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RESUMEN

En el ámbito del aprendizaje automático, un desafı́o persistente es la disponibilidad de datos suficientes, es-
pecialmente en tareas de visión por computadora. Este desafı́o se amplifica cuando se trabaja con sensores
remotos, donde las bases de datos etiquetadas para abordar problemas son escasas. Este manuscrito examina
crı́ticamente el monitoreo de deslizamientos de tierra en el paisaje peruano y presenta tres contribuciones en
esta dirección.

La primera contribución expande un conjunto de datos de imágenes satelitales sobre deslizamientos de tierra
(Landslide4Sense) proveniente de territorios asiáticos, con 3799 imágenes debidamente etiquetadas. Recono-
ciendo la dinámica geoespacial de Perú, se incrementó este conjunto de datos con 838 escenarios locales.
Estas adiciones mantienen congruencia con el conjunto de datos original en términos de atributos y configu-
ración, asegurando replicabilidad y escalabilidad para futuras investigaciones.

La segunda evalúa varios modelos de segmentación semántica basados en la arquitectura U-net, reforzada
por la función de pérdida de Entropı́a Cruzada Ponderada + Dice Loss, óptima en tareas de segmentación
con conjuntos de datos desequilibrados. Los resultados permiten alcanzar un F1-Score del 75.5% con la
arquitectura U-net (vanilla) superando el benchmark de referencia del 71.65%.

La última contribución muestra un desarrollado integral para la adquisición de datos, procesamiento y entre-
namiento/evaluación de modelos. Dado que este marco tiene el potencial de impulsar una aplicabilidad general
de sistemas de segmentación a sistemas de monitoreo de deslizamientos de tierra, y de tener un alcance más
amplio a la comunidad académica y partes interesadas gubernamentales en Latinoamérica y en todo el mundo.
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1 INTRODUCTION

Landslides represent a salient geological hazard, posing substantive threats to human populations, natural
resources, infrastructure, and property within mountainous regions[1]. These phenomena can be precipitated
by various triggers, including rainfall, thawing, earthquakes, or volcanic eruptions. In Peru, landslides are notably
frequent during the rainy season, often inflicting severe damage upon communities inhabiting the mountainous
regions[2]. This vulnerability is further compounded by the precarious nature of local housing structures and
their frequent siting within high-risk zones[3].

The occurrence of landslides is controlled by various spatial and climatic factors, making their susceptibility
assessment challenging due to the diversity and amount of spatial data that must be considered. Assess-
ment methods can be classified into qualitative (knowledge-based) and quantitative (data-based and physically
based) methods[4]. Data-driven methods have historically played a valuable role in environmental remote sens-
ing research. This approach involves inherent challenges in interpreting large volumes of data and presents
significant computational challenges in both the storage and detailed analysis of geospatial information. With an
increasing amount of ”big data” from earth observation and rapid advances in machine learning(ML) and deep
learning(DL) increase opportunities for novel methods to aid in earth environmental monitoring[5]. Landslide re-
search based on satellite imagery is critical to understanding their mechanics and impending failure where lives,
communities, or infrastructure may be at risk. These analyses, within a computer vision context, involve feature
extraction, classification, segmentation and detection to identify the area, and spectral behaviour of landslides
involving a change in the ground surface.

The primary objective of the present research is to develop a framework for automatic landslide segmentation
and detection using a combination of Sentinel2 and Alos Palsar satellite imagery, starting from the data acqui-
sition from the Landslide4Sense challenge[6] and how we increase the dataset size based in Sentinel-2 and
Alos Palsar images with local features and showing a workflow to prepare a dataset for classification and se-
mantic segmentation tasks in remote sensing context, then how we use different DL models to evaluate the best
combination to find landslide patterns from bands combination of images, and finally, how we storage results
in a cloud service. This approach seeks to achieve a pixel level classification of landslide areas in high jungle
regions in Peru, one of the countries most affected by this phenomenon in the Americas[7].

This document is structured as follows. In the ”Motivation” section, we examine the encouragement for the
research and the significance of identifying and mapping landslide areas. ”Background” provides a state-of-the-
art review of various machine learning techniques applied using freely accessible satellite imagery. ”Data and
resources” reveals the data sources utilized in the research, along with the process of generating proprietary
data using labelling tools and techniques for segmentation models. The ”Methodology” section presents the
different experiments conducted, loss functions, performance measurement metrics, and experiments and a
description and analysis of the results, alongside a discussion comparing them with the scientific literature.
”Cloud-based monitoring system framework” shows a pipeline of how we work with image time-series and
how it is integrated with a cloud-based app. Finally, the ”Conclusion” section presents the final remarks and
conclusions drawn from the research.

2 MOTIVATION

In recent years, Earth Observation (EO) has emerged as a pivotal discipline impacting various interdisciplinary
research areas such as climate change, risk and disaster management, and foresight analysis[8]. This evo-
lution has enabled a shift from localized, small-scale analyses to global-scale investigations, powered by the
computational capabilities of major cloud-based platforms[9]. This transition has facilitated the development of
sophisticated analytical frameworks, capable of addressing complex environmental challenges, thus requiring
advanced domain expertise.

The inception of Google Earth Engine (GEE) in 2015 marked a significant milestone in EO, providing researchers
with unparalleled access to extensive spatial data repositories and robust computational resources for real-time
processing[10]. Advancements in the platform have incorporated machine learning techniques like Random
Forest and Support Vector Machines[11], which can be executed from JavaScript and Python. Additionally,
the rise of cloud-based services and deep learning frameworks such as TensorFlow and PyTorch has enabled
seamless neural network integration within GEE, creating new avenues for large-scale evaluation of natural
phenomena[12].
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Geographically, this study aims to identify pre and post-landslide conditions in vulnerable zones, providing valu-
able data for disaster prevention, resource allocation, and community interventions. From a computer vision
perspective, this work highlights the development of a convolutional neural network-based model for semantic
segmentation using satellite images as inputs. This model, trained on global databases and augmented with
region-specific data, offers a novel approach to monitoring landslides through satellite imagery, thus contributing
to more effective surveillance systems.

