PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Escuela de Posgrado

DEGRADACIÓN DE LA CAPACIDAD ESTRUCTURAL DE PÓRTICOS REGULARES DE CONCRETO ARMADO AFECTADOS POR DETERIOROS PATOLÓGICOS

Tesis para optar el grado académico de Maestro en Ingeniería Civil con mención en Estructuras Sismorresistentes que presenta:

Victor Manuel Tello Diaz

Asesor:

Ing. Christian Alberto Asmat Garaycochea

Lima, 2023

INFORME DE SIMILITUD

Yo, Christian Alberto Asmat Garaycochea, docente de la Escuela de Posgrado de la Pontificia Universidad Católica del Perú, asesor de la tesis titulada "DEGRADACIÓN DE LA CAPACIDAD ESTRUCTURAL DE PÓRTICOS REGULARES DE CONCRETO ARMADO AFECTADOS POR DETERIOROS PATOLÓGICOS", del autor VICTOR MANUEL TELLO DIAZ, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 10 %.
 Así lo consigna el reporte de similitud emitido por el software *Turnitin* el 15/11/2023.
- He revisado con detalle dicho reporte junto al documento, y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima, 21 de noviembre del 2023

Apellidos y nombres del asesor: Asr	mat Garaycochea, Christian Alberto	
DNI: 45650009	Firma:	
ORCID: 0000-0003-3893-4573		

Giovana, Victor, Renzo, Nélida los amo. Naty, gracias por creer en mí. La ingeniería estructural es el arte de emplear materiales con propiedades que solamente pueden ser estimadas, para construir estructuras reales que solo pueden ser analizadas aproximadamente, que soportan fuerzas que no son conocidas con precisión, de manera que nuestra responsabilidad con la seguridad de las personas se encuentre satisfecha. (Wilson, 2002)

RESUMEN

El Perú es un país con una alta sismicidad debido a su ubicación en la zona

denominada 'Cinturón de Fuego del Pacífico', haciendo que la construcción de

edificaciones seguras sea fundamental. Sin embargo, la construcción informal genera

el desarrollo de patologías estructurales haciendo a las edificaciones más vulnerables.

El desconocimiento sobre las consecuencias de las patologías estructurales puede

llevar a ignorar los peligros reales y aumentar el riesgo de daños y pérdida de vidas

humanas en caso de un sismo. Es necesario comprender que el deterioro de la

estructura puede disminuir su capacidad estructural para resistir sismos.

La investigación tiene como propósito presentar un estudio inicial sobre la degradación

de la capacidad estructural de pórticos de concreto armado afectados por deterioros

patológicos.

Se consideró la configuración de pórticos de concreto armado de hasta seis niveles y

seis crujías afectados por las patologías de carbonatación, ciclos de hielo y deshielo,

corrosión, porosidad, y reacción álcali-sílice, en tres grados de afectación patológica

(leve, moderado y severo). Siendo las patologías de corrosión, carbonatación y

porosidad las de más probable ocurrencia en nuestro país. Se analizó un total de 96

pórticos

Las patologías estructurales fueron modeladas en función de los resultados obtenidos

de investigaciones experimentales publicadas en papers científicos.

El método de análisis estructural utilizado fue el análisis estático no lineal ('pushover'),

mediante el cual se obtuvieron curvas de capacidad, las cuales relacionan el cortante

basal con el desplazamiento máximo de la estructura (trabajo por fuerzas externas).

Posteriormente, se comparan los resultados obtenidos (curvas de capacidad) con los

cuales se determina el comportamiento de las estructuras afectadas por las diferentes

patologías estructurales. Se concluye con la determinación de los porcentajes de

degradación de la capacidad estructural.

Palabras clave: Deterioro, patologías, pórticos, tecnología del concreto, pushover.

iii

ABSTRACT

Peru is a country with high seismic activity due to its location in the area known as the

'Pacific Ring of Fire', which makes the construction of safe buildings a fundamental

need. However, the large amount of informal construction in the country generates

structural pathologies, making buildings vulnerable to earthquakes.

Lack of knowledge about the consequences of structural pathologies in buildings can

lead to ignoring real dangers and increasing the risk of damage and loss of human life

in the event of an earthquake. It is necessary to understand that structural degradation

can decrease its ability to resist an earthquake.

The research presents an initial study on the structural degradation of reinforced

concrete buildings affected by structural pathologies.

The configuration of reinforced concrete frames with up to six levels and six spans

affected by pathologies such as carbonation, freeze-thaw cycles, corrosion, porosity,

and alkali-silica reaction was considered in three levels of pathological severity (mild,

moderate, and severe). Corrosion, carbonation, and porosity were identified as the

most likely occurring pathologies in our country. A total of 96 frames were analyzed.

Structural pathologies were modeled based on the results obtained from experimental

research published in scientific papers.

The structural analysis method used was nonlinear static analysis ('pushover'), through

which capacity curves were obtained which related the base shear with the maximum

displacement of the structure (work by external forces).

Subsequently, the obtained results (capacity curves) were compared, and the behavior

of the structures affected by different structural pathologies was determined. The

research concludes with the determination of the percentages of degradation of the

structural capacity.

Keywords: Deterioration, pathologies, frames, concrete tecnology, pushover.

İν

ÍNDICE DE CONTENIDO

RESUN	MEN	iii
ABSTR	RACT	iv
ÍNDICE	E DE CONTENIDO	V
ÍNDICE	E DE TABLAS	viii
ÍNDICE	E DE FIGURAS	xi
CAPÍTI	ULO 1: INTRODUCCIÓN	1
CAPÍTI	ULO 2: MARCO INVESTIGATIVO	
2.1	Identificación del problema	
2.2	Justificación e importancia de la investigación	2
2.3	Alcance de la investigación	3
2.4	Variables de la investigación	7
2.5	Metodología de investigación	
2.6	Proceso de ingeniería	
2.7	Población y muestra	
2.7	7.1 Población	9
2.7	7.2 Muestra	10
2.8	Instrumentos	10
Fic	cha de análisis no lineal estático	10
2.9	Matriz de consistencia	12
CAPÍTI	ULO 3: ESTADO DEL ARTE	13
CAPÍTI	ULO 4: MARCO TEÓRICO	23
4.1	Durabilidad en el concreto armado	23
4.2	Patologías estructurales en el concreto armado	23
4.2	2.1 Carbonatación del concreto	24
4.2	2.2 Ciclos de hielo-deshielo	25

	4.2	2.3	Corrosión del acero de refuerzo	27
	4.2	.4	Porosidad del concreto	28
	4.2	5	Reacción Álcali-Sílice	29
	4.2	Anál	isis estático no-lineal	30
	4.2	2.1	Criterios de aceptación	30
С	APÍTU	JLO 5	E: PROCEDIMIENTO DE GABINETE	32
	5.1	Prop	iedades mecánicas del concreto aramdo referencial	32
	5.2	Metr	ado de cargas	32
	5.2	1	Peso propio	32
	5.2	2	Sobrecarga permanente	33
	5.2		Carga viva	
	5.3		tación por carbonatación	
	5.4		tación por ciclos de hielo-deshielo	
	5.5		tación por corrosión	
	5.6	Afec	tación por porosidad	45
	5.7	Afec	tación por reacción álcali-sílice	48
С	APÍTU	JLO 6	: ANÁLISIS DE RESULTADOS	52
	6.1	Cond	creto armado Referencial	52
	6.2	Pato	logía de Carbonatación	53
	6.3	Pato	logía de Ciclos de hielo-deshielo	54
	6.4	Pato	logía de Corrosión	56
	6.5	Pato	logía de Porosidad	58
	6.6	Pato	logía de Reacción álcalis-sílice	60
С	APÍTU	JLO 7	: ANÁLISIS DE RESULTADOS	63
	7.1	Cond	creto armado Referencial	63
	7.2	Carb	oonatación	63
	7.3	Ciclo	os de hielo v deshielo	65

7.4	Corrosión	67
7.5	Porosidad	68
7.6	REACCCIÓN álcali-sílice	70
7.7	Comparación de resultados	72
CAPÍT	ULO 8: CONCLUSIONES Y RECOMENDACIONES	73
BIBLIC	OGRAFÍA	75
ANEXO	OS	81

ÍNDICE DE TABLAS

Tabla 1 Denominación numérica de pórticos según patología estructural y grado o	de
deterioro patológico	4
Tabla 2 Cuadro de operacionalización de variables	7
Tabla 3 Matriz de Consistencia	12
Tabla 4 Estado del arte	13
Tabla 5 Ratio de pérdida de masa del concreto afectado por ciclos de hielo-deshie	elo:
(adaptado de Song, Li y Ma, 2011).	26
Tabla 6 Parámetros para el modelamiento de corrosión enunciados por Bossio et.	a
(2018)	28
Tabla 7 Propiedades mecánicas del concreto y acero	32
Tabla 8 Configuración estructural	
Tabla 9 Cálculo de peso propio aplicado en vigas	
Tabla 10 Sobrecarga permanente	34
Tabla 11 Carga viva mínima repartida	34
Tabla 12 Afectación por la patología de carbonatación	34
Tabla 13 Propiedades referenciales consideradas en la patología de carbonatacion	óп
	35
Tabla 14 Propiedades afectadas por la patología de carbonatación para un grado o	de
deterioro patológico leve	35
Tabla 15 Propiedades afectadas por la patología de carbonatación para un grado o	de
deterioro patológico moderado	36
Tabla 16 Propiedades afectadas por la patología de carbonatación para un grado o	de
deterioro patológico severo	36
Tabla 17 Afectación por la patología de ciclos de hielo-deshielo	37
Tabla 18 Propiedades referenciales consideradas en la patología de ciclos de hielo	y
deshielo	37
Tabla 19 Propiedades afectadas por la patología de ciclos de hielo y deshielo para o	un
grado de deterioro patológico leve	38
Tabla 20 Propiedades afectadas por la patología de ciclos de hielo y deshielo pa	ra
un grado de deterioro patológico moderado	38
Tabla 21 Propiedades afectadas por la patología de ciclos de hielo y deshielo pa	ra

Tabla 22 Propiedades referenciales y afectadas por la patología de ciclos de hie	lo y
deshielo para la curva esfuerzo-deformación del modelo de Mander (propieda	des
uniaxiales)	. 39
Tabla 23 Afectación por la patología de corrosión	. 40
Tabla 24 Propiedades referenciales y afectadas por la patología de corrosión	. 40
Tabla 25 Propiedades afectadas por la patología de corrosión para un grado	de
deterioro patológico leve en columnas	. 41
Tabla 26 Propiedades afectadas por la patología de corrosión para un grado	de
deterioro patológico moderado en columnas	. 41
Tabla 27 Propiedades afectadas por la patología de corrosión para un grado	de
deterioro patológico severo en columnas	. 42
Tabla 28 Propiedades afectadas por la patología de corrosión para un grado	de
deterioro patológico leve en vigas	. 42
Tabla 29 Propiedades afectadas por la patología de corrosión para un grado	de
deterioro patológico moderado en vigas	. 43
Tabla 30 Propiedades afectadas por la patología de corrosión para un grado	
deterioro patológico moderado en vigas	. 43
Tabla 31 Propiedades afectadas por la patología de corrosión para el acero	de
refuerzo para un grado de deterioro patológico leve	. 44
Tabla 32 Propiedades afectadas por la patología de corrosión para el acero	de
refuerzo para un grado de deterioro patológico moderado	. 44
Tabla 33 Propiedades afectadas por la patología de corrosión para el acero	de
refuerzo para un grado de deterioro patológico severo	. 44
Tabla 34 Afectación por la patología de porosidad	. 45
Tabla 35 Propiedades referenciales y afectadas por la patología de porosidad	. 45
Tabla 36 Propiedades afectadas por la patología de porosidad para un grado	de
deterioro leve	. 46
Tabla 37 Propiedades afectadas por la patología de porosidad para un grado	de
deterioro moderado	. 46
Tabla 38 Propiedades afectadas por la patología de porosidad para un grado	de
deterioro severo	. 46
Tabla 39 Propiedades referenciales y afectadas por la patología de porosidad par	a la
curva esfuerzo-deformación del modelo de Mander	. 47
Tabla 40 Afectación por la patología de reacción álcali-sílice	. 48

Tabla 41 Propiedades referenciales consideradas en la patología de reacción álca	ali-
Sílice para las columnas	48
Tabla 42 Propiedades referenciales consideradas en la patología de reacción álca	ali-
sílice para las vigas	49
Tabla 43 Propiedades referenciales consideradas en la patología de reacción álca	ali-
sílice para el concreto	49
Tabla 44 Propiedades afectadas por la patología de reacción álcalis-sílice	50
Tabla 45 Propiedades referenciales y afectadas por la patología de reacción álca	⊋li-
sílice para la curva esfuerzo-deformación del modelo de Mander (propiedad	es
uniaxiales).	51
Tabla 46 Resultados del análisis estructural para pórticos de concreto arma	
'referenciales'	52
Tabla 47 Resultados del análisis para pórticos afectados por la patología	de
carbonatación	53
Tabla 48 Resultados del análisis estructural para pórticos afectados por la patolog	χía
de ciclos de hielo y deshielo	55
Tabla 49 Resultados del análisis estructural para pórticos afectados por la patolog	gía
de corrosión	57
Tabla 50. Resultados del análisis estructural para pórticos afectados por la patolog	gía
de porosidad	59
Tabla 51 Resultados del análisis estructural para pórticos afectados por la patolog	յía
de reacción álcali-sílice	61
Tabla 52 Datos obtenidos del análisis estructural para las estructuras de concre	∍tc
armado referencial	63
Tabla 53 Resultados obtenidos para los pórticos afectados por la patología	de
carbonatación	64
Tabla 54 Resultados obtenidos para los pórticos afectados por ciclos de hielo-deshie	elo
	65
Tabla 55 Resultados obtenidos para los pórticos afectados por corrosión	67
Tabla 56 Resultados obtenidos para los pórticos afectados por corrosión	69
Tabla 57 Resultados obtenidos para los pórticos afectados por reacción álcali-sílo	ce
	70

ÍNDICE DE FIGURAS

Figura 1. Columnas consideradas en el modelamiento de pórticos referenciales de
concreto armado
Figura 2. Vigas consideradas en el modelamiento de pórticos referenciales de
concreto armado
Figura 3. Proceso de ingeniería de la investigación
Figura 4. Determinación de muestras. Elaboración propia
Figura 5. Instrumento metodológico de recolección de datos: Ficha de análisis no-
lineal estático
Figura 6. Representación esquemática de la carbonatación del concreto. Adaptado al
castellano de Possan (2010)
Figura 7. Representación esquemática del congelamiento del agua dentro de un poro.
Figura 8. Representación esquemática del proceso de corrosión del acero de
refuerzo
Figura 9. Representación esquemática del tamaño de los poros en el concreto 28
Figura 10. Representación esquemática del proceso de reacción de álcali-sílice 29
Figura 11. Relación entre las propiedades normalizadas del concreto y la expansión
del concreto inducido por la reacción álcali-sílice. Fuente: Esposito et al. (2016) 29
Figura 12. Representación esquemática del análisis estático no-lineal
Figura 13. Representación esquemática del proceso de rotulación en base a criterios
de aceptación para el análisis estático no-lineal. Siendo, IO: Ocupación inmediata, LS:
Resguardo de vida y CP: Prevención de colapso
Figura 14. Curva de esfuerzo-deformación del modelo de Mander bajo la afectación
por la patología de ciclos de hielo y deshielo (tensión negativa)
Figura 15. Curva de tensión del modelo de esfuerzo-deformación de de Mander bajo
la afectación por la patología de porosidad (tensión negativa) 47
Figura 16. Curva de tensión del modelo de esfuerzo-deformación de Mander bajo la
afectación por la patología de reacción álcali-sílice (tensión negativa) 51
Figura 17. Comparación de curvas de capacidad para pórticos referenciales 52
Figura 18. Curvas de capacidad de pórticos de concreto referencial y afectadas por
la patología de carbonatación. (a) Curvas de configuración 1x1 (una crujía y un nivel).
(b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de

configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de configuración 6x6.
54
Figura 19. Curvas de capacidad de pórticos de concreto referencial y afectadas por
la patología de ciclos de hielo y deshielo. (a) Curvas de configuración 1x1 (una crujía
y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d,
Curvas de configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de
configuración 6x6 56
Figura 20. Curvas de capacidad de pórticos de concreto referencial y afectadas por
la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b)
Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de
configuración 4x4. € Curvas de configuración 5x5. (f) Curvas de configuración 6x6.58
Figura 21. Curvas de capacidad de pórticos de concreto referencial y afectadas por
la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b)
Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de
configuración 4x4. € Curvas de configuración 5x5. (f) Curvas de configuración 6x6.60
Figura 22. Curvas de capacidad de pórticos de concreto referencial y afectadas por
la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b)
Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de
configuración
Figura 23. Degradación de la capacidad de pórticos afectados por la patología de
carbonatación. (a) Degradación de la capacidad estructural en función de la
configuración. (b) Tendencia de degradación según grado de afectación 65
Figura 24. Degradación de la capacidad de pórticos afectados por la patología de
ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la
configuración. (b) Tendencia de degradación según grado de afectación 66
Figura 25. Degradación de la capacidad de pórticos afectados por la patología de
ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la
configuración. (b) Tendencia de degradación de los pórticos según grado de
afectación68
Figura 26. Degradación de la capacidad de pórticos afectados por la patología de
ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la
configuración. (b) Tendencia de degradación según grado de afectación
Figura 27. Degradación de la capacidad de pórticos afectados por la patología de
reacción álcali-sílice. (a) Degradación de la capacidad estructural en función de la

configuración.	(b)	Tendencia	de	degradación	de	los	pórticos	según	grado	de
afectación										71
Figura 28. Cor	npar	ación de la o	dear	adación de la	cap	acida	ad estruct	ural		72

CAPÍTULO 1: INTRODUCCIÓN

Las patologías estructurales del concreto armando son bastante comunes en la actualidad. Estas patologías afectan la resistencia y durabilidad de las estructuras (Ragueneau et al., 2010), poniendo en riesgo la integridad de los ocupantes.

Durante la exposición del doctor Tumialan (2014), para ACI Perú, se indicó que el costo anual designado a la reparación y protección de estructuras de concreto asciende a los USD 20 mil millones en Estados Unidos. Este presupuesto puede estar entorno al 31% de la inversión total destinada a construcción civil en dicho país (Helene y Pereira, 2003). Si bien, el estado americano tiene una desarrollada cultura del mantenimiento, ¿Cuál es la realidad de Perú?

Como menciona el ingeniero Enrique Pasquel (2017), es muy común encontrar edificaciones afectadas por patologías estructurales en nuestro país. La mayoría de estas se encuentran en sectores 'populares'; sectores donde la falta de control y la improvisación hicieron de la construcción informal una labor recurrente. En una entrevista realizada al ingeniero Miguel Estrada, director del CISMID-UNI, informó que el 70% de las viviendas de Lima metropolitana son construidas de manera informal (Llanos, 2016). Esta cifra resulta alarmante, ya que las viviendas construidas de manera informal son altamente vulnerables frente a eventos sismos.

La latente necesidad de vivienda obliga a la población a ocupar edificaciones bajo condiciones de habitabilidad inadecuadas (Quispe, 2005). Estas edificaciones podrían presentar comportamientos imprevistos frente a eventos sísmicos (Muñoz, 2017). Es por eso el compromiso del ingeniero estructural en conocer las limitaciones de las edificaciones de concreto armado afectadas por patologías estructurales.

La presente investigación pretende determinar la degradación de la capacidad estructural de pórticos de concreto armado cuando son afectados por deterioro patológicos.

CAPÍTULO 2: MARCO INVESTIGATIVO

Con la finalidad de seguir un método científico se redacta el presente capítulo. Se desarrolla lo concerniente al problema, objetivo, justificación y alcance; también se detallan las variables de la investigación, la metodología utilizada, el proceso de ingeniería seguido, la determinación de la población y muestra, el instrumento de ingeniería utilizado para registrar los datos y culmina con la matriz de consistencia como recopilación de lo anteriormente mencionado.

2.1 <u>IDENTIFICACIÓN DEL PROBLEMA</u>

El fenómeno migratorio interno (Maguiña Salinas, 2016) y la necesidad de vivienda (Canahualpa et al., 2021) dieron paso al denominado 'Problema de la construcción informal'. Este problema acarrea consigo una serie de malas prácticas constructivas las cuales resultan en el desarrollo de patologías estructurales (Helene y Pereira, 2003). Cómo indica la bibliografía consultada, las patologías estructurales afectan la capacidad de las estructuras frente a solicitaciones externas, como son los fenómenos sísmicos (Portland Cement Association, 2002).

Al ser el Perú un país proclive a sufrir sismos de gran magnitud, se estima que al menos el 70% de las viviendas, las cuales son producto de la construcción informal, se encontrarían en riesgo de desplome o daño severo (Idencity, 2018).

2.2 J USTIFICACIÓN E IMPORTANCIA DE LA INVESTIGACIÓN

La presente investigación aborda temas referidos a las patologías estructurales, los cuales son temas estudiados frecuentemente en las asignaturas avanzadas de Tecnología del Concreto (Portland Cement Association, 2002). Por otro lado, la determinación de las propiedades estructurales no-lineales es un tema estudiado frecuentemente en las asignaturas avanzadas de Análisis Estructural (Gómez, 2006). Por lo que creo conveniente la combinación de ambas disciplinas para poder dar estudio al problema planteado al inicio del capítulo.

2.3 <u>ALCANCE DE LA INVESTIGACIÓN</u>

- Sobre el modelamiento los pórticos: Se considera los pórticos modelados como pórticos interiores para el metrado de cargas. Así como las cargas correspondientes a edificaciones de concreto armado. Los pórticos constan de una altura de 3.00 metros y una luz de 4.50 metros.
- Sobre las normas utilizadas: Se utilizarán las Normas Técnicas Peruanas para la definición de materiales y cargas; el código FEMA 356, el código ASCE 41-17 y el código ATC-40 como referencia para el análisis estructural.
- Sobre las patologías: Se estudiará las patologías de carbonatación, ciclos de hielo y deshielo, corrosión, porosidad y reacción álcali-sílice.
- **Sobre los grados de deterioro patológico:** Se consideran tres grados de deterioro patológico, siendo: Leve, moderado y severo.
- Sobre las propiedades mecánicas afectadas: Durante el modelamiento de los pórticos afectados por patologías estructurales de concreto armado se modificarán las diferentes propiedades mecánicas a fin de emular el comportamiento del deterioro patológico.
- Sobre el método de análisis: Se empleará el análisis estructural estático no lineal con el cual se obtendrá la curva de capacidad. Así mismo se discretizó el modelo con divisiones relativas de 1 entre 100.
- Sobre las limitaciones del método y los resultados del análisis: Se analizarán los pórticos de concreto hasta alcanzar el colapso de sus elementos. Únicamente se tomarán como validos los resultados de la curva hasta la primera rotulación de colapso (caída abrupta del trabajo); esto debido a que, luego del colapso del primer elemento podría generarse una reacción en cadena en la cual el total de la estructura colapsase.
- Sobre el trabajo y el índice de comparación: La comparación entre resultados se realizará normalizando el trabajo interno ejercido en los pórticos. El trabajo es representado como el área bajo la curva de capacidad. Los valores serán normalizados usando como patrón el resultado de un pórtico referencial.

Sobre los pórticos modelados: A continuación, se muestra un catálogo de los pórticos modelados y su denominación:

Tabla 1Denominación numérica de pórticos según patología estructural y grado de deterioro patológico

				D	enomi	nación	de po	órticos	5								
					TEI	Patolo	ogía e	struct	ural y C	∋rado	de det	erioro	patol	ógico			
Configuración Estruc	ctural	Pórticos Referenciales	Car	bonata	ción		os de deshie		С	orrosio	ón	P	orosid	ad	Read	cción á sílice	
			7.7	M.	S.	L.	M.	S.	L.	M.	S.	L.	M.	S.	L.	M.	S.
Un nivel y una crujía (1x1)		001	007	013	019	025	031	037	043	049	055	061	067	073	079	085	091
Dos niveles y dos crujías (2x2)		002	008	014	020	026	032	038	044	050	056	062	068	074	080	086	092
Tres niveles y tres crujías (3x3)		003	009	015	021	027	033	039	045	051	057	063	069	075	081	087	093
Cuatro niveles y cuatro crujías (4x4)		004	010	016	022	028	034	040	046	052	058	064	070	076	082	088	094
Cinco niveles y cinco crujías (5x5)		005	011	017	023	029	035	041	047	053	059	065	071	077	083	089	095
Seis niveles y seis crujías (6x6)		006	012	018	024	030	036	042	048	054	060	066	072	078	084	090	096

Nota. Los grados de deterioro patológico corresponden a leve (L), moderado (M) y severo (S). Denominación del 001 al 096.

- Sobre el detalle de las secciones: A continuación, se muestra el detalle de las secciones referenciales:

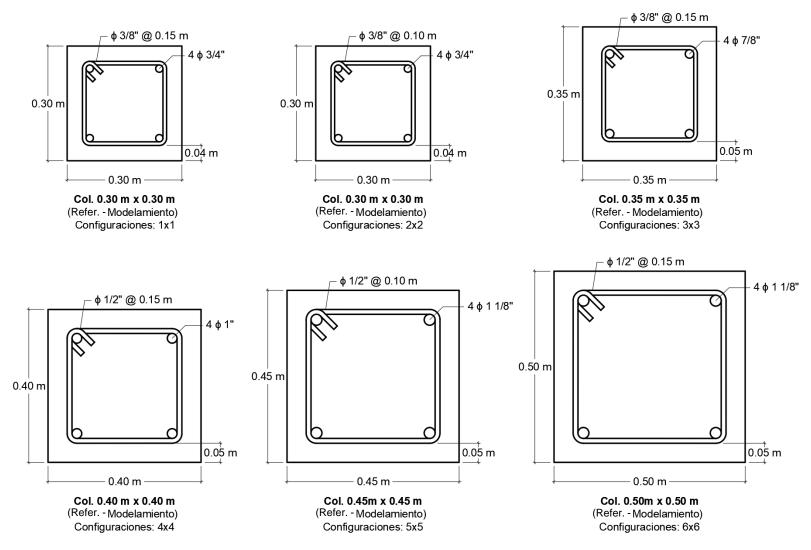


Figura 1. Columnas consideradas en el modelamiento de pórticos referenciales de concreto armado.

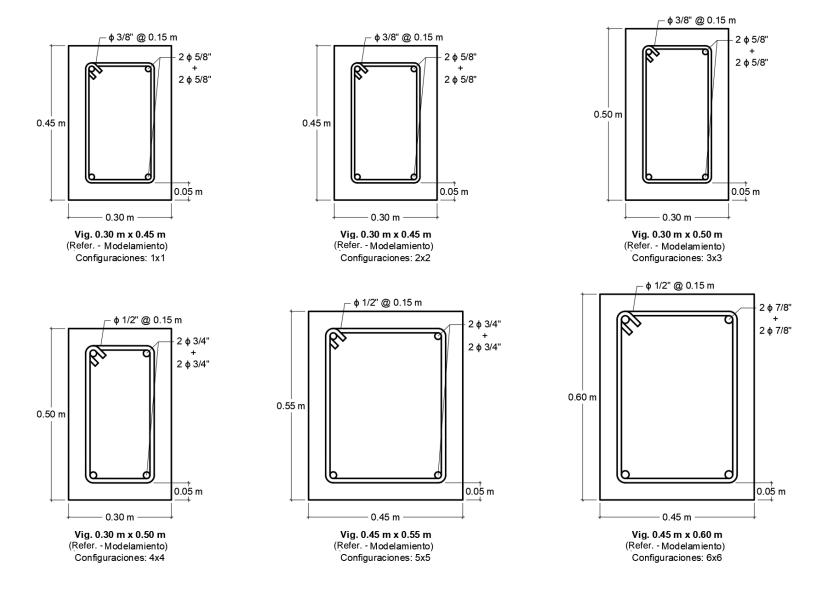


Figura 2. Vigas consideradas en el modelamiento de pórticos referenciales de concreto armado.

2.4 <u>VARIABLES DE LA INVESTIGACIÓN</u>

A continuación, se muestran las variables intervinientes en la investigación. Se manipula la configuración estructural y las cargas. Las patologías estructurales, y su respectivo grado de deterioro, modifican las propiedades de las secciones. Lo anterior conlleva a la variación en la respuesta; siendo, la reacción en la base, el desplazamiento máximo y consecuente variación en la capacidad estructural.

Tabla 2Cuadro de operacionalización de variables

		(Operacionalización								
Variable	Descripción conceptual	Indicadores	Símbolo	Unidades	Tipo de variable						
Variables Inde	pendientes										
Configuración Estructural	pórticos, propiedades las	Rigidez	k	Tonf/m	Numérica continua						
	secciones y los materiales.	Masa	m	Ton	Numérica continua						
Carga lineal estática	Cargas aplicadas en dirección de la gravedad	Peso propio	DL	Tonf	Numérica Continua						
	para modelar el comportamiento estático.	Sobrecarga permanente	SC	Tonf	Numérica Continua						
		Carga viva	LL	Tonf	Numérica Continua						
Carga no- lineal estática	Carga incremental aplicada lateralmente para el análisis estático no lineal.	Fuerza lateral incremental	F	Tonf	Numérica Continua						
Patología estructural	Tipo de patología que afecta al pórtico.	Carbonatación	CARB	-	Categórica nominal						
		Ciclos de hielo y deshielo	CHD	-	Categórica nominal						
		Corrosión	COR -		Categórica nominal						
		Porosidad	POR	-	Categórica nominal						
		Reacción álcali-sílice	RAC	-	Categórica nominal						
Deterioro patológico	Grado deterioro patológico.	Leve	Leve	-	Categórica ordinal						
		Moderado	Moderado	-	Categórica ordinal						
		Severo	Severo	-	Categórica ordinal						

Variables Dependientes						
Reacción en la base	Fuerzas cortantes resultantes en la base de la estructura.	Cortante basal	V	Tonf	Numérica Continua	
Desplazamiento máximo	•	Desp. del último nivel	Δ	m	Numérica Continua	
Capacidad estructural	Relación entre la cortante basal y el desplazamiento máximo producto de las fuerzas externas aplicadas en el sistema estructural	fuerzas	W	Tonf-m	Numérica Continua	

2.5 METODOLOGÍA DE INVESTIGACIÓN

Siguiendo los lineamientos del libro 'Metodología de la investigación' de Hernández et al. (2010), se enmarca la presente investigación bajo las siguientes características:

- La investigación tiene un enfoque **Mixto**, ya que utiliza magnitudes numéricas (propiedades mecánicas, fuerzas y desplazamiento) y a su vez magnitudes nonuméricas (tipo de patología y grado de afectación patológica)
- El nivel o alcance de la investigación es del tipo Correlacional, ya que pretende asociar variables iniciales (propiedades mecánicas, fuerzas, tipo de patología y grado de afectación) con un patrón resultante predecible (desplazamiento).
- El método de la investigación es el Hipotético-deductivo ya que se inicia planteando una hipótesis probable en base a la experiencia ("los pórticos de concreto armado afectados por deterioros patológicos sufrirán una degradación en su capacidad estructural") para luego comprobar o refutar el enunciado deducido.

La técnica de muestreo usado en la investigación será el muestro '**no probabilístico** – **por conveniencia**' en el cual se seleccionan los pórticos de manera no-aleatoria. La configuración estructural y detallado de secciones son diseñados de manera conveniente. Este tipo de muestreo fue utilizado bajo el enfoque exploratorio de la presente investigación, la cual tiene el propósito de ser un estudio inicial sobre las patologías estructurales y sus consecuencias en las estructuras de concreto armado. Los resultados obtenidos no pretenden ser expuestos para generalizaciones.

2.6 PROCESO DE INGENIERÍA

A continuación, se muestra el flujograma con el proceso de ingeniería:

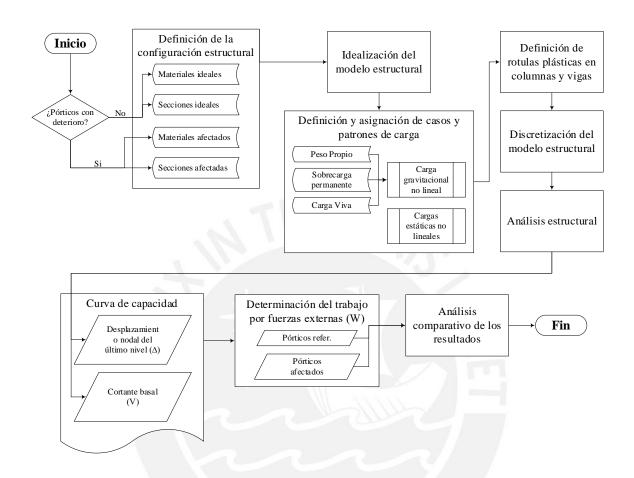


Figura 3. Proceso de ingeniería de la investigación

2.7 POBLACIÓN Y MUESTRA

2.7.1 POBLACIÓN

Según el censo llevado a cabo en el año 2017, cuyos resultados fueron publicados en el portal del INEI, se estima que el 55.8% de las viviendas (alrededor de 4 298 274 viviendas) son construidas con material noble¹ (ladrillo y concreto). De esta población, y considerando lo enunciado por CISMID-UNI (Llanos, 2016), se puede deducir que al menos 3 millones de viviendas fueron construidas bajo la modalidad de construcción informal.

¹ El censo consideró en la categoría de 'Material predominante en las paredes exteriores' al 'Ladrillo o bloque de cemento' (INEI, 2017). Por lo que, se considera esta categoría como 'material noble' en la presente investigación.

2.7.2 MUESTRA

En vista de que en la presente investigación se utiliza la técnica de muestreo **no probabilístico - por conveniencia**, se evaluarán muestras diseñadas por el investigador.

El estudio contempla el análisis de 96 pórticos regulares de concreto armado. Los pórticos serán de hasta 6 pisos y 6 crujías, sometidos a 5 tipos de patología bajo 3 grados de deterioro patológico.

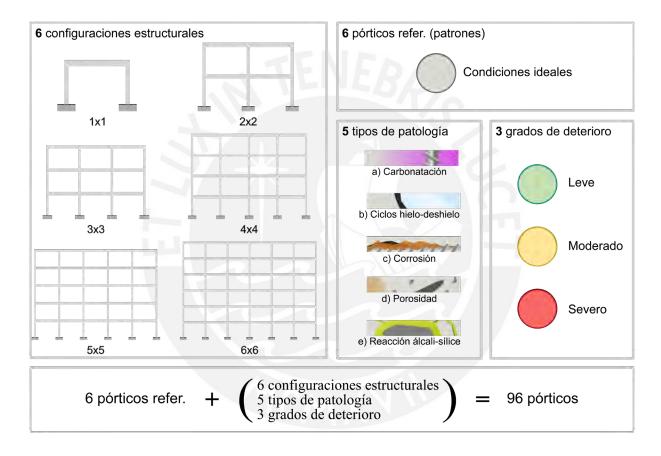


Figura 4. Determinación de muestras. Elaboración propia.

2.8 INSTRUMENTOS

FICHA DE ANÁLISIS NO LINEAL ESTÁTICO

En la siguiente ficha se recolectó los resultados provenientes del análisis estructural, siendo: La configuración estructural, el desplazamiento máximo, la reacción en la base y el trabajo (ejercido por fuerzas externas); así como la curva de capacidad y el diagrama de rotulación.

POSGRADO PUCP		Instrumento metodológico de recolección de datos					
		Ficha de análisis no-lineal estático					
	POCP		Ticha uc	COLORIDA I	io-inicar estatico		
A. Sobre	la investigació	n					
Tesis:			-				
Investiga	ndor:		-				
B. Sobre	los parámetro	s:					
	ración estructui		-				
	patología:		-				
Grado d	e afectación pa	tológica:	-				
C. Resul	tados del anális	sis					
Paso	Desplazam iento	Reacción en la base	Trabajo	Curva de capacidad			
(#)	(m)	(Tonf)	(Tonf-m)				
			1 1- 1-				
			-				
			-				
			-				
			\ <u> </u>				
			A -				
			-				
			-				
			-				
			-				
					Diagrama de rotulación del paso	0	
			_				
			-				
			-				
			- 1				
			-				
			-				
			-				
			-				
			-		Criterios de aceptación (Rotulació	n)	
			-	IO:	Ocupación Inmediata		
			-	CP:	Resguardo de vida Prevención de colapso		
				<u></u>	1 Teveneion de colapso		
	máximos						
	miento (m):	f).				-	
	en la base (To	nr):				-	
тарајо	(Tonf-m):					-	

Figura 5. Instrumento metodológico de recolección de datos: Ficha de análisis nolineal estático.

2.9 MATRIZ DE CONSISTENCIA

Tabla 3 *Matriz de Consistencia*

	Objetive Conses		Variable	Indicadores	Metodología	
0 (1 (1 1 1 1 1 1	Objetivo General	Hipótesis General	Variables Independientes	Indicadores de Variables Independientes	Enfoque de la Investigación:	
¿Cuál será la degradación de la capacidad estructural de pórticos regulares de concreto armado afectados por deterioros patológicos?	la capacidad estructural de los	La degradación de la capacidad estructural de los pórticos	Configuración Estructural	Rigidez del sistema estructural (k)Masa del sistema estructural (m)	• Mixto	
		regulares de concreto armado disminuirá en función del tipo de patología y el grado de deterioro	Carga lineal estática	Peso propio (DL)Sobrecarga permanente (SC)Carga viva (LL)	Nivel de Investigación: • Correlacional	
		patológico.	Carga no-lineal estática	• Fuerza lateral incremental (F)		
			Patología estructural	• Tipo de patología (Carbonatación, Ciclos de hielo-deshielo, Corrosión, Porosidad y Reacción álcali-sílice)	Método de Investigación: • Hipotético-Deductivo Instrumentos	
			Deterioro patológico	 Grado de deterioro patológico (Leve, Moderado y Severo) 		
Problemas Específicos	Objetivos Específicos	Sub Hipótesis	Variables Dependientes	Indicadores de Variables Dependientes	 Metodológicos: Ficha de análisis 	
cortante basal de pórticos egulares de concreto armado afectados por deterioros	Determinar la disminución de la cortante basal de los pórticos regulares de concreto armado afectados por deterioros patológicos	La disminución de la cortante basal de los pórticos reglares de concreto armado disminuirá en función del tipo de patología y el grado de deterioro patológico.	Reacción en la base	n en la base • Cortante basal (V)		
desplazamiento nodal del último nivel de pórticos egulares de concreto armado	Determinar la disminución del desplazamiento nodal del último nivel de los pórticos regulares de concreto armado afectados por deterioros	La disminución del desplazamiento nodal del último nivel de los pórticos reglares de concreto armado disminuirá en función del tipo de patología y el	Desplazamiento máximo	$ullet$ Desplazamiento máximo del último nivel (Δ)	Por conveniencia	

CAPÍTULO 3: ESTADO DEL ARTE

En el presente capítulo se enlista las investigaciones más relevantes de los últimos cinco años consultadas durante la elaboración de la presente investigación, las cuales sirvieron como referencia o inspiración.

Tabla 4

Estado del arte

Autor y año	Publicación	Breve descripción			
Shah y Bishnoi (2021)	Understanding the Process	Los investigadores			
	of Carbonation in Concrete	desarrollaron un modelo			
	using Numerical Modeling	matemático que ayuda a			
		entender de mejor manera el			
		proceso de carbonatación.			
		Consideran la influencia de			
		parámetros físicos, químicos y			
		medioambientales.			
	Consideran la influencia parámetros físicos, quími medioambientales. Se concluyó que el coefic de difusión de CO2 depen la tortuosidad del sistema, con la saturación y poros				
		Se concluyó que el coeficient de difusión de CO2 depende d			
		de difusion de CO2 depende de			
		la tortuosidad del sistema, jur			
		con la saturación y porosidad,			
		mientras que la velocidad de			
		secado del concreto influye en			
		el avance de la reacción de			
		carbonatación. Además, se			
		encontró que la saturación de			
		los poros tiene un efecto			
	dominante en e				
		carbonatación.			

Jedidi Belhassen Carbonation of Reinforced La investigación presenta una Concrete Structures (2020)

revisión general del fenómeno de carbonatación del concreto en estructuras de concreto armado.

Concluye enunciando que la carbonatación del concreto beneficiosa puede ser perjudicial dependiendo del diseño y destino de la obra. Un buen conocimiento de este fenómeno permite proteger el concreto de la carbonatación. Es por ello que el ingeniero debe tomar especial cuidado con el diseño de mezclas y recubrimiento de los elementos.

AL-Ameeri et al. (2019)

structures penetration and corrosion

Influence of carbonation on La investigación se enfoca en la the resistance of concrete influencia de la carbonatación to chloride del concreto en el proceso de corrosión del acero de refuerzo.

> Concluye que la calidad del concreto afecta la profundidad la carbonatación y la penetración de cloruros, la cual aumenta significativamente en las muestras expuestas a un ambiente de CO2, mientras que el ancho de las grietas influye en la actividad de corrosión.

Yazdchi et al. (2021) Evaluation of the En la investigación se agregan Mechanical Properties of diferentes cantidades de óxido Normal Concrete de magnesio a las diferentes Containing Nano-MgO muestras de concreto under Freeze-Thaw evaluar propiedades sus Conditions by Evolutionary mecánicas frente a ciclos de Intelligence hielo y deshielo.

> Los resultados indican que el uso de 1% de nano-MgO puede aumentar la resistencia a la compresión en un 9,12% y mejorar la resistencia a la tensión y la permeabilidad, y se propone un modelo matemático para predecir las propiedades mecánicas del concreto con nano-MgO utilizando el método GEP.

Dong et al. (2021)

Effect of freeze-thaw La cycling on fiber and steel reinforced concrete

publicación estudia mechanical experimentalmente la influencia properties of polyethylene de los ciclos de hielo y deshielo fiber en las propiedades mecánicas del concreto reforzado con fibras de acero y plástico.

> Se concluyó que las fibras de polímeros plásticos son más efectivas mejorando la deformabilidad, mientras que el acero mejora el comportamiento a esfuerzos.

Zhang et al. (2021) Experimental Study Thaw Cycles

on Los investigadores estudian las Mechanical Properties and propiedades mecánicas de dos Pore Structure Deterioration tipos de concreto (w/c=0.45 y of Concrete under Freeze- 0.55) deteriorados por ciclos de V deshielo haciendo hielo énfasis en el estudio de la estructura de poros, concluyendo que el concreto con una relación agua/cemento de 0,45 tiene mejor rendimiento de resistencia a la helada y durabilidad, y que para mejorar la durabilidad y vida útil de las estructuras de concreto en climas fríos, se debe reducir la porosidad la relación agua/cemento.

