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Functional Central Limit Theorems
and Unit Root Testing

Juan Carlos Aquino
Ponti�cia Universidad Católica del Perú�

Abstract

This paper analyzes and employs two versions of the Functional Central Limit
Theorem within the framework of a unit root with a structural break. Initial
attention is focused on the probabilistic structure of the time series to be considered.
Later, attention is placed on the asymptotic theory for nonstationary time series
proposed by Phillips (1987a), which is applied by Perron (1989) to study the e¤ects
of an (assumed) exogenous structural break on the power of the augmented Dickey-
Fuller test and by Zivot and Andrews (1992) to criticize the exogeneity assumption
and propose a method for estimating an endogenous breakpoint. A systematic
method for dealing with e¢ ciency issues is introduced by Perron and Rodríguez
(2003), which extends the Generalized Least Squares detrending approach due to
Elliott, Rothenberg, and Stock (1996).

Resumen

Este documento analiza y usa dos versiones del Teorema del Límite Central
Funcional y su aplicación al contexto de raices unitarias con un quiebre estructural.
La atención inicial se enfoca en la estructura probabilística de las series de tiempo a
considerarse. Luego, la atención se situa en la teoría asintótica para series de tiempo
no estacionarias propuesta por Phillips (1987a), la cual es aplicada por Perron
(1989) para estudiar los efectos de un quiebre estructural (asumido) exógeno sobre la
potencia de la prueba Dickey-Fuller aumentada y por Zivot y Andrews (1992) para
criticar el supuesto de exogeneidad y proponer un método para estimar el punto
de quiebre de manera endógena. Un método sistemático para abordar aspectos
de e�ciencia es introducido por Perron y Rodríguez (2003), quienes extienden el
enfoque de extracción de tendencia por Mínimos Cuadrados Generalizados atribuido
a Elliott, Rothenberg, y Stock (1996).

JEL Clasi�cation: C12, C22.
Keywords: Hypothesis testing, unit root, structural break, Functional Central Limit

Theorem, weak convergence, Wiener process, Ornstein-Uhlenbeck process.
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1 Introduction

Four decades ago, the empirical study of key macroeconomic variables has been done
through the use of ARMA models proposed by Box and Jenkins (1970). In these type
of models, �rst and second moments depend upon time separation but do not depend
on the time variable. Hence, these models are covariance stationary1, whose behaviour
reverts to a time invariant unconditional mean and whose methodology is based on the
steps of identi�cation, estimation and diagnostic2.

Consider, for example, the case of a series fytgTt=0 that obeys a �rst order autore-
gressive process: yt = � + �yt�1 + ut, t = 1; : : : ; T , where � is a constant, j�j < 1,
y0 is an initial condition, ut � N(0; �2u) and �2u > 0. A �rst conclusion to be ex-
tracted is that shocks have an e¤ect on the dependent variable that vanishes as time
elapses, an assertion that can be con�rmed after manipulating the previous expression:
yt = �ty0 + �

Pt
i=1 �

t�i +
Pt

i=1 �
t�iui or, equivalently, realization of an arbitrary ui has

a decreasing e¤ect on yt as t increases.

However, assumptions underlying ARMA models are not adequate for modelling
macroeconomic series, which exhibit an upward trend along time. Hence, any model
that aims to represent macroeconomic data must include such a trend. One of the most
popular approachs for this task is the deterministic trend model: yt = � + �t + ut,
t = 1; : : : ; T , � and � are constants, ut � N(0; �2u) and �

2
u > 0. Since a stationary process

is obtained after substracting �t this process is called trend stationary. Notice also that
each realization of ut only has a contemporaneous e¤ect on yt.

An alternative approach considers the data generating process as an autoregressive
one containing a unit root: yt = � + �yt�1 + ut, t = 1; : : : ; T , � is a constant, � = 1, y0
is an initial condition, ut � N(0; �2u) and �

2
u > 0. In this case, yt = y0 + �t+

Pt
i=1 ui or,

equivalently, realization of any ui has a permanent e¤ect on the level of yt and the ade-
quate procedure to obtain a stationary series is to work in �rst di¤erences �yt � yt�yt�1.

From an economic viewpoint, all of these observations make it necessary to identify
the type of process representing macroeconomic data and to understand the long run
e¤ects of shocks. Also, based on a predictive perspective this distinction is nontrivial
since in the deterministic case the forecasting error has a constant variability whereas in
the stochastic case this element has an increasing variability3.

For these reasons, once provided with macroeconomic data, researchers frequently
employ statistical inference procedures to make this distinction. Speci�cally, one of them
consists of stating a (null) hypothesis H0 about the nature of the data generating process,
as opposite to a competing (alternative) hypothesis H1. The hypothesis attention will
be focused on states the autoregressive coe¢ cient as equal to one (� = 1) and will be
refered as the unit root hyphotesis. Thus, logics behind hypothesis testing is based on the
following reasoning: if H0 were in fact true then any inconsistency with this hypothesis
is not likely (although not impossible) to ocurr, so that the probability of incurring in

1Hereafter, any reference to a stationary process will be in this sense.
2See Enders (2004) for an applied approach to this methodology
3See Hamilton (1994) for further details.
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H0 is true H1 is true
H0 is not rejected No error Type II error
H0 is rejected Type I error No error

Table 1: Error types in statistical inference.

Type I error (reject H0 when it is true) is conventionally set to 0; 05. If an inconsistency
is found, this leaves to rejecting H0 in favor of H1. Additionally, it is desirable that the
probability of incurring in Type II error (avoid rejecting H0 when H1 is true) be as lower
as possible (see Table 1).

Turning back to the empirical level, the previous framework allows to consider the
following autoregressive model (without any deterministic component)

yt = �yt�1 + ut (1)

and test
H0 : � = 1 against H1 : j�j < 1. (2)

The study of White (1958) is the �rst one to perform such a procedure: in order to test
H0 with a sample of size T and OLS estimator �̂ for parameter �, under the null, it is
obtained that

Tp
2
(�̂� 1))

R 1
0
W (r)dW (r)R 1
0
W (r)2dr

=
1

2

W (1)2 � 1R 1
0
W (r)2dr

. (3)

In the previous expression (T=
p
2)(�̂�1) denotes centered and standarized estimator for

�, a random variable, and ) denotes weak convergence of probability measures. This
result is an application of a theorem due to Donsker (1951) and the asymptotic distribu-
tion is formulated in terms of functionals of a standard Wiener process W whose details
and properties are examined. It is worth to mention that this result is not independent
of the correlation between disturbance terms ut (assumed to be zero) and the fact that
there is no speci�cation error when estimating �.

Other study in this line is due to Dickey and Fuller (1979), who assume normal i.i.d.
disturbances and develop several one-tailed tests with the following rejection rule: for
a given con�dence level, if the (properly transformed) centered estimator �̂ � 1 is low
relative to a critical value then the unit root hyphotesis is rejected. In order to understand
the previous rule, consider the equation (1) which is equivalent to

�yt = b0yt�1 + ut, (4)

with b0 = � � 1. Therefore, � = 1 holds if and only if b0 = 0. Within this context,
the so called Dickey-Fuller (DF) test is simply the t statistic (used when testing for
unit roots) for the signi�cance of yt�1 in (4). When lagged values of �yt are included in
(4), the implied t statistic is known as the (lag) augmented Dickey-Fuller test or ADF test.

Analysis is done considering three types of autoregressive models: without intercept
nor (deterministic) trend, with intercept but without trend and with both intercept and
trend. In this particular study, assumptions let asymptotic distributions be represented
through moment generating functions. By using Monte Carlo simulations, the power of
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Figure 1: Asymptotic distributions for several speci�cations.

these tests is compared with those of (autocorrelation based) Q statistics proposed by
Box and Pierce (1970). The main results are: �rst, Q statistics are sistematically less
powerful; second, the performance of Dickey-Fuller tests is uniformly superior when there
is no mispeci�caton error4; and third, there is evidence that Dickey-Fuller tests are bi-
ased towards not rejecting the null hyphotesis for values of the autoregressive coe¢ cient
� arbitrarily close to 1.

A simple way to illustrate the role of speci�cation is given by generating samples from
the data generating process yt = yt 1 + ut, ut � N (0; 1). The distribution of T (�̂� 1)
is plotted under three cases (see Figure 1): when there is no speci�cation error, when
intercept is redundant and when both intercept and trend are redundant. It can be appre-
ciated that simulated distributions progressively move to the left and tabulated critical
values tend to be higher (in absolute value) as far as redundant regressors are included.
This makes the tests biased towards not rejecting the null hyphotesis and, in this sense,
their power is reduced.

This brief review shows that, up to the �rst half of the 1980 decade, unit root econo-
metrics has two well de�ned limitations: misspeci�cation and local stationary alterna-
tives, and each of them implies an expected loss of power. Additionally, the recurrent use
of normal i.i.d. disturbances considerably reduces the applicability of these approaches by
applied researchers. Two important advances are produced during the second half of that
decade. First, Phillips (1987a) proposes an asymptotic theory under very general condi-
tions for integrated processes, which makes the posterior discussion be done under �rmly
established foundations and, second, Perron (1989) identi�es the presence of a structural
break as an element that also reduces the power of the augmented Dickey-Fuller tests.

The reader must also take into account that none of these two advances could have
been developed without the notion of weak convergence of probability measures to be
discussed. To motivate the need of this concept consider �rst the Central Limit Theo-
rem which, under conditions that vary along versions, allows for the distribution of the

4Intuitively this ocurrs because, for example, it is exploited the knowledge that the intercept is zero.
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centered and standarized sample mean to converge to those corresponding to a normal
standard distribution. In an analogous fashion, this is a desirable property when dealing
with dependent heterogeneously distributed disturbances that do not satisfy the normal
i.i.d. assumption in conventional autoregressive models. Indeed, this idea is summarized
by several versions of the Functional Central Limit Theorem which, in a wider sense,
states that the distribution of standarized partial sums converges to those of a functional
of a standard Wiener process W . As described in Brzezniak and Zastawniak (1999), for
a �xed value of r 2 [0; 1] the density fW (r) of the random variable W (r) is given by the
function

fW (r)(x) =
1p
2�r

e�
x2

r , x 2 R.