3 BACKGROUND

This section is divided into five parts, first, a brief introduction to the context of machine learning in Earth
Observation (EO). Secondly, it delves into classical methods used for EO. Thirdly, it explores the advancements
made in leveraging neural networks for EO tasks. Fourth, it details the methods and technologies employed in
EO. Finally, it discusses the existing approaches and methodologies in the context of landslide risk management.

3.1 Introduction

Identifying a pattern or a feature on the surface is one of the primary objectives within the Earth Observation
(EO) community. The emergence of cloud-based platforms has created new opportunities for addressing the
issue through data-based algorithms that utilize the analysis-ready data (ARD) available on the Google Earth
Engine (GEE) cloud computing platform[10].

Over the last two decades, a wide range of surface mapping methodologies have emerged within the EO do-
main. Broadly speaking, these methods can be classified into two main classes: knowledge-driven (Kd) and
data-driven (Dd) approaches. Kd-based techniques emphasize logical underpinnings derived from physical
principles, usually yielding more accurate results and favourable generalizations, albeit with considerable com-
putational effort and identifiable scale limitations. In contrast, Dd strategies, employing large manually labelled
datasets, have gained prominence in remote sensing due to the successful application of classical Machine
Learning (ML) and Deep Learning (DL) techniques[13]. This proliferation of advanced surface mapping method-
ologies requires extensive prior knowledge and experience within the research community to effectively navigate
and utilize these complex analytical tools.

3.2 Conventional machine learning techniques

As an analytical tool, one of the primary objectives and tasks of machine learning is to construct a model to
represent complex, unknown, or incompletely understood relationships between data and target variables[14].
There are slight variations in types of machine learning algorithms; and these can be divided into two main
categories according to their purpose: supervised learning algorithms and unsupervised learning algorithms.
Supervised learning refers to the construction of a model to connect known inputs and outputs, but with un-
known connections. Consequently, output values for new data can be predicted based on the relationships
learned from previously processed training data [15]. Supervised learning can be divided into classification and
regression problems. In classification problems, the predicted output is a label or semantic class. For exam-
ple, to identify potential landslides, classification problems would label each pixel in an image as ”landslide” or
”non-landslide”[16]. Regression problems aim to predict a continuous variable. Some of the prevalent super-
vised learning algorithms include logistic regression (LR)[17], decision trees (DT)[17], support vector machines
(SVM)[18], Naive Bayes (NB)[19], and artificial neural networks (ANN)[17]. In contrast to supervised learn-
ing, unsupervised learning algorithms seek patterns in data that hasn’t been labeled, encompassing clustering
techniques such as hierarchical clustering[20] and K-means[21].

3.3 Deep learning methods for remote sensing

As a subdiscipline of machine learning, deep learning is an extension of ANN. Deep learning uses multi-level
deep neural networks to extract features from the input by progressively processing them. The scale and
complexity of the networks are the main differences between deep learning and traditional ANN.

There are different methodologies for addressing the problem of landslide identification; for this investigation,
we will focus on semantic segmentation, understood as the most efficient for pixel classification problems. The
objective of segmentation is the same as that of traditional remote sensing image classification, which is usually
achieved using traditional machine learning techniques, such as Random forests[22] and maximum likelihood
classification [23].
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To implement segmentation using neural networks, a convolutional neural network (CNN) architecture is used,
which is trained on a previously labelled dataset. The network consists of multiple layers of neurons, where
each layer processes the input information and produces an output that is used as input for the next layer. In this
case, the network receives an image as input and produces an output containing a segmentation mask for each
pixel in the image. For each pixel of the image, a label corresponding to a specific region is assigned according
to the probability calculated by the neural network, which in this case is considered landslide and non-landslide.

There are different convolutional architectures for semantic segmentation such as U-net[24], Mask R-CNN[25],
Feature Pyramid Network (FPN) [26], SegNet[27], or DeepLab[28]. In this investigation, we will primarily focus
on U-net[24], which is one of the most widely used image segmentation algorithms in remote sensing tasks.

The U-net model, originally developed for biomedical image segmentation, features an architecture that com-
prises an encoding network (contraction path) followed by a decoding network (expansion path). The contraction
path, which can be based on various convolutional neural network architectures such as VGG[29], ResNet[30],
DenseNet[31], and Inception[31], captures the image information and progressively reduces spatial resolution.
Each block within the contraction path consists of two convolution layers followed by a pooling layer, allowing the
encoding of input images into multi-level feature representations and facilitating feature extraction while pooling
layers serve to reduce the resolution.

Conversely, the decoder constitutes the second half of the architecture with the aim of semantically projecting the
discriminatory features (lower resolution) learned by the encoder into pixel space (higher resolution) to achieve
dense classification. The integral part of the U-net model is composed of upsampling and concatenation followed
by regular convolution operations.

Finally, SegFormer[32] is a framework which unifies Transformer[33] with lightweight multilayer perception (MLP)
decoders. This architecture uses multi-head attention to capture feature information from different areas of the
image and combine it to generate an accurate segmentation output. Moreover, SegFormer uses a technique
called ”iterative positional encoding” to encode the position information of the image and enhance segmentation
accuracy.