Li et al. (2020)

Mechanical Properties and Se Freeze-Thaw Durability of experimentales en los cuales se Basalt Fiber Reactive estudia **Powder Concrete**

la durabilidad de concreto polvo reactivo (RPC) reforzado con fibra de basalto afectado por la patología de ciclos de hielo y deshielo, y adicionando salcloro. Resulta en que la adición de fibra de basalto mejora la resistencia mecánica la У durabilidad frente а la congelación y descongelación del material.

realizan

ensayos

Smith et al. (2019)

Service-life of concrete in La investigación revisa and formation

freeze-thaw environments: avances en la predicción de la Critical degree of saturation vida útil de concreto armado en calcium oxychloride entornos de ciclos de hielo yd eshielo.

> Concluye con que la duración está función de los en dde diseño parámetros especial en la relación aguacemento y el contenido de aire.

Etman y Ahmed (2018)

Effect of freezing-thawing on concrete behavior

La investigación determina los efectos que producen los ciclos de hielo y deshielo en los morteros de concreto.

La investigación concluye enunciando que el uso de agentes incorporadores de aire mejoran la durabiliodad del concreto en entornos de ciclos de hielo y deshielo. Aspi mismo, las muestras con un concreto superior kgf/cm2 а 350 mostraron buena resustencia frente а la patología. durabilidad se redujo para las mezclas con cemento Portland y dolomita, cemento de piedra caliza y grava. El peso perdido para la mezcla con grava es mayor que para las mezclas con dolomita.

Aboubakar et al. (2018)

Mechanical Properties of El estudio evalúa el desempeño Concrete with Blast Furnace mecánico Slag Fine Cycles

del concreto Aggregates adicionado con arena de escoria Subjected to Freeze-Thaw de hornos (BFS) en ciclos de hielo y deshielo, donde los cúbicos especímenes son sometidos a solución de cloruro de sodio, concluyendo que el concreto sin aireadores y con arena BFS tuvo más resistencia a la compresión y al módulo de Young en comparación con el concreto normal con aireadores, y que el concreto con BFS tuvo una degradación ligeramente más lenta de sus propiedades mecánicas, así como una menor deformación plástica en comparación con el concreto normal.

Imperatore (2022)

Mechanical Decay of Reinforcement Concrete—An Overview

Properties La investigavión presenta una Corroded sintesis los de principales in hallazdos disponibles sobre las propiedades mecánicas de una armadura de acero de refuerzo.

> Los estudios experimentales realizados a lo largo de los años demuestran que la corrosión cambia la ley constitutiva del acero.

Tsouli et al. (Tsouli, y otros, 2021)

Combined Inhibitors and **Properties** Embedded Steel Saline Corrosion Test

Corrosion El estudio evaluó el desempeño Mechanical mecánico y la corrosión de las Concrete barras de refuerzo 316L en (AISI cubos de concreto con la 316L) during Accelerated adición de ceniza volante (FA) y un inhibidor de corrosión (B).

> Los resultados muestras que la adecición de FA redujo las pérdidas de propiedades mecánicas en comparación con los cubos de concreto sin FA.

Sánchez-Mendieta et al. (2021)

Physical and **Properties** of Concrete

Hydraulic La investigación presenta una Porous revisión del estado del concreto poroso, evaluando su potencial uso en construcciones donde el nivel de escorrentia superficial lo justigfique.

> Se demuestra que con densidades entre 1640-1809 kg/m³, diferentes proporciones de cemento y agregados, una distribución de tamaño de uniforme partícula una У porosidad entre el 20% y 25%, se pueden obtener resistencias a la compresión de 10 a 20 MPa y una permeabilidad de 8 a 10 mm/s, variables que deben considerarse en el diseño del concreto poroso.

Merawi y Kammouna	Enhancing	Physical	and	El estud	io demost	ró que	es
(2020)	Mechanical	Properties	s of	posible p	oroducir co	oncreto	con
	Pervious Concrete			buena	resiste	ncia	у
				permeabi	ilidad ace	ptable.	La
				inclusión	de cauc	ho-estire	eno-
				butadiend	o (SBR) tie	ne un ef	ecto
				insignifica	ante	en	las
				propiedad	des fí	sicas	У
				mecánicas del concreto poroso			
				en comparación con la arena.			ena.
				Además, se encontró que un			un
				contenido	de arena	del 159	% al
				30% del p	oeso total d	el agreg	jado
				y un conte	enido de S	BR de h	asta
				el 5% del	peso del c	emento	dan
				resultado	s adecuad	os con	una
				resistenci	ia mod	eradame	ente
				buena y	una perm	ıeabilida	ıd y
				densidad	aceptables	3.	
Ferche y Vecchio	Mechanical	Properties	s of	Se lle	evaron	a c	abo
(2022)	Alkali-Silica	Read	tion-	experime	ntos para	estudia	r el
	Affected Cor	ncrete		comporta	miento m	ecánico	del
				concreto	afectado	o por	la
				relación	álcali-sílice	, utiliza	ındo
				diferentes	s tipos de	meustra	as y
				condiciones de carga. El estudio			
				demuestr	a que la o	degrada	ción

Continúa...

del concreto afectado por ASR

es anisotrópica lo que resulta en

agrietamiento con forma de

'mapa'.

Abbas et al. (2021)

Investigation of Alkali-Silica La investigación comparó la Reactivity in Sustainable reactividad álcali-sílice (ASR) Ultrahigh Concrete

Performance en concreto de alto rendimiento adicionado (UHPC) frente al concreto de resistencia normal.

> Concluye que las mezclas de **UHPC** tienen una mayor resistencia a la compresión, una expansión menor bajo condiciones de ASR, una mayor resistencia a la flexión y una mejor microestructura.

Mohammadi et al. (Mohammadi, Ghiasvand, & Nili, 2020)

Relation between La mechanical concrete and reaction (ASR)

publicación revisa properties of investigaciones previas sobre el alkali-silica efecto de la reacción álcalissílice en las propiedades mecánicas del concreto.

> Se concluye que todas las propiedades mecánicas del concreto (resistencia la compresión, flexión, tensión directa e indirecta y el módulo de elasticidad) son afectadas por ASR, lo que resulta en una reducción de estas propiedades. La reducción depende de diferentes factores como el grado de reactividad de los agregados, la gradación de los mismos y las propiedades del gel ASR.

Figueira et al. (Figueira, y otros, 2019)

Alkali-silica reaction concrete: mitigation and test methods concreto,

in La publicación expone sobre la Mechanisms, reacción álcali-sílice (ASR) en el sus mecanismos, mitigación y métodos de prueba, mostrando que se ha progresado en la comprensión de la ASR.

> Así mismo, hace incapie en la necesidad de nuevos métodos de prueba y sensores para la detección temprana y monitoreo de la expansión de la ASR, y la exploración de alternativas a los materiales actualmente utilizados en la mitigación de la ASR, siendo la detección temprana de la ASR importante ahorrar costos reparaciones y rehabilitaciones y aumentar la vida útil de las estructuras existentes.

CAPÍTULO 4: MARCO TEÓRICO

En el presente capítulo se desarrollan los conceptos teóricos más relevantes, los cuales sirven como base para la presente investigación. Se comienza desarrollando teoría sobre la Tecnología del Concreto y posteriormente sobre el Análisis Estático No-Lineal.

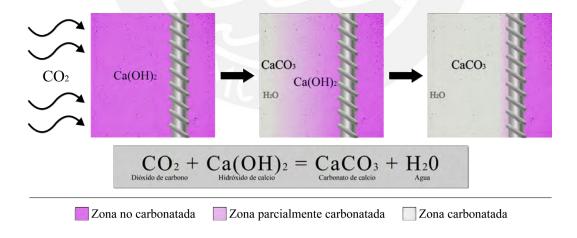
4.1 DURABILIDAD EN EL CONCRETO ARMADO

Como define Macdonald (2002): El concreto armado es una técnica de construcción que consiste en reforzar el concreto con barras, mallas, cables, o elementos de acero, con la finalidad de que el material resultante posea propiedades resistentes a esfuerzos de tracción y compresión. Así mismo, Watt (como se citó en Macdonald, 2002), indica que las estructuras de concreto armado deben ser durables; definiendo la durabilidad como: "la habilidad de una estructura y sus partes de desempeñar sus funciones en un periodo de tiempo y bajo la influencia de agentes o mecanismos de deterioro" (pág. 302). Es así como el concreto armado debe ser durable para poder resistir a la acción del ambiente, al ataque químico y a la abrasión (Portland Cement Association, 2002).

4.2 PATOLOGÍAS ESTRUCTURALES EN EL CONCRETO ARMADO

Como se define en la Enciclopedia Broto de Patologías De La Construcción (2006), la patología constructiva de la edificación "es la ciencia que estudia los problemas constructivos que aparecen en el edificio o en alguna de sus unidades con posterioridad a su ejecución".

Haciendo extensión a esta definición, algo 'patológico' es aquello que constituye enfermedad o es síntoma de ella. Y 'deterioro' se refiere a el empeoramiento del estado, calidad, valor, etc. de una cosa. Por lo que, en adelante, el término 'deterioro patológico' será usado en esta investigación para referirse a todo lo que cause degradación de las propiedades referenciales ('ideales') de una edificación (Oxford Languages, 2021).


En la presente investigación se ordenan las patología en orden alfabético, aún así es relevante mencionar que en la realidad nacional es más probable la ocurrencia de la patología de corrosión y porosidad.

4.2.1 CARBONATACIÓN DEL CONCRETO

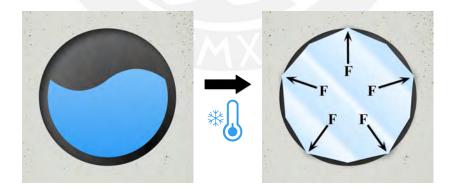
La carbonatación del concreto es una reacción físico-química la cual ocasiona una disminución en la porosidad capilar, afectando el equilibrio del contenido de agua en los poros (Félix et al. 2017). Verbeck (como se citó en Kosmatka, (2002) describe que "(...) el dióxido de carbono (C0₂) del aire penetra en el concreto y reacciona con el hidróxido de calcio, para formar carbonato de calcio" (pág. 15).

La carbonatación del concreto puede resultar siendo una patología frecuente en zonas de alta aglomeración, ya que como indican Jedidi y Abdessalem (2020) la cantidad de C0₂ puede alcanzar el 0.1% del volumen atmosférico² cerca a áreas industriales, estacionamientos vehiculares y autopistas principales.

Aunque la carbonatación se produce mayoritariamente en el recubrimiento y difícilmente daña el núcleo de los elementos estructurales, esta puede reducir considerablemente los niveles de pH, de 13 hasta aproximadamente 8, derivando en la corrosión de las varillas de refuerzo (Félix et al. 2017).

Figura 6. Representación esquemática de la carbonatación del concreto. Adaptado al castellano de Possan (2010).

 2 Nuestra atmosfera planetaria contiene un promedio de 0.03% a 0.04% de ${\rm CO}_2$ (Jedidi y Belhassen, 2020)


_

La alteración de las propiedades mecánica producidas por la carbonatación del concreto fue demostrada por Khalil y Anwar (2014), en ensayos experimentales. Por otro lado, los resultados expuestos por Chi, Huang y Yang (2002) mostraron un ligero incremento en la resistencia a la compresión del concreto si este es expuesto a Dióxido de Carbono durante los 28 primeros días de curado, esto debido a que la carbonatación y la resistencia a la compresión están significativamente influenciadas por la estructura de poros del concreto; el Carbonato de Calcio ocupa un mayor espacio que el Hidróxido de Calcio haciendo que la superficie porosa se reduzca.

Para fines prácticos, la presente investigación considerará nulo el aporte a la resistencia del área de la sección afectada por carbonatación, ya que se trata de un cambio químico el cual tiene efectos en la durabilidad del concreto endurecido (Portland Cement Association, 2002).

4.2.2 CICLOS DE HIELO-DESHIELO

Para Shang et al. (2014), los 'Ciclos de hielo-deshielo' son deterioros patológicos generados por el intemperismo. Se producen cuando el agua atrapada³ en los poros del concreto se congela, expandiendo su volumen al rededor del 9%. La expansión genera presión en los poros, excediendo la resistencia a tensión del concreto (Portland Cement Association, 2002). El proceso cíclico que acompaña el fenómeno genera agrietamiento y degradación de las propiedades mecánicas (Song et al., 2011).

Figura 7. Representación esquemática del congelamiento del agua dentro de un poro.

_

³ Como mínimo, el poro debe estar saturado al 91.75% en volumen; de esta manera, la expansión del agua al congelarse ocasionará que el poro supere su capacidad.

Luego de ensayos experimentales, Song et al. (2011), determinaron que los ciclos de hielo-deshielo deterioran la resistencia compresión y elasticidad del concreto, y disminuyen la masa de los elementos. Esto fue corroborado posteriormente por Etman y Ahmed (2018).

Para el presente estudio se utilizará los resultados experimentales publicados por Duan et al. (2011) para la resistencia a la compresión, módulo de elasticidad y relación esfuerzo-deformación, mientras que la disminución de la masa será calculada con los resultados obtenidos de Song et al. (2011).

De acuerdo a la publicación de Duan et al. (2011), la resistencia a la compresión (normalizada) es calculada con la siguiente ecuación:

$$\frac{f_{cD}}{f_{c0}} = 1 - 200N \times f_{cu}^{-3.0355} \tag{1}$$

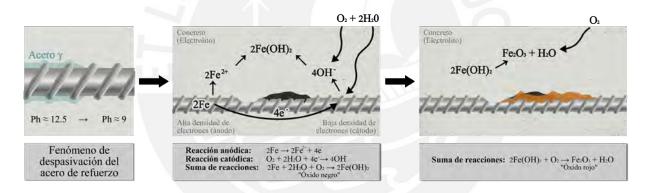
Así mismo, los autores enuncian que el modulo de elasticidad (normalizado) es calculado mediante la siguiente ecuación:

$$\frac{E_{cD}}{E_{c0}} = exp(-1.1345 \times 10^7 f_{cu}^{-5.7089} \times N)$$
 (2)

Para el cálculo de la deformación (normalizada, al pico del esfuerzo) se utiliza la siguiente ecuación:

$$\frac{\varepsilon_{cD}}{\varepsilon_{co}} = \exp\left(661742 f_{cu}^{-5.1406} \times N\right) \tag{3}$$

La razón de disminución de la masa en la estructura fue calculada mediante una interpolación lineal de los resultados obtenidos por Song, Li y Ma (2011), cómo se puede apreciar en la tabla siguiente (Tabla 5):


Tabla 5Ratio de pérdida de masa del concreto afectado por ciclos de hielo-deshielo (adaptado de Song, Li y Ma, 2011).

Número de ciclos de hielo-					
deshielo	Ratio de pérdida de masa				
0	0.00%				
50	0.10%				
100	0.18%				

4.2.3 CORROSIÓN DEL ACERO DE REFUERZO

Como es mencionado en la literatura, la corrosión del acero de refuerzo es la patología más común en las estructuras de concreto armado (Portland Cement Association, 2002). Según NACE International (2018), anualmente la corrosión genera pérdidas (y deterioros) por alrededor de USD 276 miles de millones, de los cuales el 16.4% pertenecen a infraestructura⁴ (USD 22.6 miles de millones).

Se define la 'corrosión' como la formación de óxido de hierro en el acero de refuerzo cuando este es expuesto a agua y oxígeno (Macdonald, 2002). La corrosión del acero de refuerzo es principalmente ocasionada por la carbonatación del concreto o por la inducción de iones de cloruro ('ataque de cloruros') debido a condiciones del entorno (Böhni, 2005). La corrosión es un proceso electroquímico, cuyo mecanismo comienza con el fenómeno de despasivación⁵ del acero de refuerzo (Helene y Pereira, 2003) a causa de la reducción de PH del concreto.

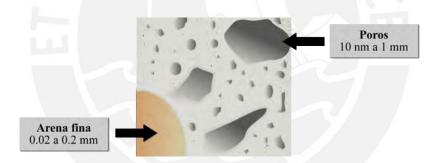
Figura 8. Representación esquemática del proceso de corrosión del acero de refuerzo.

En la Tabla 6, Bossio et. al (2018) enuncian parámetros con los cuales modelan son modeladas las estructuras afectadas por corrosión. Es notoria la disminución del diámetro del acero longitudinal y transversal.

⁴ El estudio en mención denomina como 'infraestructura' a autopistas, puentes, estructuras relacionadas a almacenamiento y distribución de gas y líquidos, vías fluviales, puertos y almacenes de materiales peligrosos (NACE International, 2018).

⁵ En un proceso químico, la interacción entre la cal-hidratada del concreto, y el acero de refuerzo, hace que se formé una delgada lamina que protege al acero de la corrosión. La lamina es denominada 'acero gama' y está presente siempre que el concreto tenga un PH mayor a 10.5 o no existan cloruros (Portland Cement Association, 2002).

Tabla 6


Parámetros para el modelamiento de corrosión enunciados por Bossio et. al (2018)

Corrosión	Recubrimiento	Acero Longitudinal	Estribos
Leve	Agrietamiento	Diámetro = -0.3mm	Diámetro = -20%
Moderada	Desprendimiento	Diámetro = -2mm	Diámetro = -40%
Severa	Desprendimiento	Diámetro = 50%	Diámetro = -90%

4.2.4 POROSIDAD DEL CONCRETO

Kosmatka (2002) define la porosidad como el volumen de vacíos⁶ en función del volumen total de concreto. Este parámetro que se encuentra dominado mayormente por la relación agua/cemento; una relación agua/cemento menor disminuirá la porosidad del concreto endurecido (Wight y MacGregor, 2012).

De acuerdo con Mindess et. al. (como se citó en Bizzozeo, 2014), los poros con un diámetro de 10 nm a 1mm son los que inician afectando las propiedades mecánicas (como la resistencia) del concreto.

Figura 9. Representación esquemática del tamaño de los poros en el concreto.

De acuerdo a la publicación de Chen, Wu y Zhou (2013), la resistencia a la compresión (no normalizada), y proveniente de una regresión lineal de resultados experimentales, es calculada mediante la siguiente ecuación:

$$\sigma = 9.74 * \left(1 - \frac{p}{0.783}\right)^{0.925} * \left(1 - p^{\frac{2}{3}}\right)^{0.5} \tag{4}$$

De manera similar, los autores enuncian que la resistencia indirecta a la tensión, proveniente de una regresión lineal de resultados experimentales, siendo:

_

⁶ No debe confundirse la porosidad con la permeabilidad. La permeabilidad es un parámetro relacionado a la interconexión entre poros (Portland Cement Association, 2002).

$$\sigma = 5.56 * \left(1 - \frac{p}{0.768}\right)^{0.925} * \left(1 - p^{\frac{2}{3}}\right)^{0.5}$$
 (5)

Para el modelamiento de la elasticidad Mai y Cotterell (1985) plantean la siguiente ecuación:

$$E = \frac{E_0(1-v_0)^2}{(1+v_0)} \tag{6}$$

4.2.5 REACCIÓN ÁLCALI-SÍLICE

La relación álcali-sílice (RAC) ocurre entre la reacción del álcali de la pasta de cemento y la sílice de los agregados (Macdonald, 2002); dando paso al desarrollo de un gel capaz de absorber agua. Según la PCA (2002), en ciertas condiciones, el gel de reacción se expande produciendo esfuerzos de tracción en el concreto.

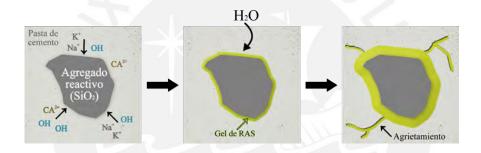
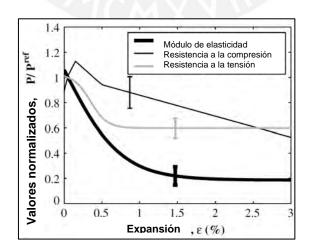



Figura 10. Representación esquemática del proceso de reacción de álcali-sílice.

De acuerdo a lo publicado por Esposito et al. (2016), las propiedades mecánicas del concreto afectado por la patología de (RAC), puede ser modelada:

Figura 11. Relación entre las propiedades normalizadas del concreto y la expansión del concreto inducido por la reacción álcali-sílice. Fuente: Esposito et al. (2016).

4.2 ANÁLISIS ESTÁTICO NO-LINEAL

También conocido como '*Pushover*' (en inglés), es un método de análisis estructural estático no lineal utilizado para hallar la respuesta de una estructura sometida a cargas laterales incrementales, las cuales generan una plastificación progresiva en los elementos de la estructura (Gonzáles Torres, 2017)

La respuesta estructural es representada mediante la 'curva de capacidad' que relaciona el cortante basal y el desplazamiento del último nivel (Diotallevi & Landi, 2005). El área debajo de la curva representa el trabajo⁷ de las fuerzas externas (Kotanidis & Doudoumis, 2008)

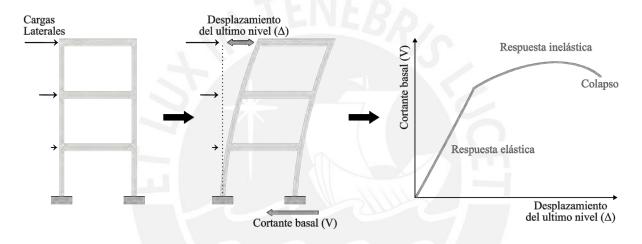


Figura 12. Representación esquemática del análisis estático no-lineal.

4.2.1 CRITERIOS DE ACEPTACIÓN

Son valores de deformación (desplazamientos, deformaciones y rotaciones) utilizados para establecer los límites de desempeño de los elementos que componen una estructura (FEMA, 2000) y son determinados en conformidad a los establecido en la norma FEMA 356.

Ocupación Inmediata (IO): Luego de ocurrido un evento sísmico, si las propiedades del elemento se encuentran entre el punto B y el punto IO (Figura 8) significa que ha recibido leves daños y aún conserva su resistencia y rigidez.

30

⁷ Se hace referencia a la magnitud física escalar denominada 'Trabajo' (W), la cual consiste en la energía transferida a un objeto mediante la aplicación de una fuerza la cual genera un desplazamiento (Young, Freedman, & Ford, 2014)

- La estructura podrá ser ocupada inmediatamente. A pesar de ello, realizar algunas reparaciones estructurales serían apropiado (FEMA, 2000).
- Resguardo de vida (LS): Luego de ocurrido un evento sísmico, si las propiedades del elemento se encuentran entre el punto IO y el punto LS (Figura 8) significa que ha ocurrido un daño considerable en el elemento, pero se puede asumir que aún existe un margen de seguridad considerable antes del colapso parcial o total del elemento y consecuentemente de la estructura. Por lo que, se espera que la amenaza a la vida aún sea nula o baja. (FEMA, 2000).
- Prevención de colapso (CP): Luego de ocurrido un evento sísmico, si las propiedades del elemento se encuentran entre el punto LS y el punto CP (Figura 8) significa que ha ocurrido un daño considerable en el elemento, y por ende en la estructura. El sistema estructural aun puede soportar cargas de gravedad y aún mantiene un margen de prevención de colapso. La estructura ya no debe ser ocupada y tampoco se consideraría técnicamente practico optar por su reparación (FEMA, 2000).

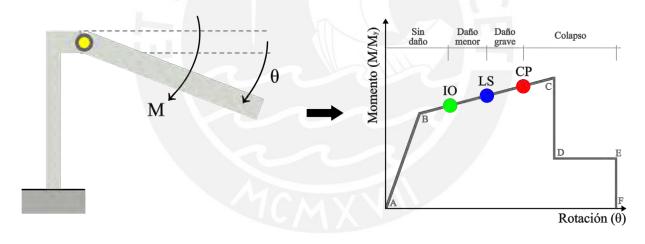


Figura 13. Representación esquemática del proceso de rotulación en base a criterios de aceptación para el análisis estático no-lineal. Siendo, IO: Ocupación inmediata, LS: Resguardo de vida y CP: Prevención de colapso.

CAPÍTULO 5: PROCEDIMIENTO DE GABINETE

En el presente capítulo se determinan parámetros constantes en función de las propiedades del modelo estructural como son el módulo de elasticidad, el metrado de cargas, y las propiedades mecánicas según los grados de afectación patológico.

5.1 PROPIEDADES MECÁNICAS DEL CONCRETO ARAMDO REFERENCIAL

Siguiendo los lineamientos de la Norma Técnica E.060 (2009), se modelaron los materiales con las siguientes características:

Tabla 7Propiedades mecánicas del concreto y acero

280 kgf/cm2	
0.0024 kgf/cm3	
250998 kgf/cm2	
\sim \sim \sim	
4200 kgf/cm2	
6300 kgf/cm2	
7850 kgf/cm2	

5.2 METRADO DE CARGAS

5.2.1 PESO PROPIO

Se considera el peso producido por viga, columnas y losa, para determinar las cargas por metro; donde la densidad del concreto (ρ_c) es: 2400 kgf/m3; y el peso propio del aligerado según la Norma Técnica E.020 (2006) es: 280 kgf/m2 (para un espesor de 0.17 m). El resto de las propiedades se encuentra en función de la configuración estructural cómo se muestra en la Tabla 8:

Tabla 8Configuración estructural

		Columnas		_ '	Vigas		
Crujías	Niveles	Altura de columnas (m)	Lado de columna (m)		Luz de crujía (m)	Base de viga (m)	Peralte de viga (m)
1	1	3.00	0.30		4.50	0.30	0.45
2	2	3.00	0.30		4.50	0.30	0.45
3	3	3.00	0.35		4.50	0.30	0.50
4	4	3.00	0.40		4.50	0.30	0.50
5	5	3.00	0.45		4.50	0.45	0.55
6	6	3.00	0.50		4.50	0.45	0.60

De manera similar, se calcula el peso propio de expresado en tonf/m lineal aplicado en las vigas, siendo las cargas para las diferentes configuraciones estructurales:

Tabla 9

Cálculo de peso propio aplicado en vigas

Crujías	Niveles	Peso propio (vig, col, losa) (tonf/m)
1	1	1.7280
2	2	1.7280
3	3	1.8160
4	4	1.8760
5	5	2.1780
6	6	2.3080

5.2.2 SOBRECARGA PERMANENTE

La sobrecarga permanente está compuesta por el peso de tabiques y pisos inamovibles. En la Tabla 10 se detalla los componentes de la sobrecarga permanente y su valor considerado en el modelamiento.

Tabla 10Sobrecarga permanente

Sobrecarga de piso:	100 kgf/m2
Sobrecarga de tabiquería:	240 kgf/m2
Longitud del vano:	4.50 m
Sobrecarga permanente:	1.53 tonf/m

5.2.3 CARGA VIVA

Se considera la carga en todos los niveles haciendo uso de lo mencionado en la Norma Técnica E.020 (2006) tomando en consideración la carga viva mínima repartida para una vivienda. Este valor también es tomado para una carga viva de azotea.

Tabla 11Carga viva mínima repartida

Carga viva:	200 kgf/m2
Longitud del vano:	4.50 m
Carga viva considerada:	0.90 tonf/m

5.3 <u>AFECTACIÓN POR CARBONATACIÓN</u>

Considerando, a criterio del investigador, que la superficie afectada por la patología de carbonatación es 'inutilizable' estructuralmente, se presenta la tabla siguiente. La afectación en el recubrimiento es incremental. Se estandariza la afectación para los dos parámetros de recubrimiento (4cm y 5cm) independiente de las secciones. Se considera la carbonatación desde la cara exterior en dirección al núcleo:

Tabla 12 *Afectación por la patología de carbonatación*

Afectación	Prof. (mm)	Rec. 4cm	Rec. 5cm
Leve	25%	3.0	3.8
Moderado	50%	2.0	2.5
Severo	100%	0.0	0.0

En la Tabla 13 se muestran las propiedades referenciales de los pórticos de concreto armado, las cuales serán afectadas en función de los grados de deterioro patológico para la patología de carbonatación:

Tabla 13Propiedades referenciales consideradas en la patología de carbonatación

	Columnas		Vigas	Vigas		
Port.	Lado de col. (m)	Recub. (m)	Base de viga (m)	Peralte de viga (m)	Recub. (m)	
1	0.30	0.04	0.30	0.45	0.05	
2	0.30	0.04	0.30	0.45	0.05	
3	0.35	0.05	0.30	0.50	0.05	
4	0.40	0.05	0.30	0.50	0.05	
5	0.45	0.05	0.45	0.55	0.05	
6	0.50	0.05	0.45	0.60	0.05	

En el siguiente grupo de tablas (Tabla 14, Tabla 15 y Tabla 16) se muestran las propiedades afectadas en función del grado de deterioro patológico (leve, moderado y severo). Se aprecia una disminución en la sección transversal y el recubrimiento de los elementos estructurales, ya que la sección de recubrimiento carbonatada se considera cómo sección perdida:

Tabla 14Propiedades afectadas por la patología de carbonatación para un grado de deterioro patológico leve

Propiedades afectadas – Grado de deterioro: Leve							
	Columnas		Vigas				
Port.	Lado de columna (m)	Recub. (m)	Base de viga (m)	Peralte de viga (m)	Recub. (m)		
007	0.290	0.030	0.288	0.438	0.038		
800	0.290	0.030	0.288	0.438	0.038		
009	0.338	0.038	0.288	0.488	0.038		
010	0.388	0.038	0.288	0.488	0.038		
011	0.438	0.038	0.438	0.538	0.038		
012	0.488	0.038	0.438	0.588	0.038		

Tabla 15Propiedades afectadas por la patología de carbonatación para un grado de deterioro patológico moderado

Propiedades afectadas – Grado de deterioro: Moderado							
	Columnas		Vigas				
Port.	Lado de col. (m)	Recub. (m)	Base de viga (m)	Peralte de viga (m)	Recub. (m)		
013	0.280	0.020	0.275	0.425	0.025		
014	0.280	0.020	0.275	0.425	0.025		
015	0.325	0.025	0.275	0.475	0.025		
016	0.375	0.025	0.275	0.475	0.025		
017	0.425	0.025	0.425	0.525	0.025		
018	0.475	0.025	0.425	0.575	0.025		

Tabla 16Propiedades afectadas por la patología de carbonatación para un grado de deterioro patológico severo

Propiedades afectadas – Grado de deterioro: Severo						
_	Columnas		Vigas			
Port.	Lado de col. (m)	Recub. (m)	Base de viga (m)	Peralte de viga (m)	Recub. (m)	
019	0.260	0.000	0.250	0.400	0.000	
020	0.260	0.000	0.250	0.400	0.000	
021	0.300	0.000	0.250	0.450	0.000	
022	0.350	0.000	0.250	0.450	0.000	
023	0.400	0.000	0.400	0.500	0.000	
024	0.450	0.000	0.400	0.550	0.000	

5.4 <u>AFECTACIÓN POR CICLOS DE HIELO-DESHIELO</u>

Siguiendo los parámetros establecidos en las publicaciones de Song et al. (2011) y Duan et al. (2011), la Tabla 17 muestra la afectación correspondiente a la patología de ciclos de hielo y deshielo. La afectación se encuentra en función del número de ciclos, los cuales evidencian una perdida en la masa, la resistencia a la compresión del concreto (f'c), el módulo de elasticidad y los parámetros de deformación normalizada ($\varepsilon c_D / \varepsilon c_0$):

Tabla 17Afectación por la patología de ciclos de hielo-deshielo

Afectación	Ciclos	Masa	f'c	Elasticidad	ες / ες
Leve	15	99.97%	87.12%	35.30%	1.49
Moderada	30	99.94%	74.23%	12.46%	2.22
Severa	45	99.91%	61.35%	4.40%	3.31

En la Tabla 18 se muestran las propiedades referenciales de los pórticos de concreto armado, las cuales serán afectadas en función de los grados de deterioro patológico para la patología de ciclos de hielo y deshielo.

Tabla 18

Propiedades referenciales consideradas en la patología de ciclos de hielo y deshielo

Propiedades referenciales							
	Concreto	Concreto					
Port.	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)				
1	280	0.0024	250998				
2	280	0.0024	250998				
3	280	0.0024	250998				
4	280	0.0024	250998				
5	280	0.0024	250998				
6	280	0.0024	250998				

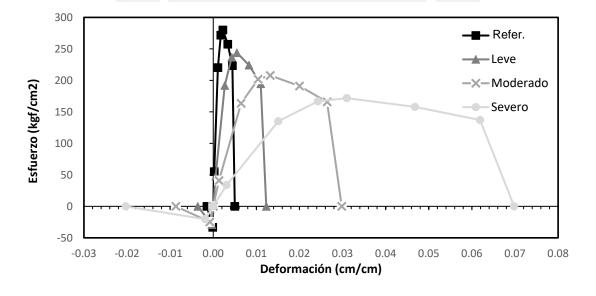
En el siguiente grupo de tablas (Tabla 19, Tabla 20 y Tabla 21) se muestran las propiedades afectadas en función del grado de deterioro patológico (leve, moderado y severo). Se aprecia una disminución en la resistencia a compresión del concreto, la cual es originada por las fisuraciones internas a partir de los poros; el peso unitario, debido a la perdida de masa; y el módulo de elasticidad, debido a cambio de las propiedades internas del material:

Tabla 19Propiedades afectadas por la patología de ciclos de hielo y deshielo para un grado de deterioro patológico leve

Propiedades afectadas – Grado de deterioro: Leve						
-	Concreto					
Port.	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)			
025	243.93	0.002399	88591			
026	243.93	0.002399	88591			
027	243.93	0.002399	88591			
028	243.93	0.002399	88591			
029	243.93	0.002399	88591			
030	243.93	0.002399	88591			

Tabla 20Propiedades afectadas por la patología de ciclos de hielo y deshielo para un grado de deterioro patológico moderado

Propiedades afectadas – Grado de deterioro: Moderado					
_	Concreto				
Port.	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)		
031	207.86	0.002399	31269		
032	207.86	0.002399	31269		
033	207.86	0.002399	31269		
034	207.86	0.002399	31269		
035	207.86	0.002399	31269		
036	207.86	0.002399	31269		


Tabla 21Propiedades afectadas por la patología de ciclos de hielo y deshielo para un grado de deterioro patológico moderado

Propiedades afectadas – Grado de deterioro: Severo						
	Concreto					
Port.	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)			
037	171.78	0.002398	11036			
038	171.78	0.002398	11036			
039	171.78	0.002398	11036			
040	171.78	0.002398	11036			
041	171.78	0.002398	11036			
042	171.78	0.002398	11036			

A continuación, se muestran las propiedades referenciales y afectadas en función del grado de deterioro patológica (leve, moderado y severo) para la curva de esfuerzo-deformación del modelo de Mander uniaxial. Donde se aprecia una disminución en la deformación del material:

Tabla 22Propiedades referenciales y afectadas por la patología de ciclos de hielo y deshielo para la curva esfuerzo-deformación del modelo de Mander (propiedades uniaxiales)

		Referencial		l Grado: Leve		Grado: Moderado		Grado: Severo	
Pun	tos	Deform. (cm/cm)	Esfur. (kgf/cm2)	Deform. (cm/cm)	Esfur. (kgf/cm2)	Deform. (cm/cm)	Esfur. (kgf/cm2)	Deform. (cm/cm)	Esfur. (kgf/cm2)
1	Е	0.0050	0.00	0.0123	0.00	0.0298	0.00	0.0698	0.00
2		0.0044	223.38	0.0110	194.61	0.0264	165.83	0.0619	137.05
3		0.0034	257.41	0.0083	224.25	0.0200	191.09	0.0468	157.92
4	С	0.0022	280.00	0.0055	243.93	0.0132	207.86	0.0310	171.78
5		0.0017	271.83	0.0043	236.81	0.0104	201.80	0.0243	166.77
6		0.0011	220.31	0.0027	191.93	0.0065	163.55	0.0151	135.16
7		0.0002	55.17	0.0005	48.06	0.0013	40.95	0.0031	33.85
8	Α	0.0000	0.00	0.0000	0.00	0.0000	0.00	0.0000	0.00
9	В	-0.0001	-33.28	-0.0003	-28.99	-0.0008	-24.70	-0.0019	-20.42
10	Е	-0.0015	0.00	-0.0036	0.00	-0.0087	0.00	-0.0203	0.00

Figura 14. Curva de esfuerzo-deformación del modelo de Mander bajo la afectación por la patología de ciclos de hielo y deshielo (tensión negativa).

5.5 <u>AFECTACIÓN POR CORROSIÓN</u>

Siguiendo los parámetros establecidos en la publicación de Bossio et al. (2018), la Tabla 23 muestra la afectación correspondiente a la patología corrosión de la armadura de acero.

En cuanto al recubrimiento de la sección de concreto, se consideró la pérdida total del recubrimiento a partir de la afectación de grado moderado. Así mismo, se considera la pérdida progresiva del área de las varillas de acero.

Tabla 23Afectación por la patología de corrosión

Afectación	Recubrimiento	Acero Longitudinal	Estribos
Leve	-	Diámetro = -0.3mm	Diámetro = -20%
Moderada	Desprendimiento	Diámetro = -2mm	Diámetro = -40%
Severa	Desprendimiento	Diámetro = 50%	Diámetro = -90%

En la tabla siguiente se muestran las propiedades referenciales de los pórticos de concreto armado, las cuales serán afectadas en función de los grados de afectación patológica para la patología de corrosión. Consta de la sección transversal y el acero de refuerzo.

Tabla 24Propiedades referenciales y afectadas por la patología de corrosión

Propiedades referenciales					
	Columnas				
Port.	Lado de col. (m)	Recub. (m)	Refuerzo long. (varillas)	Refuerzo Trans. (varillas)	
1	0.30	0.04	4 ф 3/4" (N°6)	φ 3/8" (N°3)	
2	0.30	0.04	4 ф 3/4" (N°6)	φ 3/8" (N°3)	
3	0.35	0.05	4 φ 7/8" (N°7)	ф 3/8" (N°3)	
4	0.40	0.05	4 φ 1" (N°8)	φ 1/2" (N°4)	
5	0.45	0.05	4 φ 1" 1/8" (N°9)	φ 1/2" (N°4)	
6	0.50	0.05	4 φ 1" 1/8" (N°9)	φ 1/2" (N°4)	

Continúa...

•	Vigas			
Port.	Base de viga (m)	Peralte de viga (m)	Recub. (m)	Refuerzo longitudinal (varillas - N° - m2)
1	0.30	0.45	0.05	2 \$ 5/8" (N°5 - 0.000199) + 2 \$ 5/8" (N°5 - 0.000199)
2	0.30	0.45	0.05	2 \$ 5/8" (N°5 - 0.000199) + 2 \$ 5/8" (N°5 - 0.000199)
3	0.30	0.50	0.05	2 φ 5/8" (N°5 - 0.000199) + 2 φ 5/8" (N°5 - 0.000199)
4	0.30	0.50	0.05	2 \$\phi\$ 3/4" (N°6 - 0.000284) + 2 \$\phi\$ 3/4" (N°6 - 0.000284)
5	0.45	0.55	0.05	2 \$\phi 3/4" (N°6 - 0.000284) + 2 \$\phi 3/4" (N°6 - 0.000284)
6	0.45	0.60	0.05	2 ¢ 7/8" (N°7 - 0.0003871) + 2 ¢ 7/8" (N°7 - 0.0003871)

En el siguiente grupo de tablas (Tabla 25, Tabla 26 y Tabla 27) se muestran las propiedades afectadas en función del grado de deterioro patológico (leve, moderado y severo). Se reduce la sección transversal de las secciones y su consecuente recubrimiento:

Tabla 25Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico leve en columnas

Propied	ades afectadas	– Grado de deter	ioro: Leve				
	Columnas						
Port.	Lado de columna (m)	Recub. (m)	Refuerzo longitudinal (varillas)	Refuerzo Transversal (varillas)			
043	0.290	0.030	4 ф 3/4" (N°6-1)	ф 3/8" (N°3-1)			
044	0.290	0.030	4 φ 3/4" (N°6-1)	ф 3/8" (N°3-1)			
045	0.338	0.038	4 φ 7/8" (N°7-1)	ф 3/8" (N°3-1)			
046	0.388	0.038	4 φ 1" (N°8-1)	φ 1/2" (N°4-1)			
047	0.438	0.038	4 ф 1" 1/8" (N°9-1)	φ 1/2" (N°4-1)			
048	0.488	0.038	4 φ 1" 1/8" (N°9-1)	φ 1/2" (N°4-1)			

Tabla 26Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico moderado en columnas

Propiedades afectadas – Grado de deterioro: Moderado						
	Columnas					
Port.	Lado de columna (m)	Recub. (m)	Refuerzo longitudinal (varillas)	Refuerzo Transversal (varillas)		
049	0.280	0.020	4 ф 3/4" (N°6-2)	ф 3/8" (N°3-2)		
050	0.280	0.020	4 φ 3/4" (N°6-2)	ф 3/8" (N°3-2)		
051	0.325	0.025	4 φ 7/8" (N°7-2)	ф 3/8" (N°3-2)		
052	0.375	0.025	4 φ 1" (N°8-2)	φ 1/2" (N°4-2)		
053	0.425	0.025	4 ф 1" 1/8" (N°9-2)	φ 1/2" (N°4-2)		
054	0.475	0.025	4 φ 1" 1/8" (N°9-2)	φ 1/2" (N°4-2)		

Tabla 27Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico severo en columnas

Propiedades afectadas – Grado de deterioro: Severo						
	Columnas					
Port.	Lado de columna (m)	Recub. (m)	Refuerzo longitudinal (varillas)	Refuerzo Transversal (varillas)		
055	0.260	0.000	4 φ 3/4" (N°6-3)	ф 3/8" (N°3-3)		
056	0.260	0.000	4 φ 3/4" (N°6-3)	ф 3/8" (N°3-3)		
057	0.300	0.000	4 φ 7/8" (N°7-3)	ф 3/8" (N°3-3)		
058	0.350	0.000	4 φ 1" (N°8-3)	φ 1/2" (N°4-3)		
059	0.400	0.000	4 φ 1" 1/8" (N°9-3)	φ 1/2" (N°4-3)		
060	0.450	0.000	4 φ 1" 1/8" (N°9-3)	φ 1/2" (N°4-3)		

Las tablas anteriores muestran la denominación de la varilla de acero afectada haciendo uso de un guion ('-'). En el grupo de las columnas se utiliza la denominación uno ('1') para una afectación leve, la denominación dos ('2') para una afectación moderada, y la denominación tres ('3') para una afectación severa.

En el grupo de tablas siguientes (Tabla 28, Tabla 29 y Tabla 30), correspondiente a las vigas, se utiliza la denominación A para la afectación leve, la denominación B para la afectación moderada, y la denominación C para la afectación severa.

