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Resumen

Este trabajo contiene dos contribuciones al campo de la teoría cuántica. La primera

viene por doble partida: un protocolo óptico para producir y realizar tomografía de

estados puros, arbitrarios, de dos qubits codificados en grados de libertad de camino y

polarización; y un protocolo generalizado para hacer tomografía de estados mixtos del

mismo tipo. Se reporta una realización con luz láser del primer esquema, la cual sirve

como prueba de concepto. La segunda contribución es un modelo dentro del paradigma

de von Neumann para las mediciones. Su utilidad yace en que permite estudiar el

efecto de la fuerza del acoplamiento entre sistema y puntero sobre la incertidumbre

estadística y los errores sistemáticos que resultan de medir valores débiles cuánticos

y estados puros. Esta propuesta –cuya implementación con luz láser o con fotones

individuales es también explicada– fue demostrada usando sistemas de computación

cuántica provistos por IBM. Los resultados obtenidos mediante mediciones con distintos

grados de fuerza disipan la idea de que las mediciones fuertes siempre dan mejores

resultados que sus contrapartes débiles. Quizá más importante todavía, esta realización

experimental aporta evidencia de que es posible maximizar la precisión y exactitud de

los parámetros medidos si se elige adecuadamente el acoplamiento de la medición.
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Abstract

This work consists of two contributions to the broader field of quantum theory. The

first contribution is twofold: an all-optical protocol for producing and measuring ar-

bitrary, pure, two-qubit states that are encoded in path and polarization degrees of

freedom; and a generalized protocol for characterizing mixed states of the same kind. A

laser light realization of the former scheme is reported, which serves as a proof of princi-

ple. The second contribution concerns a model within the von Neumann measurement

paradigm. Its usefulness lies in that it enables the study of what effects system-pointer

coupling strength has on the statistical uncertainty and systematic errors arising from

the measurement of quantum weak values and pure states. This proposal–whose imple-

mentation with laser light or individual photons is also explained–was demonstrated

in IBM’s quantum computing systems. The results obtained in a range of measurement

strengths dispel the notion that strong measurements always perform better than their

weaker counterparts. Perhaps more importantly, this experimental realization provides

evidence that it is possible to maximize the precision and accuracy of the measured

parameters with a properly chosen coupling.

iii



Acknowledgements

This work was funded by FONDECYT through Grant 236-2015, for which I am thank-

ful. I acknowledge the use of IBM Quantum services for this work. The views expressed

are mine, and do not reflect the official policy or position of IBM or the IBM Quantum

team.

A lot of people worked with me and helped me out throughout my spell at the Quan-

tum Optics Group. I am deeply thankful to Ricardo and Niel of the Physics Department

for all the work they do and the immense practical help they have provided for gener-

ations of physicists, especially for my colleagues and I. Along these lines, I would also

like to thank Yonny Yugra for his guidance and advice in all my experimental endeav-

ors. Elmer Suárez and Diego Barberena hold a special place in this list because of their

immense patience and comradery during my first months at the Quantum Optics Group.

Thank you all.

My lab mates Jean Paul Marrou and Carlos Montenegro did a big part of the work

that eventually became our first published paper in the Group. For that and for their

patience in dealing with my impatient self, I am tremendously thankful.

My former lab mate Mariano Uria’s influence in my graduate studies cannot be

understated. Just to mention his contributions in the past couple of years, he provided

the context and know-how for working with IBM’s quantum systems, completed the

weak value measurement proposal, carried out many simulations and experiments, and

shared comments on an earlier draft of this document. Were it not for him, probably

this entire work would outright not exist. Thank you so much for all your help.

Professors Pankaj Agrawal and Sk Sazim generously advised me while I flirted with

the idea of delving into the study of quantum correlations. In the end, I opted for a

different path. But, for their help and encouragement, I owe them my gratitude.

I also thank professors Alberto Gago, Pepe Bazo, and Rolf Grieseler, whose disinter-

ested help made this dissertation possible. On these grounds as well as on countless

others, I thank my bosses and colleagues, professors Francisco De Zela and Eduardo

iv



Massoni. They were supportive, considerate, and understanding from day one, and a

huge help all the way through to the last day. My deepest thanks to both of you.

I would also like to thank my non-work friends, who made my life better and nicer to

transit. And finally, my parents, on whose love and labor every good thing in my life is

built, which makes me feel more grateful and blessed than I will ever be able to properly

convey. Thank you both, always.

v



Contents

Informe de Similitud i

Resumen ii

Abstract iii

Acknowledgements iv

Contents vi

List of Figures viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 Quantum State Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.3 Quantum Weak Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.4 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Pure and Mixed State Tomography Protocols 27

2.1 Pure State Generation and Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 State Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 State Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Mixed State Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Tomography Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Experimental Realization and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Weak Values and State Characterization with Strong Measurements 45

3.1 Weak Value Measurement Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Implementation Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 All-Optical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Quantum Computational Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



4 Summary and Outlook 68

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 73

vii



List of Figures

1.1 Gaussian wave packets of a pointer in a strong measurement . . . . . . . 10

1.2 Gaussian wave packets of a pointer in a weak measurement . . . . . . . 10

1.3 Qubit connectivity graph for the ibm_oslo backend . . . . . . . . . . . . 25

2.1 Proposed setup for preparing and measuring arbitrary pure states . . . . 28

2.2 Proposed setup for mixed state tomography . . . . . . . . . . . . . . . . 34

2.3 Experimentally reconstructed amplitudes of the Bell state |Φ+⟩ . . . . . . 40

2.4 Experimentally reconstructed amplitudes and relative phases of the state

|Ψ⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Experimentally reconstructed amplitudes and non-vanishing relative phases

of the state |Γ⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Interferometric setup for realizing arbitrary two-qubit unitary transfor-

mations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Quantum circuit for measuring weak values ⟨σa
n⟩w and preselection state

parameters with interaction strength ϵ . . . . . . . . . . . . . . . . . . . 54

3.3 Weak values ⟨σa
n⟩w for different measurement strengths . . . . . . . . . . 59

3.4 Statistical uncertainties and systematic errors of ⟨σa
n⟩w . . . . . . . . . . 60

3.5 Preselection state normalization parameter ν for different measurement

strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Statistical uncertainties and systematic errors of the preselection state

normalization factor ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Preselection state angle αi for different measurement strengths . . . . . 63

3.8 Statistical uncertainties and systematic errors of the preselection state

angle αi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Preselection state phase ϕ for different measurement strengths . . . . . . 65

3.10 Statistical uncertainties and systematic errors of the preselection state

phase ϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



Chapter 1

Introduction

In this first chapter, I introduce the overarching themes of the present thesis, motivate

the schemes proposed and reported in chapters 2 and 3, and provide the necessary

background for their discussion.

1.1 Overview

Quantum mechanics is a broad, sprawling field of knowledge and research. Within

it, foundational topics such as entanglement [1, 2] (a type of correlation believed for

decades to be the distinguishing feature of quantum systems), locality [2–4] (the prop-

erty whereby two or more systems are statistically independent from one another),

and the mathematical description of measurements [5] (the processes that destroy the

current state of a system in order to extract probabilistic information from it) have

birthed a breadth of intertwined disciplines that seem inexhaustible. One of the most

exciting and fast-growing of them is quantum information theory. In classical infor-

mation theory–more commonly known simply as information theory–information is

conveyed by a sender to a receiver via a carrier. When the carriers are quantum sys-

tems, a non-classical treatment becomes necessary and unexpected results follow suit.

Roughly speaking, quantum information theory encompasses the study of how quantum

systems transmit, store, and process information. Nearly half a century of inquiry in this

subject has, in turn, brought about new fields with a life of their own. Let us explore

three such cases.

First, the inescapable task of ascertaining quantum states has created the discipline

known as quantum state tomography, which studies methods that characterize exper-

imental states and their uncertainties in ever more efficient and advantageous ways.
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Second, the potential, enabled by entanglement and/or other quantum correlations [6–

9], for computational power far exceeding that of traditional computers has, for its part,

engendered a new domain of both basic science and technology: quantum computation.

Although actual realizations of its preeminent promises, such as the factorization of

large integers [10] and efficient search in databases [11], are still pending, significant

progress has been made so far. Current research on quantum computation is carried out

in large part by private companies [12], some of whose devices can be accessed for free

by people all over the world through cloud services. The availability of these powerful

instruments advances a plethora of research subjects [13–16]. And third, the study of

philosophical questions regarding the arrow of time has produced a curious type of

objects, christened quantum weak values [17]. Since their appearance, they have been

used for both theoretical and experimental explorations [18–23], perhaps most interest-

ingly at the frontiers of quantum theory [24–27], as well as in an impressive range of

experimental applications such as signal amplification, quantum state characterization,

and the measurement of quantities of physical interest [28].

The adjective “quantum” has qualified all topics thus far mentioned. However, an

important through-line that connects all of them is the existence of analogs in classical

systems. More than two decades ago [29, 30], scientists had arrived at a signal insight:

many properties of the phenomena that fall under the scope of quantum information

theory stem from the wave nature of states, which evidently does not pertain exclusively

to the realm of quantum systems. A wealth of studies have shown that Bell-type inequal-

ity violations [31–36], information theoretical protocols [37–39], and weak values [19,

40–43] occur also in classical light experiments. The thread that knits together these

subjects at a fundamental level is the linear vector space nature of their mathematical de-

scriptions. The proposals and results hereafter reported represent further manifestations

of this fact.

The aim of this thesis is twofold. First, it will deal with two proposals for performing

state tomography in experiments with either classical light (laser beams) or quantum

light (individual photons); one of them concerns pure states, whereas the other refers to

arbitrary mixed states. To this end, in section 1.2 I will give an overview of the literature

on quantum state tomography–with special emphasis on the works that directly set the

stage for the present contributions–which will motivate and lay the groundwork for
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the proposals. In chapter 2, I will introduce the protocols, comment on their realization,

and show the experimental results of a proof of principle for the pure state protocol

that was implemented in a classical light setting [44]. Second, this thesis will set forth

a scheme for the measurement of weak values in experiments where the interaction

between system and pointer is not constrained to being “weak”. At first sight, this

assertion may seem contradictory. Rather, it reflects the fact that the name “weak values”

owes its permanence in the community’s parlance only to historical reasons. This idea

was inspired on work done by Denkmayr et al. [45, 46], but instead of putting it to

test in neutron interferometry experiments, as in the original papers, my colleagues

and I carried it out in quantum computers facilitated by the International Business

Machines (IBM) Corporation. In section 1.3, I will motivate the formal definition of

weak values, trace the history of their empirical realizations, and focus in on previous

studies on the relation between strong measurements and weak values. For conceptual

clarity and completeness, in section 1.4 I will also outline the foundational literature on

quantum computation, the basic functioning of superconducting quantum computers,

and the use of IBM’s cloud-based quantum systems. Thereafter, in chapter 3 I will

generalize and extend Denkmayr et al.’s model, as well as present the results of its

quantum computational implementation. Finally, in chapter 4 I will summarize the

work done and suggest possible research questions that arise from it.

1.2 Quantum State Tomography

The postulates of quantum mechanics dictate that, when a system is measured, its state is

projected onto the subspace corresponding to the recorded eigenvalue of the observable

under consideration.1 Such a dictum makes it impossible to both know the state of a

single system and preserve it. Yet, in certain contexts, a source of essentially infinite

copies of the same state is available. In such cases, we can extract information about the

state–or even completely specify it–by measuring an appropriate set of operators and

combining the outcomes. The families of protocols which, from minimal assumptions

about the state’s nature, reconstruct the wave function or density matrix of interest via

repeated measurements on copies of a system (whose state is assumed to be constant)

1. See, e.g., section III.B.3.c of volume 1 of [47] or section 1.4 of [48].
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comprise the corpus known as quantum state tomography. By definition, these schemes

work for arbitrary states of a given kind, so they are said to be universal.

Despite prior theoretical models that aimed at obtaining a complete experimental

description of states [49–52], quantum state tomography was born from quantum

optics–more specifically, from a proposal made by Vogel and Risken in 1989 [53] for

converting so-called quadrature probability densities into the Wigner function W , where-

from the quantum state in the form of a density matrix can be computed.2 The set of

steps required to achieve this conversion from raw data into the desired state are called

postprocessing. We shall use this term in a general sense, even though it has occasion-

ally appeared in the literature with somewhat different meanings [28, 56, 57]. Since

mathematical methods imported from the discipline of medical tomographic imaging

are utilized for postprocessing in Vogel and Risken’s framework, the name quantum

state tomography smoothly transitioned into the lexicon [55].

In the 1990s, quantum tomography schemes served to reconstruct vacuum and

quadrature-squeezed states of light [58], squeezed states of light [59], and phase-

modulated states [60], to name a few examples. At the same time, tomography was

also implemented in contexts outside of quantum optics: 9-dimensional hydrogen states

[61], infinitely dimensional diatomic molecular vibration states [62], and two-qubit

states encoded in the spin of carbon and hydrogen nuclei [63], too, were successfully

characterized. But a limitation of tomography protocols soon emerged: because of ex-

perimental uncertainties in the measured probabilities, the resulting density matrices do

not always have positive eigenvalues, which renders them unphysical and invalid for var-

ious calculations. In such cases, the logical approach would entail finding a constrained

estimator for the density operator–i.e., a matrix that is consistent with the measured

data and represents a physical state.3 Several estimation methods have been developed

over the decades [64]. Of historical importance is Hradil’s 1997 suggestion of a tech-

nique based on maximum likelihood estimation as a solution [65]. Hradil’s outline of

its general implementation was quickly built upon [66, 67] and deployed in multiple

2. For more details on the early developments of tomography, especially in the province of quantum

optics, see chapters 1 and 3 of [54] and section I of [55].

3. While state estimation is part of the postprocessing stage, it is not always necessary: many tomography

protocols, most manifestly those for pure states, produce valid results by construction (see, e.g.,

sections 2.1.2 and 3.2.2).
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laboratory settings.

Among these, James et al.’s 2001 implementation of maximum likelihood estimation

in polarization tomography [68] stands out as the most relevant to the present work.

After proving the general result that arbitrary, n-qubit state tomography can be done

with 4n measurements, the authors expounded the protocol for two-qubit states in which

the qubits are the polarization of photon pairs created through the process known as

spontaneous parametric downconversion.4 They prescribed a set of 16 photon-count

measurements and derived a formula for reconstructing two-qubit states as linear func-

tions of said outcomes. As noted above, this prescription often produces density matrices

that are not positive semidefinite, so they cannot be used to compute quantities which

depend on their eigenvalues–e.g., von Neumann entropy, Wootters concurrence, and

quantum discord. Such a drawback could doom any attempt at employing this protocol

in research on quantum information. James et al. overcame this difficulty by concocting

and demonstrating a practical implementation of maximum likelihood estimation that

has since become standard practice in the field.

An improvement on James et al.’s work was presented in 2008 by de Burgh et al.

[71]. Although the one- and two-qubit measurement sets prescribed in [68] are optimal–

i.e., they consist of the minimum number of measurements necessary for completely

determining the state–they are by no means the best ones. The authors of [71] related

different one- and two-qubit tomography sets to the quality of the reconstructed state,

as quantified by a figure of merit such as fidelity5 or the quantum Chernoff bound. The

measurement sets advanced by de Burgh et al. are obtained by considering Platonic

solids–the tetrahedron (4 faces), cube (6), octahedron (8), dodecahedron (12), and

icosahedron (20)–and picturing the Bloch sphere inscribed in each of them, which is

tangent to each face at its center. With this picture in mind, the tetrahedron set is com-

prised of the 4 Bloch vectors that coincide with the tangent points of the sphere, and

higher order sets are defined in a similar fashion. As shown in [71], these Platonic mea-

surement sets perform much better than those of James et al., even when the sets are of

4. See, for example, [69, 70] for modern introductory reviews on the production of photon pairs.

5. By definition, the fidelity F between two density operators ρ1 and ρ2 is F(ρ1, ρ2) ≡ Tr
√√

ρ1ρ2
√
ρ1.

If one of the density operators represents a pure state, this expression simplifies to F(|ψ1⟩⟨ψ1| , ρ2) =√
⟨ψ1|ρ2|ψ1⟩. If both are pure states, their fidelity further reduces to F(|ψ1⟩⟨ψ1| , |ψ2⟩⟨ψ2|) = |⟨ψ1|ψ2⟩|

(see, e.g., section 9.2.2 of [72] for more details).
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the same size (the tetrahedron for single qubits; the tensor product of two tetrahedrons

for two-qubits). Larger improvements, alas, come at a sizable cost: already the two-qubit

cube set requires of 36 measurements, more than double the size of the optimal set.

In any event, the cardinalities of the measurement sets proposed in [68] and, most

markedly, in [71] stand in stark contrast to two later results undergirded by the as-

sumption that the target states are pure. The first comes from Ma et al.’s study of the

minimum number of measurements needed to identify pure states unequivocally [73].

More precisely, let A be a set of m linearly independent observables and α the set of m

outcomes that result from a measurement of A on some state. We say that a pure state

is uniquely determined among all pure states (UDP) by measuring A when there exists

no other pure state which would yield the same α when A is measured on it. Similarly,

we say that a pure state is uniquely determined among all states (UDA) by measuring A

when there exists no other state (either pure or mixed) which returns the same α upon

a measurement of A. There is not a unique set A for which a given state is UDP or UDA;

further, these sets can have different sizes. We can expect that the smallest set for which

a pure state is UDA would be larger than the smallest set for which it is UDP: after all,

since they are equivalent to density matrices with one eigenvalue equal to 1 and the rest

to 0, pure states make up a minuscule subset (of measure zero) of the set of all states.

Ma et al. found that all pure, two-qubit states are UDA from just 11 measurements,

whereas James et al. [68] had shown that any two-qubit state can be UDA with 42 = 16.

For three-qubit states, the comparison is more striking: pure states can be UDA from

31 measurements [73], instead of the 43 = 64 required for full tomography. Purity, we

must conclude, unleashes the potential for much less resource-intensive reconstruction

of quantum states.

