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Resumen

En esta tesis se aplican por primera vez métodos basados en modelos sin discretización espacial
para detectar y localizar fugas en una planta piloto de transporte de fluidos. Basado en un modelo
matemático que describe la dinámica de fluidos dentro de la tubería de agua mediante dos ecuacio-
nes diferenciales parciales que son hiperbólicas, lineales, unidimensionales y acopladas, se deriva y
diseña tanto un observador dinámico como algebraico. El diseño del observador dinámico combina
un enfoque de Luenberger con una transformación de backstepping para demostrar la estabilidad
asintótica del error del observador. Como consecuencia, el observador resulta en un sistema diná-
mico de dos sistemas diferenciales parciales hiperbólicos acoplados. Por el contrario, el diseño del
observador algebraico aplica el método de las funciones de modulación para convertir el modelo
matemático en problemas auxiliares que también son dados por ecuaciones diferenciales parciales.
Los problemas auxiliares se pueden resolver fuera de línea, tal que para estimar el tamaño y la
posición de la fuga en línea se tienen que resolver solamente ecuaciones algebraicas input-output.
Se enfatiza que ambos esquemas de observación se derivan directamente del modelo matemático
sin discretización espacial. Por lo tanto, esta tesis aborda la brecha de investigación con respecto
a métodos de detección y localización de fugas que sean basados en un modelo matemático y que
no requieren una discretización espacial del sistema.

En simulaciones comparativas, se evalúa el desempeño de ambos observadores para una tube-
ría de agua ejemplar en diversas condiciones de operación, por ejemplo, el tamaño de la fuga, la
posición de la fuga, el caudal de entrada y el ruido de medición. Se compara la precisión de los
esquemas de observación, y se verifica la capacidad en tiempo real de ambos algoritmos.

Finalmente, la dinámica y el observador algebraico se utilizan para estimar el tamaño y la po-
sición de la fuga para una planta piloto de transporte de fluidos instalada en el laboratorio de
Ingeniería de Control Avanzado en la PUCP. Se revela que, al contrario de la suposición de un
modelo lineal para la perdida por fricción, las pérdidas por fricción dependen cuadráticamente del
caudal tal que un modelo no lineal describa con mayor exactitud la dinámica del fluido de la planta
piloto. Sin embargo, se ha demostrado que para las fugas que surgen cerca de la salida de la tubería,
ambos observadores estiman la posición de la fuga con desviaciones inferiores al 5 % y logran la
precisión deseada. Además, se ha demostrado que una extensión del observador dinámico hacia el
modelo no lineal permite localizar la fuga con desviaciones inferiores al 5 %, independientemente
de la posición de la fuga.



Abstract

The present work utilizes for the first time model-based late lumping leak detection methods to
detect and localize leakage in a real water pipe. Based on a mathematical model that describes the
fluid dynamics inside the water pipe by two coupled linear one dimensional hyperbolic partial differ-
ential equations, a dynamic and an algebraic leakage observer are designed. The dynamic observer
design combines a Luenberger ansatz with a backstepping transformation to prove the asymptotic
stability of the observer error and results in a dynamic system of two coupled hyperbolic partial
differential systems. Contrary to that, the algebraic observer design applies the modulating function
method to convert the mathematical model into offline solvable auxiliary problems and algebraic
input-output equations that are resolved online to estimate the leak size and the leak position. It is
emphasized that both observer schemes are derived directly from the mathematical model without
spatial discretization. Thereby, this thesis addresses the research gap regarding model-based late
lumping leak detection and localization techniques.

In comparative simulations, the performance of both observer schemes is evaluated for an ex-
emplary water pipe under various operating conditions, e.g., w.r.t. the leak size, the leak position,
the inlet flow rate and the measurement noise. The accuracy of the observer schemes is compared,
and the real-time capability of both algorithms is verified.

Finally, the dynamic and the algebraic observer are utilized to estimate the leak size and the leak
position for a pilot fluid transport plant installed in the laboratory of Advanced Control Engineering
at the PUCP. It is revealed that, in opposite to the model assumption of linear friction losses,
the friction losses depend quadratically on the flow rate such that a nonlinear model describes the
flow dynamics of the pilot plant more exactly. However, it is shown that for leaks occurring near
to the outlet of the pipe, both observers estimate the leak position with deviations of under 5 %
and reach thereby the desired accuracy. Furthermore, it is demonstrated that an extension of the
dynamic observer towards the nonlinear model permits localizing the leak with deviations of under
5 % regardless of its position.



Kurzfassung

Die vorliegende Arbeit verwendet erstmals räumlich undiskretisierte modellbasierte Methoden zur
Erkennung und Lokalisierung von Leckagen in einer realen Wasserleitung. Basierend auf einem ma-
thematischen Modell, das die Strömungsdynamik im Rohr durch zwei gekoppelte lineare eindimen-
sionale hyperbolische partielle Differentialgleichungen beschreibt, werden ein dynamischer und ein
algebraischer Leckagebeobachter entworfen. Der dynamische Beobachterentwirf kombiniert einen
Luenberger-Ansatz mit einer Backstepping-Transformation, um die asymptotische Stabilität des
Beobachterfehlers nachzuweisen und resultiert in einem dynamischen System aus zwei gekoppelten
hyperbolischen partiellen Differentialgleichungen. Im Gegensatz dazu verwendet der algebraische
Beobachterentwurf die Modulationsfunktionsmethode, um das mathematische Modell in offline
lösbare Hilfsprobleme sowie algebraische Eingangs-Ausgangs-Gleichungen zu überführen, die online
gelöst werden, um die Leckgröße und die Leckageposition zu schätzen. Es wird hervorgehoben, dass
beiden Beobachter direkt aus dem mathematischen Modell ohne räumliche Diskretisierung abge-
leitet sind. Die vorliegende Arbeit adressiert damit eine existierende Forschungslücke hinsichtlich
modellbasierter Leckagelokalisierung.

In vergleichenden Simulationen wird die Performance beider Beobachter für eine exemplarische
Wasserleitung unter unterschiedlichen Betriebsbedingungen untersucht, z. B. hinsichtlich der Leck-
größe, der Leckposition, des Volumenstroms am Einlass und dem Messrauschen. Die Genauigkeit
der Beobachter wird verglichen und die Echtzeitfähigkeit beider Algorithmen überprüft.

Anschließend werden der dynamische und der algebraische Beobachter verwendet, um die Leck-
größe und die Leckageposition für eine Pilotanlage, die im Labor für Regelungstechnik an der PUCP
installiert ist, zu schätzen. Es zeigt sich, dass die Reibungsverluste entgegen der Modellannahme
quadratisch von der Strömungsgeschwindigkeit abhängen, sodass ein nichtlineares Modell die Strö-
mungsdynamik der Pilotanlage genauer beschreibt. Es zeigt sich jedoch, dass bei Leckagen in der
Nähe des Rohrauslasses beide Beobachter die Leckageposition mit Abweichungen von unter 5 %
schätzen und damit die gewünschte Genauigkeit erreichen. Abschließend wird gezeigt, dass eine Er-
weiterung des dynamischen Beobachters hin zum nichtlinearen Modell die Lokalisierung des Lecks
mit Abweichungen von weniger als 5 % unabhängig von seiner Position ermöglicht.
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Motivation

Pipelines form a barely visible but indispensable part of our modern societies. Without them, our
daily life in heated buildings provided with running water would be inconceivable. Distributing the
potable water from the source to the water treatment plant to almost every building, pipelines allow
us to pursue our everyday activities, beginning from the shower in the morning, through boiling
water for lunch, to falling asleep in a heated apartment. Moreover, parts of our transportation and
heating systems rely heavily on the oil and gas pipelines around the planet that transport natural
gas and crude oil from the resource deposit to the refineries and from the refineries to the end
consumer.

From a more technical perspective, pipelines are an essential part of fluid transport infrastructure
to convey gas or liquid over long distances and to connect thereby fluid sources and sinks. A total
length of worldwide constructed pipelines of around 3,500,000 kilometers [1] and a continuously
expanding global pipe network [2, 3] reflect the importance of pipelines in infrastructure systems.
Compared to alternative transport technologies like transport by road, roadway or waterway, pipe
systems show various advantages like higher transport volumes and lower transportation expenses
[1].