Tabla 28Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico leve en vigas

Propi	edades af	ectadas –	Grado de	e deterioro: Leve
	Vigas			
Port.	Base de viga (m)	Peralte de viga (m)	Recub. (m)	Refuerzo longitudinal (varillas - N° - m2)
043	0.288	0.438	0.038	2 φ 5/8" (N°5-A - 0.000191) + 2 φ 5/8" (N°5-A - 0.000191)
044	0.288	0.438	0.038	2 φ 5/8" (N°5-A - 0.000191) + 2 φ 5/8" (N°5-A - 0.000191)
045	0.288	0.488	0.038	2 φ 5/8" (N°5-A - 0.000191) + 2 φ 5/8" (N°5-A - 0.000191)
046	0.288	0.488	0.038	2 φ 3/4" (N°6-A - 0.000276) + 2 φ 3/4" (N°6-A - 0.000276)
047	0.438	0.538	0.038	2 φ 3/4" (N°6-A - 0.000276) + 2 φ 3/4" (N°6-A - 0.000276)
048	0.438	0.588	0.038	2 φ 7/8" (N°7-A - 0.000378) + 2 φ 7/8" (N°7-A - 0.000378)

Tabla 29Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico moderado en vigas

Propi	edades af	ectadas –	Grado de	e deterioro: Moderado
	Vigas			
Port.	Base de viga (m)	Peralte de viga (m)	Recub. (m)	Refuerzo longitudinal (varillas - N° - m2)
049	0.275	0.425	0.025	2 φ 5/8" (N°5-B - 0.000090) + 2 φ 5/8" (N°5-B - 0.000090)
050	0.275	0.425	0.025	2 φ 5/8" (N°5-B - 0.000090) + 2 φ 5/8" (N°5-B - 0.000090)
051	0.275	0.475	0.025	2 φ 5/8" (N°5-B - 0.000090) + 2 φ 5/8" (N°5-B - 0.000090)
052	0.275	0.475	0.025	2 φ 3/4" (N°6-B - 0.000228) + 2 φ 3/4" (N°6-B - 0.000228)
053	0.425	0.525	0.025	2 φ 3/4" (N°6-B - 0.000228) + 2 φ 3/4" (N°6-B - 0.000228)
054	0.425	0.575	0.025	2 φ 7/8" (N°7-B - 0.000321) + 2 φ 7/8" (N°7-B - 0.000321)

Tabla 30Propiedades afectadas por la patología de corrosión para un grado de deterioro patológico moderado en vigas

Propi	edades af	ectadas -	- Grado d	le deterioro: Severo
	Vigas			
Port.	Base de viga (m)	Peralte de viga (m)	Recub. (m)	Refuerzo longitudinal (varillas - N° - m2)
055	0.250	0.400	0.000	2 φ 5/8" (N°5-C - 0.000049) + 2 φ 5/8" (N°5-C - 0.000049)
056	0.250	0.400	0.000	2 φ 5/8" (N°5-C - 0.000049) + 2 φ 5/8" (N°5-C - 0.000049)
057	0.250	0.450	0.000	2 φ 5/8" (N°5-C - 0.000049) + 2 φ 5/8" (N°5-C - 0.000049)
058	0.250	0.450	0.000	2 φ 3/4" (N°6-C - 0.000071) + 2 φ 3/4" (N°6-C - 0.000071)
059	0.400	0.500	0.000	2 φ 3/4" (N°6-C - 0.000071) + 2 φ 3/4" (N°6-C - 0.000071)
060	0.400	0.550	0.000	2 φ 7/8" (N°7-C - 0.000097) + 2 φ 7/8" (N°7-C - 0.000097)

Siguiendo los parámetros citados en el Marco Teórico en cuanto a la corrosión de las varillas de acero de refuerzo, se modifican las propiedades geométricas de las varillas de acero, reduciendo sus diámetros en función del grado de afectación patológica. Las propiedades particulares de cada varilla se muestran a continuación y siguen la nomenclatura mencionada en las tablas del presente capítulo:

Tabla 31Propiedades afectadas por la patología de corrosión para el acero de refuerzo para un grado de deterioro patológico leve

Afectac	ión leve							
Original		Columnas - A. Longitudinal		Columnas - A. Transversal		Vigas - A. Longitudinal		
Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Área (m2)	Diámetro (m)
#3	9.525E-03	#5-1	1.558E-02	#3-1	7.620E-03	#4-A	1.208E-04	1.240E-02
#4	1.270E-02	#6-1	1.875E-02	#4-1	1.016E-02	#5-A	1.905E-04	1.558E-02
#5	1.588E-02	#7-1	2.193E-02			#6-A	2.761E-04	1.875E-02
#6	1.905E-02	#8-1	2.510E-02	•		#7-A	3.775E-04	2.193E-02
#7	2.223E-02	#9-1	2.835E-02	•				
#8	2.540E-02			•				
#9	2.865E-02	•						

Tabla 32Propiedades afectadas por la patología de corrosión para el acero de refuerzo para un grado de deterioro patológico moderado

Afectac	ción moderada						·	
Original		Columnas - A. Longitudinal		Columnas - A. Transversal		Vigas - A. Longitudinal		
Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Área (m2)	Diámetro (m)
#3	9.525E-03	#5-2	1.388E-02	#3-2	5.715E-03	#4-B	8.992E-05	1.070E-02
#4	1.270E-02	#6-2	1.705E-02	#4-2	7.620E-03	#5-B	1.512E-04	1.388E-02
#5	1.588E-02	#7-2	2.023E-02			#6-B	2.283E-04	1.705E-02
#6	1.905E-02	#8-2	2.340E-02	<u>-</u> '		#7-B	3.213E-04	2.023E-02
#7	2.223E-02	#9-2	2.665E-02	- '				
#8	2.540E-02			- '				
#9	2.865E-02	-						
		- 27						

Tabla 33
Propiedades afectadas por la patología de corrosión para el acero de refuerzo para un grado de deterioro patológico severo

Afectac	ión severa							
Original		Columnas - A. Longitudinal		Columnas - A. Transversal		Vigas - A. Longitudinal		
Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Diámetro (m)	Varilla	Área (m2)	Diámetro (m)
#3	9.525E-03	#5-3	7.938E-03	#3-3	9.525E-04	#4-C	3.167E-05	6.350E-03
#4	1.270E-02	#6-3	9.525E-03	#4-3	1.270E-03	#5-C	4.948E-05	7.938E-03
#5	1.588E-02	#7-3	1.111E-02			#6-C	7.126E-05	9.525E-03
#6	1.905E-02	#8-3	1.270E-02	•		#7-C	9.699E-05	1.111E-02
#7	2.223E-02	#9-3	1.433E-02	•				
#8	2.540E-02			•				
#9	2.865E-02	•						

5.6 AFECTACIÓN POR POROSIDAD

Siguiendo los parámetros establecidos en las publicaciones de Chen et al. (2013) y Mai y Cotterell (1985), la tabla siguiente muestra la afectación correspondiente a la patología de porosidad. La afectación modifica las propiedades de resistencia a la compresión del concreto (f'c), el módulo de elasticidad, y la resistencia a tensión del concreto:

Tabla 34 *Afectación por la patología de porosidad*

Afectación	Porosidad	F'c (kgf/cm2)	Elasticidad	Tensión
Leve	15.00%	240.88	85.32%	89.00%
Moderado	25.00%	170.75	61.11%	69.30%
Severo	35.00%	109.11	42.50%	51.92%

En la Tabla 35 se muestran las propiedades referenciales de los pórticos de concreto armado, las cuales serán afectadas en función de los grados de deterioro patológico (leve, moderado y severo) para la patología de porosidad. Consta de la resistencia a la compresión del concreto y el módulo de elasticidad.

Tabla 35

Propiedades referenciales y afectadas por la patología de porosidad

	Concreto						
Port.	Resistencia (kgf/cm2)	Elasticidad (kgf/cm2)					
001	280	250998					
002	280	250998					
003	280	250998					
004	280	250998					
005	280	250998					
006	280	250998					

En el siguiente grupo de tablas (Tabla 36, Tabla 37 y Tabla 38) se muestran las propiedades afectadas en función del grado de deterioro patológico (leve, moderado y severo). Se disminuye la resistencia a la compresión del concreto y el módulo de elasticidad:

Tabla 36Propiedades afectadas por la patología de porosidad para un grado de deterioro leve

Propiedades afectadas Grado de deterioro: Leve							
	Concreto						
Port.	Resistencia	Elasticidad					
	(kgf/cm2)	(kgf/cm2)					
061	240.88	214150					
062	240.88	214150					
063	240.88	214150					
064	240.88	214150					
065	240.88	214150					
066	240.88	214150					

Tabla 37Propiedades afectadas por la patología de porosidad para un grado de deterioro moderado

Propiedades afectadas Grado de deterioro: Moderado						
	Concreto					
Port.	Resistencia	Elasticidad				
	(kgf/cm2)	(kgf/cm2)				
067	170.75	153388				
068	170.75	153388				
069	170.75	153388				
070	170.75	153388				
071	170.75	153388				
072	170.75	153388				

Tabla 38Propiedades afectadas por la patología de porosidad para un grado de deterioro severo

Propiedades afectadas Grado de deterioro: Severo						
	Concreto					
Port.	Resistencia	Elasticidad				
	(kgf/cm2)	(kgf/cm2)				
073	109.11	106677				
074	109.11	106677				
075	109.11	106677				
076	109.11	106677				
077	109.11	106677				
078	109.11	106677				

A continuación, se muestran las propiedades referenciales y afectadas en función del grado de deterioro patológico (leve, moderado y severo) para la curva de esfuerzo-deformación del modelo de Mander uniaxial. Donde se aprecia una disminución en la deformación del material:

Tabla 39Propiedades referenciales y afectadas por la patología de porosidad para la curva esfuerzo-deformación del modelo de Mander

	Patrón referenci.		erenci.	Deterioro leve		Deterioro r	Deterioro moderado		Deterioro severo	
Pur	ntos	Deform.	Esfuer.	Deform.	Esfuer.	Deform.	Esfuer.	Deform.	Esfuer.	
		(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)	
1	-E	0.0050	0.00	0.0050	0.00	0.0050	0.00	0.0046	0.00	
2		0.0044	223.38	0.0045	192.17	0.0044	136.22	0.0041	87.05	
3		0.0034	257.41	0.0034	221.44	0.0033	156.97	0.0031	100.31	
4	-C	0.0022	280.00	0.0022	240.88	0.0022	170.75	0.0020	109.11	
5		0.0017	271.83	0.0018	233.85	0.0017	165.77	0.0016	105.93	
6		0.0011	220.31	0.0011	189.53	0.0011	134.35	0.0010	85.85	
7		0.0002	55.17	0.0002	47.46	0.0002	33.64	0.0002	21.50	
8	Α	0.0000	0.00	0.0000	0.00	0.0000	0.00	0.0000	0.00	
9	В	-0.0001	-33.28	-0.0001	-28.63	-0.0001	-20.29	-0.0001	-12.97	
10	Е	-0.0015	0.00	-0.0013	0.00	-0.0010	0.00	-0.0007	0.00	

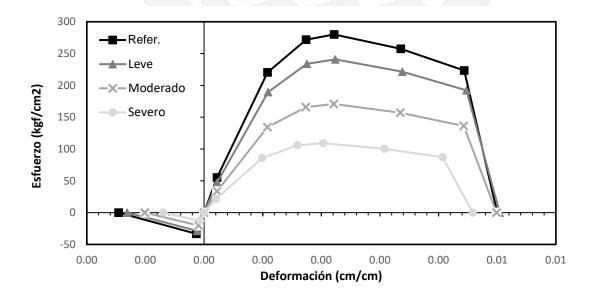


Figura 15. Curva de tensión del modelo de esfuerzo-deformación de de Mander bajo la afectación por la patología de porosidad (tensión negativa)

5.7 AFECTACIÓN POR REACCIÓN ÁLCALI-SÍLICE

Siguiendo los parámetros establecidos en la publicación de Esposito et al. (2016), la Tabla 41 muestra la afectación correspondiente a la patología de reacción álcali-sílice. El grado de afectación se encuentra en función de la expansión del volumen del 'gel' generado durante la rección química, y modifica las propiedades de resistencia a la compresión del concreto (f'c), el módulo de elasticidad, y la resistencia a tención del concreto:

Tabla 40Afectación por la patología de reacción álcali-sílice

Afectación	Expansión	Resistencia a la compresión	Elasticidad	Tensión
Leve	0.5%	94.57%	54.70%	68.29%
Moderada	1.0%	86.00%	30.00%	60.50%
Severa	3.0%	52.71%	19.50%	60.00%

En el grupo de tablas siguientes (Tabla 41, Tabla 42 y Tabla 43) se muestran las propiedades referenciales de los pórticos de concreto armado, las cuales serán afectadas en función de los grados de deterioro patológico para la patología de reacción álcali-sílice. Consta de la sección transversal, el recubrimiento, y las propiedades mecánicas del concreto:

Tabla 41Propiedades referenciales consideradas en la patología de reacción álcali-Sílice para las columnas

	Columnas	
Port.	Lado de columna (m)	Recub. (m)
1	0.30	0.04
2	0.30	0.04
3	0.35	0.05
4	0.40	0.05
5	0.45	0.05
6	0.50	0.05

Tabla 42Propiedades referenciales consideradas en la patología de reacción álcali-sílice para las vigas

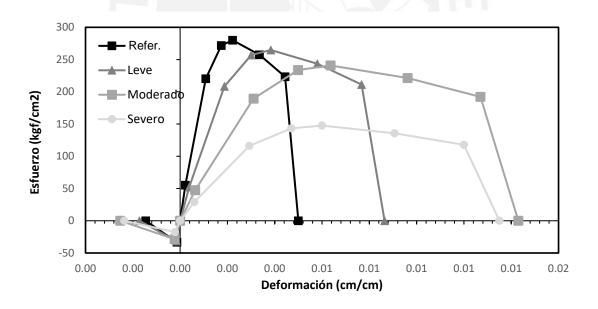
	Vigas						
Port.	Base de viga (m)	Peralte de viga (m)	Recub. (m)				
1	0.30	0.45	0.05				
2	0.30	0.45	0.05				
3	0.30	0.50	0.05				
4	0.30	0.50	0.05				
5	0.45	0.55	0.05				
6	0.45	0.60	0.05				

Tabla 43Propiedades referenciales consideradas en la patología de reacción álcali-sílice para el concreto

	Concreto							
Port.	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)					
1	280	0.0024	250998					
2	280	0.0024	250998					
3	280	0.0024	250998					
4	280	0.0024	250998					
5	280	0.0024	250998					
6	280	0.0024	250998					

En la Tabla 44 se muestran las propiedades afectadas en función del grado de deterioro patológico (leve, moderado y severo). Disminuye la sección transversal de los elementos estructurales y su respectivo recubrimiento (en un caso severo). también disminuyen las propiedades mecánicas del concreto (resistencia a la compresión y módulo de elasticidad):

Tabla 44


Propiedades afectadas por la patología de reacción álcalis-sílice

Propiedades afectadas – Grado de deterioro: Leve								
	Columnas		Vigas					
Port.	Lado de columna (m)	Recub. (m)	Base de viga (m)	Peralte de viga (m)	Recub. (m)	Resistencia (kgf/cm2)	Peso Unitario (kgf/cm3)	Elasticidad (kgf/cm2)
Grado	de deterioro: Le	eve						
079	0.30	0.04	0.30	0.45	0.05	264.80	0.0024	137295.91
080	0.30	0.04	0.30	0.45	0.05	264.80	0.0024	137295.91
081	0.35	0.05	0.30	0.50	0.05	264.80	0.0024	137295.91
082	0.40	0.05	0.30	0.50	0.05	264.80	0.0024	137295.91
083	0.45	0.05	0.45	0.55	0.05	264.80	0.0024	137295.91
084	0.50	0.05	0.45	0.60	0.05	264.80	0.0024	137295.91
Grado	de deterioro: Le	eve						
085	0.30	0.04	0.30	0.45	0.05	240.80	0.0024	75299.40
086	0.30	0.04	0.30	0.45	0.05	240.80	0.0024	75299.40
087	0.35	0.05	0.30	0.50	0.05	240.80	0.0024	75299.40
088	0.40	0.05	0.30	0.50	0.05	240.80	0.0024	75299.40
089	0.45	0.05	0.45	0.55	0.05	240.80	0.0024	75299.40
090	0.50	0.05	0.45	0.60	0.05	240.80	0.0024	75299.40
Grado	de deterioro: Le	eve						
091	0.260	0.00	0.250	0.400	0.00	147.59	0.0024	48944.61
092	0.260	0.00	0.250	0.400	0.00	147.59	0.0024	48944.61
093	0.300	0.00	0.250	0.450	0.00	147.59	0.0024	48944.61
094	0.350	0.00	0.250	0.450	0.00	147.59	0.0024	48944.61
095	0.400	0.00	0.400	0.500	0.00	147.59	0.0024	48944.61
096	0.450	0.00	0.400	0.550	0.00	147.59	0.0024	48944.61

La Tabla 45 muestra el deterioro de la curva de esfuerzo-deformación del concreto en el modelo de Mander uniaxial para los parámetros de tensión únicamente:

Tabla 45Propiedades referenciales y afectadas por la patología de reacción álcali-sílice para la curva esfuerzo-deformación del modelo de Mander (propiedades uniaxiales).

	Patrón referenc.		enc.	Deterioro leve		Deterioro moderado		Deterioro severo	
Pun	tos	Deform.	Esfu.	Deform.	Esfu.	Deform.	Esfu.	Deform.	Esfu.
		(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)	(cm/cm)	(kgf/cm2)
1	-E	0.0050	0.00	0.0086	0.00	0.0143	0.00	0.0135	0.00
2		0.0044	223.38	0.0077	211.26	0.0127	192.11	0.0120	117.75
3		0.0034	257.41	0.0058	243.43	0.0096	221.37	0.0091	135.68
4	-C	0.0022	280.00	0.0038	264.80	0.0064	240.80	0.0060	147.59
5		0.0017	271.83	0.0030	257.07	0.0050	233.77	0.0047	143.28
6		0.0011	220.31	0.0019	208.35	0.0031	189.47	0.0029	116.13
7		0.0002	55.17	0.0004	52.17	0.0006	47.44	0.0006	29.08
8	Α	0.0000	0.00	0.0000	0.00	0.0000	0.00	0.0000	0.00
9	В	-0.0001	-33.28	-0.0002	-31.47	-0.0002	-28.62	-0.0002	-17.54
10	Е	-0.0015	0.00	-0.0017	0.00	-0.0025	0.00	-0.0024	0.00

Figura 16. Curva de tensión del modelo de esfuerzo-deformación de Mander bajo la afectación por la patología de reacción álcali-sílice (tensión negativa).

CAPÍTULO 6: ANÁLISIS DE RESULTADOS

En este capítulo se presentan los resultados obtenidos de los análisis estructurales realizados a los 96 pórticos, tanto referenciales como afectados por patologías y sus correspondientes grados de afectación patológica.

6.1 CONCRETO ARMADO REFERENCIAL

Luego de realizado el análisis estructural, se obtuvieron los resultados mostrados a continuación para los pórticos de concreto armado 'referenciales'.

Tabla 46Resultados del análisis estructural para pórticos de concreto armado 'referenciales'

Modelo	Crujías	Niveles	Despla (m)	Reacc. en la base (Tonf)	Trabajo (Tonf-m)
001	1	1	0.1214	29.90	2.32
002	2	2	0.1868	47.43	5.72
003	3	3	0.2228	94.43	13.50
004	4	4	0.2292	143.30	21.52
005	5	5	0.2856	284.24	51.17
006	6	6	0.3335	460.89	96.97

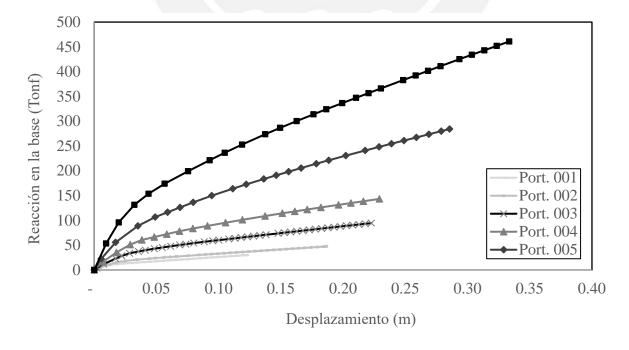
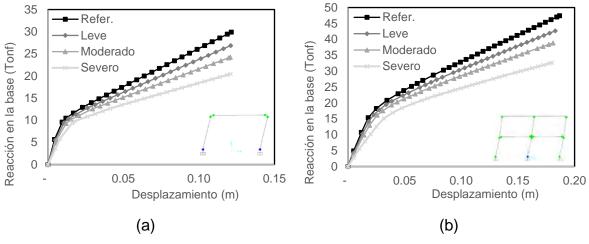


Figura 17. Comparación de curvas de capacidad para pórticos referenciales.


6.2 PATOLOGÍA DE CARBONATACIÓN

Luego de realizado el análisis estructural, se obtuvieron los resultados mostrados a continuación para los pórticos afectados por la patología de carbonatación. Es evidente notar una mayor degradación de la capacidad estructural mientras el grado de deterioro patológico es mayor.

Tabla 47Resultados del análisis para pórticos afectados por la patología de carbonatación

Modelo	Deterioro	Crujías	Niveles	Despla. (m)	Reacción en la base (Tonf)	Trabajo (Tonf-m)
007	Leve	1	1	0.1210	26.86	2.11
008	Leve	2	2	0.1829	42.66	5.12
009	Leve	3	3	0.2203	85.85	12.28
010	Leve	4	4	0.2253	132.06	19.63
011	Leve	5	5	0.2803	263.22	46.81
012	Leve	6	6	0.3307	431.09	90.52
013	Moderado	1	1	0.1207	24.24	1.94
014	Moderado	2	2	0.1810	38.86	4.67
015	Moderado	3	3	0.2125	76.78	10.73
016	Moderado	4	4	0.2208	121.40	17.77
017	Moderado	5	5	0.2743	242.86	42.43
018	Moderado	6	6	0.3305	403.35	85.21
019	Severo	1	1	0.1208	20.44	1.68
020	Severo	2	2	0.1800	32.64	3.96
021	Severo	3	3	0.1994	62.15	8.19
022	Severo	4	4	0.2174	102.05	14.59
023	Severo	5	5	0.2658	204.96	34.51
024	Severo	6	6	0.3198	340.59	69.79

A continuación, se muestran los gráficos de comparación de la capacidad de pórticos referenciales y pórticos afectados por la patología de carbonatación, para las 6 diferentes configuraciones.

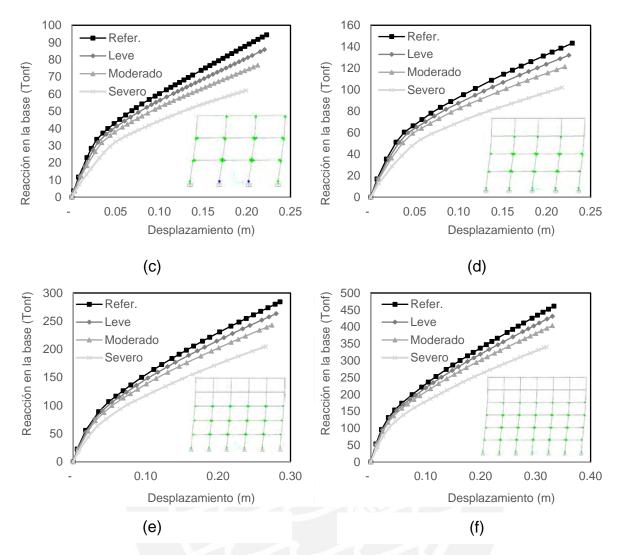
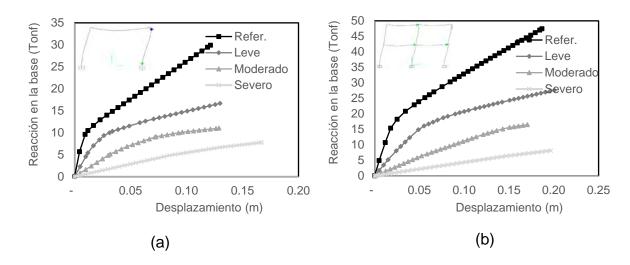


Figura 18. Curvas de capacidad de pórticos de concreto referencial y afectadas por la patología de carbonatación. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de configuración 6x6.


6.3 PATOLOGÍA DE CICLOS DE HIELO-DESHIELO

Luego de realizado el análisis, se obtuvieron los resultados mostrados a continuación para los pórticos afectados por la patología de ciclos de hielo y deshielo. Es evidente notar una mayor degradación de la capacidad estructural mientras el grado de deterioro patológico es mayor.

Tabla 48Resultados del análisis estructural para pórticos afectados por la patología de ciclos de hielo y deshielo.

Modelo	Deterioro	Crujías	Niveles	Despla. (m)	Reacción en la base (Tonf)	Trabajo (Tonf-m)
025	Leve	1	1	0.1299	16.66	1.53
026	Leve	2	2	0.2006	27.60	3.76
027	Leve	3	3	0.1851	48.63	5.87
028	Leve	4	4	0.2156	81.40	11.42
029	Leve	5	5	0.2609	146.98	24.57
030	Leve	6	6	0.3064	238.75	47.79
031	Moderado	1	1	0.1290	11.03	0.95
032	Moderado	2	2	0.1798	16.91	1.75
033	Moderado	3	3	0.1911	29.92	3.12
034	Moderado	4	4	0.2370	51.73	6.85
035	Moderado	5	5	0.2657	85.48	13.44
036	Moderado	6	6	0.3224	146.61	28.67
037	Severo	1	1	0.1672	7.78	0.73
038	Severo	2	2	0.1966	8.13	0.83
039	Severo	3	3	0.2414	15.17	1.99
040	Severo	4	4	0.3495	31.06	5.92
041	Severo	5	5	0.3405	49.59	9.27
042	Severo	6	6	0.4357	93.30	22.10

A continuación, se muestran los gráficos de comparación de la capacidad de pórticos referenciales y pórticos afectados por la patología de ciclos de hielo y deshielo, para las 6 diferentes configuraciones (desde una crujía y un nivel, hasta seis crujías y seis niveles).

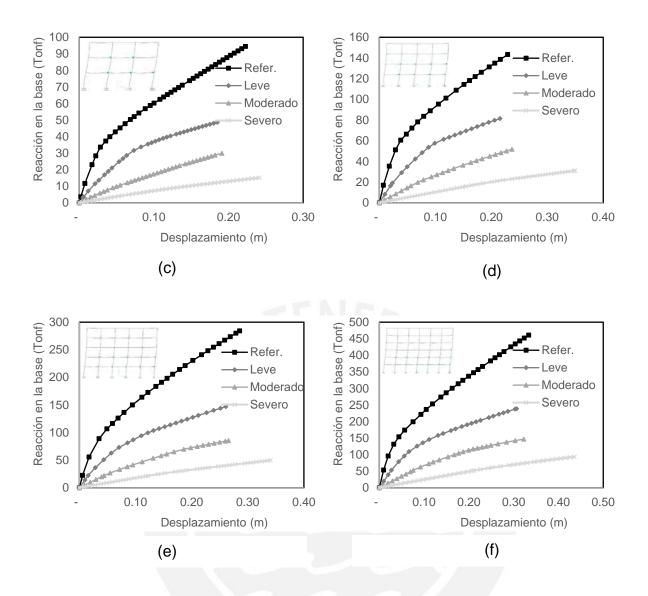
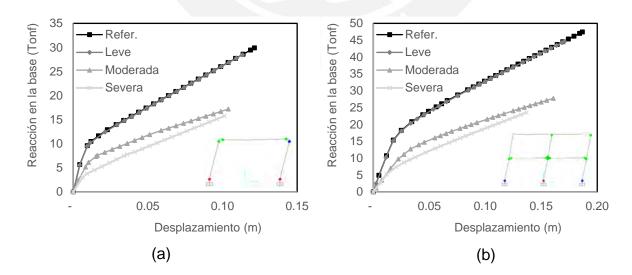


Figura 19. Curvas de capacidad de pórticos de concreto referencial y afectadas por la patología de ciclos de hielo y deshielo. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de configuración 6x6.


6.4 PATOLOGÍA DE CORROSIÓN

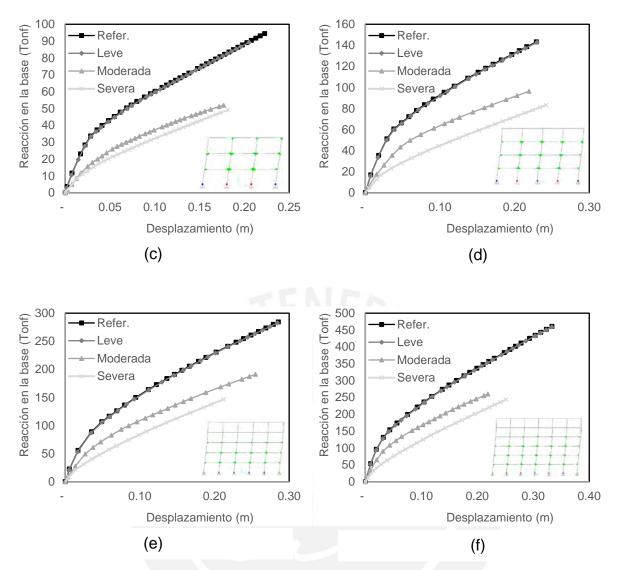
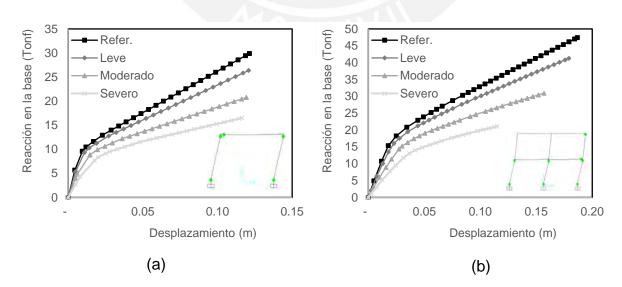

Luego de realizado el análisis estructural, se obtuvieron los resultados mostrados a continuación para los pórticos afectados por la patología de corrosión. Es evidente notar una mayor degradación de la capacidad estructural mientras el grado de deterioro patológico es mayor.

Tabla 49Resultados del análisis estructural para pórticos afectados por la patología de corrosión

Modelo	Deterioro	Crujías	Niveles	Despla. (m)	Reacción en la base (Tonf)	Trabajo (Tonf-m)
043	Leve	1	1	0.1134	28.45	2.07
044	Leve	2	2	0.1708	44.65	4.95
045	Leve	3	3	0.2053	89.28	11.79
046	Leve	4	4	0.2300	142.88	21.47
047	Leve	5	5	0.2843	282.55	50.51
048	Leve	6	6	0.3332	459.19	96.32
049	Moderado	1	1	0.1039	17.20	1.18
050	Moderado	2	2	0.1608	27.76	2.89
051	Moderado	3	3	0.1768	51.93	5.75
052	Moderado	4	4	0.2193	96.33	13.64
053	Moderado	5	5	0.2548	191.08	30.25
054	Moderado	6	6	0.2189	260.10	36.24
055	Severo	1	1	0.1011	15.74	0.94
056	Severo	2	2	0.1367	23.52	1.93
057	Severo	3	3	0.1819	49.19	5.28
058	Severo	4	4	0.2421	83.22	11.86
059	Severo	5	5	0.2123	146.55	17.92
060	Severo	6	6	0.2513	243.50	35.07

A continuación, se muestran los gráficos de comparación de la capacidad de pórticos referenciales y pórticos afectados por la patología de corrosión, para las 6 diferentes configuraciones (desde una crujía y un nivel, hasta seis crujías y seis niveles).

Figura 20. Curvas de capacidad de pórticos de concreto referencial y afectadas por la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de configuración 6x6.


6.5 <u>PATOLOGÍA DE POROSIDAD</u>

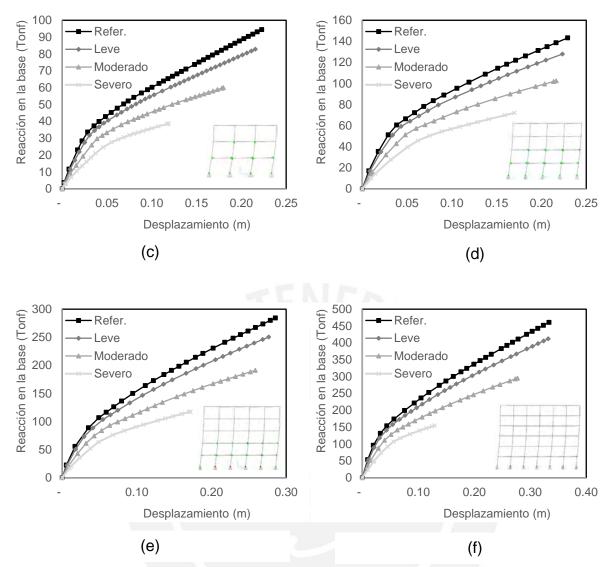
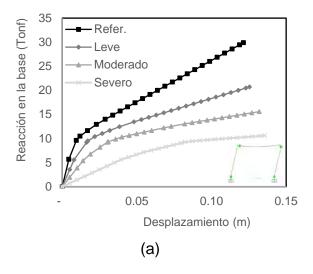

Luego de realizado el análisis estructural, se obtuvieron los resultados mostrados a continuación para los pórticos afectados por la patología de porosidad. Es evidente notar una mayor degradación de la capacidad estructural mientras el grado de deterioro patológico es mayor.

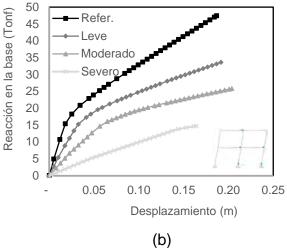
Tabla 50.Resultados del análisis estructural para pórticos afectados por la patología de porosidad

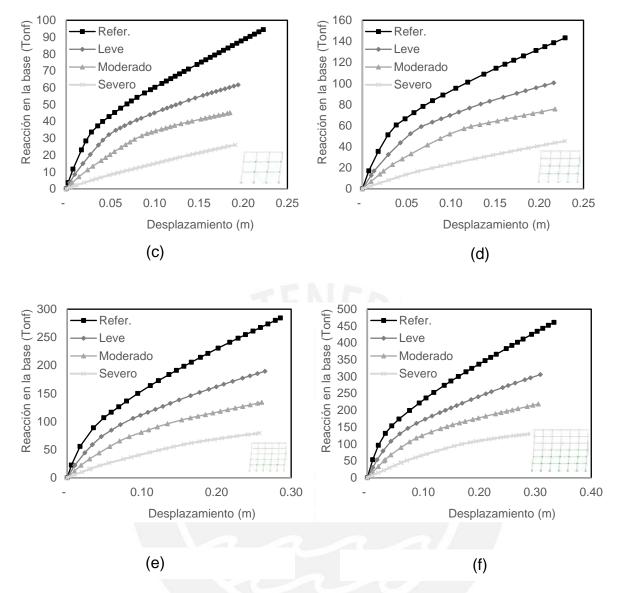
Modelo	Deterioro	Crujías	Niveles	Despla. (m)	Reacción en la base (Tonf)	Trabajo (Tonf-m)
061	Leve	1	1	0.1208	26.38	2.07
062	Leve	2	2	0.1791	41.27	4.87
063	Leve	3	3	0.2156	82.81	11.62
064	Leve	4	4	0.2234	127.93	18.89
065	Leve	5	5	0.2766	250.37	44.06
066	Leve	6	6	0.3321	412.22	87.25
067	Moderado	1	1	0.1241	20.77	1.68
068	Moderado	2	2	0.1569	30.93	3.29
069	Moderado	3	3	0.1800	60.00	7.22
070	Moderado	4	4	0.2165	102.56	14.82
071	Moderado	5	5	0.2587	191.15	31.99
072	Moderado	6	6	0.2772	295.31	53.43
073	Severo	1	1	0.1164	16.50	1.34
074	Severo	2	2	0.1150	21.09	1.64
075	Severo	3	3	0.1188	38.73	3.00
076	Severo	4	4	0.1699	72.02	8.08
077	Severo	5	5	0.1718	117.65	13.24
078	Severo	6	6	0.1292	154.65	13.08

A continuación, se muestran los gráficos de comparación de la capacidad de pórticos referenciales y pórticos afectados por la patología de porosidad, para las 6 diferentes configuraciones (desde una crujía y un nivel, hasta seis crujías y seis niveles).

Figura 21. Curvas de capacidad de pórticos de concreto referencial y afectadas por la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de configuración 4x4. (e) Curvas de configuración 5x5. (f) Curvas de configuración 6x6.


6.6 PATOLOGÍA DE REACCIÓN ÁLCALIS-SÍLICE


Luego de realizado el análisis estructural, se obtuvieron los resultados mostrados a continuación para los pórticos afectados por la patología de reacción álcali-sílice. Es evidente notar una mayor degradación de la capacidad estructural mientras el grado de deterioro patológico es mayor.


Tabla 51Resultados del análisis estructural para pórticos afectados por la patología de reacción álcali-sílice

Modelo	Deterioro	Crujías	Niveles	Despla. (m)	Reacción en la base (Tonf)	Trabajo (Tonf-m)
079	Leve	1	1	0.1254	20.70	1.77
080	Leve	2	2	0.1917	33.60	4.35
081	Leve	3	3	0.1943	61.65	7.97
082	Leve	4	4	0.2164	100.55	14.44
083	Leve	5	5	0.2649	189.37	32.20
084	Leve	6	6	0.3091	305.86	61.42
085	Moderado	1	1	0.1320	15.58	1.46
086	Moderado	2	2	0.2038	25.81	3.56
087	Moderado	3	3	0.1851	45.09	5.37
880	Moderado	4	4	0.2178	75.75	10.62
089	Moderado	5	5	0.2606	134.15	22.37
090	Moderado	6	6	0.3054	218.56	43.62
091	Severo	1	1	0.1357	10.60	0.97
092	Severo	2	2	0.1642	14.72	1.33
093	Severo	3	3	0.1912	26.00	2.69
094	Severo	4	4	0.2290	45.25	5.77
095	Severo	5	5	0.2576	79.21	12.20
096	Severo	6	6	0.2976	130.88	24.44

A continuación, se muestran los gráficos de comparación de la capacidad de pórticos referenciales y pórticos afectados por la patología de reacción álcalis-sílice, para las 6 diferentes configuraciones (desde una crujía y un nivel, hasta seis crujías y seis niveles).

Figura 22. Curvas de capacidad de pórticos de concreto referencial y afectadas por la patología de corrosión. (a) Curvas de configuración 1x1 (una crujía y un nivel). (b) Curvas de configuración 2x2. (c) Curvas de configuración 3x3. (d) Curvas de configuración 4x4. (e) y Curvas de configuración 5x5. (f).

CAPÍTULO 7: ANÁLISIS DE RESULTADOS

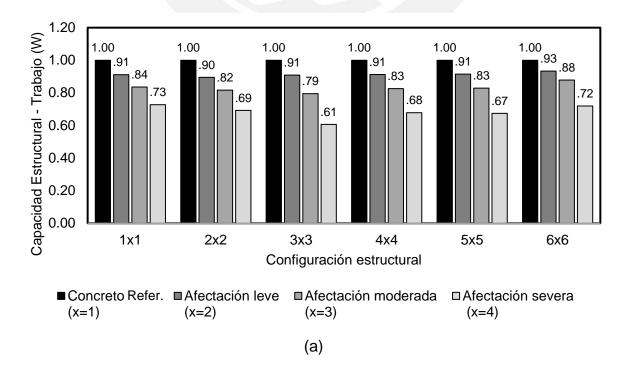
En el presente capítulo se estudian los resultados obtenidos luego de análisis estructural. Se comparan los resultados de los pórticos de concreto armado de referencia y los afectados por patologías estructurales.

7.1 CONCRETO ARMADO REFERENCIAL

Se toman los resultados obtenidos del análisis estructural de pórticos referenciales como base para la comparación de la degradación de la capacidad estructural. En la Tabla 51 se normalizan los valores de capacidad estructural. Para los pórticos de concreto armado 'referencial' resultan siendo valores de '1', los cuales serán usando como índice de comparación frente a los pórticos afectados por patologías estructurales.

Tabla 52Datos obtenidos del análisis estructural para las estructuras de concreto armado referencial

Modelo	Deterioro	Crujías	Niveles	Capacidad Estructural (Tonf)	Capacidad Normalizada
001	Referencial	1	1	2.32	1.00
002	Referencial	2	2	5.72	1.00
003	Referencial	3	3	13.50	1.00
004	Referencial	4	4	21.52	1.00
005	Referencial	5	5	51.17	1.00
006	Referencial	6	6	96.97	1.00


7.2 CARBONATACIÓN

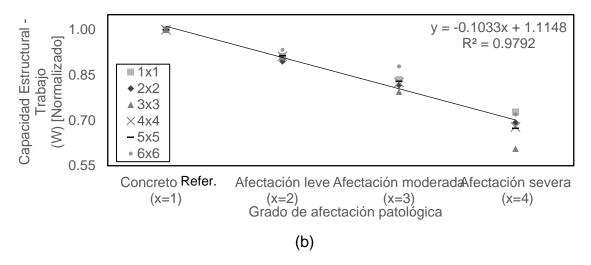
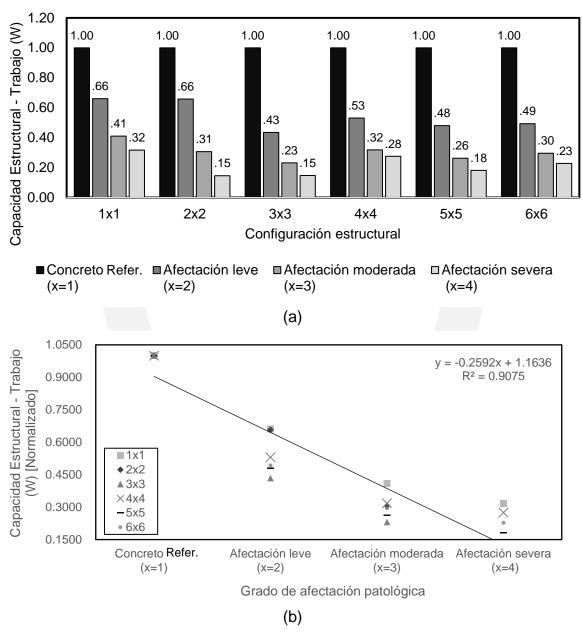

En el cuadro siguiente se muestran la capacidad estructural normalizada la cual resulta de la división entre la capacidad estructural de los pórticos de concreto armado 'Referencial' (correspondiente al número de crujías y niveles) y los pórticos de concreto armado afectado por deterioros patológicos. En un eventual grado de afectación severa, la capacidad estructural disminuiría hasta un promedio del 68.31%. Esto sucede cuando la carbonatación ingresa hasta al núcleo confinado, y no sé considera el volumen afectado para el análisis.

