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Resumen

El ultrasonido cuantitativo (QUS, por sus siglas en inglés) es una modalidad de imagen
no invasiva que caracteriza numéricamente los tejidos para el diagnóstico médico. Los
estimadores QUS se basan en parámetros acústicos como la pendiente del coeficiente de
atenuación (ACS, por sus siglas en inglés). Un estudio anterior propuso eliminar el ruido
de las relaciones logarítmicas espectrales utilizando una variación total de un solo canal a
través de la frecuencia. El método espectral para estimar el ACS, conocido como diferen-
cia logarítmica espectral (SLD, por sus siglas en inglés) no incorpora ninguna estrategia
de reconstrucción conjunta para mejorar la imagen. Por lo tanto, este trabajo propone
la integración de dos estrategias conjuntas compatibles con el marco SLD. Primero, un
enfoque de regularización conjunta denominado variación total nuclear (TNV-SLD) es
implementado, el cual combina información geométrica del ACS y el componente del co-
eficiente de retrodispersión (BSC, por sus siglas en inglés) para mejorar la calidad de las
imágenes, logrando mejores resultados en términos de error porcentual medio (MPE) y
relación contraste-ruido (CNR). Posteriormente, el estudio se amplía para eliminar con-
juntamente los ratios logarítmicos espectrales del SLD en los canales de frecuencia. Se
propone un método conjunto multifrecuencia para aumentar la calidad de las imágenes
de atenuación. Se consideraron dos modificaciones de la variación total con base en las
normas Frobenius (TFV) y nuclear (TNV). Las métricas se compararon con dos métodos
de regularización anteriores denominados RSLD y TVSLD, basados en la variación total
de un solo canal con datos de maniquíes simulados y experimentales, y una muestra de
tejido ex vivo. Los resultados mostraron un mejor desempeño general del método TNV
para ambas estrategias, produciendo mapas ACS mejorados y extendiendo el balance en-
tre la resolución espacial y la variabilidad de la estimación en términos de CNR con un
sesgo estable.

Palabras clave— Ultrasonido cuantitativo, imágenes de atenuación ultrasónica,
pendiente del coeficiente de atenuación, diferencia logarítmica espectral, reconstrucción
conjunta, variación total, variación total nuclear, variación total Frobenius.



Abstract

Quantitative Ultrasound (QUS) is a non-invasive image modality that characterizes nu-
merically tissues for medical diagnosis. QUS estimators are based on acoustical parame-
ters such as the attenuation coefficient slope (ACS). A previous study proposed denois-
ing the spectral log ratios using a single channel total variation through frequency. The
spectral-based method to estimate the ACS, known as Spectral Log Difference (SLD)
does not incorporate any joint reconstruction strategies for image enhancement. There-
fore, this work proposes the integration of two joint strategies compatible with the SLD
framework. First, a joint regularization approach named the Total Nuclear Variation
SLD (TNV-SLD) is implemented. It couples geometrical information of the ACS and the
backscatter coefficient (BSC) component to enhance the quality of the images, achiev-
ing better results in terms of mean percentage error (MPE) and contrast-to-noise ratio
(CNR). Later, the study is extended to jointly denoise the spectral log ratios of the SLD
across the frequency channels. A multi-frequency joint method is proposed to increase
the quality of the attenuation images. Two modifications of the total variation based on
the Frobenius (TFV) and nuclear (TNV) norms were considered. Metrics were compared
to two previous regularization methods labeled RSLD and TVSLD, based on the single-
channel Total Variation with data from simulated and experimental phantoms, and an ex
vivo tissue sample. Results showed an overall better performance of the TNV method for
both strategies, yielding enhanced ACS maps and extending the trade-off between spatial
resolution and variability of the estimation in terms of the CNR with a stable bias.

Keywords— Quantitative ultrasound, ultrasonic attenuation imaging, attenuation
coefficient slope, spectral log difference, joint reconstruction, total variation, total nuclear
variation, total Frobenius variation.
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Chapter 1

Introduction

Ultrasound is a noninvasive imaging modality that uses sound waves of frequencies
higher than the range of human hearing, i.e. f > 20KHz for tissue characterization. Al-
though current ultrasound technologies are well capable of identifying suspicious lesions,
they only provide qualitative information of tissues, therefore the diagnosis of a benign or
malignant tissue is subject to the interpretation of the clinician [1]. In contrast, quantita-
tive ultrasound (QUS) techniques have been developed to characterize tissues objectively
based on their macroscopic [2]. QUS has been proven to be an effective diagnostic tool
for breast cancer detection [3], thyroid cancer diagnosis [4], liver disease quantification
[5] and monitoring the state of tendons after surgery [6].

1.1 Attenuation coefficient parameter
QUS techniques analyze the radio-frequency (RF) data and provide numerical values

of tissue properties by estimating acoustical parameters such as the backscatter coefficient
(BSC) and the attenuation coefficient slope (ACS). The BSC measures the scattering and
wave reflection due to interference inside the tissue, in physics terms, it corresponds to the
scattered intensity in the backward direction per unit solid angle cm-1· Sr-1. Information of
the BSC has been used in clinical studies for breast tumors, liver pathologies, and thyroid
cancer [7]. Nevertheless, the estimation of the BSC requires an attenuation compensation
through the propagation path and it is affected by the ACS precision [8].

On the other hand, the attenuation coefficient is related to the loss of mechanical en-
ergy as the ultrasonic waves propagate through the tissue and it increases with frequency.
This dependency is typically assumed to be linear, therefore, it is common to report at-
tenuation by calculating its slope or ACS expressed in dB·cm-1·MHz-1 [9]. Attenuation
imaging has shown promise for the assessment of liver diseases [10]. Furthermore, the
attenuation estimation has been proven to be related to the precision of other acoustical
parameters estimation such as the backscatter coefficient [11].

1.2 Attenuation Coefficient Slope (ACS) estimation
The methods to assess the ACS are based on the spectral information from the RF

backscattered echoes, they measure the central frequency downshift in the spectrum
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(spectral shift methods) or the logarithmic intensity decay at each frequency (spectral
log difference methods) [9].

1.2.1 Spectral Shift method
In the Spectral Shift method, the attenuation is calculated from the downshift of

the ultrasound central frequency at different depths. It was initially proposed in 1983 by
Fink et al. [12] who recovered the downshift using a short-time Fourier analysis technique.
Other estimators to locate the center frequency are based on 1) a correlation analysis with
a set of templates generated by calculating the spectrum of the known ultrasound pulse,
2) a mean frequency approach considering a Gaussian-shaped spectrum and 3) a zero-
crossing method by counting the number of zero values in a given interval of time and
dividing it to the number of samples [13]. Later, Baldeweck et al. [14] proposed a second-
order auto-regressive model to reduce the variance of estimations with computational
efficiency. More recently, Samini and Varghese [15] presented an optimum frequency shift
estimator that reduced three times the standard deviation of the ACS in comparison to
current shift methods, using a reference phantom similar to the spectral log difference
technique. Common limitations of spectral shift techniques are the sensitivity to local
spectral noise artifacts and the difficulty in compensating and correcting diffraction effects
in comparison to spectral difference methods [16].

1.2.2 Spectral Log Difference (SLD) method
The Spectral Log Difference (SLD) formulation dates back to 1990, when Xin Yao et

al. [17] proposed comparing the echo sample data with a reference calibrated phantom to
estimate the backscatter and attenuation coefficients. The SLD assumes a linear depen-
dence between frequency and uses fitting tools to calculate the ACS from the log ratio
of the power spectra of the proximal and distal segments of a certain region of interest
(ROI) [18]. Due to the large variability of estimations using a typical SLD, regularization
techniques have been proposed. The first regularized SLD (RLSD) approach was de-
veloped in [19] and reduced the estimations variability by around 90% by incorporating
a generalized Tikhonov regularization approach, testing their model in a homogeneous
phantom and improving the quality of the attenuation maps.

