC of Argoncube is represented by a dotted line. We see that for very small masses, the
HNLs decay on average behind the DUNEND complex, which means that each HNL counts
as one less active neutrino in the DUNE flux. As the HNL mass increases, the average HNL
decays closer to the detectors. For HNL masses around 255 MeV the HNLs decay near the
DUNEND complex,
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LArTPC position

Fig. 4.2 Average HNL’s decay positions projected along the Z axis for |Uµ4|2 = 10−4 and
|Uµ4|2 = 10−1. The dotted line represents the position of the LArTPC.

4.2 Active neutrino flux

As seen in the previous chapter, the DUNE active neutrino flux will be affected by the
presence of HNLs. In this section, we will study exactly how the active neutrino flux will
change when HNLs are produced at DUNE. In the following, we will use a set of conventions
to differentiate between different contributions to the total active neutrino flux at DUNE.

1. We will use the label Φ
SM
να

for the neutrino flux of flavor α produced at DUNE when
only Standard Model processes are allowed in the DUNE neutrino production chain.
In other words, Φ

SM
να

represents the neutrino flux prediction when there is no HNL
production, which is equivalent to setting |Uα4|2 = 0. This is also the neutrino flux
predicted by the DUNE collaboration.

2. If we activate the HNL production at DUNE, not every single parent decay will produce
HNLs. Most parent decays will involve only SM processes with final-state active
neutrinos. We will use the label φ

′SM
να

for the neutrino flux of flavor α produced by the
standard model decays of light or heavy parents when HNLs production is possible at
DUNE. From this definition follows that if one deactivates the HNL production, the
flux φ

′SM
να

becomes Φ
SM
να

. It is important to note that, although the neutrinos in φ
′SM
να

are produced only in SM processes, their production rates might still be indirectly
affected by the existence of HNLs at DUNE. In particular, we will prove that, if HNLs
are produced at DUNE, we have φ

′SM
να

< Φ
SM
να

.
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3. Finally, whenever a HNL is produced at DUNE, it will propagate and decay on flight
into several particles that might include active neutrinos. Additionally, the HNL decay
products might also decay on flight and produce additional active neutrinos. We will
use the label φ

′BSM
να

for the flux composed by all the active neutrinos produced along
HNL decay chains. This flux will increase with the HNL production rate and will also
depend heavily on the average decay vertex of the HNLs.

4.2.1 Standard Model neutrino Flux

In the previous chapter, we discussed how all the active neutrinos produced at DUNE will
come from decays of particles that we have categorized into light or heavy parents. These
parents have different branching ratios into neutrinos and hence each will produce active
neutrinos at a different rate. These active neutrinos will always be produced at DUNE,
independently of whether HNLs are produced or not. If we activate the HNL production
at DUNE, then all these parents will gain some extra decay channels into HNLs, each with
its corresponding branching ratio. Since the sum of all the branching ratios must be equal
to 1, this implies that the branching ratios of these parents into SM active neutrinos must
necessarily be reduced. This suppression in the production of SM active neutrinos due to
HNLs will have an important effect on the active neutrino flux. In order to understand exactly
how this process occurs, we will show how the SM parent meson’s branching ratios are
modified when HNLs are produced.

Let us start by defining the SM total decay rate of the pion (ΓSM
π )

Γ
SM
π = Γ

SM(π → eνe)+Γ
SM(π → µνµ), (4.1)

and the BSM decay rate of the pion with heavy neutral leptons (ΓBSM
π )

Γ
BSM
π = Γ

BSM(π → eνe)+Γ
BSM(π → µνµ)+Γ(π → NX). (4.2)

If we use the approximation [44]

να ≈ ν
SM
α

(
1− |Uα4|2

2

)
+Uα4N. (4.3)



4.2 Active neutrino flux 71

we can rewrite the partial BSM decay rates of the pion as

Γ
BSM(π → eνe)≈ Γ

SM(π → eνe)

(
1− |Ue4|2

2

)
, (4.4)

Γ
BSM(π → µνµ)≈ Γ

SM(π → µνµ)

(
1−

|Uµ4|2

2

)
. (4.5)

Therefore, the total BSM decay rate of the pion can be written as

Γ
BSM
π = Γ

BSM(π → eνe)+Γ
BSM(π → µνµ)+Γ(π → NX)

≈ Γ
SM(π → eνe)

(
1− |Ue4|2

2

)
+Γ

SM(π → µνµ)

(
1−

|Uµ4|2

2

)
+Γ(π → NX).

(4.6)

We can see that the pion decay rates into SM neutrinos have been decreased by the presence
of the HNL. This will affect the branching ratios of direct production of SM neutrinos from
pion decays. For instance, the branching ratio of νµ production from pion decays in the
presence of HNLs takes the form

BRBSM(π → µνµ) =
ΓBSM(π → µνµ)

ΓBSM
π

≈
ΓSM(π → µνµ)

(
1− |Uµ4|2

2

)
ΓSM

π

· ΓSM
π

ΓBSM
π

≈
ΓSM(π → µνµ)

ΓSM
π

· ΓSM
π

ΓBSM
π

(
1−

|Uµ4|2

2

)

≈ BRSM(π → µνµ) ·
ΓSM

π

ΓBSM
π

(
1−

|Uµ4|2

2

)
.