Second, and closely related to Ma et al.’s results, were Heinosaari et al.’s findings

[74] about the smallest number of measurements, denoted by m, that can uniquely

determine any pure state (“an unknown quantum state which is constrained by prior

information”, in the authors’ words) among all pure states. The results of [74] relevant

for our purposes are upper and lower bounds on m for states of dimension d = 4.

Heinosaari et al.’s Theorem 3 establishes 4d − 5 − α as an upper bound of m for even

d ≥ 4, with α being the number of 1s in the binary form of d− 1, i.e. 2 in the case that

occupies us because (d−1)10 = 310 = 112. Theorem 6 of [74] states that m > 4d−4−2α.

6



For d = 4 (as well as for d ≤ 7) both bounds give a definite result: m = 9 is the size

of the optimal set of measurements for uniquely determining any pure state among all

pure states.

A recent paper by Gonzales et al. [75] put forward a procedure for uniquely determin-

ing pure, two-qubit states among all pure states. In a nutshell, they present an all-optical

setup that produces and characterizes arbitrary pure states encoded in the path and po-

larization degrees of freedom of laser light that propagates through an interferometer.

Gonzales et al.’s characterization algorithm prescribes 9 measurements–two instances

of single-qubit tomography, which account for 8 measurements, and one interferometric

measurement–the theoretical minimum found by Heinosaari et al. Unfortunately, their

proposal entails a host of problems. On a practical level, the protocol requires utmost

precision when preparing the state’s phases, necessitates an stabilizing electronic cir-

cuit, and demands drastically changing the layout of the instruments–by inserting new

ones inside the arrangement–in the interferometric step. But its fundamental flaw is

that this scheme does not work without knowledge of the target state, for it determines

the experimental state up to the sign of one phase. Thence, it is not, stricto sensu, a

tomography protocol.

In short order, my colleagues and I managed to overcome the drawbacks of [75].

We developed a protocol, also for path-polarization systems, that by simply shifting

optical instruments to specific configurations can easily generate arbitrary pure states

(see section 2.1.1), and by performing 12 measurements can completely determine

said states without any need for knowledge of the target state (see section 2.1.2). Our

proposal, nonetheless, still left open the question of how to characterize mixed, path-

polarization states. In this dissertation, I introduce the missing mixed state tomogra-

phy protocol, which consists of 16 measurements, generalizes the foregoing pure state

scheme naturally (section 2.2.1), and calls for an estimation procedure to impose phys-

icality (section 2.2.2). As a proof of principle for the pure state proposal, our group

carried out multiple experiments which put it to test [44]. The results (section 2.3) are

in excellent agreement with the predictions, which attests the validity of the protocol.
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1.3 Quantum Weak Values

Quantum weak values were first defined by Aharonov, Albert, and Vaidman in 1988 [17]

when addressing the apparently unphysical outcomes of certain measurements, which

they called “weak measurements”. More in general, a von Neumann measurement6 on

a quantum system S requires an ancilla system, conventionally referred to as pointer, P ,

whose coupling to S is described by an interaction Hamiltonian of the form7

Hint = gAS ⊗BP = gASBP . (1.1)

In the above equation, g is, in general, a function of time that determines the coupling

(or, equivalently, the interaction) strength, AS represents an observable of the system,

and BP an observable of the pointer that we interpret as a momentum operator–i.e.,

BP |p⟩ = p|p⟩. Accordingly, there exists a position observable in the pointer space, XP ,

conjugated to the momentum: XP |x⟩ = x|x⟩ and [XP , BP ] = i, in the continuous case,

with ℏ = 1. For example, consider the neutron interferometry experimental setting

of [45, 46, 77], and let S be the neutrons’ spin and P the path they follow inside

the interferometer, wherein a magnetic field of magnitude Bz is applied along an axis

perpendicular to both paths. If the field points upwards for neutrons in path 0P and

downwards in path 1P , the interaction Hamiltonian has the form

Hint = −µBzσ
z
S |0P ⟩⟨0P |+ µBzσ

z
S |1P ⟩⟨1P | = −µBzσ

z
Sσ

z
P , (1.2)

where µ is the neutron’s magnetic moment and σz
S,P are system and pointer Pauli spin

operators. The strength of the measurement, hence, depends on the field intensity. Typi-

cally, the measured value of the system observable AS is proportional to the shift in the

pointer’s position. To see this, let us assume the general superposition

|ψS⟩ =
∑
n

αn|an⟩, with AS|an⟩ = an|an⟩, (1.3)

as the initial system state, and |Φ(0)⟩, a Gaussian wave packet centered at x = 0 with

spread σ, as that of the pointer. In the momentum representation, this pointer state is

6. See pp. 442–445 of [5] for the original formulation of this measurement model. A modern, accessible

account of it and a proposal for its optical implementation are given in [76].

7. Throughout this thesis, the tensor product symbol is usually omitted for notational simplicity, but its

presence will be brought up in some places where a reminder may be convenient.
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centered at p = 0, has a spread 1/σ, and reads

|ηP ⟩ = |Φ(0)⟩ =
∫

dp ϕ̃(p)|p⟩ =
∫

dp

(
2σ2

π

)1/4

exp
(
−σ2p2

)
|p⟩. (1.4)

That the system and pointer states become entangled during the interaction is proved

by employing the evolution operator

U(ϵ) ≡ exp

(
−i
∫ ∆t

0

dt′Hint

)
= exp(−iϵASBP ), (1.5)

where ϵ ≡
∫ ∆t

0
g dt′, a parameter we will consider positive, quantifies the coupling

strength.8 The exponential in equation 1.5 is expanded in terms of the eigenprojectors

of ASBP , and then applied on the initial state. After collapsing one sum and one integral,

we are left with

U(ϵ)|ψS⟩|ηP ⟩ =
∑
n

αn

∫
dp exp(−iϵanp) ϕ̃(p)|an⟩|p⟩. (1.6)

We now insert the pointer-space identity operator in the form
∫
dx |x⟩⟨x| and get

U(ϵ)|ψS⟩|ηP ⟩ =
∑
n

αn|an⟩
∫

dp exp(−ipϵan) ϕ̃(p)
∫

dx |x⟩⟨x|p⟩

=
∑
n

αn|an⟩
∫

dp dx exp[ip(x− ϵan)] ϕ̃(p)|x⟩, (1.7)

which by virtue of an inverse Fourier transform reduces to

U(ϵ)|ψS⟩|ηP ⟩ =
∑
n

αn|an⟩
∫

dxϕ(x− ϵan)|x⟩ =
∑
n

αn|an⟩|Φ(ϵan)⟩. (1.8)

Thus, the system-pointer state evolves to a superposition of eigenstates of AS coupled

to Gaussian wave packets with spread σ and central value x = ϵan. A measurement

of AS is done by reading off the pointer’s position XP . We define strong measurements

as those for which ϵ(an+1 − an) ≫ σ, i.e., those where the pointer wave packets are

distributed without overlapping, so that XP is found to be unambiguously correlated

to the measured eigenvalue of AS. This situation is illustrated in figure 1.1. Conversely,

weak measurements are those characterized by ϵ(an+1 − an) ̸≫ σ, meaning that the

Gaussians in equation 1.8 do overlap, which in turn implies that the pointer’s position

has no clear correlation with any single eigenvalue an, as shown in figure 1.2.

8. We can interpret ∆t as the time interval during which the measurement apparatus interacts with the

system. While the interaction takes place, all other terms in the total Hamiltonian that describes the

joint system can be safely neglected in favor of Hint. In our previous example, ϵ = α/2 ≡ −µBz∆t,

with ∆t being the neutron’s transit time in the magnetic field region and α the spin rotation angle.
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ϵ an ϵ an+1

x

P(x)

Figure 1.1: Non-overlapping Gaussian wave packets of a pointer entangled with a system

in a strong interaction, for which ϵ(an+1 − an) ≫ σ. A reading of the pointer’s position

x is uniquely correlated to a single eigenvalue of the system operator AS. Vertical lines

indicate the Gaussians’ spread σ and central value.

ϵ an ϵ an+1 ϵ an+2

x

P(x)

Figure 1.2: Overlapping Gaussian wave packets of a pointer entangled with a system

in a weak interaction, for which ϵ(an+1 − an) ̸≫ σ. A reading of the pointer’s position

x is not uniquely correlated to any eigenvalue of the system operator AS. Vertical lines

indicate the leftmost Gaussian’s spread σ (shared by the others) and central value.

In the latter case, the interaction disturbs the state slightly and a subsequent strong

measurement, known as postselection, can be done on S. Since postselection is achieved

by projecting the system state onto a vector |ξS⟩, the (unnormalized) final pointer state

will be

|ζP ⟩ = ⟨ξS|U(ϵ)|ψS⟩|ηP ⟩. (1.9)

Weak values enter the picture when we expand ⟨ξS|U(ϵ)|ψS⟩ as a series in the pointer-

space operator:

⟨ξS|U(ϵ)|ψS⟩ =
〈
ξS

∣∣∣∣1SP − iϵASBP +
(−iϵ)2

2
A2

SB
2
P + . . .

∣∣∣∣ψS

〉
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=

(
⟨ξS|ψS⟩1P − iϵ⟨ξS|AS|ψS⟩BP +

(−iϵ)2
2

〈
ξS
∣∣A2

S

∣∣ψS

〉
B2

P + . . .

)
= ⟨ξS|ψS⟩

(
1P − iϵ

⟨ξS|AS|ψS⟩
⟨ξS|ψS⟩

BP +
(−iϵ)2

2

〈
ξS
∣∣A2

S

∣∣ψS

〉
⟨ξS|ψS⟩

B2
P + . . .

)
. (1.10)

By defining the weak value of AS for the preselection state |ψS⟩ and the postselection

state |ξS⟩ as the complex number

⟨AS⟩w ≡ ⟨ξS|AS|ψS⟩
⟨ξS|ψS⟩

, (1.11)

and more generally the nth-order weak value of AS as

⟨An
S⟩w ≡ ⟨ξS|An

S|ψS⟩
⟨ξS|ψS⟩

, (1.12)

equation 1.10 becomes

⟨ξS|U(ϵ)|ψS⟩ = ⟨ξS|ψS⟩
(
1P − iϵ ⟨AS⟩w BP +

(−iϵ)2
2

〈
A2

S

〉
w
B2

P + . . .

)
. (1.13)

We can see how weak values appear in the physical state of the pointer with the fol-

lowing series of approximations. If we apply equation 1.13 to the Gaussian pointer in

equation 1.4 in order to compute equation 1.9, we get

|ζP ⟩ = ⟨ξS|ψS⟩
(
1P − iϵ ⟨AS⟩w BP +

(−iϵ)2
2

〈
A2

S

〉
w
B2

P + . . .

)∫
dp ϕ̃(p)|p⟩

= ⟨ξS|ψS⟩
∫

dp

(
1− iϵ ⟨AS⟩w p+

(−iϵ)2
2

〈
A2

S

〉
w
p2 + . . .

)
ϕ̃(p)|p⟩. (1.14)

In the spirit of Duck et al. [78], we approximate the sum in parentheses as an exponential

of the complex number in the first-order term by considering that 1) the magnitude

of the zeroth-order term is much larger than the magnitudes of every other term, and

2) the magnitude of the first-order term is much larger than the magnitudes of every

higher order term, i.e.,

1 ≫
∣∣∣∣(−iϵ)nn!

⟨ξS|An
S|ψS⟩

⟨ξS|ψS⟩
pn
∣∣∣∣ , ∀n ≥ 1, (1.15a)∣∣∣∣−iϵ⟨ξS|AS|ψS⟩

⟨ξS|ψS⟩
p

∣∣∣∣≫ ∣∣∣∣(−iϵ)nn!

⟨ξS|An
S|ψS⟩

⟨ξS|ψS⟩
pn
∣∣∣∣ , ∀n ≥ 2. (1.15b)

Clearly, the previous expressions contain a degree of redundancy: if equation 1.15a is

valid for n = 1, and equation 1.15b holds, then equation 1.15a also holds for n ≥ 2.

After simplifying the expressions that remain, we are left with

1 ≫ ϵ |p ⟨AS⟩w| , (1.16a)
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|⟨ξS|AS|ψS⟩| ≫
ϵn−1

n!

∣∣pn−1⟨ξS|An
S|ψS⟩

∣∣ , ∀n ≥ 2. (1.16b)

To eliminate the redundancy lingering in equation 1.16b we rewrite it as(
n!
|⟨ξS|AS|ψS⟩|
|⟨ξS|An

S|ψS⟩|

)1/(n−1)

≫ ϵ |p| , ∀n ≥ 2, (1.17)

and notice that, if this inequality is satisfied for the minimum value of the left-hand side,

then it holds for all n ≥ 2. Moreover, although the integration variable p ranges from −∞
to ∞, the integral in equation 1.14 results mostly from contributions centered around

p = 0 with spread 1/σ because ϕ̃(p) is a Gaussian function. We can thus substitute 1/σ,

a quantity representative of the relevant values of p, into equations 1.16a and 1.17, and

thereby attain the weakness conditions

1

|⟨AS⟩w|
≫ ϵ

σ
, (1.18a)

min
n=2,3,...

(
n!
|⟨ξS|AS|ψS⟩|
|⟨ξS|An

S|ψS⟩|

)1/(n−1)

≫ ϵ

σ
, (1.18b)

under which equation 1.14 now takes the form9

|ζP ⟩ ≈ ⟨ξS|ψS⟩
∫

dp exp(−iϵ⟨AS⟩w p) ϕ̃(p)|p⟩. (1.19)

Finally, we proceed as we did in equations 1.7 and 1.8 to obtain

|ζP ⟩ ≈⟨ξS|ψS⟩
∫

dp exp(−iϵ⟨AS⟩w p) ϕ̃(p)
∫

dx |x⟩⟨x|p⟩

=⟨ξS|ψS⟩
∫

dx dp exp(−iϵ⟨AS⟩w p) exp(ipx)ϕ̃(p)|x⟩

=⟨ξS|ψS⟩
∫

dxϕ(x− ϵ⟨AS⟩w)|x⟩

=⟨ξS|ψS⟩
∫

dx
1

(2πσ2)1/4
exp

(
−(x− ϵ⟨AS⟩w)

2

2σ2

)
|x⟩

=⟨ξS|ψS⟩|Φ(ϵ⟨AS⟩w)⟩. (1.20)

A weak value of AS is a complex number whose real and imaginary parts can take

values much greater than any eigenvalue of AS, depending on how little the pre- and

postselection states overlap.10 For this reason, its emergence as the central value of the

9. See Appendix A of [79] for complementary observations about the validity of equation 1.19.

10. Weak values ⟨AS⟩w that exceed the range of eigenvalues of AS are said to be strange [80, 81] or

nonclassical [81, 82].
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wave packet that describes the final pointer state might seem unfathomable, but it must

be understood in the light of equation 1.18a.

Much removed from its origins as a mathematical curiosity that sprouted from a philo-

sophical discussion about the arrow of time [83] are the manifold appearances the weak

value has made in experimental endeavors. In 1991, Ritchie et al.’s experiment [40],

carried out with laser light, demonstrated the first measurement of weak values. Over

the next decade, weak values were realized only in classical or semiclassical settings–

meaning that they could “be explained semiclassically using a wave equation derived

from Maxwell’s equations”–until Pryde et al.’s single-photon experiments achieved “the

first unambiguously quantum-mechanical” realization [84]. Already in 1989, Duck et al.

[78] foresaw the possibility of weak values having “applications to the detection of very

tiny signals.”11 Notable examples of parameter amplification via weak values include

the measurement of angles of only a few hundred femtoradians and displacements of a

few tens of femtometers [85], as well as the measurement of displacements of about 1

angstrom, which confirmed the existence of the photonic version of the spin Hall effect

[86].

A parallel line of inquiry deals with the use of weak values to measure complex-

valued quantities, whereof the probability amplitudes of pure states and the density

matrix elements of mixed states stand out. This particular usage insinuates a connection

to quantum state tomography. As we saw in section 1.2, tomography requires a series

of measurements, whose outcomes must be then postprocessed. Let us distinguish be-

tween two types of postprocessing: one has to do with converting data into the state

parameters, which is typically done via inversion algorithms;12 the other refers to im-

posing physicality on the reconstructed state, a task wherefore estimation routines are

usually employed. All methods that demand inversion postprocessing can be suitably

called indirect. In contrast, techniques that yield as outcomes the real and imaginary

parts of either the amplitudes of a state vector or the entries of a density matrix are

said to be direct. In 2011, Lundeen et al. [87] put forward and successfully tested the

first direct state measurement protocol. It exploits the proportionality between the com-

11. See section IV.A of [28] and references therein for a pedagogical primer on this topic.

12. See, e.g., equation (3.20) of [68], or, in the present thesis, equations 2.11–2.15 of section 2.1.2, and

equations 2.20–2.21 of section 2.2.1.
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plex amplitudes of a pure state and appropriate weak values, which, to first order in

the coupling strength, are read off straight by measuring a pointer observable. Later,

Lundeen and Bamber [88] presented two generalizations, valid for mixed states, whose

first realizations were reported in laser light experiments [42, 43]. Let us note for future

reference that the alluded schemes involve a weak measurement followed by postselec-

tion (a strong measurement). In neither [87] nor [88] was the posibility entertained of

abandoning weak measurements.

But Lundeen et al.’s original technique [87] suffers from a flaw which precludes it

from being a tomography protocol: it is not universal. As Haapasalo et al. [89] argued,

due to its origin as an approximation to first order in the system-pointer coupling, the

procedure fails at reconstructing states that have a small overlap with the postselection

state.13 This finding begs two questions: 1) How weak must measurements be in order

for weak values to be obtainable from them? 2) Would eschewing the weakness hy-

pothesis in Lundeen et al.’s scheme produce a proper tomography protocol? As early as

2007, Johansen [82] had found that the answer to the first question was, squarely, not

at all. He derived a model for determining the real and imaginary parts of a weak value

exclusively through projective measurements. Forays beyond the weak regime looked

promising.

The positive answer to the second question manifests in at least two distinct forms.