Therefore, in order to deal with advances in this literature two requisites are needed. First,
it is required to formally understand both the mathematical and probabilistic structure of
data generating processes in order to state the main (weak) convergence results. Second,
and most important, it is required to recognize the importance of incorporating econo-
metric problems faced by researchers into the analysis, because their formalization leads
to the development of new econometric procedures and testing statistics. This task is
frequently made with the help of interesting alternative hypotheses.

With this background at hand, the present paper reviews a selection of theoretical
advances in the unit root literature, starting from the second half of the 1980 decade
and covering up to several contemporaneous developments. The presentation emphasizes
both the relevance of the Functional Central Limit Theorem along the discussion as well
as the econometric considerations behind novel approachs. Since time series literature
can consider the case of multiple structural breaks, attention is here focused only on a
singular structural break. An applied survey that considers multiple breaks can be found
in Glynn and Perera (2007).

This paper is organized as follows. Section 2 describes the probabilistic structure of
disturbance sequences involved, a building block for this literature. Section 3 details a
general version of the Functional Central Limit Thorem that covers a wide class of dis-
turbance processes. Section 4 presents the asymptotic theory for integrated time series
proposed by Phillips (1987a). Section 5 generalizes the former framework in order to
consider the so called near-integrated processes, as made by Phillips (1987b). Section 6
studies linear processes and the class of modi�ed or M tests proposed by Stock (1999),
which are meant to be employed in later developments. Section 7 details the warning
made by Perron (1989) about the e¤ects of structural breaks on the power of Dickey-Fuller
statistics and the methodology proposed for dealing with an (assumed) exogenous break.
Section 8 covers the critique made by Zivot and Andrews (1992) to this exogeneity as-
sumption and the new test proposed, which involves estimating an endogenous structural
break. Since none of the two previous studies deals with the power loss due to local-to-
unity alternatives, section 9 illustrates the results of Perron and Rodríguez (2003), who
develop e¢ cient (power increasing) unit root tests under structural break and extend the
results obtained by Elliott, Rothenberg, and Stock (1996) for linear processes. Section 10
concludes with a retrospective view about the developments in statistical inference with
integrated series and the role played by the theory of difussion processes.
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Part I

Asymptotic Theory
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2 The structure of weakly dependent heterogeneously
distributed disturbances

2.1 Some motivation

Most of the econometric theory to be covered is related with extensions of the following
autoregressive model: yt = �yt�1+ ut, t = 1; 2; : : :. The main objetive here is to contrast
the null hypothesis H0 : � = 1 when a sample of T observations fytgTt=1 is available, and
the previous section introduced this task in some detail. However, a major limitation is
given by the assumption that the unobservable disturbance sequence futg1t=1 is composed
by i.i.d. normal random variables. Thus, the empirical applicablity of several procedures
is heavily restricted and it becomes desirable to cover a case intended to be as general as
possible. This case is formalized by considering a sequence of disturbance terms futg1t=1
that are dependent and heterogeneously distributed. A way to control the extent in which
dependence occurs, such that permits to derive convergence results, is to de�ne a measure
of dependence among random variables contained in a sequence. For this measure to be
well de�ned it needs to be refered to a speci�c probabilistic structure. Conditions that
bound the extent of dependence are called mixing conditions. Results exposed here follow
both White (1984) and Herrndorf (1984).

2.2 Mixing conditions

Consider a probabilistic space (
;F ; P ), where 
 is the sample space containing all of the
possible results for an experiment, F is a set of events of 
 (�-�eld) and P : F ! [0; 1] is
a probability measure (P (
) = 1) over events contained in F . Next, consider a sequence
of random variables futg1t=1 (that is, ut : 
 ! R is a Borel-measurable real function for
all t) on (
;F ; P ). Let m and n denote two positive integers and consider a track of
disturbances fut : n � t � n + mg. Since it will be needed to assign probabilities to
events involving random variables contained in such a track, and since such events need
to be included into a family with a �-�eld structure, it becomes necessary to de�ne the
�-�eld generated by random variables contained in the track as the smallest �-�eld that
contains events for which each ut, t = n; : : : ; n+m, is mesurable.

De�nition 1 Let B denote the Borel �-�eld on R. The Borel �-�eld generated by the
random variables included in the track fut : n � t � n+mg, Bn+mn = �(ut : n � t �
n+m), is the smallest �-�eld that contains events [uti 2 Bi; n � ti � n+m] with Bi 2 B.

Intuitively, Bn+1n is the smallest collection of events that allows to assign probabilities
to events, for example, of the form f! 2 
 : un (!) < a1 and un+1 (!) < a2g 2 F , where
a1; a2 2 R.

The notion of mixing is needed to explicit the fact that, although two arbitrary sets
of random variables can exhibit dependence, this vanishes as time separation increases5.

In order to illustrate the former idea, consider the track composed by the �rst n
elements of futg1t=1 and denote it by futgnt=1. Within this track, two non-overlapping

5Notice that the idea of progressive lack of dependence includes that of ergodicity and asymptotic
independence.
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Figure 2: Dependence and mixing coe¢ cients.

subtracks can be identi�ed: a �rst one starting at u1 and a second one ending at un. Let
k � 1 denote the di¤erence between time indexes corresponding to the last element of the
�rst subtrack (denoted bym � 1) and the �rst element of the second subtrack (see Figure
2). Of course, the previous characterization does not completely determine both subtracks
but allows for several cases. Indeed, the following de�nition of mixing coe¢ cients employs
the previous observations in order to quantify, given the �rst n elements of a sequence,
the dependence between random variables separated by k periods at least.

De�nition 2 The mixing coe¢ cients of the sequence futg1t=1 are

�n (k) =

8><>:
sup

A2�(ut:1�t�m)
B2�(ut:m+k�t�n)

1�m�n�k

jP (A \B)� P (A)P (B)j for k � n� 1

0 for k � n

Intuitively, for n � 1 given, �n (k) measures how far dependence among events con-
tained in the �-�elds H = �(ut : 1 � t � m) and G = �(ut : m + k � t � n) is situated
from the independence case. k � 1 denotes time separation between these two sets of
random variables (see Figure 2). If H and G were independent then for any h 2 H and
g 2 G condition P (g \ h) = P (g)P (h) must hold or, equivalently �n (k) = 0.

Since mixing coe¢ cients only take into account a �nite number of disturbances (i.e.
the �rst n random variables), this notion is extended to consider the highest dependence
among random variables separated by at least k periods.

De�nition 3 The strong mixing coe¢ cient of the sequence futg1t=1 is

�(k) = sup
n2N

�n(k), for k 2 N.

Thus, � (k) provides a measure of dependence. If �(k) = 0 for some k, events sepa-
rated by k periods are independent. Also, if �(k)! 0 as k !1, sequence futg1t=1 is said
to be strong mixing, so that the notion of asymptotic independence is considered too.
For future reference, it is useful to emphasize for a strong mixing sequence the velocity at
which �(k) tends to zero or, equivalently, the rate of decay of �(k). This will be denoted
by �(k) = O(k��) for some � > 06.

6Let fatg and fbtg denote two sequences of positive real variables. Then at = O (bt) if there exists
M > 0 such that jat=btj �M for all t.
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3 The Functional Central Limit Theorem

3.1 The Skorohod topology

The logics behind the Functional Central Limit Theorem relies on the convergence of a
sequence of standarized partial sums of disturbances ut. The limit for this new sequence
is W a standard Wiener process. Correspondingly, elements of these sequence of partial
sums are contained on D = D[0; 1] the space of right-continous functions whose left limits
exists everywhere on the unit interval, also refered as càdlàg7 functions.

Convergence above mentioned must be understood as weak convergence of a sequence
of random functions. As will be shown, in order to guarantee convergence results it is
su¢ cient to endow D with a metric d such that (D; d) is a complete separable space, so
that the limit of any convergent sequence of elements contained in D is also contained in
D. Concepts and results here discussed are strongly based on Billingsley (1968), although
this presentation follows Davidson (1994). The following de�nition characterizes the
properties of the functions hereafter to be considered.

De�nition 4 D[0; 1] is the space of functions x : [0; 1] ! R satisfying the following
conditions:

1. limt!r+ x(t) = x(r) for r 2 [0; 1),

2. limt!r� x(t) exists for r 2 (0; 1],

3. x(1) = limt!1� x(t).

Thus, only �rst class discontinuities are admited. A �rst metric to be considered for
D is the uniform metric dU , de�ned as

dU(x; y) = supr jx(r)� y(r)j , x; y 2 D.

This metric states that two functions are arbitrairly close if the maximum di¤erence
between ordinates corresponding to the same abcissa is small. Metric space (C; dU) is
complete but, since C � D, completeness does not necessarily generalize to (D; dU). In
fact, it is not di¢ cult to show that the limit of sequences of càdlàg functions in fact does
not necessarily lie on D under dU . Thus, (D; dU) is not a complete space and the strategy
adopted by Billingsley (1968) consists in metrizing D as a separable complete space by
introducing the Skorohod metric.

De�nition 5 (Skorohod metric) Let � be the collection of all homeomorphisms8 � :
[0; 1]! [0; 1] with �(0) = 0 and �(1) = 1. The Skorohod metric is de�ned as

dS(x; y) = inf�2�f" > 0 : supr j�(r)� rj � " and supr jx(r)� y(�(r))j � "g.
7In Frech: "continue à droite, limitée à gauche".
8A homeomorphism (or bicontinuous function) is a continuous function that has a continuous inverse

function.
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This metric is de�ned in order to overcome the following key limitation in the (D; dU)
space: given two càdlàg function x; y 2 D, under the uniform metric x and y are arbi-
trairly near to each other only if the distance between the functions is uniformly small,
whereas the Skorohod metric also takes into account the fact that the distance between
the arguments of these functions is small.