Nevertheless, since pipelines directly affect our daily needs and operate in various parts of
critical infrastructure, like e.g., heating systems, water distribution networks or fuel transport, a
high level of safety and reliability is demanded. One of the major risks to deal within this context is
the appearance of leaks. Mainly caused by external interferences, corrosion, construction defects,
material failure and ground movement (see Figure 1) [4], leaks provoke severe multidimensional
consequences and dangers for man and nature. First, the suspension of the normal operation of the
pipeline and the repairing of the leak lead to additional economical costs and an abrupt interruption
of the comforts of our daily life, e.g., when the supply of running water is interrupted. Moreover,
and in light of a planet where water becomes an increasingly scarce and valuable resource due to the
climate change, an economical and careful use that minimizes the losses is imperative to maintain
our living standard. However, according to a study of the International Water Services Association
(IWSA) carried out in 2001, the water losses sum up to between 8 % and 24 % in developed
countries, 15 − 24 % in newly industrialized countries, and 25 − 45 % in developing countries [5].
A more recent study of the Organisation for Economic Co-operation and Development (OECD)

1
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Distribution of leak causes (2007-2016, EGIG)
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Figure 1.: Distribution of leak causes (2007-2016, EGIG) [4]

realized in 2012 that surveys 48 cities from OECD countries indicates an average water loss of
21 % including cities in Mexico with a water loss rate higher than 50 % [6]. An approach to
quantify the economical costs due to leakage in water pipes concluded that the yearly water losses
sum up to a value of about USD 39 billion [7]. In short, these statistics emphasize the great need
of reliable and accurate leak detection and localization methods.

The main subject of this thesis is confined to the leak detection, size estimation and localization
for water pipes. Nonetheless, the same issue of leak detection and localization applies w.r.t. to
fossil fuels like crude oil and natural gas. Moreover, escaped fossil fuels can cause health risks
(e.g., by contaminating potable water) and environmental damage up to social conflicts (see e.g.,
[8, 9, 10]). Consequently, there is a great need for monitoring of pipeline systems to detect the
occurrence of leaks in a rapid, reliable, and accurate way. It is required not only to detect the leak,
but also to estimate its size and locate its position accurately enough to ensure that the leak can
be repaired rapidly and that the economic, as well as the environmental impact, is minimized.

2



1. Introduction

1.1. State of the Art

Due to the severe economical, ecological, and social impacts of leakage1, the development of leak
detection methods is of great research, economic and common interest, such that a wide range
of leak detection and localization approaches exists. To order this wide field and obtain a better
overview of the state-of-the-art approaches, the leak detection methods can be classified accord-
ing to their technical nature and are categorized into three main classes as Figure 1.1 illustrates:
hardware-based methods, non-technical methods, and software-based methods [12].2

Leak Detection Methods

Non-technical MethodsHardware Based Methods Software Based Methods

Acoustic Optical Real Time Transient
Modeling (RTTM)Mass/Volume Balance

Cable Sensor Soil Monitoring Negative Pressure Wave Pressure Point Analysis

Vapor Sampling Ultrasonic Flow Meters Digital Signal Processing Statistical

Figure 1.1.: Overview of leak detection techniques, based on [12].

Non-technical or biological methods apply e.g., trained dogs or line patrols to detect and lo-
cate leaks based on visual, olfactory, or sound observations like unusual patterns near the pipeline,

1Throughout this thesis, the terms leak and leakage are used as synonyms. For a differentiation between leak and
leakage see e.g., [11].

2Some authors use the terminology externally based methods to refer to hardware-based methods and internally
based methods referring to software-based methods (see e.g., [13]).

3
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recognition of odour-intense substances or listening to specific noises evoked by fluid that escapes
through the leak [14]. Although these methods guarantee the highest degree of accuracy and re-
liability and are still the most common leak detection and localization method [15], the accuracy
and the rapidness of these methods depend strongly on the experience and sensitivity of the per-
sonnel, as well as the frequency of the inspections. Furthermore, the application of biological or
non-technical methods is limited by the topographic conditions and hardly automatable.

Hardware-based methods are characterized by the implementation of local sensing devices to
detect and locate directly the leak. According to the physical principles that govern the functioning
of the sensing devices, several types of hardware-based methods are distinguished: acoustic, opti-
cal, cable sensor, soil monitoring, ultrasonic flow meters and vapor sampling. On the one hand,
hardware-based methods can guarantee high accuracy in detecting and locating the leak since they
do not depend on measured or identified pipeline parameters [15]. Nevertheless, the reliability of
hardware-based methods depends strongly on the accurate and adequate installation of the sensors
to ensure that a change in the pipeline integrity due to a leak can be recognized. Consequently,
hardware-based methods have the drawback of high complexity of installation (especially in the case
of difficult topographic conditions or underground pipelines) and high system costs [13]. Hence,
their application is mainly concentrated in high-risk areas like natural reserves [13].

Software-based methods use the measurement of field sensors to internally run an implemented
algorithm that constantly monitors the state of main physical pipeline parameters like the flow
rate, the pressure, or the temperature. Based on the analysis of the physical states, the algorithm
infers if and where a leak has occurred. A simplistic leak detection method would compare the
inlet flow and the outlet flow and infer the occurrence of a leak if this difference is higher than a
prescribed threshold. According to the underlying mathematical and physical approach, software-
based methods can be subdivided into several categories: acoustic/negative pressure wave, pressure
point analysis, statistics, digital signal processing, mass/volume balance and Real-Time Transient
Modeling (RTTM) [12]. In the following, the focus will lay on the latter approach.

RTTM algorithms are model-based and require firstly the derivation of a mathematical pipe
model that describes the fluid dynamics inside the pipe adequately. Mostly, physical principles like
the conservation of mass and the conservation of momentum are utilized to derive a system of cou-
pled Partial Differential Equation (PDE) that describe the temporal and spatial dependency of the
physical states (e.g., flow rate, pressure, and temperature). Subsequently, an observer is designed
that compares the state values measured by the field sensors and the state values simulated by the
pipe model and infers based on this error signal if and where a leak has occurred.

Since the resulting PDEs represents an infinitely dimensional system, the dimension of this sys-
tem must be reduced to be able to implement the resulting observers. The process of reducing
the infinitely dimensional system to a finite dimensional system is called lumping and leads to two
different categories of RTTM approaches, that are illustrated in Table 1.1: early lumping and late

4
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lumping [16].

Early lumped RTTM Late lumped RTTM
•Gradient Intersection method ([17, 18, 19]) •Luenberger type observers ([20])
•Kalman Filter Design ([21, 22, 23, 24, 25]) •Adaptive Backstepping Observer ([26, 27])

•Sliding Mode Differentiators ([28, 29])

Table 1.1.: Overview of RTTM approaches.

Early lumping approaches are characterized by the fact that the reducing of the infinite model
order to a finite model order is performed before the observer is designed, i.e., the PDE system
is discretized to obtain a set of Ordinary Differential Equations (ODEs) [16]. After the spatial
discretization, classical approaches of observer theory for finite dimensional systems like sliding mode
observers [28, 29], Luenberger type observer or Kalman Filter (KF)-type observers (e.g. Extended
Kalman Filter (EKF), Unscented Kalman Filter (UKF), particle filter, ...) [21, 22, 23, 24, 25] can
be applied to the resulting ODE system to detect and locate the leak.