The study was extended in [20], where the isotropic total variation (TV) was proposed
as a new regularization term by assuming physical structures to be piecewise homoge-
neous within the medium. The minimization problem was achieved by using the scaled
alternating direction method of multipliers (ADMMs), reporting accurate and precise
attenuation estimations in simulations, phantoms and in vivo breast tissue. The RLSD
technique has been validated in human thyroid in vivo with Hashimoto’s thyroiditis,
adenomatoid nodules, and papillary carcinoma showing similar results with the reported
values in the literature [21]. Furthermore, Saavedra et al. [22] presented a multi-wave
quantitative ultrasound to study skin in vivo by incorporating the ACS obtained by
RLSD with the shear wave speed (SWS) from crawling wave sonoelastography (CrW),
suggesting the estimators can be applied for a more robust a complete skin characteri-
zation. Results have shown the RLSD approach overcomes the well-known trade-off of
SLD between the precision of the ACS and the data block size used in the spectral-based
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technique, although the limitation of the method corresponds to the sensitivity of the
regularization term in the ACS estimation.

A spatial modification of the TV regularization term was proposed by Deeba et al.
[23], the new method modulated the signal-to-noise-ratio deviation as an indicator of tis-
sue heterogeneity for a new spatially weighted regularization term with better accuracy
and precision. Nevertheless, no structural similarities between the BSC and ACS within
the medium were exploited and both terms were considered isolated channels in the opti-
mization problem. Another approach of spatial regularization was proposed in [24], where
the SLD problem was solved by proposing a denoising prior based on a single-channel
TV across the frequencies of the spectral log ratios, labeled as TVSLD. Results showed
attenuation maps with greater CNR, nevertheless, no structure similarities among the
frequency channels were exploited, since they were also considered independent channels,
and non-joint reconstruction techniques were developed.

In summary, SLD techniques have shown great potential for improving medical diag-
nosis, by detecting several diseases. Current approaches have used regularization tech-
niques to solve the ACS as an isolated inverse problem. Nevertheless, results showed
ACS estimations with high variability, hence research is still required to enhance the
precision. The goal is to reduce the ACS variability and improve the quality of the image
by coupling information of other channels as the BSC term or spectral ratios across the
frequency, using joint or synergistic reconstruction techniques using joint or synergis-
tic reconstruction techniques. By coupling information from different channels structure
similarities can be exploited in order to reconstruct ACS maps jointly with less variability
and higher quality in comparison to reconstructing them independently.

1.3 Joint reconstruction for multi-channel images
In recent years, great strides have been made in the development of joint/synergistic

reconstruction techniques that leverage intrinsic properties across channels to reconstruct
and enhance multi-channel or vector images [25]. The techniques can be grouped accord-
ing to the approach used to couple the channels, an overview of the state-of-the-art is
presented following the nomenclature given in [26]. An initial point to define a synergis-
tic image reconstruction relies on formulating the inverse problem as a joint maximum
a posteriori (JMAP) estimate, whose general obstacle is how to select a suitable multi-
modality likelihood [27]. To overcome this limitation, a certain conditional prior must
be assumed. For instance, when the application aims to promote a joint sparsity among
channels, a common approach is to choose the joint total variation as a regularization
term, also known as Vectorial Ttotal Variation (VTV) in the image processing field. Since
MR images are piecewise smooth, therefore their gradients are close to zero, the VTV
was used for a calibrationless Parallel MRI (pMRI) outperforming other state-of-the-art
pMRI techniques [28]. Moreover, the joint total variation was used in multi-contrast MRI
with partially sample K-space data to achieve more accurate reconstructions [29].

In cases where the objective is to establish a coherent structure among the channels,
joint reconstruction approaches such as the Parallel Level Sets (PLS) prior, which ana-
lyzes the direction of gradients and their parallelism, are employed. PLS is not affected
by different scales in channels and thus is not affected by different scales in channels and
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was tested to jointly reconstruct MR and PET images enhancing common anatomical
boundaries and preserving unique features with fewer artifacts [30, 31]. A generaliza-
tion of PLS approach was introduced for multi-channel X-ray computed tomography to
encourage joint smoothing directions and obtain higher quality reconstructions [32].

A similar approach is the Total Nuclear Variation (TNV) which encourages joint spar-
sity and directional alignment of the gradient vectors (or the Jacobian) with the advantage
of being convex in comparison to PLS [33]. TNV was explored for reconstructing multi-
channel spectral CT images to encourage edge location and a shared gradient among
image channels and preserving features at high values of regularization [34]. The tech-
nique was extended and applied to real dual-energy CT data, comparing to a TV and a
Frobenius norm, final results showed the TNV outperformed the other methods, leading
to more accurate and enhanced images when denoising multi-channel images [35].

Another approach is based on joint statistics, in [36] an entropy analysis based on
wavelets was used to incorporate high-resolution anatomical information (from MR or
CT) in PET image reconstruction, achieving improved noise reduction while maintaining
comparable regional mean values in simulation and clinical cases. Moreover, in MR
images the correlation between different T1- and T2-weighted images can be exploited to
promote sparsity, for better joint reconstruction results with fewer K-space samples [37].
Additionally, dictionary-learning methods can be extended to improve PET and MRI
reconstructions using sparse dictionaries capable of capturing image texture, showing
better qualitative and quantitative results for both modalities [38]. Lastly, there has been
an increasing trend toward learning-based methods for image processing, introducing a
deep convolutional neural network (CNN) prior for denoising in MRI reconstructions [39].
The well-known U-Net architecture has been adapted as a two-channel reconstruction
method in ultrasound tomography. [40]. Nevertheless, a common limitation of this kind
of approach relates to the scarcity of robust datasets [26].

All in all, joint reconstruction methods have shown promise to enhance image quality
in comparison to single channel/modality techniques. These methods leverage structure
similarities across multiple channels, allowing for the joint reconstruction of images with
reduced variability. This work develops two approaches for joint reconstruction in QUS.
Firstly, TNV was introduced to address the SLD as an inverse problem by integrating
information from the ACS and a constant BSC term. Secondly, two variations of the
Total Variation (TV) norm, specifically the Frobenius and nuclear norms, were used to
couple information from different frequencies during the denoising process of the spectral
log ratios. Both approaches were implemented using the Primal-Dual Splitting algorithm
[41]. The joint methods achieved an improved trade-off between the spatial resolution
and variability of the reconstructed attenuation images without degrading the accuracy
compared to previous single-channel TV-based techniques.

1.4 Objectives
The main objective of this work is to develop novel joint reconstruction methods that

leverage the Spectral Log Difference (SLD) framework for accurate estimation of the
attenuation coefficient slope in quantitative ultrasound images. The specific objectives
of this work are:
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• To use joint reconstruction techniques based on Total Frobenius Variation and Total
Nuclear Variation for the design of a coupled method for ultrasonic attenuation
imaging

• To implement and test the joint reconstruction techniques with data obtained from
simulations, experimental phantoms, and ex vivo tissue data.

• To compare the performance of the implemented joint reconstruction method with
other state-of-the-art methods in terms of estimation error, variability, and contrast
to noise ratio.