Metric space (D; dS) induces a topological space. As usual, an open ball of radius
r > 0 around x 2 D is de�ned as B(x; r) = fy 2 D : dS(x; y) < rg. Open balls like the
previous one generate a topology on (D; dS) referred to as the Skorohod topology and
denoted by TS. In this sense the topological space (D;TS) is a metrizable topological
space.

However, D is not complete under dS yet. For this purpose, a new equivalent metric
(the Billingsley metric) to dS is introduced such that these two metrics induce the same
topology in D, the Skorohod topology. The only di¤erence now lies in the fact that the
new metric space is complete.

De�nition 6 (Billingsley metric) Let � be the collection of all homeomorphisms � :
[0; 1]! [0; 1] with �(0) = 0 and �(1) = 1, satisfying

k�k = supt6=s
����log��(t)� �(s)

t� s

����� <1.
The Billingsley metric is

dB(x; y) = inf�2� f" > 0 : k�k � ", sup jx(t)� y(�(t))j � "g .

The next two results formalize the fact commented above.

Theorem 1 In D, metrics dB and dS are equivalent.

Proof. See Davidson (1994), Theorem 28.7, p. 464.

Theorem 2 The space (D; dB) is complete.

Proof. See Davidson (1994), Theorem 28.8, p. 464.

3.2 The main theorem (Herrndorf, 1984)

The main result to be considered in this section is a generalization of the Central Limit
Theorem for the case of functional spaces such as D, known as the Functional Cen-
tral Limit Theorem. In order to understand the theorem, concepts previously de�ned
are complemented with additional conditions for the disturbance sequence futg1t=1 and,
speci�cally, for the sequence of partial sums ST =

PT
t=1 ut. First, disturbances are re-

quired to have zero mean and �nite variance

E(ut) = 0, E(u2t ) <1 for t = 1; 2; : : : . (5)

Second, variance of partial sums must converge

limT!1E(T
�1S2T ) = �2 > 0 for some � > 0. (6)

12



Consider now the space D endowed with the Skorohod topology with Borel �-�eld B
and de�ne random functions WT : 
! R by

WT (r) =
1p
T�

SbrT c, r 2 [0; 1], T = 1; 2; : : :

where b�c denotes the integer part of its argument. Each WT is a measurable map from
(
;F) into (D;B). Sequence fWTg1T=1 is said to satisfy the invariance principle if it is
weakly convergent to a standard Wiener process W on D. For the development of this
result, let kuk� be de�ned as

kuk� = (E juj�)1=� for � 2 [1;1)
kuk� = ess sup juj for � =1.

As will be shown in the next section, the following version of the Functional Central Limit
Theorem is the starting point for all of the recent literature on unit roots. This result is
due to Herrndorf (1984).

Theorem 3 (Herrndorf, 1984 Corollary 1 p. 142) Let � 2 (2;1] and 
 = 2=�. If
futg1t=1 satis�es (5), (6) andP1

k=1 �(k)
1�
 <1 and lim supt2N kutk� <1,

then WT ) W as T !1.

Proof. See Herrndorf (1984), Corollary 1, p. 148.

4 Asymptotics for integrated processes
(Phillips, 1987a)

The two previous sections stated the probabilistic foundations for econometric develop-
ments to be considered in the following lines. The �rst of these works is due to Phillips
(1987a), who develops a quite general asymptotic theory for processes that contain a unit
root.

4.1 Probabilistic structure of time series with a unit root

The �rst study to develop a quite general framework for testing unit roots is due to
Phillips (1987a). This study establishes weak dependence conditions, among others, for
the disturbance sequence in order to propose a new asymptotic theory and develop new
testing statistics. Exposition here is focused on the �rst task because of their application
in subsequent studies. The approach starts by considering a data generating process for
a sequence fytg1t=1 that satis�es

yt = �yt�1 + ut, t = 1; 2; : : : (7)

with
� = 1. (8)
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Under such a representation yt = St + y0, where St =
Pt

i=1 ui and y0 is a random initial
state whose distribution is assumed to be known. Interest is placed here on the limiting
distribution of standarized partial sums de�ned by

WT (r) =

8><>:
1p
T�

SbTrc if
j � 1
T

� r <
j

T
, j = 1; : : : ; T ,

1p
T�

ST if r = 1,
(9)

where � is a positive constant. Notice that the sample paths WT (r) lie in D. It is
worth to emphasize that Phillips (1987a) endows D with the uniform metric dU and
this is done in order to show that each random function WT (r) lies on D. Also the
adoption of assumptions about disturbances futg1t=1 less restrictive than i.i.d. allows to
demonstrate that WT (r) weakly converges to a standard Wiener process W (r) through
a direct application of the Functional Central Limit Theorem developed by Herrndorf
(1984). Assumptions regarding futg1t=1 are grouped in the following statement and are
intended to be as general as possible.

Assumption 1 (Phillips, 1987 p. 280) Disturbance sequence futg1t=1 satis�es

1. E (ut) = 0 for t = 1; 2; : : :,

2. suptE jutj
� <1 for some � > 2,

3. �2 = limT!1 T
�1E (S2T ) exists and �

2 > 0, with ST =
PT

t=1 ut,

4. futg1t=1 is strong mixing, with strong mixing coe¢ cients �(k) that satisfyP1
k=1 �(k)

1�2=� <1. (10)

As usual, condition 1 imposes a zero mean disturbance for every t. Condition 2 bounds
the probability of outliers: the higher � the lower the probability of outliers. As long
as such � > 2 exists, all of the lower absolute moments of each ut (including the second
one) are �nite. Condition 3 is conventional along central limit theory, concerning the con-
vergence of the average variance of partial sums ST . Condition 4 bounds the temporal
dependence among disturbances contained in futg1t=1, and elements covered in previous
sections allows to assert that although dependence can exists between any pair of dis-
turbances, this vanishes as time separation increases. Hence, two random disturbances
su¢ ciently distant along time are almost independent. Finally, sumability condition (10)
is satis�ed as long as the mixing decay rate is �(k) = O(k��) for some � > 0 such that
��(1� 2=�) < 1 or, equivalently � > �=(� � 2).

It is interesting to notice that as T increases the constant sections conformingWT (r) 2
D reduce their size and discontinuities become less perceptible (see Figure 3), re�ecting
how this sequence of random functions in D converge to a random function in C, the
standard Wiener process. This property is exploited by Phillips (1987a) through two
lemmas. The �rst lemma is the Functional Central Limit Theorem shown in Theorem
3 and the second result is widely known as the Continous Mapping Theorem and states
conditions under which convergence to a Wiener process can be preserved along (almost
everywhere) continous transformations.
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Figure 3: Convergence of standarized sums.

Lemma 4 (Phillips, 1987 p. 281) If futg1t=1 satis�es Assumption 1 then, as T !1,
WT ) W a standard Wiener process on C.

Proof. See Herrndorf (1984), Corollary 1, p. 142.

Lemma 5 (Phillips, 1987 p. 281) If WT ) W (r) as T ! 1 and h is a continous
functional on D a.e. then h (WT )) h (W ) as T !1.

Proof. See Billingsley (1968), Corollary 1 p. 31.

4.2 Some asymptotic theory for econometricians

The importance of the two previous lemmas relies on the fact that they allow the deriva-
tion of convergence rules often employed by theoretical econometricians. These rules are
summarized in the next theorem.

Theorem 6 (Phillips, 1987 p. 282) If futg1t=1 satis�es Assumption 1 and if

supt jutj
�+" <1 for some " > 0

(where � > 2 is the same as that in Assumption 1), then as T !1:

1. T�2
PT

t=1 y
2
t�1 ) �2

R 1
0
W (r)2 dr,

2. T�1
PT

t=1 yt�1 (yt � yt�1)) (�2=2)(W (1)2 � �2u=�
2),
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3. T (�̂� 1)) 1

2
(W (1)2 � �2u=�

2)=
R 1
0
W 2 (r) dr,

4. �̂
p! 1,

5. t�̂ ) (�=2�u)(W (1)2 � �2u=�
2)=f

R 1
0
W (r)2 drg1=2,

where �2u = limT!1 T
�1PT

t=1E (u
2
t ), �

2 = limT!1E (T
�1S2T ) and W is a standard

Wiener process on C.

Proof. See Phillips (1987a), Theorem 3.1 p. 296.

In the previous theorem, results 1 and 2 constitute derivation rules for limiting distri-
butions. Result 3 is focused on the limiting distribution of the statistic T (�̂� 1), which
corrects the results of White (1958)9, among others. Result 4 states the consistency of the
OLS estimator �̂ in the presence of a unit root and under the general case of dependent
and heterogeneously distributed disturbances. Finally, result 5 shows the asymptotic dis-
tribution of the t statistic used when testing for unit roots. It is worth to mention that
under (7) and (8) the t statistic does not follow a Student�s t distribution. Since W (1)
follows a normal standard distribution, W (1)2 follows a chi-squared distribution with
one degree of freedom. However, the functional

R 1
0
W (r)2 dr is a random variable with a

rather complex distribution, so that usual distributions (normal, chi-squared, t and F )
employed in the stationary case are not relevant for the subsequent analysis.

In this way, results let Phillips (1987a) to propose (after developing consistent esti-
mators for parameters �2u and �

2) two new test statistics for the unit root hypothesis
often refered as the Z tests. Although it is important to remember that both (7) and (8)
correspond only to the case of a unit without drift nor deterministic trend, the impor-
tance of this study relies on providing a general theory on test statistics for the unit root
hypothesis. Distributions considerd here di¤er from those involved in the stationary case
(j�j < 1). Obviously, this methodology is well suited for extensions that include both
drift and deterministic trend, derived by Phillips and Perron (1988), and constitute the
starting point for the study of the unit root test under structural break in the following
sections.