3.4 Earth Observation Techniques

Recent advances in Big Data processing and analysis have catalyzed significant shifts in both science and the
broader society [34]. These advancements have spurred growth in many machine learning domains, notably
in the socio-environmental applications of Earth Observation (EO). In this domain, Big Data has established
itself as a central hub, facilitating the cloud-based analysis of voluminous EO datasets. This capability has
expanded the possibilities for exploring terrestrial phenomena using EO techniques, offering a more efficient and
detailed perspective for monitoring and evaluating both natural resources and human-generated environmental
conditions.[9]

Although the use of EO techniques for the manipulation and analysis of satellite imagery is now several decades
old, the democratization of computational power through cloud processes has enabled an increase in large-scale
research and applications. Platforms such as Sentinel Hub, Earth on AWS, Microsoft Planetary, Open Data
Cube (ODC), System for Earth observation data access, Processing and Analysis for Land monitoring (SEPAL)
and mainly Google Earth Engine (GEE)[10] have contributed greatly to this advancement. Gomes (2020) [9]
provides a more exhaustive comparison of these platforms. Within these, it is important to highlight GEE for
its pioneering implementation of global access to a database of different satellite products and for providing
the computational capability for real-time processing. In addition, GEE facilitates the implementation of APIs in
languages accessible to a large part of the scientific community, such as Python, JavaScript and R [35], and its
applications allow integration with artificial intelligence techniques[8].

This research utilizes the Google Earth Engine (GEE) architecture, as depicted in Fig 1. The diagram demon-
strates GEE’s layered structure, from user interfaces like the Earth Engine Code Editor and third-party apps
at the top, to data storage components at the base. Central to its functionality are on-the-fly and batch com-
putation systems, all seamlessly interconnected. This framework not only facilitates storage, preparation, and
real-time analysis of spatial data but also taps into the robust computational power of Google servers for efficient
processing.
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Figure 1: Google Earth Engine Architecture (Gorelick, 2017), EO tool used to access, analyze and publish open-access
satellite products

3.5 Landslide prevention

A landslide, as defined by Highland and Bobrowsky[36], is a downward movement of rock, soil, or both, occurring
along a rupture surface, a surface along which a displacement of soil material has occurred. Such landslides
are not only common but also pose potentially catastrophic geological hazards[37]. To effectively mitigate their
risks, disaster risk management literature emphasizes the importance of reliable monitoring, evaluation, and
pinpointing vulnerable areas[38, 39]. Various studies investigate landslides triggered by earthquakes or heavy
rainfall. For those induced by earthquakes, global databases[40, 41] capture both pre- and post-landslide events
with fatal outcomes. More localized research primarily centers on susceptibility mapping, using methods ranging
from deterministic and probabilistic models to heuristic and geostatistical techniques. This includes spatio-
temporal analysis[42, 43] and assessments of anthropogenic impacts[44]. For rain-triggered landslides, NASA’s
repositories offer resources[45], utilizing the Global Precipitation Measurement (GPM) satellite constellation[46].
There are also studies on multitemporal analysis[47] and the specifics of rainfall-induced landslides[48].

Gomez (2023)[7] provides a comprehensive compilation of the four most significant global databases on land-
slides: The International Disaster Database (EM-DAT), the Disaster Inventory System (DesInventar), the Global
Landslide Catalogue (GLC), and the Global Fatal Landslide Database (GFLD). These databases furnish critical
landslide information for various regions worldwide. Using these sources, Gomez established the Unified Global
Landslide Database (UGLD), encompassing 161 countries and documenting 37,946 landslides with 185,753 fa-
talities between 1903 and 2020. According to this compilation, regions with the highest frequency of such events
are predominantly in Asian and Latin American countries. Notably, Peru is highlighted as the third country with
the most landslides per 1000km2, only surpassed by El Salvador and Colombia. Moreover, Peru ranks among
the countries with the most landslide-induced fatalities, as illustrated in figure 2.

As depicted in the figure, Peru is one of the countries most affected by landslides, yet there are relatively few
studies focused on the identification and prevention of these phenomena in the country. This underscores the
significance of the present research in contributing to landslide effect mitigation and serving as a valuable tool
for decision-makers.

Furthermore, according to the statistical bulletin from the National Institute of Civil Defense of Peru (INDECI),
between the years 2003 and 2021, considering phenomena such as avalanches, collapses, landslides, and
flash floods (locally known as ”huaycos”), there have been 8,347 recorded emergencies and 475 fatalities.[49]
This highlights the critical need for focused research on the identification and prevention of landslides in this
highly susceptible region.
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Figure 2: Distribution of the number of landslides and fatalities by country (Source: UGLD[7])

4 DATA AND RESOURCES

4.1 Landslide4Sense (L4S)

Landslide4Sense (L4S) [6] is a dataset consisting of non-georeferenced images of landslides from four distinct
study areas: Iburi-Tobu in Japan, Karnataka in India, Bagmati in Nepal, and Taitung County in Taiwan. The
dataset comprises 3,799 patches, each of which is a composite of 14 bands. These bands include all the
spectral bands from Sentinel-2 1 as well as elevation data from Alos Palsar satellite imagery [50]. Additionally, a
slope band in degrees is calculated based on the elevation data.

Given that this dataset utilizes two different satellite products, it is necessary to harmonize the spatial resolutions
of both products, thus requiring an adjustment to the pixel size. To this end, Table 1 shows the original spatial
resolution of each band of the products, noting that there are bands of 10, 20, and 60 meters for Sentinel-2, and
12.5 meters for Alos Palsar. Furthermore, this dataset uses Sentinel-2 L1C product that considers the cirrus
band (Band 10) and it does not appear in the L2A product, for the other hand, Alos Palsar is an image with an
elevation band, and the slope band (degree) was calculated using the Horn algorithm[51] implemented in the
Terra library[52] of the R programming language. The authors of this product perform a resize of all bands to a
resolution of 10 meters per pixel to be subsequently used in pixel-wise segmentation tasks. These images have
a size of 128x128 pixels and are properly labelled into two classes, landslide (1) and no landslide (0).