1.5 Evaluation metrics
To compare the performance of the implemented reconstruction methods, metrics

of the estimated ACS values such as mean, standard deviation, mean percentage error
(MPE) and its standard deviation (SDPE), and Contrast-to-Noise Ratio (CNR) were
calculated. The formal definitions of the mentioned metrics are detailed below [24].

• Statistical metrics: Such as mean (x̄), standard deviation (σ) and coefficient of
variation (CV) the estimated ACS.

• Mean Percentage Error (MPE) to estimate the bias in the background and inclusion
regions

MPE = 1
Q

Q∑
i,j

βi,j − βoi,j
βoi,j

(1.1)

• Standard Deviation Percentage Error (SDPE) to estimate the variability of the
estimations in the background and inclusion regions

SDPE =

√√√√√ 1
Q

Q∑
i,j

(
βi,j − βoi,j

βoi,j

)2

−MPE (1.2)

• Contrast to noise ratio (CNR) to evaluate the quality of the ACS map

CNR = |x̄inc − x̄back|√
σ2
inc + σ2

back

, (1.3)

where β and βo are the estimated and ground truth ACS values, respectively, Q is
the number of pixels in the region of metrics, and x̄ and σ correspond to the mean
and standard deviation of the ACS values within the inclusion (inc) and background
(back).

5



1.6 Overview of the document
Chapter 2, Regularized joint reconstruction for SLD describes the fundamen-

tals of the SLD method and the regularization approach to obtain the ACS as an inverse
problem [19] and proposes a joint reconstruction method labeled the Total Nuclear Vari-
ation SLD (TNV-SLD). This method couples the geometrical information of the ACS
and the backscatter component to enhance the quality of the images. This approach was
presented at the 2023 IEEE ISBI conference [42].

Chapter 3, Multi-frequency joint reconstruction for SLD proposes a joint
method by coupling information from different frequencies when denoising the spectral
log ratios, exploiting structure similarities using the weighted Frobenius and the weighted
nuclear variation, providing a good balance between noise removal and preservation of
edges and textures. This approach was presented at the 2023 IEEE IUS conference [43].

Chapter 4, Conclusions summarizes the final conclusions of both strategies.
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Chapter 2

Regularized joint reconstruction for
SLD

This chapter will explain the basic theory of the spectral log difference technique, the
replication stage for the non-joint Regularized Spectral Log Difference proposed by Coila
et al. [20], and the fundamentals of the new Total Nuclear Variation approach for joint
regularization.

2.1 Spectral Log Difference (SLD) theory
In pulse-echo ultrasound, the power spectrum of a local region, i.e. block can be

modeled by [18]

Ss(x, z, f) = P (f)Ds(x, z, f)BSCs(x, z, f)As(x, z0, f) e−4αs(x,z,f)(z−z0), (2.1)

where z denotes the spatial dimension along the ultrasound wave propagation (axial),
x represents the lateral dimension, and f indicates the frequency axis. P (f) denotes
the scanner transfer function which is considered spatially invariant within a block,
Ds(x, z, f) represents the diffraction effects, As(x, z, f) is the cumulative attenuation
from the transducer to the upper limit z0 of the block, and BSCs(x, z, f) and αs(x, z, f)
are the backscatter and attenuation coefficients, respectively.

The SLD technique involves splitting a range gate (data-block) into two sub-blocks of
equal axial length, at a proximal and distal depth defined as zp = z−∆z and zd = z+∆z,
respectively [20]. The logarithmic ratio of the power spectrum of the proximal Ss(x, zp, f)
and distal Ss(x, zd, f) windows can be expressed as

Y (x, z, f) ≜ ln
[
Ss(x, z − ∆z, f)
Ss(x, z + ∆z, f)

· Ds(x, z + ∆z, f)
Ds(x, z − ∆z, f)

]
, (2.2)

Y (x, z, f) = 4Lαs(x, z, f) + ln
[
BSCs(x, z − ∆z, f)
BSCs(x, z + ∆z, f)

]
, (2.3)

where L = zd − zp. For array transducers, the Ds(x, z, f) term is compensated by using
a homogeneous reference phantom, therefore the diffraction ratio is estimated as
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Ds(x, z + ∆z, f)
Ds(x, z − ∆z, f)

≈ Sr(x, z + ∆z, f)
Sr(x, z − ∆z, f)

e4Lαr(x,z,f), (2.4)

where Sr(x, z, f) represents the power spectra of the reference and αr(x, z, f) is the at-
tenuation coefficient of the medium. Finally, Eq. (2.2)-(2.3) are rewritten as

Y (x, z, f) ≜ ln
[
Ss(x, z − ∆z, f)
Sr(x, z − ∆z, f)

· Sr(z + ∆z, f)
Ss(z + ∆z, f)

]
+ 4Lαr(x, z, f), (2.5)

Y (x, z, f) = 4Lβ(x, z)f + c, (2.6)
where c = ln [BSCs(x, z − ∆z, f)/(BSCs(x, z + ∆z, f)] with c not varying with x, z, or
f and β(x, z) corresponds to the ACS to be estimated.

The discretized model is formulated by considering a grid with points along the lateral,
axial and frequency axes, represented by i, j and k, respectively. Here, m, n and p
represent the total number of points along each axis.

Yi,j,k = 4Lβi,jfk + c, (2.7)
with i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n} and k ∈ {1, 2, ..., p}. The ACS denoted by β is
typically estimated using linear regression [44].

2.2 Regularized Spectral Log Difference (RSLD)
The RLSD technique [20] was the first method to incorporate regularization in the

SLD framework and compensate for the trade-off between precision and spatial resolution.
First, Eq. 2.6 is rewritten in a matrix form assuming Gaussian noise, denoted by η

[
y
]
mnp×1

=
[
A
]
mnp×2mn

·
[
B
C

]
2mn×1

+ η → y = Ax + η, (2.8)

where y ∈ Rmnp×1 is the vectorized form of Y . The vector x = [B C]T ∈ R2mn×1 contains
the values of β and c in a concatenated form, where B and C are the individual vectors.
Additionally, the matrix A ∈ Rmnp×2mn establishes the relationship between y and the
unknown vectors B and C. Later, Eq. 2.8 is solved as a 2-D inverse problem as follows

arg min
x

1
2

∥y − Ax∥2
2 + µ R(x) = arg min

x
f(x), (2.9)

R(x) ≜ TV(B) + TV(C), (2.10)
where 1

2∥y − Ax∥2
2 is the fidelity term based on the ℓ2-norm, µ is the regularization

parameter and R(x) is the regularization term. Under the assumption of a piece-wise
homogeneous medium the isotropic total variation (TV) is selected and applied indepen-
dently to the β and c channels.
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2.3 Total Nuclear Variation SLD (TNV-SLD)
As previously mentioned, coupling information of different channels reconstructs im-

ages with less variability in different modalities. In particular, the Total Nuclear Variation
(TNV) is selected as a new regularization term. This technique is based on geometrical
structure constraints among channels and is defined as

TNV(x) = ∥J (x)∥1,∗ =
m,n∑
i,j

∥J (x)∥∗, (2.11)

where J (x) is the discrete Jacobian [34, 35, 45] of the multi-channel image x, formed
by the gradients in the lateral ∇x and axial ∇z directions, ∥ ∥∗ is referred to as the nuclear
norm and is calculated by the sum of its singular values (i.e. ∥Z∥∗ = ∑

r σr(Z)). For this
case, J (x) is defined as allows

J (x) =
[
∇x(B) ∇x(C)
∇z(B) ∇z(C)

]T
, (2.12)

Finally, the problem in Equation 2.9 considering TNV is rewritten as

arg min
x

1
2

∥y − Ax∥2
2 + µ TNV(x), (2.13)

in this case, TNV-SLD assumes the two channels of x: B (related to ACS) and C
(related to BSC) will share structure similarities in the same medium by coupling their
edges and aligning their gradients.