In a system-pointer measurement setting, Zhang et al. [91] defined special pointer

operators as functions of the interaction strength. They showed that, by measuring

joint expectation values of these “coupling-deformed” observables, information about

weak values can be extracted through measurements of arbitrary strength. A follow-up

publication by Zhu et al. [92] formulated a quantum state tomography scheme based

on measurements of said coupling-deformed observables. An altogether independent

path was followed by Calderaro et al. [56], who considered a setup in which a system

is coupled to two pointers. These authors proposed and demonstrated in single-photon

experiments two proper tomography techniques that involve subsequent measurements

of arbitrary coupling, each one with a different pointer. The proposals by both groups

[56, 91, 92] constitute actual state tomography protocols.

13. Credit goes to Dressel et al. [28] as well as Maccone and Rusconi [90] for this interpretation of

Haapasalo et al.’s equations (14)–(16) [89].
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Besides enabling universality, what other merits are there for strong system-pointer

interactions in state measurement schemes? We can point out two. As for the first, Mac-

cone and Rusconi [90] had found that Lundeen et al.’s protocols [87, 88] present an

inherent bias: the states they reconstruct have an unavoidable degree of discrepancy

with respect to their corresponding target states, regardless of how many copies are

averaged over. Both [91] and [92] provide evidence that Zhu et al.’s tomography tech-

nique [91, 92] eliminates said bias. In addition, a state measurement scheme advanced

by Zou et al. [93] which uses a strong coupling also exhibits no such bias, in spite of its

being non-universal. The disappearance of the original proposals’ bias correlates to the

renouncing of the weakness hypothesis.

The second benefit, not entirely unrelated to the first, pertains to two aspects of the

results yielded by all measurement procedures: accuracy and precision. Despite their

apparent synonymy, these terms have exact, distinct meanings in the research that we

will presently review. Accuracy shall refer to the degree to which an experimental result

differs from its theoretical counterpart. This trait can be assessed by any quantifier

of systematic errors. Precision, on the other hand, will be a measure of how much a

particular outcome fluctuates. So defined, it represents the statistical uncertainty in

the results.14 A lower precision (accuracy) is marked by larger statistical uncertainties

(systematic errors), and viceversa.

Starting in 2014, a series of results bolstered the thesis that state reconstruction

protocols can be made more accurate and precise when employed with strong rather

than weak system-pointer couplings. Das and Arvind [95] propounded a qubit character-

ization scheme consisting of two consecutive measurements of variable strength (albeit

not too strong) followed by a projective measurement. Their numerical simulations

showed that, as the system-pointer interaction increases, the mean fidelity between

reconstructed and reference states (which serves as a measure of systematic errors)

reaches a maximum, and said fidelity’s standard deviation (which quantifies its statis-

tical uncertainty) bottoms out. Vallone and Dequal [94] generalized Lundeen et al.’s

original proposal [87] to account for arbitrary measurement strengths. By using the

so-called mean square statistical error, they contrasted the precision of their scheme

14. Also customarily called statistical error, as in [56] and [94].
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at its “highest” coupling value15 to that of the weak scheme. The fluctuations of the

former were much smaller than those of the latter. As reported by Gross et al. [96],

furthermore, the fidelity of the outcomes produced by Vallone and Dequal’s procedure,

i.e., their accuracy, can be maximized at specific strong couplings. Later, Calderaro et al.

[56] analyzed the precision of their direct state tomography protocol in the same man-

ner as in [94], and its accuracy via the trace distance between reconstructed and target

states.16 Their figures of merit strongly suggest that, the stronger the measurements are,

the more accurate and precise will the reconstruction be. Xu et al. [57] applied the prin-

ciple of system-pointer measurements to the context of quantum detector tomography,

in which the unknowns are the operators comprising a tomography apparatus. These

authors quantified systematic errors via the trace distance and statistical uncertainty

with the variance of the measured operators. Based on their experimental results in

single-photon experiments, they asserted that strong measurements allowed them “to

improve the precision of the tomography without loss of accuracy.”

The aforementioned thesis, however, must be appended with a caveat on the fol-

lowing accounts. The fidelity and standard deviation in Das and Arvind’s measurement

scheme [95] are not monotonous functions of the interaction strength: as it grows, both

metrics reach an extremum, but then continue to either decrease or increase, respec-

tively. In Gross et al.’s analysis [96], the fidelity exhibits the same behavior. For their

part, Zhu et al. [92] chose the trace distance and the variance to assess systematic errors

and statistical uncertainties, respectively. Through error propagation theory and numer-

ical simulations, they showed that both quantities depend identically on the coupling

parameter, and are thus minimized when it takes a certain value. In all, these findings

paint a clear-cut picture: stronger measurements can optimize precision and accuracy,

but must not be regarded as synonymous with them.

The preceding historical excursus notwithstanding, it is a series of works on matter-

15. In chapter 3 we shall have more to say about the range of values that the strength parameter can

take.

16. The trace distance D between two density operators ρ1 and ρ2 is defined as D(ρ1, ρ2) ≡ 1
2Tr |ρ1 − ρ2|,

with the absolute value of an operator O given by |O| ≡
√
O†O, the positive square root of O†O. If

the two density operators represent pure states, their trace distance and fidelity are interchangeable:

D(|ψ1⟩⟨ψ1| , |ψ2⟩⟨ψ2|) =
√
1−F2(|ψ1⟩⟨ψ1| , |ψ2⟩⟨ψ2|) =

√
1− |⟨ψ1|ψ2⟩|2 (see sections 9.2.1 and 9.2.3

of [72] for more details).
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wave interferometry what sets the scene for the contributions reported in this disser-

tation. Using weak measurements, Sponar et al. [77] ascertained the weak values of

a neutron’s Pauli spin operator. As Pryde et al. had done before [84], these authors

touted the exclusively quantum-mechanical nature of their results by stressing that “no

classical theory can describe these weak measurement results in contrast to the case of

photon experiments.” In two subsequent works [45, 46], the same group developed a

model for characterizing ⟨σp
z⟩w, the weak value of a spin operator of the path degree of

freedom, with arbitrarily strong system-pointer couplings. Knowledge of this weak value

enables reconstruction of the preselection path state. The authors then put their model

to test in the same interferometric setup as [77] for two different couplings–one weak

and one strong. Denkmayr et al. presented the parameters of the preselection state in

[45] and the weak values in [46]. Both publications showed good agreement between

theory and experiment for both strengths, and claimed, arguably without sufficient re-

serve, that stronger measurements produce lower statistical and systematic errors than

weaker ones. Indeed, Denkmayr et al. concluded that “experimental evidence is given

that strong interactions are superior [...] in terms of accuracy and precision, as well

as required measurement time” and that their model “can be used for any coupling

between two two-level quantum systems” [45, 46].

My coworkers and I took them up on their suggestion. In section 3.1 of this thesis

I derive an extended version of Denkmayr et al.’s model, which measures weak values

of arbitrary Pauli spin operators σn = n ·σ, with n a real unit vector. As I show in sec-

tions 3.2.1 and 3.2.2, this protocol can be implemented in both an all-optical setting and

a quantum computational context. Section 3.2.2 also describes a state characterization

technique based on the same measurements that yield the referred weak values. We

tested these schemes across a wider range of couplings than [45, 46] by using quantum

computers, which allow for much more versatile realizations than neutron interferom-

etry, and even than optical interferometry. Our results, recounted in section 3.3, are

consistent with Denkmayr et al.’s, but also confirm two features of the model that had

been overlooked: it breaks down for certain strengths, and it cannot be accepted as an

actual instance of strong measurements being always more accurate and precise than

weak ones.
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1.4 Quantum Computing

Quantum computing is, broadly speaking, the realization of computational tasks that

harnesses the resources of quantum systems. Its origins date back to Benioff’s 1980

quantum mechanical model of computers [97], which described the operation of Turing

machines with the Schrödinger equation. Shortly thereafter, Manin [98] and Feynman

[99] put forward proposals for the use of quantum systems for computation, while

Benioff continued to develop a framework for quantum Turing machines [100, 101].

The seeds for the flourishing of quantum computing were thus planted, and discoveries

in quantum information theory provided proper nourishment. Results such as the no-

cloning theorem [102] and the quantum noiseless-channel coding theorem [103], as

well as protocols like cryptographic key distribution [104], error correction [105], and

entanglement distillation [106] would, in time, become key components of the discipline.

The decade of 1990 was showered by quantum computation algorithms whose names

are nowadays synonymous with the virtues of quantum over classical computing. Among

these number the Deutsch-Josza [107] and Simon [108] algorithms for the eponymous

problems, as well as the landmark algorithms by Shor for large integer factorization

[10] and Grover for database search [11, 109].

Mathematically, effecting a quantum computation merely requires that we write a

state, apply some unitary operators on it, compute the resulting state, and measure

some projector or observable. Physically, these tasks are immensely more difficult, for

they must be realized in devices (computers) capable of operating in a controlled man-

ner. In 2000, DiVincenzo [110] highlighted seven criteria for the physical realization

of quantum information processing tasks and protocols: five for quantum computation

on its own, and two more for quantum communication. Known commonly as the Di-

Vincenzo criteria, these conditions are “deceptively simple”, which “made them the

guiding principles for researchers trying to build quantum computers over the past two

decades” [111]. To introduce the central concepts that will underlie the work presented

in chapter 3, let us name and briefly survey the first five requirements:17

1. A scalable physical system with well characterized qubits. Two-level quantum systems

17. The latter two requirements, while essential for quantum key distribution, quantum teleportation,

inter alia, are beyond the scope of the present thesis.
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are the basic building blocks of quantum computers. They exist in a myriad of

physical systems where one quantity can take two values: horizontal and vertical

polarization of light, spin up or down of a particle, ground and first excited state

of an atom, as well as the vacuum and single photon state of an electromagnetic

field, to mention the most elementary examples. Some “effective” qubits consist

of two states within which a transition is allowed, even though the system admits

other blocked states [112]. We say that qubits are well characterized if we know

with precision the couplings between the states of interest and the rest, and if we

can minimize and control the rate of unwanted transitions. To construct devices

that bring about the promises of quantum computation, a capacity for scaling the

number of qubits becomes imperative.

2. The ability to initialize the state of the qubits to a simple fiducial state. The first step

of any quantum computation demands that the initial state of the system under

consideration be readily accessible and known with as much certainty as possible.

This reference, or fiducial, state typically takes the form of the tensor product of

the ground states of each qubit. In practice, ground state initialization can be a

complicated endeavor.18

3. Long relevant decoherence times. The phenomenon whereby a system that inter-

acts with its environment (i.e., any real-world physical system) experiences an

irreversible transformation from a coherent state, say, a|0⟩+ b|1⟩, to an incoherent

mixed state, e.g., |a|2 |0⟩⟨0|+ |b|2 |1⟩⟨1|, is called decoherence [113]. It addresses the

question of why some quantum states are extremely fragile and sensitive to envi-

ronmental couplings. For any quantum computation to be of use, qubits must, on

average, be operated and measured before they undergo decoherence, otherwise

the outcome turns into meaningless noise. A simple framework for understanding

this phenomenon is the Bloch-Redfield model of decoherence, wherein the longi-

tudinal and transverse relaxation times T1 and T2 characterize the time scales in

which qubit decoherence occurs, and thus represent the time scales of relevance.19

18. See, e.g., [110], p. 774, and references therein for details on how setting a qubit to a standard state

hinges on the nature of both the task at hand and the particular type of quantum computer it is

implemented in.

19. See section III B 2 of [114] for an introductory account of the model.
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4. A “universal” set of quantum gates. Within the field of quantum computing, unitary

operators are called quantum gates. DiVincenzo [115] proved that two-qubit gates

are universal for quantum computation, viz. that they suffice for constructing

a general quantum circuit of any number of qubits. The physical realization of

quantum gates entails the design and operation of a wealth of dynamical processes

between elements of the computer.20 Quantum computers must be capable of

implementing arbitrary operations on their qubits, for which a small number of

one- and two-qubit gates, a non-unique universal set, is necessary. Quantum gates,

unfortunately, do not operate with 100% certainty; instead, they are characterized

by an error rate.

5. A qubit-specific measurement capability. The last step of a computation is the mea-

surement stage. In order to realize it, quantum computers must be equipped with

appropriate measurement instruments. Ideally, a measurement would return the

outcome 0 with probability p, and 1 with probability 1− p. But present-day quan-

tum computers are imperfect, which is reflected in, among other things, their qubit

readout error rates [116].21

Regardless of the daunting difficulties involved in physical quantum computations,

the 1990s saw progress in the experimental lane spurred on by Monroe et al.’s [117]

demonstration of a two-qubit quantum gate (the so-called controlled NOT gate, part of

a universal gate set), with the two qubits codified in the internal and external degrees

of freedom of cold, trapped ions. In 1998, Jones and Mosca [118] as well as Chuang

et al. [63] experimentally demonstrated a quantum algorithm for the first time: both

groups successfully carried out Grover’s search algorithm in two-qubit nuclear magnetic

resonance quantum computers. That same year, Linden et al. [119] implemented the

Deutsch-Josza algorithm for the first time in a three-qubit computer of the same kind;

it would take until the year 2000 for that number of qubits to rise up to five [120]. In

the meantime, Nakamura et al. [121] would show how to use a superconducting circuit

to perform quantum computations. A short digression on superconductivity is in order

before discussing the quantum computers that occupy us.

20. See, e.g., section IV of [114] for details on quantum gate implementation in superconducting quantum

computers.

21. See section V of [114] for details on several readout methods for superconducting qubits.
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Superconductivity is the quantum mechanical phenomenon wherein certain sub-

stances have virtually zero electrical resistance at extremely low absolute temperatures.

The Nobel Prize-winning Bardeen-Cooper-Schrieffer theory of low-temperature super-

conductivity condenses a successful description of superconductor properties. Among

them we find the existence of net attractive forces between electrons in an ion lattice,

which result in bound pairs of electrons called Cooper pairs. Because their effective spin

has integer values (either 0 or 1), all Cooper pairs in the material are described by a

single wave function. Thus, the study of macroscopic quantum effects becomes possible

in superconducting materials [122]. Macroscopic qubits are constructed, for instance, by

connecting an electrode to a reservoir (both superconductors) through a thin insulator

(a Josephson junction), as in the case of charge qubits [123, 124]. Cooper pairs experience

tunneling through the junction, which can be conveniently tuned so that only transitions

among the two lowest-energy states (the macroscopic ground state, |0⟩, and the state

with one additional Cooper pair, |1⟩) take place, thereby achieving a macroscopic qubit

[121]. Besides charge qubits, many other superconducting qubit archetypes exist, such

as flux qubits, phase qubits, as well as hybridizations of the first three types: C-shunt

flux qubits, 0-π qubits, and, most relevant for our purposes, transmon-type qubits, to

name just a few.22

After the invention of transmon superconducting qubits in 2007 [126], the Interna-

tional Business Machines Corporation undertook the design of transmon qubit-based

quantum processors. In order to attain good computational results, these qubits must

remain in a given state for a suitable amount of time before the onset of decoherence.

By 2012, IBM’s transmon qubits had achieved this goal [127]. At the time of this writing,

the qubits employed by IBM users are “made from superconducting materials such as

niobium and aluminum, patterned on a silicon substrate.” They consist of two energy

levels separated by a characteristic frequency around 5 GHz; are protected from stray

electromagnetic fields via shielding; and are kept inside so-called dilution refrigerators

at 15 mK in order to “minimize ambient noise or heat that could excite the supercon-

ducting qubit and increase the error probability.” [128].

Research done over the past decade and a half culminated in the milestone 2016

22. See [125] for a recent review of progress in superconducting quantum computing and for more

details on the different archetypes.
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release of IBM Quantum Experience, a cloud-based platform that gave users free ac-

cess to a five-qubit superconducting quantum processor (or system, in the parlance of

IBM). Since its unveiling, IBM Quantum Experience has undergone significant changes.

Most manifest among these are its unfolding into IBM Quantum Composer and IBM

Quantum Lab, as well as the addition of new systems, some of which contain 7 qubits.23

Researchers seized these new tools rapidly and have since carried out with them various

experimental proposals: violations of Mermin inequalities (generalized Bell inequali-

ties) [129]; realizations of “quantum error correction, quantum arithmetic, quantum

graph theory, and fault-tolerant quantum computation” [130]; mitigation of decoher-

ence via dynamical decoupling [131]; automated error correction and nondestructive

state discrimination [132]; detector characterization [133]; entanglement purification

and swapping [134]; and verification of the Jakob-Bergou relations between visibility,

distinguishability, and entanglement [135], to name just a few examples. In some cases,

researchers arrived at interesting conclusions and recommendations for hardware revi-

sion [133]. Clearly, increased access to quantum processors has fostered a rich feedback

loop between end users and providers that can give rise to further advances in quantum

technologies.

But perhaps the most significant changes in IBM’s quantum computing platform

were the introduction of new functionalities and coding environments–such as the

Python-based software development kit Qiskit [136]–as well as its integration with

Jupyter notebooks, an interactive web browser-based platform where notebook docu-

ments can be edited and executed. After completing a few registration formalities, users

can control IBM’s quantum systems remotely via simple Python scripts. By virtue of this

enhanced ease of use and of the fact that these tools allow for experimental settings to

be varied effortlessly, quantum processors represent a much more versatile alternative

to traditional laboratory contexts, such as neutron or optical interferometry.