4.2 Own dataset (LS4-PE)

Drawing upon the L4S dataset, which is primarily situated within an Asian context, we expand this dataset to
include a local context - the Peruvian forest. This results in a new dataset that complements the original one
and maintains the same characteristics as those offered by L4S. It encapsulates the same 12 bands of the
Sentinel-2 product and the elevation band from the Alos Palsar product.

In creating this new dataset, subsequently referred to as L4S-PE, we implement a pipeline based on CloudSen12[53].
This assists us in expanding a global dataset for segmentation with local characteristics. The process com-
mences with identifying the location of the phenomena under evaluation (landslides) within a region of interest.
This is followed by downloading the satellite images for these specific areas, applying semi-automatic labelling
to these samples, and ultimately standardizing them for segmentation tasks.

1Band 8A was not considered due to its absence in the L4S dataset; furthermore, it does not provide additional relevant information for
describing geomorphological changes.
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Source Band Description
Original

resolution (m)
Sentinel2 B01 Aerosol 60
Sentinel2 B02 Blue 10
Sentinel2 B03 Green 10
Sentinel2 B04 Red 10
Sentinel2 B05 VNIR 1 20
Sentinel2 B06 VNIR 2 20
Sentinel2 B07 VNIR 3 20
Sentinel2 B08 NIR 10
Sentinel2 B09 Vapor 60
Sentinel2 B10 Cirrus 60
Sentinel2 B11 SWIR 1 20
Sentinel2 B12 SWIR2 20

Alos Palsar B13 Slope 12.5
Alos Palsar B14 Elevation 12.5

Table 1: Set of bands used in the L4S and L4S-PE databases from Sentinel-2 and Alos Palsar satellite images.
B08A band from S2 was not included

4.2.1 Study area

While the regions in Peru with the highest number of landslides are typically found between the coastal areas
and the mountain range, according to the NASA Global Susceptibility Map[54] and the Peruvian Landslide Sus-
ceptibility Map (INGEMMET)[55], as well as the geographical characteristics similar to those of the regions in
the L4S database, this study mainly focuses on the regions between the departments of Junin, Pasco, and
Huánuco. These regions are located to the east of the Andes in Peru, at the confluence of the highlands and
the jungle, transitioning from rugged to flat terrain. The study areas were defined based on their geomorpho-
logical characteristics, where the terrain is primarily covered by forests. This dense vegetation facilitates visual
interpretation of optical remote sensing images, as shown in Figure 3i.

Although the regions in Peru that exhibit the highest incidence of landslides are predominantly situated between
coastal and mountainous areas due to human impact, an analysis leveraging both NASA’s Global Landslide
Susceptibility Map (referenced as [54]) and the Peru Mass Movements Susceptibility Map by INGEMMET (cited
as [55]) has been conducted. This research primarily focuses on the regions spanning the departments of Junin,
Pasco, and Huánuco. These locales are strategically positioned to the east of the Andean range in Peru, marking
the transitional zone between the highlands and the jungle, and shifting from rugged to flat topographies. The
areas under study have been meticulously selected based on their distinct geomorphological characteristics,
with a predominant coverage of forested terrain. This lush vegetative cloak significantly enhances the efficacy
of visual interpretation applied to optical remote sensing imagery, as depicted in Figure 3i. This alignment with
the geographical traits of the L4S database regions further solidifies the relevance and applicability of this study.

4.2.2 Image patches selection

We selected 1,000 regions of interest (ROIs) spread throughout the study area to obtain raw L4S-PE data.
Each ROI measures 1500 x 1500 meters. In choosing each ROI, we ensured the presence of landslide events
by visually inspecting the Google Earth platform, which provides very high-resolution images (sourced from
CNES/Airbus, WorldView, Ikonos, etc.), and events that took place before 2018. For every ROI, we downloaded
all Sentinel-2 L1C bands from the GEE datasets and the DEM band from Alos Palsar via the Alaska Satellite
Facility (ASF) utilizing the RGEE package[35]. In the end, despite inherent resolution differences among bands,
we harmonized all of them to a 10-meter spatial resolution, consistent with the approach adopted in the L4S
product.

Then, the database was trimmed down to 838 patches after conducting a visual quality control check of the
downloaded images. ROIs with cloud cover that hindered landslide identification were removed. Similarly, we
excluded patches where sensors exhibited noise and areas where the identified feature was not a landslide but
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Figure 3: (i) shows the study area and ROI collection for L4S-PE. (ii) shows 4 examples of ROIs, RGB combination, slope
band and labelled image from left to right

rather another type of land cover, such as agriculture. Figure 4 shows the download process and data source,
as well as the number of patches assessed.

Figure 4: (a) shows the data source, emphasizing the own database (L4S-PE). (b) shows the downloading process and
integration to create the two databases evaluated

4.2.3 Labelling process

For the annotation of these images, we employed a modified version of the Intelligence foR Image Segmentation
(Iris) active learning software[56], which facilitates manual labelling for each individual image while also enabling
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the analysis of diverse band combinations (Figure 5). Each ROI possesses dimensions of 1500 x 1500 meters,
thereby offering a spatial context for the target area measuring 1280 x 1280 meters. Upon completion of the
annotation process, the labelled patch outcomes were exported in Hierarchical Data Format (HDF) to facilitate
subsequent integration with machine learning techniques.

Figure 3ii shows three points from the database with their respective band combination, RGB (B4, B3, B2),
slope (B13) and its mask manually created. Landslide in yellow.

Figure 5: Iris interface for manual labelling, in this case, there are 3 images synchronized showing RGB, slope and elevation
combination. The red dashed box shows the area of analysis of 128x128 pixels.