Tabla 53Resultados obtenidos para los pórticos afectados por la patología de carbonatación

Modelo	Deterioro	Crujías	Niveles	Capacidad Estructural (Tonf)	Capacidad Normalizada
007	Leve	1	1	2.11	0.91
008	Leve	2	2	5.12	0.90
009	Leve	3	3	12.28	0.91
010	Leve	4	4	19.63	0.91
011	Leve	5	5	46.81	0.91
012	Leve	6	6	90.52	0.93
013	Moderado	1	1	1.94	0.84
014	Moderado	2	2	4.67	0.82
015	Moderado	3	3	10.73	0.80
016	Moderado	4	4	17.77	0.83
017	Moderado	5	5	42.43	0.83
018	Moderado	6	6	85.21	0.88
019	Severo	1	1	1.68	0.73
020	Severo	2	2	3.96	0.69
021	Severo	3	3	8.19	0.61
022	Severo	4	4	14.59	0.68
023	Severo	5	5	34.51	0.67
024	Severo	6	6	69.79	0.72

En las figuras siguientes es notoria la degradación de la capacidad estructural. El patrón de comparación pertenece a los pórticos de concreto armado referenciales (con un valor de '1') se ve disminuido en proporción al grado de deterioro de la patología de carbonatación. Se observa una degradación progresiva (escalonada).

Figura 23. Degradación de la capacidad de pórticos afectados por la patología de carbonatación. (a) Degradación de la capacidad estructural en función de la configuración. (b) Tendencia de degradación según grado de afectación.


7.3 CICLOS DE HIELO Y DESHIELO

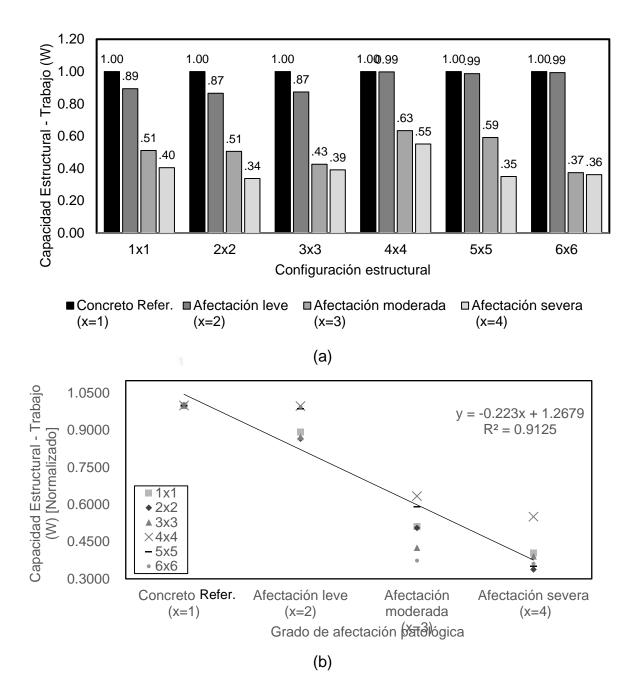
En un eventual grado de deterioro severo, la capacidad estructural disminuiría hasta un promedio del 21.55%. Esto sucede cuando la patología de ciclos de hielo-deshielo alcanza 45 ciclos considerando todos los poros saturados al menos en un 91.75% en toda la estructura.

Tabla 54Resultados obtenidos para los pórticos afectados por ciclos de hielo-deshielo

Modelo	Deterioro	Crujías	Niveles	Capacidad (Tonf)	Capacidad Normalizada
025	Leve	1	1	1.53	0.66
026	Leve	2	2	3.76	0.67
027	Leve	3	3	5.87	0.43
028	Leve	4	4	11.42	0.53
029	Leve	5	5	24.57	0.48
030	Leve	6	6	47.79	0.49
031	Moderado	1	1	0.95	0.41
032	Moderado	2	2	1.75	0.31
033	Moderado	3	3	3.12	0.23
034	Moderado	4	4	6.85	0.32
035	Moderado	5	5	13.44	0.26
036	Moderado	6	6	28.67	0.30
037	Severo	1	1	0.73	0.32
038	Severo	2	2	0.83	0.15
039	Severo	3	3	1.99	0.15
040	Severo	4	4	5.92	0.28
041	Severo	5	5	9.27	0.18
042	Severo	6	6	22.10	0.23

En los gráficos siguientes es notoria la degradación de la capacidad estructural. El patrón de comparación pertenece a los pórticos de concreto armado referenciales (con un valor de '1') se ve disminuido en proporción al grado de deterioro de la patología de ciclos de hielo y deshielo. Se observa una degradación brusca, incluso en un caso leve. La capacidad estructural se ve mermada casi por completo en un grado de afectación severo.

Figura 24. Degradación de la capacidad de pórticos afectados por la patología de ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la configuración. (b) Tendencia de degradación según grado de afectación.


7.4 CORROS IÓN

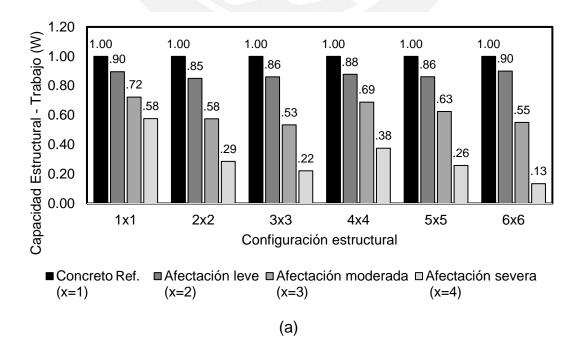
En un eventual grado de deterioro severo, la capacidad estructural disminuiría hasta alrededor del 39.94%. Esto sucede cuando la patología de corrosión ocasionó una reducción del 50% del diámetro del acero longitudinal y en el 90% del diámetro del acero transversal, y a su vez se ha perdido el total del recubrimiento de toda la estructura.

Tabla 55Resultados obtenidos para los pórticos afectados por corrosión

Modelo	Deterioro	Crujías	Niveles	Capacidad (Tonf)	Capacidad Normalizada
043	Leve	1	1	2.07	0.89
044	Leve	2	2	4.95	0.87
045	Leve	3	3	11.79	0.87
046	Leve	4	4	21.47	0.99
047	Leve	5	5	50.51	0.99
048	Leve	6	6	96.32	0.99
049	Moderado	1	1	1.18	0.51
050	Moderado	2	2	2.89	0.51
051	Moderado	3	3	5.75	0.43
052	Moderado	4	4	13.64	0.63
053	Moderado	5	5	30.25	0.59
054	Moderado	6	6	36.24	0.37
055	Severo	1	1	0.94	0.41
056	Severo	2	2	1.93	0.34
057	Severo	3	3	5.28	0.39
058	Severo	4	4	11.86	0.55
059	Severo	5	5	17.92	0.35
060	Severo	6	6	35.07	0.36

En los gráficos siguientes es notoria la degradación de la capacidad estructural. El patrón de comparación pertenece a los pórticos de concreto armado referenciales (con un valor de '1') se ve disminuido en proporción al grado de afectación de la patología de corrosión. Se observa una degradación ínfima en un caso leve, mientras que en un caso moderado y severo la degradación de la capacidad es súbita.

Figura 25. Degradación de la capacidad de pórticos afectados por la patología de ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la configuración. (b) Tendencia de degradación de los pórticos según grado de afectación.


7.5 POROSIDAD

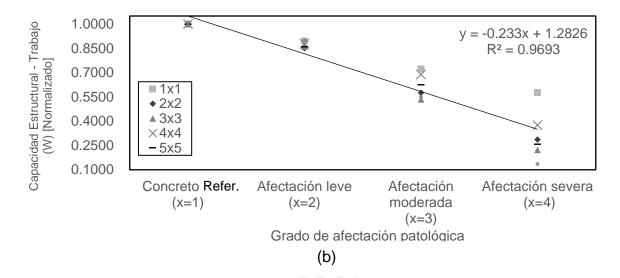

En un eventual grado de deterioro severo, la capacidad estructural disminuiría hasta alrededor del 30.91%. Esta patología sucede cuando la porosidad de la estructura es del 35%.

Tabla 56Resultados obtenidos para los pórticos afectados por corrosión

Modelo	Deterioro	Crujías	Niveles	Capacidad (Tonf)	Capacidad Normalizada
061	Leve	1	1	2.07	0.90
062	Leve	2	2	4.87	0.85
063	Leve	3	3	11.62	0.86
064	Leve	4	4	18.89	0.88
065	Leve	5	5	44.06	0.86
066	Leve	6	6	87.25	0.90
067	Moderado	1	1	1.68	0.72
068	Moderado	2	2	3.29	0.58
069	Moderado	3	3	7.22	0.53
070	Moderado	4	4	14.82	0.69
071	Moderado	5	5	31.99	0.63
072	Moderado	6	6	53.43	0.55
073	Severo	1	1	1.34	0.58
074	Severo	2	2	1.64	0.29
075	Severo	3	3	3.00	0.22
076	Severo	4	4	8.08	0.38
077	Severo	5	5	13.24	0.26
078	Severo	6	6	13.08	0.13

En los gráficos siguientes es notoria la degradación de la capacidad estructural. El patrón de comparación pertenece a los pórticos de concreto armado referenciales (con un valor de '1') se ve disminuido en proporción al grado de afectación de la patología de porosidad. Se observa una degradación escalonada. La degradación resulta siendo más crítica en las edificaciones de mayor tamaño.

Figura 26. Degradación de la capacidad de pórticos afectados por la patología de ciclos de hielo-deshielo. (a) Degradación de la capacidad estructural en función de la configuración. (b) Tendencia de degradación según grado de afectación.

7.6 REACCCIÓN ÁLCALI-SÍLICE

En un eventual grado de deterioro severo, la capacidad estructural disminuiría hasta alrededor del 26.80%. Esto sucede el gel producido en la patología de reacción álcalisílice expande su volumen en 3%.

Tabla 57Resultados obtenidos para los pórticos afectados por reacción álcali-sílice

Modelo	Deterioro	Crujías	Niveles	Capacidad (Tonf)	Capacidad Normalizada
079	Leve	1	1	1.77	0.77
080	Leve	2	2	4.35	0.76
081	Leve	3	3	7.97	0.59
082	Leve	4	4	14.44	0.67
083	Leve	5	5	32.20	0.63
084	Leve	6	6	61.42	0.63
085	Moderado	1	1	1.46	0.63
086	Moderado	2	2	3.56	0.62
087	Moderado	3	3	5.37	0.40
088	Moderado	4	4	10.62	0.49
089	Moderado	5	5	22.37	0.44
090	Moderado	6	6	43.62	0.45
091	Severo	1	1	0.97	0.42
092	Severo	2	2	1.33	0.23
093	Severo	3	3	2.69	0.20
094	Severo	4	4	5.77	0.27
095	Severo	5	5	12.21	0.24
096	Severo	6	6	24.44	0.25

En los gráficos siguientes es notoria la degradación de la capacidad estructural. El patrón de comparación pertenece a los pórticos de concreto armado referenciales (con un valor de '1') se ve disminuido en proporción al grado de deterioro de la patología de porosidad. Se observa una degradación escalonada. La degradación resulta siendo más crítica en las edificaciones de mayor tamaño.

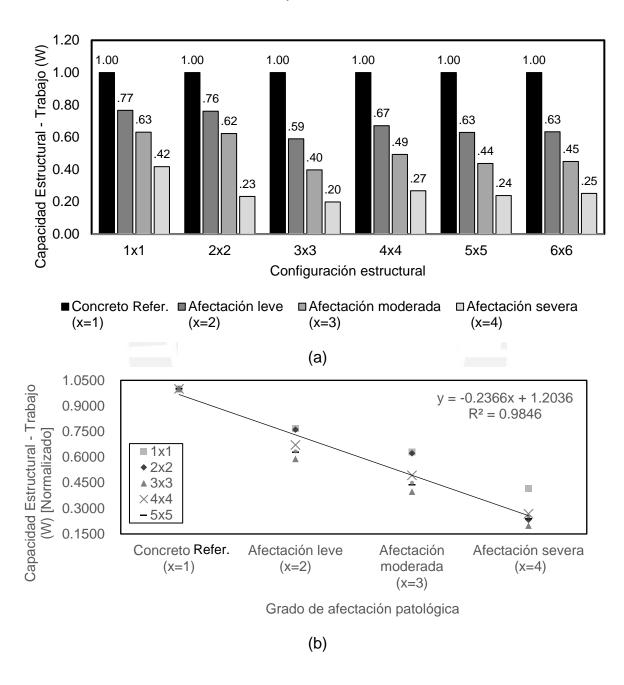


Figura 27. Degradación de la capacidad de pórticos afectados por la patología de reacción álcali-sílice. (a) Degradación de la capacidad estructural en función de la configuración. (b) Tendencia de degradación de los pórticos según grado de afectación.

7.7 COMPARACIÓN DE RESULTADOS

El gráfico siguiente compara la degradación de la capacidad de las diferentes patologías estructurales en función del grado de afectación patológica. Es posible observar que, según los datos de entrada (basados en los mencionados en el marco teórico), la patología de ciclos de hielo y deshielo es la que deteriora más lo pórticos. La patología de carbonatación es la que resulta generando menor deterioro ya que únicamente afecta el recubrimiento, posterior a ello puede dar paso a la patología de corrosión.

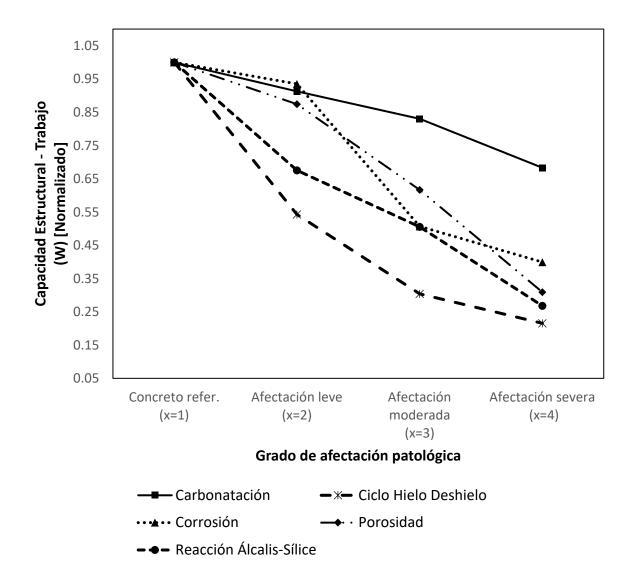


Figura 28. Comparación de la degradación de la capacidad estructural

CAPÍTULO 8: CONCLUSIONES Y RECOMENDACIONES

Se cumplió con la hipótesis general planteada. Como se pudo comprobar en el capítulo de ANÁLISIS DE RESULTADOS, la capacidad estructural de los pórticos de concreto armado afectados por patologías estructurales, bajo diferentes grados de afectación patológica, se degradó en comparación a los pórticos con propiedades de referencia.

De manera complementaria a los resultados anteriormente expuestos, se cumplió con las hipótesis específicas. Como se puede observar en los diferentes anexos correspondientes a las fichas de análisis no-lineal estático, el desplazamiento nodal del último nivel y la cortante basal de los pórticos de concreto armado afectados por patologías estructurales fueron menores en comparación a la de los pórticos con propiedades referenciales. Estos dos resultados están estrictamente vinculados con el resultado general del estudio.

La capacidad estructural de los pórticos regulares de concreto armado afectados por la patología estructural de carbonatación disminuye hasta alcanzar un promedio de 91.28% en un grado de deterioro leve, 83.02% en un grado de deterioro moderado y 68.31% en un grado de deterioro severo. La patología de carbonatación es la que ocasiona una menor degradación en la capacidad estructural, ya que esta afecta el recubrimiento de los elementos. Al llegar a sobrepasar el recubrimiento, es probable que se genere corrosión de la armadura de acero, lo cual sería más perjudicial para la estructura.

La capacidad estructural de los pórticos regulares de concreto armado afectados por la patología estructural de ciclos de hielo-deshielo disminuye hasta alcanzar un promedio de 54.27% en un grado de deterioro leve, 30.41% en un grado de deterioro moderado y 21.55% en un grado de deterioro severo. Siendo esta la patología más perjudicial del presente estudio es también la menos probable de encontrar en edificaciones, es más común en pavimentos. Para que se suscite debería existir condiciones de intemperismo muy particulares como son un alto gradiente térmico,

contacto con el agua excesivo (logrando saturar la estructura) y temperaturas por debajo del grado de congelamiento del agua, muy poco probable en nuestro medio.

La capacidad estructural de los pórticos regulares de concreto armado afectados por la patología estructural de corrosión disminuye hasta alcanzar un promedio de 93.51% en un grado de deterioro leve, 50.69% en un grado de deterioro moderado y 39.94% en un grado de deterioro severo. Esta resulta siendo perjudicial y común de encontrar. Es por ello que debe ser la patología estructural con la que se deba tener mayor cuidado.

La capacidad estructural de los pórticos regulares de concreto armado afectados por la patología estructural de Porosidad disminuye hasta alcanzar un promedio de 87.43% en un grado de deterioro leve, 61.65% en un grado de deterioro moderado y 30.91% en un grado de deterioro severo. Aunque esta patología es frecuente en el medio, las buenas prácticas constructivas logran controlar su aparición.

La capacidad estructural de los pórticos regulares de concreto armado afectados por la patología estructural de reacción álcali-sílice disminuye hasta alcanzar un promedio de 67.52% en un grado de deterioro leve, 50.53% en un grado de deterioro moderado y 26.80% en un grado de deterioro severo. Es muy poco probable encontrar esta patología en nuestro medio, aun así, no se debe descartar realizar ensayos de petrografía en canteras de gran abasto para descartar la aparición de esta patología.

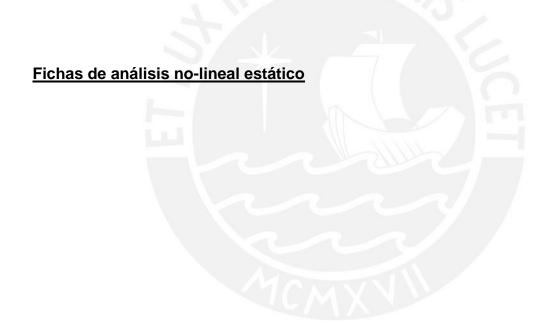
Se recomienda, en posteriores investigaciones, desarrollar una correlación entre datos experimentales resultantes de laboratorio (ensayos mecánicos a especímenes de concreto, especímenes de acero, vigas de concreto armado y pórticos de concreto armado, afectados por deterioros patológicos) y modelos estructurales mediante un análisis por elementos finitos; ya que la presente investigación tomó resultados experimentales de terceros. Así mismo, se recomienda realizar el análisis sobre estructuras existentes afectadas por deterioros patológicos (casos de estudio) y consecuente propuesta de rehabilitación. Se recomienda también, desarrollar la propuesta de normativa para la evaluación de estructuras afectadas por deterioros patológicos, en donde se detalle el procedimiento de evaluación y análisis, así como los parámetros correspondientes a los grados de deterioro.

BIBLIOGRAFÍA

- Abbas, S., Abbass, W., Nehdi, M. L., Ahmed, A., & Yousaf, M. (2021). *Investigation of Alkali-Silica Reactivity in Sustainable Ultrahigh Performance Concrete.* Basel: MDPI.
- Aboubakar Farooq, M., Takeda, K., Sato, Y., & Niitani, K. (2018). *Mechanical Properties of Concrete with Blast Furnace Slag Fine Aggregates Subjected to Freeze-Thaw Cycles*. Maastricht: Springer International Publishing.
- AL-Ameeri, A. S., Rafiq, M. I., & Tsioulou, O. (2019). *Influence of carbonation on the resistance of concrete structures to chloride penetration and corrosion.*Brighton: EDP Sciences.
- American Concrete Institute. (2008). *ACI 201.2R-08 Guide to Durable Concrete*. Indianápolis: American Concrete Institute.
- Bizzozero, J. (2014). *Hydration and dimensional stability of calcium aluminate cement based systems.* LAUSANNE: École polytechnique fédérale de Lausanne.
- Böhni, H. (2005). Corrosion in reinforced concrete structures. Hong Kong: CRC Press.
- Bossio, A., Fabbrocino, F., Monetta, T., Lignola, G., Prota, A., Manfredi, G., & Bellucci, F. (2018). *Corrosion effects on seismic capacity of reinforced concrete structures*. Napoles: DE GRUYTER.
- Broto, C., Mostaedi, A., & Soria, V. (2006). *Enciclopedia Broto de patologías de la construcción.* Barcelona: Links International.
- Canahualpa Nakamatsu, E. A., Martinez Montoya, M., Moreno Alonzo, S. K., Ospino Alva, M. A., Rodriguez Salazar, C. F., & Toledo Aranda, D. S. (2021). *EL PROBLEMA DE LA AUTOCONSTRUCCIÓN EN LIMA METROPOLITANA*. Lima: Universidad de Lima.
- Chen, X., Wu, S., & Zhou, J. (2013). *Influence of porosity on compressive and tensile strength of cement mortar.* Nanjing: Elsevier.

- Chi, J. M., Huang, R., & Yang, C. C. (2002). Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method. *Journal od Marine Science and Technology, Vol. 10, No. 1*, 14-20.
- Chi, J., Huang, R., & Yang, C. (2002). Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method. Berlin: Journal of Marine Science and Technology Springer.
- Diotallevi, P. P., & Landi, L. (2005). On the pushover analysis as a method for evaluating the seismic response of RC buildings . Bologna: WIT Press.
- Dong, F., Wang, H., Yu, J., Liu, K., Guo, Z., Duan, X., & Qiong, X. (2021). Effect of freeze-thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete. Shanghai: Elsevier.
- Duan, A., Jin, W., & Qian, J. (2011). Effect of freeze—thaw cycles on the stress—strain curves of unconfined and confined concrete. Hangzhou: 2010.
- Esposito, R., Anaç, C., Hendriks, M., & Çopuroğlu, O. (2016). *Influence of the Alkali-Silica Reaction on the Mechanical Degradation of Concrete.* Reston: ASCE.
- Etman, Z., & Ahmed, T. (2018). Effect of freezing-thawing on concrete behavior. Challenge Journal of Concrete Research Letters, 21-36.
- Félix, E. F., Carrazedo, R., & Possan, E. (2017). Parametric analysis of carbonation process in reinforced concrete structures through Artificial Neural Networks. *Revista ALCONPAT*, 302-316.
- Félix, E., Carrazedo, R., & Possan, E. (2017). Parametric analysis of carbonation process in reinforced concrete structures through Artificial Neural Networks.

 Mérida: Revista ALCONPAT.
- FEMA. (2000). FEMA 356 Prestandard and comentary for the seismic rehabilitation of buildings. Washington: Federal Emergency Management Agency.
- Ferche, A. C., & Vecchio, F. J. (2022). *Mechanical Properties of Alkali-Silica Reaction- Affected Concrete.* Michigan: ACI Materials Journal.

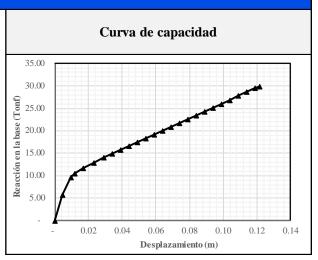

- Figueira, R. B., Sousa, R., Coelho, L., Azenha, M., de Almeida, J. M., Jorge, P., & Silva, C. (2019). *Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods*. Braga: Elsevier.
- Gómez, S. (2006). *Análisis sísmico moderno: Ética aplicada*. Ciudad de México: Trillas.
- Gonzáles Torres, C. (2017). Análisis estático no lienal (pushover) de estructura aporticada de hormigón armado con diferentes grados de ductilidad. Aplicando la norma sismoresistente colombiana 2010 (NSR-10). Valencia: Universidad Politécnica de Valencia.
- Helene, P., & Pereira, F. (2003). *Manual de rehabilitación de estructuras de hormigón reparación, refuerzo y protección.* Madrid: CYTED.
- Hernández, R., Fernández, C., & Baptista, P. (2010). *Metodología de la investigación*. Ciudad de México: McGraw Hill.
- Idencity. (2018). *El alto riesgo de las viviendas informales en Perú.* Barcelona: Idencity Consulting.
- Imperatore, S. (2022). *Mechanical Properties Decay of Corroded Reinforcement in Concrete—An Overview.* Basel: MDPI.
- INEI. (2017). *Censos Nacionales de Población y Vivienda 1993, 2007 y 2017.* Lima: Instituto Nacional de Estadistica e Informatica.
- Jedidi, M., & Belhassen, A. (2020). *Carbonation of Reinforced Concrete Structures*. Sfax: Iris Publishers.
- Khalil, E., & Anwar, M. (2014). *Carbonation of ternary cementious concrete systems containing fly ash and silica fume.* Kaliobia: Elsevier.
- Kosmatka, S., & Wilson, M. (2014). *Design and Control of Concrete Mixtures*. Illinois: PCA.
- Kotanidis, C., & Doudoumis, I. N. (2008). *Energy-based approach of static pushover analysis*. China: The 14th World Conference on Earthquake Engineering.

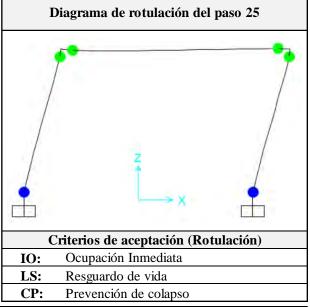
- Li, W., Liu, H., Zhu, B., Lyu, X., Gao, X., & Liang, C. (2020). *Mechanical Properties and Freeze–Thaw Durability of Basalt Fiber Reactive Powder Concrete.*Changchun: MDPI.
- Llanos, G. (18 de Abril de 2016). *Universidad Nacional de Ingeniería*. Obtenido de 7 de cada 10 viviendas limeñas son informales: http://www.uni.edu.pe
- Macdonald, S. (2002). Concrete: Building Pathology. New Jersey: Wiley-Blackwell.
- Maguiña Salinas, E. H. (2016). ESBOZO DE LAS MIGRACIONES INTERNAS EN EL SIGLO XX Y PRIMERA DÉCADA DEL SIGLO XXI Y SU RELACIÓN CON LOS MODELOS DE DESARROLLO ECONÓMICO EN EL PERÚ. Lima: Universidad Agraria La Molina.
- Mai, Y.-W., & Cotterell, B. (1985). *Porosity and Mechanical Properties of Cement Mortar.* Sydney: Pergamon Press.
- Merawi Borhan, T., & Kammouna, Z. (2020). *Enhancing Physical and Mechanical Properties of Pervious Concrete*. Ad Diwaniyah: AIP Publishing.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). *Norma E.020.* Lima: Normas del Reglamento Nacional de Edificaciones.
- Ministerio de Vivienda, Construcción y Saneamiento. (2009). NORMA TÉCNICA DE EDIFICACIÓN E.060 CONCRETO ARMADO. Lima: DECRETO SUPREMO 010-2009-VIVIENDA.
- Mohammadi, A., Ghiasvand, E., & Nili, M. (2020). Relation between mechanical properties of concrete and alkali-silica reaction (ASR). Hamedan: Elsevier.
- Muñoz, A. (2017). Ingeniería Sismorresistente. Lima: Fondo Editorial PUCP.
- NACE International. (2018). *Corrosion costs and preventive strategies in the united states.* Houston: www.nace.org.
- Oxford Languages. (15 de 02 de 2021). *OUP.* Obtenido de Languages: https://languages.oup.com/

- Portland Cement Association. (2002). *Design and Control of Concrete Mixtures*. Illinois: Portland Cement Association.
- Possan, E. (2010). Modelagem da carbonatação e previsão de vida útil de estruturas de concreto em ambiente urbano. Porto Alegre: Universidade Federal do Rio Grande do Sul.
- PUCP. (13 de Junio de 2017). Seminario de Tecnologia de Concreto 2017. Obtenido de ACI-PUCP: https://www.facebook.com/aci.pucp/videos/1076520882479135/
- Quispe, J. (2005). *El problema de la vivienda en Perú: Retos y perspectivas.* Santiago de Chile: Revista Invi.
- Ragueneau, F., Richard, B., Crémona, C., & Berthaud, Y. (2010). *Damage mechanics applied to the modelling of corroded reinforced concrete structures: Steel, concrete and interface.* Londres: European Journal of Environmental and Civil Engineering.
- Sánchez-Mendieta, C., Galán, J., & Martinez-Lage, I. (2021). *Physical and Hydraulic Properties of Porous Concrete.* Basel: MDPI.
- Shah, V., & Bishnoi, S. (2021). *Understanding the Process of Carbonation in Concrete using Numerical Modeling*. Tokyo: Japan Concrete Institute.
- Shang, H.-s., Cao, W.-q., & Wang, B. (2014). Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete. Londres: Hindawi Publishing Corporation.
- Smith, S. H., Qiao, C., Suraneni, P., Kurtis, K. E., & Weiss, W. J. (2019). Service-life of concrete in freeze-thaw environments: Critical degree of saturation and calcium oxychloride formation. Georgia: Elsevier.
- Song, W., Li, X., & Ma, K. (2011). The Effect of Freeze-Thaw Cycles on Mechanical Properties of Concrete. *Advanced Materials Research*, 3429-3432.
- Tsouli, S., Lekatou, A. G., Kleftakis, S., Gkoutzos, P., Tragazikis, I. K., & Matikas, T. E. (2021). Combined Corrosion Inhibitors and Mechanical Properties of

- Concrete Embedded Steel (AISI 316L) during Accelerated Saline Corrosion Test. Besel: MDPI.
- Tumialan, G. (2014). ACI 562 Nueva Norma para Evaluación, Reparación y Rehabilitación de Edificaciones de Concreto. Lima: Primer Seminario Internacional sobre Patología y Terapéutica del Concreto ACI Perú.
- Wight, J., & MacGregor, J. (2012). *Reinforced Concrete: Mechanics & Design.* New Jersey: Pearson Education Inc.
- Wilson, E. L. (2002). *Three-Dimensional Static and Dynamic Analysis of Structures*. Berkeley: Computers and Structures, Inc.
- Yazdchi, M., Asl, A. F., Talatahari, S., & Gandomi, A. H. (2021). Evaluation of the Mechanical Properties of Normal Concrete Containing Nano-MgO under Freeze-Thaw Conditions by Evolutionary Intelligence. Basilea: MDPI.
- Young, H. D., Freedman, R. A., & Ford, A. L. (2014). Sears y Zemansky. Física universitaria para cursos de enfoque por competencias. México: Pearson.
- Zhang, K., Zhou, J., & Yin, Z. (2021). Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze–Thaw Cycles. Basel: MDPI.

ANEXOS

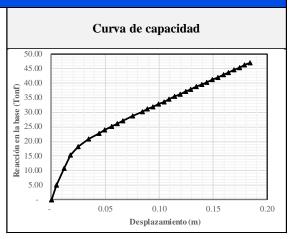


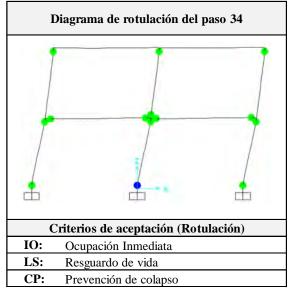


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Ninguna
Grado de afectación patológica:	Ninguno

C. Resultados del análisis				
Paso	Desplazam iento	Reacción en la base	Trabajo	
(#)	(m)	(Tonf)	(Tonf-m)	
0	0.0000	0.0000		
1	0.0044	5.6669	0.0124	
2	0.0094	9.5924	0.0384	
3	0.0119	10.4712	0.0248	
4	0.0169	11.6283	0.0552	
5	0.0228	12.9187	0.0730	
6	0.0288	13.9784	0.0798	
7	0.0338	14.8376	0.0720	
8	0.0388	15.6968	0.0763	
9	0.0438	16.5560	0.0806	
10	0.0488	17.4152	0.0849	
11	0.0538	18.2744	0.0892	
12	0.0588	19.1336	0.0935	
13	0.0638	19.9928	0.0978	
14	0.0688	20.8519	0.1021	
15	0.0738	21.7111	0.1064	
16	0.0788	22.5703	0.1107	
17	0.0838	23.4295	0.1150	
18	0.0888	24.2887	0.1193	
19	0.0938	25.1479	0.1236	
20	0.0988	26.0071	0.1279	
21	0.1038	26.8663	0.1322	
22	0.1088	27.7255	0.1365	
23	0.1138	28.5847	0.1408	
24	0.1188	29.4439	0.1451	
25	0.1214	29.8964	0.0782	


Valores máximos	
Desplazamiento (m):	0.1214
Reacción en la base (Tonf):	29.8964
Trabajo (Tonf-m):	2.3159



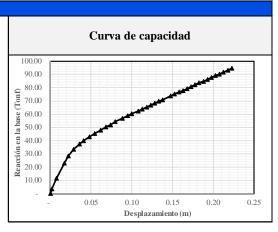
A. Sobre la investigación	
Tests:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

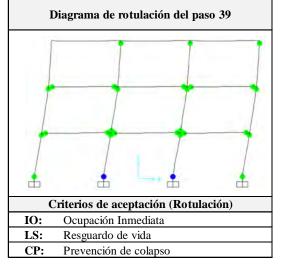
B. Sobre los parámetros:	
Configuración estructural:	02 niveles y 02 crujías
Tipo de patología:	Ninguna
Grado de afectación patológica:	Ninguno

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0000	0.0000	0.0000
2	0.0050	4.9147	0.0122
3	0.0118	10.7249	0.0533
4	0.0178	15.3629	0.0787
5	0.0250	18.2484	0.1209
6	0.0344	20.8239	0.1824
7	0.0442	22.8848	0.2151
8	0.0492	23.8960	0.1170
9	0.0560	25.2066	0.1683
10	0.0610	26.1423	0.1284
11	0.0660	27.0780	0.1331
12	0.0753	28.7463	0.2577
13	0.0843	30.2984	0.2651
14	0.0893	31.1450	0.1536
15	0.0943	31.9915	0.1578
16	0.0993	32.8381	0.1621
17	0.1043	33.6846	0.1663
18	0.1093	34.5312	0.1705
19	0.1143	35.3778	0.1748
20	0.1193	36.2243	0.1790
21	0.1243	37.0709	0.1832
22	0.1293	37.9174	0.1875
23	0.1343	38.7445	0.1917
24	0.1393	39.5716	0.1958
25	0.1443	40.3987	0.1999
26	0.1493	41.2257	0.2041
27	0.1543	42.0528	0.2082
28	0.159259	42.8799	0.2123
29	0.164259	43.7069	0.2165
30	0.169259	44.534	0.2206
31	0.174259	45.3611	0.2247
32	0.179259	46.1881	0.2289
33	0.184259	47.0152	0.2330
34	0.18676	47.4288	0.1181

Valores máximos	
Desplazamiento (m):	0.1868
Reacción en la base (Tonf):	47.4288
Trabajo (Tonf-m):	5.7206

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz


B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Ninguna
Grado de afectación patológica:	Ninguno

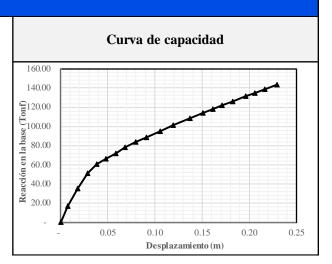

C. Resultados del análisis			
Paso	iento		Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0021	3.6542	0.0038
2	0.0075	11.6784	0.0419
3	0.0171	23.0670	0.1665
4	0.0221	28.3847	0.1286
5	0.0284	33.6544	0.1942
6	0.0355	37.2855	0.2517
7	0.0411	39.9158	0.2150
8	0.0483	42.8026	0.2999
9	0.0547	45.2485	0.2808
10	0.0615	47.8153	0.3148
11	0.0686	50.3271	0.3511
12	0.0736	52.0656	0.2560
13	0.0800	54.2273	0.3370
14	0.0884	56.8312	0.4702
15	0.0952	58.7873	0.3912
16	0.1002	60.2188	0.2975
17	0.1081	62.4760	0.4851
18	0.1131	63.9009	0.3159
19	0.1181	65.3257	0.3231
20	0.1231	66.7506	0.3302
21	0.1281	68.1754	0.3373
22	0.1331	69.6002	0.3444
23	0.1381	71.0251	0.3516
24	0.1478	73.7520	0.7001
25	0.1528	75.1476	0.3722
26	0.1578	76.5432	0.3792
27	0.1628	77.9387	0.3862
28	0.167766	79.3343	0.3932
29	0.172766	80.7299	0.4002
30	0.177766	82.1254	0.4071
31	0.182766	83.521	0.4141
32	0.187766	84.9166	0.4211
33	0.192766	86.2965	0.4280
34	0.197766	87.6765	0.4349
35	0.202766	89.0564	0.4418
36	0.207766	90.4003	0.4486
37	0.212766	91.7442	0.4554
38	0.217766	93.0881	0.4621

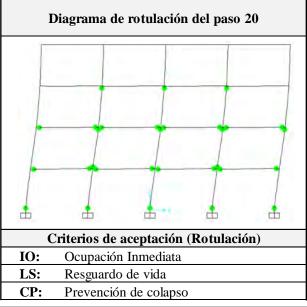
39

0.222766

94.432

Valores máximos	
Desplazamiento (m):	0.2228
Reacción en la base (Tonf):	94.4320
Trabajo (Tonf-m):	13.5012

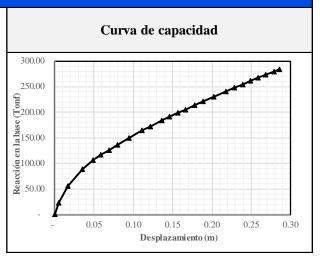

0.4688

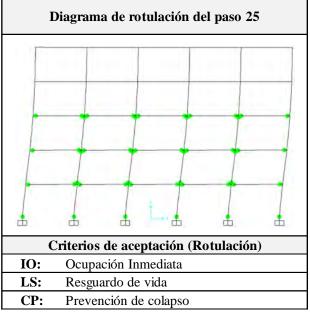


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Ninguna
Grado de afectación patológica:	Ninguno

C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0072	16.9772	0.0614
2	0.0179	35.4327	0.2783
3	0.0289	51.1834	0.4769
4	0.0383	60.5550	0.5253
5	0.0483	66.3789	0.6347
6	0.0583	72.2028	0.6929
7	0.0685	78.1739	0.7721
8	0.0793	83.5953	0.8662
9	0.0910	88.9374	1.0162
10	0.1056	95.3657	1.3406
11	0.1191	101.1698	1.3259
12	0.1373	108.8005	1.9172
13	0.1512	114.4001	1.5438
14	0.1612	118.1802	1.1629
15	0.1712	121.9603	1.2007
16	0.1822	126.1165	1.3653
17	0.1963	131.2941	1.8181
18	0.2063	134.9489	1.3312
19	0.2163	138.6037	1.3678
20	0.2292	143.2950	1.8191

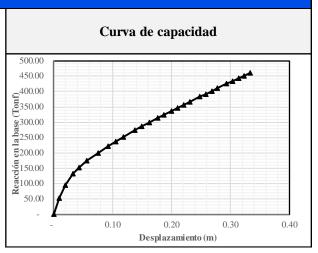

Valores máximos	
Desplazamiento (m):	0.2292
Reacción en la base (Tonf):	143.2950
Trabajo (Tonf-m):	21.5166

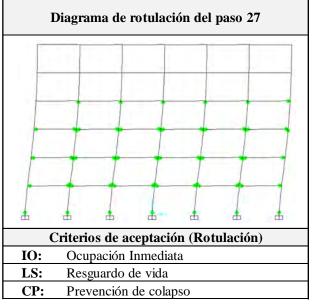


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	05 niveles y 05 crujías	
Tipo de patología:	Ninguna	
Grado de afectación patológica:	Ninguno	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0056	22.3967	0.0623
2	0.0171	55.6598	0.4518
3	0.0351	88.8136	1.2958
4	0.0490	106.7035	1.3568
5	0.0590	116.4141	1.1156
6	0.0690	126.1246	1.2127
7	0.0795	136.3888	1.3896
8	0.0945	149.9301	2.1354
9	0.1113	163.9397	2.6470
10	0.1222	172.7070	1.8255
11	0.1363	183.5241	2.5105
12	0.1463	190.9521	1.8724
13	0.1563	198.2412	1.9460
14	0.1663	205.5302	2.0189
15	0.1785	214.2537	2.5603
16	0.1885	221.1916	2.1772
17	0.2022	230.6397	3.0991
18	0.2177	240.9590	3.6660
19	0.2289	248.2687	2.7321
20	0.2389	254.6137	2.5144
21	0.2489	260.9585	2.5779
22	0.2589	267.3033	2.6413
23	0.2689	273.6480	2.7048
24	0.2789	279.9926	2.7682
25	0.2856	284.2418	1.8896
			-


Valores máximos	
Desplazamiento (m):	0.2856
Reacción en la base (Tonf):	284.2418
Trabajo (Tonf-m):	51.1710



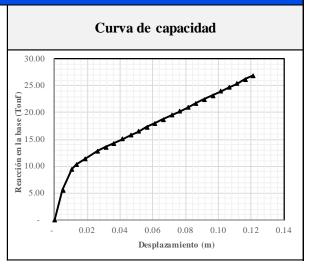
A. Sobre la investigación	
Tests.	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

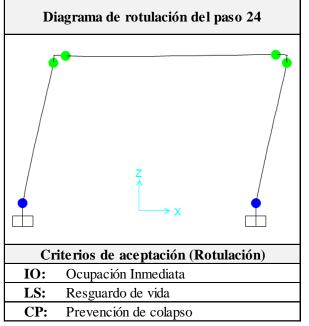
B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Ninguna
Grado de afectación patológica:	Ninguno

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0095	53.3962	0.2549
2	0.0197	95.9212	0.7558
3	0.0322	131.4154	1.4276
4	0.0436	153.7568	1.6278
5	0.0566	173.9743	2.1160
6	0.0754	199.2139	3.5132
7	0.0928	221.3858	3.6563
8	0.1048	236.3891	2.7611
9	0.1188	252.8732	3.4143
10	0.1374	273.7968	4.8980
11	0.1494	286.6438	3.3559
12	0.1627	300.3261	3.9122
13	0.1762	313.9476	4.1427
14	0.1865	324.2035	3.2817
15	0.1993	336.5951	4.2324
16	0.2104	347.1775	3.8038
17	0.2204	356.6612	3.5192
18	0.2304	366.1448	3.6140
19	0.2483	382.9683	6.6986
20	0.2583	392.3395	3.8765
21	0.2683	401.7106	3.9703
22	0.2783	411.0816	4.0640
23	0.2935	425.2170	6.3534
24	0.3035	434.1379	4.2968
25	0.3135	443.0587	4.3860
26	0.3235	451.9750	4.4752
27	0.3335	460.8912	4.5643

Valores máximos	
Desplazamiento (m):	0.3335
Reacción en la base (Tonf):	460.8912
Trabajo (Tonf-m):	96.9717