Especially, the design of KF-type observers to estimate and locate pipe leaks is the subject of
intense research during the four decades and can be regarded as a benchmark for RTTM approaches.
In [25], a review of KF-based approaches for leak detection and estimation is provided. The results of
different research groups are bundled and analyzed regarding the reliability, accuracy, sensitivity, and
robustness of the proposed leak detection and localization schemes. Furthermore, a classification
of the KF-based techniques to detect and locate leaks is proposed: (i) approaches based on a
bank of KFs, (ii) approaches based on the estimation of internal pressures and flow rates and (iii)
approaches based on the direct estimation of the leak parameters. This classification also represents
the historical evolution of the KF-based leak detection and localization techniques. The approach
based on a bank of filters was the first KF-based technique to detect and localize leaks in pipelines
and was proposed in 1980 in [30]. The main idea was to discretize the pipe into n spatial segments
and to design a filter for the leak case in each of the spatial segments of the pipe. Thereby, a bank of
independent filters is obtained, where the n-th filter is designed to recognize a single leak in the n-th
segment. To identify the leak position, a multiple-model hypothesis probability test is performed
to select the filter which optimally fits the model based on the available measurement data. This
approach based on a bank of estimators was revisited and further refined in [31] and combined with
genetic algorithms in [32] to improve the accuracy in noisy environments. Moreover, the approach
is already used for commercial leak detection algorithms like PipePetrol by the KROHNE Group
[33]. However, one main drawback of the approach is that a higher accuracy not only requires a
finer discretization of the pipe but also an increasing number of filters that have to be designed and
implemented in real-time. To overcome this disadvantage, the approaches based on the estimation
of internal pressures and flow rates were developed. The first publication in this context is [34] that
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deals with the detection and localization of leaks in gas pipelines. Based on a lumped model of
two PDEs that describe the gas dynamics inside the pipeline, only one KF is necessary to design to
estimate the leak localization. The estimation of the physical states (flow rate and pressure) of the
pipe model are used to resolve auxiliary algebraic equations (e.g., derived from head loss balances,
mass balance and the estimation of fictitious leaks) for the leak localization. The accuracy of
this approach can be tuned by augmenting the number of estimated internal states of the pipe
model what also implies increasing computational costs. The most recently developed KF-type
leak detection algorithms utilize approaches based on the direct estimation of the leak parameters.
Thereby, the design and real-time implementation of multiple filters, like it is the case for approaches
of type (i), or of a spatially discretized filter, like for (ii), is circumvented. Instead, a unique KF is
implemented to estimate the leak localization, where the design of the KF is realized based on a
spatially discretized mathematical model of the fluid dynamics that includes the leak position and
leak size in form of state variables. The first publication concerning this approach is [35] where
the design of a single Extended Kalman Filter (EKF) to detect and localize at maximum two leaks
is proposed. This approach was refined in [36] to design an EKF to detect and localize leaks in
a plastic pipeline and was validated successfully. Nowadays, the research interest focuses on the
design of EKF-based leak detection and localization algorithms for complex pipeline networks that
include series and branch junctions [37, 38]. Another focus lies on the transfer of the KF-based
leak detection and localization techniques, that are mostly designed for water pipelines, to the case
of oil or gas pipelines. Examples can be found in [39], where the design of an Unscented Kalman
Filter (UKF) is proposed, and in [40], where an EKF is utilized to detect and locate leakages for
a simulation pipe with characteristics similar to the first section of the North Peruvian oil pipeline.

Although the KF-type observers show an acceptable accuracy in simulation and real data-based
test environments (see e.g., an accuracy of 1.36 % w.r.t. the leak localization in [21]), the early
lumping approaches share several drawbacks. Firstly, since the PDE model is discretized before the
observer design, physical information contained in the PDE model is lost and important conditions
for the observer design like the observability of the obtained ODE system can depend on the choice
of the discretization scheme and the location of the discretization points [16]. Furthermore, the
stability analysis of the observer loop including the physical PDE model of the pipe and the ODE
based observer becomes more complicated.

These theoretical limitations motivate the design of late lumping leak observers, which make
use of the full physical information contained in the PDE model. The observer is designed based
on the PDE model and represents also an infinite dimensional system, such that the discretization
is performed only during the last stage, the implementation phase. Thereby, all modelled physical
features of the problem are included in the observer design process [16] and a rigorous stability
analysis can be performed using PDE theory for the observer loop, including the physical PDE
model of the pipe and the PDE system representing the observer. In [27], such a late lumped
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observer is proposed using backstepping methods to prove the asymptotic stability of the observer
error in the leak size estimation and the leak localization. Throughout this thesis, one focus lies on a
profound evaluation of the approach presented in [27] using simulation-based, and real data-based
results. Afterwards, this approach is compared to an alternative late lumping method applying
modulating functions to design an algebraic observer.

1.2. Research Objectives

Throughout this thesis, dynamic and algebraic observer algorithms are designed to detect and
localize leakage in pipe systems. While dynamic observer schemes require an online simulation of
the PDE model, the dynamic auxiliary problem of algebraic observers can be solved offline such
that only an algebraic equation that can be implemented as a Finite Impulse Response (FIR) filter
has to be solved online. It is of great interest to compare the capacity to detect and locate
leaks of both observer schemes and to investigate which observer scheme performs better under
various conditions regarding several important KPIs like the accuracy of leak size estimation and
localization, sensitivity to leak size and measurement noise and the calculation time. It is aimed at
evaluating the performance of both observers not only for a simulation plant, but also for a pilot
plant installed at the Laboratory for Advanced Control Engineering at the Pontifica Universidad
Católica del Perú (PUCP). Thereby, to the best of the author’s knowledge, this thesis analyzes for
the first time late lumped, RTTM approaches to detect and localize leaks based on real measurement
data. To reach these research objectives, the following general and specific objectives, that will
guide this thesis, are formulated.

1.2.1. General Objective

The main goal of this thesis is to derive, implement and validate a dynamic and an algebraic
observer to detect leaks smaller than 1 % of the nominal flow rate, estimate its size and localize
its position with deviations under 5 % regarding the real leak size and the total length of the pipe.
Moreover, it is aimed at enabling an implementation of the two observers in real time. To this end,
the main goal is subdivided into two parts.

Firstly, the Adaptive Backstepping Observer (ABSO), a dynamic observer proposed in [27], is
profoundly analyzed in a simulation-based test environment to identify the limitations of the observer
regarding e.g. measurement noise and model uncertainties. In particular, the model assumption of
linear friction losses is investigated critically.

The application of the Modulating Function Method (MFM) [41, 42, 43] to detect and locate
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pipe leaks represents the second research interest of this thesis. The goal is to develop, implement
and test this algebraic observer design approach firstly in a simulation-based test environment in
order to evaluate its efficiency and possible advantages or drawbacks over the ABSO. To this end,
the MFM is applied to the linear PDE pipe model to derive the auxiliary problems that can be
solved offline and to derive the algebraic Input-Output (IO) relation for the leak size estimation and
the leak localization. Finally, the simulation-based results of both observer schemes are compared
profoundly regarding important performance indicators like accuracy, sensitivity and run time of the
leak detection and localization.

Furthermore, both observer designs are evaluated with data from a pilot plant installed at PUCP.
The goal is to verify and validate the simulation-based results in a real data-based environment.
Therefore, relevant model parameters are identified, the model is validated and the performance
of both observers regarding accuracy and sensibility of the leak size estimation and localization
is evaluated under different conditions (magnitude of the leak, position of the leak, nominal flow
rate ,. . . ). The objective of this part is to verify the applicability of the different observer design
to real pipeline systems and to identify limits and future work to implement them in an industrial
environment.

1.2.2. Specific Objectives

To achieve the general objective, the following work steps of research, development, and implemen-
tation need to be done:

• Comprehensive research on the state of the art regarding model-based leak detection and
localization observer design

• Setting up a PDE model describing the physical behavior of the flow and the pressure in
water pipes

• Identification of the limitations of the model, especially regarding the friction modeling

• Development, implementation, and testing of the two different model-based observer struc-
tures (dynamic and algebraic) providing accurate results w.r.t. the estimation of the leak size
and the leak position in a simulation-based environment

• Development, implementation, and testing of the two different model-based observer struc-
tures (dynamic and algebraic) providing accurate results w.r.t. the estimation of the leak size
and the leak position with real measurement data of the pilot plant at PUCP
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• Critical evaluation of the obtained results regarding strength, drawbacks, and limitations of
each observer

• Identification of future work and challenges to implement the two different model-based
observer types in a real plant.

1.3. Methodology

To reach the general and specific objectives formulated in Section 1.2, a certain methodology
to ensure a coherent and well-structured workflow is essential. Therefore, the methodological
chronology is organized into three parts that are described subsequently. This methodology will
also guide the structure of the present work.

Firstly, the theoretical background of the observer design is described in Chapter 2. Since the
observers presented in this work fall into the category of RTTM approaches, i.e., model-based
observer design, it is required to investigate on the

• Mathematical PDE model of the water pipe system [44, 21, 27]

• Discretization scheme for the mathematical PDE model to obtain a system of ODEs [45].

The drawn model assumptions are discussed, whereby a particular focus lies on the modeling of the
friction losses.