4.3 Database comparison

This study conducts experiments utilizing two sets of databases: the original Landslide4Sense (L4S) dataset and
the uniquely compiled Landslide4Sense Peru (L4S-PE) dataset. Data normalization was carried out employing
a min-max scaling, which transforms the behavior of the Sentinel-2 wavelength bands, as well as the elevation
and slope values obtained from Alos Palsar, to a standardized range of 0 to 1.

A comparative analysis was conducted between the two data sets on a band-by-band basis, assessing the pixel
distribution for each band. Figure 6 illustrates the data behavior after applying min-max normalization for each
data source across all analyzed bands. Given that the wavelength ranges are consistent between the sets, one
would expect similar data behaviors, except for local variations arising from topographical conditions or specific
land cover types captured in the images. A notable difference is observed in Band 1 (the Aerosol Band), but this
discrepancy does not preclude the possibility of using a unified database for modeling purposes.

Meanwhile, the table 2 shows the number of pixels identified as slips in both databases, evidencing how unbal-
anced it is.

Source Landslide area (km2) % Landslide / No landslide Number of patches
L4S 137.56 2.21 / 97.79% 3799

L4S-PE (own) 24.71 1.8 / 98.2% 838
L4S + L4S-PE 162.27 2.14 / 97.86% 4637

Table 2: Distribution of classes by database, area in square metres of landslides and number of patches for each database.
Each patch has 128x128 pixels and 10 metres of spatial resolution.

5 METHODOLOGY

In this study, the methodology compared the efficiency of various deep learning models for semantic segmen-
tation, primarily based on the Unet framework, with different architectures serving as encoders. Experiments
were conducted employing two distinct databases: the original L4S and a combined set comprising L4S and
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Figure 6: Comparative analysis evaluating distribution and variability for each spectral band values across the datasets L4S
and L4S-PE (own)

L4S-PE. Two band combinations were evaluated: one incorporating all 14 bands present in the databases and
another focusing on the six bands that originate with an initial resolution of 10 meters (R, G, B, NIR, Slope, and
Elevation bands). These databases were partitioned into training and validation subsets. Furthermore, a variety
of metrics were utilized to assess the performance efficacy of the machine-learning models under investigation.

5.1 Loss functions for segmentation

The segmentation algorithms tested in this research performed the same task of binary classification at the pixel
level. This predicts the label of each pixel in 128x128 size images to classify whether it belongs to a landslide
region or not.

5.1.1 Binary Cross-Entropy (BCE)

Binary Cross Entropy loss (BCE) per pixel serves as a fundamental measure frequently employed in image
segmentation tasks within the machine learning and deep learning domains. For landslide extraction, there are
only a landslide class and a non-landslide class. The BCE loss quantifies the divergence between the predicted
and true probability distributions for each pixel, as defined in Equation 1:

LBCE = − 1

N

n∑
i=1

(Yi · log Ŷi + (1− Yi) · log(1− Ŷi)) (1)

In this equation, Yi ∈ 0, 1 is a binary class label for pixels i with 1 being positive and 0 being negative. While
Ŷi ∈ [0, 1] refers to the predicted probability of the pixel being classified in the positive class, (1 − p̂i ∈ [0, 1]) is
the probability of the pixel being classified as the negative class. The total number of pixels in the input image is
indicated by the letter N .

5.1.2 Weighted Cross-Entropy (WCE)

Binary Cross-Entropy (BCE) loss function can be challenging to optimize due to the significant class imbalance
between landslide and non-landslide pixels. A model trained with BCE could achieve high accuracy by pre-

10



dominantly classifying pixels as non-landslide, which would be misleading and ineffective for actual landslide
extraction. To address this, the Weighted Cross-Entropy (WCE) loss is employed to account for the class imbal-
ance and improve the model’s predictive performance. Unlike the BCE loss, WCE adds weight to the positive
examples, i.e. by assigning smaller weights to the dominant background weights and larger weights to the
foreground weights. The equation is as follows:

LWCE = − 1

N

n∑
i=1

(βYi log Ŷi + (1− Yi) log(1− Ŷi)) (2)

Where β is the coefficient that weights the loss of positive examples. Whereas setting β > 1 reduces false
negatives and consequently increases recall, β < 1 cuts false positives, thus increasing precision.

5.1.3 Dice Loss

The Dice index, commonly used in segmentation tasks[57], serves as a measure of the overlap between two
sets. It measures the overlap between the predicted and target segmentation masks and provides a differen-
tiable and smooth measure of segmentation accuracy. It is particularly effective when dealing with imbalanced
datasets and when the focus is on capturing fine details in the segmentation masks. The equation is defined as
follows:

LDice = 1− 2× |X ∩ Y |
|X|+ |Y |

(3)

In this equation, X and Y represent the predicted and ground-truth sets of pixels, respectively. |X ∩ Y | is
the size of the intersection of the two sets, and |X| and |Y | are the sizes of the predicted and ground-truth
sets, respectively. The variable N , which denotes the total number of pixels in the input image, usually has a
dimension of 128 x 128 in our study.

5.1.4 WCE-Dice loss

Combining multiple loss functions is a viable approach to optimize the model’s performance. In this case, we
used the WCE-Dice loss, which is a weighted sum of both Weighted Cross-Entropy (WCE) and Dice losses.

LWCE−Dice = (1− α)LWCE + αLDice (4)

Where α is the coefficient that weights the Dice loss LDice, against the WCE loss, LWCE .

5.2 Evaluation metrics

For the quantitative evaluation of landslide detection and segmentation performance, the following metrics were
used: precision, recall, and F1-score. Precision allows identifying how many landslide areas were correctly
detected; recall is used to determine how many of the landslides in the image were detected; and the F1-
score provides approximately the mean of the two values when they are close and is generally higher than the
harmonic mean. These metrics were calculated based on true positives (TP), false positives (FP), and false
negatives (FN).