(4.7)

A similar relation can be found for the branching ratio of νe production from pion decays:

BRBSM(π → eνe)≈ BRSM(π → eνe) ·
ΓSM

π

ΓBSM
π

(
1− |Ue4|2

2

)
, (4.8)

where BRSM(π → µ(e)νµ(e)) represents the branching ratio of νµ(νe) production from pion
decays in the SM. We can see that the introduction of HNLs causes the production of either
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muon or electron neutrinos from pions to be suppressed by the factor

Kα
π

(
mN , |Uα4|2

)
=

ΓSM
π

ΓBSM
π

(
1− |Uα4|2

2

)
, (4.9)

with α = e,µ . Fig. 4.3 illustrates the dependence on mN of the factor Kµ for several parents
assuming |Uµ4|2 = 10−4. For each meson, the suppression factor acts only up to a maximum
HNL mass due to kinematical constraints. The suppression factor will effectively decrease
the number of SM active neutrinos produced at DUNE directly from parent decays. Although
we can consider that these active neutrinos are always lost, it is still possible, at least in
principle, that the HNL produced in the parent decay might itself decay into active neutrinos,
hence making up for the initial neutrino loss. It could even be possible that the HNL decays
into two or more active neutrinos; in this case, the number of active neutrinos at DUNE
would increase. However, due to the kinematics involved in the HNL decay, most of the lost
active neutrinos will not be recovered and the suppression factor will indeed decrease the
active neutrino flux at DUNE. Although the effect is small, the high luminosity of DUNE
makes it possible to use this effect to set limits on the heavy neutral leptons parameters.
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Fig. 4.3 Suppression factor Kµ
(
mN , |Uµ4|2 = 10−4) of muon neutrino production as a

function of mN .

Thus, each particle capable of producing active neutrinos can produce HNLs, leading to a
suppression of the active neutrino flux. The latter happens even when only one mixing |Uα4|2

is turned on. In fact, we can see from Eqs. (4.7) and (4.8) that, if we turn off either one of the
mixings |Uα4|2, the production of the active neutrinos of flavor α is still suppressed by the
factor Γ

SM
π /Γ

BSM
π . As we will show further ahead, the reduction in the active neutrino flux



4.2 Active neutrino flux 73

would imply the possibility that they do not reach the DUNEND, decreasing the number of
expected CC events at this facility. Figure 4.4 shows the muon neutrino flux of SM neutrinos
hitting ArgonCube for |Uµ4|2 = 10−4 and different values of mN . We see that the number
of SM active neutrinos reaching ArgonCube decreases whenever HNLs are produced. This
phenomenon is produced by the suppression factor discussed above. The suppression on
the SM neutrino flux is greater for lower values of mN . In particular, we found that below
around 10 MeV the SM neutrino flux is always reduced to the flux shown in Figure 4.4 for
mN = 1 MeV. This happens because for masses below 10 MeV the HNL production rates are
virtually the same and hence the mass has no effect on the suppression factor.
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Fig. 4.4 Change in the SM muon neutrino flux at DUNE due to the presence of heavy neutral
leptons for |Uµ4|2 = 1 and different values of mN .

The suppression of the production of SM active neutrinos will have a direct impact on the
flux, which can in principle be measured at DUNE. We can roughly estimate the significance
Nσ of the decrease of the SM muon neutrino flux as

Nσ =
|φ ′SM

νµ
−ΦSM

νµ
|√

ΦSM
νµ

, (4.10)

where we are assuming the ideal case in which there are no systematic uncertainties in the
flux. Figure 4.5 shows an estimate of the significance of the change in the SM neutrino flux
due to the presence of HNLs for |Uµ4|2 = 10−4 and several values of mN . We note that the
statistical significance of the change in the SM flux is very large, reaching more than 1000σ

for very small masses and energies around 3 MeV. Even for masses around 300 MeV, there



74 Results and discussion

is a significant variation in SM flux at larger neutrino energies which can also be probed by
DUNE.
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Fig. 4.5 Significance of the change of muon neutrino flux due to the presence of heavy
neutral leptons for |Uµ4|2 = 1 and no systematic uncertainties.

The suppression of the SM neutrinos also depends on the value of the mixing parameter
involved. In principle, as the mixing increases, the change in the SM neutrino flux decreases
as well. Figure 4.6 displays how the suppression of the active SM neutrino flux at DUNE
changes with the value of the mixing parameter for mN = 1. As expected, larger mixings
produce larger suppression on the flux, which is reflected in fewer events. We will see that
this dependence of the neutrino suppression on the mixing parameter can help us estimate
the limits that DUNE will be able to set to the HNL parameters. We also show in Figure 4.7
the significance of the change in the SM neutrino flux for mN = 1 MeV and some values
of |Uµ4|2 assuming the ideal case where there are no systematic uncertainties in the DUNE
flux prediction. We see that for mixings close to 1 there is a very large significance in the
decrease of the SM neutrino flux of more than 106

σ . This effect implies that large mixings
necessarily produce an equally large deficit of neutrinos produced from SM decays at DUNE.
This deficit is of course ideal since systematic uncertainties will have an effect on it; however,
it is a very strong indirect signal of the presence of heavy neutral leptons that can probe the
presence of HNLs at DUNE.

Although the suppression of the SM neutrino flux is always present, there are some
regions of the parameter space (mN , |Uµ4|2) in which the effect is larger. In general, the
suppression will be larger for lower masses, since this allows for a larger production of HNLs
and also because the pion is the most abundant HNL parent at DUNE and it can only produce
HNLs by muon mixing up to HNL masses of 33.91 MeV. In order to understand how the SM
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Fig. 4.6 Change in the SM muon neutrino flux at DUNE due to the presence of heavy neutral
leptons for mN = 1 MeV and some values of |Uµ4|2.
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Fig. 4.7 Significance in the change of the SM muon neutrino flux due to the presence of
heavy neutral leptons for mN = 1 MeV and no systematic uncertainties.

neutrino suppression acts in the parameter space, we calculated the ratio between the SM
muon neutrino flux with HNLs φ

′SM
νµ

and the full standard model prediction without HNLs
Φ

SM
νµ

in two different regions. The first one contains HNL masses below 40 MeV and is
shown in Figure 4.8. We see that for low masses and large mixings, the ratio φ

′SM
νµ

/Φ
SM
νµ

is
very small, reaching a minimum of 0.5, which means that there is a high suppression on the
SM neutrino flux. This suppression decreases as the mass increases; particularly, the SM
suppression almost seems to disappear above 30MeV, when HNL production from muon
mixing with pions is kinematically forbidden. Figure 4.9 shows the same ratio for HNL
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masses above 40 MeV. We note that the suppression of the SM neutrinos is always present,
although much less pronounced since the smallest ratio is very close to 1. Finally, the deficit
of SM neutrinos disappears around 400 MeV, when muon neutrino production from kaons is
kinematically forbidden.
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Fig. 4.8 Ratio φ
′SM
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/Φ
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along the parameter space for low values of mN .