The mention of such contexts, as well as the unreservedness of my stated intention

to experiment with IBM’s quantum processors instead of them could, understandably,

give readers pause. After all, why should anyone expect currently-existing quantum

23. At the time of this writing, four 7-qubit and four 5-qubit processors are available for free users, as

well as up to 433-qubit processors for paid users (see online). It must be stressed, though, that IBM

can, at any point in time, retire its processors from service and also bring in new ones into its catalog

(see below).
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devices to produce outcomes comparable to those obtained in well-established experi-

mental paradigms? Addressing such a non-trivial question is beyond the scope of this

work. In lieu of a complete answer, I now lay out an argument by analogy for the use of

present-day transmon-based quantum computers as a testing ground for the particular

kind of study reported in chapter 3. All-optical setups that consist of interferometers

and polarization-altering instruments frequently regard the propagation path and po-

larization of either laser light or individual photons as two qubits of interest. Within

these arrangements, we can prepare target states, implement operations, and carry

out measurements. As light traverses the device, it encounters beam splitters, mirrors,

phase shifters, birefringent wave plates, polarizing filters, etc. At each stage, a degree

of uncertainty is added to the polarization qubit’s state and, by extension, the overall

two-qubit state: every instrument reflects and absorbs a (not always minuscule) fraction

of incident light, can be operated with limited accuracy, and is subject to the experimen-

talist’s correct handling. Moreover, the lengths of the interferometer’s arms experience

uncontrolled variations uninterruptedly due to ambient mechanical perturbations. As a

consequence of all the referred factors, the setup’s output resembles the target output

to a limited extent.

On the other hand, the quality of the results of experiments performed in IBM’s

quantum systems depends, on average, on 1) how much longer the qubits’ decoherence

times T1 and T2 are than the total circuit operation time, and 2) the cumulative effect of

the error rates of each step in the computation. As per DiVincenzo’s second criterion, all

qubits are initialized in the ground state |0⟩ before running a circuit. A specific sequence

of quantum gates is then applied which, ideally, produces the desired outcome. However,

one-qubit (two-qubit) gates have error rates between 0.02% and 0.06% (0.6% and 1%),24

and take a few tens (hundreds) of nanoseconds to be carried out. Additionally, measure-

ment results are read with readout error rates ranging from 1% to 14%, a process which

lasts about one thousand nanoseconds. These individual durations must be contrasted

to T1 and T2, which vary from a few tens up to a few hundreds of microseconds. As in

24. The parameters reported here and elsewhere in this thesis correspond, for concreteness and with no

loss of generality, to ibm_oslo, the system used for our calculations (see below). Before it was retired

from service in early May, 2023, most of its parameters were available in the IBM Compute resources

website. To the best of my knowledge, documentation for ibm_oslo is not found in the public domain

anymore.
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the optical case, we obtain an outcome that differs from the expected result depending

on a series of factors. Both contexts, therefore, allow us to realize the proposal outlined

at the end of section 1.3 with comparable degrees of precision and accuracy. Since, as

argued before, quantum computers are more versatile, we employed them to realize the

experiments described in chapter 3.

IBM provides access to backends: either simulators or real quantum devices that do

quantum computations. At the time our work took place, IBM’s open services portfolio

consisted of six backends. Our computations were carried out in the ibm_oslo back-

end–a seven-qubit system of processor type Falcon r5.11H25 with the H-shaped qubit

connectivity graph shown in figure 1.3. This diagram illustrates how the actual super-

conducting qubits are connected in the physical quantum processor: qubit 0 is coupled

only to qubit 1, which in turn is linked to qubits 0, 2, and 3, and so forth. Qubit connec-

tions are relevant when considering what quantum gates to act on qubit pairs. For the

experiments presented in section 3.3, only two qubits were required, for which qubits

0 and 1 were chosen. We selected ibm_oslo for our calculations in a trade-off between

its workload and its average decoherence times in comparison to the other backends.

For qubit 0, T1 and T2 averaged 142µs and 101µs, respectively, whereas for qubit 1 they

averaged 135µs and 26µs during data recollection.

In accordance to DiVincenzo’s fourth criterion, each quantum system is characterized

by a universal set of basis gates that can operate on either individual qubits or pairs

of qubits. In particular, ibm_oslo could realize the following operations: the X gate, a

Pauli σx operator; SX, the square root of σx, which in the basis of σz is represented as

SX=
1

2

1 + i 1− i

1− i 1 + i

; (1.21)

RZ(α), a rotation of the form exp(−iασz/2); the identity gate ID; as well as the two-

qubit controlled X gate, CX, which can be applied on the connected pairs of qubits in

figure 1.3 and has the representation

CX=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

. (1.22)

25. See the IBM Quantum processor types website for details.
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Figure 1.3: Qubit connectivity graph for the ibm_oslo backend. Credit: IBM Quantum.

Whenever a different operation, either not listed in the foregoing or not existing for

an unconnected pair of qubits, is demanded of the backend, a transpilation process

rewrites it in terms of the physically available gates. If the transpiler returns gate se-

quences longer than those present in the original circuit, the total run time increases,

as does the decoherence probability commensurately. The results of a circuit run are

obtained through measurements of the Pauli operator σz = |0⟩⟨0| − |1⟩⟨1| on each qubit

(DiVincenzo’s fifth criterion). Each measurement is stored as a count of either the |0⟩
state or the |1⟩ state.

To close this chapter, let us introduce a critical parameter of interest for quantum

computations: the number of shots, defined as the number of times a circuit is executed

on a quantum system. This parameter “determines the precision of the output probabil-

ity distribution over repeated executions”. Each shot is a realization of the circuit. The

ibm_oslo backend admitted experimental runs with up to 20 000 shots. Each run with a

given number of shots is called an experiment. Free users of IBM’s quantum systems can

queue a maximum of 100 experiments at a time. A collection of experiments comprises

a job. Naturally, the computation time grows with the number of shots, so the total

number of shots in a job can represent a bottleneck for the realization of several exper-
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iments in series. It is desirable, hence, to assess the minimal number of shots needed

to obtain an intended precision in the output probability distribution. To make an ed-

ucated estimation thereof, we turned to inferential statistics.26 Let ζ be the outcome

of each measurement, which is a random variable following a Bernoulli distribution

because it answers a yes-no question. For p the (unknown) probability of measuring |1⟩
and 1− p the probability of |0⟩, the expected value of ζ is p and its standard deviation√
p(1− p). Given a large number of samples (i.e., shots), n, the sample mean follows

a normal distribution with mean p and standard deviation
√
p(1− p)/n. A confidence

interval for the mean of ζ at a level of confidence c is a range of values wherein p lies

with probability c, and reads[
p̂− z 1−c

2

√
p(1− p)

n
, p̂+ z 1−c

2

√
p(1− p)

n

]
. (1.23)

In the above equation, p̂ stands for an estimator for the mean of ζ, whereas z 1−c
2

denotes

the critical value at confidence level c for a confidence interval of N(0, 1), the normal

distribution with mean 0 and standard deviation 1. The error in the mean of ζ can be

approximated as

E ≈ z 1−c
2

√
p(1− p)

n
. (1.24)

By inverting this relation, we get a formula for the number of shots as a function of the

confidence level, the desired error, and the mean. Since the mean is unknown, we can

find a bound for the number of shots: the standard deviation has a maximum at p = 1/2,

so our approximate number of shots becomes

n ≈
(z 1−c

2

2E

)2

. (1.25)

For a 95% confidence interval, the critical value is known to be z0.025 = 1.96. An error

between 2% and 3% can be achieved appropriately with 1100-2400 shots. We chose

n = 2000 for the experiments reported in chapter 3.27

26. See, e.g., chapter 7 of [137], especially section 7.5, or [138] for references on this topic.

27. A 2020 survey by Patel et al. [139] compared how different IBM quantum systems perform with

different settings at various standard computational tasks. Its observations represent invaluable

practical information for IBM Quantum users.
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Chapter 2

Pure and Mixed State Tomography Pro-

tocols

This chapter presents two quantum state tomography protocols–one for pure states,

the other for mixed states. The former is accompanied by an experimental setup that

can readily generate arbitrary, pure, path-polarization states. A preliminary version

of this proposal was explored in [140]. The final version was published as [44], on

which part of this chapter is heavily based. The second protocol, valid for arbitrary,

mixed, path-polarization states, generalizes the first one. It is followed by a necessary

digression on how to ensure positive semidefiniteness in the reconstructed mixed states

via maximum likelihood estimation. Afterwards, the results of experimentally testing

the pure state generation and characterization procedures speak for their usefulness and

applicability. The final section addresses the number of measurements required for the

pure state protocol, the centrality of the purity assumption, and the indirect character

of the reconstruction schemes.

2.1 Pure State Generation and Tomography

2.1.1 State Generation

Consider a source of coherent, polarized light, such as a laser beam or single photons.

Its polarization state can be described as a linear combination of horizontal and vertical

polarization states, |h⟩ and |v⟩, which constitute a basis for a polarization qubit’s Hilbert

space. Upon entering an interferometer, the light’s path state is written as a combination

of |x⟩ and |y⟩ (x and y being labels for each path), a basis for the path qubit’s respec-
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tive Hilbert space. Thus, a pure, path-polarization state can be expressed in the tensor

product basis {|x⟩, |y⟩} ⊗ {|h⟩, |v⟩} = {|x⟩ ⊗ |h⟩, . . .} = {|xh⟩, . . .} and is of the form

α eiϕα|xh⟩+ β eiϕβ |xv⟩+ γ eiϕγ |yh⟩+ δ|yv⟩, (2.1)

with α2 + β2 + γ2 + δ2 = 1. Such a state depends on 6 real parameters because the

amplitudes must satisfy the normalization condition and the physical content in the

state is independent of its global phase.

Figure 2.1: Proposed setup for preparing and measuring arbitrary pure states. In the

preparation stage, a vertically polarized state travels along path y and undergoes a

quarter-half-quarter (QHQ) polarization transformation. The resulting state passes

through a polarizing beam displacer (PBD), which separates it along two paths in accor-

dance with its polarization: the horizontal component is shifted towards path x, whereas

the vertical component continues along path y. Each path contains a QHQ device set at

specific angles (see equations 2.3), which prepare the state in equation 2.4. The state

then enters the measurement stage, wherein it is acted upon by a half-wave plate on

each path. Depending on their angles, the second PBD will combine the light in both

paths accordingly. The x-arm exit presents a standard polarization tomography device

(Q and H plates followed by a polarizer, P ). The measurements are recorded, in a laser

light experiment, by a power meter (PM), which completes the arrangement.

The above state can be prepared in the setup shown in figure 2.1. First, light in the

state |yv⟩ is submitted to two quarter-wave plates (Q) and a half-wave plate (H), which

are labelled A in figure 2.1. The wave plates act on incident light as the polarization-
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space linear operators

Q(α) =
1√
2
[(1− i cos 2α)|h⟩⟨h| − i sin 2α(|h⟩⟨v|+ |v⟩⟨h|) + (1 + i cos 2α)|v⟩⟨v|] ,

(2.2a)

H(β) = −i[cos 2β(|h⟩⟨h| − |v⟩⟨v|) + sin 2β(|h⟩⟨v|+ |v⟩⟨h|)], (2.2b)

where α and β are the angles made by the plates’ fast axes with respect to the vertical

direction. The resulting state enters a polarizing beam displacer, PBD for short, which

transmits (displaces) vertically (horizontally) polarized light. Two new QHQ devices,

labelled B and C, operate on the separate light beams. If the three QHQ gadgets have

their angles set to

A : Q
(π
4

)
H

(−4θ1 − ϕβ + ϕγ − ϕα − 2π

8

)
Q
(π
4
− θ1

)
, (2.3a)

B : Q
(π
4

)
H

(
2ϕ2 + ϕβ − ϕα

4

)
Q
(
ϕ2 −

π

4

)
, (2.3b)

C : Q
(π
4

)
H

(−2ϕ1 − ϕγ

4

)
Q
(
−ϕ1 −

π

4

)
, (2.3c)

where the rightmost plate acts first, we can show straightforwardly that the resulting

state is

sin θ1 sinϕ2 e
iϕα|xh⟩+sin θ1 cosϕ2 e

iϕβ |xv⟩+cos θ1 cosϕ1 e
iϕγ |yh⟩+cos θ1 sinϕ1|yv⟩. (2.4)

Up to normalization and global phase, equation 2.4 represents the most general pure,

two-qubit state. It is worth mentioning that fewer wave plates can be sufficient and,

most importantly, preferable, when only states that depend on fewer parameters are

required.

2.1.2 State Tomography

Before presenting the tomography protocol for two-qubit, pure states, I will briefly

review standard (single-qubit) polarization tomography. Consider a general polarization

state of the form

|ξ⟩ = c1|h⟩+ c2e
ic3 |v⟩, (2.5)

with c1,2,3 ∈ R, and its equivalent density matrix ρξ = |ξ⟩⟨ξ|. Its characterization requires

a quarter- and a half-wave plate set to β and α, respectively, followed by a polarizer
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and a detector. The measured quantities (either laser intensities or photon counts) are

proportional to

I(α, β) = Tr
(
P (0)H(α)Q(β)ρξQ

†(β)H†(α)
)
, (2.6)

where P (0) = |h⟩⟨h| stands for a polarizer that projects incident polarization onto the

horizontal state. By choosing α and β conveniently, we find that the four quantities

ih = I(0, 0) = c21, (2.7a)

iv = I(π/4, 0) = c22, (2.7b)

id = I(π/8, π/4) = 1

2
(c21 + c22 + 2c1c2 cos c3), (2.7c)

ir = I(−π/8, 0) = 1

2
(c21 + c22 + 2c1c2 sin c3), (2.7d)

suffice to reconstruct |ξ⟩. We call them the horizontal, vertical, diagonal, and right-circular

components of |ξ⟩. The amplitudes are equal to the square roots of ih and iv; the sign

between them is fixed by the phase

c3 = tan−1

(
2 ir − ih − iv
2 id − ih − iv

)
. (2.8)

The signs of the numerator and denominator of equation 2.8 remove any ambiguity in

the calculation of c3. If, for instance, 2 ir − ih − iv = 0, the sign of 2 id − ih − iv decides

whether c3 = 0 or c3 = π.

Having prepared the state in equation 2.4, the measurement stage shown in figure 2.1

serves to characterize it completely. First, two separate half-wave plates, one in each arm,

act on the state. Thereupon, it enters a second PBD and thus exits the interferometer.

The angles φ and χ of the respective half-wave plates in the x- and y-arms determine

what is measured in the x-arm exit of the second PBD; the other two exits are led to

beam dumps. Just as in the single qubit case, the final state is acted on by quarter- and

half-wave plates, then by a polarizer, and finally a detector. The measurements done on

the exit beam and the subsequent state reconstruction process are described in the rest

of this section.

For clarity’s sake, consider the most general, pure, two-qubit state:

|ψ⟩ = α eiϕα|xh⟩+ β eiϕβ |xv⟩+ γ eiϕγ |yh⟩+ δ eiϕδ |yv⟩. (2.9)

In order to identify it without any extra information,1 we must ascertain the four am-

plitudes as well as the 6 possible relative phases. Let us submit |ψ⟩ to the measuring

1. In contrast to Gonzales et al.’s protocol [75].
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device in figure 2.1. The state |ψ⟩x that results from projecting on the x-arm after the

second PBD is

|ψ⟩x = |x⟩
[(
eiϕγγ cos 2χ+ eiϕδδ sin 2χ

)
|h⟩+

(
−eiϕββ cos 2φ+ eiϕαα sin 2φ

)
|v⟩
]
. (2.10)

Suppose, without any loss of generality, that we work with a beam of coherent laser

light. When the half-wave plates at the beginning of the measurement stage are set to

φ = 0 and χ = π/4, then the intensities which correspond to equations 2.7–i.e., which

are obtained with the final quarter- and half-wave plates set at the respective angles–are

proportional to

i1 = δ2, (2.11a)

i2 = β2, (2.11b)

i3 =
1

2

(
β2 + δ2 − 2βδ cos(ϕβ − ϕδ)

)
, (2.11c)

i4 =
1

2

(
β2 + δ2 − 2βδ sin(ϕβ − ϕδ)

)
. (2.11d)

If instead the angles are φ = π/4 and χ = 0, the corresponding intensities are

i5 = γ2, (2.12a)

i6 = α2, (2.12b)

i7 =
1

2

(
α2 + γ2 + 2αγ cos(ϕα − ϕγ)

)
, (2.12c)

i8 =
1

2

(
α2 + γ2 + 2αγ sin(ϕα − ϕγ)

)
. (2.12d)

The diagonal and right-circular components become, for φ = χ = π/4,

i9 =
1

2

(
α2 + δ2 + 2αδ cos(ϕα − ϕδ)

)
, (2.13a)

i10 =
1

2

(
α2 + δ2 + 2αδ sin(ϕα − ϕδ)

)
, (2.13b)

whereas for φ = χ = 0 they take the forms

i11 =
1

2

(
β2 + γ2 − 2βγ cos(ϕβ − ϕγ)

)
, (2.14a)

i12 =
1

2

(
β2 + γ2 − 2βγ sin(ϕβ − ϕγ)

)
, (2.14b)

respectively. In the last two configurations (equations 2.13 and 2.14), the horizontal and

vertical components are equal to i1,2,5,6, so they do not provide additional information.

By direct inspection, the absolute values of the four amplitudes, α, β, γ, and δ, are found
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to be equal to the square roots of i6, i2, i5 and i1. This way, the normalization condition,

α2 + β2 + γ2 + δ2 = 1 acquires a functional meaning: any measured intensity must

be divided by i0 = i1 + i2 + i5 + i6 so as to correspond to i1,...,12. The prescription for

computing four relative phases completes the protocol:

ϕβ − ϕδ = tan−1

(
2 i4 − i2 − i1
2 i3 − i2 − i1

)
, (2.15a)

ϕα − ϕγ = tan−1

(
2 i8 − i6 − i5
2 i7 − i6 − i5

)
, (2.15b)

ϕα − ϕδ = tan−1

(
2 i10 − i6 − i1
2 i9 − i6 − i1

)
, (2.15c)

ϕβ − ϕγ = tan−1

(
2 i12 − i2 − i5
2 i11 − i2 − i5

)
, (2.15d)

where the same caveat applies as for c3 in equation 2.8. The other relative phases are

obtained by subtracting conveniently the above equations: ϕα−ϕβ = (ϕα−ϕδ)−(ϕβ−ϕδ)

and ϕδ − ϕγ = (ϕα − ϕγ)− (ϕα − ϕδ).