It is worth mentioning that, when dealing with a naturally imbalanced dataset, the accuracy metric is not well-
suited to this type of problem mainly because it does not consider the imbalance in class distribution.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2x
Precision ·Recall

Precision+Recall
(7)

IoU(JaccardIndex) =
TP

TP + FP + FN
(8)
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5.3 Experimentation and results

In this section, we present a series of experiments conducted on the landslide datasets described in the pre-
ceding section. These experiments serve to evaluate various machine learning models and their performance
using the metrics previously outlined.

5.3.1 Computational environment

The experiments were implemented in the Python programming language using the following characteristics:

Configuration Content
Operative System Ubuntu 22.04LTS

GPU NVIDIA RTX 3070 (16 GB RAM)
Deep-Learning Framework Pytorch and Pytorch Ligthning
Parallel Computing Platform CUDA 12.1

Programming Language Python 3.8.10

Table 3: Computational environment used for experiments

5.3.2 Implementation details

The optical remote sensing images utilized in this study were sourced from Google Earth Engine (GEE). From
GEE’s data mosaics, we acquired images from Sentinel-2 and Alos Palsar satellites. The spectral character-
istics, image resolutions, and temporal range of the selected imagery were carefully assessed to ensure con-
sistency. Each patch in the dataset measures 128x128 pixels, encompasses 14 spectral bands, and features a
10m x 10m spatial resolution, sourced from images spanning from 2018 to 2022. In total, the study comprises
a labeled image collection of 4637 patches, of which 3799 belong to the original L4S dataset and 838 to the
L4S-PE dataset.

In this research, landslide identification was formulated as a semantic segmentation task. The labeled images
were converted to a format compatible with the segmentation algorithms employed in the study. We conducted
multiple experiments, varying both the data source (either L4S or L4S combined with L4S-PE) and the set of
spectral bands utilized. Specifically, we considered two sets of bands: the original 14-band set and a subset
featuring bands with an original resolution of 10 meters (i.e., B2, B3, B4, B8 from Sentinel-2, and slope and
elevation from Alos Palsar). Given these conditions, the dataset was divided into four experimental groups, as
detailed in Table 4. In all cases, the datasets were partitioned into training and validation subsets, following
an 80%-20% split. To ensure reproducibility, a fixed random seed was used for the dataset splitting and batch
generation processes.

Source Dataset n patches Bands Exp 1 Bands Exp 2
L4S Training 2661 128 x 128 x 14 128 x 128 x 6

L4S + L4S-PE Training 584 128 x 128 x 14 128 x 128 x 6
L4S Validation 1138 128 x 128 x 14 128 x 128 x 6

L4S + L4S-PE Validation 254 128 x 128 x 14 128 x 128 x 6

Table 4: Database specifications for databases used in the experiments

5.3.3 Experiments

The L4S and L4S-PE databases were employed to evaluate the models for landslide segmentation. Figure 7
displays sample images from these databases along with their corresponding labeled images to illustrate the
relative proportions of landslide(1) and non-landslide(0) areas.

Experimentation was conducted using the PyTorch Lightning framework, starting with the configuration of a dat-
aloader for reading and normalizing the datasets. A data loader was configured for reading local h5-formatted
databases sourced from Google Earth Engine (GEE). The experiments were categorized based on the spec-
tral bands used: one group utilized all 14 bands, while the other focused on bands with an original 10-meter
resolution as per Table 1. Min-max normalization in the range of 0 to 1 was applied to each image.
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Figure 7: Images from two datasets (L4S and L4S-PE) where a) RGB corresponds to bands B4, B3, B2 b) Slope corresponds
to B12, c) Elevation corresponds to B13 and d) Mask is the image labeled in landslide and no-landslide

The datasets were divided into training and validation sets at an 80/10% ratio. All experiments utilized the U-net
architecture, taking into account memory requirements for both encoder and decoder components, and included
large tensor skip connections. The Residual Network (Resnet34) and MobilenetV2 served as backbones for
these experiments. Memory requirements were calculated considering batches of 16 images with dimensions
16x[14, 6]x128x128, using the Adam optimizer with a learning rate of 10−3 and the WCE-Dice loss function.
During training, the learning rate was reduced by a factor of 0.1 every 30 epochs. Given the data imbalance, a
5-to-1 weight was assigned in favor of the landslide class over the background. If no improvement in the loss
function was observed after 10 epochs, the model with the lowest validation loss was selected. Details of these
configurations are provided in Table 5.

Backbone Skip connection Pooling Codif. levels N° Parameters
Unet (Vanilla) Direct connection Max-pooling 5 ∼ 23,4M

Resnet34 Residual block Global Average Pooling 5 ∼ 24,4M

MobilenetV2 Residual block Global Average Pooling 6 ∼ 6,6M

Segformer Multi-head Attention Self-Attention 5 ∼ 16,4M

Table 5: Models used for Unet encoders

5.3.4 Results

In this research, various Deep Learning models based on Unet and Transformers (Table 5) were evaluated for
the task of semantic segmentation in satellite imagery, specifically from Sentinel2 and Alos Palsar sources. The
models were trained to classify each pixel as either being part of a landslide or not. Furthermore, the impact of
different normalization techniques and the number of channels utilized were also assessed. Detailed metrics for
these experiments can be found in Table 6.