4.2.2 BSM neutrino flux at DUNE

Whenever a HNL decays it can produce leptons, mesons and also active neutrinos. These
particles produced will also decay on flight and hence produce additional active neutrinos.
We will refer as BSM active neutrinos to all neutrinos produced in HNL decays, whether
directly in the HNL decay or indirectly in the decay of its products, and represent their flux
by the label φ

′BSM
να

. These neutrinos are different from the SM neutrinos in the sense that
they are only present when HNLs are produced; hence, they act as an indirect signal of the
presence of HNLs in the decay chain of light and heavy parents. The BSM active neutrinos
produced at DUNE will have a much lower production rate than the active neutrinos and
their contribution is expected to be negligible to the total neutrino flux. Figure 4.10 shows a
comparison between the full standard model neutrino flux prediction without HNLs Φ

′SM
νµ

and the BSM muon neutrinos flux φ
′BSM
νµ

for mN = 1 Mev and some values of |Uµ4|2. We
see that the BSM neutrino flux is very small in comparison to the neutrino flux prediction of
the DUNE collaboration. This implies that, if these BSM are present in the flux, they will
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along the parameter space for large values of mN .

have a negligible contribution to the CC event rates at ArgonCube. This effect is amplified
by the fact that the BSM neutrino flux decreases rapidly with energy, which in turn decreases
even more the CC event rates from these neutrinos.
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Fig. 4.10 BSM muon neutrino flux at DUNE for mN = 1 MeV and some values of |Uµ4|2.

One can also compare the φ
′BSM
νµ

neutrino flux with the φ
′SM
νµ

discussed in the previous
section. Figure 4.11 shows a comparison between Φ

SM
νµ

and the fluxes φ
′SM
νµ

and φ
′BSM
νµ

for
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mN = 1 and |Uµ4|2 = 1. We see that even in the extreme case of maximum mixing, the BSM
neutrino flux is always smaller than the SM flux in the presence of HNLs when mN = 1.
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Fig. 4.11 SM and BSM muon neutrino flux at DUNE for mN = 1 MeV and |Uµ4|2 = 1.

The large difference between the BSM and SM fluxes when HNLs are produced is not
present for all masses. There are some interesting regions of the parameter space (mN , |Uµ4|2)
where the BSM neutrino flux reaches a maximum and, although it is still smaller than the
SM neutrino flux, it is not negligible. Figure 4.12 shows the ratio φ

′BSM
νµ

/φ
′SM
νµ

over the
parameter space mN , |Uµ4|2 for mN < 40 MeV. The ratio in all cases is smaller than one and is
below 0.06. This implies that, for low masses, the muon neutrino flux produced by the BSM
neutrinos is less than 6% of the flux produced by the SM neutrinos. We also note that the
ratio decreases rapidly with the mixing and that for |Uµ4|2 = 10−2 it is almost zero, meaning
that contribution to the flux from BSM neutrinos is negligible. The regions of the parameter
space above 40 MeV are displayed in Figure 4.13. In this case, the ratio is even smaller,
always below 0.04, which means that the BSM neutrino flux is always less than 4% of the
SM flux. However, we see that there is an increase in this ratio for masses between 200 and
300 MeV. Within this region, the BSM neutrino flux increases in comparison with the rest of
the parameter space above 40 MeV. This sudden increase in the BSM flux at ArgonCube is
produced mainly by the average decay position of the HNLs. As shown in Figure 4.2, the
average z-decay positions for masses between 200 and 300 MeV are right before the position
of the DUNEND. This means that most HNLs will decay close enough to ArgonCube that
the BSM active neutrinos produced in their decays will have a high chance of hitting the
detector. If we also take into account that, according to Figure 4.9, the SM neutrino flux is
very close to the SM model prediction in this mass range, then the effect of the increase in
the BSM neutrino flux becomes even more relevant, as we will see in the next sections.
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along the parameter space for mN > 40 MeV.

4.2.3 Total active neutrino flux at DUNE

We have already seen that there are mainly two contributions to the total active neutrino flux
at DUNE when HNLs are produced. The first contribution comes from the active neutrinos
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produced in the standard model decays of light and heavy mesons, which we have referred
to as SM active neutrinos. The second contribution to the active neutrino flux comes from
the active neutrinos produced in decay channels that involve the production of a HNL. If
we combine these two sources of active neutrinos, we get the total neutrino flux at DUNE,
which we will label as φ

′. Figure 4.14 displays the comparison between the SM, BSM and
SM+BSM (Total) muon neutrino flux produced at DUNE for mN = 1 MeV. We see that for
low masses the total neutrino flux is completely dominated by the neutrinos that come from
SM decays.
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Fig. 4.14 Comparison between different contributions to the total active neutrino flux at
DUNE.

As expected, the presence of HNLs will affect the total active neutrino flux at DUNE. The
change in the active neutrino flux will depend on the values of the parameters

(
mN , |Uµ4|2

)
.

Figure 4.15 (left) displays the estimated statistical significance of the change in the muon
neutrino flux at DUNE due to the presence of HNLs form |Uµ4|2 = 10−4 and some HNL
masses, assuming the ideal case where there are no systematic uncertainties. The most
significant change in the neutrino flux happens for very low masses. As the mass increases,
the effects of HNLs on the muon neutrino flux decrease, but are still relevant even for
mN = 300 MeV. Figure 4.15 (right) shows the ideal statistical significance of the change
in the muon neutrino flux for mN = 1 MeV and several values of |Uµ4|2. As expected, the
significance increases with the value of the mixing parameter squared.

The dependence of the statistical significance of the change in neutrino events on(
mN , |Uµ4|2

)
is also displayed in Figure 4.16 for a large region of the parameter space.

We can see that for low masses (left) there is always a deficit in the active neutrino flux due
to the suppression of the SM neutrino events. On the other hand, for masses above 40 MeV
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Fig. 4.15 Significance in the change of the muon neutrino flux at DUNE due to the presence
of heavy neutral leptons for no systematic uncertainties.

