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Resumen 
 

En esta tesis de maestría, se aborda el problema de identificar los 
parámetros de ponderación en las funciones de coste definidas por un 
problema de control óptimo. Debido a la naturaleza del problema, 
abordado como un problema inverso, el enfoque de este trabajo es 
asegurar el buen planteamiento de los problemas de control óptimo 
inverso, un aspecto crucial que garantiza la viabilidad, unicidad y 
estabilidad de las funciones de coste estimadas. El estudio emplea la 
metodología del regulador cuadrático lineal (LQR) dentro de un sistema 
lineal. 

Un aspecto central de esta investigación es la determinación de los 
parámetros Q y R en el enfoque LQR, que desempeñan un papel 
fundamental en la definición de la eficiencia y la eficacia del sistema de 
control. La tesis examina cómo pueden elegirse óptimamente estos 
parámetros y el impacto que tienen en el rendimiento del sistema. Además, 
el estudio explora el uso de restricciones para mejorar la respuesta 
transitoria del sistema, un factor importante en el diseño de sistemas de 
control, garantizando que el sistema alcance rápida y eficazmente los 
requisitos de diseño deseados. 

En este trabajo se propone un enfoque de dos niveles para resolver el 
problema de control óptimo inverso. Se trata de utilizar programación 
semidefinida para recuperar los parámetros de la función de coste y 
evaluar la optimalidad de la solución. Además, se aborda el problema para 
encontrar las condiciones para minimizar la función de coste, estimando 
los parámetros Q y R a partir de las leyes de control observadas, y 
aplicando restricciones para la optimización. Se concluye con resultados 
que demuestran la mejora de la respuesta del sistema y un método 
alternativo que reduce la dependencia de la matriz de ganancia K.  
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Abstract  
 

In this master thesis, we address the problem to identify the weighting 
parameters in the cost functions defined by an optimal control problem. 
Due to the nature of addressed problem as an inverse problem, the focus 
of this work is to ensure the well-posedness of inverse optimal control 
problems, a crucial aspect that guarantees the feasibility, uniqueness, and 
stability of the estimated cost functions. The study employs the Linear 
Quadratic Regulator (LQR) methodology within a linear system. 

Central to this research is the determination of the parameters Q and R in 
the LQR approach, which play a pivotal role in defining the efficiency and 
effectiveness of the control system. The thesis examines how these 
parameters can be optimally chosen and the impact they have on system 
performance. Additionally, the study explores the use of constraints to 
enhance the transient response of the system, a significant factor in control 
system design, ensuring that the system quickly and effectively reaches its 
desired design requirements. 

A two-level approach to solving the inverse optimal control problem is 
proposed in this work. It involves using semidefinite programming to 
recover cost function parameters and evaluating the optimality of the 
solution. Also, we address the problem to finding conditions for minimizing 
the cost function, estimating parameters Q and R from observed control 
laws, and applying constraints for well-posedness. It concludes with results 
demonstrating improved system response and an alternative method that 
reduces dependence on the K-gain matrix. 
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Zusammenfassung 
 

In dieser Masterarbeit befassen wir uns mit dem Problem der 
Identifizierung der Gewichtungsparameter in den Kostenfunktionen, die 
durch ein optimales Kontrollproblem definiert werden. Da es sich bei dem 
behandelten Problem um ein inverses Problem handelt, liegt der 
Schwerpunkt dieser Arbeit auf der Sicherstellung der Wohlgeformtheit von 
inversen Optimalsteuerungsproblemen, einem entscheidenden Aspekt, 
der die Machbarkeit, Eindeutigkeit und Stabilität der geschätzten 
Kostenfunktionen garantiert. In der Studie wird die Methode des linearen 
quadratischen Reglers (LQR) in einem linearen System angewandt. 

Im Mittelpunkt dieser Untersuchung steht die Bestimmung der Parameter 
Q und R im LQR-Ansatz, die eine zentrale Rolle bei der Definition der 
Effizienz und Effektivität des Steuerungssystems spielen. In der Arbeit wird 
untersucht, wie diese Parameter optimal gewählt werden können und 
welchen Einfluss sie auf die Systemleistung haben. Darüber hinaus 
untersucht die Studie die Verwendung von Nebenbedingungen zur 
Verbesserung des Einschwingverhaltens des Systems, einem wichtigen 
Faktor beim Entwurf von Regelsystemen, um sicherzustellen, dass das 
System die gewünschten Entwurfsanforderungen schnell und effektiv 
erreicht. 

In dieser Arbeit wird ein zweistufiger Ansatz zur Lösung des inversen 
optimalen Steuerungsproblems vorgeschlagen. Dazu gehört die 
Verwendung der semidefiniten Programmierung, um die Parameter der 
Kostenfunktion zu ermitteln und die Optimalität der Lösung zu bewerten. 
Außerdem befassen wir uns mit dem Problem, Bedingungen für die 
Minimierung der Kostenfunktion zu finden, die Parameter Q und R aus den 
beobachteten Kontrollgesetzen zu schätzen und Einschränkungen für die 
Wohlgeformtheit anzuwenden. Abschließend werden Ergebnisse 
vorgestellt, die eine verbesserte Systemantwort und eine alternative 
Methode zeigen, die die Abhängigkeit von der K-Gain-Matrix verringert.  
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Chapter 1 
Introduction  
 

At present, a large number of studies have been carried out on the theory 

of optimal control whose objective is to obtain the control law of a known 

dynamic system in such a way as to optimize the cost function related to 

the system. It is worth mentioning that this cost function is intended to 

regulate the behavior of the system, weighing either the accuracy of the 

response on the effort that the controller imparts to obtain that response or 

vice versa. In this sense, since the parameters that integrate the cost 

function modify the behavior of the system, it is required to establish a 

balance between these parameters that is in accordance with the purpose 

of the system. Therefore, in many cases it is often difficult to know in 

advance the configuration of a cost function that regulates the behavior of 

the system, so it is useful to have a mathematical approach to estimate this 

cost function to have a knowledge or, at least, an initial idea of the behavior 

of the system and this is achieved with the Inverse Optimal Control. 

Inverse optimal control (IOC) is an area of mathematics in constant 

research whose growing interest in recent years is due to its applications 

especially in the field of robotics. Thus, contrary to forward optimal control, 

inverse optimal control is based on knowledge of the control law or at least 

part of the response of the system to subsequently estimate the cost 

function that could have produced that response. In this sense, one of the 

main approaches used for the inverse optimal control is the one applied to 

the Linear Quadratic Regulator (LQR), since its structure, which reflects 

convexity characteristics, makes it ideal for the study and application in 

many of the practical systems today [14]. 

However, the inverse optimal control requires certain necessary and 

sufficient conditions to be satisfied to produce a reliable result, these 
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conditions ensure the well-posedness to the Inverse Optimal Control 

problem (IOCP). In this sense, since this type of problems are solved by 

means of numerical methods, it is necessary that such necessary and 

sufficient conditions are represented as Linear Matrix Inequalities (LMIs) 

constraints, also given the convex nature of the Linear Quadratic Regulator 

it is required to redefine the approach of such constraints as convex 

equations and inequalities using the theory of Semidefinite Programming 

(SDP). In this context, this work aims to develop the well-posedness for an 

Inverse Optimal Control problem by using the Semidefinite Programming 

(SDP) with Linear Matrix Inequality (LMI) constraints. 

Moreover, for practical applications, a good quality controller must also 

ensure fast and well-damped temporal responses. This is often achieved 

by strategically placing closed-loop poles in the complex plane, a technique 

known as regional pole placement. Unlike pointwise pole placement, which 

assigns poles to specific locations, regional pole placement confines the 

poles to an area in the complex plane, which is usually achieved by the 

intersection of a shifted half-plane, a vertical strip, a sector and a disk which 

is usually known and implemented as a Linear Matrix Inequality (LMI) 

region. This approach guarantees desirable characteristics such as fast 

decay and acceptable damping on the system response [11]. 

In the present work, the linear quadratic regulator (LQR) has been 

considered as the cost function on which the conditions for a well-

posedness to the Inverse Optimal Control problem and the process of 

obtaining the parameters that compose it have been studied. The codes 

have been written in Python programming language and have been used 

libraries for numerical operations such as NUMPY, libraries for numerical 

optimization such as SCIPY and libraries for convex optimization such as 

CVXPY. 
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1.1 Backgrounds 
 

The well-posedness of the Inverse optimal control problem (IOCP) has 

been a central concern, and researchers have employed a variety of 

mathematical and computational tools to develop robust and effective 

solutions. In that sense, inverse optimal control, where starting from an 

optimal control policy, the objective is to find the parameters that compose 

a cost function, dates back to the seminal work of Kalman in 1964 where 

he first characterized the necessary and sufficient conditions for a control 

policy to be optimal for the Linear Quadratic Regulator (LQR) problem [22]. 

Also, the Riccati equations are considered one of the fundamental pillars 

in control theory. These equations were described by Kalman more than 

50 years ago, since then the variety of problems involving these equations 

has expanded, including those with quadratic cost criteria. [24]. 

As for linear matrix inequalities (LMIs), whose origin dates back to the end 

of the 19th century, when the Lyapunov theory arises, which establishes 

that a system �̇�(𝑡) = 𝐴𝑥(𝑡) is stable, that is to say that all its trajectories 

converge to the origin (or zero) if and only if there exists a positive definite 

matrix 𝑃 > 0 such that 𝐴𝑇𝑃 + 𝑃𝐴 < 0, which represents a special form of a 

linear matrix inequality (LMI) and is known as the Lyapunov inequality on 

𝑃 [20]. Therefore, according to the above, the Lyapunov inequality was the 

first Linear Matrix Inequality (LMI) used to analyze the stability of a 

dynamical system. In that sense around the 1940s the methods 

established by Lyapunov were used in practical control engineering 

problems, posing elementary linear matrix inequalities whose analytical 

solution was feasible by hand, thus limiting its application to small or lower 

order systems. During the 1960s, graphical methods were developed for 

the solution of LMIs of larger or higher order systems. Later, in the early 

1970s, it became known that the same group of LMIs could be solved by 

the symmetric solution of the algebraic Riccati equation (ARE) in addition 
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to graphical methods. Also, at the same time, the usefulness of linear matrix 

inequalities applied to computational algorithms, compared to classical or 

analytical methods, was observed. Finally, during the 1980s it was 

recognized that many of the LMIs could be solved computationally and 

conveniently through the formulation of convex programming problems and 

several interior point algorithms were developed for an efficient solution of 

such formulations of linear matrix inequalities (LMIs) arising in control 

theory [20]. 

On the other hand, semidefinite programming (SDP) as a mathematical 

programming tool was developed in the 1990s and so far, applications in 

areas such as convex optimization, combinatorics and control theory are 

diverse. The popularity of the application of semidefinite programming is 

largely due to the fact that they offer an efficient solution because they use 

algorithms based on interior point methods for their solution [23]. 

 

1.2 Motivations 
 

In the context of Inverse Optimal Control (IOC), the concept of well-

posedness guarantees the existence of a solution to the inverse problem. 

In the absence of a well-posed solution, there may be multiple solutions or 

none at all, making it difficult to determine the true underlying control 

strategy. In that sense, a well-posed problem usually leads to solutions that 

make sense in the context of the physical system being modeled. This is 

crucial for applications in robotics and control, where the identified control 

strategies must be practical and aligned with the expected behavior of the 

system. Also, well-posed problems often result in numerical methods that 

are well behaved and computationally tractable. This is crucial in the 

application of algorithms that efficiently solve Inverse Optimal Control 

problems [13]. 
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On the other hand, starting from the optimal response of a system is a 

desirable feature in inverse optimal control. This is evident for example in 

the movement of biological organisms since the fundamental premise 

behind biologically inspired engineering, both animal and human, is the 

assumption that natural processes exhibit optimality [12].  

Over the years it has been observed that organisms present in nature 

exhibit in many of their behaviors a certain degree of intelligence, 

reinforced by the fact that such behaviors tend to perform optimally 

according to several studies. In this sense, the optimality principle is 

investigated as a key tool for modeling mechanisms inspired by such 

intelligent behaviors. Thus, inverse optimal control has been studied and 

applied in different fields, mainly in robotics. Since, in inverse optimal 

control, knowing in advance the dynamics of the system and the behavioral 

policy considered optimal for a given task, it is sought to recover the 

optimization criterion or cost function that has generated such behavior. 

[14]. 