2.3.1 Algorithmic implementation
The solution that minimizes the Eq. 2.13 can be achieved by the Primal-Dual Splitting

method [41]. First, TNV is expressed using the definition of dual-norm and an auxiliary
variable z

TNV(x) =
m,n∑
i,j

∥J (x)∥∗ = max
z

⟨J (x), z⟩, s.t. σmax(z) ≤ 1 (2.14)

with σmax as the maximum singular value, Eq. 2.14 is equivalent to

TNV(x) = max
z

⟨J (x), z⟩ − δN(z), with N = {z : σmax ≤ 1} (2.15)

where ⟨ , ⟩ is the inner product, δN (z) is the well-known indicator function. Hence,
combining Equations 2.13 and 2.15 the cost function is expressed as

arg min
x

max
z

1
2

∥y − Ax∥2
2 − µδN (z) + µ⟨J (x), z⟩, (2.16)

arg min
x

max
z

G(x) −H∗(z) + ⟨L(x), z⟩, (2.17)

Finally, the convex optimization problem can be resolved with proximal operators,
following the algorithm proposed by Condat [41].
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Algorithm 1 Primal-Dual Splitting Algorithm
G(x) = 1

2∥y − Ax∥2
2, H∗(z) = µδ(z), L(x) = J (x)

repeat
x̂n+1 := proxτG (xn − τL∗ (zn))
ẑn+1 := proxσH∗ (zn + σL (2x̂n+1 − xn))
(xn+1, zn+1) := ρ (x̂n+1, ẑn+1) + (1 − ρ) (xn, zn)

until ∥f(xn+1)−f(xn)∥2
∥f(xn)∥2

< ϵ; convergence criteria

The proximal operators used in the algorithm are defined as follows

proxτG (x) = (I + τA∗A)−1 (x+ τA∗y) , (2.18)

proxσH∗(x) = x− σproxH/σ(x/σ), (2.19)
where the I is the identity matrix. The first proximal operator corresponds to the

classical case of ℓ2-norm of the fidelity term [46] and the second operator is obtained
thanks to Moreau’s identity, where proxH/σ consists in a soft-thresholding process of
the singular values (σ̃k = max(σk − µ, 0)). The τ, σ and ρ are relaxation and proximal
parameters related to the convergence speed of the algorithm. The impact of their value
has been studied extensively in [46], suggesting practical criteria of σ = (ρ − 0.5τ)/8τ ,
ρ ≈ 1.99. Lastly, τ can be achieved by grid search inspection, for this case τ = 0.01 was
considered.

2.4 Dataset
2.4.1 Simulated phantom

A simulated phantom was generated with the k-Wave toolbox [47] in MATLAB. The
simulation contained a circular inclusion with a 20 mm diameter with a 6.66 MHz linear
transducer with 0.3 mm pitch and 128 elements. The ACS ideal values for the background
and inclusion were defined as 0.5 and 1 dB·cm-1·MHz-1, respectively. The diffraction was
compensated with a simulated homogeneous phantom with an ACS of 0.3 dB·cm-1·MHz-1.

2.4.2 Tissue-mimicking phantom
Experimental data from a tissue-mimicking phantom reported in [20] was used. Data

acquisition was performed using a micropositioning system controlled by custom Lab-
VIEW software (National Instruments, Austin, TX, USA) and a 7.5 MHz (f/4) single-
element transducer driven by an Olympus Panametrics 5900 pulser/receiver. The phan-
tom had a cylindrical shape of 70 mm diameter background with a 25 mm diameter
inclusion. The ground truth ACS values were found to be 0.54 dB·cm-1·MHz-1 and 1.04
dB·cm-1·MHz-1 for the background and inclusion, respectively.
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2.5 Ronstruction and evaluation of the ACS
The ACS maps were generated using block sizes of 10λ× 10λ, 20λ× 20λ, 30λ× 30λ,

40λ×40λ and 50λ×50λ (λ represents the wavelength) an overlap of 80% and a bandwith
of 3-9 MHz, considering a decay of the spectrum of 20 dB. Metrics of the inclusion
and background regions as mean percentage error (MPE) and contrast-to-noise ratio
(CNR) were calculated using the RSLD and TNV-SLD techniques. In order to compare
the robustness of both methods, the metrics were calculated for different values of the
regularization parameter µ as powers of 10. The ACS maps presented were constructed
with the µ values that maximized the CNR of the image.

2.6 Results
2.6.1 Simulated phantom

Metrics of the inclusion and background regions as MPE, CV, and CNR were calcu-
lated using the RSLD and TNV-SLD techniques and synthesized in Table 2.1 and the
obtained MPE for the inclusion and background at different block sizes are displayed in
Fig. 2.2. The ACS maps at different block sizes with RSLD (µ = 104) and TNV-SLD
(µ = 104) are presented in Fig. 2.1.

Figure 2.1: ACS maps when using the (a)-(c) RSLD and (f)-(h) TNV-SLD techniques
for data block sizes of 10λ× 10λ, 20λ× 20λ, 30λ× 30λ for the simulated phantom. The
black lines outline the regions for calculation metrics.
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Table 2.1: MPE, CV and CNR of the final ACS maps with RSLD and TNV-SLD for
the simulated phantom at different block sizes. Ground-truth values 1 dB·cm-1·MHz-1

(inclusion) and 0.5 dB·cm-1·MHz-1 (background).
Block
Size Technique µ

Inclusion Background CNRMPE CV MPE CV

10λ RSLD [20] 103.5 25.82 6.06 5.65 11.6 3.47
TNV-SLD 103.5 19.69 6.84 2.56 15.27 3.29

20λ RSLD [20] 104 25.44 5.10 8.11 14.99 3.13
TNV-SLD 104 15.86 7.44 2.84 15.01 3.13

30λ RSLD [20] 103.5 17.96 5.38 3.66 14.63 3.26
TNV-SLD 103.5 15.7 5.55 2.82 16.53 3.23

40λ RSLD [20] 103.5 16.46 4.83 17.30 10.18 3.23
TNV-SLD 103.5 14.47 5.18 16.90 11.34 3.19

50λ RSLD [20] 103.5 19.93 5.43 17.56 8.91 2.91
TNV-SLD 103.5 18.53 5.74 17.33 9.44 2.90

The results show clear differences between the RSLD and TNV-SLD techniques, par-
ticularly evident in the MPE values and CNR metrics across varying block sizes. This
highlights how TNV-SLD achieved ACS images with better quality and accuracy.

Figure 2.2: MPE at different block sizes in the (a) inclusion and (b) background regions
for the simulated phantom.

Impact of the regularization parameter

In order to compare the robustness of both methods, the metrics were calculated for
different values of the regularization parameter µ as powers of 10. The impact of the
µ value was evaluated in terms of MPE and CNR, particular case using a fixed data
block size of 20λ × 20λ is presented in Fig. 2.3. This analysis reveals how the choice of
µ influences the performance of both RSLD and TNV-SLD techniques, with the latter
demonstrating better robustness and consistency across a range of values.
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Figure 2.3: (a) MPE, (b) CNR of the ACS for the simulated phantom with the RSLD
and TNV-SLD methods, cases with maximum CNR are marked.