5 Asymptotics for near-integrated processes
(Phillips, 1987b)

For later discussion on the asymptotic power of unit root tests against alternative hy-
potheses that consider autoregressive coe¢ cients near to one, it will be useful to consider
generalizations of integrated processes often referred as near-integrated processes and
studied in detail by Phillips (1987b). For this case, time series fytg1t=1 is assumed to be
generated according to the following model

yt = �yt�1 + ut, t = 1; 2; : : : (11)

� = ec=T , �1 < c <1. (12)

9See equation (3).
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In the above model, initial condition y0 is allowed to be any random variable whose
distribution is �xed and independent of T . The constant c is interpreted as a non-
centrality parameter that quanti�es deviations from the unit root null hypothesis that
holds when c = 0

H0 : � = 1. (13)

Under (13), fytg1t=0 is an integrated process of order 1 or I (1) process. Additionally, any
c 6= 0 in (12) represents a local alternative to H0. For future reference, the next de�nition
formally establishes this distinction.

De�nition 7 A time series fytg1t=1 that is generated by (11) and (12) with c 6= 0 is called
near-integrated. When c = 0, in (12), fytg1t=1 is also called integrated.
The main objetive of the present section is to present an asymptotic theory for this

type of processes. Naturally, results and properties are indexed by the parameter c.

5.1 Probabilistic structure of time series with a near-to-unit
root

For a wide applicability of this asymptotic theory, general assumptions concerning the
disturbance sequence futg1t=0 are necessary. For this reason, the following mixing condi-
tions about the behaviour of disturbances futg1t=0 (hereby now familiar) are adopted and
summarized in the next statement.

Assumption 2 (Phillips, 1987b p. 537) Disturbance sequence futg1t=1 satis�es
1. E (ut) = 0 for t = 1; 2; : : :,

2. suptE jutj
�+" <1 for some � > 2 and " > 0,

3. �2 = limT!1 T
�1E (S2T ) exists and �

2 > 0, with ST =
PT

t=1 ut,

4. futg1t=1 is strong mixing, with strong mixing coe¢ cients �(k) that satisfyP1
k=1 �(k)

1�2=� <1. (14)

Notice that Assumptions 1 and 2 are quite similar and the only di¤erence relies on
the existence of " > 0 such that the existence of suptE jutj

�+" holds. By the other hand,
it will be convenient to represent stochastic limit theory by means of extensive use of
certain difussion process. This process can be interpreted as the continous time version
of an AR(1) process.

De�nition 8 (Ornstein-Uhlenbeck process) A Ornstein-Uhlenbeck process is a func-
tional of the formWc(r) =

R r
0
e(r�s)cdW (s) that satis�es the stochastic di¤erential equation

dWc(r) = cWc(r)dr + dW (r), Wc(0) = 0. (15)

Equation (15) is called the Ornstein-Uhlenbeck or Langevin equation. It is a particular
case of the equation

dX(t) = b(t;X(t))dt+ �(t;X(t))dW (t), (16)

where b(t;X(t)), �(t;X(t)) 2 R and W (t) is a Wiener process with t 2 [0;1) (Oksendal
2000). Equation (15) can also be written as

Wc(r) =W (r) + c
R r
0
e(r�s)cW (s)ds

and the e¤ect of the non-centrality parameter c becomes even more evident.
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5.2 More asymptotic theory for econometricians

If parameter c were �xed it would be natural to expect, based on (12), �! 1 as T !1.
However, in this framework the speed of convergence of � towards 1 is controlled at
O(T�1). Equivalently, such a speed is not too fast so that the e¤ect of c on the main
results does not vanish10. This observation leads to the following derivation rules and
properties for regression-based statistics.

Lemma 7 (Phillips, 1987b p. 539) If fytg is a near-integrated time series generated
by (11) and (12) then, as T !1:

1. T�1=2y[Tr] ) �Wc(r),

2. T�3=2
PT

t=1 yt ) �
R 1
0
Wc(r)dr,

3. T�2
PT

t=1 y
2
t ) �2

R 1
0
Wc(r)

2dr,

4. T�1
P
yt�1ut ) �2

R 1
0
Wc(r)dW (r) +

1
2
(�2 � �2u), with �u = limT!1 T

�1PE(u2t ).

Proof. See Phillips (1987b), Lemma 1, p. 539.

Theorem 8 (Phillips, 1987b p. 540) If fytg is a near-integrated time series gener-
ated by (11) and (12) then, as T !1:

1. T (�̂� �)) f
R 1
0
Wc(r)dW (r) +

1
2
(1� �2u=�

2)g=
R 1
0
fWc(r)g2dr,

2. �̂
p! 1, s2

p! �2u,

3. t� ) (�=�u)f
R 1
0
Wc(r)dW (r) +

1
2
(1� �2u=�

2)g=[
R 1
0
fWc(r)g2dr]1=2.

Proof. See Phillips (1987b), Theorem 1, p. 540.

Up to this point, the theory presented can be used in the analysis of the power of unit
root tests under local alternatives. For a non-centrality parameter c arbitrarily close to 0
it is easy to show that ec=T � 1 + c=T and this is the approach usually employed in unit
root testing. A brief illustration of this procedure can be found, for example, in Phillips
(1988).

6 Linear processes and modi�ed tests

6.1 Motivation

Although the reader must have noticed that the so called mixing conditions are intended
to be a powerful tool that allows the derivation of weak convergence results for a wide
class of processes, Phillips and Solo (1992) pointed out that, since much of the time series
analysis is concerned with parametric models that fall in the class of linear processes,
mixing conditions exhibit a major drawback. The reason is quite simple since not all
linear processes are strong mixing. In spite of this, they propose a turnback to linear
processes as the main focus for developing time series asymptotics. Under the linear

10Since c = T ln�, c depends on T . To simplify notation, however, this dependence is avoided.
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model class, Phillips and Solo (1992) make extensive use of the algebraic Beveridge-
Nelson decomposition (see Appendix A) to demonstrate the Functional Central Limit
Theorem once provided with a disturbance sequence f"tg1t=0 that is a martingale di¤er-
ence sequence (see Appendix B), strongly uniformly integrable (see Appendix C) with
dominating random variables fZtg1t=0 such that E(Z

2+�
t ) < 1 for some � > 0, further

T�1
PT

t=1E("
2
t jFt�1)

a:s:! �2" > 0, where Ft is the �-�eld generated by f"t; "t�1; : : :g. Given
the latter notation it is now possible to establish the following

Theorem 9 (Phillips and Solo, 1992) Suposse that futg1t=0 is the linear process

ut =
P1

j=0 cj"t�j = C(L)"t, C(L) =
P1

j=0 cjL
j

with 0 < C(1) �
P1

j=0 cj <1 and
P1

j=0 c
2
j <1. If

P1
j=1 jjcjj <1, then

1p
T

PbrT c
t=1 ut ) �"C(1)W (r).

Proof. See Phillips and Solo (1992) Theorem 3.4 p. 983.

Although the latter theorem is less general than versions previously presented, it
will be frequently used in posterior work, specially along the developments due to Stock
(1999).

6.2 The M class of integration tests (Stock, 1999)

Stock (1999) proposed a new class of statistics that directly test the implication that
an integrated process has a growing variance having an order of probability11 of T�1=2

(Op(T�1=2)). Since the remaining of this paper deals with this class of tests under several
frameworks, the general class is examined in some detail. First, suppose the following
data ganerating process for fytg1t=1

yt = �t(�) +
Pt

i=1 ui,

t = 1; : : : ; T . That is, under the null hypothesis the series fytg1t=1 can be written as the
sum of a purely deterministic component �t(�) (with �nite dimensional vector � estimated
by �̂) and an integrated or I(1) component that is the partial sum of weakly stationary
or I(0) terms. Let the long run variance of ut be denoted by �2 = 2�su(0), where su(0)
is the spectral density of ut at frequency zero and, for r 2 [0; 1], let

ST (r) =
1p
T

PbrT c
i=1 ui, and

DT (r; �) = �brT c(�)

be càdlàg versions of the components of the discrete time process. As expected, this
is done in order to apply the Functional Central Limit Theorem. Such functionals are
assumed to satisfy the following

Assumption 3 (Stock, 1999 p. 137) The following conditions hold:

11Let fytg denote a sequence of random variables and let fatg denote a sequence of positive non-
stochastic real numbers. Then yt = Op (at) if for each " > 0 there exists M > 0 such that P (jytj =at >
M) < ".
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1. ST ) �W , where 0 < �2 <1, and

2.
p
TfDT (�; �̂)�DT (�; �)g ) �D, where D 2 D[0; 1] has a distribution that does not

depend on � or on the nuisance parameters describing the distribution of futg.

In line with the proposal of Phillips and Solo (1992), Stock (1999) focuses on linear
processes

ut = C(L)"t,P1
j=1 jjcjj < 1,
C(1) 6= 0

where "t is a martingale di¤erence sequence (m.d.s.) with

E["tjFt�1] = 0, and (17)

suptE["
2+�
t jFt�1] < 1 for some � > 0. (18)

As usual, condition (17) imposes zero-mean disturbances whereas condition (18) bounds
the probability of outliers in a similar fashion to condition 2 presented in Assumption
1. Also, although the deterministic component �t(�) is designed to potentially contain
polynomial and further general trends, the following cases are here considered for obvious
reasons.

1. No deterministic trend: �t(�) = 0. In this case there is no need of detrending. For
completeness, let the "detrended" series be y0t � yt.

2. Constant: �t(�) = �0. In this case �0 is estimated by �̂0 = �y = T�1
PT

t=1 yt and
the demeaned series is y�t � yt � �y.

3. Linear trend: �t(�) = �0 + �1(t=T ). If (�0; �1) is estimated by the OLS estimator
(�̂0; �̂1) then the detrended series is y

�
t � yt � �̂0 � �̂1(t=T ). Normalization of the

known part of the deterministic component is done for its continous time analogous
to lie in the interval [0; 1].

The three former cases are enough for subsequent analysis. Since limiting represen-
tation in Assumption 3 depends on the nuisance parameter �2, it is assumed that there
exists a consistent estimator �̂2 for �2.