In Inverse Optimal Control (IOC), the usefulness of estimating objective 

functions is justified by the fact that processes, whether natural or artificial, 

require a certain degree of optimization. For example, the predator in 

nature must weigh the need to feed against the distance traveled, the size 

of the prey and the energy required. Likewise, a space station must weigh 

the need for power versus the speed to deploy the solar panels and the 

amount of fuel used in the positioning jets for that purpose. However, for 

each component of a process it is difficult to know in advance the weights 

required in the cost functions that could replicate each behavior. Therefore, 

an objective function recovery method could help to have a better 

understanding of the physical system proposed. Another motivation is the 

imitation of intelligent entities performing complicated tasks such as 

pouring a glass of water or driving a car in a dynamic environment with 

obstacles. However, it may be difficult to obtain expressions that 
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characterize the performance of such tasks since in many cases only a 

rough idea of the desired behavior is available. Therefore, obtaining a cost 

function that reproduces the desired task is difficult, while expressing the 

desired behavior may be easier. Thus, inverse optimal control starts from 

the desired behavior and recovers the objective function that has produced 

the desired behavior [14][15]. 

With this in mind, inverse optimal control problems present a different 

challenge, as it involves situations in which the cost function is not explicitly 

defined. Instead, what is known is the solution or outcome, or at least the 

observable aspects of the solution, typically derived from empirical 

measurements. This distinguishes it from classical forward optimization 

problems, in which the cost function is fully defined and the task is to 

determine its solution. Consequently, the objective of Inverse Optimal 

Control problems is to determine, in the context of a given dynamic process 

and an observed outcome, the specific optimization criterion or cost 

function that has generated that particular outcome [13]. 

 

1.3 Objectives 
 

Inverse Optimal Control allows obtaining the underlying functional cost 

associated with a known trajectory that is assumed to be optimal.  In this 

context, the following are the objectives that were planned to be achieved 

from the development of this work. 
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General Objective: 

 

The study of the well-posedness of the inverse optimal control problem 

(IOCP), in order to subsequently determine the weighting parameters that 

characterize the cost function. 

 

Specific objectives: 

 

- Formulate the necessary and sufficient conditions for a well-posed 

Inverse Optimal Control problem. 

- Estimate the weighting parameters of the cost function of a linear 

quadratic regulator (LQR) using LMI constraints, convex 

formulations and from input data considered optimal. 

- Elaborate the first solution of an inverse problem using the conditions 

of well-posedness. 

- Elaborate the second solution by including constraints to improve the 

transient response of the system. 

- Elaborate the third solution to avoid dependence on the use of the 

gain matrix K. 

- Evaluate the results by taking two examples. First, a mass-spring-

damper system with 4 degrees of freedom (DOF) for the solution of 

the inverse problem using as input data the gain matrix K. Secondly, 

it is used as input data for the solution of the inverse problem and, 

replacing the gain matrix K, the record of the trajectories in two 

dimensions, i.e., the position at each instant of time of a mobile robot. 

and thus reconstruct the cost function that could have produced such 

trajectory. 
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1.4 Overview 
 

The content of the sections of this work is described as follows: 

• Chapter 1 provides an introduction to the field of Inverse Optimal 

Control, outlining the motivations driving this research and the specific 

objectives pursued.  

• Chapter 2 offers a comprehensive review of relevant literature, 

establishing the context for the present work.  

• Chapter 3 presents the fundamental concepts such as the necessary 

and sufficient conditions that ensure the well-posedness of the Inverse 

Optimal Control problem, Semidefinite Programming (SDP), Linear 

Matrix Inequality (LMI) constraints and LMI regions relevant to the 

regional pole placement. Subsequently, these theoretical concepts are 

applied in the formulation of an Inverse Optimal Control problem taking 

as an example a mass-spring-damper system with four degrees of 

freedom (DOF).  

• Chapter 4 represents the discussion section of the present work, in 

which the results derived from solving the proposed system are 

presented and the performance of the proposed approach is analyzed. 

• Chapter 5 presents the conclusions of this work and possible future 

research. 
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Chapter 2 
State of the art 
 

In general, the problem of cost function recovery has been intensively 

investigated. Thus, numerous specialists have examined the necessary 

and sufficient criteria to establish the well-posed nature of inverse optimal 

control problems. Various methodologies, including machine learning 

techniques and optimization algorithms, have been employed to determine 

the unknown parameters within the underlying model. However, a common 

feature of these investigations is the initiation of the analytical process from 

an existing solution, leading to the subsequent derivation of the underlying 

cost function or objective function responsible for generating that solution. 

To tackle the Inverse Optimal Control problem, it's crucial to examine the 

solution methodology of forward optimal control. Thus, according to [5] the 

solution to the optimal linear regulator problem involves the determination 

of a control input, 𝑢, that minimizes a performance index or cost function; 

therefore, the solution is a unique optimal control that is established by a 

fixed feedback control law 𝑢 = −𝐾𝑇𝑥 whose gain controller 𝐾 is determined 

by the Algebraic Riccati equation (ARE). 

On the other hand, with respect to the inverse problem, in [6] a fully 

controllable scalar linear system �̇� = 𝐹𝑥 + 𝑔𝑢 with state feedback control 

law 𝑢 = −𝐾𝑇𝑥 and a performance index, 𝐽, that accurately reflects the 

design requirements is considered. Therefore, the inverse problem 

attempts to determine the performance index or cost function from 𝐾 such 

that 𝑢 minimizes 𝐽. However, it is necessary to establish an optimality 

criterion for 𝐾, with 𝑄 ≥ 0, that allows one to determine which system 

designs can be interpreted as the solution to an optimization problem. In 

the end, the solution to the inverse optimal control problem is established 

by 𝑄 ≥ 0, i.e., 𝑄 = 𝑑𝑖𝑎𝑔(𝑎1, 𝑎2, … , 𝑎𝑛). 
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As per reference [4], in forward optimal control, it's preferable to select a 

criterion or cost function that precisely mirrors the functional goals of the 

system. Simultaneously, it should produce an optimal control law that 

imposes minimal weight, cost, and complexity demands on the system. 

Conversely, the inverse problem in optimal control theory seeks to identify 

a set of criterion or cost functions for which a provided feedback control law 

is optimal. In this sense, the standard linear regulator problem is posed with 

system dynamics ℎ(𝑐, 𝑣) = 𝐴𝑐 + 𝐵𝑣, given or known feedback optimal 

control law 𝑣 = −𝐾𝑐 and cost function 𝑔 having the parameterized form 

𝑔(𝑐, 𝑣) =
1

2
[(𝑐, 𝑄𝑐) + (𝑣, 𝑣)], where 𝑄 is an unknown positive semidefinite, 

𝑄 ≥ 0, matrix and 𝐾 is a given or known gain controller, 𝐾 = 𝐵′𝐿. The 

objective is to characterize all 𝑄 satisfying the Hamilton-Jacobi-Bellman 

equation. For this is needed to solve 𝐾 = 𝐵′𝐿 for 𝐿 and, to substitute in the 

Algebraic Riccati Equation (ARE), 𝑄 − 𝐾′𝐾 + 𝐿𝐴 + 𝐴′𝐿 = 0, to finally 

determine the equivalent 𝑄. 

Moreover, according to [2] in an inverse optimal control problem, the 

dynamics are assumed to be known and the data are a set of registered 

trajectories. The objective is to recover a cost function that is minimized by 

those given trajectories that are considered optimal. In this sense, for the 

reconstruction of the cost, it is necessary to ensure the well-posedness of 

the inverse problem by considering the existence problem where it is 

answered if there is any cost for which the given trajectories are minimizing, 

the injectivity problem where it is answered if this cost is unique and the 

stability problem where it is answered if the inverse application is stable 

with respect to perturbations of the data. In this approach the standard finite 

horizon Linear-Quadratic (LQ) problems, ∫ (𝑥𝑇𝑄𝑥 + 2𝑥𝑇𝑆𝑢 + 𝑢𝑇𝑅𝑢)𝑑𝑡
𝑇

0
 

subject to �̇� = 𝐴𝑥 + 𝐵𝑢, are considered. Then, the quadratic cost class is 

reduced to the canonical cost class min
𝑢

∫ (𝑢 + 𝐾𝑥)𝑇𝑅(𝑢 + 𝐾𝑥)
𝑇

0
, where the 
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proposed cost reconstruction method takes as data the recorded 

trajectories, not the control law and outputs the matrices 𝑅 and 𝐾 such that 

the given optimal synthesis is Γ, i.e., the set of all minimizing solutions. 

In that sense, in [8] the Inverse Optimal Control problem given the system 

matrices 𝐴, 𝐵 and a gain matrix 𝐾 aims to find the necessary and sufficient 

conditions for K to be the optimum of an infinite-time LQ problem and to 

determine all the weight matrices 𝑄, 𝑅 and 𝑆 that produce the given gain 

matrix 𝐾. However, this method starts from the state trajectories of a Linear 

Time Invariant (LTI) system and then identifies the 𝑄, 𝑅 and 𝑆 matrices that 

have generated these trajectories, i.e., the problem of estimating a cost 

function that best approximates a given set of state trajectories is 

considered. 

In [10], the concept of Inverse Optimal Control (IOC) is elucidated as the 

process of reconstructing a cost function based on observed input and 

state trajectories, which are either optimal or approximate. Implicit in this 

process is the assumption that the input observations faithfully represent 

the system's evolution and that the expert's behavior is approximately 

optimal. By evaluating the congruence between the demonstration 

trajectory and the conditions necessary for control optimality, the agent's 

optimality is assessed. This evaluation relies on deriving a set of functions 

from the necessary conditions for optimality, typically based on first-order 

conditions. Subsequently, the Inverse Optimal Control problem (IOCP) is 

tackled by minimizing these functions while considering the unknown 

parameters. 

According to [3] Inverse Optimal Control is the process of producing the 

weights Q and R of a time invariant Linear Quadratic Regulator (LQR) 

problem having beforehand the estimated gain matrix K which is 

considered the optimal solution. In this regard, the Linear Quadratic 

Regulator framework is used where the continuous-time Linear Time 

Invariant (LTI) system is �̇� = 𝐴𝑥 + 𝐵𝑢 and the cost function is 𝐽 =
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∫ [
𝑥
𝑢
]
𝑇

[
𝑄 𝑆

𝑆𝑇 𝑅
]

∞

0
[
𝑥
𝑢
] 𝑑𝑡, with S=0. The inverse problem pursues the task of 

given a stabilizing control law 𝑢 = −𝐾𝑥 determining what necessary and 

sufficient conditions exist in (𝐾, 𝐴, 𝐵) such that the gain matrix 𝐾 is optimal 

for the cost 𝐽 with 𝑄 ≥ 0 and 𝑅 = 𝐼. Second determine all 𝑄 for some 

(𝐾, 𝐴, 𝐵) that satisfy the conditions previously found.  

To solve the inverse problem, a formulation based on Linear Matrix 

Inequalities (LMIs) is presented to determine whether for a given stabilizing 

feedback law 𝐾, there exists some set (𝑄, 𝑅) for which 𝐾 is the optimal 

feedback gain, as shown below. 

 

 
 

Figure 1 - Formulation of the IOCP given a feedback law K 
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In cases where the precise solution cannot be obtained due to Linear Matrix 

Inequalities' (LMI) infeasibility, the development of a gradient descent 

algorithm becomes imperative. This algorithm relies on the derivative of the 

Algebraic Riccati Equation (DARE) to minimize the disparity between the 

optimal solution and the experimental feedback gains. 

 

A contrast between forward and inverse optimal control can be made in [7]. 

In that sense, being known the quadratic performance index or cost 

function ∫ 𝑥′𝑄𝑥 + 𝑢′𝑢𝑑𝑡
∞

0
 and the stationary linear dynamic system �̇� =

𝐹𝑥 + 𝐺𝑢. The Forward Optimal Control problem performs the process of 

finding a feedback matrix K given a certain value of Q. On the other hand, 

the Inverse Optimal Control problem performs the process of obtaining 

some symmetric matrix Q for which the given feedback matrix K (𝑢 = −𝐾𝑥) 

must ensure that it is optimal. Therefore, assuming that (𝐹, 𝐺) is 

controllable. The inverse problem is characterized by ensuring that K is 

optimal for Q if and only if 

 

▪ Re λ(F-GK) < 0 

▪ 𝐾 = 𝐺′𝐿, where 𝐿 is a real symmetric solution of the Algebraic Riccati 

Equation (ARE). 