(right), there is mostly a deficit of active neutrinos, except for a region around 200 MeV,
where a clear excess of active neutrinos is present. This excess is produced by the BSM
active neutrinos discussed in the previous sections and represents an indirect signal of the
presence of HNLs at DUNE.

Fig. 4.16 Ideal statistical significance in the change of the muon neutrino flux due to heavy
neutral leptons over the parameter space of

(
mN , |Uµ4|2

)
.

In order to better understand the excess of active neutrinos around 200 MeV, we have
calculated the ratio

(
φ
′
νµ

−Φ
SM
νµ

)
/Φ

SM
νµ

when mN = 200 MeV for some values of |Uµ4|2.
The results are shown in Figure 4.17, where we can clearly see that, for high mixings, there
is an excess in low-energy muon neutrinos reaching ArgonCube. This excess decreases with
the mixing. In particular, for |Uµ4|2 = 10−2, the excess is almost negligible. This excess is
produced by the HNL decays into three neutrinos that occur very close to the DUNEND
Complex.
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Fig. 4.17 Ideal statistical significance in the change of the muon neutrino flux at DUNE due
to the presence of heavy neutral leptons for mN = 200 MeV.

4.3 Neutrino Charged Current events at DUNE

The active neutrino flux studied in the previous section will hit the detectors at DUNEND
and interact with the Argon atoms present in them. These interactions will be mediated by
neutral current (NC) or charged current (CC) interactions. In this work, we are interested in
the CC neutrino-Argon interactions since they produced charged particles that can be traced
at DUNE. In order to estimate the CC neutrino event rates at DUNE, we convoluted the
neutrino fluxes with GEANT4 inclusive cross sections. Figure 4.18 shows the CC event rates
at ArgonCube in the presence of HNLs for some masses (left) and mixings (right). In both
cases, the SM neutrino CC event rates are also shown in black. It is evident that the muon
CC event rates decrease when HNLs are produced. This phenomenon is produced mainly by
the decrease in the SM neutrino flux at DUNE. This deficit in CC event rates constitutes an
indirect signal of the production of HNLs at DUNE.

Since the CC event rates constitute detectable signals at DUNE, we are interested in
determining how significant these changes are. We will use the label N′CC

α for the number of
neutrino CC events of flavor α at ArgonCube when HNLs are produced and the label NCC

α for
the standard model prediction of the same rates. As a rule of thumb, we have N′CC

α < NCC
α ,

although in some particular cases this might change.
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Fig. 4.18 CC muon neutrino event rates at ArgonCube when HNLs are produced for |Uµ4|2 =
1 (left) and mN = 1 (right).

Having defined labels for the relevant parameters, we will roughly estimate the signifi-
cance of the change in the neutrino CC events of flavor α with the expression

Nσ =
|N′CC

α −NCC
α |

σtot
=

|∆NCC
α |

σtot
, (4.11)

where σtot represents the total uncertainty in the flux. This total uncertainty can be estimated
by the expression

σtot =
√

σ2
stat +σ2

sys, (4.12)

where σstat represents the statistical uncertainty in the CC event rates given by

σstat =

√
NCC

α (4.13)

and σsys the total systematic uncertainty in the flux, which contains includes the uncertainties
generated by the estimations of the production rates of the parents at the target and the values
of the cross sections. In the ideal case where there are no systematic uncertainties, we have

σtot = σstat =

√
NCC

α . Therefore, the ideal significance of the change in the CC event rates is
given by

Nideal
σ =

|N′CC
α −NCC

α |√
NCC

α

. (4.14)

The ideal significance of the change in the CC event rates at DUNE is shown in Figure
4.19 for some values of mN (left) and mixings (right), where the significance is calculated
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in each bin separately. We see that the change of CC events in each bin can be very large,
particularly for high values of the mixing parameter.

0 5 10 15 20

0

2

4

6

8

10

12

14

0 5 10 15 20

0.1

1

10

100

1000

10
4

10
5

Fig. 4.19 Ideal statistical significance of the change in muon neutrino CC event rates at
DUNE for fixed mixing (left) and HNL mass (right).

The significance of the change in CC events becomes more apparent when one calculates
the total number of neutrino CC events at DUNE, which is obtained by integrating the
neutrino CC event rates over the entire energy range. Figure 4.20 shows the ideal statistical
significance of the total change in muon neutrino CC events at DUNE over a large region
of the parameter space. We see that for low masses (left) the ideal statistical significance
is always very large even for mixings O(10−2). Even for large masses (right), the ideal
statistical significance is also large, meaning that DUNE might be sensitive to the variations
in the neutrino CC events due to the presence of HNLs.
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Fig. 4.20 Ideal statistical significance of the change of the total number CC muon neutrino
events over a region of the parameter space (mN , |Uµ4|2).
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If one takes into account the possible systematic uncertainties in the prediction of the
active neutrino flux at DUNE and the values of the neutrino cross sections, the statistical
significance of the change in neutrino CC events at DUNE diminishes. As a first example,
we will explore three different possibilities for the systematic error:

• σsys = 0.01 N′CC
α

The systematic uncertainty is equal to 1% the neutrino CC events prediction.
• σsys = 0.05 N′CC

α

The systematic uncertainty is equal to 5% of the neutrino CC events prediction.
• σsys = 0.1 N′CC

α

The systematic uncertainty is equal to 10% of the neutrino CC events prediction.

The presence of statistical uncertainty will decrease the significance of the change in the
neutrino CC events. This happens because the deficit produced by the presence of HNLs
cannot be distinguished from a possible deficit in CC events due to systematic uncertainty.
Therefore, as the systematic error increases, the significance of the change of CC events must
decrease. Figure 4.21 shows how the significance of the change in total muon neutrino CC
events decreases with the value of the statistical error. We note that the significance drops
dramatically even for a 1% systematic uncertainty. This happens because the change in the
CC events at DUNE is only an indirect consequence of the production of HNLs, making
it a very subtle signal. Still, the effect is always present and we also must consider that
Figure 4.21 is taking into account only the change in the muon neutrino CC events. If one
also includes the change in electron neutrinos and the corresponding antiparticles in the
calculation of the statistical significance, this effect grows larger, to the point that it can be
used to test the presence of HNLs at DUNE, as we will see in the next sections.