In the study focused on satellite image segmentation for landslide detection, the Unet (Vanilla) architecture
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Metrics Loss function

F1-score Precision Recall IoU Dice-WCE WCE Dice

6 bands

Unet (Vanilla) 0.747 0.761 0.739 0.600 0.223 0.159 0.287
Resnet34 0.731 0.784 0.691 0.581 0.238 0.177 0.298
MobilenetV2 0.718 0.687 0.758 0.565 0.256 0.202 0.309
Segformer 0.702 0.750 0.672 0.546 0.261 0.196 0.326

14 bands

Unet (Vanilla) 0.755 0.781 0.735 0.611 0.215 0.157 0.273
Resnet34 0.734 0.785 0.695 0.585 0.233 0.174 0.292
MobilenetV2 0.723 0.735 0.716 0.571 0.246 0.184 0.308
Segformer 0.714 0.743 0.694 0.559 0.259 0.208 0.310

Table 6: Performance metrics of evaluated models on the validation set of the L4S database

Metrics Loss function

F1-score Precision Recall IoU Dice-WCE WCE Dice

6 bands

Unet (Vanilla) 0.714 0.749 0.687 0.559 0.256 0.191 0.321
Resnet34 0.695 0.742 0.659 0.537 0.278 0.223 0.333
MobilenetV2 0.688 0.751 0.640 0.528 0.286 0.237 0.335
Segformer 0.669 0.712 0.639 0.507 0.299 0.245 0.353

14 bands

Unet (Vanilla) 0.719 0.744 0.701 0.566 0.251 0.186 0.317
Resnet34 0.705 0.737 0.681 0.548 0.265 0.202 0.327
MobilenetV2 0.693 0.747 0.654 0.535 0.277 0.216 0.339
Segformer 0.681 0.727 0.648 0.521 0.288 0.230 0.347

Table 7: Performance metrics of evaluated models on the combined validation set of the L4S and L4S-PE databases

consistently outperformed more complex models like Resnet34, MobilenetV2, and Segformer. This superior
performance was observed across two different datasets—L4S and a combined set of L4S and L4S-PE—as
well as across configurations with 6 and 14 bands. The addition of more bands did lead to marginal improve-
ments in F1-scores, most noticeably for the Unet model, suggesting that increased spectral information might
be beneficial. However, this improvement was not universal across all architectures. Despite the relatively high
F1-scores and Precision metrics, all models exhibited substantially lower IoU scores, pointing to a room for
improvement in capturing the class overlap effectively. The trend of lower IoU was consistent when the data
set was switched from L4S to the more complex combined dataset, suggesting challenges related to additional
complexity or variance in the latter. Furthermore, the Dice-WCE loss function tended to yield lower values com-
pared to using Dice or WCE alone, indicating its potential effectiveness in balancing the competing objectives of
this specific segmentation task.

In Figure 8, we graphically present the segmentation outcomes across various models. The results indicate that
the segmentation performance is relatively stable, irrespective of the changes in the dataset, employed model,
and the number of spectral bands used. This stability is advantageous when the task involves binary classifica-
tion and does not necessitate a complex model architecture for feature extraction from the different band sets.
Moreover, landslide identification might become more challenging when shifting to a different geographic region,
as the employed datasets are tailored to specific geographic features.

Landslide4Sense (L4S) itself highlights the efficacy of 12 different models, with SQNet and ResUnet emerging
as the most effective, registering F1-scores of 70.24% and 71.65%, respectively. These findings affirm that
these architectures excel in landslide detection, a success attributed to their balanced information flow between
shallow and deep network layers. In this research, we achieved an F1-score of 0.755 using a Vanilla Unet model
combined with 14 spectral bands and the L4S database. The noteworthy performance is mainly ascribed to the
adoption of a combined Weighted Cross-Entropy (WCE) and Dice Loss function, which is particularly suitable
for handling unbalanced data.

While the employed datasets in this study are tailored to specific geographic regions, providing robust models
for those areas, the external validity of these models to other geographic contexts remains an open question.
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Figure 8: Comparative performance of top-performing models in identifying Landslide and Non-Landslide areas, featuring
examples of RGB patches and corresponding ground truth

Adaptability to varying geographic features—such as soil type, vegetation cover, and topography—could mean
additional layers of complexity in the model or fine-tuning the existing architectures with locally-sourced, high-
quality data. Moreover, temporal variations introduce another layer of complexity. Factors such as seasonal
changes, which could influence soil moisture and therefore landslide propensity, are not accounted for in static
datasets. Future research could explore integrating time-series satellite data to capture these temporal dynam-
ics, potentially employing recurrent neural network (RNN) layers or Long Short-Term Memory (LSTM) units in the
architecture to model these temporal dependencies. This temporal contextualization could enrich the model’s
predictive power and contribute to a more dynamic and adaptable landslide detection system.

6 CLOUD-BASED MONITORING SYSTEM FRAMEWORK

Remote sensing techniques have proven to be instrumental in monitoring various geographic and environmental
phenomena, with applications spanning diverse regions globally [58, 59, 60, 61]. One of the most commonly
used platforms for monitoring land cover changes is GEE, which provides a comprehensive environment that
simplifies preprocessing, streamlines satellite image acquisition, enhances monitoring capabilities through AI
techniques like classification and segmentation and offers cloud integration facilities.

This section is divided into two parts: the first introduces a temporal dimension to landslide assessment, while
the second outlines the data flow process for integration into a monitoring system.

6.1 Temporal analysis

The focus of the current study is the resolution of a task within the domain of computer vision. Nonetheless,
the efficacy of a monitoring tool is contingent upon temporal variables. For the landslide detection task of this
research, we use Sentinel-2 imagery providing new observations every 5 days for a targeted area and limited
with the cloud cover which can impede the temporal resolution of image acquisition [62].