 

With the above it is ensured that there is a unique solution 𝑢 = −𝐺′𝐿𝑥, i.e., 

𝐾 is optimal for 𝑄. Now, finally, a suitable 𝑄 is determined by means of the 

formula: 𝑄 = 𝐾′𝐾 − 𝐹′𝐿 − 𝐿𝐹. 
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Forward Optimal control problem Inverse Optimal Control Problem [7] 

min∫ 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢𝑑𝑡
∞

0

 

Subject to �̇� = 𝐴𝑥 + 𝐵𝑢 
Solution: 𝑢(𝑡) = −𝐾𝑥(𝑡) 
where 𝐾 = 𝑅−1𝐵𝑇𝑆 and S is solution to 
ARE: 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0 

Optimal control law: 𝑢 = −𝐺′𝐿𝑥 with a 
given 𝐾 = 𝐺′𝐿 
Subject to �̇� = 𝐹𝑥 + 𝐺𝑢 
Unknown: 𝑄 for 

∫ 𝑥′𝑄𝑥 + 𝑢′𝑢𝑑𝑡
∞

0

 

Define
A & B

Choose
Q & R

Solve ARE 
for S   

Compute
K

values

Analyze 
eigenvalues

[A-BK]

Stable
System

?

Get controller 
gain: K

Solution
u(t)=-Kx(t)

YES

NO

Optimal 
controller

Minimum cost 
for the cost 

function

 

Given matrix 
values: K

K is optimal for 
some Q

Compute L
K=G L

Compute Q from ARE:
F L+LF-K K+Q=0

Reλ(F-GK)<0
?

KG
Symmetric matrix

?

YES

YES

NO

NO

Closed-loop 
system stable

Q 
determined

 

a) b) 
Figure 2 - Solution comparison between OCP and IOCP 
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The work cited in [9] adopts convex formulations as a methodological 

approach to tackle the Inverse Optimal Control problem. This problem 

revolves around the inference of cost function matrices from a given 

observed control law 𝑢(𝑘) = 𝐾𝑥(𝑘), for a linear system and quadratic cost 

functions of the form 𝑥(𝑘)𝑇𝑃𝑥(𝑘) = min ∑ 𝑥𝑖
𝑇𝑄𝑥𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖
∞
𝑖=0  s. t. 𝑥𝑖+1 =

𝐴𝑥𝑖 + 𝐵𝑢𝑖, 𝑥0 = 𝑥(𝑘), where the system is characterized by given system 

matrix A and input matrix B, wherein both the state variable x and input u 

are measurable. It is also assumed a deviation Λ=0 and that the measured 

K is an optimal gain. In that sense, the Algebraic Riccati Equation (ARE) 

offers a solution by linking the cost function with the control law, which can 

then be utilized for inverse optimal control solutions after undergoing 

vectorization and parameterization. This method stands apart from other 

learning techniques like reinforcement learning, inverse reinforcement 

learning, or apprenticeship learning due to its distinct approach involving 

the ARE. 

In that sense the task of inferring 𝑄 and 𝑅 from a given controller gain 𝐾 

can be formulated as a Convex Optimization problem. The gain 𝐾 can be 

obtained from the input and output measurements with standard 

approaches, such as least-squares techniques. The gain 𝐾 is optimal if and 

only if the deviation Λ = 0. Neither positive definiteness nor symmetry of 𝑃 

is required, instead if the deviation Λ = 0 then P will be positive definite, and 

the objective encourages symmetry. Then 𝑃 is symmetric, if the measure 

𝐾 is the optimal solution of the problem as shown below. 

In that sense inferring Q and R from a given controller gain K can be framed 

as a Convex Optimization problem. The optimal K can be derived from 

input and output measurements using methods like least-squares 

techniques. K is considered optimal when the deviation Λ equals zero. 

Positive definiteness or symmetry of P is not essential; if Λ is zero, P 

becomes positive definite, and the objective promotes symmetry. 

Symmetry of P indicates K as the optimal solution as shown below. 
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Figure 3 - Optimality condition for K 

 

It is worth mentioning that the classification of convex formulations, shown 

in Figure 4, includes the Semidefinite Programming (SDP) approach for 

inferring general objective function matrices from known general gains K, 

aiming to find 𝑄, 𝑅, and Y that minimize deviation to optimality and promote 

symmetry. Additionally, Linear Programming (LP) is utilized for specific 

scenarios like diagonal objective function matrices or block diagonal 

matrices, common in optimal control problems, enabling efficient solutions. 

Moreover, it's demonstrated that the Inverse Optimal Control problem can 

be expressed as a convex optimization problem for both closed-loop 

optimal and non-optimal gains, prevalent in practice, especially with noisy 

input data. Likewise, an explicit algebraic expression for the inverse 
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problem is derived given an optimal controller gain matrix, establishing 

sufficient conditions for uniquely inferring the corresponding cost function, 

in this case particularly for diagonal cost matrices. Consequently, in inverse 

optimal control problems (IOCP), if𝑄 and 𝑅 are diagonal and the measured 

K is optimal, a unique solution exists if the generating cost function matrices 

are also diagonal. 

 

 
Figure 4 - Classifications for convex functions 

 

In accordance with [1] the linear system �̇� = 𝐴𝑥 + 𝐵𝑢, with control law 𝑢 =

𝐷𝑥 and performance index or cos function 𝐼 =
1

2
𝑥𝑇(𝑡1)𝐹𝑥(𝑡1) +

1

2
∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

𝑡1

𝑡0
 is posed, where the linear optimal inverse control 

problem consists of finding necessary and sufficient conditions on the 

matrices 𝐴, 𝐵, and 𝐷 of the system such that some performance index is 

minimized and hence determining all 𝑅, 𝑄, and 𝐹. 

The procedure consists in determining the necessary conditions for the 

existence of real symmetric matrices 𝑅 > 0 and 𝑃 such that the feedback 

matrix 𝐷 = −𝑅−1𝐵𝑇𝑃 is satisfied. Then, by producing general formulas for 

𝑅 and 𝑃, starting from 𝐷, the sufficiency of these conditions is 

demonstrated. These necessary and sufficient conditions are required for 
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the minimum value of the performance index to be nonnegative and 

positive and for the construction of 𝑄 ≥ 0 from the Algebraic Riccati 

Equation (ARE). Finally, the class of matrices {𝑅, 𝑄, 𝐹, 𝑃} satisfying the 

feedback matrix 𝐷 = −𝑅−1𝐵𝑇𝑃 and the Algebraic Riccati Equation (ARE) is 

obtained, thus the provided control law minimizes each member of this 

class of performance indices, effectively solving the inverse problem. 

The general outline of the procedure for obtaining the class matrix is shown 

in Figure 5. 

 

Figure 5 - Procedure for obtaining the performance index parameters 
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Numerous publications on inverse optimal control for the linear quadratic 

controller assume that the optimal feedback gain matrix K is known, 

according to [2], [3], [4], [7], [8], [9]. However, in certain scenarios the 

feedback gain K cannot be known exactly, so in [32] the feedback gain K 

is considered to be time-varying for the finite time horizon case. On the 

other hand, in order to find a stabilizing control law with certain optimality 

criteria for nonlinear optimal control problems, a lyapunov control function 

is proposed in [33] to determine the inverse optimal control law. Since its 

solution usually involves the use of the Hamilton-Jacobi-Bellman equation 

which does not have an exact analytical solution for the general nonlinear 

case, but which nevertheless reduces to the Riccati equation in the case of 

the linear quadratic controller. 

The algebraic Riccati equation (ARE) is essential for the solution of the 

linear inverse quadratic regulator problem. However, in [34] a method is 

proposed to estimate this equation under the assumption that the system 

is unknown but that its states and inputs can be observed. In this sense, to 

solve the inverse problem an equation derived from the algebraic Riccati 

equation is obtained, but which only requires the trajectory of the system 

and not the model of the system, representing an alternative to the 

identification of systems. In [35] two-level evolutionary optimization 

techniques are used for the solution of inverse optimal control problems. 

That is, at a higher level it is tried to minimize the error between the 

calculated and experimental data, while at a lower level it is iteratively 

searched for a cost function that deviates less from the experimental data. 

On the other hand, in [36] with the solution of the Inverse Optimal Control 

problem LQ necessary and sufficient conditions are established under 

which the feedback control law places only some of the dominant poles, 

which affect the response, at specific points that in turn represent optimality 

for some cost function. In [37] an inverse optimal control design is proposed 

whose main feature is that the feedback control law is developed after 
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choosing a candidate Lyapunov function with asymptotic properties that 

converge to equilibrium. 

On the other hand, in [38] an optimization approach to the inverse problem 

is presented for both linear and nonlinear systems. For this, the Inverse 

Optimal Control matrix approach is used and applied to observed 

trajectories of systems controlled both in a feedback manner for linear 

systems and in a feedforward manner for nonlinear systems. In [39] an 

algorithm is proposed that recovers the control gain K, using a least 

squares approach, and the cost function parameters from the system 

trajectories. For this, by certainty equivalence optimality conditions it is 

guaranteed that stochastic model-free LQR IOC is well posed. Thus, using 

K by model-free Semidefinite programming, the cost function is obtained.  

Finally, in [40] the physical interaction in human-robot collaboration is 

studied, where the knowledge of the goal of the partner contributes to a 

natural interaction. For this, the recovery of the cost function that 

represents such interaction is proposed. Thus, a study of the potentialities 

and limitations of the Inverse Optimal Control to describe the smooth and 

natural human-robot interaction is presented.  
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Chapter 3 
Preliminaries and problem formulation 
 

This section presents a review of the main concepts and mathematical 

tools used throughout this thesis such as control theory tools, optimal 

control and convex optimization in order to develop the analysis of the 

inverse problem of the linear quadratic regulator approach. Also, all the 

theory presented below has been extensively developed in numerous 

researches and books that can be found in the reference for more details. 

 

3.1 Challenges facing Inverse Optimal Control 
 

Inverse optimal control problems face the challenge of deducing the cost 

function of an agent from its observed behavior. However, problems arise 

that make this task difficult and are discussed below. 

 

• Ill-posedness 

The ill-posed nature of inverse optimal control problems refers to the 

inherent difficulty in finding a unique and stable solution. This can be 

specified as follows. 

- The problem arises because several cost functions can explain 

the observed behavior equally well. 

- There may be several cost functions leading to the same optimal 

behavior, making it difficult to unambiguously determine the true 

underlying cost function. 

- Small variations in the observed trajectories or demonstrations 

may lead to significantly different inferred cost functions. 
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Addressing the ill-posedness in inverse optimal control problems 

often involves introducing additional constraints on the inferred cost 

functional in order to guide the solution towards more stable and 

interpretable cost functions. 

• Difficulty in obtaining an explicit gain controller K 

There are situations where having an explicit gain controller K is 

difficult. Therefore, an alternative approach is to focus on state 

trajectories, which are sequences of states over time, rather than on 

the control law. This means trying to understand the underlying cost 

function by examining the observed states and their transition over 

time. 

By focusing on state trajectories, the idea is to capture the structure 

and patterns inherent in the observed data and attempt to estimate 

the underlying cost function based on the observed state trajectories. 

This approach is often more practical and applicable in complex, 

real-world systems where explicit modeling of control gains may be 

challenging or impractical. 

 

3.2 The well-posedness to Inverse Optimal Control 
 

The well-posedness in inverse optimal control problems addresses the 

question of whether there is a solution to the inverse problem, such that it 

is unique and stable with respect to the observed data quality. In that sense, 

the well-posedness in inverse optimal control involves the following 

concepts in which necessary and sufficient conditions refer to existence 

and uniqueness. 
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3.2.1 Existence 
 

The first aspect of well-posedness is the existence of a solution. This 

means determining whether there is a cost or objective function that is 

consistent with the observed behavior of the system. The existence is 

crucial because, without a solution, the inverse problem cannot be solved. 

In that sense, the quality of the observed data plays a crucial role. 

Insufficient or noisy data can lead to ill-posed problems and make it difficult 

to obtain reliable solutions. Therefore, it is sought to guarantee the 

optimality of the observed solution, that is, if the solution minimizes the cost 

function through the following. 