Assumption 4 (Stock, 1999 p. 137) Under the null hypothesis �̂2
p! �2.

Elements for the development of the new class of tests are based on both the Functional
Central Limit Theorem and the Continous Mapping Theorem. For each case considered,
de�ne SdT as the scaled stochastic process formed using the respective detrended series

SdT (r) =
1p
T �̂2

ydbrT c, d = 0; �; � ,

for r 2 [0; 1]. If Assumptions 3 and 4 hold, then

SdT ) Sd = W � ~D, for certain ~D 2 D[0; 1]. (19)

For the three functional forms of the deterministic component, the following theorem
shows the speci�c form that ~D adopts.
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Theorem 10 (Stock, 1999 p. 137) Assume that Assumptions 3 and 4 hold.

1. If �t(�) = 0, then

S0T (r) =
1p
T �̂2

y0brT c ) W (r).

2. If �t(�) = �0, then

S�T (r) =
1p
T �̂2

y�brT c ) S�(r) =W (r)�
R 1
0
W (s)ds.

3. If �t(�) = �0 + �1(t=T ), then

S�T (r) =
1p
T �̂2

y�brT c

) S� (r) =W (r)� (4� 6r)
R 1
0
W (s)ds� (�6 + 12r)

R 1
0
sW (s)ds,

Proof. See Stock (1999), Theorem 1 p. 139.

This latter result is one of the cornerstones for the proposed class of tests. Also, it
follows from the Continous Mapping Theorem that if (19) holds and g is a continous
function g : D[0; 1]! R, then

g(SdT )) g(Sd). (20)

Let Md = fm : D[0; 1] ! Rg be the collection of functionals that satisfy the following
conditions:

1. m is continous,

2. there exists c�, jc�j <1, such that P [m(Sd) � c�] = � for all � 2 (0; 1), and

3. g(0) < c� for all � 2 (0; 1).

The classMd, refered only to continous functionals of SdT , groups test statistics for the
null hypothesis that yt is I(1) against the alternative that it is I(0). Since SdT represents
any of the three detrended series mentioned, under the null hypothesis m(SdT ) has an
asymptotic distribution with critical values that depend on the functional m, whereas
under a �xed alternative yt is I(0), which suggests the construction of one tailed tests of
level � of the form:

reject H0 : yt � I(1) if m(SdT ) � c�.

This approach, as Stock (1999) asserts, suggests working backwards from the desired as-
ymptotic representation to the actual test statistic. The fact that the form of the function
m(�) does not depend on the type of detrending emphasizes that the steps of eliminating
the deterministic components and testing for unit root are distinct: detrending a series
when it is not required does not a¤ect the size of the tests since ~D does not depend on
�. In contrast, failing to detrend a series that contains a trend typically leads to a loss
of consistency and an incorrect asymptotic size.

In summary, always detrending a series before hypothesis testing does not a¤ect the
size and this is a desirable property. Once size is guaranteed to be �xed, power increasing
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procedures can be perfomed. The next two subsections illustrate the main idea behind:
if certain test statistic V has a limiting distribution characterized as the functional m of
certain di¤usion process Sd

V ) m(Sd),

this asymptotic distribution can also be written as the limiting one of a respective mod-
i�ed test statistic for detrended data m(SdT ):

m(SdT )) m(Sd),

such that V and its modi�ed version m(SdT ) are asymptotically equivalent.

6.3 The modi�ed Sargan-Bhargava test

One of the test statistics to be covered along the section 9 is due to Sargan and Bhargava
(1983) for the model

yt = �0 +
Pt

s=1 �
t�s"s, (21)

where "t � N(0; �2), t = 1; : : : ; T and (�; �0; �
2) is a vector of unknown parameters.

The authors propose the following Durbin-Watson statistic for a regression of yt against
a constant

SB� =

PT
t=2(�yt)

2PT
t=1(y

�
t )
2
,

where y�t � yt � �y. For the case where there exists a linear deterministic trend Bhargava
(1986) considers the extension

yt = �0 + �1t+
Pt

s=1 �
t�s"s, (22)

where "t � N(0; �2), t = 1; : : : ; T and (�; �0; �1; �
2) is a vector of unknown parameters.

A similar test is proposed

SB� =

PT
t=2(�yt)

2PT
t=1(y

�
t )
2
,

where y�t � yt � ~�0 � ~�1(t=T ),

~�0 = �y � 1
2

T + 1

(T � 1)(yT � y1),

~�1 =
T

T � 1(yT � y1).

For both tests, Stock (1999) derives the limiting distribution

T�1SBd )
�2

var(�yt)

R 1
0
Sd(r)2dr, for d = �; � . (23)

After noticing in (21) and (22) that �2 = var(�yt), (23) can be written as

T�1SBd )
R 1
0
Sd(r)2dr, for d = �; � .

Now, notice that the functional

mSB(f) =
R 1
0
f(r)2dr

is also involved in the limiting distribution of the following functional in D[0; 1]

1p
T

PT
t=1(y

d
t )
2.

This latter statistic will be refered as the modi�ed Sargan-Bhargava or MSB test.
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6.4 A modi�ed Z test

For a model that contains a constant deterministic component, Phillips (1987a) and
Phillips and Perron (1988) propose the test statistic

Z� = T (�̂� 1)� 1
2

�̂2 � �̂2u

T�2
PT

t=1 y
2
t�1
, (24)

where

�̂ =
PT

t=2 y
�
t y

�
t�1=

PT
t=2(y

�
t�1)

2, (25)

ût = y�t � �̂y�t�1, (26)

�̂2 = T�1
PT

t=2 û
2
t + 2

Pl
j=1 T

�1PT
t=j+2 ûtût�j and (27)

�̂2u = T�1
PT

t=1(yt � �̂yt�1)
2. (28)

Since
PT

t=1 yt�1�yt = (1=2)(y
2
T ��y2t ), Z� test in (24) can be written as

Z� =
1

2

ST (1)
2 � 1

T�1
PT�1

t=1 ST (t=T )
2
� 1
2
T�2(�̂� 1),

and, provided that �̂� 1 p! 0, asymptotic distribution is

Z� )
1

2

W (1)2 � 1R 1
0
W (r)2dr

.

This latter expression suggests the use of the following functional

mZ�(f) =
1

2

f(1)2 � 1R 1
0
f(s)2ds

,

as shown by Stock (1999). For the study of Perron and Rodríguez (2003) to be covered
in section 9, the modi�ed Z� test will be refered to as the MZ� test.
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Part II

Econometric Applications
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7 Exogenous structural break (Perron, 1989)

In the previous sections, the foundations for the study of inference with nonstationary
time series have been established. Now, subsequent sections extend the analysis to the
case in which a structural break is present. This literature starts with the identi�cation
of key limitations concerning ADF tests.

After the work of Dickey and Fuller (1979), several empirical studies were done in
order to test for the existence of unit roots along macroeconomic variables. Most of these
empirical results favored such an hypothesis and the perception that macroeconomic vari-
ables were characterized by stochastic trends became popular. One of the most in�uent
studies in this empirical literature is done by Nelson and Plosser (1982). In this study, 14
macroeconomic variables for the US economy were employed. Under the stochastic trend
perspective, a series that exhibits an upward sloping behaviour and an abrupt reduction
(see Figure 4a) is interpreted as a consequence of an atipic realization of ut (situated in
the left tail of its distribution) for the process yt = �+ yt�1 + ut. However, the same be-
haviour can be interpreted as a trend stationary process yt = �t+ �t+ut whose intercept
changes its value from, say, �1 to �2 < �1 (see Figure 4b).

Figure 4: Shifts under stochastic and deterministic trend frameworks.

Indeed, Perron (1989) emphasizes this latter interpretation and asserts that

"... most macroeconomic variables are trend stationary if one allows a single
change in the intercept of the trend function after 1929 and a single change
in the slope of the trend function after 1973".
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Null hyphotesis Alternative hyphotesis

Model A Model A
yt = �+ yt�1 + �D (TB)t + ut yt = �1 + (�2 � �1)DUt + �t+ ut

Model B Model B
yt = �1 + yt�1 + (�2 � �1)DUt + ut yt = �+ �1t+ (�2 � �1)DT

�
t + ut

Model C Model C
yt = �1 + yt�1 + �D (TB)t yt = �1 + �1t+ (�2 � �1)DUt

+(�2 � �1)DUt + ut +(�2 � �1)DTt + ut

where where
D (TB)t = 1 if t = TB + 1, 0 otherwise DT �t = t� TB if t > TB, 0 otherwise
DUt = 1 if t > TB, 0 otherwise DTt = t if t > TB, 0 otherwise

Table 2: Null and alternative hypotheses considered by Perron (1989).

7.1 The key motivation

Perron (1989) considers atipic events as interventions to the deterministic component of
the model, and this allows to distinguish between what can be explained or not by the
disturbance term. Additionally, the date for this intervention is assumed to be known by
the researcher. Because there exist two competing interpretations (above mentioned) for
time series with an abrupt shift, models considered by Perron (1989) are summarized in
Table 2.

In Table 2, �, �, �1, �2, �, �1 and �2 are parameters, A (L)ut = B (L) et and
et � i:i:d: (0; �2e). A (L) and B (L) are pth and qth order polinomials. That is, futg
is an ARMA (p; q) process with p and q possibly unknown. This assumption allows fytg
to represent general processes. In this sense, di¤erent speci�cations allow for di¤erent
models:

1. Under the null hypothesis, model A contains a dummy variable that equals 1 only
inmediatly after TB (a one time change of the intercept), whereas under the alterna-
tive hypothesis the series is trend stationary with a permanent shift in the intercept
of the trend function after TB (see Figure 5).

2. For model B, under the null hypothesis a permanent change in the intercept is
allowed after TB; whereas under the alternative hypothesis only a permanent shift
is allowed in the slope of the deterministic component.

3. Finally, model C allows both the two shifting types simultaneously: a shift in level
acompained by a shift in slope.

In this way, Perron (1989) introduces a third interpretation to the discussion (see
Figure 5) in order to identify limitations present in already known testing statistics.