2.6.2 Tissue-mimicking phantom
Metrics of the inclusion and background regions as MPE, CV and CNR were calculated

using the RSLD and TNV-SLD techniques and synthesized in Table 2.2 and the obtained
MPE for the inclusion and background at different block sizes are displayed in Fig. 2.5.
The ACS maps at different block sizes reconstructed with RSLD (µ = 104.5) and TNV-
SLD (µ = 105.5) are presented in Fig. 2.4.
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Figure 2.4: ACS maps when using the (a)-(e) RSLD and (f)-(j) TNV-SLD techniques for
data block sizes of 10λ × 10λ, 20λ × 20λ, 30λ × 30λ for the tissue-mimicking phantom.
The black lines outline the regions for calculation metrics.

Table 2.2: MPE, CV and CNR of the final ACS maps with RSLD and TNV-SLD
for the tissue-mimicking phantom at different block sizes. Ground-truth values 1.04
dB·cm-1·MHz-1 (inclusion) and 0.54 dB·cm-1·MHz-1 (background).

Block
Size Technique µ

Inclusion Background CNRMPE CV MPE CV

10λ RSLD [20] 104.5 46.03 2.63 8.26 2.27 3.59
TNV-SLD 104.5 28.93 5.99 1.88 5.58 3.95

20λ RSLD [20] 104.5 37.68 2.80 1.94 3.06 4.05
TNV-SLD 105.5 22.51 7.39 1.79 13.39 4.33

30λ RSLD [20] 104.5 33.04 3.18 2.72 4.03 4.80
TNV-SLD 104.5 26.27 4.33 1.89 4.94 5.01

40λ RSLD [20] 104.5 32.05 2.81 0.60 3.76 5.10
TNV-SLD 104 23.67 3.76 0.36 5.77 5.22

50λ RSLD [20] 104.5 27.43 3.15 2.69 4.43 5.11
TNV-SLD 105.5 22.97 3.77 3.07 5.75 4.99

Outcomes from the tissue-mimicking phantom further validate TNV-SLD’s compara-
tive efficacy over RSLD, which produced degraded ACS maps. The metrics, particularly
MPE and CNR, quantitatively demonstrate TNV-SLD’s advantage in image quality at
smaller block sizes.
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Figure 2.5: MPE at different block sizes in the (a) inclusion and (b) background regions
for the tissue-mimicking phantom.

Impact of the regularization parameter

In order to compare the robustness of both methods, the metrics were calculated
for different values of the regularization parameter µ as powers of 10. The impact of
the µ value was evaluated in terms of MPE and CNR, in particular case using a fixed
data block size of 20λ × 20λ is presented in Fig. 2.6. Similar to the simulation results,
the evaluation of the regularization parameter’s impact on tissue-mimicking phantom
reinforces the TNV-SLD’s adaptability and robustness with a wider µ value range.

Figure 2.6: (a) MPE, (b) CNR of the ACS for the simulated phantom with the RSLD
and TNV-SLD methods, cases with maximum CNR are marked.
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2.7 Discussion
This chapter compares a new regularization technique labeled TNV-SLD based on

the nuclear norm to RSLD in a simulated and tissue-mimicking phantom.
In the inhomogeneous simulation, TNV-SLD reconstructed high-quality ACS maps

with a more visible inclusion compared to RSLD (see Fig. 2.1). Both techniques showed
low variability in the estimations measured by a similar CV in all block sizes. Neverthe-
less, TNV-SLD yielded a comparable maximum CNR value with a generally lower error
in the inclusion (MPE < 20%) and the background (MPE < 5%) for small block sizes
(i.e. 10λ and 20λ) in comparison to RSLD (see Fig. 2.2). Therefore, exploiting structure
similarities between the ACS and the backscatter term with the TNV prior enhanced the
quality of the images and the accuracy of the estimations in terms of bias. Moreover, the
CNR enhancement was validated at different values of the regularization parameter µ.
TNV-SLD showed to be more robust maintaining a relatively stable MPE for the inclu-
sion and background and a higher CNR in a larger range (102<µ<105) in comparison to
RSLD (see Fig. 2.3).

Findings from the tissue-mimicking phantoms were in line with the simulation results.
TNV-SLD can generate ACS maps without compromising image perception. In Fig. 2.4,
it can be seen that RSLD over-regularized and degraded the ACS map, and rendering it
difficult to differentiate between the background and inclusion. TNV-SLD managed to
maintain a lower bias in the inclusion (MPE <30%) and the background (MPE <2%),
even with small block sizes (i.e. 10λ and 20λ) compared to RSLD (see Fig. 2.5). There-
fore, TNV-SLD probed to extend further the spatial resolution of the SLD technique.
Additionally, TNV-SLD exhibits less sensitivity to the µ parameter, demonstrating a
broader range of values (103<µ<106) to maintain a superior CNR with no great impact
in the ACS bias (see Fig. 2.6). Future research should focus on incorporating advanced
deep unfolding techniques to provide additional spatial support
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Chapter 3

Multi-frequency joint reconstruction
for SLD

This chapter aims to explain the denoising strategy of each spectral ratio developed
by Rouyer et al. [24] for the SLD framework. Furthermore, the text will introduce the
basics of innovative joint spectral log difference methods that leverage Total Frobenius
and Total Nuclear Variation for the denoising of all the spectral ratios.

3.1 Total Variation denoising (TV)
The TVSLD technique [24] was proposed to reduce the variability of the ACS estima-

tions. First, the spectral ratios across frequencies Y are unfolded in the spatial dimensions
in vectors, resulting in one vector per frequency.

y1 =



Y1,1,1
Y1,2,1

...
Y1,n,1
Y2,1,1
Y2,2,1

...
Ym,n,1


mn×1

,y2 =



Y1,1,2
Y1,2,2

...
Y1,n,2
Y2,1,2
Y2,2,2

...
Ym,n,2


mn×1

, ... ,yp =



Y1,1,p
Y1,2,p

...
Y1,n,p
Y2,1,p
Y2,2,p

...
Ym,n,p


mn×1

. (3.1)

TVSLD introduced a spatial regularization denoising strategy of each spectral ratio
yk ∈ Rmn×1 at frequency fk, minimizing the cost functions

arg min
uk

1
2

∥yk − uk∥2
2 + µ R(uk), (3.2)

where uk corresponds to the denoised spectral ratio and µ is the regularization param-
eter that controls the trade-off between data fidelity and smoothness. R(uk) was the
single-channel TV regularizer and the minimization of Eq. (3.2) was achieved using the
Iteratively Reweighted Least Squares algorithm [48] with a penalization weight ψk which
was determined and scaled based on the SNR of the original noisy spectral ratio yk,
defined as follows

17



R(uk) = TVψ(uk) = ψkTV(uk), (3.3)

ψk = E[yk]√
Var[yk]

, (3.4)

where E[·] represents the expected or mean value and Var[·] is the variance.

3.2 Joint Spectral Log Difference
This method involves jointly denoising all the spectral ratios simultaneously, grouped

into a vector denoted by y =
[
y1

Ty2
T · · · yp

]T
∈ Rmnp×1 among p frequency channels.

Therefore, a new cost function is written as follows

arg min
u

1
2

∥y − u∥2
2 + µ R(u) with (3.5)

R(u) = TFVψ(u) or (3.6)
R(u) = TNVψ(u), (3.7)

where u groups all the denoised spectral ratios. Thus, u is considered as a multi-channel
2D image with p spectral channels u =

[
u1

Tu2
T · · · up

]T
and its gradients can be ar-

ranged in the Jacobian J (u) [34, 35, 45]

J (u) =
[
∇x(u1) ∇x(u2) · · · ∇x(up)
∇z(u1) ∇x(u2) · · · ∇z(up)

]T
, (3.8)

where ∇x and ∇z denote the gradients in the lateral and axial directions, respectively.
The regularization term R(u) can be replaced with the Frobenius and nuclear norm of
the Jacobian, known as the TFV and TNV, respectively. Both regularizers can couple
the frequency channels, and following the strategy of weighting outlined in Eq.(3.4), a
penalty term ψk is assigned to each channel.