 

• Necessary conditions: there must be a feasible solution to the 

optimization problem associated with the cost function search. This 

means that there must exist a cost function that, when used in the 

optimization of the system, produces the observed behavior. In that 

sense, the existence of a solution to the inverse optimal control 

problem depends on the controllability of the system, i.e., the system 

�̇� = 𝐴𝑥 + 𝐵𝑢 must be controllable. A sufficient condition for 

controllability is that the matrix [𝐵, 𝐴𝐵, 𝐴2𝐵,… , 𝐴𝑛−1𝐵], where 𝑛 is the 

order of the system, has full rank. 

• Sufficient conditions: in order to address existence, a given gain 

controller K is optimal for Q if and only if [7] 

 

1) 𝑅𝑒𝜆(𝐴 − 𝐵𝐾) < 0 

(3.1) 2) 
𝐾 = 𝐵𝑇𝐿, where L is the real symmetric 

solution of the ARE 

3) 𝑄 = 𝐾𝑇𝐾 − 𝐴𝑇𝐿 − 𝐿𝐴 
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In addition, if the optimization problem is convex, the probability that 

a solution exists increases. Convexity provides mathematical 

guarantees of the existence of solutions to optimization problems, so 

constraints are usually written according to semidefinite 

programming (SDP). 

 

3.2.2 Uniqueness 
 

Or injectivity, refers to whether the solution of the inverse problem is 

unique. In other words, whether there is a single cost function that 

corresponds to the observed behavior of the system. Uniqueness is 

desirable, as it ensures that the solution is unambiguous and can be 

identified with certainty [16]. According to the literature one way to 

approach inverse optimization problems is based on convex optimization 

[31]. That is, the search for a cost function is treated as the optimization of 

a convex problem, thus increasing the probability of having a unique and 

stable solution, according to the following conditions. 

 

• Necessary conditions: assuming the controllability of the system 

(𝐴, 𝐵), as in the case of the existence. It is approached in the sense 

of establishing the relationship between 𝑄1 and 𝑄2 such that 𝐾 is 

optimal for both. Therefore, 𝐾 being optimal for 𝑄1, then it is optimal 

for 𝑄2 if and only if there exists a symmetric matrix 𝑌 such that 𝑄1 −

𝑄2 = 𝐴𝑇𝑌 + 𝑌𝐴 and 𝑌𝐵 = 0 [7]. 

• Sufficient conditions: in order to guarantee a unique solution, 

additional constraints are introduced in the cost function 𝑄, such as 

symmetry i.e., 𝑄 = 𝑄𝑇 and positive semidefinite i.e., 𝑄 ≥ 0. Likewise, 

the symmetry and positive definite of 𝑅 > 0 ensure necessary and 

sufficient conditions for its existence, and necessary and sufficient 

conditions for solutions 𝑃 ≥ 0. 
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3.2.3 Stability 
 

Refers to the robustness of the solution with respect to perturbations or 

uncertainties in the observed data. A well-posed inverse problem should 

have a solution that is stable, meaning that small changes in the observed 

behavior should result in small changes in the estimated cost function. This 

is important for practical applications where there may be noise or 

uncertainty in the data.  

In that sense, stability can be analyzed by examining the eigenvalues of 

the closed-loop system. The closed-loop system is stable if and only if the 

eigenvalues of 𝐴 − 𝐵𝐾 are in the left half-plane. In this way, the asymptotic 

stability of the closed-loop system is guaranteed [7]. Additionally, stability 

can be addressed by including constraints in the optimization problem. 

Such constraints may come from physical limitations or known properties 

of the system.  

There is some cost 
that minimizes a 
given trajectory

The cost is unique
The inverse process 

is stable

Satisfied
?

well-posedness 
achieved

YES

 
Figure 6 - Scope of well-posedness 

 

These mathematical conditions collectively contribute to a well-posed 

inverse optimal control problem, according to the diagram shown in Figure 

6. However, although these conditions provide a theoretical framework, 

practical applications often involve a combination of linear inequalities 
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constraints written in semidefinite programming to ensure that the 

estimated cost function accurately represents the optimization behavior of 

the underlying system. In this sense, numerical optimization techniques 

can then be applied to find the solution that satisfies these conditions and 

estimate the cost function. 

 

3.3 Stability analysis 
 

In general, a continuous-time dynamical system can be represented as a 

linear time-invariant (LTI) state-space model. 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(𝑡0) = 𝑥0 (3.2) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)  (3.3) 

 

Where 𝑥(𝑡) ∈ ℝ𝑛 is the state variable, 𝑢(𝑡) ∈ ℝ𝑚 is the control input and 

𝑦(𝑡) ∈ ℝ𝑝 is the output and A, B, C and D are constant matrices with 

dimensions 𝑛 × 𝑛, 𝑛 × 𝑚, 𝑝 × 𝑛 and 𝑝 × 𝑚 respectively. 

Among the main properties of system control are controllability and 

observability. Controllability refers to the input control's capability to move 

the system's state from an initial value to the origin within a finite time. 

Conversely, observability gauges the extent to which the system's states 

can be deduced from the output information. The following theorem serves 

as a tool to ascertain these attributes. [21]. 

 

Theorem 3.1 The LTI system, equations 3.2 and 3.3, is controllable if and 

only if the controllability matrix has full row rank. 

𝑄𝑐 = [𝐵𝐴𝐵𝐴2𝐵…𝐴𝑛−1𝐵] ∈ ℝ𝑛×𝑛.𝑚 (3.4) 
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The LTI system is observable if and only if the observability matrix has full 

column rank. 

𝑄𝑜 = [𝐶𝑇𝐴𝑇𝐶𝑇(𝐴𝑇)2𝐶𝑇 …(𝐴𝑇)𝑛−1𝐶𝑇] ∈ ℝ𝑛𝑝×𝑛 (3.5) 

 

And a matrix 𝐴 ∈ ℝ𝑛×𝑛 is 𝐻𝑢𝑟𝑤𝑖𝑡𝑧 or asymptotically stable if all its 

eigenvalues have strictly negative real part [21]. 

 

In view of the above, the stability theory is developed in the Lyapunov 

domain. The system is shown below  

�̇� = 𝑓(𝑥),  

 

Where 𝑥 = 0 represents the equilibrium, that is, 𝑓(0) = 0. 

 

Definition 3.1 Let 𝑉:ℝ𝑛 → ℝ be a continuous scalar function. 𝑉 is a 

Lyapunov function candidate if it is a locally positive-definite function, i.e., 

𝑉(0) = 0, and 𝑉(𝑥) > 0∀𝑥 ∈ 𝔅\{0}, 

 

With 𝔅 being some neighborhood around 𝑥 = 0. 

 

Theorem 3.2 The equilibrium 𝑥 = 0 of the system is 

▪ Stable if there is a locally positive definite Lyapunov function 

candidate 𝑉(𝑥) such that �̇�(𝑥) ≤ 0 for all 𝑥 ≠ 0, or 

▪ Asymptotically stable if there is a locally positive definite Lyapunov 

function candidate 𝑉(𝑥) such that �̇�(𝑥) < 0 for all 𝑥 ≠ 0. 
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3.4 Optimal control of the Linear Quadratic Regulator 
 

Optimal control theory has allowed the analysis and solution of a variety of 

control problems. In this sense, the study of the optimal control or forward 

optimal control problems is important for the solution of the inverse optimal 

control problems mentioned in the preceding chapters. The general 

formulation of a continuous time-optimal control problem is shown below. 

In general, optimal control seeks to determine a control law that satisfies 

the physical constraints of a dynamic system and also minimizes the cost 

function or performance index that regulates the behavior of the system. In 

that sense, the Linear Quadratic Regulator (LQR) approach seeks to 

regulate such behavior by penalizing the state deviations on the control 

effort applied for that purpose or vice versa.   

Therefore, the task in the Linear Quadratic Regulator (LQR) problem is to 

find a Full State Feedback (FSFB) control law for a continuous-time Linear 

Time Invariant (LTI) [19], whose representation in the state space of the 

dynamical system is determined by equations 3.2 and 3.3. 

In such a way that a cost function with the following structure is minimized 

𝐽 = ∫ [
𝑥(𝑡)

𝑢(𝑡)
]
𝑇

[
𝑄 𝑆

𝑆𝑇 𝑅
] [

𝑥(𝑡)

𝑢(𝑡)
] 𝑑𝑡

𝑡𝑓

𝑡0

 
(3.6) 

𝐽 = ∫ 𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡
∞

0

 (3.7) 

 

Where the meaning of the variables is: 

𝑥(𝑡): 𝑛 × 1 state vector  

𝑢(𝑡): 𝑚 × 1 control vector 

𝑦(𝑡): 𝑝 × 1 output vector 

𝐴: 𝑛 × 𝑛 state matrix 
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𝐵: 𝑛 × 𝑚 control matrix 

𝐶: 𝑝 × 𝑛 output matrix 

𝑄: 𝑛 × 𝑛 symmetric positive semidefinite matrix (𝑄 ≥ 0). 

Matrix that penalizes the state deviation 

𝑅: 𝑚 × 𝑚 symmetric positive definite matrix (𝑅 > 0). Matrix 

that penalizes the control effort. 

𝑆: 𝑚 × 𝑚 symmetric positive semidefinite matrix (𝑆 ≥ 0). 

Matrix that weights the terminal cost. 

 

Assuming that  

𝑥𝑇𝑄𝑥 ≥ 0 is positive semidefinite ∀𝑥. 

𝑢𝑇𝑅𝑢 > 0 is positive definite ∀𝑢.  

𝑆 = 0  

(𝐴, 𝐵) is controllable  

and (𝐴,𝑀) is observable with 𝑄 = 𝑀𝑇𝑀 ≥ 0 

 

The optimization problem is posed for the Linear Quadratic Regulator 

(LQR) 

minimize
𝑢∈ℝ𝑚

∫ 𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡
∞

0

 (3.8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 

𝑥(𝑡0) = 𝑥0  

 

 

Whose solution involves finding some control law or policy, 𝑢, such that it 

minimizes the cost function, 𝐽, according to the following scenarios 
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If 𝑄 “is bigger” than 𝑅: in this case a fast regulation is obtained, 

i.e., the state returns to the origin (𝑥 →

0) quickly, since 𝑢 is large. Aggressive 

controller. 

If 𝑅 “is bigger” than 𝑄: in this case, a slow regulation is 

obtained, since 𝑢 is small. Conservative 

controller. 

 

Therefore, Q and R act as knobs that allow adjusting the behavior of the 

controller depending on how important the state is on the control and vice 

versa. 

In this sense, the optimal solution is the full state feedback controller 

(FSFB) 

𝑢(𝑡) = −𝐾𝑥(𝑡) (3.9) 

 

where the gain matrix is 

𝐾 = 𝑅−1𝐵𝑇𝑃 (3.10) 

 

Where P is the 𝑛𝑥𝑛 symmetric unique positive semidefinite solution to the 

Algebraic Riccati Equation (ARE) 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (3.11) 

 

The procedural scheme for the solution of the linear quadratic controller is 

as follows: 
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Figure 7 - LQR problem solution scheme 

 

An example for the solution of the optimal problem by determining the 

feedback gain K is shown below. 

Example.  Mass-damper system 

 
 

Figure 8 - Diagram mass-damper system 

 

∑�̅� = 0 
 

 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) = 𝐹(𝑡) 
 

 

𝑥(𝑡) = [
𝑝(𝑡)
𝑣(𝑡)

] , 𝑢(𝑡) = [𝐹(𝑡)] 

 

 

 

State space representation of the system 
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[
�̇�1

�̇�2
] = [

0 1
0 − 𝑐

𝑚⁄
] [

𝑥1

𝑥2
] + [

0
1

𝑚⁄
]𝑢(𝑡)  

 

Step 1: consider m=1 and c=0.2 

𝐴 = [
0 1

0 −1
5⁄
] , 𝐵 = [

0
1
] 

 

 

Step 2: choose Q and R 

𝑄 = [
1 0
0 1

] , 𝑅 = [0.01]  

 

Step 3: solve the ARE for symmetric matrix P 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0  

 

Solutions for P: 

𝑃1

= [
0.89465 −0.1

−0.1 −0.091465
] 

 

𝑃2

= [
−0.89465 −0.1

−0.1 0.087465
] 

𝑃3

= [
−1.09563 0.1

0.1 −0.111563
] 

𝑃4

= [
1.09563 0.1

0.1 0.107563
] 

 
 

Step 4: compute K 

𝐾1 = [−10 −9.14651] 𝐾2 = [−10 8.74651] 

𝐾3 = [10 −11.1563] 𝐾4 = [10 10.7563] 

 

Only K that have stable closed-loop eigenvalues will allow the system to 

return to the origin and therefore have a minimum cost for the cost function. 
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Step 5: in order to find a solution that gives rise to a stable system it is 

necessary to analyze the eigenvalues of 𝐴𝐶𝐿 = 𝐴 − 𝐵𝐾. 