A �rst attempt to discriminate between the two approaches included in Figure 4
could be through the use of DF tests. However, by using numerical experiments, Perron
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Figure 5: The "Crash" model.

(1989) examines the performance of these class of tests under the alternative hypothesis.
Speci�cally, Monte Carlo simulations reveal that when the data generating process is
described as by model A under the alternative, DF tests tend to detect a spurious unit
root that does not vanish, even asymptotically. Therefore, a power loss is expected.
This property is also derived at the theoretical level (Perron 1989, Theorem 1) and for
this result to be as general as possible, assumptions identical to those adopted by Phillips
(1987a) concerning the innovations sequence futg are adopted and summarized as follows.

Assumption 5 (Perron, 1989, p. 1371) Disturbance sequence futg1t=1 satis�es

1. E (ut) = 0 for all t;

2. suptE jutj
�+" <1 for some � > 2 and " > 0;

3. �2 = limT!1 T
�1E (S2T ) exists and �

2 > 0, where ST =
PT

t=1 ut;

4. futg1t=1 is strong mixing with strong mixing coe¢ cients �(k) that satisfyP1
k=1 �(k)

1�2� <1.

As expected, the Functional Central Limit Theorem due to Herrndorf (1984) can still
be employed in this case. Speci�cally, Assumption 2 allows for the generalization of the
asymptotic theory included in Theorem 6 (Perron 1989, Lemma A.3), now under the
presence of a breakfraction � 2 (0; 1). The next subsection presents the strategy adopted
and the main results.
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7.2 Structure of the model and main �ndings

Because of the caveats when using DF tests, the strategy adopted by Perron (1989) con-
sists on developing a unit root test under structural break. That is, the null hypothesis
speci�es the model as an autoregressive model that simultaneously contains both a unit
root and a sudden shift (either on slope, intercept or both).

The two statistics of interest are generalizations of the Z-tests proposed by Phillips
(1987a). The intuition behind is simple: since the researcher is assumed to know the
breakfraction �, this e¤ect must be removed from data. Thus, let f~yitg denote detrended
data under model i (i = A, B, C). Furthermore, let ~�i be the least squares estimator of
~�i in the following regression

~yit = ~�
i~yit�1 + ~et, (29)

where i = A, B, C; t = 1; 2; : : : ; T . If the null hypothesis were in fact true, the value of
~�i must be near to one or, equivalently, bias ~�i � 1 must be near to zero. Formally, the
next theorem presents the asymptotic distribution of both standarized bias T

�
~�i � 1

�
and t statistic t~�i along several speci�cations.

Theorem 11 (Perron, 1989, p. 1373) Let the process fytg be generated under the
null hypothesis of model i (i = A, B, C) with the innovation sequence futg satisfy-
ing Assumption 5. Let ) denote weak convergence in distribution and � = TB=T for all
T . Then, as T !1:

a) T
�
~�i � 1

�
) Hi=Ki; b) t~�i ) (�=�u)Hi= (giKi)

1=2;

where

HA = gAD1 �D5 1 �D6 2; KA = gAD2 �D4 2 �D3 1;

HB = gBD1 +D5 3 +D8 4; KB = gBD2 +D7 4 +D3 3;

HC = gCD9 +D13 5 �D14 6; KC = gCD10 �D12 6 +D11 5;

with
 1 = 6D4 + 12D3;  2 = 6D3 + (1� �)�1 ��1D4;

 3 = (1 + 2�) (1� �)�1D7 � (1 + 3�)D3;

 4 = (1 + 2�) (1� �)�1D3 � (1� �)�3D7;

 5 = D12 �D11;  6 =  5 + (1� �)2D12=�
3;
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and

D1 = (1=2)
�
W (1)2 � �2u=�

2
�
�W (1)

R 1
0
W (r) dr;

D2 =
R 1
0
W (r)2 dr � [

R 1
0
W (r) dr]2;

D3 =
R 1
0
rW (r) dr � (1=2)

R 1
0
W (r) dr;

D4 =
R �
0
W (r) dr � �

R 1
0
W (r) dr;

D5 = W (1) =2�
R 1
0
W (r) dr; D6 = W (�)� �W (1);

D7 =
R 1
�
rW (r) dr � �

R 1
�
W (r) dr �

�
(1� �)2 =2

� R 1
0
W (r) dr;

D8 =
��
1� �2

�
=2
�
W (1)�

R 1
�
W (r) dr;

D9 =
R 1
0
W (r)2 dr � ��1[

R �
0
W (r) dr]2 � (1� �)�1 [

R 1
�
W (r) dr]2;

D10 =
�
W (1)2 � �2u=�

2
�
=2� ��1W (�)

R �
0
W (r) dr

� (W (1)�W (�)) (1� �)�1
R 1
�
W (r) dr;

D11 =
R 1
0
rW (r) dr � (1=2) (1 + �)

R 1
0
W (r) dr + (1=2)

R �
0
W (r) dr;

D12 =
R �
0
rW (r) dr � (�=2)

R �
0
W (r) dr;

D13 = (1� �)W (1) =2 +W (�) =2�
R 1
0
W (r) dr;

D14 = �W (�) =2�
R �
0
W (r) dr;

gA = 1� 3 (1� �)�; gB = 3�
3; gC = 12 (1� �)2 ;

where �2 = limT!1E [T
�1S2T ], ST =

PT
t=1 ut, �

2
u = limT!1E[T

�1PT
t=1 u

2
t ] and W is a

standard Wiener process on C.

Proof. See Perron (1989), Theorem 2 p. 1393.

The reader must take into account that the previous limiting distributions depend,
besides �, on nuisance parameters �2 and �2u. The �nding of consistent estimators for
the variance of innovations �2u and the long run variance of partial sums �

2 constitues
an empirical issue. In the case of weakly stationary innovations, �2 = 2�f (0) where
f (0) is the spectral density of futg evaluated at the zero frequency. Even more, Perron
(1989) mentions that when the sequence futg is independent and identically distributed,
�2 = �2u and in that case the limiting distributions are invariant with respect to nuisance
parameters, except �.

With this theoretical results and the tabulation of critical values through Monte Carlo
simulation, evidence is found against the unit root hypothesis for the series studied by
Nelson and Plosser (1982). Thus, the relevance of the results of Perron (1989) lies in the
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Figure 6: Sample paths under di¤erent breakfractions.

analysis of the performance of ADF tests when misspeci�cation is present. As will be
shown below, misspeci�cation becomes crucial for the identi�cation of desirable properties
of new tests to be proposed. By the other hand, results generalize the tests due to
Phillips (1987a) and the inference procedure assumes knowledge of both the existence of
structural break and the breakfraction value. Subsequent studies progressively avoid this
two assumptions and include desireable properties.

8 Endogenous structural break
(Zivot and Andrews, 1992)

8.1 A simple reason for relaxing exogeneity

Before the formal analysis corresponding to this section, it is important to illustrate the
main argument held by Zivot and Andrews (1992) against Perron (1989) through the
following example. First, consider two sample paths as described in Figure 6. Under
Perron�s perspective, applied researchers are going to choose a breakfraction near to 0.25
for the �rst sample path, whereas they are more likely to choose a breakfraction near to
0.75 for the second one. Thus, breakfraction is not longer exogenous since the previous
selections are based on a priori inspection of data, which incorporates an implicit selection
rule behind. This fact is going to be exploited formally and will lead to the use of the
Functional Central Limit Theorem under somewhat di¤erent conditions.

8.2 The approach

The �rst one of the two assumptions above mentioned is avoided by Zivot and Andrews
(1992). They consider not an exogenous breakfraction but an endogenous one that has
to be estimated. As they assert:

"If one takes the view that these events are endogenous, then the correct
unit root testing procedure would have to account for the fact that that the
breakpoints in Perron�s regressions are data dependent. The null hypothesis
of interest in these cases is a unit root process with drift that excludes any
structural change. The relevant alternative hypothesis is still a trend station-
ary process that allows for a one time break in the trend function. Under
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Null hypothesis Alternative hyphotesis

Model A Model A
yt = �+ yt�1 + ut yt = �1 + (�2 � �1)DUt + �t+ ut

Model B Model B
yt = �+ yt�1 + ut yt = �+ �1t+ (�2 � �1)DT

�
t + ut

Model C Model C
yt = �+ yt�1 + ut yt = �1 + �1t+ (�2 � �1)DUt

+(�2 � �1)DTt + ut
where
DUt = 1 if t > TB, 0 otherwise DT �t = t� TB if t > TB, 0 otherwise
DTt = t if t > TB, 0 otherwise

Table 3: Null and alternative hypotheses considered by Zivot and Andrews (1992).

the alternative, however, we assume that we do not know exactly when the
breakpoint ocurrs".

As noticed, attention is turned back to competing approaches shown in Figure 4
and formalized in Table 3. Additionally, while the tests developed by Perron (1989)
are conditional on a given breakfraction � 2 (0; 1), Zivot and Andrews (1992) attemp
to transform these tests into unconditional ones by designing an estimation method for �.