007

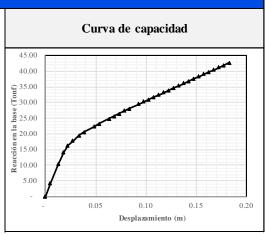


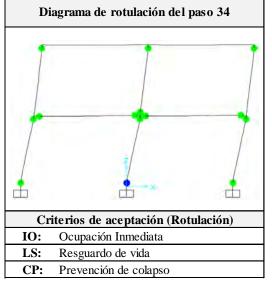

Instrumento metodológicos de recolección de datos

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Carbonatación
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.004918	5.5576	0.0137
2	0.010589	9.4126	0.0424
3	0.013514	10.3139	0.0289
4	0.018514	11.3174	0.0541
5	0.026216	12.7899	0.0928
6	0.031216	13.5322	0.0658
7	0.036216	14.2745	0.0695
8	0.041216	15.0168	0.0732
9	0.046216	15.7591	0.0769
10	0.051216	16.5014	0.0807
11	0.056216	17.2437	0.0844
12	0.061216	17.986	0.0881
13	0.066216	18.7282	0.0918
14	0.071216	19.4705	0.0955
15	0.076216	20.2128	0.0992
16	0.081216	20.955	0.1029
17	0.086216	21.6973	0.1066
18	0.091216	22.4395	0.1103
19	0.096216	23.1817	0.1141
20	0.101216	23.924	0.1178
21	0.106216	24.6662	0.1215
22	0.111216	25.4084	0.1252
23	0.116216	26.1507	0.1289
24	0.12101	26.8623	0.1271

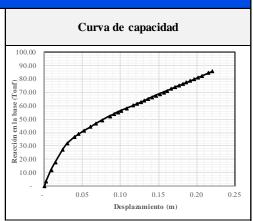

Valores máximos	
Desplazamiento (m):	0.1210
Reacción en la base (Tonf):	26.8623
Trabajo (Tonf-m):	2.1113



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(41)			(TF. C.)
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0	4.66E-06	
2	0.004972	4.3104	0.0107
3	0.012835	10.3088	0.0575
4	0.018277	14.1193	0.0665
5	0.02251	16.2645	0.0643
6	0.02751	17.8205	0.0852
7	0.033649	19.4921	0.1145
8	0.038649	20.5465	0.1001
9	0.048349	22.3145	0.2079
10	0.053349	23.1941	0.1138
11	0.063277	24.8754	0.2386
12	0.068277	25.6899	0.1264
13	0.073277	26.5043	0.1305
14	0.078277	27.3188	0.1346
15	0.083277	28.0905	0.1385
16	0.092944	29.5473	0.2786
17	0.097944	30.2837	0.1496
18	0.102944	31.0201	0.1533
19	0.107944	31.7565	0.1569
20	0.112944	32.4929	0.1606
21	0.117944	33.2293	0.1643
22	0.122944	33.9656	0.1680
23	0.127944	34.702	0.1717
24	0.132944	35.4384	0.1754
25	0.137944	36.1748	0.1790
26	0.142944	36.9111	0.1827
27	0.147944	37.6301	0.1864
28	0.152944	38.3491	0.1899
29	0.157944	39.068	0.1935
30	0.162944	39.787	0.1971
31	0.167944	40.506	0.2007
32			
34			
33	0.172944 0.177944 0.182944	41.2249 41.9439 42.6628	0.2043 0.2079 0.2115

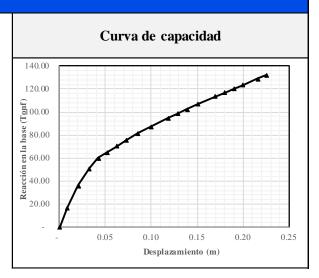

Valores máximos	
Desplazamiento (m):	0.1829
Reacción en la base (Tonf):	42.6628
Trabajo (Tonf-m):	5.1206

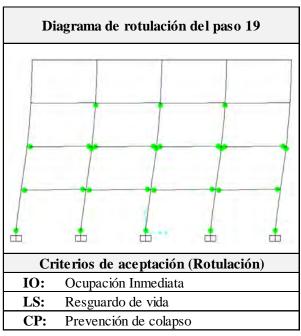


A. Sobre la investigación	
l'Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Dana	Desplaza	Reacción	Tuckata
Paso	miento	en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.002423	3.7303	0.0045
2	0.008841	11.9968	0.0505
3	0.014356	17.804	0.0822
4	0.02413	27.4495	0.2212
5	0.029697	31.9429	0.1653
6	0.039237	36.6144	0.3270
7	0.044703	38.9802	0.2066
8	0.051264	41.3138	0.2634
9	0.060125	44.3223	0.3794
10	0.06697	46.6025	0.3112
11	0.075836	49.3411	0.4253
12	0.085621	52.2989	0.4973
13	0.090959	53.8864	0.2834
14	0.095959	55.1823	0.2727
15	0.100959	56.4782	0.2792
16	0.108355	58.35	0.4246
17	0.116185	60.3023	0.4645
18	0.121185	61.5465	0.3046
19	0.126185	62.7908	0.3108
20	0.131185	64.035	0.3171
21	0.136185	65.2792	0.3233
22	0.141185	66.5234	0.3295
23	0.146185	67.7676	0.3357
24	0.151185	69.0118	0.3419
25	0.156185	70.256	0.3482
26	0.161185	71.4738	0.3543
27	0.166185	72.6915	0.3604
28	0.171185	73.9093	0.3665
29	0.176185	75.1271	0.3726
30	0.181185	76.3448	0.3787
31	0.186185	77.5626	0.3848
32	0.191185	78.7803	0.3909
33	0.196185	79.9981	0.3969
34	0.201185	81.2158	0.4030
35	0.206185	82.4335	0.4091
36	0.215322	84.645	0.7633
37	0.220314	85.8471	0.4255

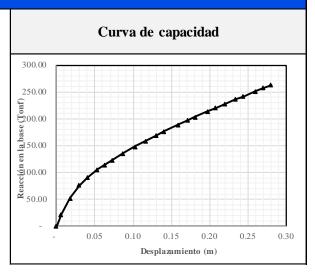

Valores máximos	
Desplazamiento (m):	0.2203
Reacción en la base (Tonf):	85.8471
Trabajo (Tonf-m):	12.2755

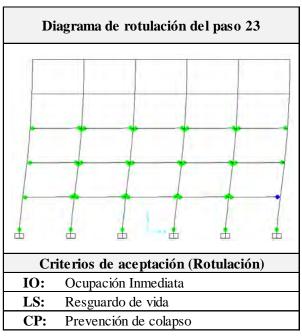


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Leve	

(#) 0 1	Desplaza miento (m) 0.008155 0.020368	Reacción en la base (Tonf)	Trabajo (Tonf-m)
(#) 0 1	miento (m) 0.008155	en la base (Tonf)	_
0	0.008155	0	(Tonf-m)
1	0.008155		
		17.0102	
	0.020368	17.0103	0.0694
2		35.8931	0.3231
3	0.032209	50.9405	0.5141
4	0.042287	59.9316	0.5587
5	0.052287	65.1017	0.6252
6	0.062287	70.2718	0.6769
7	0.072287	75.4416	0.7286
8	0.085521	81.7175	1.0399
9	0.099604	87.4471	1.1912
10	0.118596	94.9103	1.7317
11	0.128596	98.7175	0.9681
12	0.138596	102.5247	1.0062
13	0.150439	106.8384	1.2397
14	0.169541	113.6409	2.1058
15	0.179541	116.9885	1.1531
16	0.189541	120.3361	1.1866
17	0.199541	123.6723	1.2200
18	0.215432	128.8743	2.0066
19	0.225284	132.0629	1.2854

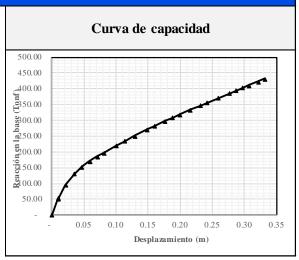

Valores máximos	
Desplazamiento (m):	0.2253
Reacción en la base (Tonf):	132.0629
Trabajo (Tonf-m):	19.6302

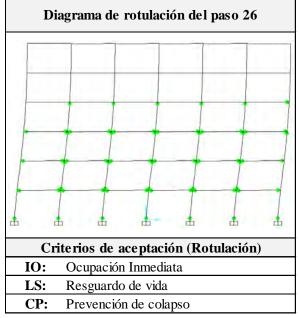


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	05 niveles y 05 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.006166	22.4542	0.0692
2	0.017651	52.7325	0.4318
3	0.02966	76.2163	0.7743
4	0.040098	90.636	0.8708
5	0.053332	105.8613	1.3002
6	0.063332	114.6582	1.1026
7	0.073332	123.4549	1.1906
8	0.08721	135.6577	1.7980
9	0.102992	148.7029	2.2439
10	0.116732	159.0945	2.1146
11	0.130228	169.0421	2.2143
12	0.140954	176.7328	1.8544
13	0.159324	189.1098	3.3603
14	0.171374	197.0651	2.3267
15	0.181374	203.6584	2.0036
16	0.198088	214.3108	3.4930
17	0.208088	220.5772	2.1744
18	0.219879	227.9159	2.6441
19	0.233879	236.2895	3.2494
20	0.243879	242.2287	2.3926
21	0.260301	251.7701	4.0562
22	0.270301	257.4975	2.5463
23	0.280301	263.2248	2.6036


Valores máximos	
Desplazamiento (m):	0.2803
Reacción en la base (Tonf):	263.2248
Trabajo (Tonf-m):	46.8148



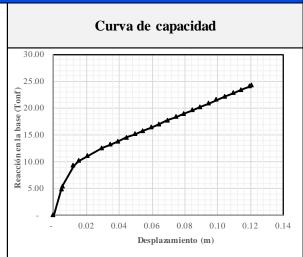
A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

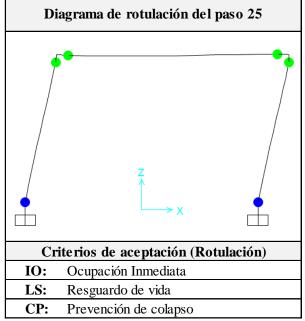
B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009893	50.5549	0.2501
2	0.010514	53.6954	0.0324
3	0.021316	95.2956	0.8047
4	0.03497	130.7302	1.5431
5	0.047025	152.4233	1.7067
6	0.059269	170.0857	1.9744
7	0.070963	185.2568	2.0777
8	0.081595	197.6953	2.0358
9	0.10003	219.1629	3.8424
10	0.113667	234.6185	3.0941
11	0.128691	250.7334	3.6460
12	0.148358	270.8862	5.1293
13	0.159521	281.9565	3.0857
14	0.175845	297.2546	4.7275
15	0.187701	308.1601	3.5889
16	0.199453	318.8733	3.6844
17	0.215336	332.9088	5.1761
18	0.23132	346.7601	5.4319
19	0.24132	355.396	3.5108
20	0.258702	370.2988	6.3070
21	0.276561	385.5468	6.7493
22	0.286561	394.0757	3.8981
23	0.296561	402.6045	3.9834
24	0.306561	411.1331	4.0687
25	0.320708	422.9786	5.9001
26	0.330708	431.0941	4.2704

Valores máximos		
Desplazamiento (m):		0.3307
Reacción en la base (Tonf)		431.0941
Trabajo (Tonf-m):		90.5190

013

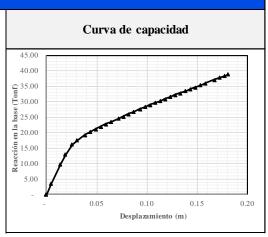


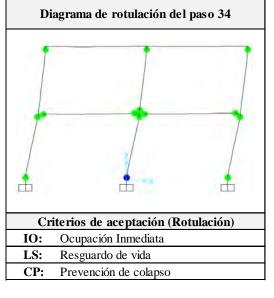

Instrumento metodológicos de recolección de datos

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.004987	4.8944	0.0122
2	0.00558	5.4752	0.0031
3	0.012023	9.2731	0.0475
4	0.015497	10.1981	0.0338
5	0.020497	11.0642	0.0532
6	0.029549	12.5746	0.1070
7	0.034549	13.2143	0.0645
8	0.039549	13.8539	0.0677
9	0.044549	14.4936	0.0709
10	0.049549	15.1332	0.0741
11	0.054549	15.7728	0.0773
12	0.059549	16.4125	0.0805
13	0.064549	17.0521	0.0837
14	0.069549	17.6918	0.0869
15	0.074549	18.3314	0.0901
16	0.079549	18.971	0.0933
17	0.084549	19.6107	0.0965
18	0.089549	20.2503	0.0997
19	0.094549	20.8899	0.1029
20	0.099549	21.5296	0.1060
21	0.104549	22.1692	0.1092
22	0.109549	22.8089	0.1124
23	0.114549	23.4485	0.1156
24	0.119549	24.0881	0.1188
25	0.120738	24.2402	0.0287

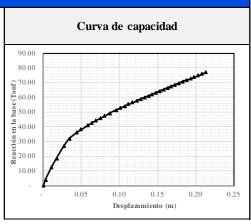

Valores máximos	
Desplazamiento (m):	0.1207
Reacción en la base (Tonf):	24.2402
Trabajo (Tonf-m):	1.9353

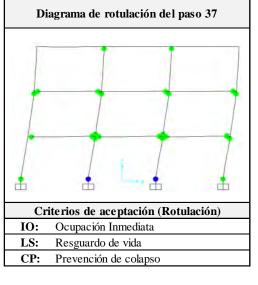


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0	4.06E-06	11
2	0.00497	3.7508	0.0093
3	0.014075	9.9012	0.0622
4	0.019075	12.9725	0.0572
5	0.025711	16.1737	0.0967
6	0.030711	17.5262	0.0842
7	0.038411	19.371	0.1421
8	0.043411	20.2867	0.0991
9	0.049347	21.279	0.1234
10	0.054347	22.0425	0.1083
11	0.059347	22.8061	0.1121
12	0.064347	23.5696	0.1159
13	0.071587	24.6188	0.1744
14	0.076587	25.3258	0.1249
15	0.081587	26.0329	0.1284
16	0.086587	26.7399	0.1319
17	0.093488	27.6967	0.1878
18	0.098488	28.3669	0.1402
19	0.103488	29.0061	0.1434
20	0.108488	29.6454	0.1466
21	0.113488	30.2846	0.1498
22	0.118488	30.9238	0.1530
23	0.123488	31.5631	0.1562
24	0.128488	32.2023	0.1594
25	0.133488	32.8415	0.1626
26	0.138488	33.4807	0.1658
27	0.143488	34.12	0.1690
28	0.148488	34.7592	0.1722
29	0.153488	35.3984	0.1754
30	0.158488	36.0376	0.1786
31	0.167154	37.1302	0.3170
32	0.172154	37.7542	0.1872
33	0.177154	38.3781	0.1903
34	0.180979	38.8554	0.1477

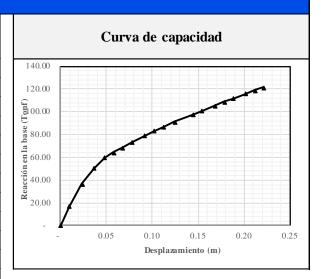

Valores máximos	
Desplazamiento (m):	0.1810
Reacción en la base (Tonf):	38.8554
Trabajo (Tonf-m):	4.6726

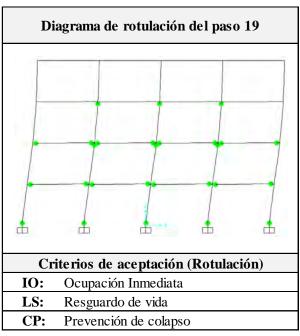


A. Sobre la investigación	
Tresis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
C. Resulta			
Paso	Desplaza	Reacción	Trabajo
	miento	en la base	
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.002865	3.8042	0.0054
2	0.010531	12.3342	0.0619
3	0.017148	18.3724	0.1016
4	0.026658	26.4964	0.2134
5	0.034114	31.8056	0.2173
6	0.043837	35.9602	0.3294
7	0.048837	37.8728	0.1846
8	0.057765	40.7654	0.3510
9	0.06339	42.4727	0.2341
10	0.06839	43.9226	0.2160
11	0.075071	45.8529	0.2999
12	0.080071	47.2141	0.2327
13	0.086598	48.9471	0.3138
14	0.095096	51.1661	0.4254
15	0.100096	52.4634	0.2591
16	0.106313	53.9961	0.3309
17	0.111313	55.1152	0.2728
18	0.116313	56.2343	0.2784
19	0.122524	57.6027	0.3535
20	0.127524	58.6772	0.2907
21	0.132524	59.7516	0.2961
22	0.137524	60.8261	0.3014
23	0.142524	61.9005	0.3068
24	0.147524	62.975	0.3122
25	0.152524	64.0495	0.3176
26	0.157524	65.1239	0.3229
27	0.162524	66.1984	0.3283
28	0.167524	67.2728	0.3337
29	0.172524	68.3473	0.3391
30	0.177524	69.4218	0.3444
31	0.182524	70.4729	0.3497
32	0.187524	71.5241	0.3550
33	0.192524	72.5752	0.3602
34	0.197524	73.6263	0.3655
35	0.202524	74.6775	0.3708
36	0.207524	75.7286	0.3760
37	0.212524	76.7798	0.3813

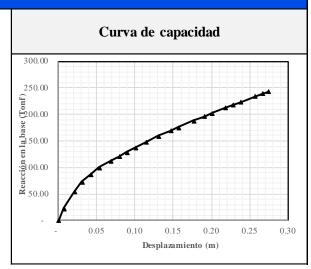

Valores máximos	
Desplazamiento (m):	0.2125
Reacción en la base (Tonf):	76.7798
Trabajo (Tonf-m):	10.7329

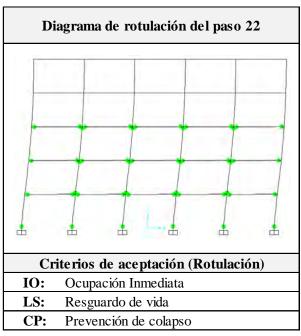


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Moderado	

Grado de dicetación patorogica.			
C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009312	17.0341	0.0793
2	0.023603	36.4369	0.3821
3	0.036409	50.6777	0.5578
4	0.047742	59.5826	0.6248
5	0.057742	64.1166	0.6185
6	0.067742	68.6505	0.6638
7	0.077742	73.1845	0.7092
8	0.091365	79.1687	1.0378
9	0.101917	83.1577	0.8564
10	0.111917	86.6771	0.8492
11	0.124351	91.0008	1.1046
12	0.144057	97.6638	1.8589
13	0.154057	101.0023	0.9933
14	0.168114	105.5308	1.4516
15	0.178114	108.705	1.0712
16	0.188114	111.7714	1.1024
17	0.201407	115.7133	1.5120
18	0.211407	118.6454	1.1718
19	0.220795	121.398	1.1268

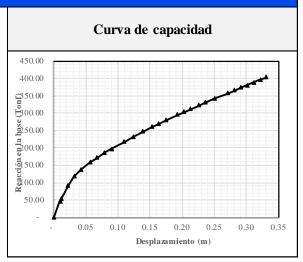

Valores máximos	
Desplazamiento (m):	0.2208
Reacción en la base (Tonf):	121.3980
Trabajo (Tonf-m):	17.7714

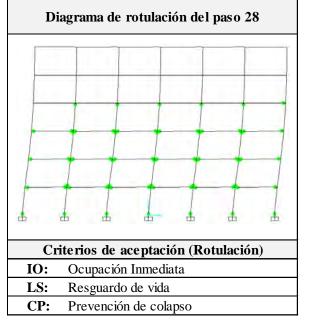


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Carbonatación
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.006913	22.5075	0.0778
2	0.020432	54.4067	0.5199
3	0.030431	72.806	0.6360
4	0.042204	87.4818	0.9435
5	0.053403	99.7946	1.0487
6	0.068973	113.118	1.6575
7	0.078973	121.0022	1.1706
8	0.088973	128.8862	1.2494
9	0.100907	138.2471	1.5940
10	0.11435	148.094	1.9246
11	0.130538	159.0467	2.4860
12	0.146313	169.4711	2.5912
13	0.156443	175.9937	1.7498
14	0.17622	187.9281	3.5986
15	0.190823	196.5697	2.8074
16	0.200823	202.4727	1.9952
17	0.217896	212.1635	3.5395
18	0.227896	217.7667	2.1497
19	0.237896	223.3698	2.2057
20	0.257154	233.7731	4.4018
21	0.267154	239.081	2.3643
22	0.274269	242.8574	1.7145

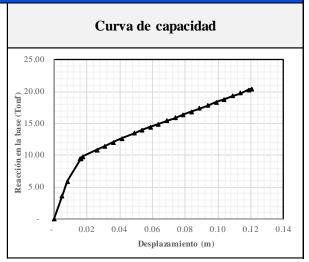

Valores máximos	
Desplazamiento (m):	0.2743
Reacción en la base (Tonf):	242.8574
Trabajo (Tonf-m):	42.4258

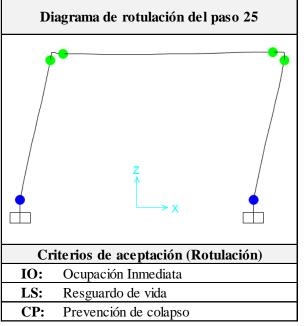


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.00989	45.7424	0.2262
2	0.011695	53.9977	0.0900
3	0.021927	90.2923	0.7382
4	0.031552	117.4627	0.9998
5	0.041971	136.7569	1.3244
6	0.056691	159.1374	2.1778
7	0.067037	171.4961	1.7104
8	0.078619	185.0516	2.0648
9	0.089256	196.3045	2.0282
10	0.108945	217.0409	4.0692
11	0.123513	231.9843	3.2707
12	0.138313	246.4101	3.5401
13	0.152126	259.3917	3.4933
14	0.162126	268.4956	2.6394
15	0.174034	279.2588	3.2613
16	0.192157	294.6335	5.2003
17	0.202157	302.9305	2.9878
18	0.212157	311.2273	3.0708
19	0.225312	321.9261	4.1646
20	0.235312	329.7929	3.2586
21	0.250577	341.7483	5.1255
22	0.270469	357.156	6.9513
23	0.280469	364.8658	3.6101
24	0.290469	372.5754	3.6872
25	0.300469	380.2849	3.7643
26	0.310469	387.9763	3.8413
27	0.320469	395.6675	3.9182
28	0.330469	403.3586	3.9951

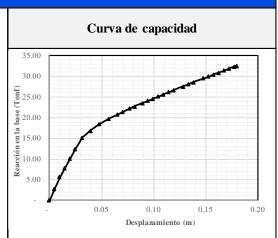

Valores máximos	
Desplazamiento (m):	0.3305
Reacción en la base (Tonf):	403.3586
Trabajo (Tonf-m):	85.2090

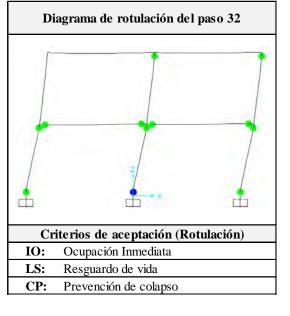


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.004985	3.6395	0.0091
2	0.008045	5.8671	0.0145
3	0.016049	9.387	0.0610
4	0.016331	9.4974	0.0027
5	0.017593	9.7503	0.0121
6	0.026165	10.8266	0.0882
7	0.031165	11.4346	0.0557
8	0.036165	12.0426	0.0587
9	0.041165	12.6506	0.0617
10	0.048762	13.4514	0.0991
11	0.053762	13.9365	0.0685
12	0.058762	14.4216	0.0709
13	0.063762	14.9067	0.0733
14	0.068762	15.3918	0.0757
15	0.073762	15.8769	0.0782
16	0.078762	16.362	0.0806
17	0.083762	16.847	0.0830
18	0.088762	17.3321	0.0854
19	0.093762	17.8172	0.0879
20	0.098762	18.3023	0.0903
21	0.103762	18.7874	0.0927
22	0.108762	19.2725	0.0951
23	0.113762	19.7576	0.0976
24	0.118762	20.2427	0.1000
25	0.120818	20.4422	0.0418

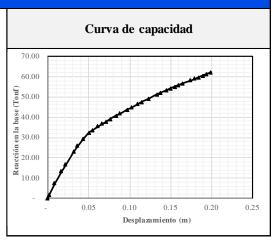

Valores máximos	
Desplazamiento (m):	0.1208
Reacción en la base (Tonf):	20.4422
Trabajo (Tonf-m):	1.6840

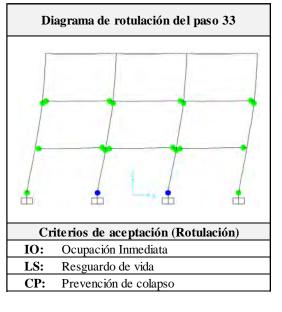


A. Sobre la investigación	
l'l'esis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0	2.81E-06	0.0000
2	0.004965	2.806	0.0070
3	0.009965	5.6119	0.0210
4	0.014965	7.9096	0.0338
5	0.019965	10.2072	0.0453
6	0.024965	12.5049	0.0568
7	0.031641	15.151	0.0923
8	0.039405	16.9255	0.1245
9	0.047533	18.4035	0.1436
10	0.057353	19.8106	0.1876
11	0.065076	20.8021	0.1568
12	0.070076	21.4191	0.1056
13	0.076689	22.1944	0.1442
14	0.081689	22.7263	0.1123
15	0.089659	23.5677	0.1845
16	0.094659	24.0932	0.1192
17	0.099659	24.6187	0.1218
18	0.104659	25.1442	0.1244
19	0.109659	25.6697	0.1270
20	0.114659	26.1952	0.1297
21	0.119659	26.7206	0.1323
22	0.128326	27.6096	0.2354
23	0.133326	28.1133	0.1393
24	0.138326	28.6169	0.1418
25	0.147674	29.5354	0.2718
26	0.152674	30.0159	0.1489
27	0.157674	30.4964	0.1513
28	0.162674	30.9769	0.1537
29	0.167674	31.4574	0.1561
30	0.172674	31.9378	0.1585
31	0.177674	32.4183	0.1609
32	0.179984	32.6403	0.0751

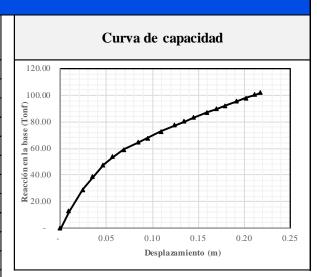

Valores máximos	
Desplazamiento (m):	0.1800
Reacción en la base (Tonf):	32.6403
Trabajo (Tonf-m):	3.9625

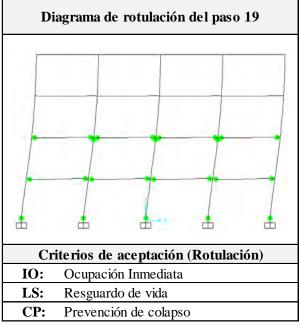


A. Sobre la investigación	
l'legig•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología: Carbonatación	
Grado de afectación patológica:	Severo

C. Resulta	dos del aná	lisis	
D	Desplaza	Reacción	T
Paso	miento	en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.001629	1.6301	0.0013
2	0.008446	7.5309	0.0312
3	0.016597	13.254	0.0847
4	0.021597	16.6243	0.0747
5	0.031376	22.8777	0.1931
6	0.036376	25.9097	0.1220
7	0.043418	29.4807	0.1950
8	0.050166	32.3219	0.2085
9	0.055166	33.7535	0.1652
10	0.061381	35.4916	0.2152
11	0.066381	36.7257	0.1805
12	0.071381	37.9329	0.1866
13	0.076381	39.1401	0.1927
14	0.083255	40.7204	0.2745
15	0.088255	41.8483	0.2064
16	0.097042	43.7911	0.3763
17	0.102042	44.8795	0.2217
18	0.109729	46.4891	0.3512
19	0.114729	47.5136	0.2350
20	0.123323	49.2407	0.4158
21	0.133287	51.1859	0.5003
22	0.138287	52.1536	0.2583
23	0.145115	53.4404	0.3605
24	0.150115	54.2465	0.2692
25	0.155115	55.0526	0.2732
26	0.160115	55.8588	0.2773
27	0.165115	56.6649	0.2813
28	0.174366	58.1502	0.5311
29	0.179366	58.9501	0.2928
30	0.184366	59.75	0.2968
31	0.189366	60.55	0.3008
32	0.194366	61.3499	0.3047
33	0.199366	62.1498	0.3087

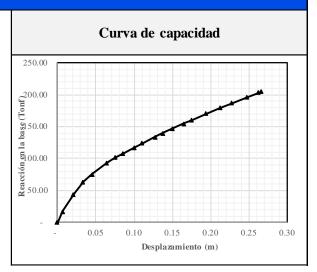

Valores máximos	
Desplazamiento (m):	0.1994
Reacción en la base (Tonf):	62.1498
Trabajo (Tonf-m):	8.1867

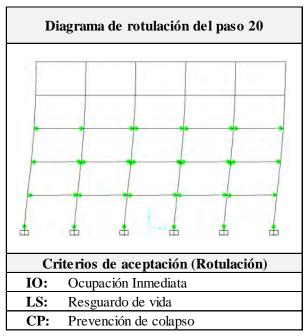


A. Sobre la investigación		
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos	
Investigador:	Victor Manuel Tello Diaz	

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Severo	

Paso Desplaza miento Reacción en la base Trabajo (#) (m) (Tonf) (Tonf-m 0 0 0 0 1 0.009151 12.861 0.058 2 0.02428 28.8174 0.313 3 0.035362 38.6142 0.373 4 0.046609 47.6294 0.483 5 0.056773 53.7297 0.513 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.666 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132	
0 0 0 1 0.009151 12.861 0.058 2 0.02428 28.8174 0.315 3 0.035362 38.6142 0.373 4 0.046609 47.6294 0.485 5 0.056773 53.7297 0.515 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.666 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132	
1 0.009151 12.861 0.058 2 0.02428 28.8174 0.313 3 0.035362 38.6142 0.373 4 0.046609 47.6294 0.483 5 0.056773 53.7297 0.513 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.666 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132)
2 0.02428 28.8174 0.313 3 0.035362 38.6142 0.373 4 0.046609 47.6294 0.483 5 0.056773 53.7297 0.513 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.66 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.133	
3 0.035362 38.6142 0.373 4 0.046609 47.6294 0.485 5 0.056773 53.7297 0.515 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.955 8 0.094734 67.857 0.666 9 0.109255 72.7689 1.025 10 0.12434 77.4117 1.133	38
4 0.046609 47.6294 0.485 5 0.056773 53.7297 0.515 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.660 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132	53
5 0.056773 53.7297 0.513 6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.66 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132	36
6 0.069193 59.0218 0.700 7 0.084734 64.4092 0.959 8 0.094734 67.857 0.660 9 0.109255 72.7689 1.020 10 0.12434 77.4117 1.132	60
7 0.084734 64.4092 0.959 8 0.094734 67.857 0.66 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132	51
8 0.094734 67.857 0.666 9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132)2
9 0.109255 72.7689 1.02 10 0.12434 77.4117 1.132)1
10 0.12434 77.4117 1.132	3
	0
	27
11 0.134998 80.4077 0.84	0
12 0.144998 83.1036 0.81	76
13 0.159762 87.0642 1.256	52
14 0.169762 89.6952 0.883	38
15 0.179762 92.3263 0.910)1
16 0.191796 95.4763 1.130	00
17 0.201796 98.0415 0.96	76
18 0.211796 100.6067 0.993	32
19 0.21744 102.0546 0.57	9

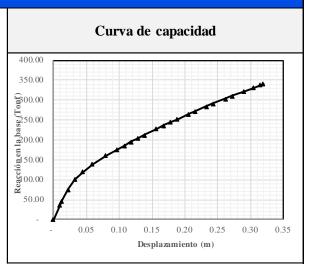

Valores máximos	
Desplazamiento (m):	0.2174
Reacción en la base (Tonf):	102.0546
Trabajo (Tonf-m):	14.5937

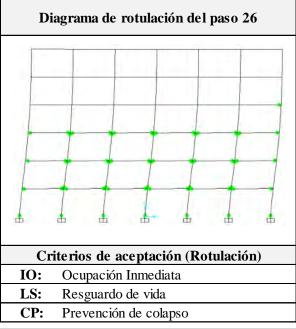


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	05 niveles y 05 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.006595	17.1952	0.0567
2	0.020936	44.4631	0.4421
3	0.033343	63.7011	0.6710
4	0.045152	75.8506	0.8240
5	0.064837	93.4652	1.6665
6	0.074976	101.6081	0.9889
7	0.084976	107.9368	1.0477
8	0.100604	117.803	1.7639
9	0.110718	124.1745	1.2237
10	0.127544	134.1427	2.1732
11	0.137544	139.9329	1.3704
12	0.150526	147.4108	1.8651
13	0.164745	155.1574	2.1511
14	0.174745	160.4776	1.5782
15	0.194161	170.7716	3.2158
16	0.212635	179.9394	3.2395
17	0.228031	187.3834	2.8277
18	0.247319	196.5335	3.7025
19	0.262691	203.5718	3.0752
20	0.265753	204.9635	0.6255
	_		

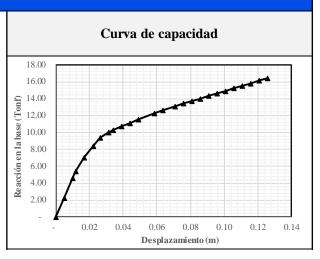

Valores máximos	
Desplazamiento (m):	0.2658
Reacción en la base (Tonf):	204.9635
Trabajo (Tonf-m):	34.5087

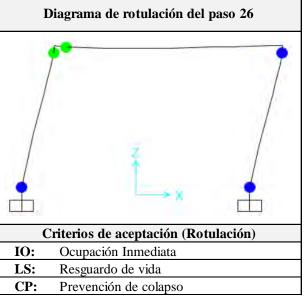


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Carbonatación	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009884	37.4304	0.1850
2	0.012312	46.5174	0.1019
3	0.022545	76.005	0.6269
4	0.032756	100.9714	0.9036
5	0.045093	120.6013	1.3668
6	0.059586	139.407	1.8842
7	0.079487	160.9024	2.9882
8	0.096275	175.94	2.8275
9	0.108672	186.5951	2.2472
10	0.118672	195.1808	1.9089
11	0.128672	203.7664	1.9947
12	0.138672	212.3519	2.0806
13	0.156847	227.6572	3.9986
14	0.168063	236.7428	2.6044
15	0.178063	244.5666	2.4065
16	0.188746	252.5771	2.6555
17	0.206063	264.9322	4.4809
18	0.216803	272.5497	2.8863
19	0.233454	284.1257	4.6346
20	0.243686	291.1373	2.9430
21	0.262088	303.5422	5.4716
22	0.272384	310.4293	3.1607
23	0.290167	321.9191	5.6225
24	0.305373	331.5827	4.9686
25	0.315373	337.8368	3.3471
26	0.319774	340.5897	1.4929

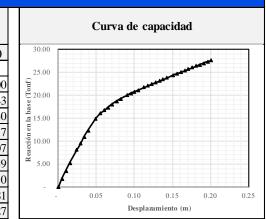

Valores máximos	
Desplazamiento (m):	0.3198
Reacción en la base (Tonf):	340.5897
Trabajo (Tonf-m):	69.7885

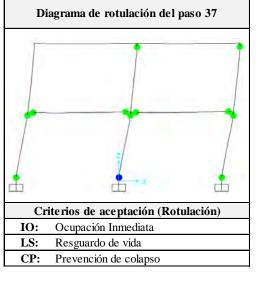


A. Sobre la investigación	
l'lesis•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

	_		
C. Resultad	os del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	, ,
1	0.0050	2.2763	0.0057
2	0.0100	4.5526	0.0171
3	0.0118	5.3933	0.0092
4	0.0168	7.0238	0.0310
5	0.0222	8.3855	0.0419
6	0.0262	9.3456	0.0349
7	0.0312	9.9687	0.0483
8	0.0339	10.3032	0.0272
9	0.0389	10.7084	0.0525
10	0.0439	11.1136	0.0546
11	0.0489	11.5188	0.0566
12	0.0583	12.2527	0.1120
13	0.0633	12.6279	0.0622
14	0.0706	13.1009	0.0939
15	0.0756	13.4012	0.0663
16	0.0806	13.7015	0.0678
17	0.0856	14.0019	0.0693
18	0.0906	14.3022	0.0708
19	0.0956	14.6025	0.0723
20	0.1006	14.9028	0.0738
21	0.1056	15.2031	0.0753
22	0.1106	15.5035	0.0768
23	0.1156	15.8038	0.0783
24	0.1206	16.1041	0.0798
25	0.1256	16.4044	0.0813
26	0.1299	16.6639	0.0714

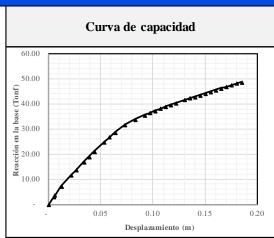

Valores máximos	
Desplazamiento (m):	0.1299
Reacción en la base (Tonf):	16.6639
Trabajo (Tonf-m):	1.5298

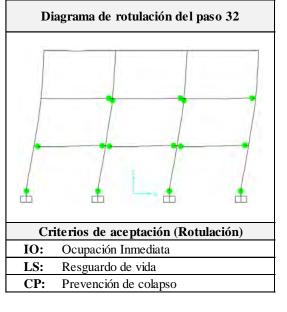


A. Sobre la investigación	
l'Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	02 niveles y 02 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

C. Resulta	dos del aná	lisis	
Desplaza Reacción , ,			
Paso	miento	en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0	1.87E-06	0.0000
2	0.004924	1.7347	0.0043
3	0.009924	3.4693	0.0130
4	0.014924	5.204	0.0217
5	0.024071	8.0634	0.0607
6	0.029071	9.4838	0.0439
7	0.034071	10.9043	0.0510
8	0.039071	12.3247	0.0581
9	0.048825	14.8782	0.1327
10	0.055185	16.0923	0.0985
11	0.060185	16.7181	0.0820
12	0.065185	17.344	0.0852
13	0.070185	17.9698	0.0883
14	0.076643	18.7251	0.1185
15	0.081643	19.2044	0.0948
16	0.089942	19.9452	0.1625
17	0.094942	20.3698	0.1008
18	0.099942	20.7503	0.1028
19	0.104942	21.1307	0.1047
20	0.112372	21.67	0.1590
21	0.117372	22.0244	0.1092
22	0.122372	22.3788	0.1110
23	0.127372	22.7332	0.1128
24	0.132372	23.0876	0.1146
25	0.137372	23.442	0.1163
26	0.142372	23.7963	0.1181
27	0.150658	24.3572	0.1995
28	0.155658	24.6851	0.1226
29	0.160658	25.0131	0.1242
30	0.165658	25.341	0.1259
31	0.170658	25.669	0.1275
32	0.175658	25.9969	0.1292
33	0.180658	26.3249	0.1308
34	0.185658	26.6528	0.1324
35	0.190658	26.9807	0.1341
36	0.195658	27.2965	0.1357
37	0.200598	27.6035	0.1356

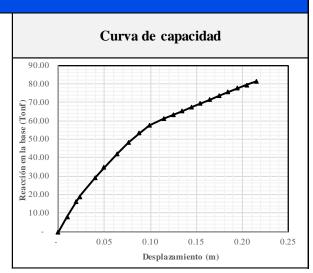

Valores máximos	
Desplazamiento (m):	0.2006
Reacción en la base (Tonf):	27.6035
Trabajo (Tonf-m):	3.7618

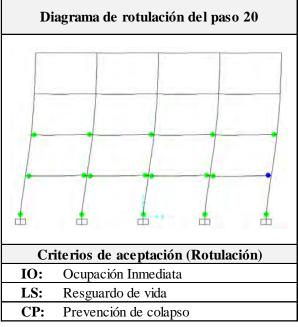


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

C Resulta	dos del aná	licis	
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	,
1	0.004876	3.0366	0.0074
2	0.005747	3.5656	0.0029
3	0.012106	7.1356	0.0340
4	0.021172	11.5565	0.0847
5	0.026172	13.673	0.0631
6	0.033847	16.9071	0.1174
7	0.038847	18.9905	0.0897
8	0.043847	21.0739	0.1002
9	0.053445	24.8666	0.2205
10	0.058445	26.7435	0.1290
11	0.063445	28.6204	0.1384
12	0.073209	31.664	0.2943
13	0.082761	33.7611	0.3125
14	0.092073	35.4535	0.3223
15	0.097073	36.3371	0.1795
16	0.102073	37.2207	0.1839
17	0.107073	38.1044	0.1883
18	0.112292	38.9695	0.2011
19	0.117292	39.6738	0.1966
20	0.122292	40.3781	0.2001
21	0.130064	41.461	0.3180
22	0.135064	42.1534	0.2090
23	0.140064	42.8219	0.2124
24	0.145064	43.4904	0.2158
25	0.150064	44.1588	0.2191
26	0.155064	44.822	0.2225
27	0.160064	45.4851	0.2258
28	0.165064	46.1483	0.2291
29	0.170064	46.7783	0.2323
30	0.175064	47.4084	0.2355
31	0.180064	48.0183	0.2386
32	0.185064	48.6282	0.2416

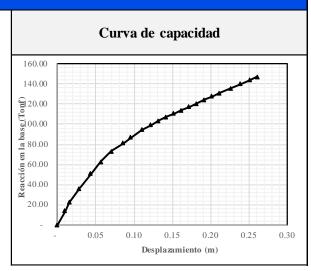

Valores máximos	
Desplazamiento (m):	0.1851
Reacción en la base (Tonf):	48.6282
Trabajo (Tonf-m):	5.8655

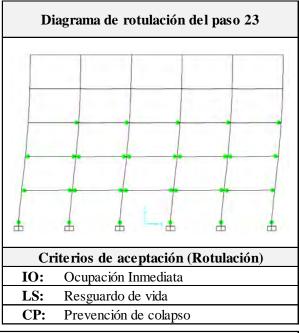


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	9
1	0.009786	8.1926	0.0401
2	0.019786	16.3852	0.1229
3	0.023199	19.0806	0.0605
4	0.039749	29.181	0.3994
5	0.049749	34.8555	0.3202
6	0.064053	42.3479	0.5522
7	0.076464	48.4504	0.5634
8	0.08804	53.6339	0.5909
9	0.09905	57.5758	0.6122
10	0.114862	61.3791	0.9405
11	0.124862	63.4288	0.6240
12	0.134862	65.4786	0.6445
13	0.144862	67.5283	0.6650
14	0.154862	69.578	0.6855
15	0.164862	71.6276	0.7060
16	0.174862	73.6773	0.7265
17	0.184862	75.7213	0.7470
18	0.195403	77.7976	0.8091
19	0.205743	79.7188	0.8144
20	0.215593	81.3977	0.7935

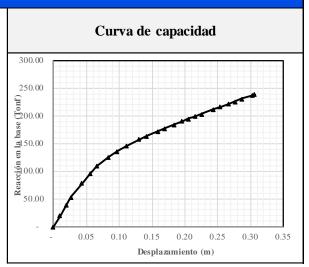

Valores máximos	
Desplazamiento (m):	0.2156
Reacción en la base (Tonf):	81.3977
Trabajo (Tonf-m):	11.4179