𝜆1 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠[𝐴 − 𝐵𝐾1] = {9.95139,−1.00488}  

𝜆2 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠[𝐴 − 𝐵𝐾2] = {−9.95139, 1.00488}  

𝜆3 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠[𝐴 − 𝐵𝐾3] = {9.95139,−1.00488}  

𝜆4 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠[𝐴 − 𝐵𝐾4] = {−9.95139,−1.00488}  

 

Finally, the set of values that lie on the negative part of the real axis 

determine the solution (𝜆4) 

𝐾 = 𝐾4 = [10 10.7563]  
 

 

3.5 Semidefinite Programming 
 

Semidefinite programming (SDP) finds in convex optimization one of its 

most important applications. In this sense, the versatility in the type of 

constraints that can be formulated in semidefinite programming is varied, 

such as linear inequalities, convex quadratic inequalities, lower bounds in 

matrix norms, lower bounds for symmetric positive semidefinite matrices, 

etc. Therefore, by means of semidefinite programming (SDP) linear 

programming problems can be modeled as well as the optimization of 

convex quadratic structures subject to constraints of the convex quadratic 

inequalities type [23].  
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The following definitions, according to [19], are based on 𝐴 ∈ ℝ𝑛×𝑛𝑎𝑛𝑑𝑥 ∈

ℝ𝑛, therefore 

a) Positive semidefinite matrix 

Matrix 𝐴, with dimensions 𝑛 × 𝑛, is positive semidefinite, i.e., 𝐴 ≥ 0 if for 

all 𝑥 ≠ 0 the following is true 

𝑥𝑇𝐴𝑥 ≥ 0𝑓𝑜𝑟𝑎𝑛𝑦𝑥 ∈ ℝ𝑛 

 

b) Positive definite matrix 

Matrix 𝐴, with dimensions 𝑛 × 𝑛, is positive definite, i.e., 𝐴 > 0 if for all 

𝑥 ≠ 0 the following is true 

𝑥𝑇𝐴𝑥 > 0𝑓𝑜𝑟𝑎𝑛𝑦𝑥 ∈ ℝ𝑛, 𝑥 ≠ 0 

 

Therefore, the set of symmetric and positive semidefinite matrices is 

denoted as follows 

𝑆+
𝑛 = {𝐴 ∈ ℝ𝑛×𝑛|𝐴 = 𝐴𝑇; 𝐴 ≥ 0} 

 

Consequently, having symmetric matrices 𝑋 and 𝑌. The matrix 𝑋 is said to 

be symmetric and positive semidefinite if 𝑋 ≥ 0, likewise 𝑋 − 𝑌 ≥ 0 if 𝑋 ≥

𝑌. On the other hand, 𝑋 is said to be symmetric and positive definite if 𝑋 >

0. 

With the above it is good to mention that semidefinite programming is a 

part of convex optimization in which a linear function is minimized such that 

certain constraints written as a composition of affine, symmetric, positive 

definite matrices are satisfied. In addition, semidefinite programming 

provides a standard way to derive algorithms and study the properties of 

various convex problems, including but not limited to the linear and 

quadratic cases [19]. A positive semidefinite formulation of an optimization 

problem is shown below [23][20]. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 𝐴𝑖𝑥 = 𝑏𝑖 , 𝑖 = 1, … ,𝑚 

𝑥 ≥ 0 

 

Where: 𝑐𝑇𝑥 = 𝑐𝑖𝑗
𝑇𝑥𝑖𝑗 for 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛 

 

The following is an example for the formulation of a semidefinite 

programming [23]. For n=3 and m=2, the following matrices are defined: 

 

𝐴1 = (
1 0 1
0 3 7
1 7 5

) , 𝐴2 = (
0 2 8
2 6 0
8 0 4

) , 𝑐 = (
1 2 3
2 9 0
3 0 7

) , 𝑏1 = 11𝑎𝑛𝑑𝑏2 = 19 

 

Consequently, the symmetric variable matrix 𝑥 with dimensions 3 × 3 is 

denoted as: 

𝑥 = (

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

) 

 

hence, the objective function to be minimized will be: 

𝑐𝑇𝑥 = 𝑥11 + 2𝑥12 + 3𝑥13 + 2𝑥21 + 9𝑥22 + 0𝑥23 + 3𝑥31 + 0𝑥32 + 7𝑥33 

= 𝑥11 + 4𝑥12 + 6𝑥13 + 9𝑥22 + 0𝑥23 + 7𝑥33 

 

Finally, the semidefinite programming (SDP) can be formulated as follows: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥11 + 4𝑥12 + 6𝑥13 + 9𝑥22 + 0𝑥23 + 7𝑥33 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 𝑥11 + 0𝑥12 + 2𝑥13 + 3𝑥22 + 14𝑥23 + 5𝑥33 = 11 
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0𝑥11 + 4𝑥12 + 16𝑥13 + 6𝑥22 + 0𝑥23 + 4𝑥33 = 19 

 
𝑥 = (

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

) ≥ 0 

 

Therefore, the semidefinite programming fulfills the restriction that the 

variable 𝑋 must belong to the cone of positive semidefinite matrices. 

 

3.6 Linear Matrix Inequalities 
 

Linear matrix inequalities (LMIs) are a mathematical tool to reduce a wide 

variety of control theory problems to a few convex or quasiconvex 

optimization problems. The advantage lies in the fact that these resulting 

optimization problems can later be solved numerically in an efficient way 

by means of software that implement interior point methods. It is worth 

mentioning that the use of linear matrix inequalities (LMIs) represents the 

solution to the original system itself but differs from other conventional 

methods such as analytical or frequency domain solution. Likewise, from 

the formulation of LMIs as convex optimization problems, a reliable solution 

is obtained, which represents an important advantage in cases where an 

analytical solution cannot be found [20]. 

 

A linear matrix inequality (LMI) is a constraint written in a convex form, i.e., 

according to convex programming, as follows 

𝐹(𝑥) = 𝐹0 + ∑𝑥𝑖𝐹𝑖

𝑚

𝑖=1

> 0 
 

 

where 𝑥 ∈ ℝ𝑚 is the variable and the matrices 𝐹0, … , 𝐹𝑚 are symmetric, i.e., 

𝐹𝑖 = 𝐹𝑖
𝑇 with dimensions 𝑛𝑥𝑛. The symbol of inequality indicates that 𝐹(𝑥) 
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is positive definite, i.e., 𝑢𝑇𝐹(𝑥)𝑢 > 0. However, non-strict linear matrix 

inequalities (LMIs) are also found whose form is as follows 

𝐹(𝑥) ≥ 0  

 

As can be seen the IML is in essence a convex constraint for 𝑥, i.e. 

𝑡ℎ𝑒𝑠𝑒𝑡{𝑥|𝐹(𝑥) > 0}𝑖𝑠𝑐𝑜𝑛𝑣𝑒𝑥  

 

Also, the general form of the linear matric inequality (LMI) effectively 

represents a wide variety of convex constraints for 𝑥, such as linear 

inequalities, quadratic inequalities and constraints present in control theory 

such as convex quadratic matrix inequalities and Lyapunov inequalities 

[20]. On the other hand, multiple LMIs can be represented as a single LMI, 

this is achieved with the Schur complement. 

The Schur complement is an important tool for reformulating nonlinearities 

in linear matrix inequalities (LMI). Because in convex optimization 

problems the formulated inequalities are linear. In Schur complement the 

nonlinear (convex) inequalities can be converted to an individual LMI by 

this method. That is, the following LMI formulation [20] 

 

[
𝑄(𝑥) 𝑆(𝑥)

𝑆𝑇(𝑥) 𝑅(𝑥)
] > 0  

 

Where matrices 𝑄(𝑥) and 𝑅(𝑥) are symmetric according to 𝑄(𝑥) = 𝑄𝑇(𝑥) 

and 𝑅(𝑥) = 𝑅𝑇(𝑥) respectively, and 𝑆(𝑥) depend affinely on 𝑥 is equivalent 

to 

𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅−1(𝑥)𝑆𝑇(𝑥) > 0  
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That is, the set of nonlinear inequalities shown above can be represented 

as an individual linear matrix inequality (LMI) whose components are linear. 

 

So far, in the formulation of the linear matrix inequality (LMI) shown above, 

the variable is a scalar value of the form 𝑥 ∈ ℝ𝑚. However, it is very often 

in practice that the variables encountered are of the matrix type. For 

example, in the Lyapunov inequality 𝐴𝑇𝑃 + 𝑃𝐴 < 0 where 𝐴 ∈ ℝ𝑛×𝑛 is 

known, the variable is symmetric matrix, 𝑃 = 𝑃𝑇. 

Taking into account the above and considering the Schur complement, a 

formulation for linear matrix inequality can be established in the following 

example [20]. Therefore, considering quadratic matrix inequality 

 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 < 0 (3.12) 

 

where the matrices 𝐴, 𝐵, 𝑄 = 𝑄𝑇 , 𝑅 = 𝑅𝑇 > 0 are known and of appropriate 

dimensions, and also the symmetric matrix 𝑃 = 𝑃𝑇 is the variable. It can be 

seen that it is a quadratic matrix inequality in the variable 𝑃, which can be 

reformulated as a linear matrix inequality in the following way 

 

[
−𝐴𝑇𝑃 − 𝑃𝐴 − 𝑄 𝑃𝐵

𝐵𝑇𝑃 𝑅
] > 0 (3.13) 

 

With this reformulation it can be seen that the quadratic matrix inequality is 

convex in 𝑃. 

 

On the other hand, according to the above, below are defined the Linear 

Matrix Inequality (LMI) regions that are presented by D-stability which is a 
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generalization of Hurwitz stability and Schur stability [25]. The D-stability of 

a matrix is a region that is established by the linear matrix inequalities (LMI) 

conditions which are known as linear matrix inequalities regions. 

 

Definition 3.2 Let 𝔻 be a region on the complex plane. If there exist 

matrices 𝐿 ∈ 𝕊𝑚, and 𝑀 ∈ ℝ𝑚×𝑚 such that 

 

𝔻 = {𝑠|𝑠 ∈ ℂ, 𝐿 + 𝑠𝑀 + �̅�𝑀𝑇 < 0} (3.14) 

 

Then 𝔻 is called an LMI region and is usually denoted by 𝔻(𝐿,𝑀) 

 

𝐹𝔻(𝑠) = 𝐿 + 𝑠𝑀 + �̅�𝑀𝑇 (3.15) 

 

Is called the characteristic function of the LMI region 𝔻(𝐿,𝑀). Where it is an 

intersection of the following regions [25]. 

Strip region: 

𝑃 > 0 

𝐴𝑇𝑃 + 𝑃𝐴 + 2𝛼𝑃 < 0 

𝐴𝑇𝑃 + 𝑃𝐴 + 2𝛽𝑃 > 0 

(3.16) 

 
Figure 9 - Strip region 
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Disk region: 

[
−𝑟𝑃 𝑞𝑃 + 𝐴𝑃

𝑞𝑃 + 𝑃𝐴𝑇 −𝑟𝑃
] < 0 (3.17) 

 
Figure 10 - Disk region 

 

Sector: 

 
(3.18) 

 
Figure 11 - Sector D_θ 

 

3.7 Inverse Linear Quadratic Regulator (LQR) problem 
 

The inverse optimal control problem for the linear quadratic regulator (LQR) 

starts with a given dynamic system and a feedback gain matrix 𝐾 defined 

by equations 3.2, 3.3 and 3.10. 

The task is to estimate the parameters, i.e., the matrices 𝑄 and 𝑅 of the 

cost function 𝐽. This requires determining whether the matrices 𝑄 ≥ 0 and 

R> 0 exist, such that (𝑄, 𝐴) is detectable and whether 𝑢 = 𝐾𝑥 minimizes 
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the corresponding linear quadratic regulator (LQR) cost function 𝐽 

according to the formula defined by equation 3.7 [20]. 