A final comment on the question of optimality is in order. At first sight, it might

seem as if intensities i1,...,10 suffice to complete the protocol–after all, only 3 phases are

necessary to determine the state completely. However, suppose that we were given an

unknown state with one amplitude equal to zero, e.g., δ = 0. In this case, it would not

be possible to use equations 2.15a and 2.15c to compute ϕβ −ϕδ and ϕα−ϕδ (and, from

them, ϕα − ϕβ) because both the numerator and denominator of the inverse tangents’

arguments would equal zero. That the three determinate phases of this state can be

obtained from equations 2.15b and 2.15d illustrates the necessity of measuring twelve

intensities to reconstruct arbitrary, unknown states.

2.2 Mixed State Tomography

2.2.1 Tomography Proposal

In practice, all quantum states are mixed, for no degree of freedom evolves perfectly

isolated from the influence of any other degree of freedom. Yet, depending on the con-

text, the states produced in a laboratory can be safely considered pure. For instance,

whenever the laser source is stable, monochromatic, and linearly polarized, any addi-

tional polarization and wavelength modes are effectively suppressed, so it is reasonable
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to assume state purity and use a protocol such as the one presented in section 2.1.2

in order to characterize the state. The degree to which this assumption is valid can

be assessed by comparing experimental results to the theoretical predictions [34, 35,

75]. In contrast, settings wherein, e.g., photon-pair production takes place are prone to

involve additional unwanted modes, which can undermine the purity assumption. The

need becomes apparent in such cases to assume that the state is mixed and employ an

appropriate tomography scheme.

Regarding our path-polarization states, for them to be mixed means that their matrix

representation in, say, the {|x⟩, |y⟩} ⊗ {|h⟩, |v⟩} basis has the general form

ρ0 =


c1 c5 + ic6 c7 + ic8 c9 + ic10

c5 − ic6 c2 c11 + ic12 c13 + ic14

c7 − ic8 c11 − ic12 c3 c15 + ic16

c9 − ic10 c13 − ic14 c15 − ic16 c4

, (2.16)

where c1,...,16 are real numbers, c1,2,3,4 are positive, and they satisfy

Tr ρ0 = c1 + c2 + c3 + c4 = 1, and Tr ρ20 ≤ 1. (2.17)

Such a state can be characterized from 16 measurements made with the device shown

in figure 2.2. The action of quarter- and half-wave plates placed in both arms produces

different combinations of the components of the state ρ0, which enter the second PBD.

The resulting state is

ρ1 = H(ηy)Q(λy)H(ηx)Q(λx)ρ0Q
†(λx)H

†(ηx)Q
†(λy)H

†(ηy), (2.18)

where the respective path-space projector operators (Px = |x⟩⟨x| , Py = |y⟩⟨y|) are im-

plicit. As the state exits the second PBD, the y- and z-arms lead to beam dumps. We

project along the x-arm and place quarter- and half-wave plates followed by a polarizer

set to horizontal. Thereafter, the measurements can be recorded with either a power

meter (for experiments with laser light) or a single photon counter (in the case of quan-

tum light). The detected quantity is proportional to the only non-vanishing component

of the operator

ρ2 = PhH(ν)Q(µ)PxOPBD ρ1O
†
PBDPxQ

†(µ)H†(ν)Ph, (2.19)

where OPBD represents the action of the beam displacer.
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Figure 2.2: Proposed setup for mixed state tomography. An arbitrary path-polarization

state ρ0 enters the measurement device, which consists of Q and H plates in each path,

a polarizing beam displacer, Q and H plates, a linear polarizer, and a detector (either

a power meter or a photon counter). Different wave plate configurations result in 16

measurements that serve to reconstruct the incident state.
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Denote by ni the coincidence count, in a photonic experiment, of a given configura-

tion of the angles λx/y, ηx/y, µ, and ν. The settings shown in table 2.1 yield coincidences

that are functions of the state parameters. Said functions are

n1 = c3, n2 =
1

2
(c2 + c3 − 2c12), n3 =

1

2
(c2 + c3 + 2c11),

n4 = c2, n5 = c1, n6 =
1

2
(c1 + c2 + 2c5), n7 =

1

2
(c1 + c2 + 2c6),

n8 = c4, n9 =
1

2
(c1 + c3 + 2c8),

n10 =
1

4
(c1 + c3 + 2c4 + 2c8 − 2c9 + 2c10 + 2c15 + 2c16),

n11 =
1

4
(c1 + c3 + 2c4 + 2c8 + 2c9 + 2c10 + 2c15 − 2c16),

n12 =
1

4

(
3c2 + c4 + 2c13 − 2

√
2c14

)
, n13 =

1

2
(c1 + c4 + 2c10),

n14 =
1

2
(c2 + c4 + 2c14), n15 =

1

2
(c1 + c3 − 2c7),

n16 =
1

4

(
c1 + c2 + c3 + c4 − 2c7 + 2c14−

√
2(c5 + c6 − c9 + c10 − c11 + c12 + c15 − c16)

)
.

(2.20)

After inverting the previous expressions, we find that the parameters as functions of the

coincidences make up the system

c1 = n5, c2 = n4, c3 = n1, c4 = n8,

c5 =
1

2
(2n6 − n4 − n5), c6 =

1

2
(2n7 − n4 − n5),

c7 =
1

2
(n1 + n5 − 2n15), c8 =

1

2
(2n9 − n1 − n5),

c9 =
1

2

(
n1 − n2 − n3 − n5 + n6 + n7 − n8 − n9 + 2n11 −

√
2n14 −

√
2n15 + 2

√
2n16

)
,

c10 =
1

2
(2n13 − n5 + n8), c11 =

1

2
(2n3 − n1 − n4),

c12 =
1

2
(n1 + n4 − 2n14), c13 =

1

2

(
4n12 + 2

√
2n14 −

(
3 +

√
2
)
n4 −

(
1 +

√
2
)
n8

)
,

c14 =
1

2
(2n14 − n4 − n8), c15 =

1

2
(n5 − n8 − 2n9 + 2n10 + 2n11 − 2n13),

c16 =
1

2

(
n1 − n2 − n3 − n5 + n6 + n7 − n8 − n9 + 2n10 −

√
2n14 −

√
2n15 + 2

√
2n16

)
,

(2.21)

which completes the prescription for reconstructing an arbitrary, mixed, path-polarization

state.
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Q(λx) H(ηx) Q(λy) H(ηy) Q(µ) H(ν)

n1 0 0 0 0 0 π/4

n2 0 0 0 0 π/4 π/8

n3 0 0 0 0 0 π/8

n4 0 π/4 0 0 0 0

n5 0 π/4 0 0 0 π/4

n6 0 π/4 0 0 π/4 π/8

n7 0 π/4 0 0 0 −π/8
n8 π/4 0 0 π/4 0 0

n9 π/4 0 0 π/4 0 π/4

n10 π/4 0 0 π/4 π/4 −π/8
n11 π/4 0 0 π/4 0 −π/8
n12 π/4 0 π/8 0 0 0

n13 π/2 π/4 0 π/4 0 −π/8
n14 π/4 π/8 π/4 π/4 0 0

n15 π/4 π/8 π/4 π/4 0 π/4

n16 π/4 π/8 π/4 π/4 π/4 π/8

Table 2.1: Tomography angles of the plates in the measurement device (see fig-

ure 2.2) for the coincidence measurements ni that determine an arbitrary, mixed, path-

polarization state.
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2.2.2 Maximum Likelihood Estimation

Unfortunately, the states produced by the mixed state tomography protocol are not

always physical. Any set of positive numbers {ni}i=1,...,16 yields, via equations 2.21 and

2.16, a Hermitian, unit-trace matrix. For it to represent a physical state, said matrix

must also have non-negative eigenvalues–i.e., it must be positive semidefinite. Due

to random fluctuations in the measured counts, matrices with negative eigenvalues

are likely to arise–especially when the target states have a high degree of purity [68],

which implies that most of their eigenvalues are close to zero. The customary approach

towards this problem [65, 68, 141–143] boils down to finding a matrix T (ti=1,...,16),

whose parameters depend on the measured data {ni}, such that

ρp(ti) =
T †(ti)T (ti)

Tr(T †(ti)T (ti))
(2.22)

is a physical state by construction. The question of how to determine the parameters ti

that best correlate to the data can be answered by the maximum likelihood estimation

(MLE) procedure to which this section is devoted.

Following James et al. [68], let ρ be the theoretical density matrix of the state gen-

erated in the experimental setup that precedes the arrangement depicted in figure 2.2.

The state

ρ(λx,λy ,ηx,ηy)=(OPBDH(ηx)Q(λx)H(ηy)Q(λy))ρ(OPBDH(ηx)Q(λx)H(ηy)Q(λy))
† (2.23)

exits the interferometer, is projected along path x, and traverses the wave plates Q(µ),

H(ν), and a horizontally-oriented polarizer, thereby yielding the expected counts

nζ = Tr
(
|xh⟩⟨xh|H(ν)Q(µ)ρ(λx,λy ,ηx,ηy)Q(µ)

†H(ν)†
)
, (2.24)

whose experimental counterparts are
{
n(exp)
ζ

}
, with ζ = (λx, λy, ηx, ηy, µ, ν) an index

that runs from 1 to 16 (cf. equation 2.6). If, by hypothesis, all measurements occur

independently from each other and the errors in each measurement follow a Gaussian

distribution, then the probability that the matrix ρ could produce the 16 measured

coincidences is proportional to

16∏
ζ=1

exp

−
(
nζ − n

(exp)
ζ

)2
2σ2

ζ

, (2.25)
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with the standard deviation of each Gaussian approximated by σζ =
√
nζ . Additionally,

consider the density matrix in equation 2.22 with T (ti) given, for instance, by the lower

triangular matrix

T (ti) =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

, (2.26)

and the expected coincidence counts by

n
(t)
ζ = Tr

(
|xh⟩⟨xh|H(ν)Q(µ)ρp(t1, . . . , t16)Q(µ)

†H(ν)†
)
. (2.27)

Then, the probability that ρp(t1, . . . , t16) produces the measured counts is

P =
1

N0

16∏
ζ=1

exp

−
(
n
(t)
ζ − n

(exp)
ζ

)2
2σ2

ζ

. (2.28)

Maximizing P is equivalent to minimizing

L =
16∑
ζ=1

[
Tr
(
|xh⟩⟨xh|H(ν)Q(µ)ρp(t1, . . . , t16)Q(µ)

†H(ν)†
)
− n

(exp)
ζ

]2
2σ2

ζ (t1, . . . , t16)
, (2.29)

the so-called likelihood function, where σζ(t1, . . . , t16) =
√
n
(t)
ζ . Given a data set

{
n
(exp)
ζ

}
,

the function L can be readily minimized with a numerical optimization algorithm. The

ti which minimize L are then inserted into T (ti), from where the desired physical state

follows via equation 2.22.

Finally, a word of caution about maximum likelihood estimation. It has been pointed

out [144] that MLE frequently results in matrices with one or more zero eigenvalues,2

which implies that some measurement outcomes will never occur. Such an absolute

implication conflicts with the inherent uncertainty of experimental data. In addition,

MLE turns out single states (so-called point estimates) and no meaningful confidence

region for them [145]. It has also been shown [146] that MLE and, more generally, any

other estimator which imposes physicality is biased and will thus introduce systematic

errors in quantities such as fidelity, bipartite negativity, and Fisher information that

are derived from its output. From a mathematical standpoint, as a consequence of the

2. As in, most prominently, the example presented in the seminal paper [68].
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asymptotic normality property, the MLE estimator will not be a good approximation to

the real state when the latter is pure.3 Fortunately, there exist proposals that tackle these

flaws: Bayesian mean estimation returns a matrix with no zero eigenvalues and with

error bars [144]; likelihood-ratio confidence regions generalize error bars for single

point estimates [145]. Simple linear inversion (e.g., equations 2.21) is an unbiased

estimator, so its use, when applicable, skirts systematic errors. Moreover, regardless of

their physicality, matrices obtained via linear inversion can produce useful bounds for

information-theoretic quantities [146]. All of which is to say that, while useful for fixing

non-positive semidefinite results, MLE should be used judiciously where appropriate

and its shortcomings should be addressed.

2.3 Experimental Realization and Results

As reported in [44], my colleagues and I put the pure state tomography protocol to test

by using as a state source a linearly-polarized HeNe laser (633 nm) with output power

of 11.5 mW. We prepared three sets of states with either the state generation device

of section 2.1.1 or simpler wave plate setups. Afterwards, we followed the prescription

of section 2.1.2 to measure the required intensities and reconstruct the states. It is

important to note that, before each intensity measurement, we had to offset a path-

difference phase by slightly realigning the second polarizing beam displacer. The results

presented in this section were obtained from eight repetitions of each experiment. The

uncertainties in the parameters were calculated as
√
σ2
a + σ2

s , where σa is the propagated

error made in reading the angles off the plates’ mounts, and σs is the standard deviation

of the eight measurements. We employed the squared fidelity between a target state

and its experimental reconstruction,

F2(|ϕtarget⟩⟨ϕtarget| , |ϕexp⟩⟨ϕexp|) = |⟨ϕtarget|ϕexp⟩|2, (2.30)

as a figure of merit for our results.

We first produced the Bell state

|Φ+⟩ = 1√
2
|xh⟩+ 1√

2
|yv⟩. (2.31)

3. See, e.g., [64], in particular section 3, for more details on the asymptotic properties of MLE and

several other state estimators.
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Figure 2.3: Experimentally reconstructed amplitudes of the Bell state |Φ+⟩. The theoret-

ical values are shown with dashed lines and correspond to α = δ = 1/
√
2 ≈ 0.71 and

β = γ = 0. Experimental values are shown as solid bars, atop of which a small error bar

illustrates the uncertainty in each parameter.

States in the Bell basis play a central role in quantum information processing. Hence,

testing new techniques with them is standard practice. This particular state has only one

determinate relative phase, ϕα−ϕδ = 0 in the notation of section 2.1.2. Our experiments

yielded an average value of ϕα − ϕδ = 0◦ ± 7◦. Within experimental precision, this result

matches the theoretical value satisfactorily. As for the amplitudes, they are shown in

figure 2.3, where we can see that they, too, are within experimental precision from the

theoretical values. Furthermore, the squared fidelity between |Φ+⟩ and its experimental

counterpart was found to be F2 = 0.994± 0.062, another excellent fit.

For our second test, we prepared the state

|Ψ⟩ = 1

2
ei

9π
10 |xh⟩+ 1

2
e−i 2π

5 |xv⟩+ 1

2
ei

π
2 |yh⟩+ 1

2
|yv⟩ (2.32)

with the arrangement described in section 2.1.1. In this case, no parameter vanishes:

all basis states have the same weight, whereas the relative phases are all different and

non-vanishing. Indeed, we note that ϕα − ϕδ = 9π/10 = 162◦, ϕβ − ϕδ = −2π/5 = −72◦,

and ϕγ − ϕδ = π/2 = 90◦. The remaining relative phases are redundant, but they

can be, in any case, immediately computed from the given ones. Figure 2.4 compares

the theoretical and experimental phases, indicating again good agreement, to within
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Figure 2.4: Experimentally reconstructed amplitudes (top) and relative phases (bottom)

of the state |Ψ⟩. The theoretical amplitudes, each equal to 0.5, are indicated with dashed

lines, as are the theoretical relative phases ϕα − ϕδ = 9π/10 = 162◦, ϕβ − ϕδ = −2π/5 =

−72◦, and ϕγ − ϕδ = π/2 = 90◦. The experimental values are shown as bars with solid

lines; their uncertainties are given by the small error bar atop each bar.

experimental precision; it also displays the reconstructed amplitudes and how well they

match the predictions. Fidelity calculations show that the prepared state largely agrees

with the target state: F2 = 0.986± 0.044.

For our last case, we studied a family of states that are functions of one variable angle.

Incidentally, the tested states can be used to simulate the dynamics of an open system

that interacts with an environment. Either the path or polarization qubit can play either

role. In the case that concerns us, the simulated dynamics corresponds to the so-called

amplitude-damping channel, which represents an energy loss process from a system
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Figure 2.5: Experimentally reconstructed amplitudes (top) and non-vanishing relative

phases (bottom) of the state |Γ⟩ as functions of the angle ζ. The dashed and solid lines

show the parameters’ theoretical values; the constant amplitudes are α = 1/
√
2 ≈ 0.71

and δ = 0, whereas the phases are ϕβ − ϕα = π = 180◦ and ϕγ − ϕα = 0◦. Each marker

with its respective error bar indicates a experimental result and its uncertainty. The error

bars for both ϕβ − ϕα and ϕγ − ϕα become infinite when ζ = 0◦ and 45◦.

to its noisy environment, e.g., photon emission by a two-level atom.4 This process is

schematically described by the transition |1⟩S|0⟩E → √
1− η|1⟩S|0⟩E +

√
η|0⟩S|1⟩E. Here,

one excitation goes from the system (S) to the environment (E) at a so-called damping

rate given by the probability η that the photon is emitted. The previous digression

4. See, e.g., section 8.3.5 of [72] for more details on the damping channel.
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notwithstanding, the target states we prepared were of the form

|Γ⟩ = 1√
2
|xh⟩ − 1√

2
cos 2ζ|xv⟩+ 1√

2
sin 2ζ|yh⟩. (2.33)

In this family of states, one amplitude is 1/
√
2, another is zero, and the other two vary

with ζ; with regard to the relative phases, only ϕβ − ϕα = π = 180◦ and ϕγ − ϕα = 0◦

are relevant. Figure 2.5 presents the results of applying the tomography protocol to 9

samples of the state |Γ⟩, with ζ ∈ [0, π/4]. As before, the experimental states mostly

comport to their theoretical counterparts. We found that the squared fidelities between

target states and their respective experimental states ranged from F2 = 0.984 ± 0.080

to F2 = 0.994 ± 0.089. In figure 2.5, two cases seem to show major discrepancies

between prediction and reconstruction. However, when inspected closely, an explanation

becomes apparent: for ζ = 0◦, the target state is |Γ⟩ = |x⟩ ⊗ (|h⟩ − |v⟩)/
√
2, which

has two indeterminate phases, ϕγ and ϕδ, whereas for ζ = 45◦ the state takes the

form |Γ⟩ = (|x⟩ + |y⟩) ⊗ |h⟩/
√
2, for which ϕβ and ϕδ are indeterminate. Randomly

varying experimental measurements occur concomitantly with indeterminate phases in

the theoretical states. The conspicuous standard deviations in figure 2.5 are a natural

consequence thereof.