Figure 4.22 shows how the dependence of the statistical significance of the total change in
electron (left) and muon (right) neutrino CC events at DUNE in 10 years of operation (5 years
neutrino mode and 5 years antineutrino mode) on the value of mN for a 1% systematic error
and some mixing parameters. For the electron neutrinos, the ideal statistical significance
reaches a maximum at around 30 MeV and then decreases. In the case of muon neutrinos,
the statistical significance always decreases, with a steep decrease at around 30 MeV. The
threshold mN = 30 MeV is related to the maximum HNL mass that can be produced in pion
decays. The sudden increase in electron neutrino CC events significance happens because,
after around 30 MeV, the neutrinos are produced mostly in kaon decays, which has decay
channels into electron neutrinos with large branching ratios, as opposed to the pions, which
mainly decay into muon neutrinos.

As we have already seen, the larger the systematic uncertainty, the lower the statistical
significance of the change in the neutrino CC events at DUNE. Figure 4.24 shows the statisti-
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Fig. 4.21 Significance of the change in the total muon neutrino CC events for 10 years of
operation for some systematic uncertainties.
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Fig. 4.22 Significance of the change in the total electron (left) and muon (right) neutrino CC
events at DUNE for a 1% uncertainty and 10 years of operation.

cal significance of the change in muon neutrino CC events at DUNE for 10 years of operation
for masses below 40 MeV and several systematic uncertainties. We can clearly see the effect
that the systematic uncertainty has on the significance of this indirect signal of HNLs.

The ideal significance of variation of the total electron neutrino CC events at DUNE
due to HNLs has a very interesting behavior for large mixings. Figure 4.23 shows the ratio
∆NCC

e /σtot as a function of the HNL mass for mixings close to 1. Note that in this plot we
are not taking the absolute value of ∆NCC

e , so we can distinguish when we have an excess
(∆NCC

e > 0) or deficit (∆NCC
e < 0) of CC events. We see that for a 0% systematic error (left)

and |Uµ4|2 = 1 there is actually a very significant excess of CC events for masses below 30



4.4 Sensitivity of DUNE to HNLs from CC events deficit 87

MeV. Even for a 1% systematic error (right) the excess of electron neutrino events is also
present.
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Fig. 4.23 Significance of the change in the total electron neutrino CC events at DUNE for a
0% (left) and 1% (right) uncertainty and 10 years of operation.

4.4 Sensitivity of DUNE to HNLs from CC events deficit

In the previous section, we studied how the neutrino charged current (CC) events at DUNE
are affected by the production of heavy neutral leptons. In this section, we will study the
significance of these event rates and use them to estimate the sensitivity of DUNE to heavy
neutral leptons.

4.4.1 Statistical formulas

The experimental sensitivity for a given parameter Θ (or set of parameters) at some confidence
level is computed as the following difference:

∆χ
2 = χ

2(Θ)−χ
2
min, (4.15)

where χ
2
min = χ

2(Θ = 0) represents the null hypothesis and it is usually taken as zero. The
Gaussian definition of the χ

2 is:

χ
2(Θ) =

nbins

∑
i=1

(
Ni

true −Ni
exp(Θ)

)2

Ni
true

. (4.16)

Since there is no data when the sensitivity is estimated, the role of the number of observed
events for the ith bin, Ni

obs, is taken by the so-called "true" number of events for the ith bin,
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Fig. 4.24 Significance of the change of the total number muon neutrino CC events over the
parameter space (mN , |Uµ4|2) for several systematic uncertainties: 1% (top left), 5% (top
right) and 10% (bottom).

Ni
true, which are compared with the expectation or test hypothesis Ni

exp(Θ). The Poissonian
definition of the χ

2 is [26]:

χ
2(Θ) = 2∑

i

[
Ni

exp (Θ)−Ni
true +Ni

true ln

(
Ni

true
Ni

exp (Θ)

)]
(4.17)

In order to estimate the future sensitivity of DUNE to HNLs due to the deficit of neutrino
CC events, we have to consider that the predictions of our simulations carry systematic
uncertainties related to the distributions of hadron production at the DUNE target, the neutrino
CC cross section uncertainties, among others. We will incorporate these uncertainties in our
calculations by assuming an overall normalization uncertainty in each bin of our spectra,
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which, in practice, means that the value of the event rates in each bin is not completely known
and can fluctuate by a certain amount. This normalization uncertainty will be defined by
the variable σa. We will consider the values σa = 0.05, 0.1 and 0.2, which are equivalent
to overall normalization uncertainties of 5%, 10% and 20%, respectively, in the CC events
of each bin. Also, for simplicity, we will consider that the value of σa in each bin is the
same. This systematic uncertainty can be accounted for by introducing a set of nuisance
parameters ai that must be profiled when calculating the value of χ

2. In this context, profiling
means that for each set of parameters Θ one must calculate the values of ai that minimize the
χ

2. The introduction of the non-oscillation systematical uncertainties into the χ
2, such as

the modeling of either the neutrino flux or the neutrino cross sections, goes through adding
nuisance parameters. If we consider that the content of each bin has an associated systematic
uncertainty, this is achieved by making the substitution:

Ni
exp (Θ) 7→ Ni

exp (Θ) = (1+ai)Ni
exp(Θ) (4.18)

and adding the following term to the χ
2 :

nbins

∑
i=1

a2
i

σ2
i
, (4.19)

where the value of σi defines the estimated uncertainty of the i-th bin. If we combine
equations (4.16), (4.18) and (4.19) we obtain

χ
2(Θ,ai) =

nbins

∑
i=1

a2
i

σ2
i
+

nbins

∑
i=1

(1+ai)Nexp
i (Θ)−Ntrue

i√
Ntrue

i +
(
σiNtrue

i
)2

2

. (4.20)