Subsequently, the design of the dynamic and algebraic observer based on the selected pipe
model is realized in Chapter 3. The first Section 3.1 of this chapter lays the groundwork for the
observer design by introducing a state transformation that decouples leak size and leak position.
Subsequently, the design of the dynamic observer, the ABSO is described in Section 3.2 according
to the current publications [20, 27, 46]. Then, the design of the algebraic observer is thematized
in Section 3.3. Since this part represents a new application of the MFM and develops for the first
time an algebraic, MFM-based observer for leak detection and leak localization, several steps have
to be realized. At first, it is investigated on the

• Theoretical background of the MFM and its application [47, 41, 48, 49, 50]

• Application of the MFM to estimate source terms in PDEs [42]

• Application of the MFM to estimate states of coupled PDE systems [51].
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Hereinafter, the MFM is applied in Section 3.3.2 for estimating the leak size and in Section 3.3.3
for the leak localization. The latter section is divided into two parts. The first part shows that a
direct leak localization is not possible and hence, a state estimation performed in Section 3.3.3.2 is
required. Throughout these two sections, the challenge of solving the auxiliary problems resulting
from the application of the MFM occurs. To this end, the

• Trajectory planning to solve the auxiliary problem resulting from the application of the MFM
[52, 42]

• Backstepping methods to stabilize PDE systems [27, 53].

will be reviewed.
The last part of this thesis verifies and validates the presented observers for leak detection

and leak localization in simulation as well as for real measurement data obtained from the pilot
plant installed at PUCP. The simulation part presented in Chapter 4 is mainly performed using
MATLAB/Simulink® and involves the

• Implementation of the discretized mathematical PDE model in MATLAB/Simulink®

• Implementation of the discretized ABSO in MATLAB/Simulink®

• Simulation of the discretized ABSO in MATLAB/Simulink® under different operating condi-
tions

• Generation of the Modulating Functions (MFs) resulting from the auxiliary problems in
MATLAB/Simulink®

• Introduction of KPIs to analyze the performance of both observers objectively

• Comparative analysis of the simulation-based results of both approaches.

The second part of the validation of the observer performances involves the application of the
derived observer schemes to the pilot plant at PUCP in Chapter 5. The practical fundament of
this part was done in previous works [54] where the operation of the pilot plant is explained using
the software Studio 5000 Logix Designer® to manipulate the power of the pumps and to log the
measurement data of the sensors. Based on this fundament, the first steps thematised in Section
5.1 and Section 5.2 consider the identification and validation of the utilized pipe model. To this
end, the following tasks are realized

• Logging of measurement data (flow rate and pressure) under different operating conditions
(leak size, leak position, nominal inlet flow)
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• Identification of the system parameters in MATLAB/Simulink® based on technical specifica-
tions of the pilot plant and the measurement data

• Verification and validation of the mathematical pipe model without and with leakage.

An approach to estimate the friction factor based on flow rate and pressure measurements in
steady state is presented. Furthermore, the assumption of friction losses that depend linearly on
the flow rate is examined critically, and the model accuracy is compared with a nonlinear pipe
model. Finally, the dynamic and algebraic observer are used in Section 5.3 to estimate the leak size
and localize the leak position from the logged measurement data. Based on the KPIs introduced in
the previous Chapter 4, the performance of both observers is compared regarding the accuracy, the
sensitivity, and the calculation time. Limitations and drawbacks of the observers that occur in this
real application environment are pointed out and topics for future work are identified. Conclusively,
in Chapter 6, the main results of this thesis, as well on a theoretical level as on a more practical
level, are summarized, and an outlook for future work is given. In particular, the transfer of the
results that are obtained for water pipes, towards the application of the results for oil pipelines is
of special interest.

In the following chapter, the first part of the theoretical background of the methodology, that
involves the modeling of the pipe system, is presented.
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2. System Modeling of Water Pipes

As discussed in the review of the state of the art in Section 1.1, RTTM approaches to leak detection
and localization require firstly an appropriate mathematical model of the pipeline system upon which
the observer is designed later on. In the context of mathematical modeling of a physical system,
an appropriate model is understood as a model that “is not as exact as possible, but as exact as
necessary” [55]. For the case of water pipe systems, this principle implies, that the model should
represent the main fluid transient phenomena, providing a reasonable compromise between accuracy
and simplicity, in particular w.r.t. the subsequent observer design. Thus, this chapter introduces the
physical model, that is used subsequently for the leakage detection and localization. Furthermore,
the limitations of the model are discussed, while a special focus lies on different approaches to
model the effect of friction losses.

2.1. Mathematical Modeling of Fluid Dynamics in Water Pipes

A well established and widely applied approach in the literature to model the fluid dynamics in
pipelines is provided by the so-called water hammer equations [56]. The derivation of these equa-
tions requires some assumptions on the fluid characteristics that are summarized as follows:

• Assumption 1: the pipeline is completely filled with liquid [57].

• Assumption 2: the cross-section area of the pipeline does not vary over the pipe length and
is independent of the pressure [57].

• Assumption 3: an average fluid speed is used for calculations, while changes in the fluid
speed distribution are neglected [57].

• Assumption 4: effects of heat exchange between fluid, pipe wall, fluid, and environment are
not taken into account [57].

• Assumption 5: temperature effects are not considered, i.e., fundamental physical fluid char-
acteristics like density, viscosity are assumed to be constant.
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• Assumption 6: the fluid is regarded as incompressible [56].

• Assumption 7: the fluid flow is treated as single-phase, i.e., commixtures of different fluids
or fluid phases over the pipe length are not considered.

• Assumption 8: one-dimensional nonsteady dynamic flow is considered, i.e., the physical
states depend on time t and horizontal position z [56].

Based on these assumptions, the application of the mass and momentum balance leads to a hyper-
bolic PDE system of two coupled PDEs representing the water hammer equations [56]1:

ΣWH, nom :



∂p
∂t (z, t) = − β

A
∂q
∂z (z, t)

∂q
∂t (z, t) = −A

ρ
∂p
∂z (z, t) − A g sin(θ(z))

−A J(q(z, t))

q(0, t) = q0(t), p(ℓ, t) = pℓ(t).

(2.1)

where z represents the one-dimensional spatial coordinate [m] ∈ [0, ℓ], ℓ is the length [m] of the
pipe, t is the time [s], q(z, t) denotes the volumetric fluid flow rate [m3

s ], p(z, t) is the fluid pressure
[Pa], β is the bulk modulus [Pa] describing the compressibility of the fluid, A is the cross-sectional
area [m2] of the pipe, ρ is the density [ kg

m3 ] of the fluid, θ(z) is the inclination angle [rad] of the
pipe, g is the gravity acceleration [ m

s2 ] and J(q(z, t)) represents the friction losses [ m
s2 ] that depend

on the flow rate and affect the fluid dynamics by causing a negative pressure gradient from the
inlet to the outlet of the pipe. The boundary conditions of the system are given by the inlet flow
rate q0(t) and the outlet pressure pℓ(t).

The system ΣWH,nom represents the nominal case without leakage. To include the effect of a
leakage on the fluid dynamics, the following assumptions are made:

• Assumption 9: the total leak size χ[m3

s ] is non-negative and constant over the pipeline [46].

• Assumption 10: the distribution of the total leak size χ over the pipe is described by a
normalized non-negative leakage distribution function d : [0, ℓ] → R≥0,

∫ ℓ
0 d(z)dz = 1 [46].

Especially, the assumption of a constant leakage size differs significantly from other literature (e.g.
[56]) where a transient leak size depending on the nominal flow rate is assumed. Therefore, in
Chapter 5 it is analyzed based on measurement data from the pilot plant if the fluid flow rate

1In [56], the water hammer equations are occasionally given w.r.t. the pressure head H(z, t) = p(z,t)
ρg

. Nevertheless,
throughout this thesis the representation of the system in the system states pressure p(z, t) and flow q(z, t) is
preferred due to its simpler physical interpretation.
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passing through the leak reaches a constant value.
According to [46], the pipe model in the case with leakage reads finally

ΣWH, leak :



∂p
∂t (z, t) = − β

A
∂q
∂z (z, t) − β

Aχ

∂q
∂t (z, t) = −A

ρ
∂p
∂z (z, t) − A g sin(θ(z)) − η

Ad(z)χ
−A J(q(z, t))

q(0, t) = q0(t), p(ℓ, t) = pℓ(t)

(2.2)

where the effect of the leakage on the mass balance is included straightforwardly while the effect on
the momentum balance requires an additional constant parameter η[m3

s ] describing the geometrical
characteristics of the leak like shape, size, and orientation [46]. In [58], it is stated that a reasonable
parametrization of η is given by η = c q0 where q0 is the average flow rate through the pipe and the
factor c is identified experimentally by c ≈ 0.8 for point leakages [58]. Summarizing the modeling
of the fluid dynamics in the pipe, Figure 2.1 illustrates the examined pipe system schematically,
including the inlet and outlet flow rates and pressures, the geometrical parameters of the pipe, the
fluid parameters, the leak characteristics and the leak position z∗.