2.4 Discussion

We have demonstrated a tomography protocol that requires no estimation postprocess-

ing because the states produced from its 12 measurements are physical by construction.

This procedure can be simplified if, after a few initial measurements, the experimentalist

concludes that either no amplitude is zero or which amplitude is zero.5 In the former

case, 10 measurements are necessary: 4 for the amplitudes, 6 for the three non-redundant

determinate phases (see equations 2.11–2.14). In the latter, the indeterminate phases

can be discounted, and the state can be characterized with 10 measurements (as in

the case of |Γ⟩) or just 8 (e.g., the Bell state |Φ+⟩). Although Heinosaari et al. [74]

had the purity assumption in mind when they referred to “prior information”, our pure

state scheme can, under adequate prior information, reconstruct states from even less

measurements than the minimum of 9 proved by them.

5. See footnote 5 in [147] for a simple example of this in the description of spin states.

43



The purity assumption, despite not addressing states in all their generality, is of

paramount importance for quantum information theory and tomography. So-called

quantum state verification protocols are designed to certify whether or not a given

state is the target state [148–150]. In certain information-theoretical scenarios where

one party wishes to fool such a protocol, it can be proved that said party cannot benefit

from employing mixed states [151]. On the other hand, numerical simulations have

shown that if, instead of having an estimation algorithm performed on them, recon-

structed multi-qubit density matrices are forced to be pure (i.e., their highest eigenvalue

is set to 1 and the rest to 0), then their fidelity with respect to their target states is

comparable to that between the latter states and the ones estimated via maximum likeli-

hood, an enormously more expensive procedure than forcing purity [152]. These results

underscore the importance of the purity assumption on economic grounds. The study

of and interest in pure states is, therefore, more than justified.

Both the pure and mixed state tomography proposals presented in this chapter are

of an indirect nature. In the pure case, equations 2.11–2.14 give access separately

to both the squared amplitude and phase of the complex coefficients in the general

wave function of equation 2.9, whereas the mixed protocol prescribes 16 measurements

(equations 2.20) that must be combined in elaborate ways (equations 2.21) in order

to produce the target state (equation 2.16). Lundeen et al.’s direct state measurement

scheme for pure states [87] was not a tomography protocol, on account of its lack of

universality [89]. Gross et al.’s analysis of this procedure [96] rebutted its claimed

directness: individual amplitudes cannot be reconstructed without knowing the normal-

ization constant, which requires full knowledge of the amplitudes. Still, Lundeen et al.’s

technique does provide the ratios between amplitudes directly. For their part, Zhu et al.

[92] contended that their modified direct state tomography is an actual direct method.

In any event, as the literature illustrates, such claims should always be evaluated with

care.
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Chapter 3

Weak Values and State Characterization

with Strong Measurements

This chapter first derives a proposal (based on the works of Denkmayr et al. [45,

46]) for characterizing the weak values of a Pauli spin operator via measurements not

constrained to the weak interaction regime. Then, two implementations of said scheme

are outlined: one in an all-optical laboratory setting, the other in a quantum computa-

tional context; the latter account includes an associated state measurement protocol.

The proposal’s realization in IBM’s quantum systems is described before expounding the

results and contrasting them with the theoretical predictions. To close, the place of this

work and its contributions to the field are discussed.

3.1 Weak Value Measurement Scheme

Consider two qubits a and b along with their respective bases {|0a⟩, |1a⟩} and {|0b⟩, |1b⟩}.

Without any loss of generality, let qubit a be the system of interest and qubit b the pointer

of a measurement apparatus. The act of measuring the observable σa
n can be described

by the unitary operator

U(ϵ) = exp
(
−iϵσa

n ⊗ σb
z

)
, (3.1)

where ϵ > 0 quantifies the strength of the system-pointer interaction, n is a real unit

vector, and

σa
n = n·σa, σa =

(
σa
x, σ

a
y , σ

a
z

)
, with

σa
x = |0a⟩⟨1a|+ |1a⟩⟨0a|,

σa
y = −i|0a⟩⟨1a|+ i|1a⟩⟨0a|,

σa
z = |0a⟩⟨0a| − |1a⟩⟨1a|,

(3.2)
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with σb
x,y,z defined similarly. In the so-called weak measurement regime,1 equation 3.1

is approximated as the lowest-order terms of its Taylor series expansion,

U(ϵ) ≈ 1a ⊗ 1b − iϵσa
n ⊗ σb

z +O(ϵ2). (3.3)

However, there exists a general closed-form formula for it, whose derivation, recently

outlined by De Zela [153], we elaborate here. First, let us write the exponential map as

a power series,

U(ϵ) = exp
(
−iϵσa

n ⊗ σb
z

)
=

∞∑
n=0

(
−iϵσa

n ⊗ σb
z

)n
n!

. (3.4)

We note that even powers of both spin operators are equal to the respective identity

operators,

(σa
n)

2k = 1a,
(
σb
z

)2k
= 1b, with k = 0, 1, . . . , (3.5)

and that odd powers result in the original operators,

(σa
n)

2k+1 = σa
n,

(
σb
z

)2k+1
= σb

z, with k = 0, 1, . . . , (3.6)

so we can split the power series in equation 3.4 into a sum over even powers and a sum

over odd powers,

U(ϵ) =
∞∑
k=0

(−iϵ)2k
(2k)!

1ab +
∞∑
k=0

(−iϵ)2k+1

(2k + 1)!
σa
n ⊗ σb

z. (3.7)

Even and odd powers of the imaginary unit i satisfy

(−i)2k = (−1)k, and (−i)2k+1 = −i(−1)k, (3.8)

which means that equation 3.7 reduces to the desired formula,

U(ϵ) =

(
∞∑
k=0

(−1)kϵ2k

(2k)!

)
1ab − i

(
∞∑
k=0

(−1)kϵ2k+1

(2k + 1)!

)
σa
n ⊗ σb

z

= cos ϵ− i sin ϵ σa
nσ

b
z, (3.9)

where in the last line the bipartite identity is implicit in the first term and we have

dropped the tensor product symbol. From the last step we can determine the domain of

the strength parameter. The sine and cosine power series are valid for all real numbers.

Since both functions have period 2π, we can restrict ϵ to the interval [0, 2π], which allows

1. For a detailed example of a weak measurement, see, e.g., section 1 of the supporting material for

[22].
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us in particular to study weak values under strong measurements. As a prelude for our

implementation proposals, we write out the b-space operators in equation 3.9, regroup

the terms conveniently, and employ the alluded closed-form, single-qubit exponential

formula to obtain:

U(ϵ) = cos ϵ(|0b⟩⟨0b|+ |1b⟩⟨1b|)− i sin ϵ σa
n(|0b⟩⟨0b| − |1b⟩⟨1b|)

= (cos ϵ− i sin ϵ σa
n) |0b⟩⟨0b|+ (cos ϵ+ i sin ϵ σa

n) |1b⟩⟨1b|

= exp (−iϵσa
n) |0b⟩⟨0b|+ exp (iϵσa

n) |1b⟩⟨1b|

≡ U †
a(n, ϵ)Π0b + Ua(n, ϵ)Π1b . (3.10)

Here, Ua(n, ϵ) and its Hermitian conjugate are unitary maps that act only on qubit a,

whereas the projectors Π0b,1b act on qubit b.

To measure the weak value ⟨σa
n⟩w, we must first prepare the preselection (system)

state |Ai⟩; the pointer state |Bi⟩ as, for instance, |+b⟩ ≡ 2−1/2(|0b⟩+ |1b⟩); and apply the

evolution operator to the initial joint state:

U(ϵ)|Ai⟩|Bi⟩ =
(
cos ϵ− i sin ϵ σa

nσ
b
z

)
|Ai⟩|+b⟩

= cos ϵ|Ai⟩|+b⟩ − i sin ϵ σa
n|Ai⟩|−b⟩, (3.11)

where |−b⟩ ≡ 2−1/2(|0b⟩− |1b⟩). Then we project the evolved state onto the postselection

state |Af⟩ coupled to an auxiliary pointer state, |Bf⟩, and rewrite the resulting expression

in terms of the weak value of interest:

⟨Af |⟨Bf |U(ϵ)|Ai⟩|Bi⟩ = cos ϵ⟨Af |Ai⟩⟨Bf |+b⟩ − i sin ϵ
〈
Af

∣∣σa
n

∣∣Ai

〉
⟨Bf |−b⟩

= ⟨Af |Ai⟩ (cos ϵ⟨Bf |+b⟩ − i sin ϵ ⟨σa
n⟩w⟨Bf |−b⟩). (3.12)

Let us now write the weak value, a complex number, in its algebraic form,

⟨σa
n⟩w = R + iI, (3.13)

and define the eigenvectors of σb
y as |rb⟩ ≡ 2−1/2(|0b⟩+ i|1b⟩), and |lb⟩ ≡ 2−1/2(|0b⟩− i|1b⟩).

By choosing six |Bf⟩ appropriately, simplifying equation 3.12, and squaring its norm,

we obtain the measurable quantities

|Bf⟩ = |+b⟩−→ i0 = |⟨Af |Ai⟩|2 cos2ϵ, (3.14a)

|Bf⟩ = |−b⟩−→ i1 = |⟨Af |Ai⟩|2 sin2ϵ |⟨σa
n⟩w|

2, (3.14b)
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|Bf⟩ = |0b⟩ −→ i2 =
1

2
|⟨Af |Ai⟩|2

[
(cos ϵ+ I sin ϵ)2 +R2 sin2ϵ

]
, (3.14c)

|Bf⟩ = |1b⟩ −→ i3 =
1

2
|⟨Af |Ai⟩|2

[
(cos ϵ− I sin ϵ)2 +R2 sin2ϵ

]
, (3.14d)

|Bf⟩ = |rb⟩ −→ i4 =
1

2
|⟨Af |Ai⟩|2

[
(cos ϵ+R sin ϵ)2 + I2 sin2ϵ

]
, (3.14e)

|Bf⟩ = |lb⟩ −→ i5 =
1

2
|⟨Af |Ai⟩|2

[
(cos ϵ−R sin ϵ)2 + I2 sin2ϵ

]
, (3.14f)

which we call intensities regardless of their physical meaning as light intensities, photon

coincidence counts, etc. By subtracting equations 3.14d and 3.14f from equations 3.14c

and 3.14e, respectively, we obtain

i2 − i3 = I|⟨Af |Ai⟩|2 sin 2ϵ, (3.15a)

i4 − i5 = R|⟨Af |Ai⟩|2 sin 2ϵ. (3.15b)

When it is feasible to solve equations 3.14a, 3.14b, 3.15a, and 3.15b for the squared

magnitude, real part, and imaginary part2 of ⟨σa
n⟩w (i.e., when the pre- and postselection

states are not orthogonal and sin 2ϵ ̸= 0), we find that

|⟨σa
n⟩w|

2 =
i1
i0
cot2ϵ, (3.16a)

R =
i4 − i5
2 i0

cot ϵ, (3.16b)

I =
i2 − i3
2 i0

cot ϵ. (3.16c)

These equations complete the prescription for determining weak values from measure-

ments of almost arbitrary strength. The model is periodic in ϵ with period π, so we will

further restrict our analysis to the interval ]0, π[. Evidently, the model breaks down when

ϵ = 0, π/2, and π. We will see in section 3.3 what consequences these divergences have

for the overall reconstructed weak values.

3.2 Implementation Proposals

3.2.1 All-Optical Setting

The foregoing proposal can be implemented in an all-optical setup that works with either

laser light or individual photons. This section explains how to carry out each stage–

2. Although equation 3.16a might seem redundant in the face of equations 3.16b and 3.16c, it is much

more practical for certain ends to use it to compute the weak value’s squared magnitude as a function

of just two intensities, instead of five.
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preselection, evolution, postselection, and measurement–in an arrangement recently

put forward by De Zela [154], which consists of three interferometers, of the type shown

in figure 3.1, in series. These interferometric setups, originally proposed by Englert

et al. [155], can each realize arbitrary, polarization-path unitary operations by using

appropriately-placed phase shifters, quarter-, and half-wave plates.3

Figure 3.1: Interferometric setup proposed by Englert et al. [155] that performs arbitrary,

two-qubit unitary transformations. Starting from the bottom left of the device, light

travels through either the horizontal (|0b⟩) or vertical (|1b⟩) path, or both, and is acted

on by specific unitary operators Vi,f,0,1, 50:50 beam splitters (BS), and mirrors (M).

After it exits the second BS and undergoes Vf , the desired two-qubit map is achieved.

Vi,f,0,1 can be implemented by at most one phase shifter and three wave plates.

In such an experimental setting, qubit a represents the polarization of light, with |0a⟩
(|1a⟩) the state of horizontal (vertical) polarization, whereas qubit b is the propagation

path, so that |0b⟩ (|1b⟩) stands for the horizontal (vertical) path. A linearly-polarized

state that propagates along a straight line usually plays the role of the initial state in

optical experiments. We will assume it to be |0a⟩|0b⟩, so that it enters the preselection

stage from the lower left port of figure 3.1. In general, the effect of such an array is

described by

UMZ = (VfΠ0b +Π1b)UBS (V0Π0b + V1Π1b)UM UBS (ViΠ0b +Π1b), (3.17)

3. The three-interferometer device is presented for illustrative purposes only. Much simpler settings

could certainly be devised that accomplish the same objective.
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where

UBS =
1√
2

(
1b + iσb

x

)
, (3.18a)

UM = −iσb
x (3.18b)

represent the beam splitter and mirror operators, respectively, and Vi,f,0,1 are U(2) trans-

formations in the space of qubit a. For concreteness, let us say that we wish to prepare

the state

|Ai⟩|Bi⟩ = (cos(αi/2)|0a⟩+ sin(αi/2)|1a⟩) |+b⟩, (3.19)

for which we use the device in figure 3.1 with

V0 = Vf = 1a, Vi = UH(αi/4), V1 = i1a, (3.20)

where UH(β) is given by equation 2.2b with the substitutions |h⟩ → |0a⟩ and |v⟩ → |1a⟩.
The identity operators in equation 3.20 are trivially realized by not inserting any element

in their respective locations, Vi by setting a half-wave plate with its fast axis at an angle

αi/4, and V1 by placing a phase shifter that introduces an eiπ/2 phase shift in the vertical

with respect to the horizontal path.

Upon exiting the first interferometer, a mirror is placed in each path, which by virtue

of equation 3.18b accords the state |Ai⟩|Bi⟩ only a global phase. Thereafter, both paths

meet at and recombine in a second arrangement of the type shown in figure 3.1. Whereas

the first procedure hinged on the choice of preselection state, the evolution stage de-

pends only on the unit vector n and the coupling parameter ϵ, as indicated by equa-

tion 3.10. Direct comparison of this expression with equations (17) and (18) of [155]

reveals that the unitaries in this case are given by

Vi = Vf = U †
a(n, ϵ), V0 = V1 = Ua(n, ϵ). (3.21)

Such operators can be implemented as products of two quarter-wave plates and one

half-wave plate [156], which in general requires us to shift the angles of all plates

for each different ϵ. Since we aim to study how the measurement strength affects the

results’ precision and accuracy, we would benefit from employing a sequence of plates

that, for fixed n, demands a minimal number of plates to be shifted. The solution to

this conundrum was found by Bhandari and Dasgupta [157]: for the unit vector n =
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(sinϑ cosφ, sinϑ sinφ, cosϑ), the transformation Ua(n, ϵ) and its adjoint are

Ua(n, ϵ) = UQ

(
π + φ

2

)
UQ

(
ϑ+ φ

2

)
UH

(−π + ϑ+ φ

2
+
ϵ

2

)
UQ

(
ϑ+ φ

2

)
UQ

(φ
2

)
,

(3.22a)

U †
a(n, ϵ) = UQ

(
π + φ

2

)
UQ

(
ϑ+ φ+ π

2

)
UH

(
ϑ+ φ

2
+
ϵ

2

)
UQ

(
ϑ+ φ+ π

2

)
UQ

(
2π + φ

2

)
,

(3.22b)

with UQ(α) given by equation 2.2a. If we place these unitaries as prescribed in equa-

tions 3.21, we obtain the evolved state of equation 3.11.

Subsequently, the state U(ϵ)|Ai⟩|Bi⟩ encounters two mirrors and acquires a relative

positive sign between its terms (see equation 3.11). As a consequence, the roles of i2

and i3 in equations 3.14 alternate, as do those of i4 and i5. Because such a change is

immaterial to our present ends, we will pay it no heed. The postselection and measure-

ment stage necessitates three different versions of the setup in figure 3.1. Let us choose,

for simplicity and concreteness, the postselection state

|Af⟩ = |0a⟩. (3.23)

Experimentally, a projection onto the above state is achieved by measuring the horizontal

polarization of a beam. As shown in equations 3.14, we also need to project onto six

different path states. By the nature of qubit b, it is only feasible to project onto states

|0b⟩ and |1b⟩, i.e., to carry out measurements in the horizontal or vertical path. We must,

therefore, employ our device to realize operations such that

⟨Af |⟨0b|UMZ = ⟨Af |⟨+b|, ⟨Af |⟨1b|UMZ = ⟨Af |⟨−b| (3.24)

(cf. equations 3.12, 3.14a, and 3.14b), in order to measure i0,1, and similar expressions

for the other |Bf⟩ states in equations 3.14c–3.14f. It can be easily shown that

UMZ = 1a ⊗H, (3.25)

satisfies equation 3.24, with H being the Hadamard transformation

H =
1√
2
(|0b⟩⟨0b|+ |0b⟩⟨1b|+ |1b⟩⟨0b| − |1b⟩⟨1b|) = |+b⟩⟨0b|+ |−b⟩⟨1b|, (3.26)

which is called Hadamard gate in the context of quantum computation. The two-qubit

operator of equation 3.25, in accordance to the algorithm described in [155], is imple-

mented by setting

Vi = −1a, Vf = 1a, V0 = ei3π/41a, V1 = e−i3π/4
1a. (3.27)
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Again, the phases in these expressions result from the action of phase shifters placed

in the corresponding locations. Intensities i2,3 from equations 3.14c and 3.14d can be

trivially obtained with

Vi = Vf = V0 = V1 = 1a, (3.28)

followed by measurements of the horizontal polarization on each path.4 A two-qubit

mapping such that

⟨Af |⟨0b|UMZ = ⟨Af |⟨rb|, ⟨Af |⟨1b|UMZ = ⟨Af |⟨lb|, (3.29)

which produces i4,5 (see equations 3.14e and 3.14f), is given by

UMZ = 1a ⊗H S†. (3.30)

Here, the operator

S† = |0b⟩⟨0b|+ e−iπ/2|1b⟩⟨1b| = |0b⟩⟨0b| − i|1b⟩⟨1b|. (3.31)

introduces a −π/2 phase shift between the states |0b⟩ and |1b⟩. Equation 3.30 results

from employing Englert et al.’s arrangement with the unitaries

Vi = −i1a, Vf = 1a, V0 = eiπ/41a, V1 = ei3π/41a. (3.32)

Finally, we place a horizontally aligned polarizer and either a powermeter or a single

photon counter in each path, and thereby measure the intensities i0,...,5.