In that sense, the search of values for 𝑄 and 𝑅 as well as their positivity 

conditions 𝑄 ≥ 0 and 𝑅 > 0 can be formulated as linear matrix inequalities 

(LMIs) constraints [22]. Where the variables 𝑃 ≥ 0 and 𝑃1 > 0 satisfy the 

following 

(𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵𝐾) + 𝐾𝑇𝑅𝐾 + 𝑄 = 0 (3.19) 

𝐵𝑇𝑃 + 𝑅𝐾 = 0 (3.20) 

 

Likewise, the condition of detectability for (𝑄, 𝐴) can be formulated as 

𝐴𝑇𝑃1 + 𝑃1𝐴 < 𝑄 (3.21) 

 

Thus, through the formulation of linear matrix inequalities the values of 𝑄 

and 𝑅 are determined. The solution scheme can be presented in the 

following way 

Minimize: optimality criterion
Subject to: constraints

K is optimal for 
J

Feasible
?

YES

NO

Inverse Optimal Control 
Problem

Get Q and R

K is not optimal 
for J

Given: linear policy K
Unknown: Q and R

 
Figure 12 - Inverse optimal control problem solution scheme 
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According to the above, a semidefinite convex feasibility problem, defined 

by equation 3.1, can be formulated in whose solution the values of 𝑄 and 

𝑅 are obtained with the help of the following constraints [22]. 

 

(𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵𝐾) + 𝐾𝑇𝑅𝐾 + 𝑄 = 0, 

𝐵𝑇𝑃 + 𝑅𝐾 = 0, 

𝐴𝑇𝑃1 + 𝑃1𝐴 < 𝑄, 

𝑄 ≥ 0, 𝑅 > 0, 𝑃 ≥ 0, 𝑃1 > 0 

(3.22) 

 

The semidefinite programming formulation shown contains constraints of 

linear matrix inequalities (LMIs) and 𝑄, 𝑅, 𝑃 and 𝑃1 variables where if the 

problem is feasible then 𝐾 is optimal for the 𝑄 and 𝑅 matrix components of 

the cost function. 
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Chapter 4 
Solution approach and Results 
 

In this chapter, due to the fact that inverse control problems suffer from an 

ill-posedness, the well-posedness of an inverse optimal control problem is 

analyzed, breaking it down into such important concepts as existence, 

injectivity and stability. Likewise, a dynamical system of study is proposed 

in which the concept of well-posedness is applied for its subsequent 

solution. Finally, the results obtained after the analysis of the well-

posedness and the application of the solution algorithms for this inverse 

optimal control are presented. 

 

4.1 Inverse optimal control approach 
 

In forward optimal control, the aim is to determine a solution or control law 

from the optimization of a cost function, according to diagram 13a. On the 

other hand, in inverse optimal control, starting from an existing solution that 

is assumed to be optimal, the aim is to estimate the parameters of a cost 

function in such a way that this solution minimizes it.  

The procedure is performed by first analyzing the necessary and sufficient 

conditions that ensure the well-posedness to the inverse optimal control 

problem with respect to existence, uniqueness and stability, in order to 

subsequently estimate the parameters that compose the cost function for 

the linear quadratic controller (LQR) approach. 

In that sense, since these types of problems are generally solved by 

numerical methods, such conditions for a well-posed inverse problem are 

represented as Linear Matrix Inequalities (LMI) constraints, which is a 

mathematical tool to reduce a variety of control problems to a few convex 
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optimization problems. The advantage lies in the fact that such problems 

can be solved numerically in an efficient way through algorithms involving 

interior point methods, which represents an advantage in cases where an 

analytical solution cannot be found.  

On the other hand, given the convex nature of the linear quadratic 

regulator, such constraints are redefined as convex forms using the theory 

of Semidefinite Programming, in which a function is minimized according 

to certain constraints that are formulated as a composition of affine, 

symmetric, positive definite matrices. Finally, the algorithm verifies if the set 

of constraints for the well-posedness admits a feasible solution which 

results in the solution of the inverse problem, otherwise the feasibility set 

is determined to be empty. The summary of the process can be seen in 

diagram 13b. 

 

Unknown: gain matrix K
Known: cost function J, system 
dynamics matrices (A, B)
Goal: determine K such that 
minimizes J

Minimize: cost function J
Subject to: constraints

Stable
system?

Get gain matrix
K

YES

NO

Compute K 
values

 

Unknown: cost function J
Known: gain matrix K, system 
dynamics matrices (A, B)
Goal: determine J from K such 
that minimizes J

Establish conditions as 
constraints

Minimize: optimality criterion
Subject to: constraints

Feasible
?

Get cos function 
J

YES

NO

 
 

a) b) 
 

Figure 13 - Optimization problem formulation for an OCP and the IOCP 
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4.2 Proposal of a dynamic system for study 
 

This section presents the formulation of the problem to which the 

theoretical concepts reviewed in Chapter 3 are applied. The example 

considered is a mass-spring-damper system with four degrees of freedom 

(DOF) represented in a rolling cart system. It is considered that there is no 

friction between the wheels and the floor [29]. The representation of the 

state-space model of the mass-spring-damper system is derived below, as 

a first step the dynamic model of the following system is formulated. 

 

 
Figure 14 - Diagram of the mass-spring-damper system 

 Where: 

q(t): displacement of mass 𝑚2. 

p(t): displacement of mass 𝑚1, and is selected as output p(t). 

u(t): applied force, input. 

 

The procedure to obtain the state-space model of the system is as follows 

a) Equations of motion 

For mass 𝑚1: 

∑𝐹 = 𝑚1�̈� 

(4.1) 𝑢(𝑡) − 𝑘1(𝑝 − 𝑞) − 𝑏1(�̇� − �̇�) = 𝑚1�̈� 

𝑚1�̈� + 𝑘1𝑝 + 𝑏1�̇� = 𝑢(𝑡) + 𝑘1𝑞 + 𝑏1�̇� 
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For mass 𝑚2: 

∑𝐹 = 𝑚2�̈� 

(4.2) 𝑘1(𝑝 − 𝑞) + 𝑏1(�̇� − �̇�) − 𝑘2𝑞 − 𝑏2�̇� = 𝑚2�̈� 

𝑚2�̈� + �̇�(𝑏1 + 𝑏2) + 𝑞(𝑘1 + 𝑘2) = 𝑘1𝑝 + 𝑏1�̇� 

 

 

b) Definition of state variables 

𝑥1 = 𝑝(𝑡) 

𝑥2 = 𝑞(𝑡) 

𝑥3 = �̇�(𝑡) = �̇�1 

𝑥4 = �̇�(𝑡) = �̇�2 

 

Represented in vector form 

𝑥 = [

𝑥1

𝑥2
𝑥3

𝑥4

] 
 

 

c) Write the differential equations for each state variable  

 

Equation 1 

𝑚1�̈� + 𝑏1�̇� + 𝑘1𝑝 = 𝑢(𝑡) + 𝑘1𝑞 + 𝑏1�̇� 

(4.3) 𝑚1�̇�3 + 𝑏1𝑥3 + 𝑘1𝑥1 = 𝑢(𝑡) + 𝑘1𝑥2 + 𝑏1𝑥4 

�̇�3 =
1

𝑚1

𝑢(𝑡) +
𝑘1

𝑚1

𝑥2 +
𝑏1

𝑚1

𝑥4 −
𝑏1

𝑚1

𝑥3 −
𝑘1

𝑚1

𝑥1 
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Equation 2 

𝑚2�̈� + (𝑘1 + 𝑘2)𝑞 + (𝑏1 + 𝑏2)�̇� = 𝑘1𝑝 + 𝑏1�̇� 

(4.4) 𝑚2�̇�4 + (𝑘1 + 𝑘2)𝑥2 + (𝑏1 + 𝑏2)𝑥4 = 𝑘1𝑥1 + 𝑏1𝑥3 

�̇�4 =
𝑘1

𝑚2

𝑥1 +
𝑏1

𝑚2

𝑥3 −
(𝑘1 + 𝑘2)

𝑚2

𝑥2 −
(𝑏1 + 𝑏2)

𝑚2

𝑥4 

 

Now proceed to write it in the matrix form: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 (4.5) 

  

Where: 

𝑢(𝑡): input control 

𝑥(𝑡): state 

�̇�(𝑡): derivative of the state 

𝐴, 𝐵: matrices to determine 

 

4) Write in Matrix form 

 

�̇�1 = 𝑥3 

(4.6) 

�̇�2 = 𝑥4 

�̇�3 = −
𝑘1

𝑚1

𝑥1 +
𝑘1

𝑚1

𝑥2 −
𝑏1

𝑚1

𝑥3 +
𝑏1

𝑚1

𝑥4 +
1

𝑚1

𝑢(𝑡) 

�̇�4 =
𝑘1

𝑚2

𝑥1 −
(𝑘1 + 𝑘2)

𝑚2

𝑥2 +
𝑏1

𝑚2

𝑥3 −
(𝑏1 + 𝑏2)

𝑚2

𝑥4 
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[

�̇�1

�̇�2

�̇�3

�̇�4

] 

 

= 

[
 
 
 
 
 

0 0
0 0

1 0
0 1

−
𝑘1

𝑚1

𝑘1

𝑚1

𝑘1

𝑚2
−

(𝑘1 + 𝑘2)

𝑚2

−
𝑏1

𝑚1

𝑏1

𝑚1

𝑏1

𝑚2
−

(𝑏1 + 𝑏2)

𝑚2 ]
 
 
 
 
 

 [

𝑥1

𝑥2
𝑥3

𝑥4

] + 

[
 
 
 
 

0
0
1

𝑚1

0 ]
 
 
 
 

 𝑢(𝑡) (4.7) 

 

It is now necessary to derive an expression for the system output. In this 

case, the output is the displacement of mass 1, i.e., 𝑝(𝑡) = 𝑥1 = 𝑦. 

 

𝑦 = [1 0 0 0] 
[

𝑥1

𝑥2
𝑥3

𝑥4

] 
+ 

[

0
0
0
0

] 
𝑢(𝑡) (4.8) 

 

 

4.3 Solution 
 

The inverse optimal control problem analyzed as an infinite horizon Linear 

Quadratic Regulator (LQR) is solved in a scheme of two level, as shown in 

figure 15, where in the outer loop the inverse optimal control problem 

(IOCP) is used for the recovery of parameters of the cost function and is 

posed as a Semidefinite Programming (SDP) with Linear Matrix Inequality 

(LMI) constraints that express characteristics of well-posedness. On the 

other hand, in the inner loop, a forward optimal control problem is solved 

with the objective of updating the parameter (K) and evaluating the 

optimality of the recovered cost function. 
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Figure 15 - Inverse optimal control approach 

 

In order to address the well-posedness to the inverse control problem, it is 

assumed that the registered trajectories are optimal [2], so that the 

optimality criterion would be satisfied and it would remain to address the 

problem of uniqueness and stability. In this sense, the solution is 

approached as follows. 

 

a) Find the necessary and sufficient conditions on the matrices K, A and B 

such that the control law 𝑢(𝑡) = −𝐾𝑥(𝑡) minimizes the cost function for 

given values of 𝑄 and 𝑅. 

In this case, 𝐾 is optimal for certain values of 𝑄 and 𝑅 if and only if 𝐴 +

𝐵𝐾 is asymptotically stable as well as it must fulfill the conditions 

established in section 3.1. 

 

b) Determine all parameters 𝑄 and 𝑅 in such a way that they produce the 

same value of 𝐾. 
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In this case, the parameters can be obtained by establishing the 

following conditions 

𝑃 = 𝑃𝑇 > 0,𝑄 = 𝑄𝑇 , 𝑅 = 𝑅𝑇 > 0 (4.9) 

 

and by solving the matrix equation 

𝐵𝑇𝑃 = −𝑅𝐾 (4.10) 

 

where the variable Q is obtained from the Algebraic Riccati Equation 

(ARE) 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (4.11) 

 

It is worth mentioning that the solution obtained varies if Q is required to be 

positive semidefinite, i.e., 𝑄 = 𝑄𝑇 ≥ 0 [8], because it is a closed constraint 

that is used in semidefinite programming [22]. In addition, 𝑃 > 0 describes 

the infinite-horizon cost, 𝑄 ≥ 0 describes the state-penalty matrix, and R≥

0 describes the input-penalty matrix [9][18]. 

Next, the objective is to estimate the parameters Q and R of the cost 

function from the observed control law u(t) = Kx(t). Specifically, from the 

convex formulations optimize the values of Q and R from a known value of 

K, which is known as convex formulation of the inverse optimal controller 

problem [17]. 

As mentioned above, in forward optimal control, the control gain K is related 

to the cost function by means of the Algebraic Riccati Equation (ARE), 

which is used as the basis for the solution of inverse optimal control [9]. 