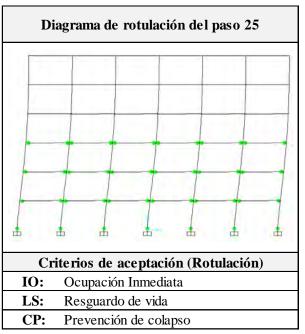


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009782	14.0183	0.0686
2	0.015632	22.2191	0.1060
3	0.028299	36.3029	0.3706
4	0.043328	50.7043	0.6538
5	0.056707	62.7841	0.7592
6	0.070579	73.0801	0.9424
7	0.085854	81.3658	1.1796
8	0.095854	86.7744	0.8407
9	0.110267	94.2632	1.3046
10	0.122038	99.4304	1.1400
11	0.132038	103.6672	1.0155
12	0.142038	107.0839	1.0538
13	0.152038	110.5006	1.0879
14	0.162038	113.9172	1.1221
15	0.172038	117.3338	1.1563
16	0.182038	120.7504	1.1904
17	0.192038	124.167	1.2246
18	0.202038	127.5835	1.2588
19	0.212038	130.9968	1.2929
20	0.226565	135.9455	1.9389
21	0.23923	140.1764	1.7485
22	0.251304	143.9663	1.7154
23	0.260945	146.9803	1.4025

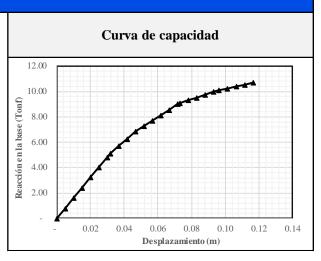

Valores máximos	
Desplazamiento (m):	0.2609
Reacción en la base (Tonf):	146.9803
Trabajo (Tonf-m):	24.5730



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009703	19.5226	0.0947
2	0.019703	39.0451	0.2928
3	0.026885	53.0671	0.3308
4	0.043148	78.7264	1.0717
5	0.055584	95.5696	1.0838
6	0.066258	109.2557	1.0932
7	0.084303	125.5632	2.1187
8	0.097116	135.7114	1.6739
9	0.111329	145.601	1.9991
10	0.13106	157.9356	2.9945
11	0.142379	163.7461	1.8206
12	0.15997	172.6627	2.9589
13	0.16997	177.6966	1.7518
14	0.18421	184.739	2.5805
15	0.195973	190.0552	2.2044
16	0.205973	194.556	1.9231
17	0.215973	199.0567	1.9681
18	0.225973	203.5574	2.0131
19	0.244512	211.8764	3.8509
20	0.254512	216.3524	2.1411
21	0.267024	221.9384	2.7419
22	0.277024	226.2683	2.2410
23	0.287024	230.5982	2.2843
24	0.303203	237.4328	3.7861
25	0.306432	238.7537	0.7688

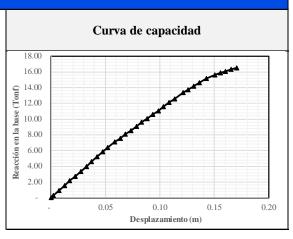

Valores máximos	
Desplazamiento (m):	0.3064
Reacción en la base (Tonf):	238.7537
Trabajo (Tonf-m):	47.7877

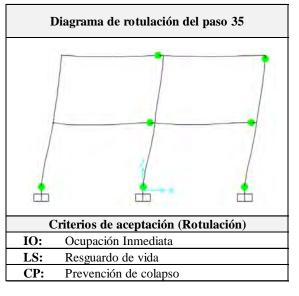


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0049	0.8034	0.0020
2	0.0099	1.6068	0.0060
3	0.0149	2.4102	0.0100
4	0.0199	3.2136	0.0141
5	0.0249	4.0170	0.0181
6	0.0299	4.8204	0.0221
7	0.0318	5.1212	0.0093
8	0.0368	5.6961	0.0270
9	0.0418	6.2711	0.0299
10	0.0468	6.8460	0.0328
11	0.0518	7.2756	0.0353
12	0.0568	7.7051	0.0375
13	0.0618	8.1347	0.0396
14	0.0668	8.5643	0.0417
15	0.0718	8.9939	0.0439
16	0.0728	9.0786	0.0089
17	0.0778	9.2973	0.0459
18	0.0828	9.5160	0.0470
19	0.0878	9.7346	0.0481
20	0.0928	9.9533	0.0492
21	0.0963	10.1063	0.0351
22	0.1013	10.2482	0.0509
23	0.1063	10.3901	0.0516
24	0.1113	10.5320	0.0523
25	0.1163	10.6739	0.0530
26	0.1213	10.8159	0.0537
27	0.1263	10.9578	0.0544
28	0.128951	11.0341	0.0296

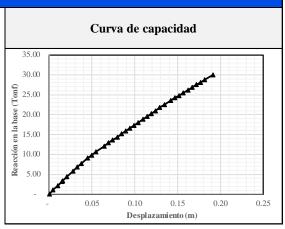

Valores máximos	
Desplazamiento (m):	0.1290
Reacción en la base (Tonf):	11.0341
Trabajo (Tonf-m):	0.9492



A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	02 niveles y 02 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación natológica:	Moderado

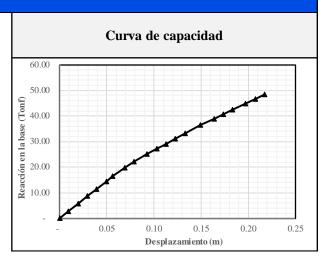
C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0023	0.3061	0.0003
2	0.0073	0.9184	0.0031
3	0.0123	1.5306	0.0061
4	0.0173	2.1429	0.0092
5	0.0223	2.7551	0.0122
6	0.0273	3.3674	0.0153
7	0.0323	3.9797	0.0184
8	0.0373	4.5919	0.0214
9	0.0423	5.2042	0.0245
10	0.0473	5.8164	0.0276
11	0.0523	6.4287	0.0306
12	0.0584	7.0667	0.0413
13	0.0634	7.5681	0.0366
14	0.0684	8.0694	0.0391
15	0.0734	8.5708	0.0416
16	0.0784	9.0722	0.0441
17	0.0834	9.5735	0.0466
18	0.0884	10.0749	0.0491
19	0.0934	10.5762	0.0516
20	0.0984	11.0776	0.0541
21	0.1034	11.5789	0.0566
22	0.1084	12.0803	0.0591
23	0.1134	12.5816	0.0617
24	0.1211	13.3311	0.0998
25	0.1261	13.7556	0.0677
26	0.1311	14.1800	0.0698
27	0.1361	14.6045	0.0720
28	0.142972	15.1195	0.1021
29	0.150533	15.6236	0.1162
30	0.155533	15.8437	0.0787
31	0.160533	16.0639	0.0798
32	0.165533	16.284	0.0809
33	0.170533	16.5042	0.0820
34	0.175533	16.7243	0.0831
35	0.179768	16.9108	0.0712

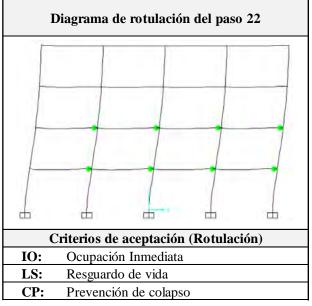

Valores máximos	
Desplazamiento (m):	0.1798
Reacción en la base (Tonf):	16.9108
Trabajo (Tonf-m):	1.7535

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación natológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0046	1.0718	0.0025
2	0.0096	2.1436	0.0080
3	0.0146	3.2154	0.0134
4	0.0157	3.4459	0.0036
5	0.0207	4.4655	0.0198
6	0.0276	5.8217	0.0354
7	0.0326	6.7942	0.0315
8	0.0376	7.7367	0.0363
9	0.0448	9.0642	0.0606
10	0.0498	9.8686	0.0473
11	0.0548	10.6730	0.0514
12	0.0643	12.1405	0.1081
13	0.0693	12.8873	0.0626
14	0.0743	13.6341	0.0663
15	0.0793	14.3809	0.0700
16	0.0843	15.1219	0.0738
17	0.0893	15.8630	0.0775
18	0.0943	16.5981	0.0812
19	0.0993	17.3332	0.0848
20	0.1043	18.0684	0.0885
21	0.1093	18.8035	0.0922
22	0.1143	19.5386	0.0959
23	0.1193	20.2737	0.0995
24	0.1243	21.0089	0.1032
25	0.1293	21.7440	0.1069
26	0.1343	22.4791	0.1106
27	0.1419	23.5278	0.1755
28	0.146921	24.1901	0.1193
29	0.151921	24.8523	0.1226
30	0.156921	25.5145	0.1259
31	0.161921	26.1767	0.1292
32	0.166921	26.8389	0.1325
33	0.171921	27.5011	0.1358
34	0.176921	28.1633	0.1392
35	0.181921	28.8256	0.1425
36	0.191141	29.9175	0.2708

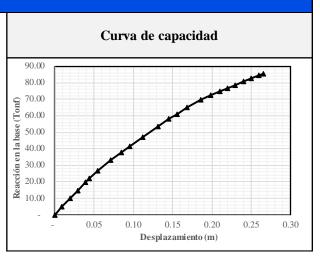

Valores máximos	
Desplazamiento (m):	0.1911
Reacción en la base (Tonf):	29.9175
Trabaio (Tonf-m):	3 1241

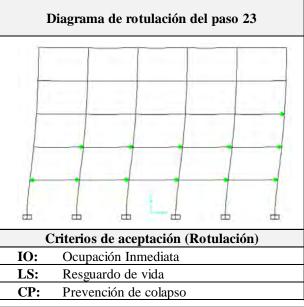


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0094	2.8916	0.0136
2	0.0194	5.7832	0.0434
3	0.0294	8.6748	0.0723
4	0.0394	11.5665	0.1012
5	0.0494	14.4581	0.1301
6	0.0562	16.4350	0.1056
7	0.0687	19.8282	0.2262
8	0.0787	22.2061	0.2102
9	0.0928	25.1157	0.3340
10	0.1028	27.1186	0.2612
11	0.1128	29.1216	0.2812
12	0.1228	31.1246	0.3012
13	0.1328	33.1275	0.3213
14	0.1494	36.3741	0.5775
15	0.1635	38.9530	0.5299
16	0.1735	40.7712	0.3986
17	0.1835	42.5893	0.4168
18	0.1973	44.9873	0.6022
19	0.2073	46.7029	0.4585
20	0.2173	48.4186	0.4756
21	0.2273	50.1343	0.4928
22	0.2370	51.7320	0.4946

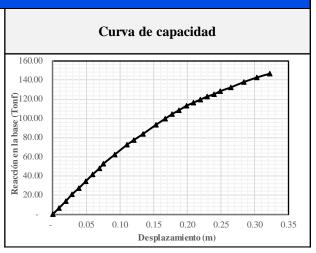

Valores máximos	
Desplazamiento (m):	0.2370
Reacción en la base (Tonf):	51.7320
Trabajo (Tonf-m):	6.8479

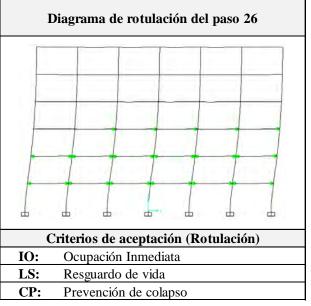


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Moderado

C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0094	4.9478	0.0232
2	0.0194	9.8957	0.0742
3	0.0294	14.8435	0.1237
4	0.0394	19.7913	0.1732
5	0.0438	21.9792	0.0923
6	0.0546	26.7969	0.2640
7	0.0716	33.1435	0.5083
8	0.0852	37.9539	0.4822
9	0.0952	41.3608	0.3966
10	0.1119	47.0049	0.7417
11	0.1313	53.4168	0.9720
12	0.1455	57.9647	0.7915
13	0.1555	61.0723	0.5952
14	0.1683	65.0221	0.8085
15	0.1860	69.6648	1.1864
16	0.1983	72.5479	0.8798
17	0.2101	74.8565	0.8661
18	0.2201	76.7656	0.7581
19	0.2301	78.6747	0.7772
20	0.2401	80.5839	0.7963
21	0.2501	82.4930	0.8154
22	0.2601	84.4021	0.8345
23	0.2657	85.4827	0.4808

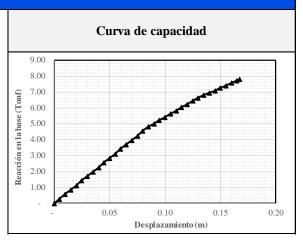

Valores máximos	
Desplazamiento (m):	0.2657
Reacción en la base (Tonf):	85.4827
Trabajo (Tonf-m):	13.4411

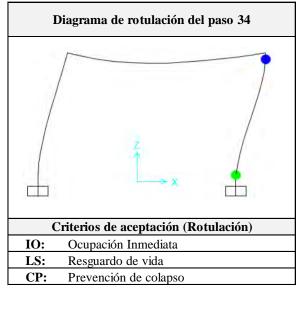


A. Sobre la investigación	
l'legig•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0092	6.8906	0.0316
2	0.0192	13.7811	0.1034
3	0.0292	20.6717	0.1723
4	0.0392	27.5623	0.2412
5	0.0492	34.4529	0.3101
6	0.0592	41.3434	0.3790
7	0.0692	48.2340	0.4479
8	0.0755	52.6231	0.3212
9	0.0917	62.6612	0.9320
10	0.1102	72.3625	1.2469
11	0.1202	77.5101	0.7494
12	0.1336	84.0331	1.0863
13	0.1532	93.3449	1.7385
14	0.1670	99.6380	1.3259
15	0.1770	104.1801	1.0191
16	0.1870	108.6548	1.0634
17	0.1992	113.4120	1.3573
18	0.2092	116.8135	1.1511
19	0.2192	119.6213	1.1822
20	0.2292	122.4292	1.2103
21	0.2392	125.2370	1.2383
22	0.2492	128.0448	1.2664
23	0.2648	132.3937	2.0288
24	0.2840	137.6085	2.6008
25	0.3033	142.3231	2.6980
26	0.3224	146.6115	2.7642

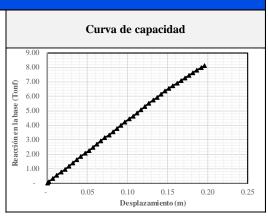

Valores máximos	
Desplazamiento (m):	0.3224
Reacción en la base (Tonf):	146.6115
Trabajo (Tonf-m):	28.6653

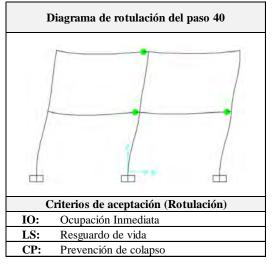


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Ciclos de hielo-deshielo	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0047	0.2836	0.0007
2	0.0097	0.5671	0.0021
3	0.0147	0.8507	0.0035
4	0.0197	1.1342	0.0050
5	0.0247	1.4178	0.0064
6	0.0297	1.7014	0.0078
7	0.0347	1.9849	0.0092
8	0.0397	2.2685	0.0106
9	0.0447	2.5520	0.0121
10	0.0497	2.8356	0.0135
11	0.0547	3.1192	0.0149
12	0.0597	3.4027	0.0163
13	0.0647	3.6863	0.0177
14	0.0697	3.9699	0.0191
15	0.0747	4.2534	0.0206
16	0.0797	4.5370	0.0220
17	0.0847	4.8205	0.0234
18	0.0897	5.0233	0.0246
19	0.0947	5.2261	0.0256
20	0.0997	5.4289	0.0266
21	0.1047	5.6317	0.0277
22	0.1097	5.8345	0.0287
23	0.1147	6.0373	0.0297
24	0.1197	6.2401	0.0307
25	0.1247	6.4428	0.0317
26	0.1297	6.6456	0.0327
27	0.1347	6.7972	0.0336
28	0.139733	6.9487	0.0344
29	0.144733	7.1002	0.0351
30	0.149733	7.2518	0.0359
31	0.154733	7.4033	0.0366
32	0.159733	7.5549	0.0374
33	0.164733	7.7064	0.0382
34	0.167189	7.7808	0.0190

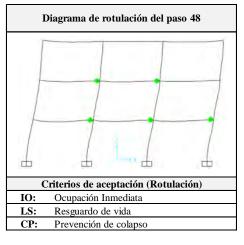



Valores máximos	
Desplazamiento (m):	0.1672
Reacción en la base (Tonf):	7.7808
Trabajo (Tonf-m):	0.7330

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	02 niveles y 02 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Severo

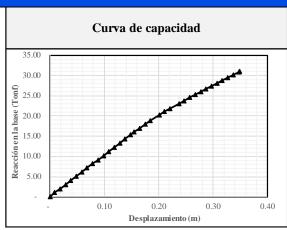
C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0019	0.1080	0.0001
2	0.0069	0.3241	0.0011
3	0.0119	0.5402	0.0022
4	0.0169	0.7563	0.0032
5	0.0219	0.9724	0.0043
6	0.0269	1.1885	0.0054
7	0.0319	1.4046	0.0065
8	0.0369	1.6207	0.0076
9	0.0419	1.8368	0.0086
10	0.0469	2.0529	0.0097
11	0.0519	2.2690	0.0108
12	0.0569	2.4851	0.0119
13	0.0619	2.7012	0.0130
14	0.0669	2.9173	0.0140
15	0.0719	3.1334	0.0151
16	0.0769	3.3495	0.0162
17	0.0819	3.5656	0.0173
18	0.0869	3.7817	0.0184
19	0.0919	3.9978	0.0194
20	0.0969	4.2139	0.0205
21	0.1019	4.4300	0.0216
22	0.1069	4.6461	0.0227
23	0.1119	4.8622	0.0238
24		5.0783	0.0249
25	0.1219	5.2944	0.0259
26	0.1269	5.5105	0.0270
27	0.1319	5.7266	0.0281
28	0.136887	5.9427	0.0292
29	0.141887	6.1588	0.0303
30	0.146887	6.3749	0.0313
31	0.151887	6.5517	0.0323
32	0.156887	6.7286	0.0332
33	0.161887	6.9055	0.0341
34	0.166887	7.0824	0.0350
35	0.171887	7.2592	0.0359
36	0.176887	7.4361	0.0367
37	0.181887	7.613	0.0376
38	0.186887	7.7898	0.0385
39	0.191887	7.9667	0.0394
40	0.196603	8.1335	0.0380

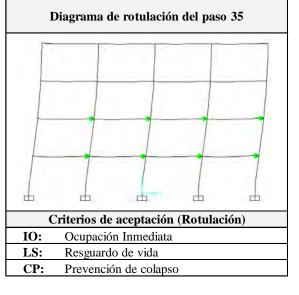

Valores máximos	
Desplazamiento (m):	0.1966
Reacción en la base (Tonf):	8.1335
Trabajo (Tonf-m):	0.8308

A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Severo

C. Resultados del análisis			
	Desplazam	Reacción	
Paso	iento	en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	(10111-111)
1	0.0040	0.3783	0.0008
2	0.0040	0.7566	0.0028
3	0.0140	1.1349	0.0028
4	0.0190	1.5132	0.0066
5	0.0240	1.8915	0.0085
6	0.0290	2.2698	0.0104
7	0.0340	2.6480	0.0123
8	0.0390	3.0263	0.0142
9	0.0423	3.2756	0.0104
10	0.0473	3.6354	0.0173
11	0.0523	3.9953	0.0191
12	0.0573	4.3551	0.0209
13	0.0664	4.9929	0.0425
13	0.0004	5.3361	0.0423
15	0.0764	5.6794	0.0275
16	0.0814	6.0226	0.0293
17	0.0864	6.3659	0.0310
18	0.0914	6.6985	0.0327
19	0.0964	7.0312	0.0343
20	0.1014	7.3638	0.0360
21	0.1064	7.6965	0.0377
22	0.1114	8.0181	0.0393
23	0.1164	8.3397	0.0409
24	0.1214	8.6613	0.0425
25	0.1264	8.9829	0.0441
26	0.1314	9.2669	0.0456
27	0.1364	9.5508	0.0470
28	0.141387	9.8347	0.0485
29	0.146387	10.1187	0.0499
30	0.151387	10.4026	0.0513
31	0.156387	10.6866	0.0527
32	0.161387	10.9705	0.0541
33	0.166387	11.2341	0.0555
34	0.171387	11.4976	0.0568
35	0.176387	11.7612	0.0581
36	0.181387	12.0247	0.0595
37	0.186387	12.2883	0.0608
38	0.191387	12.5519	0.0621
39	0.196387	12.8154	0.0634
40	0.201387	13.079	0.0647
41	0.206387	13.3425	0.0661
42	0.211387	13.604	0.0674
43	0.216387	13.8656	0.0687
44	0.221387	14.1271	0.0700
45	0.226387	14.3886	0.0713
46	0.231387	14.6501	0.0726
47	0.236387	14.9117	0.0739
48	0.241387	15.1732	0.0752
40	0.2+1307	13.1/32	0.0732

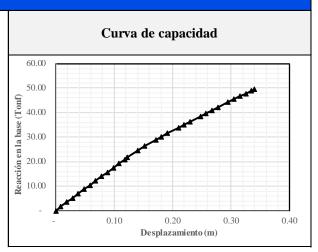

Valores máximos	
Desplazamiento (m):	0.2414
Reacción en la base (Tonf):	15.1732
Trabajo (Tonf-m):	1.9867

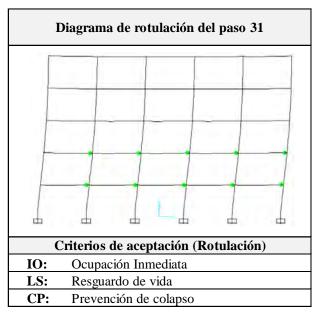


A. Sobre la investigación	
l'Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación natológica:	Severo

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0083	1.0206	0.0042
2	0.0183	2.0412	0.0153
3	0.0283	3.0618	0.0255
4	0.0383	4.0824	0.0357
5	0.0483	5.1030	0.0459
6	0.0583	6.1236	0.0561
7	0.0683	7.1442	0.0663
8	0.0783	8.1648	0.0765
9	0.0883	9.1855	0.0868
10	0.0983	10.2061	0.0970
11	0.1083	11.2267	0.1072
12	0.1183	12.2473	0.1174
13	0.1283	13.2679	0.1276
14	0.1383	14.2885	0.1378
15	0.1483	15.3091	0.1480
16	0.1550	15.9924	0.1048
17	0.1650	16.9765	0.1648
18	0.1750	17.9606	0.1747
19	0.1850	18.8691	0.1841
20	0.2006	20.2179	0.3051
21	0.2106	21.0571	0.2064
22	0.2206	21.8962	0.2148
23	0.2371	23.1097	0.3705
24		23.8166	0.2346
25	0.2571	24.5234	0.2417
26	0.2671	25.2303	0.2488
27	0.2771	25.9371	0.2558
28	0.287057	26.644	0.2629
29		27.3508	0.2700
30	0.307057	28.0577	0.2770
31	0.317057	28.7645	0.2841
32	0.327057	29.4714	0.2912
33		30.1782	0.2982
34		30.885	0.3053
35	0.349536	31.0603	0.0768

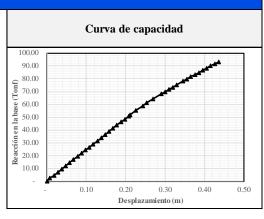

Valores máximos	
Desplazamiento (m):	0.3495
Reacción en la base (Tonf):	31.0603
Trabajo (Tonf-m):	5.9190

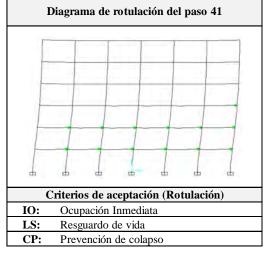


A. Sobre la investigación	
Tesis: Degradación de la capacidad estructural de pórticos de concre armado afectados por deterioros patológicos	
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación natológica:	Severo

I and a second s			
C. Resultad	os del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0083	1.7464	0.0072
2	0.0183	3.4927	0.0262
3	0.0283	5.2391	0.0437
4	0.0383	6.9854	0.0611
5	0.0483	8.7318	0.0786
6	0.0583	10.4781	0.0960
7	0.0683	12.2245	0.1135
8	0.0783	13.9708	0.1310
9	0.0883	15.7172	0.1484
10	0.0983	17.4636	0.1659
11	0.1083	19.2099	0.1834
12	0.1183	20.9563	0.2008
13	0.1222	21.6376	0.0831
14	0.1403	24.6115	0.4185
15	0.1523	26.3807	0.3075
16	0.1710	28.9216	0.5169
17	0.1810	30.2160	0.2957
18	0.1910	31.5104	0.3086
19	0.2098	33.9172	0.6148
20	0.2198	35.1859	0.3455
21	0.2298	36.4154	0.3580
22	0.2475	38.5653	0.6638
23	0.2575	39.7678	0.3917
24	0.2675	40.9702	0.4037
25	0.2775	42.1727	0.4157
26	0.2951	44.2662	0.7620
27	0.3051	45.4420	0.4485
28	0.315135	46.6178	0.4603
29	0.325135	47.7936	0.4721
30	0.335135	48.9694	0.4838
31	0.340466	49.5892	0.2627

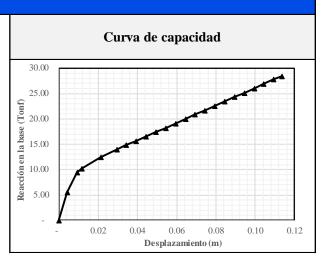



Valores máximos	
Desplazamiento (m):	0.3405
Reacción en la base (Tonf):	49.5892
Trabajo (Tonf-m):	9.2688

A. Sobre la investigación	
Tesis: Degradación de la capacidad estructural de pórticos de concarmado afectados por deterioros patológicos	
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Ciclos de hielo-deshielo
Grado de afectación patológica:	Severo

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0076	2.4321	0.0093
2	0.0176	4.8641	0.0365
3	0.0276	7.2962	0.0608
4	0.0376	9.7282	0.0851
5	0.0476	12.1603	0.1094
6	0.0576	14.5923	0.1338
7	0.0676	17.0244	0.1581
8	0.0776	19.4564	0.1824
9	0.0876	21.8885	0.2067
10	0.0976	24.3206	0.2310
11	0.1076	26.7526	0.2554
12	0.1176	29.1847	0.2797
13	0.1276	31.6167	0.3040
14	0.1376	34.0488	0.3283
15	0.1476	36.4808	0.3526
16	0.1576	38.9129	0.3770
17	0.1676	41.3449	0.4013
18	0.1776	43.7770	0.4256
19	0.1876	46.2091	0.4499
20	0.1976	48.6411	0.4743
21	0.2076	51.0732	0.4986
22	0.2114	51.9920	0.1947
23	0.2259	55.3789	0.7769
24	0.2429	59.0561	0.9762
25	0.2529	61.1269	0.6009
26	0.2701	64.4326	1.0805
27	0.2899	68.0672	1.3073
28	0.29987	69.8838	0.6898
29	0.30987	71.7004	0.7079
30	0.31987	73.517	0.7261
31	0.32987	75.3336	0.7443
32	0.345692	78.1506	1.2142
33	0.355692	79.8532	0.7900
34	0.365692	81.5559	0.8070
35	0.375692	83.2585	0.8241
36	0.385692	84.9611	0.8411
37	0.395692	86.6638	0.8581
38	0.405692	88.3492	0.8751
39	0.415692	90.0008	0.8918
40	0.425692	91.6523	0.9083
41	0.435692	93.3039	0.9248

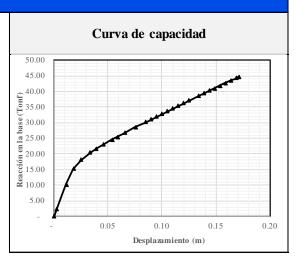

Valores máximos	
Desplazamiento (m):	0.4357
Reacción en la base (Tonf):	93.3039
Trabajo (Tonf-m):	22.0988

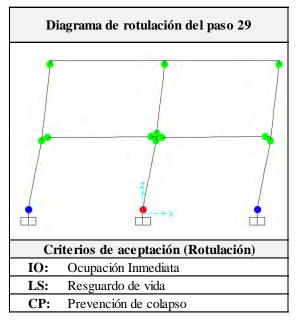
A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Corrosión
Grado de afectación patológica:	Leve

C. Resultad	os del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0043	5.5500	0.0119
2	0.0093	9.4920	0.0380
3	0.0114	10.2232	0.0202
4	0.0212	12.4203	0.1113
5	0.0293	13.9383	0.1061
6	0.0343	14.8013	0.0718
7	0.0393	15.6644	0.0762
8	0.0443	16.5274	0.0805
9	0.0493	17.3905	0.0848
10	0.0543	18.2535	0.0891
11	0.0593	19.1166	0.0934
12	0.0643	19.9796	0.0977
13	0.0693	20.8427	0.1021
14	0.0743	21.7057	0.1064
15	0.0793	22.5687	0.1107
16	0.0843	23.4318	0.1150
17	0.0893	24.2948	0.1193
18	0.0943	25.1579	0.1236
19	0.0993	26.0209	0.1279
20	0.1043	26.8840	0.1323
21	0.1093	27.7470	0.1366
22	0.1134	28.4511	0.1146

D	Diagrama de rotulación del paso 22
	Z
C	riterios de aceptación (Rotulación)
IO:	Ocupación Inmediata
LS:	Resguardo de vida
CP:	Prevención de colapso

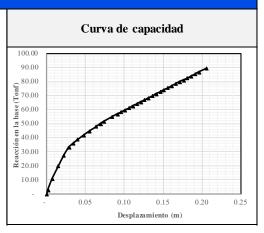

Valores máximos	
Desplazamiento (m):	0.1134
Reacción en la base (Tonf):	28.4511
Trabajo (Tonf-m):	2.0696

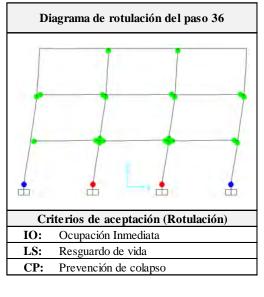


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Leve	

C. Resulta	dos del aná	lisis	
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.002473	2.4574	0.0030
2	0.011275	10.2194	0.0558
3	0.017752	15.1979	0.0823
4	0.025058	18.0903	0.1216
5	0.033384	20.3709	0.1601
6	0.039064	21.6247	0.1193
7	0.045274	22.9045	0.1383
8	0.053582	24.5177	0.1970
9	0.058582	25.4583	0.1249
10	0.065407	26.7299	0.1781
11	0.075274	28.5248	0.2726
12	0.084928	30.2051	0.2835
13	0.089928	31.0562	0.1532
14	0.094928	31.9072	0.1574
15	0.099928	32.7582	0.1617
16	0.104928	33.6092	0.1659
17	0.109928	34.4603	0.1702
18	0.114928	35.3113	0.1744
19	0.119928	36.1623	0.1787
20	0.124928	37.0133	0.1829
21	0.133579	38.4662	0.3265
22	0.138579	39.2977	0.1944
23	0.143579	40.1293	0.1986
24	0.148579	40.9608	0.2027
25	0.153579	41.7923	0.2069
26	0.158579	42.6238	0.2110
27	0.163579	43.4553	0.2152
28	0.168579	44.2868	0.2194
29	0.170756	44.6488	0.0968

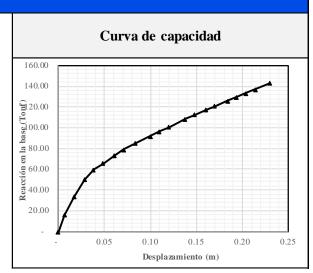

Valores máximos	
Desplazamiento (m):	0.1708
Reacción en la base (Tonf):	44.6488
Trabajo (Tonf-m):	4,9523

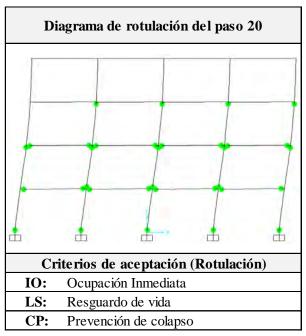


A. Sobre la investigación	
lTesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Leve	

Paso Desplaza Reacción miento en la base Trabaj	
miento en la base	
(#) (m) (Tank (Tank	_
(#) (m) (Tonf) (Tonf-r	n)
0 0 0	
1 0.001564 2.766 0.00)22
2 0.006823 10.497 0.03	349
3 0.014547 19.6532 0.11	164
4 0.021793 27.6227 0.17	713
5 0.028603 33.3009 0.20)74
6 0.034433 36.2627 0.20)28
7 0.039699 38.7503 0.19	975
8 0.047857 42.0451 0.32	296
9 0.055018 44.8057 0.31	110
10 0.063261 47.9366 0.38	322
11 0.069082 49.9768 0.28	350
12 0.074082 51.721 0.25	542
13 0.083568 54.8758 0.50)56
14 0.090919 57.0127 0.41	112
15 0.095919 58.4495 0.28	387
16 0.100919 59.8862 0.29	958
17 0.105919 61.323 0.30)30
18 0.110919 62.7533 0.31	102
19 0.115919 64.1836 0.31	173
20 0.120919 65.6139 0.32	245
21 0.125919 67.0442 0.33	316
22 0.130919 68.4745 0.33	388
23 0.135919 69.9048 0.34	159
24 0.140919 71.3351 0.35	531
25 0.145919 72.7361 0.36	502
26 0.150919 74.137 0.36	572
27 0.155919 75.5379 0.37	742
28 0.160919 76.9388 0.38	12
29 0.165919 78.3397 0.38	82
30 0.170919 79.7407 0.39	52
31 0.175919 81.1416 0.402	22
32 0.180919 82.5425 0.409	_
33 0.185919 83.9434 0.410	_
34 0.190919 85.3286 0.42	_
35 0.195919 86.7137 0.430	_
36 0.205288 89.2768 0.824	44

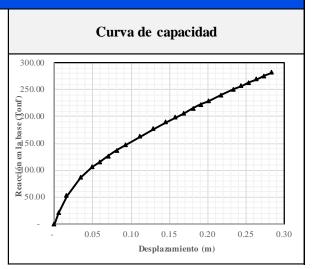

Valores máximos		
Desplazamiento (m):	0.2053	
Reacción en la base (Tonf):	89.2768	
Trabajo (Tonf-m):	11.7918	

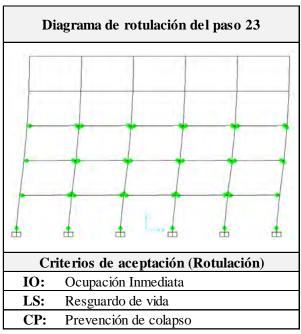


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.006764	15.8742	0.0537
2	0.01686	33.4631	0.2491
3	0.02843	50.0436	0.4831
4	0.038535	59.9373	0.5557
5	0.048535	65.7777	0.6286
6	0.060689	72.8719	0.8426
7	0.071096	78.8296	0.7894
8	0.08372	84.8028	1.0328
9	0.100099	92.1143	1.4489
10	0.110209	96.5499	0.9537
11	0.120209	100.8577	0.9870
12	0.138191	108.398	1.8814
13	0.148191	112.4997	1.1045
14	0.160384	117.1403	1.4000
15	0.170384	120.9384	1.1904
16	0.184256	126.1287	1.7137
17	0.194256	129.801	1.2796
18	0.204256	133.4733	1.3164
19	0.214256	137.1456	1.3531
20	0.229983	142.8825	2.2020

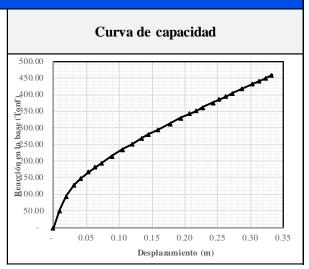

Valores máximos		
Desplazamiento (m):	0.2300	
Reacción en la base (Tonf):	142.8825	
Trabajo (Tonf-m):	21.4656	

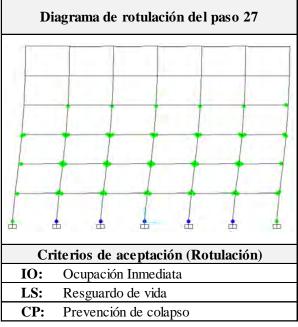


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	05 niveles y 05 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.005192	20.9277	0.0543
2	0.016348	52.9483	0.4121
3	0.034441	86.7343	1.2636
4	0.049409	105.9601	1.4421
5	0.059409	115.6856	1.1082
6	0.070351	126.3216	1.3240
7	0.081733	137.2748	1.5001
8	0.09252	146.9009	1.5327
9	0.111809	163.0966	2.9898
10	0.129495	177.2679	3.0098
11	0.145546	189.2923	2.9418
12	0.158463	198.7551	2.5062
13	0.168463	206.0628	2.0241
14	0.18128	215.2163	2.6998
15	0.19128	222.1767	2.1870
16	0.20128	229.0625	2.2562
17	0.218072	240.2756	3.9406
18	0.234315	250.7195	3.9876
19	0.244315	257.0865	2.5390
20	0.254315	263.4534	2.6027
21	0.264315	269.8202	2.6664
22	0.274315	276.1869	2.7300
23	0.284315	282.5535	2.7937
	_		

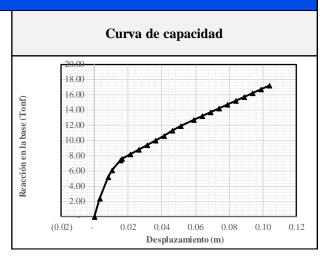

Valores máximos		
Desplazamiento (m):	0.2843	
Reacción en la base (Tonf):	282.5535	
Trabajo (Tonf-m):	50.5119	

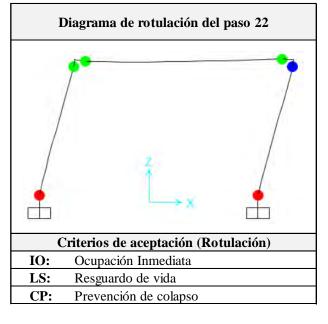


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.009223	51.5947	0.2379
2	0.019381	94.0199	0.7396
3	0.031041	127.2737	1.2901
4	0.041564	148.2612	1.4497
5	0.053343	167.6483	1.8605
6	0.063861	182.5414	1.8416
7	0.073861	195.3518	1.8895
8	0.089599	215.4425	3.2325
9	0.105212	235.0093	3.5165
10	0.119484	251.925	3.4748
11	0.135021	269.4965	4.0507
12	0.14563	280.9359	2.9198
13	0.159232	294.9457	3.9166
14	0.17768	313.6787	5.6140
15	0.194305	330.1418	5.3518
16	0.207679	342.885	4.5005
17	0.217679	352.3964	3.4764
18	0.227679	361.9077	3.5715
19	0.243177	376.5944	5.7227
20	0.253177	385.9954	3.8129
21	0.263177	395.3963	3.9070
22	0.273177	404.797	4.0010
23	0.286776	417.5266	5.5914
24	0.303196	432.3485	6.9775
25	0.313196	441.2943	4.3682
26	0.323196	450.24	4.4577
27	0.333196	459.1856	4.5471

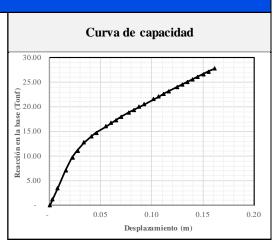

Valores máximos	
Desplazamiento (m):	0.3332
Reacción en la base (Tonf):	459.1856
Trabajo (Tonf-m):	96.3194

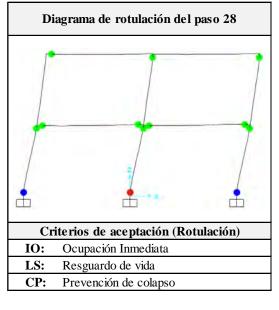


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Corrosión
Grado de afectación natológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0032	2.3719	0.0039
2	0.0082	5.1626	0.0188
3	0.0102	6.1357	0.0112
4	0.0152	7.3660	0.0338
5	0.0161	7.5810	0.0065
6	0.0211	8.1982	0.0394
7	0.0261	8.8153	0.0425
8	0.0311	9.4325	0.0456
9	0.0361	10.0496	0.0487
10	0.0411	10.6667	0.0518
11	0.0461	11.2838	0.0549
12	0.0511	11.9009	0.0580
13	0.0589	12.7373	0.0956
14	0.0639	13.2327	0.0649
15	0.0689	13.7281	0.0674
16	0.0739	14.2235	0.0699
17	0.0789	14.7189	0.0724
18	0.0839	15.2143	0.0748
19	0.0889	15.7096	0.0773
20	0.0939	16.2050	0.0798
21	0.0989	16.7003	0.0823
22	0.1039	17.1956	0.0847

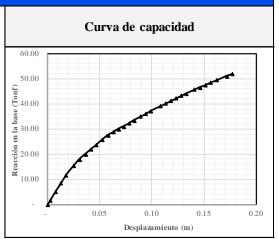

Valores máximos	
Desplazamiento (m):	0.1039
Reacción en la base (Tonf):	17.1956
Trabajo (Tonf-m):	1.1843

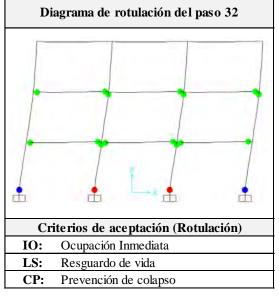


A. Sobre la investigación	
l'l'esis•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	7 -
1	0.002461	1.1491	0.0014
2	0.007461	3.4473	0.0115
3	0.015551	7.0528	0.0425
4	0.022281	9.7482	0.0565
5	0.027281	11.1028	0.0521
6	0.033171	12.709	0.0701
7	0.040486	13.9464	0.0975
8	0.045486	14.706	0.0716
9	0.054918	16.0246	0.1449
10	0.059918	16.6697	0.0817
11	0.064918	17.3148	0.0850
12	0.069918	17.9599	0.0882
13	0.077383	18.8196	0.1373
14	0.082383	19.3875	0.0955
15	0.087383	19.9555	0.0984
16	0.092383	20.5234	0.1012
17	0.101594	21.5485	0.1938
18	0.106594	22.0894	0.1091
19	0.111594	22.6304	0.1118
20	0.116594	23.1713	0.1145
21	0.124867	24.0438	0.1953
22	0.129867	24.5621	0.1215
23	0.134867	25.0805	0.1241
24	0.139867	25.5989	0.1267
25	0.144867	26.1173	0.1293
26	0.149867	26.6356	0.1319
27	0.154867	27.154	0.1345
28	0.160829	27.7612	0.1637

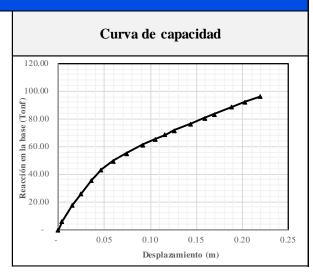

Valores máximos	
Desplazamiento (m):	0.1608
Reacción en la base (Tonf):	27.7612
Trabajo (Tonf-m):	2.8916