3.2.2 Quantum Computational Setting

To implement the proposal in a quantum computer, we must first select a particular axis

of rotation for the Pauli spin operator. If we take, for instance, n = (− sinϕ, cosϕ, 0),

with ϕ ranging by convention from −π to π, we find that the exp (±iϵσa
n) terms in

equation 3.10 can be decomposed into the following products of rotation gates:

exp (±iϵσa
n) = cos ϵ± i sin ϵ

(
− sinϕσa

x + cosϕσa
y

)
= exp(−iϕ σa

z/2) exp
(
±iϵσa

y

)
exp(iϕ σa

z/2)

≡ Rz(ϕ)Ry(∓2ϵ)Rz(−ϕ), (3.33)

4. Alternatively, these intensities can be obtained without the third interferometer by simply measuring

on both paths after the evolution stage.
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where to go from the first to the second line we have used the equivalence between

the closed form of an SU(2) operator’s exponential map and its Euler angle form. How

the quantum circuit functions can be clarified with the diagram shown in figure 3.2.

Starting at the left from the joint state |0a⟩|0b⟩, we prepare the system’s preselection

state via a rotation,

|Ai⟩ = Ry(αi)|0a⟩ = exp
(
−iαiσ

a
y/2
)
|0a⟩ = cos(αi/2)|0a⟩+ sin(αi/2)|1a⟩, (3.34)

and the auxiliary state |Bi⟩ = |+b⟩ = H|0b⟩ with a Hadamard gate (see equation 3.26).

So as to reduce decoherence effects,U(ϵ) in equation 3.10 must be expressed with as few

gates as possible–especially two-qubit gates–for which we write out the exponentials

as in equation 3.33 and appropriately factor out the rotation gates:

U(ϵ) = Rz(ϕ)Ry(2ϵ)Rz(−ϕ)⊗ Π0b +Rz(ϕ)Ry(−2ϵ)Rz(−ϕ)⊗ Π1b

= Rz(ϕ) [Ry(2ϵ)Π0b +Ry(−2ϵ)Π1b ]Rz(−ϕ)

= Rz(ϕ)Ry(2ϵ) [Π0b +Ry(−4ϵ)Π1b ]Rz(−ϕ)

= Rz(ϕ)Ry(2ϵ)CRy(−4ϵ)Rz(−ϕ). (3.35)

Here, CRy(ϑ) ≡ Π0b +Ry(ϑ)Π1b represents the controlled Ry gate, in which the state of

qubit b controlls how qubit a is acted upon. The evolution operator in equation 3.35

works as follows: qubit a is subjected to Rz(−ϕ); if qubit b is in the state |0b⟩, a is then

subjected to Ry(2ϵ), or otherwise to Ry(−4ϵ) followed by Ry(2ϵ); finally, Rz(ϕ) acts on

a, which completes the evolution. For the last stage, we choose the postselection state

|Af⟩ = |0a⟩ and consider three different circuits, each characterized by a specific gate G

(see figure 3.2). As in section 3.2.1, to measure the observables i0,1 of equations 3.14a

and 3.14b, we apply another Hadamard gate to qubit b (i.e., G = H; cf. equation 3.25),

and then project onto ⟨0a|⟨0b| and ⟨0a|⟨1b|, respectively. Intensities i2,3 require setting

G equal to the identity (cf. equation 3.28), and projecting onto the same respective

states. Finally, we use G = H S† (cf. equation 3.30), with the S† gate given in equa-

tion 3.31, project again onto ⟨0a|⟨0b| and ⟨0a|⟨1b|, and thereby obtain i4,5. The required

pre-measurement gates G for qubit b are summarized in table 3.1.
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|0a〉 Ry(αi) Rz(−φ) Ry(−4ε) Ry(2ε) Rz(φ)

|0b〉 H • G

Figure 3.2: Quantum circuit for measuring weak values ⟨σa
n⟩w and preselection state

parameters with interaction strength ϵ. It prepares the initial state, acts U(ϵ) on it, and

measures i0,...,5 with the different gates G indicated in table 3.1.

Gate G Observables

H i0,1

i2,3

S† H i4,5

Table 3.1: Gates G for measuring the respective intensities.

As explained in section 1.3, an important application of weak values is the measure-

ment of quantum states. Despite the fact that such a procedure has traditionally been

restricted to weak measurements [42, 87], it is possible, as demonstrated in [45], to

implement it without need for the weakness hypothesis. Naturally, we can also carry

out such a protocol with the same setup and outcomes described in this chapter. To this

end, let us first note that, in general, any Pauli spin operator has two eigenvectors,

σa
n|n±⟩ = ±|n±⟩, (3.36)

which form the basis {|n+⟩, |n−⟩} for qubit a and generate the eigenprojectors

Πa
± = |n±⟩⟨n±| =

1

2
(1± σa

n). (3.37)

For the chosen pre- and postselection states, the theoretical weak value takes the form

⟨σa
n⟩w = − tan(αi/2) (sinϕ+ i cosϕ) = −ie−iϕ tan (αi/2). (3.38)

In what follows it will be convenient to distinguish between theoretical values and exper-

imental mean values. Hence, let us denote the real and imaginary parts of equation 3.38

as

Rt = − tan(αi/2) sinϕ, and It = − tan(αi/2) cosϕ. (3.39)
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For the case that concerns us, the eigenvectors of σa
n are given by

|n±⟩ =
1√
2

(
±|0a⟩+ ieiϕ|1a⟩

)
, (3.40)

and the weak values of the eigenprojectors in equation 3.37 by〈
Πa

±
〉
w
=

1

2
(1± ⟨σa

n⟩w) =
1

2

(
1∓ ie−iϕ tan(αi/2)

)
. (3.41)

From the inner products between equations 3.40 and 3.34 we find that the components

of the preselection state in the basis of the spin operator are

⟨n±|Ai⟩ = ± 1√
2

(
cos(αi/2)∓ ie−iϕ sin(αi/2)

)
. (3.42)

The strong resemblance between equations 3.41 and 3.42 hints at a deeper connection.

As Lundeen et al. showed, the preselection state can be written as a linear combination

with coefficients proportional to the eigenprojectors’ weak values5 if we consider a

postselection state such that the basis to which it belongs and the basis of σa
n are mutually

unbiased bases.6 In our case, |Af⟩ = |0a⟩ forms, together with |1a⟩, the computational

basis of qubit a, which is unbiased with respect to {|n+⟩, |n−⟩}:

|⟨0a|n+⟩|2 = |⟨0a|n−⟩|2 = |⟨1a|n+⟩|2 = |⟨1a|n−⟩|2 = 1/2. (3.43)

The exact expression for |Ai⟩ depends, furthermore, on the choice of |Af⟩. The overlaps

of our postselection state with the eigenstates of σa
n are

⟨Af |n±⟩ = ±1/
√
2. (3.44)

Armed with equations 3.41, 3.42, and 3.44, as well as with the normalization condition,

we can now write the desired formula for |Ai⟩. Had both overlaps been positive,7 we

could have expressed the preselection state as in equation (8) of [45]. Since one of

them is negative, our expression has a relative minus sign:

|Ai⟩ =
〈
Πa

+

〉
w
|n+⟩ −

〈
Πa

−
〉
w
|n−⟩√∣∣〈Πa

+

〉
w

∣∣2 + ∣∣〈Πa
−
〉
w

∣∣2 , (3.45)

5. See equations (6) and (7) of [87], as well as the discussion on complementarity in the supplementary

information document of the same article.

6. Two bases {|ai⟩} and {|bj⟩}, with i, j = 1, . . . , d, are said to be mutually unbiased if |⟨ai|bj⟩|2 = 1/d,

for all i, j.

7. This can be achieved by choosing |Af ⟩ = |1a⟩ = 2−1/2e−i(ϕ+π/2) (|n+⟩+ |n−⟩), which is the “diagonal”

state of σa
n, up to a global phase. As a rule, there exists only one state in the basis of |Af ⟩ for which

all the overlaps are positive [158].
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which, in our case, becomes

|Ai⟩ =
1√
2

(
cos(αi/2)− ie−iϕ sin(αi/2)

)
|n+⟩−

1√
2

(
cos(αi/2) + ie−iϕ sin(αi/2)

)
|n−⟩.

(3.46)

Following Denkmayr et al. [45], we define the normalization factor

ν ≡
(∣∣〈Πa

+

〉
w

∣∣2 + ∣∣〈Πa
−
〉
w

∣∣2)−1/2

=

(
1

2
+

1

2
|⟨σa

n⟩w|
2

)−1/2

. (3.47)

Finally, we characterize the preselection state given by equation 3.45 in terms of equa-

tions 3.41 and 3.47 by combining the measured intensities (equations 3.14) as

ν =

(
1

2
+

1

2

i1
i0
cot2ϵ

)−1/2

, (3.48a)

α = 2arctan

√
i1
i0
cot2ϵ , (3.48b)

ϕ = arctan

(
i4 − i5
i2 − i3

)
. (3.48c)

Equations 3.16 and 3.48 complete our proposal for weak value characterization and

direct state measurement. We employed them with our measured data to obtain the

results that follow.

3.3 Results

As mentioned in section 1.4, our proposal was realized in the ibm_oslo backend. Fig-

ure 3.2 and table 3.1 imply that a complete set of intensities requires running 3 different

circuits–one for each pair. For each circuit, at every sampled value of ϵ and ϕ, we ran

20 experiments with 2000 shots. These computations produced the intensities i0,...,5. We

averaged them and compounded their mean values in accordance to equations 3.16 and

3.48 to get the weak values of σa
n and the parameters of |Ai⟩. As we did in equations 3.39,

we denote the theoretical intensities as i0t, . . . , i5t; these will be given by equations 3.14

with the substitutions |⟨Af |Ai⟩|2 → cos2(αi/2), I → It, and R → Rt. Likewise, we will

write Rm and Im for the measured real and imaginary parts of ⟨σa
n⟩w.

Concomitant to the average observables are their respective standard deviations,

σi0 , . . . , σi5. The statistical uncertainties in Rm and Im stem from fluctuations in the
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measured counts of i0,...,5, so they can be estimated with the multi-variable propagation

formula as8

σR =

√(
∂R

∂i0

)2

σ2
i0
+

(
∂R

∂i4

)2

σ2
i4
+

(
∂R

∂i5

)2

σ2
i5

=
1

cos2(αi/2)

√(
i4t − i5t
i0t

)2 σ2
i0

sin22ϵ
+
σ2
i4
+ σ2

i5

sin22ϵ

=
1

cos2(αi/2)

√
tan2(αi/2) sin

2ϕ

cos4ϵ
σ2
i0
+
σ2
i4
+ σ2

i5

sin22ϵ
, (3.49a)

σI =

√(
∂I

∂i0

)2

σ2
i0
+

(
∂I

∂i2

)2

σ2
i2
+

(
∂I

∂i3

)2

σ2
i3

=
1

cos2(αi/2)

√(
i2t − i3t
i0t

)2 σ2
i0

sin22ϵ
+
σ2
i2
+ σ2

i3

sin22ϵ

=
1

cos2(αi/2)

√
tan2(αi/2) cos2ϕ

cos4ϵ
σ2
i0
+
σ2
i2
+ σ2

i3

sin22ϵ
. (3.49b)

The derivatives in the above expressions are calculated from equations 3.16 and then

evaluated at the theoretical intensities. The uncertainties in the parameters given by

equations 3.48 are computed in a similar manner:

σν =

√(
∂ν

∂i0

)2

σ2
i0
+

(
∂ν

∂i1

)2

σ2
i1

=

√
2 sin6(αi/2) csc2αi

cos4ϵ
σ2
i0
+

cos2(αi/2)

2 sin4ϵ
σ2
i1
, (3.50a)

σα =

√(
∂α

∂i0

)2

σ2
i0
+

(
∂α

∂i1

)2

σ2
i1

=

√
tan2(αi/2)

cos4ϵ
σ2
i0
+

cot2(αi/2)

sin4ϵ
σ2
i1
, (3.50b)

σϕ =

√√√√ 5∑
j=2

(
∂ϕ

∂ij

)2

σ2
ij

= 2
∣∣∣cscαi

sin 2ϵ

∣∣∣√2 sin2ϕ
(
σ2
i2
+ σ2

i3

)
+ 2 cos2ϕ

(
σ2
i4
+ σ2

i5

)
. (3.50c)

We carried out our experiments for 23 different couplings. N = 9 samples of ϕ from

−π to π were taken at each ϵ, and αi was set to π/4. Like Vallone and Dequal [94]

as well as Denkmayr et al. [45], we analyzed the precision and accuracy (as defined

in section 1.3) of our results, for which we now introduce the following notation for

8. See, e.g., section 4.2 of [159] for more details on this approach to error propagation.
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theoretical parameters. Let µ be a placeholder for R, I, ν, α, or ϕ. Then, µt,j will either

refer to equations 3.39 evaluated at ϕj, or be given by

νt,j =
√
2 cos(αi/2), (3.51a)

αt,j = π/4, (3.51b)

ϕt,j ∈ {−π,−3π/4, . . . , 3π/4, π}. (3.51c)

Parameter µ’s uncertainty for ϕ = ϕt,j, denoted as σµ,j, is calculated from equations 3.49

or 3.50, whereas µm,j represents its respective mean value. With this notation in mind,

we define

σ̄µ ≡

√√√√ 1

N

N∑
j

σ2
µ,j , (3.52a)

∆̄µ ≡

√√√√ 1

N

N∑
j

(µt,j − µm,j)
2 (3.52b)

to be our measures of statistical uncertainty and systematic errors, respectively, at a fixed

strength ϵ. Being the root mean square value of the sample uncertainties, σ̄µ quantifies

the average fluctuations in the N samples, and stands thus as a proxy for precision.

∆̄µ, similarly, is the root mean square value of the difference between the theoretical

parameter and its experimental mean value. Unlike Vallone and Dequal, we did not

assess the accuracy of our outcomes by using the trace distance as a metric for errors.

Still, ∆̄µ puts a similar figure on systematic errors because it accounts for incongruities

between theoretical and experimental values.

Our experimental results are illustrated in figures 3.3–3.10. The reconstructed real

and imaginary parts of ⟨σa
n⟩w (blue circles and red squares, respectively) are shown

in figure 3.3 alongside their theoretical counterparts (blue solid lines and red dashed

lines), for twelve different couplings. Going from left to right and from the top down,

we observe that, in the weak measurement regime (exemplified by ϵ = 0.02), both Rm

and Im deviate considerably from Rt and It, and that the fluctuations in the outcomes

are large. Such a behavior is to be expected: after all, both quantities originate from

the subtraction of two very close numbers (see equations 3.14c–3.14f), which are

then divided by a small number, sin 2ϵ (equations 3.15a and 3.15b). As ϵ increases,

the error bars decrease in size, and the mean values comport better to the curves (see

ϵ = 0.1 → 1.2). However, at larger strengths, the discrepancies between experimental

58



-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

ϵ = 0.02
-0.4

-0.2

0.0

0.2

0.4

ϵ = 0.1
-0.4

-0.2

0.0

0.2

0.4

0.6

ϵ = 0.7

-0.4

-0.2

0.0

0.2

0.4

ϵ = 1.2
-0.4

-0.2

0.0

0.2

0.4

ϵ = 1.5
-0.4

-0.2

0.0

0.2

0.4

0.6

ϵ = 1.55

-0.4

-0.2

0.0

0.2

0.4

ϵ = 1.8
-0.4

-0.2

0.0

0.2

0.4

ϵ = 2.2

-0.4

-0.2

0.0

0.2

0.4

ϵ = 2.4

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

-0.6

-0.4

-0.2

0.0

0.2

0.4

ϕ

ϵ = 3.0

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

-0.6

-0.4

-0.2

0.0

0.2

0.4

ϕ

ϵ = 3.1

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

ϕ

ϵ = 3.15

Figure 3.3: Real and imaginary parts of the weak values ⟨σa
n⟩w as functions of ϕ, with

αi = π/4, for different measurement strengths ϵ. Solid blue lines (circles) represent

the theoretical (experimental) real part of the weak value, Rt (Rm). Dashed red lines

(squares) indicate the theoretical (experimental) imaginary part of said weak value, It

(Im). Error bars stand for either σR or σI , which are given by equations 3.49.

and theoretical values as well as the fluctuations in the results begin to grow until

they reach a maximum around ϵ = π/2 (see ϵ = 1.5, 1.55); afterwards, they subside

again when the coupling increases up to 3π/4 (see ϵ = 1.8 → 2.4), at which point,

approximately, the trend reverses and both attain a new maximum as ϵ approaches π

(see ϵ = 3.0 → 3.15). Evidently, certain strong measurements yield reconstructed weak

values with comparable precision and accuracy to those of weak measurements.