Therefore, the following is derived. 
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𝐾 = −(𝐵𝑇𝑃𝐵 + 𝑅)−1𝐵𝑇𝑃𝐴 
(4.12) 

−𝑅𝐾 = 𝐵𝑇𝑃(𝐴 + 𝐵𝐾) 

 

Therefore, the semidefinite programming (SDP) for the estimation of 

parameters of the inverse optimal control problem cost function from the 

gain matrix K, is proposed by imposing symmetry and positive definiteness 

constraints for the matrices P, Q and R. Thus, given K, the objective is to 

estimate the values for P, Q and R in such a way that the imposed 

restrictions are satisfied to ensure the well-posedness to the problem. In 

that sense, the solution diagram involving the constraints that impose a 

well-posedness to the inverse optimal control problem is shown in Figure 

16. 

Regarding the implementation of the solution algorithm, several 

investigations have used different numerical methods for the estimation of 

the cost function based, for example, on numerical optimal control [2]. 

Likewise, for the estimation of the cost functions of inverse optimal control 

problems for linear systems, convex formulations are used. In this sense, 

in the present work, the Python libraries CVXPY and SCIPY, whose 

problem formulations are written in SDP and with LMI constraints, are used. 
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Unknown: cost function J
Known: gain matrix K, matrices 
(A, B) 

Goal: Determine J from K such 
that it is optimal for J

(A-BK)ᵀP+P(A-BK)+KᵀRK+Q=0

Q  
R 0?

BᵀP+RK=0

P
P₁?

Found matrices:
Q, R, P

YES

YES

NO

NO

Well-posedness 
conditions

AᵀP₁ +P₁ A<Q 

 
 

Figure 16 - Proposed solution scheme for IOCP 
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4.4 Results 
 

This section shows the results regarding the application of the well-

posedness constraints for the solution of the inverse problem, then 

presents the results after including constraints that restrict the poles to a 

certain region on the left side of the half-plane to improve the transient 

response and finally presents the results for the solution of the inverse 

optimal control problem by penalizing the deviation of observed states and 

proposing an alternative to avoid dependence on the use of the K-gain 

matrix. 

 

4.4.1 Inverse optimal control with well-posedness constraints 
 

Taking into account the mass-spring-damper system described in section 

4.2, the forward optimal control problem, according to equation 4.13, will 

be formulated in order to be compared with the response obtained after 

solving the inverse optimal control problem. 

minimize
𝑢∈ℝ𝑚

∫ 𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡
∞

0

 

(4.13) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑥(𝑡0) = 𝑥0 

 

According to the formulation of the system described in section 4.2, the 

dimension of the state vector 𝑥(𝑡) is 4 × 1 (𝑛 × 1) and the dimension of the 

control vector 𝑢(𝑡) is 1 × 1 (𝑚 × 1), whereby, according to the matrix 

multiplication rules, the dimensions of the weight parameters of the cost 

function are as follows. 

 

𝑄: 𝑛 × 𝑛, symmetric positive semidefinite matrix with dimensions 4 × 1. 

𝑅: 𝑚 × 𝑚, symmetric positive definite matrix with dimensions 1 × 1. 
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Three scenarios are presented below, each using a different set of values 

for the matrix penalizing state deviation Q and the matrix penalizing control 

effort R. 

 

4.4.1.1 Scenario 1 
 

In this case, the system state is prioritized to return to zero quickly, i.e., a 

fast regulation is expected by penalizing matrix Q. For this purpose, matrix 

Q is assigned a higher weight than matrix R. Therefore, the components 

considered for the cost function, i.e., the matrix penalizing the deviation of 

states Q, and the matrix penalizing the control effort R are as follows.  

 

State weighting matrix: 

 

𝑄 = [

10 0
0 10

0 0
0 0

0 0
0 0

10 0
0 10

] 

 

Input weighting matrix 

 

𝑅 = [0.1] 

 

The solution to the forward optimal control problem for the linear quadratic 

regulator (LQR) result in the following optimal controller gain matrix K. 

𝐾 =  [0.45613562, 0.2254168, 2.23401424, 0.30041099] 

 

Also, the eigenvalues confirm that the system is stable and its oscillatory 

nature.  
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Eigen values of the close-loop A matrix: 

−3.94938826 + 13.36737958𝑗 

−3.94938826 − 13.36737958𝑗 

−0.45486352 + 3.19717636𝑗 

−0.45486352 − 3.19717636𝑗 

 

In that sense, the response of the mass-spring-damper system described 

above after solving the forward optimal control problem is shown below. 
 

 
Figure 17 - System response for scenario 1 

 

4.4.1.2 Scenario 2 
 

In this case, priority is given to the least possible effort for the controller so 

that the state returns to zero, i.e., a slow regulation will be obtained by 

penalizing the R matrix. Therefore, the components considered for the cost 

function, i.e., the matrix penalizing the deviation of states Q, and the matrix 

penalizing the control effort R are as follows. 
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State weighting matrix: 

 

𝑄 = [

0.1 0
0 0.1

0 0
0 0

0 0
0 0

0.1 0
0 0.1

] 

 

Input weighting matrix 

 

𝑅 = [20] 

 

The solution to the forward optimal control problem for the linear quadratic 

regulator (LQR) result in the following optimal controller gain matrix K. 

 

𝐾 =  [0.00030937,−0.00063223, 0.00102951, 0.00012672] 

 

Also, the eigenvalues confirm that the system is stable and its oscillatory 

nature.  

Eigen values of the close-loop A matrix: 

−3.94814015 + 13.37281284𝑗 

−3.94814015 − 13.37281284𝑗 

−0.17698854 + 3.2024485𝑗 

−0.17698854 − 3.2024485𝑗 

 

In this case, the response of the mass-spring-damper system after solving 

the forward optimal control problem is shown below. 
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Figure 18 - System response for scenario 2 

 

4.4.1.3 Scenario 3 
 

In this case it is prioritized that the system velocity returns to zero quickly. 

For this purpose, the velocity dimension of the Q matrix is penalized while 

maintaining a relatively high weight for the R matrix. Therefore, the 

components considered for the cost function, i.e., the matrix penalizing the 

deviation of states Q, and the matrix penalizing the control effort R are as 

follows. 

 

State weighting matrix: 

 

𝑄 = [

0.01 0
0 1

0 0
0 0

0 0
0 0

1000 0
0 1

] 

 

Input weighting matrix 
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𝑅 = [30] 

 

The solution to the forward optimal control problem for the linear quadratic 

regulator (LQR) result in the following optimal controller gain matrix K. 

 

𝐾 =  [−0.38338825, 0.4335758, 0.57580537, 0.08289382] 

 

Also, the eigenvalues confirm that the system is stable and its oscillatory 

nature.  

Eigen values of the close-loop A matrix: 

−3.94776849 + 13.36922043𝑗 

−3.94776849 − 13.36922043𝑗 

−0.24920718 + 3.19329694𝑗 

−0.24920718 − 3.19329694𝑗 

 

Finally, the response of the mass-spring-damper system after solving the 

forward optimal control problem is shown below. 

 

 
Figure 19 - System response for scenario 3 
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Now, to solve the inverse optimal control problem of the linear quadratic 

regulator (LQR), the optimal controller gain matrix K determined earlier is 

used as input. 

 

4.4.1.4 Inverse optimal control for scenario 1 
 

The restrictions for the well-posedness of the inverse optimal control 

problem are stated, such as the positive semidefinite conditions on the 

variables (𝑄, 𝑅) components of the cost function, as well as for the variable 

𝑃 which is the solution of the algebraic Riccati equation (ARE) and the 

variable 𝑃1 which verifies the controllability of the system. Therefore, the 

linear matrix inequalities (LMI) constraints written in semidefinite 

programming (SDP) are shown below. 

 

𝑄 = 𝑄𝑇 , 𝑄 ≥ 0 

(4.14) 

𝑅 = 𝑅𝑇 , 𝑅 ≥ 0 

𝑃 = 𝑃𝑇 , 𝑃 ≥ 0 

𝑃1 = 𝑃1
𝑇 , 𝑃1 ≥ 0 

(𝐴 − 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵𝐾) +𝐾𝑇𝑅𝐾 + 𝑄 = 0 

𝐵𝑇𝑃 − 𝑅𝐾 = 0 

𝐴𝑇𝑃1 + 𝑃1𝐴 − 𝑄 ≤ 0 

 

For this approach and for the development of the algorithm, it is necessary 

to verify whether the set of constraints admits a feasible solution, defined 

by equations 3.1, which satisfies the existence criterion. Indeed, it is 

required that a feasible solution is returned or else the feasible set is 

determined to be empty. 
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Therefore, after solving the inverse optimization problem, the values of the 

Q and R parameters of the cost function are estimated. 

 

State weighting matrix: 

𝑄 = [

10.2595604 0.2349327
0.2349327 10.2836208

0.21997224 −0.11097164
0.37746966 −0.13114467

0.21997224 0.37746966
−0.11097164 −0.13114467

10.4298761 −0.15699507
−0.15699507 10.1328847

] 

 

Input weighting matrix 

𝑅 = [0.0368504] 

 

Likewise, the response of the mass-spring-damper system to a unit step 

input with parameters Q and R obtained from the inverse optimal control 

problem and with an initial condition of 𝑥0 = (4, 0, 0, 0) is as follows 

 

 
Figure 20 - System response after IOC for scenario 1 
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As can be seen from the above, the response obtained is similar to the 

response obtained in the forward optimal control of scenario 1. The 

configuration of the weight parameters allows a stable response and a 

settling time of 10 seconds. 

 

4.4.1.5 Inverse optimal control for scenario 2 
 

In this case after solving the inverse optimization problem, the values of the 

Q and R parameters of the cost function are estimated. 

 

State weighting matrix: 

 

𝑄 = [

0.18491162 −1.52335861𝑒 − 05
−1.52335861𝑒 − 05 0.12734808

−4.53560052𝑒 − 07 −2.22856261𝑒 − 08
8.14924254𝑒 − 07 3.87914547𝑒 − 08

−4.53560052𝑒 − 07 8.14924254𝑒 − 07
−2.22856261𝑒 − 08 3.87914547𝑒 − 08

0.14583880 −1.37713395𝑒 − 08
−1.37713395𝑒 − 08 0.13959121

] 

 

Input weighting matrix 

 

𝑅 = [21.66500493] 

 

Likewise, the response of the mass-spring-damper system to a unit step 

input with parameters Q and R obtained from the inverse optimal control 

problem and with an initial condition of 𝑥0 = (4, 0, 0, 0) is as follows 
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Figure 21 - System response after IOC for scenario 2 

 

As can be seen from the above, a stable but oscillatory response is 

obtained, which can be addressed with additional constraints of the 

regional linear matrix inequalities type to handle the desired specifications 

for the system, i.e., to obtain a robust system. The configuration of the 

weight parameters allows a stable response and a settling time of 20 

seconds. 

 

4.4.1.6 Inverse optimal control for scenario 3 
 

In this case after solving the inverse optimization problem, the values of the 

Q and R parameters of the cost function are estimated. 

 

State weighting matrix: 

 

𝑄 = [

0.01557152 −9.58289553𝑒 − 10
−9.58289553𝑒 − 10 1.16562375

−7.93586856𝑒 − 11 7.68095299𝑒 − 11
1.39997267𝑒 − 10 −1.36192121𝑒 − 10

−7.93586856𝑒 − 11 1.39997267𝑒 − 10
7.68095299𝑒 − 11 −1.36192121𝑒 − 10

995.13 −2.23823261𝑒 − 11
−2.23823261𝑒 − 11 1.12597187

] 
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Input weighting matrix 

 

𝑅 = [31.94249366] 

 

Likewise, the response of the mass-spring-damper system to a unit step 

input with parameters Q and R obtained from the inverse optimal control 

problem and with an initial condition of 𝑥0 = (4, 0, 0, 0) is as follows 

 

 
Figure 22 - System response after IOC for scenario 3 

 

As can be seen from the above, a stable but oscillatory response is 

obtained, which can be addressed with additional constraints of the 

regional linear matrix inequalities type to handle the desired specifications 

for the system. The configuration of the weight parameters allows a stable 

response and a settling time of 15 seconds. 