J(q(z, t)), β, ρ, A
p0(t), q0(t)

pℓ(t), qℓ(t)

c, χ
θ

ℓ

z∗

g

Figure 2.1.: Schematic illustration of the pipe system

To complete the modeling of the fluid dynamics within the pipe, an appropriate description of
the friction losses J(q(z, t)) has to be found. Thus, the following Section 2.1.1 introduces two
different approaches to model the friction losses.

2.1.1. Modeling of Friction Losses

The relative movement between different fluid layers as well as the friction between the fluid and
the pipe wall lead to a pressure gradient from the inlet to the outlet. The form and the slope of
this gradient depend strongly on the characteristics of the fluid motion (laminar or turbulent) and
the pipe wall geometry (roughness, material, . . . ) [59]. Since the friction losses play an import role
in fluid dynamics modeling, and e.g. several leakage localization approaches base on the form of
the pressure drop caused by the friction losses and the leakage [19], an appropriate modeling of the
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friction losses is essential. In the following, two different friction loss models are presented, a linear
approach and a nonlinear approach. The system identification and parametrization of these two
models will be discussed in Section 5.1 based on measurement data from the pilot plant installed
at PUCP.

2.1.1.1. Linear Friction Modeling

For laminar flow or an analysis near to an operating point where the flow rate q(z, t) ≈ q0,∞ =
const. is approximately constant, the friction losses can be assumed to depend linearly on the flow
rate q0,∞ [44] and are calculated as

J(q(z, t)) = F

ρ A
q(z, t) (2.3)

where F denotes the linear friction factor [ kg
m3s ]. Inserting the linear friction loss model (2.3) into

the water hammer equations (2.2) leads to a coupled, linear, hyperbolic PDE system:

ΣWHlin,leak :



∂p
∂t (z, t) = − β

A
∂q
∂z (z, t) − β

Aχ

∂q
∂t (z, t) = −A

ρ
∂p
∂z (z, t) − A g sin(θ(z)) − η

Ad(z)χ
−F

ρ q(z, t)

q(0, t) = q0(t), p(ℓ, t) = pℓ(t)

. (2.4)

Remark 1. For reasons of simplicity in the derivation of the algebraic observer, the matrix form of
the linear system ΣWHlin,leak is introduced:

ΣWHlin,leak :



[
ṗ(z, t)
q̇(z, t)

]
=

 0 − β
A

−A
ρ 0


︸ ︷︷ ︸

:=Λ

[
p′(z, t)
q′(z, t)

]
+

0 0
0 −F

ρ


︸ ︷︷ ︸

:=Σ

[
p(z, t)
q(z, t)

]

+
[

0
−Ag sin(θ(z))

]
︸ ︷︷ ︸

:=Θ(z)

+
[
− β

Aχ

− η
Aχ

]
︸ ︷︷ ︸

:=X

d(z)

[
p(ℓ, t)
q(0, t)

]
=
[
pℓ(t)
q0(t)

]

(2.5)

where the temporal derivatives are abbreviated by ṗ(z, t) := ∂
∂tp(z, t) and the spatial derivatives

are denoted by p′(z, t) := ∂
∂z p(z, t).
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Since the linear PDE model facilitates the observer design and the stability analysis of the
observer structure, the main focus of this thesis lies on the leak detection and localization based
on the linear pipe system (2.4). The assumption of a linear friction loss is analyzed critically in
Chapter 5 using real data from a pilot plant installed at PUCP. In the following, a nonlinear friction
model is introduced to compare and to validate the linear PDE model, as well as to evaluate the
limitations of the linear PDE model.

2.1.1.2. Nonlinear Friction Modeling

To border a wider class of fluid flow operating conditions, nonlinear friction losses are introduced.
The nonlinear friction loss model is valid for turbulent, non-steady flow and is described by [56]

J(q(z, t)) = fd
|q(z, t)|q(z, t)

2 d A2 (2.6)

where d denotes the pipe diameter [m] and fd is the Darcy-Weisbach friction coefficient [−]. This
friction coefficient depends on the fluid dynamics as well as the pipe wall roughness and can be
calculated via the widely used Darcy-Colebrook Equation [60]:

1√
fd

= −2 log
(

ϵp

3.7 d
+ 2.51

Re
√

fd

)
(2.7)

where ϵp corresponds to the pipe surface roughness [m] and Re to the Reynolds number [−]
calculated by

Re = 4ρ q

π d ηv
(2.8)

where q corresponds to the current flow rate [m3

s ] and ηv to the dynamical viscosity [ kg
ms ] of the

fluid. Since the Equation (2.7) is implicit in fd, an approximation is needed for observer design
and implementation purposes. An accurate and common approximation in literature [61] is given
by the Haaland equation [62]

1√
fd

= −1.8 log10

((
ϵp

3.7 d

)1.11
+ 6.9

Re

)
. (2.9)

16



System Modeling of Water Pipes Julius Paul Rußmann

Inserting the nonlinear friction loss model (2.6) with (2.9) into the water hammer equations (2.2)
leads to the highly nonlinear PDE model

ΣWHnl,leak :



∂p
∂t (z, t) = − β

A
∂q
∂z (z, t) − β

Aχ

∂q
∂t (z, t) = −A

ρ
∂p
∂z (z, t) − A g sin(θ(z)) − η

Ad(z)χ
−fd

|q(z,t)|q(z,t)
2 d A

q(0, t) = q0(t), p(ℓ, t) = pℓ(t)

(2.10)

since the friction term J(q(z, t)) as well as the calculation of the friction factor fd depend nonlinear
on the flow rate q(z, t). Hence, in Chapter 5 the linear and the nonlinear pipe model are validated
using real data to analyze whether the nonlinear model provides a more accurate representation of
the fluid dynamics what would justify the more complex structure of the friction loss calculations.

Furthermore, it is noted that non-stationary friction losses that depend on the spatial and
temporal derivative of the flow rate (see e.g., [56]) are not regarded in this thesis, since former
investigations in other literature concluded, that the modeling of non-stationary friction losses only
leads to a more complex model without improving the results of the leak detection and localization
[63]. The following Chapter 3 presents the theoretical core of this thesis, the dynamic and algebraic
observer design to detect and locate leakage in water pipes based on the linear pipe model (2.4).
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3. Observer Design

This chapter forms the theoretical fundament of the thesis. Two different approaches to design an
observer to detect and localize leakage in pipe systems are examined: a dynamic observer scheme
and an algebraic observer scheme. Both observers have the same basic structure that is illustrated
in Figure 3.1.

Pipe Model
(2.4)

State transformation
(p, q)⇝ (u, v)

Transformed
system (u, v)

Leak Size and
State Estimation

Estimate leak
position

p0(t), pℓ(t), q0(t), qℓ(t)

û(0, t), v̂(0, t), χ̂ ẑ∗

Figure 3.1.: Schematic illustration of the general structure of the proposed algebraic and dynamic
leak detection and localization observers.

Despite the differences in the design of the observer schemes, both approaches share a common
starting point. Since the leak size χ and the leak distribution d(·) appear as a product in both
equations of the physical pipe model (2.4), a state transformation is sought to decouple both
variables and to permit designing the estimate schemes for both variables separately. Based on
this decoupling, that results in a transformed, hyperbolic PDE system with dimensionless states
u(x, t), v(x, t), the dynamical as well as the algebraic observer estimate first the leak size χ and the
states of the transformed system. Based on this first estimation step, the leak location is estimated
utilizing the estimate χ̂ of the leak size and the estimates of the boundary states û(0, t) and
v̂(0, t) of the transformed system. The transformed system is completely defined by the physical
parameters of the pipe model and the boundary measurements of the states of the pipe model.
Thus, throughout this thesis, it is assumed that the pressure and the flow rate at the inlet and
the outlet of the pipe are known and given by p(0, t) = p0(t), p(ℓ, t) = pℓ(t), q(0, t) = q0(t) and
q(ℓ, t) = qℓ(t).