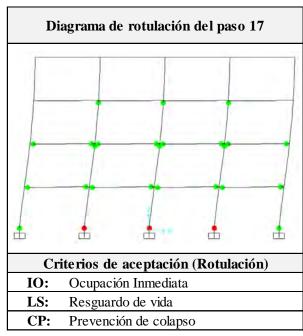


A. Sobre la investigación	
l'l'egig•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Corrosión
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.002444	1.6874	0.0021
2	0.007444	5.0578	0.0169
3	0.012444	8.4281	0.0337
4	0.017444	11.7331	0.0504
5	0.024961	15.5438	0.1025
6	0.030224	17.9806	0.0882
7	0.036094	19.9938	0.1115
8	0.041094	21.8242	0.1045
9	0.046094	23.6545	0.1137
10	0.052515	25.9052	0.1591
11	0.057874	27.4946	0.1431
12	0.062874	28.6976	0.1405
13	0.067874	29.9006	0.1465
14	0.072874	31.1037	0.1525
15	0.077874	32.3067	0.1585
16	0.082874	33.5097	0.1645
17	0.089093	34.979	0.2130
18	0.094093	36.0729	0.1776
19	0.099093	37.1922	0.1832
20	0.108116	39.1071	0.3442
21	0.113116	40.1569	0.1982
22	0.118116	41.2067	0.2034
23	0.123116	42.2565	0.2087
24	0.128116	43.2484	0.2138
25	0.133116	44.2149	0.2187
26	0.140711	45.6203	0.3411
27	0.145711	46.5338	0.2304
28	0.150711	47.4474	0.2350
29	0.155711	48.3609	0.2395
30	0.16232	49.5464	0.3235
31	0.171753	51.1064	0.4747
32	0.176753	51.9316	0.2576


Valores máximos	
Desplazamiento (m):	0.1768
Reacción en la base (Tonf):	51.9316
Trabajo (Tonf-m):	5.7507

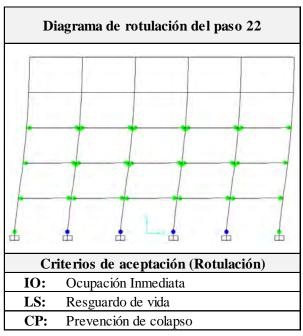


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.004295	6.1047	0.0131
2	0.015036	17.5127	0.1268
3	0.025036	26.2715	0.2189
4	0.03582	35.501	0.3331
5	0.046824	43.2753	0.4334
6	0.059774	49.7489	0.6023
7	0.074194	55.2418	0.7570
8	0.091792	61.2689	1.0252
9	0.106042	65.611	0.9040
10	0.116042	68.5803	0.6710
11	0.126042	71.5496	0.7006
12	0.144046	76.5984	1.3336
13	0.159465	80.7427	1.2130
14	0.169465	83.4082	0.8208
15	0.188588	88.4634	1.6434
16	0.203267	92.2916	1.3267
17	0.219341	96.3317	1.5160

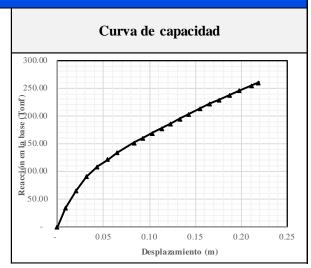
Valores máximos	
Desplazamiento (m):	0.2193
Reacción en la base (Tonf):	96.3317
Trabajo (Tonf-m):	13.6389



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Corrosión
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.003068	8.1151	0.0124
2	0.013542	27.8165	0.1882
3	0.026653	49.2588	0.5053
4	0.037015	60.8489	0.5705
5	0.047376	70.8866	0.6825
6	0.061722	82.6776	1.1015
7	0.074886	93.2284	1.1578
8	0.084886	99.5741	0.9640
9	0.095991	106.5319	1.1444
10	0.107296	113.1126	1.2415
11	0.117296	118.9029	1.1601
12	0.127296	124.6931	1.2180
13	0.137296	130.4831	1.2759
14	0.147296	136.273	1.3338
15	0.158331	142.5918	1.5386
16	0.168331	147.96	1.4528
17	0.188291	158.6402	3.0599
18	0.208096	168.6261	3.2408
19	0.219174	174.0311	1.8980
20	0.236636	182.4052	3.1120
21	0.246636	187.1772	1.8479
22	0.25482	191.0824	1.5478

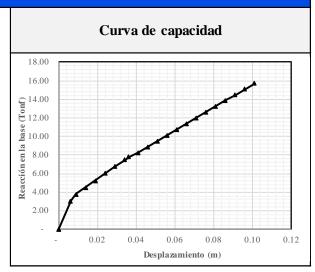

Valores máximos	
Desplazamiento (m):	0.2548
Reacción en la base (Tonf):	191.0824
Trabajo (Tonf-m):	30.2536

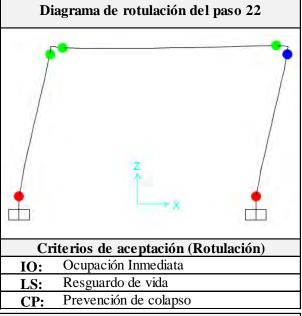
A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Corrosión
Grado de afectación natológica:	Moderado

01440 40 4		atorogreui	
C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.008885	33.6891	0.1497
2	0.020208	64.8379	0.5578
3	0.031347	90.1301	0.8631
4	0.043556	108.1879	1.2106
5	0.054719	121.7184	1.2832
6	0.06471	133.7575	1.2762
7	0.083435	151.6382	2.6720
8	0.093435	160.2909	1.5596
9	0.103435	168.9433	1.6462
10	0.113435	177.5955	1.7327
11	0.123435	186.2475	1.8192
12	0.133435	194.8992	1.9057
13	0.143435	203.5507	1.9922
14	0.155777	213.937	2.5763
15	0.166232	222.1419	2.2796
16	0.176232	229.6371	2.2589
17	0.187998	238.1704	2.7521
18	0.197998	245.324	2.4175
19	0.211623	255.034	3.4087
20	0.218898	260.1029	1.8738
•			

Valores máximos	
Desplazamiento (m):	0.2189
Reacción en la base (Tonf):	260.1029
Trabajo (Tonf-m):	36.2353




Instrumento metodológicos de recolección de datos

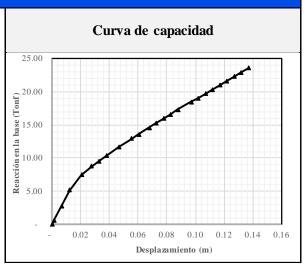
A. Sobre la investigación	
l'Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

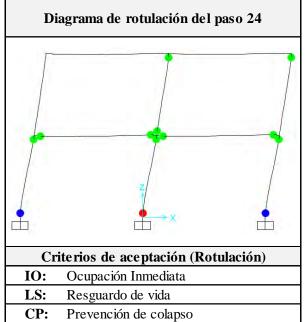
B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Corrosión
Grado de afectación patológica:	Severo

Parameter Parame			
C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0	2.72E-06	0.0000
2	0.006284	3.0361	0.0095
3	0.009142	3.7829	0.0097
4	0.014142	4.5253	0.0208
5	0.019142	5.2678	0.0245
6	0.024142	6.0102	0.0282
7	0.029142	6.7527	0.0319
8	0.034142	7.4952	0.0356
9	0.036146	7.7927	0.0153
10	0.041146	8.2824	0.0402
11	0.046146	8.9073	0.0430
12	0.051146	9.5315	0.0461
13	0.056146	10.1551	0.0492
14	0.061146	10.778	0.0523
15	0.066146	11.4003	0.0554
16	0.071146	12.0219	0.0586
17	0.076146	12.6429	0.0617
18	0.081146	13.2632	0.0648
19	0.086146	13.8827	0.0679
20	0.091146	14.5016	0.0710
21	0.096146	15.1198	0.0741
22	0.101146	15.7372	0.0771

Valores máximos	
Desplazamiento (m):	0.1011
Reacción en la base (Tonf):	15.7372
Trabajo (Tonf-m):	0.9368

056

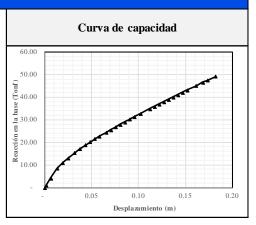


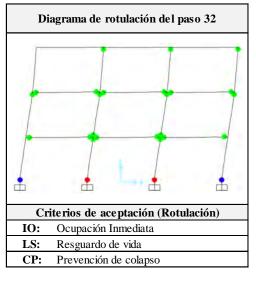

Instrumento metodológicos de recolección de datos

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.001215	0.5402	0.0003
2	0.006215	2.7011	0.0081
3	0.011951	5.1657	0.0226
4	0.020439	7.431	0.0535
5	0.02748	8.7433	0.0569
6	0.03248	9.5194	0.0457
7	0.03748	10.2955	0.0495
8	0.046694	11.6907	0.1013
9	0.055197	12.8898	0.1045
10	0.060197	13.5847	0.0662
11	0.067625	14.5939	0.1047
12	0.072625	15.2634	0.0746
13	0.077625	15.933	0.0780
14	0.082625	16.6025	0.0813
15	0.087625	17.2721	0.0847
16	0.096698	18.4104	0.1619
17	0.101698	19.0497	0.0937
18	0.106698	19.6889	0.0968
19	0.111698	20.3282	0.1000
20	0.116698	20.9675	0.1032
21	0.121698	21.6067	0.1064
22	0.126698	22.246	0.1096
23	0.131698	22.8853	0.1128
24	0.136698	23.5246	0.1160

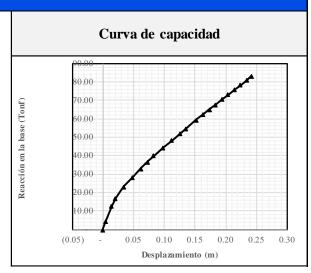

Valores máximos	
Desplazamiento (m):	0.1367
Reacción en la base (Tonf):	23.5246
Trabajo (Tonf-m):	1.9325

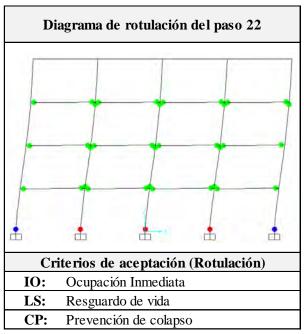


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Severo	

	те стастот р		
C. Resulta	dos del aná	llisis	
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.001198	0.8281	0.0005
2	0.006198	4.1332	0.0124
3	0.013063	8.4685	0.0433
4	0.019015	11.0403	0.0581
5	0.024633	12.8244	0.0670
6	0.031713	15.3263	0.0997
7	0.037088	17.1298	0.0872
8	0.043099	18.7969	0.1080
9	0.048099	20.1547	0.0974
10	0.053318	21.5538	0.1088
11	0.058318	22.7491	0.1108
12	0.065356	24.3702	0.1658
13	0.070356	25.5141	0.1247
14	0.075356	26.6704	0.1305
15	0.080356	27.8363	0.1363
16	0.085356	28.9861	0.1421
17	0.090356	30.136	0.1478
18	0.095572	31.2953	0.1602
19	0.102363	32.7336	0.2174
20	0.11193	34.7383	0.3228
21	0.11693	35.7831	0.1763
22	0.12193	36.8278	0.1815
23	0.12693	37.8725	0.1868
24	0.13193	38.9172	0.1920
25	0.13693	39.9619	0.1972
26	0.14193	41.0066	0.2024
27	0.14693	42.0513	0.2076
28	0.15193	43.096	0.2129
29	0.161276	45.035	0.4118
30	0.168312	46.4756	0.3219
31	0.173312	47.4756	0.2349
32	0.181927	49.186	0.4164

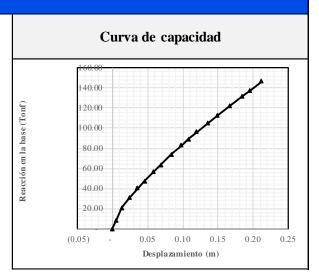

Valores máximos	
Desplazamiento (m):	0.1819
Reacción en la base (Tonf):	49.1860
Trabajo (Tonf-m):	5.2823

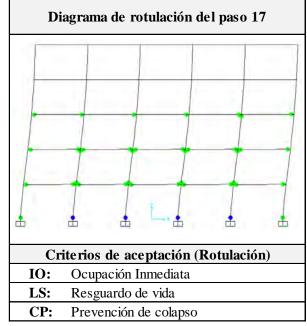


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Corrosión
Grado de afectación patológica:	Severo

C. Resultados del análisis			
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	-8.40E-05	0	
1	0.004916	4.2671	0.0107
2	0.014916	12.7833	0.0853
3	0.020868	16.9282	0.0884
4	0.03454	23.131	0.2738
5	0.048195	28.2349	0.3507
6	0.061939	33.0019	0.4208
7	0.073296	36.7713	0.3962
8	0.083296	40.022	0.3840
9	0.098321	44.3668	0.6340
10	0.112704	48.457	0.6675
11	0.125458	52.0302	0.6408
12	0.135458	54.8243	0.5343
13	0.152167	59.3759	0.9541
14	0.163993	62.5384	0.7209
15	0.173993	65.2098	0.6387
16	0.183993	67.8813	0.6655
17	0.193993	70.5207	0.6920
18	0.203993	73.1601	0.7184
19	0.213993	75.7994	0.7448
20	0.223993	78.4388	0.7712
21	0.233993	81.0782	0.7976
22	0.242116	83.222	0.6673

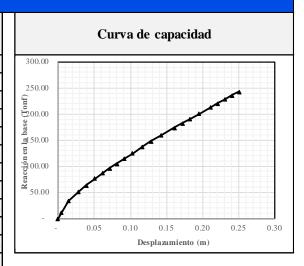

Valores máximos	
Desplazamiento (m):	0.2421
Reacción en la base (Tonf):	83.2220
Trabajo (Tonf-m):	11.8569

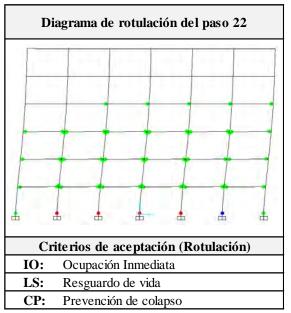


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Corrosión
Grado de afectación patológica:	Severo

C. Resulta	C. Resultados del análisis		
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	-7.00E-05	0	
1	0.00493	8.1708	0.0204
2	0.013175	20.9439	0.1200
3	0.02441	30.7846	0.2906
4	0.035527	40.2311	0.3947
5	0.045793	47.7057	0.4514
6	0.058622	57.2394	0.6732
7	0.068622	63.8566	0.6055
8	0.084102	74.0739	1.0676
9	0.09826	82.9292	1.1114
10	0.108521	89.3622	0.8839
11	0.120171	96.3624	1.0818
12	0.135376	105.0217	1.5310
13	0.148935	112.4719	1.4745
14	0.167679	122.6568	2.2036
15	0.185054	132.0173	2.2125
16	0.195054	137.3909	1.3470
17	0.212311	146.552	2.4500

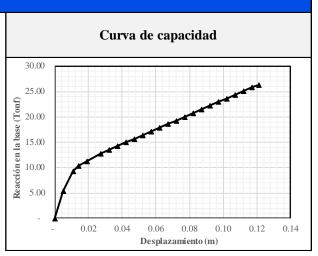

Valores máximos	
Desplazamiento (m):	0.2123
Reacción en la base (Tonf):	146.5520
Trabajo (Tonf-m):	17.9193



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Corrosión	
Grado de afectación patológica:	Severo	

C. Resulta	C. Resultados del análisis		
Paso	Desplaza miento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0	0	
1	0.004906	11.5081	0.0282
2	0.014415	33.055	0.2119
3	0.028033	51.0392	0.5726
4	0.039204	63.4002	0.6392
5	0.051222	76.5167	0.8408
6	0.061571	86.9912	0.8461
7	0.071571	96.1381	0.9156
8	0.081571	105.2861	1.0071
9	0.091571	114.4341	1.0986
10	0.103202	125.0677	1.3928
11	0.117088	137.7123	1.8245
12	0.128751	147.8246	1.6651
13	0.1429	159.3651	2.1732
14	0.161361	173.978	3.0769
15	0.172531	182.7522	1.9923
16	0.182531	190.5788	1.8667
17	0.195492	200.717	2.5358
18	0.211252	212.8225	3.2587
19	0.221252	220.492	2.1666
20	0.231252	228.1614	2.2433
21	0.241252	235.8308	2.3200
22	0.251252	243.5001	2.3967

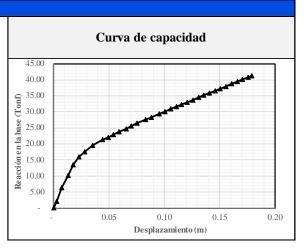

Valores máximos	
Desplazamiento (m):	0.2513
Reacción en la base (Tonf):	243.5001
Trabajo (Tonf-m):	35,0726

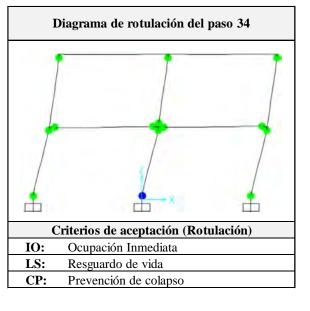


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0049	5.3702	0.0131
2	0.0108	9.3248	0.0437
3	0.0140	10.2888	0.0314
4	0.0190	11.2677	0.0539
5	0.0271	12.7741	0.0969
6	0.0321	13.4995	0.0657
7	0.0371	14.2250	0.0693
8	0.0421	14.9504	0.0729
9	0.0471	15.6758	0.0766
10	0.0521	16.4013	0.0802
11	0.0571	17.1267	0.0838
12	0.0621	17.8522	0.0874
13	0.0671	18.5776	0.0911
14	0.0721	19.3030	0.0947
15	0.0771	20.0285	0.0983
16	0.0821	20.7539	0.1020
17	0.0871	21.4794	0.1056
18	0.0921	22.2048	0.1092
19	0.0971	22.9302	0.1128
20	0.1021	23.6557	0.1165
21	0.1071	24.3811	0.1201
22	0.1121	25.1066	0.1237
23	0.1171	25.8320	0.1273
24	0.1208	26.3765	0.0980


Valores máximos	
Desplazamiento (m):	0.1208
Reacción en la base (Tonf):	26.3765
Trabajo (Tonf-m):	2.0742



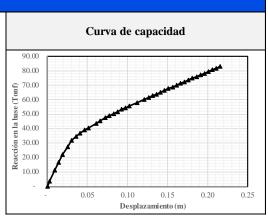
A. Sobre la investigación	
Tests:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

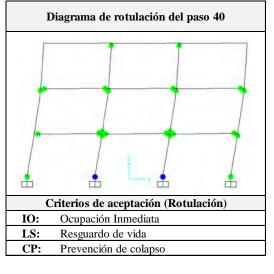
B. Sobre los parámetros:	
Configuración estructural:	02 niveles y 02 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Or resultate		Reacción	
Paso	Desplazam iento	en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0025	2.0966	0.0026
2	0.0075	6.2898	0.0210
3	0.0129	10.0707	0.0443
4	0.0179	13.5043	0.0589
5	0.0228	16.0383	0.0722
6	0.0278	17.5497	0.0840
7	0.0352	19.4920	0.1378
8	0.0442	21.2349	0.1829
9	0.0492	22.0903	0.1083
10	0.0542	22.9457	0.1126
11	0.0592	23.8011	0.1169
12	0.0654	24.7991	0.1508
13	0.0704	25.5907	0.1260
14	0.0754	26.3824	0.1299
15	0.0834	27.6222	0.2152
16	0.0884	28.3723	0.1400
17	0.0957	29.4454	0.2133
18	0.1007	30.1615	0.1490
19	0.1057	30.8776	0.1526
20	0.1107	31.5937	0.1562
21	0.1157	32.3099	0.1598
22	0.1207	33.0260	0.1633
23	0.1257	33.7421	0.1669
24	0.1307	34.4582	0.1705
25	0.1357	35.1743	0.1741
26	0.1407	35.8904	0.1777
27	0.1457	36.6066	0.1812
28	0.150746	37.3061	0.1848
29	0.155746	38.0056	0.1883
30	0.160746	38.7051	0.1918
31	0.165746	39.4046	0.1953
32	0.170746	40.1041	0.1988
33	0.175746	40.8036	0.2023
34	0.179092	41.2716	0.1373

Valores máximos	
Desplazamiento (m):	0.1791
Reacción en la base (Tonf):	41.2716
Trabajo (Tonf-m):	4.8663

A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz


B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

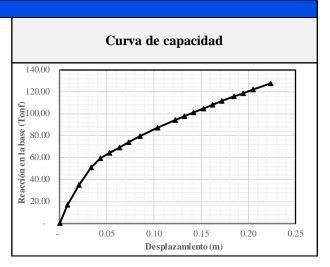

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0024	3.5559	0.0042
2	0.0088	11.5476	0.0482
3	0.0140	16.8695	0.0741
4	0.0190	21.9058	0.0969
5	0.0250	27.5197	0.1500
6	0.0304	31.7512	0.1596
7	0.0360	34.5613	0.1861
8	0.0410	36.6973	0.1781
9	0.0465	38.9513	0.2049
10		40.6538	0.1990
11	0.0610	43.7789	0.4014
12	0.0660	45.3819	0.2229
13	0.0724	47.3849	0.3001
14	0.0774	48.8593	0.2406
15	0.0824	50.3336	0.2480
16	0.0874	51.7876	0.2553
17	0.0926	53.2793	0.2725
18	0.0976	54.5354	0.2695
19	0.1026	55.7916	0.2758
20	0.1116	58.0149	0.5136
21	0.1212	60.3175	0.5636
22	0.1262	61.5235	0.3046
23	0.1312	62.7294	0.3106
24	0.1362	63.9353	0.3167
25	0.1412	65.1412	0.3227
26	0.1462	66.3471	0.3287
27	0.1512	67.5530	0.3348
28	0.156171	68.7589	0.3408
29	0.161171	69.9649	0.3468
30	0.166171	71.1457	0.3528
31	0.171171	72.3265	0.3587
32	0.176171	73.5073	0.3646
33	0.181171	74.6881	0.3705
34	0.186171	75.8689	0.3764
35	0.191171	77.0497	0.3823
36	0.196171	78.2305	0.3882
37	0.201171	79.4113	0.3941
38	0.206171	80.5921	0.4000
39	0.211171	81.7729	0.4059

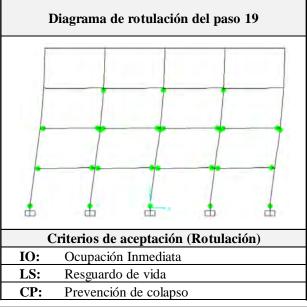
40

0.215555

82.8083

Valores máximos	
Desplazamiento (m):	0.2156
Reacción en la base (Tonf):	82.8083
Trabajo (Tonf-m):	11.6245

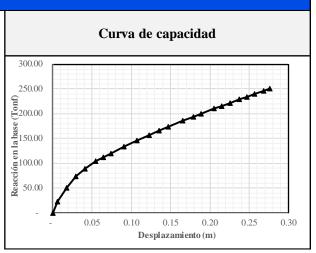

0.3608

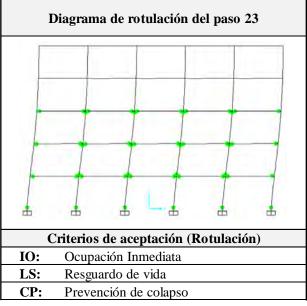


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0084	16.7225	0.0699
2	0.0207	34.9822	0.3183
3	0.0337	50.9174	0.5608
4	0.0432	59.2011	0.5201
5	0.0532	64.1565	0.6168
6	0.0632	69.1118	0.6663
7	0.0732	74.0671	0.7159
8	0.0849	79.5946	0.9027
9	0.1038	87.0816	1.5772
10	0.1223	94.0275	1.6713
11	0.1323	97.6759	0.9585
12	0.1423	101.3243	0.9950
13	0.1523	104.7942	1.0306
14	0.1623	108.2642	1.0653
15	0.1723	111.6197	1.0994
16	0.1850	115.7221	1.4398
17	0.1950	118.9298	1.1733
18	0.2050	122.1266	1.2053
19	0.2234	127.9256	2.3054

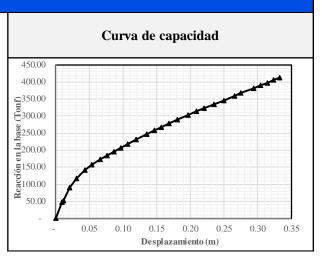

Valores máximos	
Desplazamiento (m):	0.2234
Reacción en la base (Tonf):	127.9256
Trabajo (Tonf-m):	18.8917

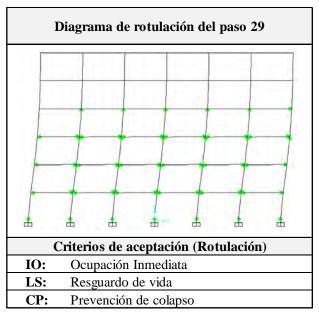


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0065	22.1994	0.0717
2	0.0179	50.6565	0.4170
3	0.0292	73.0601	0.6981
4	0.0410	88.5375	0.9550
5	0.0545	103.4871	1.2917
6	0.0645	111.7452	1.0762
7	0.0745	120.0031	1.1587
8	0.0904	133.1775	2.0204
9	0.1075	146.5972	2.3900
10	0.1223	157.0607	2.2469
11	0.1357	166.2921	2.1582
12	0.1474	174.1744	1.9996
13	0.1659	185.8918	3.3349
14	0.1791	194.0665	2.5037
15	0.1891	200.2576	1.9716
16	0.2053	209.9477	3.3208
17	0.2153	215.8333	2.1289
18	0.2253	221.7187	2.1878
19	0.2372	228.5878	2.6809
20	0.2472	234.1693	2.3138
21	0.2572	239.7507	2.3696
22	0.2685	246.0025	2.7481
23	0.2766	250.3731	2.0155

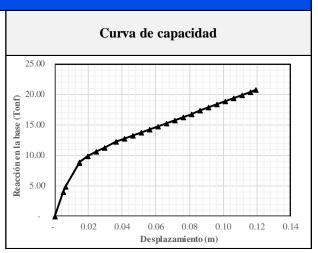

Valores máximos	
Desplazamiento (m):	0.2766
Reacción en la base (Tonf):	250.3731
Trabajo (Tonf-m):	44.0592

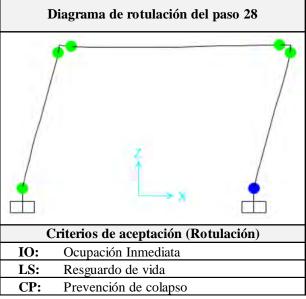


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Leve

C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0099	47.1918	0.2331
2	0.0111	53.0329	0.0620
3	0.0211	89.5923	0.7145
4	0.0307	117.5629	0.9939
5	0.0431	140.9220	1.5942
6	0.0541	157.7917	1.6550
7	0.0663	172.6920	2.0050
8	0.0763	184.7278	1.7851
9	0.0870	196.4148	2.0437
10	0.0970	207.2925	2.0185
11	0.1070	218.1105	2.1270
12	0.1198	231.6274	2.8860
13	0.1348	246.6186	3.5897
14	0.1469	258.2834	3.0526
15	0.1569	267.6737	2.6298
16	0.1681	278.0637	3.0395
17	0.1808	289.2567	3.6079
18	0.1964	302.6969	4.6226
19	0.2086	313.1455	3.7690
20	0.2198	322.4358	3.5348
21	0.2347	334.5342	4.8938
22	0.2495	346.4806	5.0494
23	0.2653	359.0630	5.5586
24	0.2753	367.0291	3.6305
25	0.2939	381.8445	6.9728
26	0.3039	389.7913	3.8582
27	0.3139	397.7380	3.9376
28	0.3239	405.6845	4.0171
29	0.3321	412.2238	3.3722

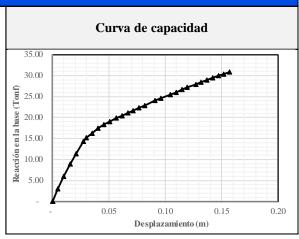

Valores máximos	
Desplazamiento (m):	0.3321
Reacción en la base (Tonf):	412.2238
Trabajo (Tonf-m):	87.2541

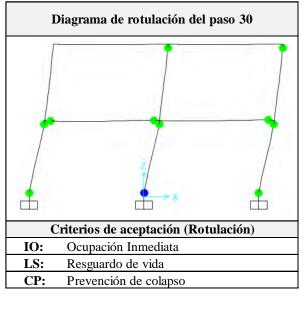


A. Sobre la investigación	
Tests.	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Porosidad	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0050	3.9412	0.0098
2	0.0061	4.8421	0.0050
3	0.0144	8.7990	0.0565
4	0.0145	8.8541	0.0012
5	0.0195	9.9265	0.0470
6	0.0245	10.6220	0.0514
7	0.0295	11.3175	0.0548
8	0.0361	12.2068	0.0777
9	0.0411	12.7216	0.0623
10	0.0461	13.2364	0.0649
11	0.0511	13.7511	0.0675
12	0.0561	14.2659	0.0700
13	0.0611	14.7807	0.0726
14	0.0661	15.2955	0.0752
15	0.0711	15.8103	0.0778
16	0.0761	16.3251	0.0803
17	0.0811	16.8399	0.0829
18	0.0861	17.3546	0.0855
19	0.0911	17.8694	0.0881
20	0.0961	18.3842	0.0906
21	0.1011	18.8990	0.0932
22	0.1061	19.4138	0.0958
23	0.1111	19.9286	0.0984
24	0.1161	20.4434	0.1009
25	0.1193	20.7730	0.0660

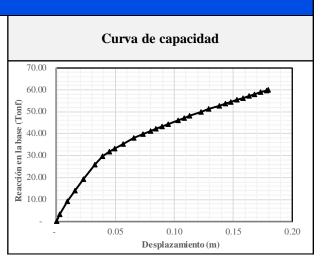

Valores máximos	
Desplazamiento (m):	0.1241
Reacción en la base (Tonf):	20.7730
Trabajo (Tonf-m):	1.6753

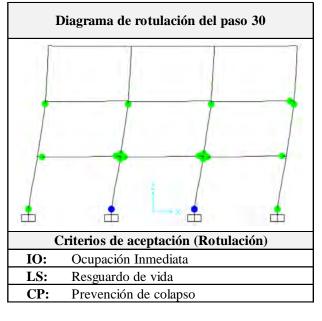


A. Sobre la investigación	
Tecic.	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Porosidad	
Grado de afectación natológica:	Moderado	

C. Dozulto do a del curillista			
C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0000	0.0000	0.0000
2	0.0050	3.0034	0.0074
3	0.0100	6.0069	0.0225
4	0.0157	8.9100	0.0428
5	0.0207	11.3694	0.0507
6	0.0274	14.3608	0.0864
7	0.0301	15.2231	0.0392
8	0.0351	16.2992	0.0788
9	0.0406	17.4354	0.0930
10	0.0456	18.2546	0.0892
11	0.0506	19.0738	0.0933
12	0.0566	19.9072	0.1179
13	0.0616	20.5117	0.1010
14	0.0666	21.1163	0.1041
15	0.0716	21.7209	0.1071
16	0.0766	22.3255	0.1101
17	0.0816	22.9301	0.1131
18	0.0909	24.0132	0.2189
19	0.0959	24.5730	0.1215
20	0.1047	25.5314	0.2192
21	0.1097	26.0700	0.1290
22	0.1147	26.6086	0.1317
23	0.1197	27.1472	0.1344
24	0.1269	27.8952	0.1995
25	0.1319	28.4010	0.1407
26	0.1369	28.9068	0.1433
27	0.1419	29.4126	0.1458
28	0.1469	29.9184	0.1483
29	0.1519	30.4241	0.1509
30	0.1569	30.9299	0.1534

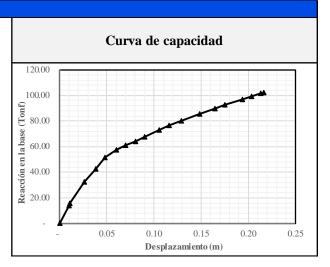

Valores máximos	
Desplazamiento (m):	0.1569
Reacción en la base (Tonf):	30.9299
Trabajo (Tonf-m):	3.2933

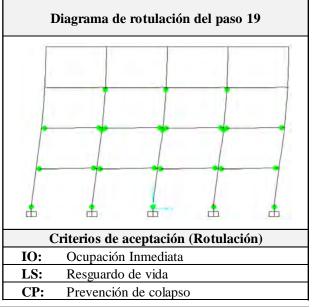


A. Sobre la investigación	
l'legig•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Porosidad	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0030	3.2668	0.0050
2	0.0091	9.0161	0.0373
3	0.0156	13.9150	0.0742
4	0.0231	19.3350	0.1246
5	0.0328	25.9843	0.2200
6	0.0388	29.7126	0.1672
7	0.0447	31.6690	0.1804
8	0.0497	33.2716	0.1624
9	0.0567	35.4390	0.2422
10	0.0658	37.9612	0.3332
11	0.0731	39.7602	0.2847
12	0.0797	41.1970	0.2657
13	0.0847	42.2689	0.2087
14	0.0897	43.3409	0.2140
15	0.0947	44.4128	0.2194
16	0.1032	46.1666	0.3842
17	0.1082	47.1880	0.2334
18	0.1132	48.2093	0.2385
19	0.1227	50.0599	0.4655
20	0.1291	51.2553	0.3281
21	0.1382	52.8485	0.4727
22	0.1432	53.7227	0.2664
23	0.1482	54.5970	0.2708
24	0.1532	55.4712	0.2752
25	0.1582	56.3158	0.2795
26	0.1632	57.1604	0.2837
27	0.1682	58.0051	0.2879
28	0.1732	58.8497	0.2921
29	0.1782	59.6943	0.2964
30	0.1800	59.9905	0.1050

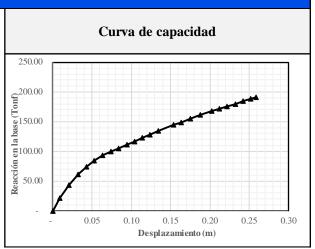

Valores máximos	
Desplazamiento (m):	0.1800
Reacción en la base (Tonf):	59.9905
Trabajo (Tonf-m):	7.2183

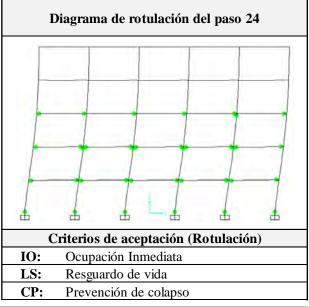


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	04 niveles y 04 crujías	
Tipo de patología:	Porosidad	
Grado de afectación patológica:	Moderado	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0099	14.1849	0.0701
2	0.0111	15.9736	0.0190
3	0.0263	32.2515	0.3662
4	0.0379	42.8700	0.4363
5	0.0480	51.2524	0.4724
6	0.0600	57.3456	0.6554
7	0.0700	60.8510	0.5910
8	0.0800	64.3564	0.6260
9	0.0900	67.8618	0.6611
10	0.1052	73.0456	1.0709
11	0.1160	76.5158	0.8060
12	0.1288	80.1992	0.9995
13	0.1482	85.5411	1.6072
14	0.1650	90.0032	1.4745
15	0.1750	92.5818	0.9129
16	0.1935	97.1381	1.7604
17	0.2035	99.4992	0.9832
18	0.2135	101.8604	1.0068
19	0.2165	102.5559	0.3010
_			

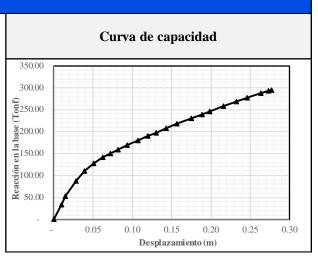

Valores máximos	
Desplazamiento (m):	0.2165
Reacción en la base (Tonf):	102.5559
Trabajo (Tonf-m):	14.8199



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	05 niveles y 05 crujías	
Tipo de patología:	Porosidad	
Grado de afectación patológica:	Moderado	

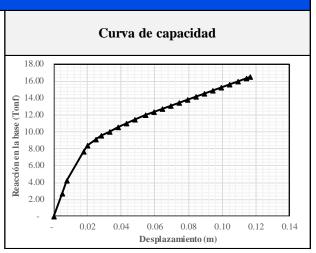
C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0088	21.6193	0.0949
2	0.0205	43.0869	0.3794
3	0.0319	61.2434	0.5957
4	0.0427	74.4870	0.7327
5	0.0527	83.8509	0.7917
6	0.0635	93.0386	0.9518
7	0.0741	99.2451	1.0226
8	0.0841	105.0657	1.0216
9	0.0941	110.8862	1.0798
10	0.1041	116.7066	1.1380
11	0.1141	122.5269	1.1962
12	0.1241	128.3417	1.2543
13	0.1341	134.1414	1.3124
14	0.1533	144.0848	2.6744
15	0.1633	149.0192	1.4655
16	0.1752	154.8582	1.8050
17	0.1875	160.7878	1.9330
18	0.2021	167.3408	2.4008
19	0.2121	171.6187	1.6948
20	0.2221	175.8301	1.7372
21	0.2321	180.0415	1.7794
22	0.2421	184.2222	1.8213
23	0.2521	188.4028	1.8631
24	0.2587	191.1536	1.2486


Valores máximos	
Desplazamiento (m):	0.2587
Reacción en la base (Tonf):	191.1536
Trabajo (Tonf-m):	31.9941

A. Sobre la investigación	
Tests:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	06 niveles y 06 crujías
Tipo de patología:	Porosidad
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0098	33.8017	0.1661
2	0.0152	51.9648	0.2305
3	0.0287	87.2876	0.9411
4	0.0395	111.0195	1.0648
5	0.0512	128.1334	1.4041
6	0.0623	141.5840	1.5019
7	0.0723	150.2502	1.4592
8	0.0823	158.9162	1.5458
9	0.0938	168.7523	1.8700
10	0.1067	179.8117	2.2627
11	0.1202	190.3387	2.4970
12	0.1302	198.0026	1.9417
13	0.1431	207.7798	2.6187
14	0.1568	217.6204	2.9040
15	0.1748	230.2931	4.0299
16	0.1886	239.5301	3.2383
17	0.1986	246.1715	2.4285
18	0.2158	257.5415	4.3526
19	0.2328	268.6022	4.4612
20	0.2457	276.5489	3.5274
21	0.2633	287.1097	4.9419
22	0.2733	293.0135	2.9006
23	0.2772	295.3144	1.1464


Valores máximos	
Desplazamiento (m):	0.2772
Reacción en la base (Tonf):	295.3144
Trabajo (Tonf-m):	53.4342

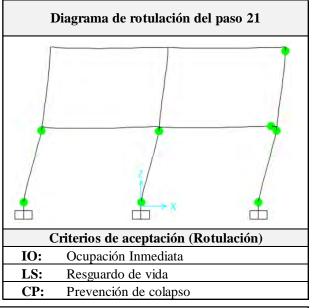
A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Porosidad	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0050	2.7410	0.0068
2	0.0078	4.2724	0.0098
3	0.0177	7.6723	0.0592
4	0.0200	8.3604	0.0188
5	0.0250	9.1128	0.0437
6	0.0278	9.5371	0.0263
7	0.0328	10.0267	0.0489
8	0.0378	10.5164	0.0514
9	0.0428	11.0060	0.0538
10	0.0478	11.4957	0.0563
11	0.0544	12.0006	0.0772
12	0.0594	12.3636	0.0609
13	0.0644	12.7265	0.0627
14	0.0694	13.0895	0.0645
15	0.0744	13.4525	0.0664
16	0.0794	13.8154	0.0682
17	0.0844	14.1784	0.0700
18	0.0894	14.5413	0.0718
19	0.0944	14.9043	0.0736
20	0.0994	15.2672	0.0754
21	0.1044	15.6302	0.0772
22	0.1094	15.9931	0.0791
23	0.1144	16.3560	0.0809
24	0.1164	16.5015	0.0329

Diagrama de rotulación del paso 24			
	Z		
C	riterios de aceptación (Rotulación)		
IO:	Ocupación Inmediata		
LS:	Resguardo de vida		
CP:	Prevención de colapso		

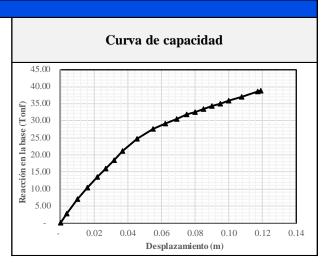
Valores máximos		
Desplazamiento (m):	0.1164	
Reacción en la base (Tonf):	16.5015	
Trabajo (Tonf-m):	1.3356	

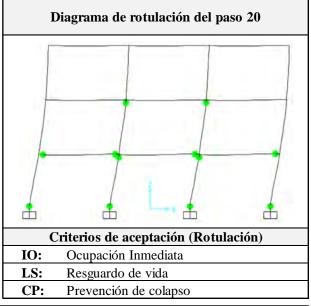


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	02 niveles y 02 crujías		
Tipo de patología:	Porosidad		
Grado de afectación patológica:	Severo		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0024	1.0444	0.0013
2	0.0074	3.1332	0.0104
3	0.0124	5.2220	0.0209
4	0.0195	7.7995	0.0461
5	0.0245	9.5099	0.0433
6	0.0313	11.7787	0.0725
7	0.0367	13.0915	0.0673
8	0.0417	14.0015	0.0677
9	0.0482	14.8276	0.0925
10	0.0553	15.6360	0.1087
11	0.0603	16.1844	0.0796
12	0.0653	16.7328	0.0823
13	0.0744	17.6730	0.1573
14	0.0794	18.1201	0.0895
15	0.0844	18.5672	0.0917
16	0.0894	19.0143	0.0940
17	0.0976	19.7030	0.1583
18	0.1026	20.1074	0.0995
19	0.1076	20.5024	0.1015
20	0.1126	20.8973	0.1035
21	0.1150	21.0883	0.0508

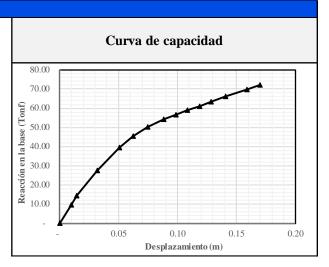

Valores máximos		
Desplazamiento (m):	0.1150	
Reacción en la base (Tonf):	21.0883	
Trabajo (Tonf-m):	1.6387	