 

 



 

64 
 

4.4.2 Inverse optimal control with transient response enhancement 
constraints 

 

It is known that the transient response of a linear system is related to the 

location of its poles. By limiting the poles to a specific region, a satisfactory 

transient response can be guaranteed. Limiting the closed-loop poles to 

the region 𝑆(𝛼, 𝑟, 𝜃) guarantees a minimum decay rate 𝛼 which is the ratio 

of the magnitude between successive peaks in the response, a minimum 

damping ratio 𝜁 = 𝑐𝑜𝑠𝜃 to ensure minimum underdamped response and a 

maximum undamped natural frequency 𝑤𝑑 = 𝑟𝑠𝑖𝑛𝜃 that also contributes to 

a minimum underdamped response and is therefore inversely proportional 

to the damping ratio. This, in turn, limits the maximum overshoot, delay 

time, rise time, and settling time [25]. 

 

 
Figure 23 - D-stability region 

 

Therefore, according to the above description of pole location, the following 

constraints are added to the inverse optimal control problem solved in 

section 4.4.1.5. 
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2𝛼𝑃 + 𝐴𝑃 + 𝑃𝐴𝑇 < 0 

(4.15) [
−𝑟𝑃 𝐴𝑃
𝑃𝐴𝑇 −𝑟𝑃

] < 0 

[
(𝐴𝑃 + 𝑃𝐴𝑇)𝑠𝑖𝑛𝜃 (𝐴𝑃 − 𝑃𝐴𝑇)𝑐𝑜𝑠𝜃
(𝑃𝐴𝑇 − 𝐴𝑃)𝑐𝑜𝑠𝜃 (𝐴𝑃 + 𝑃𝐴𝑇)𝑠𝑖𝑛𝜃

] 

 

The defined region results from the intersection of other regional linear 

matrix inequalities as shown in the figure above [26]. In this sense, 

according to the relationship described between the parameters of the 

𝑆(𝛼, 𝑟, 𝜃) region, it is desirable to have a small value for 𝛼, a high value for 

𝑟 and a low value for 𝜃. Therefore, the following parameters are assigned 

to constrain the location of the closed-loop poles in the complex plane 

sector, i.e., 𝛼 = 1, 𝑟 = 10 and 𝜃 = 80°. Now, since the percentage of 

overshoot (PO) is a function of only the damping ratio 𝜁, the dominant pole 

approximation [41] is used to approximate the percentage overshoot, 

equation 4.16, from a second order system to a fourth order system. 

 

𝑃𝑂 = 100𝑒
−(

𝜁𝜋

√1−𝜁2
)

 
(4.16) 

 

Likewise, the numerical value of the above parameters, the expected 

percentage of overshoot (PO) will be 57.47%. 

 

Therefore, after solving the inverse optimization problem, the values of the 

Q and R parameters of the cost function are estimated. 

 

State weighting matrix: 

𝑄 = [

12.23693647 −4.01035014𝑒 − 08
−4.01035014𝑒 − 08 17.19132863

−1.39623261𝑒 − 09 4.21642949𝑒 − 10
2.49090590𝑒 − 09 −7.62045378𝑒 − 10

−1.39623261𝑒 − 09 2.49090590𝑒 − 09
4.21642949𝑒 − 10 −7.62045378𝑒 − 10

15.60922611 −5.19247679𝑒 − 11
−5.19247679𝑒 − 11 14.46232981

] 
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Input weighting matrix 

𝑅 = [0.052353302] 

 

Likewise, the response of the mass-spring-damper system to a unit step 

input with parameters Q and R obtained from the inverse optimal control 

problem and with an initial condition of 𝑥0 = (4, 0, 0, 0) is as follows. 

 

 
Figure 24 - System response after limiting the poles to the region S(α, r, θ) 

 

From the above it can be observed that the amplitude of the overshoot was 

reduced and also the settling time was reduced from 20 to 12 seconds 

approximately, which represents an improvement in the transient response 

with respect to the initial response of the system. 

 

On the other hand, a similar approach can be used, this time not using the 

constraints of regions of linear matrix inequalities but imposing a constraint 

specifically on the percentage of overshoot with the following constraints 

[27]. 
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𝐴𝑇𝑃 + 𝑃𝐴 < 0 

(4.17) [
𝑃 𝑃𝐵

𝐵𝑇𝑃 𝜁𝐼
] > 0 

[
𝑃 𝐶𝑇

𝐶 𝜁𝐼
] > 0 

 

In this case, unlike the previous one, an overshoot percentage of 40 is 

desired. Therefore, after solving the inverse optimization problem, the 

values of the Q and R parameters of the cost function are estimated for this 

case. 

State weighting matrix: 

𝑄 = [

16.15880802 −1.10408037𝑒 − 06
−1.10408037𝑒 − 06 19.84785721

−4.54753078𝑒 − 08 −5.97228443𝑒 − 09
8.18308876𝑒 − 08 1.05253765𝑒 − 08

−4.54753078𝑒 − 08 8.18308876𝑒 − 08
−5.97228443𝑒 − 09 1.05253765𝑒 − 08

12.21807782 −5.44460466𝑒 − 09
−5.44460466𝑒 − 09 19.66248128

] 

 

Input weighting matrix 

𝑅 = [0.041500481] 

 

Likewise, the response of the mass-spring-damper system to a unit step 

input with parameters Q and R obtained from the inverse optimal control 

problem and with an initial condition of 𝑥0 = (4, 0, 0, 0) is as follows. 
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Figure 25 - System response after adding overshoot constraints 

 

According to the above, and corroborating the desired overshoot 

percentage specification, it can be observed that the overshoot amplitude 

was reduced compared to the previous case demonstrating its 

effectiveness. However, it is more flexible to improve the transient response 

of the system by restricting the poles to a specific region as in the previous 

case, since in this way it is possible to control the decay rate, damping ratio 

and undamped natural frequency, which together regulate the transient 

response of the system. 

 

4.4.3 State deviation penalty approach for obtaining Q and R 
parameters. 

 

As mentioned above, there are situations in which having the gain 

controller K in advance may be difficult, challenging or impractical. In this 

sense, if the system response is available in the form of state trajectories 

or observed trajectories, it is possible to formulate an optimization problem 

in which the deviation from the observed state trajectory is penalized, while 

imposing constraints on the well-posedness, i.e., constraints on the 
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unknown parameters 𝑄 and 𝑅, constraints on the system dynamics as well 

as constraints on the system stability. These restrictions are shown below 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝐴𝑇𝑃 + 𝑃𝐴 ≤ 0 

[
𝑅 𝐵𝑇𝑃
𝑃𝐵 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄

] ≥ 0 

𝑄 = 𝑄𝑇 , 𝑄 ≥ 0 

𝑅 = 𝑅𝑇 , 𝑅 ≥ 0 

𝑃 = 𝑃𝑇 , 𝑃 ≥ 0 

(4.18) 

 

 

In this case, in order to estimate the parameters Q and R, it is sought to 

penalize the differences between observed and obtained states, i.e.,  
‖𝑥 − �̂�‖, where 𝑥 is the state parameter that controls the set of feasible 

solutions, �̂� is an observed state 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 that represents a priori belief or 

estimate. Likewise, the system dynamics constraint couples the state 

variables 𝑥 and the control variable 𝑢. On the other hand, linear matrix 

inequalities (LMI) are proposed for a well-posedness of the problem, 

specifically regarding the system stability, the semidefinite positivity for P, 

Q and R and their relation through the block matrix shown. 

 

In this sense, the motion dynamics of a mobile robot is proposed to 

simulate and record its trajectory in order to serve as input data, i.e., 

observed trajectories for the inverse optimal control problem. 

 

𝐴 = [
0 1 0
0 0 1

−1 −2 −1
] 

 

𝐵 = [
0
0
1
] 

𝐶 = [1 0 0] 
𝐷 = [

0
0
0
] 



 

70 
 

 

It is worth mentioning that the system is stable, controllable and 

observable. Also shown are the following weight matrices 𝑄 and 𝑅 

 

𝑄 = [
3 0 0
0 3 0
0 0 3

] 𝑅 = [3] 

 

After performing forward optimal control, the following movement 

trajectories or observed states are obtained 

 

𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = [
1 0.97 0.83 0.6 0.36 0.18 0.07 0.03 0.02 0.03

0 −0.15 −0.36 −0.44 −0.38 −0.26 0.13 −0.03 0 0
0 −0.40 −0.29 −0.02 0.19 0.26 0.20 0.11 0.03 −0.01

] 

 

𝑒𝑖𝑛𝑔𝑒𝑣𝑎𝑙𝑢𝑒𝑠(𝐴𝑐𝑙) = [−0.6913 −0.6350 + 1.2815j −0.6350 − 1.2815j] 

 

The trajectories obtained after solving the forward problem are plotted 

below. 
 

 
Figure 26 - Trajectories obtained after solving the forward problem 
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Now, after solving the optimization problem shown above for the inverse 

optimal control, we obtain the following matrices 𝑄 and 𝑅. 

 

𝑄 = [
3.77958848 0.03334946 0.79676056
0.03334946 3.84160924 0.28659584
0.79676056 0.28659584 4.27348977

] 

 

𝑅 = [3.75938141] 

 

Likewise, the system response after solving the inverse optimal control 

problem and reconstructing the trajectories are shown below. 

 

 
Figure 27 - Reconstruction of State Trajectories 

 

The following is a comparison between the trajectories obtained from the 

solution of the forward optimal control problem and the trajectories 

reconstructed after the solution of the inverse optimal control problem. 
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Figure 28 - Comparison between original and reconstructed state trajectories 

 

In order to establish a measure of the difference between trajectories, 

correlation is used, which represents a measure of the similarity between 

two signals. Therefore, to calculate the correlation between the trajectories, 

the Python module scipy. stats for statistical functions is used, which ranges 

from 0 (no correlation) to 1 (perfectly correlated). In this case a value of 

0.89 is obtained, indicating that the trajectories are highly correlated. The 

differences between the figures obtained are mainly due to the inaccuracy 

in the estimation of the Q and R parameters in the inverse optimal control. 

Likewise, the criteria of well-posedness such as stability and feasibility in 

the solution are met, since the solution of the optimization problem exists 

and as for uniqueness, different sets of Q and R matrices are obtained for 

each set of different values of the observed data. However, the penalty on 

the deviation of the observed states may introduce a relaxation in the 

conditions of the problem that could be addressed by the inclusion of other 

constraints that more strictly penalize the deviation in these states. Finally, 

after using the Python time library, the computational cost calculation 

results in 4,064 seconds, which corresponds to the high computational 

demand of the two-level approach used, but can be improved by analyzing 
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other global and local minima search designs for the optimization 

algorithm. 
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Chapter 5 
Conclusions and future research 
 

5.1 Conclusions 
 

In the present work, the existence, uniqueness and stability conditions that 

contribute to a well-posedness to the inverse optimal control problem were 

studied. These conditions were proposed using linear matrix constraints 

(LMI) and convex optimization according to the guidelines of semidefinite 

programming (SDP). 

The approach of the constraints as convex formulations made it possible 

to take advantage of existing computational methods to retrieve the 

solution of the inverse optimal control problem of the Linear Quadratic 

Regulator. 

Three analysis scenarios were addressed: the writing of well-posedness 

conditions for the solution of the inverse problem, the inclusion of additional 

constraints to improve the transient response of the system, and the 

approach of penalizing the deviation of the states to obtain the Q and R 

parameters. 

The simulation of the system was carried out, obtaining transient 

responses close to the original, also when applying the pole region 

restrictions an improvement in the transient response of the system was 

obtained, in that sense the weight matrices found comply with the existence 

conditions since they originated feasible problems, injectivity since for 

different observed data different weight matrices were obtained and 

stability since the system responses were stable in all cases. 
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5.2 Future research 
 

The inverse optimal control approach studied here serves as a basis for its 

application to other forms of optimal regulators. Therefore, future research 

may aim at recovering general forms of objective functions beyond the 

linear quadratic regulator approach analyzed here. 

The general assumption in inverse control problems that the optimal 

solution is available in advance can be discarded in future research as this 

would more closely resemble real scenarios. 

The optimization algorithm for parameter estimation can be improved by 

going deeper into the alignment of the observed trajectories with the 

optimal trajectories and using this alignment as the basis for the recovery 

of the cost function. 

Further research can also be done to optimize directly on the cost function 

parameters to minimize the discrepancy between the observed and optimal 

trajectories and thus have greater resolution in the parameters obtained. 

Finally future work can apply inverse optimal control in robotic arm motion 

that starts from the observation of an agent and the subsequent imitation 

representing the motion reconstructed from that observation. 
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