It is important to mention that conventional wisdom in applied econometrics considers
the so called Zivot-Andrews tests as unit root tests under structural break. By de�nition,
this is not true since the null hypothesis considers only a unit root and no other determin-
istic component. By the other hand, in line with the structural change literature under
unknown changepoint Zivot and Andrews (1992) suggest to choose the breakfraction �
that gives the least favorable result for the null hypothesis H0 : �

i = 1 (i = A, B, C)
using the one sided t statistic t�̂(�) when small values of the statistic lead to the rejection

of the null. Let �̂
i

inf denote such a value for model i, then t�̂[�
i
inf ] � inf�2� t�̂i (�) where

� is a speci�ed closed subset of (0; 1). For models A, B and C, t statistics are obtained
from the following regression equations:

yt = �̂A + �̂
A
DUt(�̂) + �̂

A
t+ �̂Ayt�1 +

Pk
j=1 ĉ

A
j �yt�1 + êt, (30)

yt = �̂B + �̂
B
t+ 
̂BDT �t (�̂) + �̂Byt�1 +

Pk
j=1 ĉ

B
j �yt�1 + êt, and (31)

yt = �̂C + �̂
C
DUt(�̂) + �̂

C
t+ 
̂CDT �t (�̂) + �̂Cyt�1 +

Pk
j=1 ĉ

C
j �yt�1 + êt (32)

respectively, where parameter estimates are denoted with a hat and êt is the residual
term. In (30)-(32) DUt(�) = 1 if t > T� and 0 otherwise and DT �t (�) = t�T� if t > T�
and 0 otherwise. The number of extra lags k is here included to potentially take into
account correlation between disturbances and �̂ denotes the estimated value of �. In
order to make the results as simple as possible, the author consider �rst the case k = 0
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(no correlation among disturbances). In contrast to the work of Perron (1989), when
correlation between disturbances is present, it is restricted to be of the ARMA structure.
It is worth to mention that this structure is a particular case of mixing processes and this
implies that the Functional Central Limit Theorem still can be applied.

For testing, intuition relies on the following reasoning: if H0 were in fact true then
the minimum t statistic should not signi�cantly di¤er from zero, whereas if H1 were
true then H0 should be rejected and an estimated value for � would be provided for the
alternative trend stationary speci�cation. When � is estimated, critical values in Perron
(1989) cannot be employed for unit root testing. Consider an estimated � with minimum
t statistic. Then, decission rule can be summarized as

reject H0 if inf�2� t�̂i(�) < �iinf;�, i = A;B;C;

where �iinf;� denotes the asymptotic critical value of inf�2� t�̂i(�) for a size equal to �. By
de�nition, critical values are as bigger (in absolute value) to those calculated on the basis
of an arbitrary �. Thus, the tests built by Perron (1989) are biased towards rejecting
the null. In order to formally establish this distinction, distributions for the statistics
inf�2� t�̂i (�) (i = A, B, C) are needed.

8.3 Asymptotic distribution theory

In order to obtain the limiting distribution for their proposed statistic, Zivot and Andrews
(1992) make use of the framework suggested by Ouliaris, Park, and Phillips (1989), which
allows for a compact form for their results. It is worth to mention that this framework is
also used by Perron (1989) when the objetive is to develop a generalization for his main
theorem to the case of disturbances that exhibit autocorrelation. Attention is here focused
on i.i.d. disturbances. The following two de�nitions are necessary for the undestanding
of the main theorem.

De�nition 9 L2[0; 1] is the Hilbert space of square integrable functions on [0; 1] with
inner product hf; gi �

R 1
0
fg for f , g 2 L2[0; 1].

De�nition 10 W i(�; r) is the stochastic process on [0; 1] that is the projection residual
in L2[0; 1] of a Wiener process projected onto the subspace generated by the following:

1. for i = A: 1, r, du (�; r);

2. for i = B: 1, r, dt� (�; r); and

3. for i = C: 1, r, du (�; r), dt� (�; r)

where du (�; r) = 1 if r > �, 0 otherwise and dt� (�; r) = r � � if r > � and 0
otherwise.

Asymptotic distribution is now given in the next theorem12.

12Although independent, the derivation here presented is done in a similar fashion to those reported
by Banerjee, Lumsdaine, and Stock (1992).

32



Theorem 12 (Zivot and Andrews, 1992 Theorem 1 p. 256) Let fytg be generated
under the null hypothesis and let the disturbances futg be i.i.d., mean 0, variance �2 ran-
dom variables with 0 < �2 < 1. Let t�̂i(�) denote the t statistic for testing �i = 1
computed from either (30), (31), or (32) with k = 0 for Models i = A, B, and C, respec-
tively. Let � be a closed subset of (0; 1). Then,

inf�2� t�̂i (�)) inf�2�[
R 1
0
W i (�; r)2 dr]�1=2[

R 1
0
W i (�; r) dW (r)]

for i = A, B, and C, where ) denotes convergence in distribution.

Proof. See Zivot and Andrews (1992), Appendix A, p. 266.

It is worth to mention that when correlation of the ARMA type is allowed, the previous
result can be extended in order to obtain an autoregressive estimate the spectral density
of et at the zero frequency. This empirical issue is addressed by authors with the help
of an assumption similar to assumption 2 of Phillips (1987a). That is, the probability of
outliers is controlled and such an assumption will also be adopted in posterior work.

9 E¢ cient unit root testing under structural break
(Perron and Rodríguez, 2003)

9.1 Motivation

Based on elements contained in the previous sections, two features can be identi�ed along
the unit root literature:

1. Deterministic trend and size. Most of the earlier unit root tests under less restrictive
assumptions are extensions to augmented Dickey-Fuller tests and thus the asymp-
totic distributions depend on whether a deterministic component has been added
or not into the regression equation. According to Stock (1999) this problem can
be solved by �rst detrending the series and performing (robust) modi�ed unit root
tests such that size is not a¤ected.

2. Structural break and power. Perron (1989) illustrated how deterministic trends that
contain a break can induce spurious unit roots in Dickey-Fuller tests. Following
Stock (1999), a trend with structural break can be incorporated in the detrending
process. Since it is guaranteed that size will not be a¤ected, it becomes desirable
to increase the power of the tests against local alternatives. Such a procedure can
be done following the near-integrated time series approach proposed by Phillips
(1987b) and developed by Elliott, Rothenberg, and Stock (1996) in the case of no
structural break. Thus, an extension is called to.

Within this framework, Perron and Rodríguez (2003) extend the modi�ed or M tests,
analyzed in detail by Ng and Perron (2001), to the case in which there exists a structural
break in the trend function.
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Structural change in slope Structural change in trend and slope

Model A Model B
 0zt = �1t+ �2DT

�
t  0zt = �1 + �2DUt + �1t+ �2DT

�
t

where where
DT �t = t� TB if t > TB, 0 otherwise DUt = 1 if t > TB, 0 otherwise

Table 4: Deterministic components considered by Perron and Rodríguez (2003).

9.2 Data generating process

Observed series fytgTt=0 is assumed to be generated according to

yt =  0zt + ut, and (33)

ut = �ut�1 + vt (34)

for t = 1; : : : ; T . Following the framework in Perron (1989), the test to be proposed
considers a structural break under the null. Perron and Rodríguez (2003) consider two
models for structural change, summarized in Table 4. A model with structural change
in the intercept is not considered since its limiting distribution is the same as those cor-
responding to both intercept and slope. For disturbances the authors, following Phillips
and Solo (1992), adopt the following

Assumption 6 (Perron and Rodríguez, 2003 p. 3) The following conditions hold:

1. u0 = 0, and

2. the noise function is vt =
P1

i=0 
i"t�i where
P1

i=0 ij
ij < 1 and where f"tg
is a m.d.s. The process fvtg has a non-normalized spectral density at frequency
zero given by �2 = �2"
(1)

2, where �2" = limT!1 T
�1P1

t=1E("
2
t ). Furthermore,

T�1=2
PbrT c

t=1 vt ) �W (r), where ) denotes weak convergence in distribution and
W (r) is the standard Wiener process de�ned on C[0; 1] the space of continous func-
tions on the interval [0; 1].

9.3 GLS detrending and M tests

First, de�ne transformed data by

~y��t = (y0; (1� ��L) yt), ~z��t = (z0; (1� ��L) zt), t = 0; : : : ; T ,

and let  ̂ be the estimator that minimizes (35)

S�( ; ��; �) =
PT

t=0(y
��
t �  0~z��t )

2. (35)

Data is transformed in order to make results dependent on parameter ��. The goal
here is to derive an optimal unit root tests against a local alternative hypothesis. In
this sense, later a computed value for �� will be necessary. Based on Phillips (1987b),
both null and alternative hypotheses can be summarized by means of a near-integrated
process. In (34), the autoregressive coe¢ cient can be written as

� = 1 +
c

T
.
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Then, under the null c = 0 whereas under the alternative c < 0 and the power function
can thus be explicity obtained. The M tests, studied in section 6, are de�ned by

MZGLS� (�) =
1

2

T�1~y2T � �̂2

T�2
PT

t=1 ~y
2
t�1
, (36)

MSBGLS(�) = (T�2
PT

t=1 ~y
2
t�1=�̂

2)1=2, (37)

MZGLSt (�) =
1

2

T�1~y2T � �̂2

(�̂2T�2
PT

t=1 ~y
2
t�1)

1=2
, (38)

with local detrended data de�ned by ~yt = yt �  ̂
0
zt where  ̂ minimizes (35). The term

�̂2 is an autoregressive estimate of the spectral density at frequency zero of vt, de�ned as

�̂2 =
�̂2vk

[1� b̂(1)]2
,

�̂2vk =

PT
t=k+1 v̂

2
tk

T � k
,

b̂(1) =
Pk

j=1 b̂j,

where b̂j and fv̂tkg are obtained from the auxiliar ADF regression

�~yt = b0~yt�1 +
Pk

j=1 bj�~yt�j + vtk. (39)

9.4 Asymptotic distributions

The next theorem presents the limiting distribution of the testing statistics for �xed
values of c, �c and �.

Theorem 13 (Perron and Rodríguez, 2003 p. 7) Let fytgTt=0 be generated by model
(33) with � = 1+ c=T , MZGLS� , MSBGLS and MZGLSt be de�ned by (36)-(38) with data
obtained from local GLS detrending (~yt) at �� = 1 + �c=T , and ADFGLS be the t statistic
for testing b0 = 0 in the regression (39). Also, �̂2 is a consistent estimate of �2. For
models A and B

MZGLS� (�) ) 1

2

K1(c; �c; �)

K2(c; �c; �)
� HMZGLS� (c; �c; �),

MSBGLS(�) ) [K2(c; �c; �)]
1=2 � HMSBGLS(c; �c; �),

MZGLSt (�) ) 1

2

K1(c; �c; �)

[K2(c; �c; �)]1=2
� HMZGLSt (c; �c; �),

ADFGLS(�) ) 1

2

K1(c; �c; �)

[K2(c; �c; �)]1=2
� HADFGLS(c; �c; �),

where

K1(c; �c; �) = V
(1)
c�c (1; �)

2 � 2V (2)
c�c (1; �)� 1,

K2(c; �c; �) =
R 1
0
V
(1)
c�c (r; �)

2dr � 2
R 1
�
V
(2)
c�c (r; �)dr,
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and V (1)
c�c (r; �) = Wc(r) � rb3, V

(2)
c�c (r; �) = b4(r � �)[Wc(r) � rb3 � (1=2)(r � �)b4] with

Wc(r) the Ornstein-Uhlenbeck process that is the solution to the stochastic di¤erential
equation

dWc(r) = cWc(r)dr + dW (r) with Wc(r) = 0.