The dynamic observer scheme follows mainly the approach presented in [27] and results in a
Luenberger-type observer whose observer gains are derived from a backstepping transformation, i.e.
the estimation of the leak size and the state estimation originate from the simulation of a dynamical
(PDE) system. Contrary to that, the algebraic observer is derived based on the application of the
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MFM and results in an algebraic IO-relation such that the leak size and the states of the transformed
system are estimated by solving algebraic equations that are implemented as an FIR filter.

The following section presents the first part of the observer design, the state transformation of
the linear pipe model (2.4) to decouple the leak size χ from the leak distribution d(·).

3.1. State Transformation of the Pipe Model

This section presents the state transformation of the linear pipe model (2.4) to decouple the leak
size χ and the leak distribution d(·). It is assumed, that the flow and the pressure at the inlet and
the outlet of the pipe are known. The transformation results in a 2 × 2 hyperbolic PDE system,
where the leak size χ appears in one of the boundary conditions while the leak distribution d(·)
appears only in the state transformation. The following Theorem 3.1.1 states the main result and
can be found in [27]:

Theorem 3.1.1 (State transformation of the linear pipe model (2.4)). Assume that the flow and
the pressure at the inlet and the outlet of the pipe are known and given by p(0, t) = p0(t), p(ℓ, t) =
pℓ(t), q(0, t) = q0(t) and q(ℓ, t) = qℓ(t). Define the auxiliary variable δ(·) by

δ(z) := ℓ − z −
∫ ℓ

z

∫ η

0
d(γ)dγdη . (3.1)

Then the following invertible state transformation

u(x, t) = 1
2e

ℓF

2
√

βρ
x
(

q(xℓ, t) − qin + δ′(xℓ)χ + A√
βρ

(
p(xℓ, t) − pout + ρg

∫ xℓ

0
sin(θ(γ))dγ

+F

A
qinℓx + ρ

A2 ηδ′(xℓ)χ − F

A
δ(xℓ)χ

))
v(x, t) = 1

2e
− ℓF

2
√

βρ
x
(

q(xℓ, t) − qin + δ′(xℓ)χ − A√
βρ

(
p(xℓ, t) − pout + ρg

∫ xℓ

0
sin(θ(γ))dγ

+F

A
qinℓx + ρ

A2 ηδ′(xℓ)χ − F

A
δ(xℓ)χ

))
(3.2)
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for x = z
ℓ ∈ [0, 1] transforms the linear pipe model (2.4) into

Σtrafo,lin :



∂u
∂t (x, t) = −ϵ∂u

∂x(x, t) + c1(x)v(x, t)
∂v
∂t (x, t) = ϵ ∂v

∂x(x, t) + c2(x)u(x, t)

u(0, t) = −v(0, t) + q0(t) − qin − χ

v(1, t) = U(t)

(3.3)

where the parameters of the transformed system (3.3) are given by

ϵ = 1
ℓ

√
β

ρ

c1(x) = −1
2

F

ρ
e

ℓF√
βρ

x
, c2(x) = −1

2
F

ρ
e

− ℓF√
βρ

x

h =
∫ ℓ

0
sin(θ(γ))dγ

U(t) = 1
2e

− ℓF

2
√

βρ

(
qℓ(t) − qin − A√

βρ

(
pℓ(t) − pout + ρgh + Fℓ

A
qin

))
and qin and pout are arbitrary constants that can be chosen such that the origin of the transformed
system (3.3) lies in a desired operating point. The parameter ϵ is the so-called wave or sonic
velocity normalized to the length ℓ of the pipe.

Proof. The inverse of the coordinate transformation (3.2) is given by

p(z, t) =
√

βρ

A

(
e

− F

2
√

βρ
z
u(z

ℓ
, t) − e

F

2
√

βρ
z
v(z

ℓ
, t)
)

+ pout − ρg

∫ z

0
sin(θ(γ))dγ

− F

A
qinz − ρ

A2 ηδ′(z)χ + F

A
δ(z)χ

q(z, t) = u(z

ℓ
, t)e

− F

2
√

βρ
z

+ v(z

ℓ
, t)e

F

2
√

βρ
z

+ qin − δ′(z)χ .

With
δ(z) = ℓ − z −

∫ ℓ

z

∫ η

0
d(γ)dγdη

⇒ δ′(z) = −1 +
∫ z

0
d(γ)dγ

⇒ δ′′(z) = d(z)
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and by inserting the inverse coordinate transformation (3.4) into the linear pipe model (2.4) follows

∂

∂t
u(z

ℓ
, t)e

− F

2
√

βρ
z

− ∂

∂t
v(z

ℓ
, t)e

F

2
√

βρ
z

= −ϵ
∂

∂z
u(z

ℓ
, t)e

− F

2
√

βρ
z

+ F

2ρ
u(z

ℓ
, t)e

− F

2
√

βρ
z

− ϵ
∂

∂z
v(z

ℓ
, t)e

F

2
√

βρ
z

− F

2ρ
u(z

ℓ
, t)e

F

2
√

βρ
z

(3.4)

and

∂

∂t
u(z

ℓ
, t)e

− F

2
√

βρ
z

+ ∂

∂t
v(z

ℓ
, t)e

F

2
√

βρ
z

= −ϵ
∂

∂z
u(z

ℓ
, t)e

− F

2
√

βρ
z

− F

2ρ
u(z

ℓ
, t)e

− F

2
√

βρ
z

+ ϵ
∂

∂z
v(z

ℓ
, t)e

F

2
√

βρ
z

− F

2ρ
u(z

ℓ
, t)e

F

2
√

βρ
z

. (3.5)

Adding of both Equations (3.4) and (3.5) leads to

∂u

∂t
(x, t) = −ϵ

∂u

∂x
(x, t) + c1(x)v(x, t) (3.6)

while subtracting Equation (3.4) from Equation (3.5) results in

∂v

∂t
(x, t) = ϵ

∂v

∂x
(x, t) + c2(x)u(x, t) . (3.7)

Finally, inserting the inverse transformation (3.2) into the boundary conditions of the linear pipe
model (2.4) with δ′(0) = −1 gives

u(0, t) = −v(0, t) + q0(t) − qin − χ

v(1, t) = 1
2e

− ℓF

2
√

βρ

(
qℓ(t) − qin − A√

βρ

(
pℓ(t) − pout + ρgh + Fℓ

A
qin

))
h =

∫ ℓ

0
sin(θ(γ))dγ

what completes the proof of the statement of the Theorem 3.1.1.

Remark 2. The transformation (3.2) can be understood as the composition of two transforma-
tions. Firstly, the linear pipe model (2.4) is diagonalized regarding the spatial derivative ∂

∂z , i.e. a

coordinate transformation
[
p̄(z, t)
q̄(z, t)

]
= V

[
p(z, t)
q(z, t)

]
is applied such that V −1

 0 −β
A

−A
ρ 0

V is diag-

onal. Afterwards, a second transformation is applied that removes the constant terms as well as

the diagonal terms in V −1

0 0
0 −F

ρ

 [26].
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Remark 3. For reasons of simplicity in the derivation of the algebraic observer, the matrix form of
the transformed system Σtrafo,lin is introduced:

Σtrafo, lin :



[
u̇(x, t)
v̇(x, t)

]
=
[
−ϵ 0
0 ϵ

]
︸ ︷︷ ︸

:=Λχ

[
u′(x, t)
v′(x, t)

]
+
[

0 c1(x)
c2(x) 0

]
︸ ︷︷ ︸

:=Σχ(x)

[
u(x, t)
v(x, t)

]

[
u(0, t)
v(1, t)

]
=
[
−v(0, t) + q0(t) − qin − χ

U(t)

]

(3.8)

where the temporal derivatives are abbreviated by u̇(x, t) := ∂
∂tu(x, t) and the spatial derivatives

are denoted by u′(x, t) := ∂
∂xu(x, t)

The state transformation (3.2) accomplishes the decoupling of the leak size χ and the leak
distribution d(·). Since the transformed system (3.3) is independent of the leak distribution d(·),
the leak size χ can be estimated firstly. Thereby, the significance of the estimation of the leak size
is twofold. On the one hand, the estimated leak size allows to provide a reasonable leak detection
signal by comparing the estimated leak size to a threshold, that is defined e.g., by analysing the
measurement noise level of the sensors. If the estimated leak size is higher than this threshold, the
leak detection alarm is triggered. On the other hand, the estimation of the leak size is required to
localize the leak. In the following section, the design of a dynamic observer as proposed in [27] to
estimate and localize the leak is presented.