3.2.1 Total Frobenius Variation denoising (TFV)
The Frobenius norm provides a first attempt of edge coupling among the channels

and is shown to have a good performance and a favorite selection for a vectorial TV [49].
The TFV can be defined using the mixed ℓ1,F -norm as follows

TFV(u) = ∥J (u)∥1,F =
m,n∑
i,j

∥J (u)∥F , (3.9)

where the Frobenius norm ∥·∥F of a generic matrix Z is the square root of the sum of the
squares of its elements, given by ∥Z∥F =

√∑
r |zr|2. Furthermore, the weights ψk were

applied considering the weighted Frobenius norm [50] as follows

TFVψ(u) =
m,n∑
i,j

√√√√ p∑
k

(ψk∇x(uk))2 + (ψk∇z(uk))2. (3.10)
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3.2.2 Total Nuclear Variation denoising (TNV)
The TNV approach uses the nuclear norm of the Jacobian enforcing shared edges

and gradient vectors among multi-channel images, being insensitive to contrast or scale
differences [35]. TNV is based on geometrical structure constraints among channels and
is defined using the mixed ℓ1,∗-norm

TNV(u) = ∥J (u)∥1,∗ =
m,n∑
i,j

∥J (u)∥∗, (3.11)

where the nuclear norm ∥·∥∗ of a generic matrix Z is the sum of its singular values σ, given
by ∥Z∥∗ = ∑

r σr(Z). Moreover, the weights ψk were applied considering the weighted
nuclear norm [51] as follows

TNVψ(u) =
m,n∑
i,j

p∑
k

ψkσk (J (u)) . (3.12)

3.2.3 Algorithmic implementation
First, TNV and TFV can be defined using the notation of dual-norm [34], using an

auxiliary variable z

TFVψ(u) = max
z

⟨J (u), z⟩ − δF(z), (3.13)

TNVψ(u) = max
z

⟨J (u), z⟩ − δN (z), (3.14)

where ⟨ , ⟩ is the inner product, δ(z) is the well-known indicator function, and N and F
are the sets defined by F = {z : ∥z∥F ≤ 1} and N = {z : σmax ≤ 1}.

Hence, the cost function in Eq. (3.5) can be formulated as a saddlepoint problem,
which involves both minimization and maximization optimization problems

arg min
u

max
z

1
2

∥y − u∥2
2 − µδK(z) + µ⟨J (u), z⟩, (3.15)

where δK is a generic indicator function with a set K that can be replaced for F or N
for the TFV and TNV, respectively. The solution of Eq. (3.15) can be derived using the
Primal-Dual Splitting method with proximal operators [41]. The Algorithm 2 is suitable
for a generic problem as follows

arg min
u

f(u) = arg min
u

max
z

G(u) −H∗(z) + ⟨L(u), z⟩ (3.16)

The first operator proxτG corresponds to the ℓ2-norm data fidelity term, which mea-
sures the discrepancy between the observed data and the reconstructed data by the
Euclidean distance. For this case, since it is a denoising approach, the proximal operator
is expressed as

proxτG(x) = x+ τy
1 + τ

. (3.17)

The second operator proxσH∗ can be derived Moreau’s identity by proxH/σ. For the
TFV, it corresponds to the projection onto the ℓ2-norm ball [46]. For the TNV, it consists
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Algorithm 2 Primal-Dual Splitting Algorithm
G(u) = 1

2∥y − u∥2
2, H∗(z) = µδ(z), L(u) = J (u)

repeat
ûn+1 := proxτG (un − τL∗ (zn))
ẑn+1 := proxσH∗ (zn + σL (2ûn+1 − un))
(un+1, zn+1) := ρ (ûn+1, ẑn+1) + (1 − ρ) (un, zn)

until ∥f(un+1)−f(un)∥2
∥f(un)∥2

< ϵ; convergence criteria

of a soft-thresholding operation on the weighted singular values (σ̃k = max(σk − µψk, 0))
[43, 52]. The τ, σ and ρ are relaxation and proximal parameters related to the convergence
speed of the algorithm. The impact of their value has been studied extensively in [46],
suggesting practical criteria of σ = (ρ− 0.5τ)/8τ , ρ ≈ 1.99. Lastly, τ can be achieved by
grid search inspection, for this case τ = 0.001 was considered.

3.3 Dataset
3.3.1 Simulated data

A simulated phantom was created using the k-Wave toolbox in MATLAB [47]. The
simulation consisted of a circular inclusion with a 10 mm radius embedded in a homo-
geneous background at 25 mm depth. A 128-element array transducer with a 0.3 mm
pitch and 6.66 MHz central frequency was used to generate the ultrasound data. The
background and inclusion were assigned to have ACS values of 0.5 dB·cm-1·MHz-1 and 1
dB·cm-1·MHz-1, respectively. To compensate for diffraction effects, a simulated homoge-
neous reference phantom with an ACS of 0.4 dB·cm-1·MHz-1 was employed.

3.3.2 Experimental phantom
An agar-based tissue-mimicking phantom was used (Model 049, manufactured by

CIRS, VA, USA). The phantom had a spherical inclusion with a 10 mm radius within
a homogeneous background. The ground truth ACS values were reported by the man-
ufacturer to be 0.97 dB·cm-1·MHz-1 for the inclusion and 0.55 dB·cm-1·MHz-1 for the
background. Data was acquired using a SonixTouch ultrasound scanner (Analogic Ultra-
sound, Peabody, MA, USA) with an L14-5 linear transducer. Analysis of the spectrum
of the RF data identified a peak frequency of 4.1 MHz. For diffraction compensation, a
homogeneous reference phantom from the same manufacturer was used with a reported
ACS of 0.53 dB·cm-1·MHz-1.

3.3.3 Ex vivo tissue
Data from a physical phantom described in [53] was used. The phantom was prepared

using agar (Sigma-Aldritch, St. Louis, MO) and graphite powder (John Deere, Moline,
IL) with an embedded ex vivo fatty porcine tissue from a pork belly. The ACS in the back-
ground was estimated with insertion loss techniques, reporting to be 0.65 dB·cm-1·MHz-1.
For this case, a homogeneous phantom with background-like characteristics served as a
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reference for diffraction compensation. The RF acquisition was performed with a Vantage
256 system (Verasonics Inc., Kirkland, WA) and an L9-4/38 transducer (BK Ultrasound,
Peabody, MA). RF data frames were acquired using a plane wave technique without
incorporating angular compounding.

3.4 Reconstruction and evaluation of the ACS
The ACS maps were generated using block sizes of 20λ× 20λ (where λ represents the

wavelength). The bandwidth was selected based on the 20 dB decay range, resulting in
3 − 9 MHz for the simulated and experimental phantoms, 3.5 − 8.5 MHz for the ex vivo
sample and 4 − 11 MHz for the in vivo samples. The axial and lateral overlap of the
blocks was fixed at 80%. The ACS maps were obtained by applying a linear fit to the
denoised spectral ratios u using the TV, TFV TNV approaches (as shown in Fig.3.1).
Different values of the regularization parameter µ were computed in a logarithmic range
from 10−1 − 101. For this study, the optimal µ value was determined by minimizing the
Mean Percentage Error (MPE) of the ACS for each method.