In our case, we have Θ = (mN , |Uα4|2) because the neutrino flux will depend on the HNL
mass and the value of the active mixing parameter. Also, we will compare the spectra of the
neutrino CC events with and without HNLs, so that Nexp

i represents the CC events in the i-th
bin with HNLs and Ntrue

i the CC events in the same bin without HNLs. Additionally, we are
including an overall normalization uncertainty that affects all neutrino flavors equally. We
estimate the sensitivity of DUNE to (mN , |Uα4|2) through the following χ

2

χ
2 =

a2

σ2
a
+ ∑

νe,νµ ,ν̄e,ν̄µ

nbin

∑
i=1

a2
i

σ2
a
+

nbin

∑
i=1

NSM
i −NBSM

i (1+a+ai)√
NSM

i

2
 , (4.21)
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where NBSM
i represents the neutrino CC events in the i-th bin when HNLs are produced and

NSM
i the DUNE prediction of CC events in i-th bin according to the Standard Model. The

nuisance parameters a and ai encompass the normalization uncertainties and allow for the
values of NBSM

i to fluctuate; these parameters are always profiled in the calculation of the
χ

2. We must note that the fact of combining all the neutrino flavors in our definition of χ
2 is

fundamental for improving the sensitivity of our results. The tau neutrinos are not considered
since their contributions to the χ

2 are negligible.
The deficit of neutrino CC events at DUNE is an indirect signal of HNLs. Therefore, in

the case that no significant deficit is found, the absence of this deficit can be used to set limits
on the values of the parameters (mN , |Uα4|2) with a particular confidence level. We calculated
the value of χ

2 in the parameter space 10−6 MeV < mN < 107 MeV and 10−12 < |Uα4 |2 < 1
for α = e,µ and σa = 0.5, 0.1, 0.2 and then used these values to estimate the limits that
DUNE might be able to set to the parameters (mN , |Uα4|2) at 90% confidence level.

4.4.2 Analysis of χ
2 in the parameter space of

(
mN, |Uα4|2

)
In the previous section, we defined the formula (4.21) that we will use in our work to estimate
the sensitivity of DUNE to heavy neutral leptons. In this section, we will show some results
for muon mixing considering 10 years of operation (5 in neutrino and 5 in antineutrino mode).
As an example, figure 4.25 shows the dependence of χ

2 on |Uµ4|2 when we set mN = 1 MeV
and consider the ideal case of no systematic uncertainties σa = 0. As expected, we see that
the value of χ

2 becomes very large when the value of the mixing increases. For comparison,
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Fig. 4.25 Dependence of χ
2 on |Uµ4|2 for mN = 1 MeV and the ideal case σa = 0.
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figure 4.26 shows the dependence of χ
2 on |Uµ4|2 when we set mN = 1 MeV and consider the

conservative case σa = 0.2, which is equivalent to a 20% uncertainty in the overall number
of neutrino CC events at DUNEND. We see that the value of σa has a considerable effect
on the values of χ

2. For instance, values of χ
2 > 1 are only achievable when |Uµ4|2 > 10−2.

This implies that, for a 20% uncertainty, DUNE will only be sensitive to large values of the
mixing parameter when mN = 1MeV. We can conduct a similar analysis if we set the value
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Fig. 4.26 Dependence of χ
2 on |Uµ4|2 for mN = 1 MeV and the conservative case σa = 0.2.

of the mixing |Uµ4|2 and study how χ
2 depends on mN . Figure 4.27 shows the dependence of

χ
2 on mN for |Uµ4|2 = 10−4 and the ideal case σa = 0. We see that the value of χ

2 is greater
than 1 for very low values of mN . However, χ

2 drops for mN ∼ 30 MeV. The reason for this
is that at this mass the decay π

+ → µ
+N becomes kinematically forbidden and this causes

the sensitivity to drop. The sensitivity then drops again for mN ∼ 380 MeV because the decay
channel K+ → µ

+N becomes also kinematically forbidden. For comparison, Figure 4.28
shows the dependence of χ

2 on mN for the conservative case σa = 0.2 and for |Uµ4|2 = 10−4

(red blue) and |Uµ4|2 = 10−1 (blue line). We see that when the systematic uncertainty is 20%,
we completely lose sensitivity to mixing parameters around |Uµ4|2 = 10−4 for all masses.
However, if we increase the value of the mixing parameter, the sensitivity also increases. For
instance, for |Uµ4|2 = 10−1, we can obtain values of χ

2 > 1 for most masses, although again
a large drop in sensitivity occurs at mN ∼ 30 MeV.

In general, increasing the value of |Uα4|2 or decreasing the value of σa increases the
values of χ

2. The value of mN also plays an important role because it determines what
channels for HNL production are kinematically allowed. Figure 4.29 shows how the value of
χ

2 varies along the parameter space
(
mN , |Uµ4|2

)
for two different values of σa. In the ideal
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Fig. 4.27 Dependence of χ
2 on mN for |Uµ4|2 = 10−4 and the ideal case σa = 0.

case σa = 0 (left) the value of χ
2 increases up to 108 for low masses. We also clearly see two

drops of sensitivity: one at mN ∼ 30 MeV and another at mN ∼ 380 MeV. These drops were
explained earlier and are produced because the HNL production channels π

+ → µ
+N and

K+ → µ
+N become kinematically forbidden at those values of mN . On the other hand, in the

more conservative scenario of σa = 0.2 (right), we see that the sensitivity drops below 1 for
most of the parameter space, except when the mixing is close to 10−1. In both cases, there is
also an extra effect due to neutrino oscillations, although this effect is small and cannot be
perceived in the plots.

4.4.3 Estimated sensitivity of DUNE to HNLs

In order to estimate the sensitivity of DUNE to HNLs from neutrino CC event deficits,
we calculate the value of χ

2 according to Eq. (4.21) and then find the 90% confidence
level regions. Figure 4.30 shows our results for muon (top) and electron (bottom) mixing
for several values of σa = 0.05, 0.1 and 0.2, which correspond to an overall normalization
uncertainty in of 5%, 10% and 20%, respectively.