On the other hand, Figure 9 elucidates the temporal analysis of imagery from different dates over an area
of interest, revealing the alterations in surface coverage in areas that have experienced landslides. For each
event, pre- and post-event imagery are displayed, thereby integrating a temporal factor into the satellite-based
assessment and detection of landslide occurrences. The model used for these predictions were U-net Vanilla
with 6 bands and using the full dataset (L4S + L4S-PE) trained previously (Table 7).
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Figure 9: Comparative temporal analysis in a Region of Interest (ROI) using Sentinel-2 images for a landslide occurred in
Huanuco, 2020[63]

6.2 Monitoring system

The adoption of remote sensing techniques for the monitoring of geographic and environmental phenomena has
witnessed an exponential increase internationally [58, 59, 60, 61]. Geographical Information Systems (GIS) have
progressively evolved to include cloud-based analyses of satellite imagery. The current investigation leverages
the capabilities of Google Earth Engine (GEE), a pioneering cloud-based platform that streamlines cloud ser-
vice integration, simplifies the download and preprocessing of imagery, and underpins AI-driven segmentation
techniques for more sophisticated monitoring endeavors.

6.2.1 Download and imagery processing

Satellite imagery provides a unique view of the terrain and allows early detection of potential landslides. This
study works with GEE, which allows filtering and selection tools based on parameters like dates, cloud cover
and localization to download Sentinel-2 (L1C) images with a spatial resolution of 10 metres which are available
every 5 days for the same location, limited only to the cloud cover of the scene at the time they were captured.
On the other hand, Alos Palsar images are not directly in GEE but can be stored in a cloud bucked like Google
Cloud Storage (GCS) in Geotiff format.

Working with the Pytorch Lightning framework, it facilitates the dataloader and splitting for an area of interest
(aoi) to monitor and links to the pre-trained model to create a map of landslide predictions.

In cases when the area is bigger than the original dimensions, we implemented a stitching process that resem-
bles the prediction in the same size of the aoi evaluated. This process exports the results in a binary raster with
Cloud Optimized Geotiff (COG) format that facilitates the integration with viewers.

Figure 10 shows the workflow used in this research considering the main parts, data processing, model training
and, analysis and application.

6.2.2 Cloud-Based integration

To establish a dynamic and scalable landslide monitoring system, the trained semantic segmentation mod-
els—designed to differentiate between landslide and non-landslide classes—are securely housed within Google
Cloud Storage. This allows for robust and accessible data management. Similarly, other studies have utilized
cloud-based architecture and on-the-fly processes with Google services, demonstrating the effectiveness of
these approaches in environmental analysis and near real-time monitoring [64]. The backend infrastructure,
potentially developed using Google Cloud Functions or analogous cloud services, acts as an intermediary be-
tween user interactions or system-driven triggers and the execution of the model’s processes. This serverless
architecture affords an economical scalability model, engaging resources solely during model inquiries and thus
adeptly managing fluctuating workloads without persistent server upkeep.

The automation of the landslide detection workflow leverages satellite data acquisition and processing, utilizing
scheduling services to periodically invoke GEE for the latest Sentinel-2 and Alos Palsar imagery about prede-
fined areas of interest.

Upon the detection of new imagery, the pipeline activates a sequence of prearranged cloud functions to prepro-
cess the data, ensuring compatibility with our deep learning models. The images, once processed, are directed
through the semantic segmentation models to ascertain potential landslide areas. This system is not only
streamlined for efficiency but also strategically reduces the necessity for manual oversight, thereby expediting
the detection process.
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Figure 10: Workflow used of the Landslide Detection System using Sentinel-2 and Alos Palsar Imagery

It is envisaged that the landslide predictions formulated by the models will be systematically archived in Google
Cloud Storage. In doing so, we guarantee that the predictive data remains promptly accessible for in-depth anal-
ysis and is readily amenable to integration with web-based visualization interfaces utilizing the Cloud Optimized
Geotiff (COG) standard. Consequently, this would furnish end users, such as disaster response teams, with the
capabilities to swiftly visualize and react to landslide incidents.

7 CONCLUSIONS

In the field of remote sensing, databases such as Landslide4Sense, which contain pixel-accurately labeled
satellite imagery sourced from Sentinel-2 and Alos Palsar, exemplify the power of data-driven solutions. This
research highlights that the fusion of additional data can amplify the scalability and replicability of machine
learning models, making them applicable across varied geographical terrains.

As part of the research, we created a local satellite imagery dataset targeting landslides in the central regions
of Peru with 838 images, referencing the foundational Landslide4Sense (L4S) dataset from Asian territories,
comprising 3799 meticulously annotated images. These additions are congruent with the original dataset in
terms of attributes and configuration.

Regarding the evaluation of models, we trained various models based on U-net and transformer architectures
and proposed a synergistic combination of Dice Loss and Weighted Cross-Entropy (WCE) loss functions. This
approach achieved an F1-score of 75.5% using the L4S database and 71.9% with the combined L4S and L4S-
PE datasets, using the U-net (vanilla) architecture, both surpassing the benchmark dataset’s score of 71.6%. It
was found that the effectiveness of the fused loss function is particularly potent for imbalanced data. However,
adaptations to geographic conditions and temporal changes, such as seasonal transitions, influence the accu-
racy of the models. This underscores the need for continuous expansion and refinement of datasets to boost
the precision and performance of these models.
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Finally, a comprehensive process has been developed that encompasses data acquisition, processing, model
training/validation, and the evaluation of areas over different time ranges. Evidence of a change in the landslide
surface itself was observed, with the potential to drive the general applicability of segmentation systems in land-
slide monitoring. This approach could broadly benefit the academic community and government stakeholders
in Latin America and worldwide to enhance landslide prediction capabilities, utilizing advanced remote sensing
and machine learning techniques to develop and implement effective preventive measures.

8 CODE AVAILABILITY

The code required for database generation, associated resource downloads for each ROI, annotation creation,
deep learning model training, application construction, and publishing is open-source and available on Github
at https://github.com/ryali93/lanslide4sat pl. Additionally, the evaluated metrics from all conducted experiments
are stored and can be accessed via the Weight & Biases tool [65], hosted on the following web repository:
https://wandb.ai/ryali/lanslide4sat pl.
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