Figure 3.1: Workflow showing the reconstruction of the ACS maps from the denoised
spectral ratios.
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3.5 Results
3.5.1 Simulated phantom

ACS maps were estimated for the heterogeneous simulated phantom using the TV
(µ = 100.6) method and the proposed joint reconstruction strategies TNV (µ = 100.6)
and TFV (µ = 100.65) in Fig. 3.2). Metrics such as mean, standard deviation, MPE,
SDPE and CNR for all the block sizes are synthesized in Table 3.1, and the obtained
CNR for the inclusion and background at different block sizes are displayed in Fig. 3.3.
The TNV method demonstrated superior accuracy and consistency, particularly notable
in CNR values, thereby establishing its effectiveness over TV and TFV. This compari-
son underscores TNV’s potential for enhanced image quality and precision in simulated
environments.

Figure 3.2: ACS maps generated for the simulated phantom when using (b-e) TV, (c-f)
TFV and (d-g) TNV techniques, respectively. The lines outline the regions for metrics
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Table 3.1: Comparison of mean, std, MPE, SDPE and CNR for the ACS maps of the
simulated phantom using the proposed joint reconstruction techniques (TFV and TNV)
and TV. Ground-truth values 1 dB·cm-1·MHz-1(inclusion) and 0.5 dB·cm-1·MHz-1 (back-
ground).
Block
Size Metric TV (µ = 100.6) TFV (µ = 100.65) TNV (µ = 100.6)

Inclusion Background Inclusion Background Inclusion Background

10λ

x̄ ± σ 1.08 ± 0.06 0.50 ± 0.18 1.08 ± 0.15 0.42 ± 0.24 1.00 ± 0.04 0.47 ± 0.13
MPE (%) 7.7 0.9 8.2 16.6 0.2 7.0
SDPE (%) 6.5 36.0 14.8 48.3 3.6 26.8

CNR 2.9 2.3 3.7

20λ

x̄ ± σ 0.99 ± 0.05 0.49 ± 0.11 0.91 ± 0.05 0.51 ± 0.14 1.01 ± 0.04 0.53 ± 0.09
MPE (%) 1.5 1.2 8.7 2.0 1.3 5.2
SDPE (%) 5.1 22.1 4.7 27.6 3.6 17.7

CNR 3.9 2.7 4.9

30λ

x̄ ± σ 0.95 ± 0.04 0.50 ± 0.11 0.93 ± 0.02 0.54 ± 0.10 0.99 ± 0.03 0.54 ± 0.10
MPE (%) 4.8 0.2 6.6 7.6 1.0 8.5
SDPE (%) 4.2 21.9 1.6 20.9 3.0 19.5

CNR 3.7 3.6 4.2

40λ

x̄ ± σ 0.95 ± 0.05 0.54 ± 0.10 0.97 ± 0.04 0.55 ± 0.10 1.02 ± 0.04 0.55 ± 0.10
MPE (%) 5.0 9.0 3.5 10.3 1.6 10.1
SDPE (%) 5.4 20.8 3.5 19.9 3.9 20.0

CNR 3.3 3.7 4.1

50λ

x̄ ± σ 0.92 ± 0.06 0.57 ± 0.09 0.92 ± 0.04 0.56 ± 0.09 0.90 ± 0.04 0.56 ± 0.08
MPE (%) 8.1 14.1 7.9 11.3 10.2 12.1
SDPE (%) 6.1 17.3 3.8 18.6 3.5 16.9

CNR 3.1 3.5 3.5

Figure 3.3: CNR of the ACS maps using the TV, TFV and TNV techniques at different
block sizes for the simulated phantom.

3.5.2 Experimental phantom
The generated ACS maps of the experimental phantom with TV (µ = 100.65), TFV

(µ = 100.7) and TNV (µ = 100.65) techniques are shown in Fig. 3.4. Table 3.2 details the
mean, standard deviation, MPE, SDPE and CNR for all the block sizes, and the obtained
CNR for the inclusion and background at different block sizes are displayed in Fig. 3.5.
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Figure 3.4: ACS maps generated for the experimental phantom when using (b-e) TV,
(c-f) TFV, and (d-g) TNV techniques, respectively. The lines outline the regions for
metrics.

Figure 3.5: CNR of the ACS maps using the TV, TFV and TNV techniques at different
block sizes for the experimental phantom.

Results show TNV’s advantage in achieving higher quality images with low MPE
compared to TV and TFV, emphasizing its robustness and reliability.
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Table 3.2: Comparison of mean, std, MPE, SDPE and CNR for the ACS maps of the ex-
perimental phantom using the proposed joint reconstruction techniques (TFV and TNV)
and TV. Ground-truth values 0.97 dB·cm-1·MHz-1 (inclusion) and 0.55 dB·cm-1·MHz-1

(background).
Block
Size Metric TV (µ = 100.65) TFV (µ = 100.7) TNV (µ = 100.65)

Inclusion Background Inclusion Background Inclusion Background

10λ

x̄ ± σ 1.06 ± 0.07 0.64 ± 0.07 0.96 ± 0.06 0.61 ± 0.07 0.97 ± 0 .03 0.62 ± 0.05
MPE (%) 9.1 15.7 1.1 10.1 0.2 11.9
SDPE (%) 6.8 11.9 6.4 12.9 2.7 9.0

CNR 4.3 3.6 5.8

20λ

x̄ ± σ 0.93 ± 0.04 0.58 ± 0.11 0.87 ± 0.05 0.57 ± 0.12 0.99 ± 0.03 0.58 ± 0.10
MPE (%) 4.6 5.5 10.3 4.0 1.7 4.8
SDPE (%) 3.7 20.4 5.2 22.5 2.6 18.3

CNR 2.8 2.1 3.8

30λ

x̄ ± σ 0.94 ± 0.03 0.60 ± 0.08 0.89 ± 0.07 0.59 ± 0.11 0.94 ± 0.01 0.64 ± 0.05
MPE (%) 3.3 9.2 8.1 7.5 3.3 17.0
SDPE (%) 3.5 14.0 6.9 19.6 1.1 9.8

CNR 3.8 2.3 4.9

40λ

x̄ ± σ 0.88 ± 0.06 0.61 ± 0.13 0.86 ± 0.08 0.60 ± 0.15 0.90 ± 0.03 0.64 ± 0.11
MPE (%) 8.9 10.7 11.4 9.1 7.2 15.6
SDPE (%) 5.7 23.3 7.9 26.9 3.0 20.4

CNR 1.9 1.5 2.2

50λ

x̄ ± σ 0.87 ± 0.04 0.61 ± 0.09 0.86 ± 0.03 0.62 ± 0.08 0.85 ± 0.03 0.62 ± 0.08
MPE (%) 10.0 11.6 11.1 12.1 12.0 12.5
SDPE (%) 3.8 15.5 3.1 14.4 3.4 14.3

CNR 2.5 2.7 2.6

Figure 3.6: (a) Average MPE of both regions, (b) CNR of the experimental phantom
with the TV, TFV and TNV methods for a data block size of 20λ. The optimal range of
µ is identified by minimizing the MPE denoted by the vertical dashed lines.
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Table 3.3: Comparison of mean, std and CNR for the ACS maps of the ex vivo porcine
tissue using the proposed joint reconstruction techniques (TFV and TNV) and TV
Block
Size Metric TV (µ = 100.65) TFV (µ = 100.7) TNV (µ = 100.65)

Inclusion Background Inclusion Background Inclusion Background

10λ
x̄ ± σ 1.41 ± 0.20 0.62 ± 0.11 1.37 ± 0.24 0.64 ± 0.12 1.39 ± 0.15 0.65 ± 0.11
CNR 3.3 2.7 3.9

20λ
x̄ ± σ 1.42 ± 0.14 0.70 ± 0.06 1.65 ± 0.29 0.51 ± 0.13 1.56 ± 0.13 0.64 ± 0.10
CNR 4.6 3.5 5.4

30λ
x̄ ± σ 1.52 ± 0.17 0.58 ± 0.12 1.48 ± 0.21 0.63 ± 0.08 1.49 ± 0.13 0.60 ± 0.12
CNR 4.4 3.8 4.9

3.5.3 Ex Vivo Tissue
The generated ACS maps for the ex vivo porcine tissue with TV (µ = 100.65), TFV

(µ = 100.7) and TNV (µ = 100.65) techniques are shown in Fig 3.7. Table 3.3 presents
the mean, standard deviation and CNR. Fig. 3.8 displays the obtained CNR at different
block sizes. The MPE was not calculated for this case, since the ground-truth value
of the tissue was not available. Outcomes demonstrate TNV’s ability to closely match
literature values, showcasing its applicability and accuracy in biological samples, and
yielding superior CNR values.