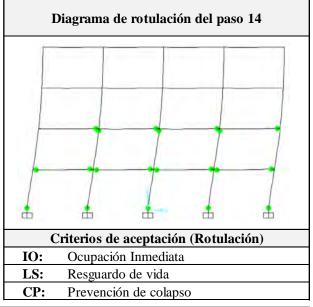


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	03 niveles y 03 crujías		
Tipo de patología:	Porosidad		
Grado de afectación patológica:	Severo		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0036	2.7057	0.0049
2	0.0099	6.9289	0.0305
3	0.0159	10.4168	0.0521
4	0.0220	13.5121	0.0730
5	0.0270	16.0209	0.0738
6	0.0320	18.5297	0.0864
7	0.0370	21.0385	0.0989
8	0.0456	24.6334	0.1958
9	0.0551	27.5915	0.2483
10	0.0625	29.2762	0.2091
11	0.0689	30.5724	0.1912
12	0.0750	31.7705	0.1912
13	0.0800	32.6354	0.1610
14	0.0850	33.4492	0.1652
15	0.0900	34.2630	0.1693
16	0.0950	35.0768	0.1733
17	0.1000	35.8906	0.1774
18	0.1074	37.0362	0.2699
19	0.1172	38.4890	0.3691
20	0.1188	38.7260	0.0625

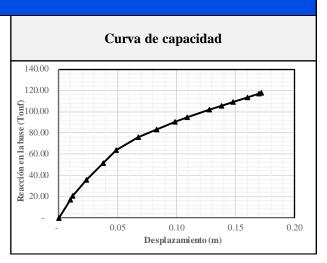

Valores máximos		
Desplazamiento (m):	0.1188	
Reacción en la base (Tonf):	38.7260	
Trabajo (Tonf-m):	3.0029	

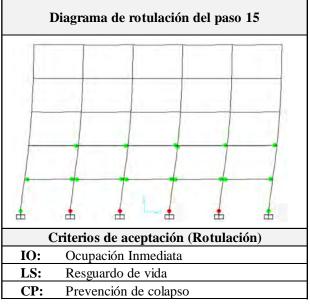


A. Sobre la investigación			
Tests:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos		
Investigador:	Victor Manuel Tello Diaz		

B. Sobre los parámetros:			
Configuración estructural:	04 niveles y 04 crujías		
Tipo de patología:	Porosidad		
Grado de afectación patológica:	Severo		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0098	9.8652	0.0485
2	0.0145	14.5206	0.0575
3	0.0317	27.5512	0.3607
4	0.0505	39.6466	0.6317
5	0.0621	45.6559	0.4945
6	0.0750	50.3734	0.6195
7	0.0886	54.2895	0.7118
8	0.0986	56.6588	0.5547
9	0.1086	58.8843	0.5777
10	0.1186	61.1098	0.6000
11	0.1286	63.3353	0.6222
12	0.1410	66.0442	0.8050
13	0.1590	69.8500	1.2233
14	0.1699	72.0211	0.7727
			111

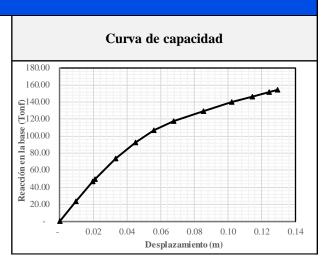

Valores máximos		
Desplazamiento (m):	0.1699	
Reacción en la base (Tonf):	72.0211	
Trabajo (Tonf-m):	8.0798	



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	05 niveles y 05 crujías		
Tipo de patología:	Porosidad		
Grado de afectación patológica:	Severo		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0098	16.8803	0.0829
2	0.0120	20.4938	0.0400
3	0.0233	35.5128	0.3186
4	0.0376	51.8040	0.6232
5	0.0486	63.4853	0.6328
6	0.0679	76.1946	1.3461
7	0.0831	83.4795	1.2160
8	0.0988	90.4463	1.3651
9	0.1088	94.3697	0.9241
10	0.1281	101.7372	1.8917
11	0.1381	105.4590	1.0360
12	0.1481	109.1808	1.0732
13	0.1601	113.5025	1.3417
14	0.1701	117.0738	1.1529
15	0.1718	117.6477	0.1997
			111

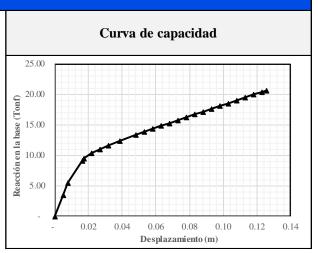

Valores máximos		
Desplazamiento (m):	0.1718	
Reacción en la base (Tonf):	117.6477	
Trabajo (Tonf-m):	13.2438	

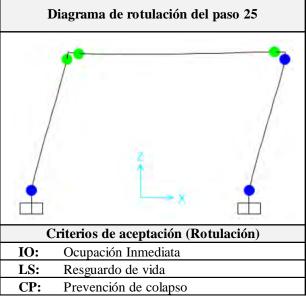


A. Sobre la investigación			
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos		
Investigador:	Victor Manuel Tello Diaz		

B. Sobre los parámetros:			
Configuración estructural:	06 niveles y 06 crujías		
Tipo de patología:	Porosidad		
Grado de afectación patológica:	Severo		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0098	23.5082	0.1146
2	0.0198	47.0164	0.3526
3	0.0210	49.8923	0.0593
4	0.0333	73.3228	0.7618
5	0.0450	92.2208	0.9614
6	0.0558	106.9922	1.0793
7	0.0675	117.1483	1.3156
8	0.0852	129.3136	2.1768
9	0.1024	139.8063	2.3090
10	0.1144	146.5002	1.7299
11	0.1244	152.0278	1.4926
12	0.1292	154.6472	0.7282
			140

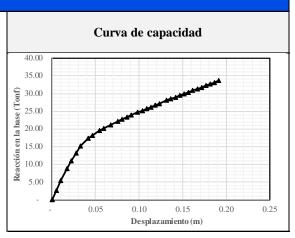

Valores máximos		
Desplazamiento (m):	0.1292	
Reacción en la base (Tonf):	154.6472	
Trabajo (Tonf-m):	13.0812	

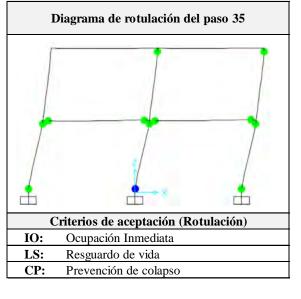


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0050	3.5277	0.0088
2	0.0078	5.5515	0.0130
3	0.0163	9.1945	0.0624
4	0.0171	9.4882	0.0072
5	0.0218	10.4009	0.0468
6	0.0268	11.0317	0.0536
7	0.0318	11.6624	0.0567
8	0.0384	12.4464	0.0794
9	0.0480	13.4518	0.1244
10	0.0530	13.9198	0.0684
11	0.0580	14.3877	0.0708
12	0.0630	14.8557	0.0731
13	0.0680	15.3236	0.0754
14	0.0730	15.7916	0.0778
15	0.0780	16.2595	0.0801
16	0.0830	16.7275	0.0825
17	0.0880	17.1954	0.0848
18	0.0930	17.6634	0.0871
19	0.0980	18.1313	0.0895
20	0.1030	18.5993	0.0918
21	0.1080	19.0672	0.0942
22	0.1130	19.5352	0.0965
23	0.1180	20.0031	0.0988
24	0.1230	20.4711	0.1012
25	0.1254	20.6992	0.0502

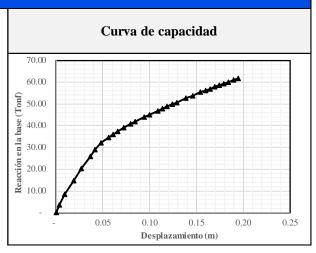

Valores máximos		
Desplazamiento (m):	0.1254	
Reacción en la base (Tonf):	20.6992	
Trabajo (Tonf-m):	1.7746	

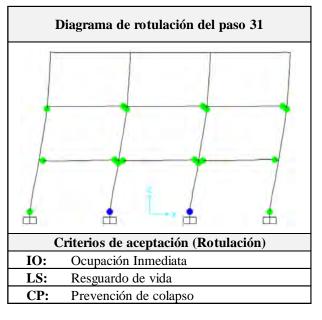


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	02 niveles y 02 crujías		
Tipo de patología:	Reacción álcali-sílice		
Grado de afectación natológica:	Leve		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0000	0.0000	0.0000
2	0.0050	2.6884	0.0067
3	0.0100	5.3767	0.0202
4	0.0174	8.8794	0.0529
5	0.0224	11.0808	0.0499
6	0.0274	13.2822	0.0609
7	0.0324	15.2366	0.0713
8	0.0412	17.2792	0.1437
9	0.0462	18.2507	0.0888
10	0.0541	19.5670	0.1500
11	0.0591	20.2268	0.0995
12	0.0674	21.2517	0.1718
13	0.0757	22.1913	0.1799
14	0.0807	22.7426	0.1123
15	0.0857	23.2939	0.1151
16	0.0907	23.8453	0.1178
17	0.0985	24.6667	0.1898
18	0.1035	25.1768	0.1246
19	0.1085	25.6870	0.1272
20	0.1135	26.1971	0.1297
21	0.1185	26.7072	0.1323
22	0.1235	27.2174	0.1348
23	0.1317	28.0210	0.2248
24	0.1367	28.5043	0.1413
25	0.1417	28.9877	0.1437
26	0.1467	29.4491	0.1461
27	0.1517	29.9105	0.1484
28	0.156671	30.372	0.1507
29	0.161671	30.8334	0.1530
30	0.166671	31.2948	0.1553
31	0.171671	31.7563	0.1576
32	0.176671	32.2177	0.1599
33	0.181671	32.6791	0.1622
34	0.186671	33.1406	0.1645
35	0.191671	33.602	0.1669

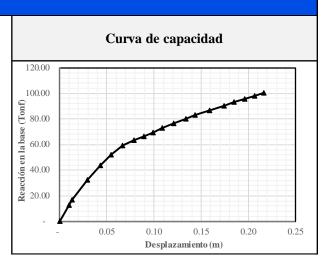

Valores máximos		
Desplazamiento (m):	0.1917	
Reacción en la base (Tonf):	33.6020	
Trabaio (Tonf-m):	4.3537	

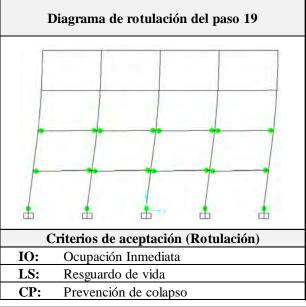


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	03 niveles y 03 crujías		
Tipo de patología:	Reacción álcali-sílice		
Grado de afectación patológica:	Leve		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0038	3.6195	0.0068
2	0.0094	8.4685	0.0341
3	0.0187	14.9122	0.1091
4	0.0271	20.3077	0.1467
5	0.0363	25.9454	0.2134
6	0.0413	28.8542	0.1370
7	0.0482	32.1271	0.2095
8	0.0559	34.6966	0.2579
9	0.0609	36.0695	0.1769
10	0.0659	37.4423	0.1838
11	0.0722	39.1196	0.2408
12	0.0796	40.7874	0.2971
13	0.0846	41.8635	0.2066
14	0.0945	43.9579	0.4249
15	0.0995	44.9970	0.2224
16	0.1088	46.9276	0.4288
17	0.1138	47.9075	0.2371
18	0.1188	48.8563	0.2419
19	0.1238	49.8051	0.2467
20	0.1288	50.7539	0.2514
21	0.1385	52.5653	0.4967
22	0.1457	53.9000	0.3833
23	0.1545	55.3772	0.4803
24	0.1595	56.1866	0.2789
25	0.1645	56.9959	0.2830
26	0.1695	57.7765	0.2869
27	0.1745	58.5571	0.2908
28	0.179454	59.3377	0.2947
29	0.184454	60.1183	0.2986
30	0.189454	60.8952	0.3025
31	0.19431	61.6498	0.2975

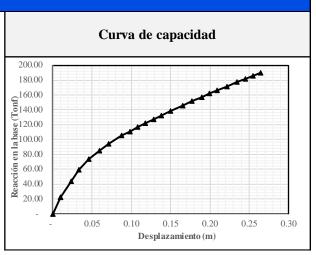

Valores máximos	
Desplazamiento (m):	0.1943
Reacción en la base (Tonf):	61.6498
Trabajo (Tonf-m):	7.9662

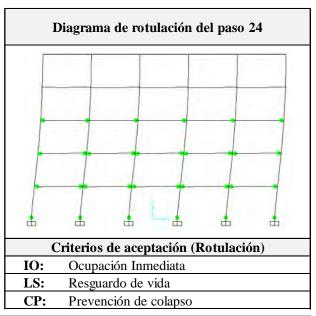


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:			
Configuración estructural:	04 niveles y 04 crujías		
Tipo de patología:	Reacción álcali-sílice		
Grado de afectación patológica:	Leve		

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0099	12.6967	0.0626
2	0.0132	16.8871	0.0488
3	0.0293	32.4944	0.3995
4	0.0429	43.6837	0.5158
5	0.0543	52.2124	0.5472
6	0.0665	59.0156	0.6799
7	0.0790	63.2542	0.7655
8	0.0890	66.4365	0.6485
9	0.0990	69.6188	0.6803
10	0.1090	72.8011	0.7121
11	0.1211	76.6407	0.9025
12	0.1339	80.4356	1.0004
13	0.1439	83.0768	0.8231
14	0.1594	86.9120	1.3119
15	0.1745	90.6237	1.3466
16	0.1845	93.0281	0.9183
17	0.1964	95.8583	1.1165
18	0.2064	98.2027	0.9703
19	0.2164	100.5470	0.9937
_			

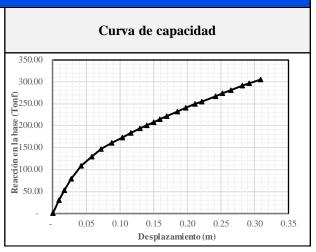

Valores máximos	
Desplazamiento (m):	0.2164
Reacción en la base (Tonf):	100.5470
Trabajo (Tonf-m):	14.4435

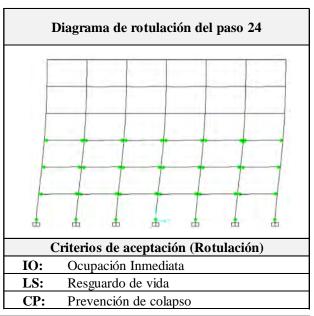


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Leve

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0099	21.7253	0.1071
2	0.0101	22.3269	0.0061
3	0.0235	44.2429	0.4452
4	0.0337	58.8259	0.5227
5	0.0456	73.2117	0.7889
6	0.0592	84.6015	1.0698
7	0.0713	94.4329	1.0827
8	0.0881	105.6879	1.6834
9	0.0981	110.9945	1.0834
10	0.1081	116.3010	1.1365
11	0.1181	121.6074	1.1895
12	0.1281	126.9137	1.2426
13	0.1381	132.2150	1.2956
14	0.1498	138.4089	1.5919
15	0.1652	146.0026	2.1851
16	0.1774	151.8378	1.8216
17	0.1897	157.3679	1.8928
18	0.1997	161.8329	1.5960
19	0.2097	166.2684	1.6405
20	0.2216	171.5009	2.0067
21	0.2349	177.1795	2.3179
22	0.2449	181.2578	1.7922
23	0.2549	185.3152	1.8329
24	0.2649	189.3726	1.8734

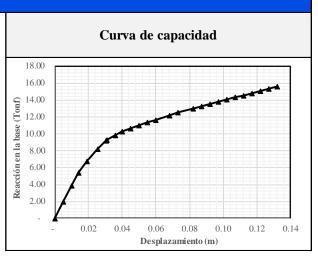

Valores máximos	
Desplazamiento (m):	0.2649
Reacción en la base (Tonf):	189.3726
Trabajo (Tonf-m):	32.2046

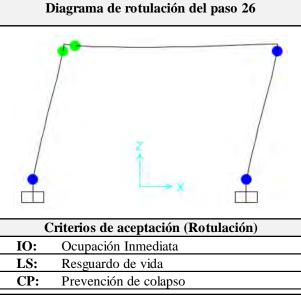


A. Sobre la investigación	
l'legig•	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Leve	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0098	30.2556	0.1484
2	0.0174	53.2678	0.3176
3	0.0280	79.0672	0.6981
4	0.0420	107.9936	1.3171
5	0.0580	130.2139	1.9042
6	0.0723	146.2689	1.9745
7	0.0877	161.1706	2.3668
8	0.1033	173.4858	2.6035
9	0.1155	183.0233	2.1859
10	0.1295	192.9591	2.6172
11	0.1395	199.9504	1.9645
12	0.1495	206.9416	2.0345
13	0.1595	213.8943	2.1042
14	0.1695	220.8470	2.1737
15	0.1853	231.6382	3.5918
16	0.1980	240.0502	2.9957
17	0.2117	248.7983	3.3496
18	0.2217	255.1392	2.5197
19	0.2417	267.3027	5.2132
20	0.2517	273.3427	2.7032
21	0.2642	280.7566	3.4581
22	0.2814	290.5130	4.9229
23	0.2914	296.1000	2.9331
24	0.3091	305.8571	5.3195


Valores máximos	
Desplazamiento (m):	0.3091
Reacción en la base (Tonf):	305.8571
Trabajo (Tonf-m):	61.4171

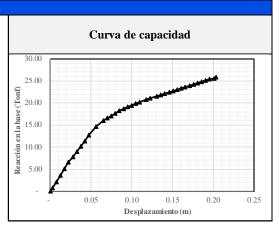


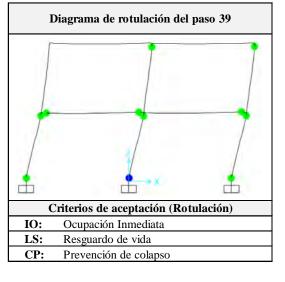
A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	01 nivel y 01 crujía
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Moderado

Paso Desplazam iento Reacción en la base (#) (m) (Tonf) 0 0.0000 0.0000 1 0.0050 1.9348 2 0.0100 3.8695 3 0.0138 5.3696 4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	
0 0.0000 0.0000 1 0.0050 1.9348 2 0.0100 3.8695 3 0.0138 5.3696 4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	Trabajo
1 0.0050 1.9348 2 0.0100 3.8695 3 0.0138 5.3696 4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	(Tonf-m)
2 0.0100 3.8695 3 0.0138 5.3696 4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	
3 0.0138 5.3696 4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	0.0048
4 0.0188 6.7554 5 0.0252 8.1819 6 0.0302 9.2185	0.0145
5 0.0252 8.1819 6 0.0302 9.2185	0.0179
6 0.0302 9.2185	0.0303
	0.0479
	0.0435
7 0.0308 9.3243	0.0047
8 0.0358 9.8537	0.0479
9 0.0399 10.2884	0.0413
10 0.0449 10.6326	0.0523
11 0.0499 10.9768	0.0540
12 0.0549 11.3210	0.0557
13 0.0599 11.6652	0.0575
14 0.0680 12.1978	0.0967
15 0.0730 12.5166	0.0618
16 0.0820 13.0285	0.1153
17 0.0870 13.2835	0.0658
18 0.0920 13.5386	0.0671
19 0.0970 13.7937	0.0683
20 0.1020 14.0488	0.0696
21 0.1070 14.3038	0.0709
22 0.1120 14.5589	0.0722
23 0.1170 14.8140	0.0734
24 0.1220 15.0691	0.0747
25 0.1270 15.3241	0.0760
26 0.1320 15.5792	
	0.0773

Valores máximos	
Desplazamiento (m):	0.1320
Reacción en la base (Tonf):	15.5792
Trabajo (Tonf-m):	1.4614


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

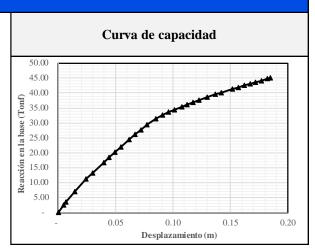

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Moderado	

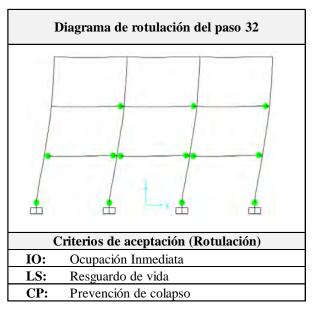
C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0024	0.7372	0.0009
2	0.0074	2.2116	0.0074
3	0.0124	3.6860	0.0147
4	0.0174	5.1605	0.0221
5	0.0224	6.6349	0.0295
6	0.0274	7.8422	0.0362
7	0.0324	9.0495	0.0422
8	0.0374	10.2569	0.0483
9	0.0424	11.4642	0.0543
10	0.0474	12.6715	0.0603
11	0.0564	14.6520	0.1225
12	0.0648	16.0575	0.1288
13	0.0698	16.5893	0.0816
14	0.0748	17.1211	0.0843
15	0.0798	17.6529	0.0869
16	0.0848	18.1846	0.0896
17	0.0899	18.6808	0.0951
18	0.0949	19.0880	0.0944
19	0.0999	19.4952	0.0965
20	0.1049	19.8558	0.0984
21	0.1099	20.2165	0.1002
22	0.1175	20.7247	0.1548
23	0.1225	21.0480	0.1044
24	0.1307	21.5585	0.1755
25	0.1357	21.8596	0.1085
26	0.1407	22.1607	0.1101
27	0.1457	22.4617	0.1116
28	0.15073	22.7628	0.1131
29	0.15573	23.0638	0.1146
30	0.16073	23.3649	0.1161
31	0.16573	23.6659	0.1176
32	0.17073	23.967	0.1191
33	0.17573	24.2455	0.1205
34	0.18073	24.5241	0.1219
35	0.18573	24.8027	0.1233
36		25.0812	0.1247
37	0.19573	25.3598	0.1261
38	0.20073	25.6383	0.1275

0.203795

25.8091

Valores máximos	
Desplazamiento (m):	0.2038
Reacción en la base (Tonf):	25.8091
Trabajo (Tonf-m):	3.5625

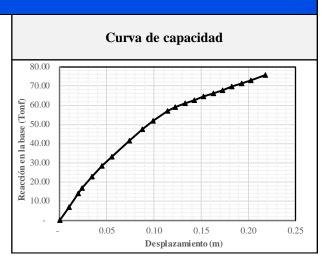

0.0788

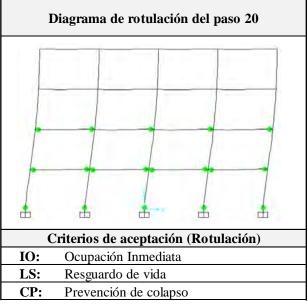


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	03 niveles y 03 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Moderado

C Resulted	os del anális	vie	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0049	2.5811	0.0063
2	0.0067	3.5556	0.0058
3	0.0142	7.1203	0.0399
4	0.0240	11.2061	0.0898
5	0.0299	13.3462	0.0722
6	0.0394	16.7562	0.1432
7	0.0444	18.5271	0.0882
8	0.0494	20.2979	0.0971
9	0.0544	22.0688	0.1059
10	0.0620	24.5777	0.1768
11	0.0670	26.1730	0.1269
12	0.0720	27.7683	0.1349
13	0.0770	29.3636	0.1428
14	0.0852	31.4463	0.2507
15	0.0912	32.7546	0.1902
16	0.0962	33.5517	0.1658
17	0.1012	34.3488	0.1698
18	0.1075	35.3108	0.2202
19	0.1125	36.0618	0.1784
20	0.1175	36.8129	0.1822
21	0.1225	37.5639	0.1859
22	0.1297	38.6228	0.2751
23	0.1371	39.5487	0.2895
24	0.1421	40.1473	0.1992
25	0.1521	41.3326	0.4067
26	0.1571	41.9211	0.2081
27	0.1621	42.4892	0.2110
28	0.167097	43.0573	0.2139
29	0.172097	43.6254	0.2167
30	0.177097	44.189	0.2195
31	0.182097	44.7526	0.2224
32	0.185102	45.0912	0.1350

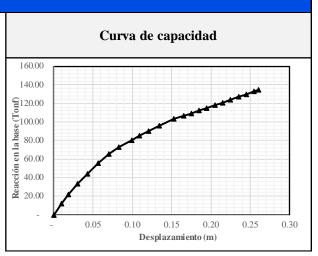

Valores máximos	
Desplazamiento (m):	0.1851
Reacción en la base (Tonf):	45.0912
Trabajo (Tonf-m):	5.3702

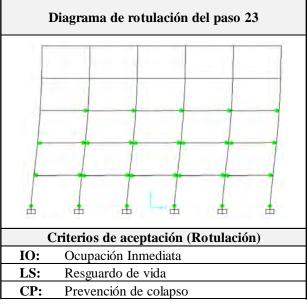


A. Sobre la investigación	
Tests.	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Moderado

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0097	6.9635	0.0339
2	0.0197	13.9270	0.1045
3	0.0238	16.7218	0.0615
4	0.0340	22.9809	0.2022
5	0.0449	28.3099	0.2820
6	0.0549	33.1336	0.3072
7	0.0736	41.5706	0.6951
8	0.0880	47.6659	0.6463
9	0.0988	52.0363	0.5355
10	0.1148	57.0915	0.8741
11	0.1228	59.1970	0.4628
12	0.1328	60.9394	0.6007
13	0.1428	62.6818	0.6181
14	0.1528	64.4242	0.6355
15	0.1628	66.1665	0.6530
16	0.1728	67.9089	0.6704
17	0.1828	69.6512	0.6878
18	0.1928	71.3936	0.7052
19	0.2028	73.1359	0.7226
20	0.2178	75.7473	1.1170

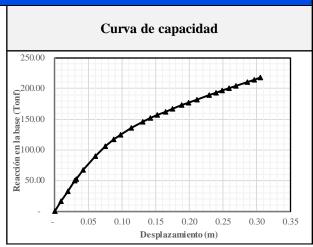

Valores máximos	
Desplazamiento (m):	0.2178
Reacción en la base (Tonf):	75.7473
Trabajo (Tonf-m):	10.6154

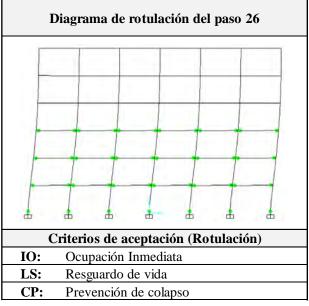


A. Sobre la investigación	
Tests:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Moderado

C. Resultad	los del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0097	11.9152	0.0581
2	0.0184	22.1989	0.1472
3	0.0300	33.4569	0.3239
4	0.0427	44.0337	0.4904
5	0.0570	55.4868	0.7138
6	0.0701	65.2566	0.7884
7	0.0830	73.0595	0.8954
8	0.0992	80.5075	1.2401
9	0.1092	85.1047	0.8281
10	0.1208	90.3710	1.0160
11	0.1343	95.9757	1.2617
12	0.1533	102.9220	1.8934
13	0.1651	106.4380	1.2312
14	0.1751	109.3415	1.0789
15	0.1851	112.2450	1.1079
16	0.1951	115.1484	1.1370
17	0.2051	118.0519	1.1660
18	0.2151	120.9553	1.1950
19	0.2251	123.8587	1.2241
20	0.2351	126.7620	1.2531
21	0.2451	129.6626	1.2821
22	0.2551	132.5633	1.3111
23	0.2606	134.1479	0.7305

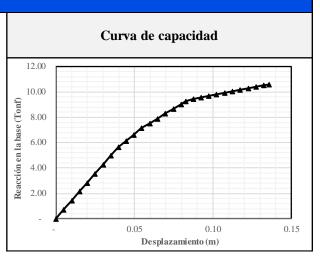

Valores máximos	
Desplazamiento (m):	0.2606
Reacción en la base (Tonf):	134.1479
Trabajo (Tonf-m):	22.3734



A. Sobre la investigación	
l'legig.	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Moderado	

C. Resultad	os del anális	sis	
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0097	16.5936	0.0801
2	0.0197	33.1871	0.2489
3	0.0297	49.7807	0.4148
4	0.0316	53.0320	0.1008
5	0.0419	67.7623	0.6232
6	0.0601	89.5904	1.4299
7	0.0754	106.4745	1.4975
8	0.0874	117.5598	1.3469
9	0.0974	124.3232	1.2094
10	0.1142	135.6546	2.1869
11	0.1308	145.4306	2.3220
12	0.1422	151.5915	1.6999
13	0.1522	156.8371	1.5421
14	0.1647	162.4314	1.9900
15	0.1747	166.7541	1.6459
16	0.1884	172.6578	2.3292
17	0.1984	176.9359	1.7480
18	0.2112	182.3706	2.3041
19	0.2290	189.3914	3.3076
20	0.2390	193.2166	1.9130
21	0.2490	197.0418	1.9513
22	0.2590	200.8669	1.9895
23	0.2690	204.6921	2.0278
24	0.2858	211.0918	3.4897
25	0.2958	214.8960	2.1299
26	0.3054	218.5583	2.0864

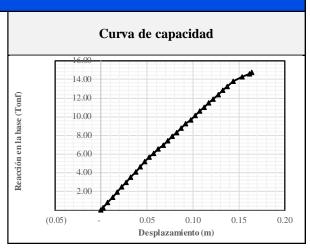

Valores máximos	
Desplazamiento (m):	0.3054
Reacción en la base (Tonf):	218.5583
Trabajo (Tonf-m):	43.6150

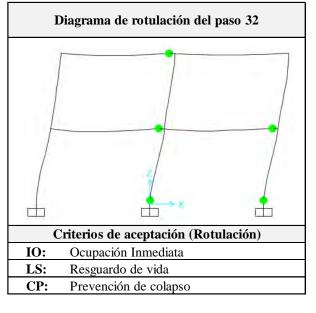
A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	01 nivel y 01 crujía	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0049	0.7097	0.0017
2	0.0099	1.4194	0.0053
3	0.0149	2.1291	0.0089
4	0.0199	2.8388	0.0124
5	0.0249	3.5485	0.0160
6	0.0299	4.2582	0.0195
7	0.0349	4.9679	0.0231
8	0.0395	5.6198	0.0243
9	0.0445	6.1266	0.0294
10	0.0495	6.6334	0.0319
11	0.0545	7.1403	0.0344
12	0.0595	7.5200	0.0367
13	0.0645	7.8998	0.0385
14	0.0695	8.2795	0.0404
15	0.0745	8.6593	0.0423
16	0.0795	9.0390	0.0442
17	0.0823	9.2494	0.0253
18	0.0872	9.4384	0.0457
19	0.0922	9.5643	0.0475
20	0.0972	9.6903	0.0481
21	0.1022	9.8162	0.0488
22	0.1072	9.9332	0.0494
23	0.1122	10.0501	0.0500
24	0.1172	10.1671	0.0505
25	0.1222	10.2841	0.0511
26	0.1272	10.4010	0.0517
27	0.1322	10.5180	0.0523
28	0.135673	10.5997	0.0369

Diagrama de rotulación del paso 28				
	<u>Z</u> → ×			
C	riterios de aceptación (Rotulación)			
IO:	Ocupación Inmediata			
LS:	Resguardo de vida			
CP:	Prevención de colapso			
<u> </u>				

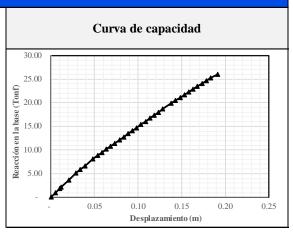

Valores máximos		
Desplazamiento (m):	0.1357	
Reacción en la base (Tonf):	10.5997	
Trabajo (Tonf-m):	0.9665	

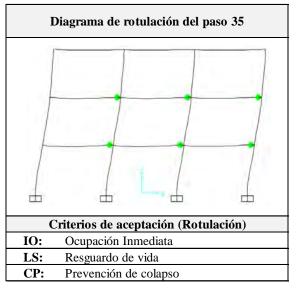


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	02 niveles y 02 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Severo	

Paso Desplazam iento Reacción en la base Trabajo (#) (m) (Tonf) (Tonf-m) 0 -0.0002 0.0000 0.0003 1 0.0023 0.2736 0.0003 2 0.0073 0.8207 0.0027 3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16	orado de arectación parorogicas pareiro			
(#) (m) (Tonf) (Tonf-m) 0 -0.0002 0.0000 1 0.0023 0.2736 0.0003 2 0.0073 0.8207 0.0027 3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344	C. Resultados del análisis			
0 -0.0002 0.0000 1 0.0023 0.2736 0.0003 2 0.0073 0.8207 0.0027 3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824	Paso	_		Trabajo
1 0.0023 0.2736 0.0003 2 0.0073 0.8207 0.0027 3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923	(#)	(m)	(Tonf)	(Tonf-m)
2 0.0073 0.8207 0.0027 3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973	0	-0.0002	0.0000	
3 0.0123 1.3679 0.0055 4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023	1	0.0023	0.2736	0.0003
4 0.0173 1.9151 0.0082 5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 <td>2</td> <td>0.0073</td> <td>0.8207</td> <td>0.0027</td>	2	0.0073	0.8207	0.0027
5 0.0223 2.4622 0.0109 6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 </td <td>3</td> <td>0.0123</td> <td>1.3679</td> <td>0.0055</td>	3	0.0123	1.3679	0.0055
6 0.0273 3.0094 0.0137 7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173	4	0.0173	1.9151	0.0082
7 0.0323 3.5566 0.0164 8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.12	5	0.0223	2.4622	0.0109
8 0.0373 4.1037 0.0192 9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.	6	0.0273	3.0094	0.0137
9 0.0423 4.6509 0.0219 10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27	7	0.0323	3.5566	0.0164
10 0.0473 5.1981 0.0246 11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 <t< td=""><td>8</td><td>0.0373</td><td>4.1037</td><td>0.0192</td></t<>	8	0.0373	4.1037	0.0192
11 0.0523 5.6461 0.0271 12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29	9	0.0423	4.6509	0.0219
12 0.0573 6.0941 0.0294 13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	10	0.0473	5.1981	0.0246
13 0.0623 6.5422 0.0316 14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	11	0.0523	5.6461	0.0271
14 0.0673 6.9902 0.0338 15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	12	0.0573	6.0941	0.0294
15 0.0723 7.4383 0.0361 16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	13	0.0623	6.5422	0.0316
16 0.0773 7.8863 0.0383 17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	14	0.0673	6.9902	0.0338
17 0.0823 8.3344 0.0406 18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	15	0.0723	7.4383	0.0361
18 0.0873 8.7824 0.0428 19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	16	0.0773	7.8863	0.0383
19 0.0923 9.2304 0.0450 20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	17	0.0823	8.3344	0.0406
20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	18	0.0873	8.7824	0.0428
20 0.0973 9.6785 0.0473 21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	19	0.0923	9.2304	0.0450
21 0.1023 10.1265 0.0495 22 0.1073 10.5745 0.0518 23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	20	0.0973		0.0473
23 0.1123 11.0226 0.0540 24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	21		10.1265	0.0495
24 0.1173 11.4706 0.0562 25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	22	0.1073	10.5745	0.0518
25 0.1223 11.9186 0.0585 26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	23	0.1123	11.0226	0.0540
26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	24	0.1173	11.4706	0.0562
26 0.1273 12.3667 0.0607 27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	25			
27 0.1323 12.8147 0.0630 28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897	26			
28 0.137321 13.2627 0.0652 29 0.143951 13.7928 0.0897				
29 0.143951 13.7928 0.0897	28			
	29	0.143951	13.7928	0.0897
50 0.153224 14.2622 0.1301	30	0.153224	14.2622	0.1301
31 0.161244 14.6024 0.1157	31			
32 0.164181 14.7157 0.0431				

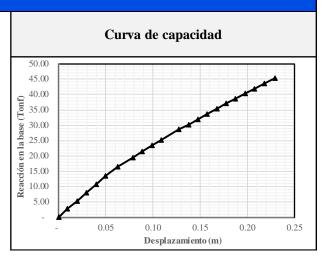

Valores máximos	
Desplazamiento (m):	0.1642
Reacción en la base (Tonf):	14.7157
Trabajo (Tonf-m):	1.3328

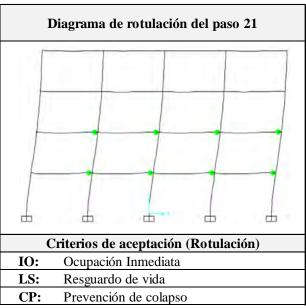


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	03 niveles y 03 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación natológica:	Severo	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0047	0.9452	0.0022
2	0.0097	1.8461	0.0070
3	0.0114	2.1520	0.0034
4	0.0204	3.6664	0.0260
5	0.0288	5.0549	0.0370
6	0.0338	5.8614	0.0273
7	0.0388	6.6679	0.0313
8	0.0484	8.1072	0.0706
9	0.0534	8.8161	0.0423
10	0.0584	9.4732	0.0457
11	0.0634	10.1303	0.0490
12	0.0684	10.7873	0.0523
13	0.0734	11.4444	0.0556
14	0.0784	12.1014	0.0589
15	0.0834	12.7585	0.0621
16	0.0884	13.4155	0.0654
17	0.0934	14.0726	0.0687
18	0.0984	14.7296	0.0720
19	0.1034	15.3867	0.0753
20	0.1084	16.0437	0.0786
21	0.1134	16.7008	0.0819
22	0.1184	17.3578	0.0851
23	0.1234	18.0149	0.0884
24	0.1284	18.6719	0.0917
25	0.1381	19.8869	0.1880
26	0.1431	20.4780	0.1009
27	0.1481	21.0691	0.1039
28	0.153146	21.6601	0.1068
29	0.158146	22.2512	0.1098
30	0.163146	22.8423	0.1127
31	0.168146	23.4334	0.1157
32	0.173146	24.0244	0.1186
33	0.178146	24.6155	0.1216
34	0.183146	25.2065	0.1246
35	0.191169	26.0036	0.2054

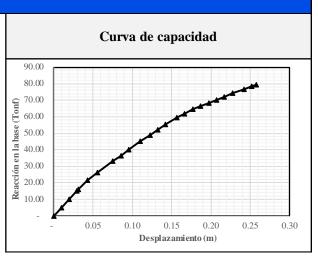

Valores máximos		
Desplazamiento (m):	0.1912	
Reacción en la base (Tonf):	26.0036	
Trabajo (Tonf-m):	2,6859	

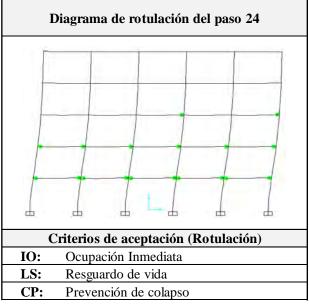


A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	04 niveles y 04 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Severo

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0095	2.7133	0.0129
2	0.0195	5.4266	0.0407
3	0.0295	8.1399	0.0678
4	0.0395	10.8532	0.0950
5	0.0493	13.4106	0.1186
6	0.0623	16.4513	0.1947
7	0.0786	19.5921	0.2934
8	0.0886	21.4719	0.2053
9	0.0986	23.3516	0.2241
10	0.1086	25.2314	0.2429
11	0.1277	28.5918	0.5129
12	0.1377	30.2992	0.2945
13	0.1477	32.0067	0.3115
14	0.1577	33.7141	0.3286
15	0.1677	35.4215	0.3457
16	0.1777	37.1289	0.3628
17	0.1877	38.7391	0.3793
18	0.1977	40.3492	0.3954
19	0.2077	41.9594	0.4115
20	0.2177	43.5696	0.4276
21	0.2290	45.2488	0.5041

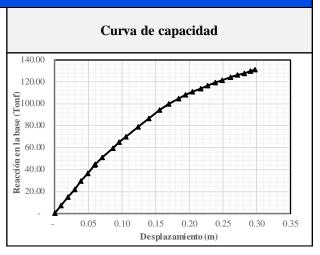

Valores máximos	
Desplazamiento (m):	0.2290
Reacción en la base (Tonf):	45.2488
Trabajo (Tonf-m):	5.7696

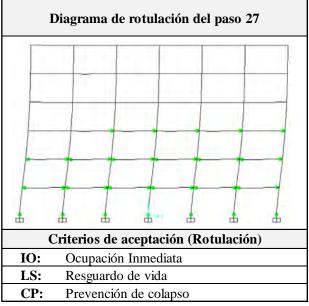


A. Sobre la investigación	
Lesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:	
Configuración estructural:	05 niveles y 05 crujías
Tipo de patología:	Reacción álcali-sílice
Grado de afectación patológica:	Severo

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0096	5.0195	0.0240
2	0.0196	10.0391	0.0753
3	0.0296	15.0586	0.1255
4	0.0314	15.9841	0.0286
5	0.0431	21.3805	0.2187
6	0.0557	26.1155	0.2982
7	0.0756	33.1901	0.5902
8	0.0856	36.5890	0.3489
9	0.0956	39.9880	0.3829
10	0.1105	45.0192	0.6359
11	0.1224	48.9052	0.5584
12	0.1324	52.0379	0.5047
13	0.1424	55.1707	0.5360
14	0.1563	59.3498	0.7925
15	0.1663	61.7891	0.6057
16	0.1773	64.3820	0.6965
17	0.1873	66.3299	0.6536
18	0.1973	68.2778	0.6730
19	0.2073	70.2257	0.6925
20	0.2173	72.1736	0.7120
21	0.2273	74.1215	0.7315
22	0.2421	76.7512	1.1127
23	0.2521	78.3388	0.7754
24	0.2576	79.2127	0.4337


Valores máximos		
Desplazamiento (m):	0.2576	
Reacción en la base (Tonf):	79.2127	
Trabajo (Tonf-m):	12.2064	



A. Sobre la investigación	
Tesis:	Degradación de la capacidad estructural de pórticos de concreto armado afectados por deterioros patológicos
Investigador:	Victor Manuel Tello Diaz

B. Sobre los parámetros:		
Configuración estructural:	06 niveles y 06 crujías	
Tipo de patología:	Reacción álcali-sílice	
Grado de afectación patológica:	Severo	

C. Resultados del análisis			
Paso	Desplazam iento	Reacción en la base	Trabajo
(#)	(m)	(Tonf)	(Tonf-m)
0	0.0000	0.0000	
1	0.0094	7.2989	0.0343
2	0.0194	14.5978	0.1095
3	0.0294	21.8968	0.1825
4	0.0394	29.1957	0.2555
5	0.0494	36.4946	0.3285
6	0.0594	43.7935	0.4014
7	0.0607	44.7278	0.0582
8	0.0708	51.1865	0.4817
9	0.0860	59.6572	0.8452
10	0.0960	65.0511	0.6240
11	0.1060	70.1687	0.6761
12	0.1240	79.1592	1.3402
13	0.1396	86.8024	1.3003
14	0.1552	94.0187	1.4059
15	0.1687	99.7030	1.3086
16	0.1843	104.8765	1.5909
17	0.1943	107.8234	1.0635
18	0.2043	110.7703	1.0930
19	0.2169	113.9441	1.4166
20	0.2269	116.4120	1.1518
21	0.2383	119.1789	1.3457
22	0.2483	121.5246	1.2035
23	0.2610	124.2328	1.5671
24	0.2710	126.0521	1.2514
25	0.2810	127.8714	1.2696
26	0.2910	129.6907	1.2878
27	0.2976	130.8783	0.8505

Valores máximos	
Desplazamiento (m):	0.2976
Reacción en la base (Tonf):	130.8783
Trabajo (Tonf-m):	24.4433