Also, b3 and b4 are de�ned by

b3 = �1b1 + �2b2,

b4 = �2b1 + �3b2,

b1 = (1� �c)Wc(1) + �c
2
R 1
0
rWc(r)dr,

b2 = (1� �c+ ��c)Wc(1) + �c
2
R 1
�
Wc(r)(r � �)dr �Wc(�),

�1 = d=�,

�2 = �m=�,
d = 1� �� c+ 2c�� c�2 � c2�+ c2�2 + (c2=3)(1� �3),

m = 1� �� c+ c�+ (c2=2)�3 + (c2=3)(1� �3),

a = 1� c+ c2=3,

� = ad�m2 and

�3 = a=�.

Proof. See Perron and Rodríguez (2003), Theorem 1, p. 22.

9.5 Asymptotic power function

As Phillips (1988) pointed out, the discriminatory power of unit root tests is low against
local alternatives near but not equal to unity because under both hypotheses distribu-
tions are quite similar. The main idea behind e¢ ciency relies on the increase of power
or, equivalently, the probability of rejecting a false alternative hypothesis. As men-
tioned by Elliott, Rothenberg, and Stock (1996), if data distribution were known then the
Neyman-Pearson Lemma would suggest the optimal point alternative against any other
point alternative hypothesis and in such circunstances a power envelope can be derived13.

However, although within this framework a uniformly most powerful (UMP) tests is
not attainable, it is possible to de�ne an optimal test for � = 1 against the alternative
� = ��. Even more, if vt were i.i.d. then such a test is given by the likelihood ratio
statistic which, under the normality assumption, equals the following di¤erence

L (�) � S (��; �)� S (1; �) ,

where S (��; �) and S (1; �) are the sums of squares from GLS detrending both under
� = �� and � = 1, respectively. Under the assumption of a known breakfraction �,

13As Elliott, Rothenberg, and Stock (1996) mention, the Gaussian power envelope is an upper bound
to the asymptotic power function for tests of the unit root hypothesis when the data are generated by

yt = dt + ut and ut = �ut�1 + �t

but under "ideal" conditions. Namely, the process f�tg has a moving average representation involving
independent standard normal random variables, the initial condition u0 is 0 and the deterministic com-
ponent dt is known. Such unrealistic assumptions are made in order to employ the Neyman-Pearson
theory.
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di¤erent values for �� lead to a family of point optimal tests and a gaussian envelope for
testing � = 1. Furthermore, in order to allow for correlation between errors vt, Elliott,
Rothenberg, and Stock (1996) propose a feasible optimal point test PGLST de�ned by

PGLST (c; �c; �) =
S(��; �)� ��S(1; �)

�̂2
, (40)

and its distribution is derived in the following

Theorem 14 (Perron and Rodríguez, 2003 p. 7) Let fytg be generated by (33) with
� = 1 + c=T . Let PGLST be de�ned by (40) with data obtained from local GLS detrending
(~yt) at �� = 1+ �c=T: Also, let �̂

2 be a consistent estimate of �2. The limit distribution of
the PGLST under Models A and B is given by

PGLST (c; �c; �))M(c; 0; �)�M(c; �c; �)

� 2�c
R 1
0
Wc(r)dW (r) + (�c

2 � 2�cc)
R 1
0
Wc(r)

2dr � �c � HPGLST (c; �c; �)

where M(c; �c; �) = A(c; �c; �)B(�c; �)�1A(c; �c; �) with A(c; �c; �) a 2� 1 vector de�ned by"
W (1) + (c� �c)

R 1
0
Wc(r)dr � �c

R 1
0
rdW (r)� (c� �c)�c

R 1
0
rWc(r)dr

(1 + ��c)([W (1)�W (�)] + (c� �c)
R 1
�
Wc(r)dr)� �c

R 1
�
rdW (r)� (c� �c)�c

R 1
�
rWc(r)dr

#

and B (�c; �) is a symmetric matrix with entries�
�c2=3� �c+ 1 (1� �)(1� �c) + �c2(2 + �3 � 3)=6

�c2(1� �3)=3� �c(1� �2)(1 + ��c) + (1� �)(1 + ��c)2

�
.

Proof. See Perron and Rodríguez (2003), Theorem 2, p. 24.

The reader must remember that any test statistic is also a random variable and
rejecting the unit root hypothesis is an event in which the test statistic lies below some
critical value. Since distribution for the tests was derived both under the null and the
alternative hypothesis, the (asymptotic) power function can be explicited by means of
the probability of rejecting the null under the alternative. Such a function is given by

�(c; �) � P [HPGLST (c; c; �) < bP
GLS
T (c; �)],

where the critical value bP
GLS
T (c; �) is determined by the probability of Type I error

P [HPGLST (0; c; �) < bP
GLS
T (c; �)] = �,

and � is the size of the test. Thus, di¤erent values of � generate di¤erent power functions.

9.6 A feasible point optimal test

The previous subsections are referred to the case in which the breakfraction � is known.
In practice, however, this parameter is required to be estimated by applied researchers.
For this reason the feasible version of the statistic in (40) is given by

PGLST;� (c; �c) =

�
inf

�2[";1�"]
S(��; �)� inf

�2[";1�"]
��S(1; �)

��
�̂2. (41)

37



The principle behind (41) is the same as in (40). The main di¤erence relies on the
trimming parameter " introduced. This latter parameter is usually set to 0:15 in order to
bound critical values, a situation that arises in the context of tests for structural change.
Using Theorem 14, the following result is obtained

PGLST;� (c; �c)) sup
�2[";1�"]

M(c; 0; �)� sup
�2[";1�"]

M(c; �c; �)

� 2�c
R 1
0
Wc(r)dW (r) + (�c

2 � 2�cc)
R 1
0
Wc(r)

2dr � �c � HPGLST;� (c; �c) .

Accordingly, the asymptotic Gaussian power envelope is given by

��(c) � P [HPGLST;� (c; c) < bP
GLS
T;� (c)],

where the critical value bP
GLS
T;� (c) is such that P [HPGLST;� (0; c) < bP

GLS
T;� (c)] = �. It must be

pointed out that Elliott, Rothenberg, and Stock (1996) recommended a value for �c such
that ��(�c) = 0:5. Using Monte Carlo simulation, Perron and Rodríguez (2003) found
that �c = �22:5.

It must be emphazised that, within this literature, the idea behind power increasing
unit root tests is related to the extent in which power functions are near to the Gaussian
power envelope (the benchmark case). When � is known, only one set of simulations is
performed in order to obtain the power function corresponding to that value. When � is
unknown, on the contrary, several sets of simulations are performed (one for each value
of � in ["; 1� "]).

10 Conclusions

The present paper has analyzed the foundations and the applicability of the Functional
Central Limit Theorem to the task of developing unit root tests. As shown, unit root
tests can be described as functionals of stochastic processes such as the standard Wiener
process and the Ornstein-Uhlenbeck process.

Therefore, a general framework involving mixing conditions (Phillips 1987a) gener-
alizes the results obtained under the assumption of normal i.i.d. disturbances (Dickey
and Fuller 1979). Also, the analysis of modi�ed tests (Stock 1999) allows to separate
the size of unit root tests from the speci�c form of the deterministic component, a prob-
lem not solved in earlier works. Tools developed also allow the analitical tractability
of several problem within this literature: the presence of strucutral breaks and the low
power against local alternatives. For the issue of structural breaks (Perron 1989), �rst
detrending the series has shown to be a robust procedure, so that asymptotic size is not
a¤ected (Stock 1999). For the issue of increasing power, asymptotic distribution can be
derived by means of Ornstein-Uhlenbeck processes both under the null and local alter-
natives (Phillips 1987b) and a power function can be derived and maximized. When the
two issues are combined, the result is an e¢ cient test when a structural break is present
under the null (Perron and Rodríguez 2003).
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A Appendix. Beveridge-Nelson decomposition

Based on Phillips and Solo (1992), let the operator C(L) =
P1

j=0 cjL
j be a lag polinomial.

Then
C(L) = C(1)� (1� L) ~C(L)

where
~C(L) =

P1
j=0 ~cjL

j, ~cj =
P1

k=j+1 ck.

If p � 1, then P1
j=1 j

pjcjjp <1 implies
P1

j=0 j~cjjp <1 and jC(1)j <1.

If p < 1, then P1
j=1 jjcjjp <1 implies

P1
j=0 j~cjjp <1.

B Appendix. Martingale di¤erence sequence

Let fxtg and fytg denote two stochastic processes. Then fytg is a martingale di¤erence
sequence with respect to fxtg if its expectation, conditional to past values of fxtg, is zero.
Formally

E[ytjxt�1; xt�2; : : :] = 0, for all t.
When the expectation of fytg, conditional to its own past values, is zero then fytg is said
to be a martingale di¤erence sequence (m.d.s.).

C Appendix. Strongly uniform integrability

Let fZtg1t=1 be a sequence of random variables adapted to the �ltration fFtg1t=1. For
Phillips and Solo (1992), fZtg is said to be strongly uniformly integrable (s.u.i.) if there
exists a dominating random variable Z for which E(jZj) <1 and

P (jZtj � x) � cP (jZj � x)

for each x � 0, t � 1 and for some constant c.
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