3.6 Discussion
In this chapter, joint reconstruction techniques based on the Frobenius (TFV) and

nuclear norm (TNV) have been evaluated in simulated and experimental phantoms and
ex vivo porcine tissue.

In the simulated phantom, the TV approach limitations can be observed, particularly
in the block size. By using small block sizes (10λ and 20λ), TV reached higher variability
(SDPE > 5%). The TFV approach achieved no noticeable enhanced results compared
to TV, while TNV obtained more accurate (MPE < 4%) and higher-quality ACS maps
with a CNR > 3.5 (see Fig. 3.3). Moreover, TNV reconstructed ACS maps with cleaner
edges between inclusion and background (see Fig. 3.2).

The results from the experimental phantoms exhibited a similar tendency to the
simulation. TNV estimated ACS with generally lower variability for the inclusion (SDPE
< 3.5% ) and background (SDPE < 20%). The TFV method failed to generate enhanced
ACS images, achieving a slightly below performance to the TV. Nonetheless, the TNV
reached a lower bias for 10λ and 20λ block sizes with MPE < 2% (inclusion) and MPE
< 12% (background) with the greatest CNR value (see Fig. 3.5), extending the trade-off
between spatial resolution and MPE compared to the TV limitation (see Fig. 3.4).

Additional results were generated from an ex vivo porcine tissue sample embedded
within an agar medium. In a previous work [54], porcine tissue attenuation was charac-
terized by reporting an ACS of around 1.5 dB·cm-1·MHz-1 for subcutaneous fat layers.
The results, as presented in Table 3.3, demonstrate that the estimations were in line with
the findings reported in the literature. Notably, the best outcomes were obtained when
using data block sizes of 20λ. The ACS in the inclusion was estimated to be 1.42 ± 0.14
dB·cm-1·MHz-1 (TV), 1.65 ± 0.29 dB·cm-1·MHz-1 (TFV) and 0.51 ± 0.13 dB·cm-1·MHz-1
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Figure 3.7: ACS maps generated for the ex vivo porcine tissue with 10λ with and 20λ
when using (b-e) TV, (c-f) TFV and (d-g) TNV techniques, respectively. The lines outline
the regions for metrics.

(TNV). In the case of the background, the ACS was found to be 0.70±0.06 dB·cm-1·MHz-1

(TV), 0.51 ± 0.13 dB·cm-1·MHz-1 (TFV) and 0.64 ± 0.10 dB·cm-1·MHz-1 (TNV). The
TNV approach yielded the most favorable results, exhibiting a superior CNR value (see
Fig. 3.8). These findings suggest that TNV is suitable beyond numerical and physical
phantoms and shows greater potential with smaller block sizes assessing highly accurate
estimations with a greater spatial resolution for characterization of potential minuscule
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Figure 3.8: CNR of the ACS maps using the TV, TFV and TNV techniques at different
block sizes for the ex vivo porcine tissue.

regions of interest (see Fig. 3.7).
The impact of the regularization parameter µ in the quality of the ACS maps was

evaluated for the TV, TFV and TNV techniques in terms of the MPE and CNR for the
experimental phantom while using a block size of 20λ (see Fig. 3.6). The image quality
measured by the CNR remained higher with the TNV method for all the computed µ
values with a generally lower MPE in comparison to TV and TFV. It is worth men-
tioning, that large values of the regularization parameter (µ > 100.9) start to degrade
the CNR in all techniques. This was expected since the spectral ratios will be over-
denoised merging all regions, making it impossible to distinguish between inclusion and
background. Nevertheless, there is a significant range of the regularization parameter for
the TV (100.55<µ<100.85), TFV (100.55<µ<100.85) and TNV (100.4<µ<100.85) to asses a
low bounded bias (MPE < 12%) in both inclusion and background with a high CNR.
Furthermore, the joint techniques were compatible with a fixed weight per spectral ratio
according to its level of noise, measured by the SNR. Hence, further research should be
conducted to explore the implementation of adaptive and deep unfolded techniques for
weight selection.

The main reason for the improved performance of the TNV lies in the nature of the
spectral ratios. It was observed that the spectral ratios are highly contaminated with
noise and the structures present in the spectral ratios exhibit a low dynamic range, thus
the magnitude of the gradients of the channels are expected to be at different scales.
It has been extensively reported that the Frobenius norm for a vectorial total variation
is sensitive to scale constraints [35, 55]. On the contrary, the nuclear norm promotes
gradient alignment and parallelism among the channels, assessing greater reconstructions
[34]. Therefore, for the SLD framework, the TNV proves to be a better strategy to
exploit common geometrical structures among the frequency channels. Moreover, TNV
effectively overcomes a conventional constraint encountered by spectral methods in terms
of spatial resolution and quality of the ACS estimations.

28



Chapter 4

Conclusions

In Chapter 2, we have shown the effects of coupling information of the BSC and ACS
term directly for the SLD inverse problem. A new regularization joint method based
on the total nuclear variation (TNV-SLD) was employed. The spatial support from the
backscatter term has enhanced the quality and accuracy of the ACS maps. Results
from a simulation and a physical phantom suggest TNV-SLD provides a better trade-off
between MPE and CNR compared to RSLD. Furthermore, the TNV-SLD method seems
to be more robust than RSLD in terms of the regularization parameter µ, surpassing the
common RSLD issue of over-regularizing the image and degrading the MPE.

In Chapter 3, a new multi-frequency prior was proposed for joint denoising the spectral
ratios. Two modifications to the TV, based on the Frobenius (TFV) and nuclear norm
(TNV) were compared for the joint denoising of the spectral ratios across the frequency
channels. Results obtained from simulated and experimental phantoms, and ex vivo
porcine tissue demonstrated that coupling information of the spectral ratios leads to
enhanced ACS maps with greater CNR, even with small data block sizes, thereby assessing
better spatial resolution.

In summary, the TNV proved to be a suitable approach for coupling information
from both the ACS and BSC terms in the regularized joint approach, as well as spectral
ratios in the joint denoising approach. The TNV, founded on the nuclear norm, promotes
gradient alignment and parallelism across the channels without being sensitive to scale
constraints, a limitation often found in other norms. In terms of achieving a lower MPE,
higher CNR, and enhanced visual quality of ACS images, TNV demonstrated superior
performance compared to both the previous techniques. The enhanced performance of
the TNV is consistent with results reported in other imaging modalities, where the TNV
reported superior results in multi-channel inverse problems, yielding images of a higher
quality.
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