3.2. Dynamic Observer Design

This section is dedicated to the design of a dynamic observer to estimate firstly the leak size
and secondly the leak localization. The design of the observer is proposed in [27] and has a
Luenberger-type observer structure based on the transformed system (3.3). In contrast to KF-
type approaches (see e.g. [24]), the observer design does not require a spatial discretization of
the physical model (2.4) but develops the observer structure directly on the physical PDE model
(2.4) and the transformed model (3.3). Moreover, the injection gains of the observer errors are
not chosen heuristically but derived from a backstepping transformation of the transformed system
(3.3). Thereby, the exponential stability of the observer error is proven. In the following, the main
results of [27] are summarized to enable the implementation in a simulative environment and to
test the performance of the dynamic observer under various operating conditions. The observer
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design is performed for the linear pipe model (2.4). A still unpublished extension of the dynamic
observer to the nonlinear pipe model (2.10) can be found in [64].

3.2.1. Leak Size Estimation and State Estimation

To estimate the leak size and the states of the transformed system (3.3), the following observer
structure is proposed [27]:

Σobs,χ :



∂û
∂t (x, t) = −ϵ∂û

∂x(x, t) + c1(x)v̂(x, t) + p1(x) (Y (1, t) − û(1, t))
∂v̂
∂t (x, t) = ϵ ∂v̂

∂x(x, t) + c2(x)û(x, t) + p2(x) (Y (1, t) − û(1, t))

û(0, t) = −v̂(0, t) + q0(t) − qin − χ̂(t)

v̂(1, t) = U(t)
˙̂χ(t) = L (Y (1, t) − û(1, t))

(3.9)

where the output injection Y (1, t) is calculated by the parameters of the model and the available
measurements of the flow rate and the pressure at the outlet:

Y (1, t) = u(1, t) = 1
2e

lF

2
√

βρ

(
qℓ(t) − qin + A√

βρ

(
pℓ(t) − pin + ρgh

Fℓ

A
qin

))
. (3.10)

The observer system (3.9) is a copy of the transformed model (3.3) with an additional injection of
the output error Y (1, t)− û(1, t) where the output injection gains are given by the spatial functions
p1 : [0, 1] → R, p2 : [0, 1] → R and the constant L ∈ R. By introducing the observer state
estimation errors ũ(x, t) := u(x, t) − û(x, t), ṽ(x, t) := v(x, t) − v̂(x, t) and χ̃(t) := χ − χ̂(t) and
subtracting the observer system (3.9) from the transformed system (3.3), the following observer
error system is obtained:

Σobs,χ :



∂ũ
∂t (x, t) = −ϵ∂ũ

∂x(x, t) + c1(x)ṽ(x, t) + −p1(x)ũ(1, t)
∂ṽ
∂t (x, t) = ϵ ∂ṽ

∂x(x, t) + c2(x)ũ(x, t) + −p2(x)ũ(1, t)

ũ(0, t) = −ṽ(0, t) − χ̃(t)

ṽ(1, t) = 0
˙̃χ(t) = −Lũ(1, t)

.

(3.11)

The following two theorems summarize the stability analysis performed in [27] and indicate how
the output injection gains p1(·), p2(·) and L have to be chosen to guarantee asymptotic stability
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of the origin of the observer error system (3.11).

Theorem 3.2.1 (Asymptotic stability of the ABSO [27]). Consider the backstepping transformation
[53]

ũ(x, t) = α̃(x, t) −
∫ 1

x
P uu(x, ξ)α̃(ξ, t)dξ −

∫ 1

x
P uv(x, ξ)β̃(ξ, t)dξṽ(x, t)

= β̃(x, t) −
∫ 1

x
P vu(x, ξ)α̃(ξ, t)dξ −

∫ 1

x
P vv(x, ξ)β̃(ξ, t)dξ

(3.12)

on the domain To := {(x, ξ) : 0 ≤ x ≤ ξ ≤ 1} where the kernels are defined as the solution of the
following PDE system:

Σbs :



ϵ∂P uu

∂x (x, ξ) + ϵ∂P uu

∂ξ (x, ξ) = c1(x)P vu(x, ξ)

ϵ∂P uv

∂x (x, ξ) − ϵ∂P uv

∂ξ (x, ξ) = c1(x)P vv(x, ξ)

ϵ∂P vu

∂x (x, ξ) − ϵ∂P vu

∂ξ (x, ξ) = −c2(x)P uu(x, ξ)

ϵ∂P vv

∂x (x, ξ) + ϵ∂P vv

∂ξ (x, ξ) = −c2(x)P uv(x, ξ)

P uu(0, ξ) = −P vu(0, ξ)
P uv(x, x) = c1(x)

2ϵ

P vu(x, x) = − c2(x)
2ϵ

P vv(0, ξ) = −P uv(0, ξ)

.

(3.13)

Then, the following statements hold true:
(i) The backstepping transformation (3.12) is invertible, has a unique solution and transforms the
system

Σbs :



∂α̃
∂t (x, t) = −ϵ∂α̃

∂x (x, t) + Lα̃(1, t)
∂β̃
∂t (x, t) = ϵ∂β̃

∂x (x, t)

α̃(0, t) = −β̃(0, t) − X̃(t)
β̃(1, t) = 0
˙̃X(t) = −Lα̃(1, t)

(3.14)

into the observer error system (3.11) where the spatial functions p1(·), p2(·) are given by

p1(x) = −L − ϵP uu(x, 1) + L

∫ 1

x
P uu(x, ξ)dξp2(x) = −ϵP vu(x, 1) + L

∫ 1

x
P vu(x, ξ)dξ (3.15)
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(ii) Let L < 0. Then, the origin of (3.14) is exponentially stable in the norm

(
X̃(t)|2 +

∫ 1

0
α̃(x, t)dx

) 1
2

.

(iii) Let L < 0. Then, the origin of (3.14) is exponentially stable in the norm

||(χ̃, ũ, ṽ||2 := |χ̃(t)|2 +
∫ 1

0

(
ũ2(x, t) + ṽ2(x, t)

)
dx (3.16)

and lim
t→∞

ũ(0, t) = 0, lim
t→∞

ṽ(0, t) = 0.

Proof. (i) see [53].
(ii) see [27, Lemma 2, Lemma 3, Lemma 5 and Remark 4].

The output injection gains p1(·), p2(·) are calculated analytically by solving the backstepping
kernel Equations (3.13) as the following theorem indicates.

Theorem 3.2.2 (Calculation of the observer gains of the ABSO [27]). Consider the observer error
system (3.11). Let L < 0 and let the output injection gains p1(·), p2(·) be given by

p1(x) = −L − 1
2e

c
ϵ
(1−x)

(
cI0

( |c|
ϵ

√
1 − x2

)
− |c|

√
1 + x

1 − x
I1

( |c|
ϵ

√
1 − x2

))

+ L

2ϵ

∫ 1

x
e

c
ϵ
(ξ−x)

(
cI0

( |c|
ϵ

√
ξ2 − x2

)
− |c|

√
ξ + x

ξ − x
I1

(∥c|
ϵ

√
ξ2 − x2

))
dξ

p2(x) = 1
2e

c
ϵ
(1+x)

(
cI0

( |c|
ϵ

√
1 − x2

)
− |c|

√
1 − x

1 + x
I1

( |c|
ϵ

√
1 − x2

))

− L

2ϵ

∫ 1

x
e

c
ϵ
(ξ+x)

(
cI0

( |c|
ϵ

√
ξ2 − x2

)
− |c|

√
ξ − x

ξ + x
I1

( |c|
ϵ

√
ξ2 − x2

))
dξ (3.17)

where c = c1(0) = − F
2ρ and In refers to the modified Bessel function of the first kind of order n.