Figure 3.3 has helped us describe qualitatively how our results depend on the interac-

tion strength. For a quantitative assessment thereof, we turn to our metrics of statistical

uncertainties and systematic errors, σ̄ and ∆̄. As shown in figure 3.4, in the weak regime,

σ̄R and σ̄I have relatively high values, which decrease as ϵ nears π/4 and then increase

59



R

I

0
π

4

π

2
3π

4
π

-4

-3

-2

-1

0

1

Statistical uncertainty ln(σ
-
)

ϵ

0
π

4

π

2
3π

4
π

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Systematic error ln(Δ
-

)

ϵ

Figure 3.4: Logarithmic plot of the statistical uncertainties and systematic errors (see

equations 3.52) of the real (R) and imaginary (I) parts of the weak value ⟨σa
n⟩w, as

functions of the measurement strength parameter ϵ. The vertical dashed lines represent

ϵ = π/24 and ϵ = π/4.

as it grows up to π/2; there, σ̄R,I reach an apparent absolute maximum. For values

of ϵ up to around 3π/4, σ̄R,I drop to a minimum, and then rise to the last maximum.

Figure 3.4 shows a similar behavior across the domain of ϵ for ∆̄R,I , as anticipated in

the preceding paragraph. Systematic errors attain clear maxima near ϵ = 0, π/2, and

π: equations 3.16b and 3.16c diverge at those values, so the reconstructed Rm and Im

differ largely from Rt and It. In contrast, the locations of the minima of ∆̄R,I are not

evident. Both plots in figure 3.4 depict vertical dashed lines at ϵ = π/24 and π/4, the

two values studied by Denkmayr et al. [45].9 By comparing precision and accuracy in

those cases, we come to the same conclusion as these authors: the strong measurement

performs much better than the weak one. Nonetheless, our overall results reveal that

9. In their notation, these interaction strengths were denoted as α = π/12 and π/2, respectively.
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Figure 3.5: Normalization parameter ν of the preselection state |Ai⟩ as a function of

ϕ for different measurement strengths ϵ. The solid line indicates the theoretical value

νt =
√
2 cos(αi/2) ≈ 1.307. The dots represent the average experimental values of ν,

calculated via equation 3.48a, and the error bars are given by σν in equation 3.50a.

strong measurements are not universally superior to weak measurements.

The trends present in figures 3.3 and 3.4 are also found in the preselection state

parameters, their statistical uncertainties, and their systematic errors. Figure 3.5 illus-

trates the results for ν in the same format as figure 3.3 does for R and I. Here, the scale

of the vertical axes makes clear how much the error bars, as well as the differences be-

tween theoretical and experimental values, vary with increasing measurement strength.

These behaviors are indicative of a precision and an accuracy similar to those shown

in figure 3.4 for the weak values, which figure 3.6 substantiates–albeit, in the present

and following cases, the maximum at ϵ = π/2 is manifestly lower than the other two

maxima. Likewise, figure 3.7 plots the reconstructed and theoretical angle αi for twelve
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tions 3.45 and 3.47) as functions of the measurement strength parameter ϵ. The vertical

dashed lines represent ϵ = π/24 and ϵ = π/4.

couplings. The dependence of this parameter’s precision and accuracy on ϵ, summarized

in figure 3.8, resembles that of ν almost perfectly–ostensibly because both parameters

stem from intensities i0 and i1. To discuss the phase ϕ, we must first observe that, since ϕ

is computed from equation 3.48c, whenever tanϕj = 0 (as in, say, the case of ϕj = −π),

the experimental value of ϕ results from subtracting two close numbers, i4 and i5. Due

to uncontrollable fluctuations in the experiments, either of these numbers can be larger

than the other. If, in our example, i4 < i5, then equation 3.48c will yield a phase with

the correct sign (negative). On the other hand, if i4 > i5, the inverse tangent function

introduces a spurious π term to the phase. This issue is addressed by computing ϕ as

ϕ = arctan

∣∣∣∣i4 − i5
i2 − i3

∣∣∣∣, (3.53)

which restricts the outputs to the first quadrant. Thence, ϕt,j belongs in practice to the
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Figure 3.7: Angle αi of the preselection state |Ai⟩ as a function of ϕ for different mea-

surement strengths ϵ. The solid line indicates the theoretical value αi = π/4 ≈ 0.785.

The dots represent the average experimental values of αi, calculated via equation 3.48b,

and the error bars are given by σα in equation 3.50b.

set {0, π/4, π/2} (cf. equation 3.51c). The plots in figure 3.9 present the products of such

calculations. They exhibit the same tendencies for statistical uncertainties and systematic

errors as in the previous cases. Unsurprisingly, figure 3.10 shows that the precision and

accuracy of ϕ behave similarly to those of ν and αi. For all three parameters, it is once

again true that the weak measurement studied by Denkmayr et al. [45] produces worse

outcomes than the strong measurement from that same work, as seen from the results

highlighted by the vertical dashed lines in figures 3.6, 3.8, and 3.10. Nevertheless, it

must be stressed that this observation does not hold in general.
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3.4 Closing Remarks

Our derivation of the closed-form evolution operator (equation 3.9) and of the weak

value measurement prescription (equations 3.16) led to a constraint for the coupling

parameter ϵ: it ranges, by convention, from 0 to π. Previously, Vallone and Dequal [94]

had stated an analogous formula for settings wherein the system is a qudit and the

pointer a qubit,10 which they as well as Zou et al. [93] and Calderaro et al. [56] used

as if its domain were only half as big as ours, despite both being equal. Indeed, Gross

10. Equation (S1) of the supplementary information document for [94]. The system observable in the

evolution operator (see equation (2) of the main text of [94]) is an arbitrary projector of the compu-

tational basis.

64



-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

ϵ = 0.02
0.0

0.5

1.0

1.5

ϵ = 0.1
0.0

0.5

1.0

1.5

ϵ = 0.7

0.0

0.5

1.0

1.5

ϵ = 1.2
0.0

0.5

1.0

1.5

ϵ = 1.5
-0.5

0.0

0.5

1.0

1.5

2.0

ϵ = 1.55

0.0

0.5

1.0

1.5

ϵ = 1.8
0.0

0.5

1.0

1.5

ϵ = 2.2
0.0

0.5

1.0

1.5

ϵ = 2.4

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

0.0

0.5

1.0

1.5

ϕ

ϵ = 3.0

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

-0.5

0.0

0.5

1.0

1.5

ϕ

ϵ = 3.1

-π - 3π

4
- π

2
- π

4
0

π

4

π

2
3π

4
π

-2

0

2

4

ϕ

ϵ = 3.15

Figure 3.9: Phase ϕ of the preselection state |Ai⟩ as a function of the sample rotation

angle ϕj for different measurement strengths ϵ. The solid lines contain the theoretical

values, which for our case are 0, π/4 ≈ 0.79, and π/2 ≈ 1.57. The dots represent the

average experimental values of ϕ, calculated via equation 3.53, and the error bars are

given by σϕ in equation 3.50c.

et al. [96] referred to Zou et al.’s protocol as “the formula for the strongest possible

measurement”; Vallone and Dequal explicitly stated that their parameter belongs to the

interval [0, π/2]; and as late as 2018, Calderaro et al. asserted that they had carried

out their schemes “at maximum strength” with the coupling set to π/2. Denkmayr et al.

[45, 46] employed essentially the same closed-form formula as us but even further

restricted: in their matter interferometry experiments, α = π/2, which corresponds to

ϵ = π/4 in our notation, was the strongest system-pointer interaction available. That

these precedents omitted a significant fraction of the allowed values of the coupling

parameter in their analyses should serve as a cautionary tale: the domain of a function
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equations 3.52) of the phase ϕ of the preselection state |Ai⟩ (see equations 3.41 and

3.45) as functions of the measurement strength parameter ϵ. The vertical dashed lines

represent ϵ = π/24 and ϵ = π/4.

must always be specified.

Unlike previous measurement schemes [87, 88, 90, 160, 161] in which the real and

imaginary parts of weak values were, to first order in the coupling, proportional to the

expectation values of two pointer observables, Vallone and Dequal’s model, as well as

Denkmayr et al.’s and, by extension, ours (all arising from exact, closed-form evolution

operators) are self-evidently of an indirect nature.11 The state characterization schemes

associated to these three procedures, on top of not being direct, are not universal, and

hence not tomography protocols, for they fail when the postselection state is nearly or

outright orthogonal to the preselection (unknown) state. Their utility resides in their

11. See equation (S6) of [94], equations (7a)–(7c) of [45], and equations 3.16a–3.16c earlier in this

chapter, respectively.
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potential for studying the effects of system-pointer interaction strength on the statistical

uncertainty and systematic errors of the reconstructed weak values or states. Preliminary

analytical assessments of said effects by Gross et al. [96] and, within the framework of

coupling-deformed observables, by Zhu et al. [92] suggested that the best outcomes are

produced neither in the weak regime nor at the strongest coupling available, but rather

somewhere in between.

Both weak value and state measurement schemes have, since the early days of their

respective fields, been realized in classical [19, 40–43] as well as quantum [45, 46, 56,

77, 84, 87, 160] contexts. As sections 3.2.1 and 3.2.2 illustrate, our proposal lends itself

to both kinds of treatment. Just as Pryde et al.’s paper enjoys pride of place as “the first

unambiguously quantum-mechanical experimental” demonstration of weak values [84],

and Sponar et al.’s article “provides a novel experimental aspect for weak measurements

with massive particles” [77], our work represents the first experimental and, moreover,

quantum-mechanical survey on how the coupling strength affects the precision and

accuracy of weak value and state measurement procedures. Our results largely agree

with the theoretical predictions. As a corollary, it bears repeating, strong measurements

do not always outperform weak measurements.
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Chapter 4

Summary and Outlook

In this final chapter, I first summarise the frameworks and contributions of the two

works that comprise this dissertation. Afterwards, I point out possibilities for further re-

search that stem from both the studies reviewed in chapter 1 and the advances presented

thereafter–possibilities that, to the best of my knowledge, have not yet been realized.

To conclude, I invite researchers to capitalize on the capabilities of currently-existing

quantum computers.

4.1 Summary

By way of presenting a theoretical framework, in chapter 1 I examined three strands

that unfurl from the fabric of quantum mechanics: quantum state tomography, quantum

weak values, and quantum computing. Threading these strands brought forth the top-

ics at the core of this thesis: optimal measurement sets, strong measurements of weak

values, and present-day use of cloud-based, superconducting quantum computers. With

regard to the first, in section 1.2 I sketched the road leading to James et al.’s landmark

tomography and estimation protocol [68], and then laid out arguments for the adop-

tion of algorithms that assume state purity. Whereas James et al. had outlined how to

reconstruct arbitrary two-qubit states by performing 16 measurements, Heinosaari et al.

[74] proved that pure states of dimension d = 4 can be uniquely determined among all

pure states from just 9. Gonzales et al.’s scheme [75] appeared to achieve this optimal

value, but it actually requires additional information, so it became the starting point for

the contributions reported here and in [44].

Afterwards, chapter 2 dealt with three proposals set in an all-optical setting: one

for state generation and two for state tomography. The procedures for pure states built
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on Gonzales et al.’s work and overcame both its practical difficulties as well as, most

crucially, its crux: not being a proper tomography protocol. The proposal of section 2.1.2

consists of a prescription for characterizing a state by carrying out 12 measurements

through a setup highly similar to the one employed in traditional polarization tomog-

raphy–which greatly simplifies the data recollection process in comparison with mea-

surements on different spatially-separated qubits. The results of experiments done with

classical light have shown good agreement with theoretical predictions, thereby stress-

ing the method’s usefulness and applicability. A scheme that addresses only pure states,

such as the one at hand, could be used by researchers in quantum information science to

gauge how reliable pure state sources are, without need for the more resource-intensive

full tomography. As a complement, in section 2.2.1, I put forward the mixed state gen-

eralization of the pure state protocol. It achieves arbitrary state reconstruction with the

minimal amount of measurements possible for a two-qubit system, 16, and, like its pure

counterpart, conveniently prescribes data acquisition on a single output port.

Moving on to the remaining topics of this dissertation, section 1.3 broached the sub-

ject of weak and strong measurements via the von Neumann model with a continuous

Gaussian pointer that mediates the measurement process of a system’s observable. Fig-

ure 1.1 illustrated strong measurements as those where the coupling strength, the eigen-

value separation, and the pointer spread satisfy ϵ(an+1 − an) ≫ σ. Likewise, figure 1.2

evinced that the weak regime is characterized by ϵ(an+1 − an) ̸≫ σ. I then derived the

weakness conditions (equations 1.18) under which the evolved state of such a pointer

approximates a Gaussian wave function centered, somewhat perplexingly, at a complex

number proportional to the weak value. After tracing the historical development of

weak values and so-called direct state measurement schemes, I expounded the traits

and benefits of the strong regime and arrived at Denkmayr et al.’s proposals [45, 46] for

weak values and state characterization with arbitrary coupling strength. Their results

seemed to suggest that strong measurements always outperform weaker ones. So as to

prepare the terrain for the implementation which my colleagues and I carried out of a

protocol based on Denkmayr et al.’s, section 1.4 gave a primer on quantum computation

and, in particular, the use of IBM’s superconducting quantum processors.

Lastly, chapter 3 extended Denkmayr et al.’s model to arbitrary Pauli spin operators. A

small but significant byproduct of this derivation was the domain found for the coupling
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strength: ϵ ∈ ]0, π[, which authors in several previous works [45, 46, 93, 94, 96] did

not consider in its entirety. After introducing the proposal in its most general form, I

explained how to realize it in an optical context, either classical or quantum, as well

as in a quantum computing context. The latter account included a weak value-based

state measurement protocol. Both schemes were implemented in an IBM quantum

system. The results revealed that the statistical uncertainties and systematic errors of

the weak values and the state parameters do not decrease monotonically as ϵ increases.

Rather, they depend on the mathematical nature of the model–which, in this case,

performed inconveniently around certain values of ϵ throughout its domain. All the same,

there appear to exist measurement settings beyond the weak regime that maximize

precision and accuracy. In all, the work done by my coworkers and I represents the first

comprehensive experimental study of the effect of coupling strength in the reconstructed

quantities.

4.2 Outlook

A pure-state tomography protocol that materializes Heinosaari et al.’s prediction of

a 9-measurement set for systems of dimension d = 4 [74] has not been formulated.

Besides finding that any pure, two-qubit state can be uniquely determined among all

states by making 11 measurements, Ma et al. [73] also proved that the same holds

true for pure, three-qubit states with 31 measurements, instead of the 64 demanded

by full state tomography. In contrast, Heinosaari et al. had already shown that, when

further restricted to the set of pure states, such a reconstruction could be achieved with

a minimum of either 23 or 24 measurements. An exact number and a corresponding

experimental realization are still pending.

To compare the results and theoretical predictions of the pure state protocol of

section 2.1, my colleagues and I employed fidelity as a figure of merit. However, several

works have questioned the widespread use of fidelity as the end-all be-all benchmark

of state reconstruction [162–165]. Furthermore, a demonstration of the mixed, path-

polarization tomography scheme proposed in section 2.2 could greatly benefit from

using, à la De Burgh et al. [71], overcomplete sets of measurements that yield better

results (as assessed by more than one quantifier) than the optimal set prescribed by
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equations 2.20. In any case, how either tomographic procedure in chapter 2 would

perform under different metrics–e.g., the Chernoff bound [71]–is an open question.

Quantum state tomography of high-dimensional states (d≫ 1) bears the onus of un-

manageable complexity for both measurement and reconstruction processes. As stated

in [152], by early 2009, an eight-qubit state characterization [166] was the “most com-

plicated [...] tomographic measurement performed to date”. Indeed, it had “required

hundreds of thousands of measurements and weeks of postprocessing” [167]. Although

I have repeatedly extolled the virtues of the purity assumption, there exist tomographic

techniques that, despite not adopting it, have enabled astonishing achievements. One

of them, known as compressed-sensing quantum tomography [167, 168] is valid for

arbitrary states, employs incomplete measurement sets, and its performance does not

decay significantly when the purity constraint is relaxed [168]. This procedure has been

combined with Lundeen et al.’s [87] to determine a 256 × 256 pixel wave front effi-

ciently from just 10 000 random projections [169], as well as a 1.2 million-dimensional

photonic state state [170]. Whatever astounding higher-dimensional reconstructions

and applications thereof could emerge remain a thrilling prospect.

Zhang et al.’s proposal of coupling-deformed pointer observables [91] engendered

a universal, bias-free tomography protocol [92]. Zhu et al. have continued to work on

this model: they formulated a tomographic procedure with a continuous pointer and

showed analytically how it could be optimized with two concurrent coupling parameters

[171]; and they also derived and explored an adaptive tomography scheme that can out-

perform other widely-used protocols, in terms of precision, at higher dimensions [172].

The various techniques that fall under the umbrella of coupling-deformed observables

have not, as of yet, been realized in a laboratory. In addition, equipping the original

framework [91] with an accessible motivation and, more fundamentally, interpretation

could push it back into the spotlight of current research.

As illustrated by the results in section 3.3, weak values and state parameters can be

experimentally reconstructed from measurements of almost arbitrary coupling strength.

Given the evidence that the quality of state reconstruction is independent of the pointer’s

dimensionality [90], the fact that more closed-form evolution operators like the one

in equation 3.9 are in principle obtainable, and the existence of universal state mea-

surement methods [56, 91, 92], protocols for systems defined in higher-dimensional
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spaces, their mixed-state extensions, and their tomographic generalizations could be

constructed. These results also suggest that statistical uncertainties and systematic er-

rors can be minimized by selecting an appropriate coupling strength. How the precision

and accuracy of system-pointer-based measurement schemes fare vis-à-vis traditional

tomography procedures could be answered by a comprehensive comparison of the two

methods, such as was previously done, e.g., by Gross et al. [96].

Finally, as experience has shown time and again, cloud-based quantum computing

systems have unleashed a terrific potential for empirical research. The low barriers to

access to these systems are an entreaty to workers from all walks of science, not just

physics, to join in. Scientists would be remiss not to sail with the tailwinds of quantum

computation.
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