Our results are presented in Fig. 4.30. The bottom panel of this figure shows the estimated
DUNE sensitivity to |Uµ4|2 at 90% confidence level on the LArTPC assuming Majorana
neutrinos, ten years of operation (five in neutrino and five in antineutrino mode) and on-axis
position. In our analysis, the CC event rates from all neutrino flavors are considered. For
masses close to 1 eV, the limits decrease because, for the typical energies and flight distances
of active neutrinos at DUNEND, the probability of neutrino oscillations into HNLs tends
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Fig. 4.28 Dependence of χ
2 on mN for |Uµ4|2 = 10−4 (red) and |Uµ4|2 = 10−1 (blue) for the

conservative case σa = 0.2.

to zero as the value of mN approaches 1 eV. Right above 1 MeV, the limits start to oscillate
since the survival probability of the active neutrinos is sensitive to mN . For masses between
10 eV and 10 MeV, the limits are independent of mN . The latter is because of three factors.
The first one is the averaging out of the neutrino oscillations into HNLs for large values of
mN . The second one is that, for these very low masses, the total number of HNLs produced is
practically independent of mN . The other factor is that the HNL lifetime for lower masses is
enormous, decaying all of them far away from the detector without the possibility of leaving a
trace on it. As we already know, above m = 33.91 MeV, the production channel π

+ → µ
+N

is kinematically forbidden, and there is a sudden loss in the sensitivity. As the mass increases,
production from charged kaons starts to dominate and does so up to the end of the curve,
which is at 387.81 MeV. For instance, for σa = 0.05 and σa = 0.2, the sensitivity of DUNE
below 10 MeV is around |Uµ4|2 < 2×10−2 and |Uµ4|2 < 8.5×10−2, respectively. We point
out that even in the conservative case of σa = 0.2 our limits are competitive with direct
searches below 1.3 MeV.

The top q panel of Fig. 4.30 shows the expected DUNE sensitivity when we turn on |Ue4|2

being the other ones zero. The rest of the characteristics are the same as for the left panel. In
general, the sensitivity pattern is similar to the one observed for the left panel. The limits
oscillate close to 1 eV and, for higher masses, they become mass-independent since most
HNLs decay behind the LArTPC. Above 10 MeV, the pion decay channel π

± → e±N starts
to dominate because, in contrast to π

± → e±νe, it is less suppressed by helicity due to the
larger size of the HNL mass. This effect decreases the number of both νe and νµ CC events



94 Results and discussion

Fig. 4.29 Variation of χ
2 over the parameter space

(
mN , |Uµ4|2

)
for σa = 0 (left) and σa = 0.2

(right).

according to the suppression factor in Eq. (4.9), affecting the CC event rates of both electron
and muon neutrinos. At around 139 MeV, HNL production from pion decays becomes
kinematically forbidden, which translates into a decrease in sensitivity. Finally, the curve
ends when production from kaons is kinematically forbidden at 493.17 MeV. For σa = 0.05
and σa = 0.2, the sensitivity of DUNE below 10 MeV is around |Ue4|2 < 1.5× 10−2 and
|Ue4|2 < 6.5× 10−2, respectively. Even in the conservative case of σa = 0.2, our limits
are competitive with direct searches below 1.3 MeV and also provide a small increase of
sensitivity by a factor of 1.5 around 5 eV in comparison with experimental constraints.

Although we are making our calculations for ten years of exposure, it is important to
point out that our sensitivity for |U |2 increases only slightly when compared with one year
of exposure. If we had not included systematic uncertainties, the limits would roughly

improve as
|U |2√

T
, where T represents the exposure time; in this ideal scenario, after 10

years of operation, the limits would improve by a factor of around 1/
√

10 ≈ 0.32. However,
introducing uncertainties in our χ

2 prescription heavily penalizes the sensitivity of our
approach: in this more realistic scenario, after 10 years of operation, the limits improve
by only a factor of around 0.9 in comparison with one year of exposure. Therefore, in the
context of our analysis, the first year of operation of DUNE is the most important.

Another important remark must be made about the effects of neutrino oscillations in this
work. Neutrino oscillations involving HNLs are only relevant when mN ∼ 1 eV. Since our
analysis starts a 1 eV, the effects of neutrino oscillations will only be visible as a wiggle at
the beginning of our sensitivity plots. For completeness, in Fig. 4.31 we show a zoom of the
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Fig. 4.30 Estimated limits of DUNE to |Uµ4|2 (left, red) and |Ue4|2 (right, blue) at 90%
confidence level by CC events disappearance at the LArTPC of the DUNEND, for 10 years
of operation (5 in neutrino and 5 in antineutrino mode) and on-axis position. The regions of
experimental constraints (gray) were taken from [32, 22, 29]. The estimated sensitivity of
DUNE obtained in [27] by direct searches of HNL decays is shown for comparison.

left plot of Fig. 4.30. We can see that close to 1 eV the sensitivity oscillates as expected, but
this effect is small and only restricted to the low tail of our sensitivity plot.
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Fig. 4.31 Zoom of the sensitivy to |Uµ4|2 of Fig. 4.30. The oscillation of the sensitivity near
1 eV is produced by the oscillation effects of Eq. (2.39).

We must point out that our results are blind to the Dirac or Majorana nature of the HNL.
The distinction between Dirac and Majorana HNLs is usually performed in direct searches by
analyzing the distributions of charged mesons and leptons produced when the HNL decays
inside the detector. We are not looking into the direct search mode since it has already
been discussed in [27]. Besides their decay products, Dirac and Majorana HNLs can also
be differentiated by their lifetimes. However, this effect is not relevant for us because, for
the mass range we studied and small mixings, almost all the HNL decays occur behind
the LArTPC, as shown in Fig. 4.2. Furthermore, for very low mN the Dirac and Majorana
neutrinos are indistinguishable. Thus, we can conclude that nearly all the active neutrinos
produced from the HNL decays are lost independently of the nature of neutrinos. In this way,
the critical magnitude in our analysis is the production rate of HNLs, which is independent
of the nature of neutrinos, so the deficit of the CC event rates is independent too. Therefore,
it would not be possible to distinguish between Dirac or Majorana neutrinos through the
approach presented here.

4.4.4 Off axis sensitivity

The DUNE experiment also considers the possibility of moving the DUNE near detectors
horizontally, a setup known as DUNE PRISM. We move the LArTPC by up to 30 m
horizontally while maintaining the rest of the simulation parameters and study the impact on
our estimated sensitivities. The results are shown in Fig. 4.32, where all the lines represent
the sensitivities at 90% confidence level and black dashed curves represent the on-axis
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sensitivities. We see that the effect of moving the detector to an off-axis position does not
affect considerably the limits. However, we see that the sensitivity increases at off-axis
positions for masses close to 100 MeV.

Fig. 4.32 Comparison between on-axis (black, dashed) and 30 m off-axis (solid) estimated
sensitivities of DUNE to |Uµ4|2 at 90% confidence by neutrino CC events disappearance for
10 years of operation (5 in neutrino and 5 in antineutrino mode). The regions of experimental
constraints were taken from [32, 22, 29].

4.4.5 Allowed regions for (mN, |Uα4|2)

We also explore the potential to constraint the (mN , |Uα4|2) parameter space region in the
context of this indirect search. So, assuming that the disappearance CC events are originated
by the presence of HNLs within the neutrino beam, we perform a χ

2 analysis fixing our
simulation in certain values of (mN , |Uα4|2). The allowed regions for mN = 0.1 MeV and
|Uµ4|2 = 5× 10−2 are presented in Fig. 4.33 for σa = 0.05 (red), σa = 0.1 (blue) and
σa = 0.2 (green), were we include the 90% (solid) and 95% (dashed) confidence regions.
These regions are bounded to the right but extend to the left up to mN = 1 eV, a mass
degeneracy that reflects the fact that our approach is not sensitive to mN for low masses. For
the case σa = 0.05 (red) the 95% confidence region is sufficiently small that it is possible to
constraint |Uµ4|2 within an uncertainty of 30%. However, when we include larger systematic
uncertainties such as σa = 0.2 (green) we find that we can only constraint the value of |Uµ4|2

within an uncertainty of 60%.
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Fig. 4.33 90% confidence level regions for mN = 0.1 MeV, |Uµ4|2 = 5×10−2, 10 years of
operation (5 in neutrino and 5 in antineutrino mode), on-axis position and several values of
σa.



Chapter 5

Conclusion and outlook

This work consists of a thorough analysis of the effects that HNLs can have on the active
neutrino flux produced at DUNE and the charged current event rates at the LArTPC of
the DUNEND. We find that it is possible to simulate the production and decay chain of
heavy neutral leptons by providing the software PYTHIA8 with all the information about
the production and decay rates of the heavy neutral leptons. Since PYTHIA is a software
optimized for the simulation of production and decay chains of particles, we found this
approach very efficient, especially because it opens the possibility of more sophisticated
analysis that exploits the capabilities of PYTHIA8. In our simulations, PYTHIA8 receives as
input the positions of the lepton and meson parents of the HNLs and the relevant physical
parameters of the simulation (meson decay channels and branching ratios, HNL mass, HNL
lifetime, HNL decay channels and their branching ratios, among others) but the scripts also
take as input the position and size of the detector. In this work, we applied our methods to
the DUNE experiment; however, due to the flexibility of our analysis, it is possible to extend
these results to other experiments by changing the position of the detectors and providing
PYTHIA8 the initial flux of the parent particles of the experiment of interest. Although we
worked mainly with cases in which the HNL mixes with electron and muon neutrinos, we
were also able to parametrize the production of D mesons using PYTHIA8 and reproduce
the tau neutrino flux at DUNE. Again, it is possible de repeat this calculation for other
experiments at higher energies. Since DUNE is not optimized for tau neutrino production, the
sensitivity of DUNE to tau channels is negligible and we could not constrain the parameter
space that involves tau mixings. However, if we apply our methods to experiments with
higher energies, we could study the mixing of HNLs and tau neutrinos.

After our analysis, we find that, as a rule of thumb, the production of HNls decreases the
number of active neutrinos that reach the LArTPC of the DUNEND. This effect is significant
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even if for mN ∼ MeV, when the neutrino oscillations to HNLs are averaged out. This
neutrino disappearance represents an indirect signal of HNLs at DUNE that is not due to
neutrino oscillations, but rather to the kinematics of the meson and HNL decays. When
combined with the effects of neutrino oscillations, it is possible to use this deficit in CC event
rates to estimate limits to |Ue4|2 and |Uµ4|2. We found that these limits are very sensitive to
the uncertainty of the neutrino flux prediction at the DUNEND. In order to get conservative
estimates of these limits, we considered overall normalization uncertainties of up to 20%.

The main result of this work was the estimation of the sensitivity of DUNE to HNLs
due to neutrino CC event rates deficit. This approach is different from the usual "direct
searches", which look for the decay products of HNLs inside one detector. In this work,
we did not require that the HNL decays inside a detector. In fact, most of the HNLs
decay way behind the DUNEND. This phenomenon translates into a deficit of neutrino CC
event rates at DUNEND and was used to set limits on the values of the HNL mass and
its mixings to active neutrinos. For five years per mode (neutrino/antineutrino), on-axis
configuration and a 5% overall normalization uncertainty we get limits of |Uµ4|2 < 9×10−3

and |Ue4|2 < 7× 10−3 below 1.5 MeV. We also included a more pessimistic scenario of
a 20% systematic uncertainty and were still able to set bounds of |Uµ4|2 < 4× 10−2 and
|Ue4|2 < 3×10−2 below 1.4 MeV. These limits are better than the ones predicted by DUNE
direct searches or even placed in mass regions inaccessible to them. These bounds are still
competitive for the off-axis configuration. Besides, we explore the capacity of determining
the allowed parameter space region (mN , |Uα4|2) for the specific parameter values mN = 0.1
MeV and |Uµ4|2 = 5× 10−2 and found that, although there is a large degeneracy in the
value of mN , it is possible to constraint |Uµ4|2 with uncertainties in the order of 30(60)%
for a 5(20)% overall normalization uncertainty in the CC event rates. Finally, it is worth
noting that the disappearance of CC events as a HNL signature is complementary to the
direct observation or HNL decays, showing an attractive potential to be used in neutrino Near
Detectors with high ν CC event rates.
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