Then the origin of the observer error system (3.11) is exponentially stable in the norm

||(χ̃, ũ, ṽ)||2 := |χ̃(t)|2 +
∫ 1

0

(
ũ2(x, t) + ṽ2(x, t)

)
dx (3.18)

and lim
t→∞

ũ(0, t) = 0, lim
t→∞

ṽ(0, t) = 0.

Proof. see [27, Theorem 8].
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Consequently, the observer system (3.9) enables leak detection and leak size estimation inde-
pendently of the leak location and the leak distribution. The following paragraph describes how the
leak location is estimated based on the estimation of the leak size and the observer states û(·, ·)
and v̂(·, ·).

3.2.2. Leak Localization

To estimate the leak location, the leak distribution function d(·) is not estimated directly. Instead,
an observer is designed who estimates the value of the auxiliary variable δ(·) defined by Equa-
tion(3.1)) in z = 0 by using the difference between the estimate p̂0 of the inlet pressure and the
actual inlet pressure p0 as error input. The following theorem states the main result:

Theorem 3.2.3 (Leak localization with ABSO [27]). Consider the linear pipe model (2.4) with
F > 0 and suppose that a leak occurs, i.e. χ > 0. Define the leak localization observer by

Σobs,δ :


p̂0(t) =

√
βρ

A (û(0, t) − v̂(0, t)) + pout + ρ
A2 ηχ̂ + F

A δ̂(t)χ̂(t)
˙̂
δ = proj

[0,ℓ]
{γ (p0(t) − p̂0(t))} (3.19)

with the leak localization observer gain γ > 0. The projection operator proj(·) respects the physical
constraint, that the leak position z∗ has to be between z = 0 and z = ℓ and is defined by

proj
[0,ℓ]

: R × R → [0, ℓ], proj
[0,ℓ]

(δ̂, γ(p0 − p̂0)) :=


0, δ̂(t) = 0 and γ (p0(t) − p̂0(t)) < 0

ℓ, δ̂(t) = ℓ and γ (p0(t) − p̂0(t)) > 0

γ (p0(t) − p̂0(t)) , else
(3.20)

. Then lim
t→∞

δ̂(t) = δ(0) .

Proof. see [27, Theorem 10].

Remark 4. To improve the robustness of the leak position estimation against measurement noise
and in order to be able to adjust the convergence behavior by the tuning parameter γ, the leak
position is not estimated from resolving the first part Equation (3.19) directly for the unknown δ̂

by means of the known measurement inlet pressure p0(t), but a dynamic error feedback is utilized.
This dynamic error feedback can be regarded as a simplified version of time-continuous Recursive
Least Squares Algorithm (see the classical EKF [65] without dynamic part, i.e. ẋ = 0). In that
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sense, in the leak localization observer system (3.19) the Kalman gain is not dynamically updated
in every time step by estimating the error covariance, but the gain is chosen as a constant.

Remark 5. The convergence speed of the estimation of the leak position using leak localization
observer system (3.19) depends linearly on the friction factor F , the observer gain γ and the leak
size χ (see [27, Remark 11].

However, the relationship between δ(z = 0) and the leak distribution function d(·) is not unique,
as the definition of the auxiliary variable δ(·) in Equation (3.1) reveals. Therefore, additional
knowledge about the characteristics of the leak distribution is needed to estimate the leak location.
The following corollary shows how the leak location can be calculated in the case of point leaks.
For further leak distribution functions, the interested reader is referred to Appendix A.1.

Corollary 3.2.3.1. (i) Consider the linear pipe model (2.4) with a point leak located at z = z∗ ∈
(0, ℓ) of size χ > 0, i.e. d(·) is a Dirac-Impulse located at z∗. Then, δ(0) = z∗ and with Theorem
3.2.3 follows lim

t→∞
δ̂(t) = δ(0) = z∗.

(ii) Consider the linear pipe model (2.4) with two point leaks located at z1 = z∗
1 ∈ (0, ℓ) and

z2 = z∗
2 ∈ (0, ℓ) of size χ1 > 0 and χ2 > 0, respectively, i.e. d(·) is given by two Dirac-Impulses

located at z∗
1 and z∗

2 with amplitude each 1
2 . Then,

lim
t→∞

δ̂(t) = χ1
χ1 + χ2

z∗
1 + χ2

χ1 + χ2
z∗

2 . (3.21)

Proof. see [27][Corollary 12, Corollary 13]

Finally, Figure 3.2 summarizes illustratively the structure of the proposed dynamic ABSO and
specifies thereby the general observer structure presented in Figure 3.1. The leak size and state
estimation is realized by the observer system Σobs,χ. The second observer system Σobs,δ utilizes
this estimates to localize the leak. The parts that can be solved offline are marked in green, while
the observer parts that have to be implemented in real-time are coloured in red. Furthermore, the
design parameters L and γ are highlighted in purple. Firstly, the measurements of the inlet and
outlet flow as well as the outlet pressure are required to estimate the leak size based on the leak
size and state observer Σobs,χ. To this end, the observer gain L < 0 is a free design parameter,
while the observer gains p1(·), p2(·) are calculated offline directly from the physical parameters. The
leak size estimate χ̂(t) and the estimations û(x, t), v̂(x, t) of the transformed states u(x, t), v(x, t)
permit the estimation of the leak localization by means of the observer system Σobs,δ. Therefore,
the measurement of the inlet pressure is needed while the observer gain γ is a design parameter
that has to be positive. Since the leak size estimation according to Σobs,χ is realized in a decoupled
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ΣWHlin,leak (2.4)

Σobs,χ (3.9)

Σobs,δ (3.19)

Backstepping
Transformation (3.17)L < 0

γ > 0

q0(t), pℓ(t), qℓ(t)

p0(t)

χ̂(t), p̂0(t)

δ̂(t) ↷ z∗

p1(x), p2(x),
L

Figure 3.2.: Schematic illustration of the structure of the ABSO according to Equation (3.9) and
Equation (3.19) based on the linear pipe model (2.4).

way from the leak localization Σobs,δ, the tuning of the free design parameters L and γ is done
quite straightforward. Firstly, the observer gain L is tuned such that the estimation of the leak
size provides an acceptable balance between accuracy of the estimation, convergence speed and
robustness to measurement noise. Once the observer gain L is fixed, the remaining design parameter
γ is tuned in the same way.

The proposed dynamic observer structure represented by the ABSO provides a theoretically
well-founded, model-based, late lumping approach to the leak size estimation and localization
problem for water pipes, including a rigorous stability proof of the observer error. However, since
the ABSO is a dynamic observer, the implementation requires the online execution of the PDE
system Σobs,χ. Depending on the applied discretization method and its order, this execution of the
dynamic observer in real time can be linked with high computational costs. Therefore, the following
Section 3.3 derives an alternative observer algorithm based on the MFM, that only needs the online
solution of algebraic equations that can be implemented as an FIR filter.

3.3. Algebraic Observer Design with Modulating Functions

This section presents the design of an algebraic observer to estimate the leak size and locate the
leak in pipe systems using the MFM. The MFM was firstly introduced by Shinbrot in [47] and [66]
to estimate parameters of ODEs. The main idea is to convert the set of differential equations by an
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integral transform with variable kernel into a set of algebraic equations that can be solved online.
Thereby, the approximation of derivatives of measured signals is avoided and the robustness to
measurement noise is improved. Furthermore, the kernel of the integral transform can be designed
such that no knowledge about the initial conditions of the system is required. Moreover, the
implementation of the estimation process by MFs can be regarded as an FIR filter that provides a
non-asymptotic convergence behavior of the solution of the estimation problem. Consequently, and
in contrast to typical dynamic observer approaches like Luenberger observers or KFs, the MFM is
capable of providing a solution of the estimation problem in finite time.

Especially over the last two decades, the MFM became of special interest in control theory to
estimate parameters, states, or source terms in ODEs over a wide range of technical applications.
In [67], a broader class of nonlinear systems is considered whose parameters can be estimated by
the MFM. A few years later, the MFM was applied in [68] to perform system identification on a
fermentation process with time-varying parameters. An extension of the MFM to jointly estimate
parameters and states of a nonlinear ODE system was presented in [41]. Based on the results
of this publication, the MFM was used in [69] to identify parameters of a nonlinear MISO glass
melting process and to predict the molten glass temperature to enable the adaptive correction of the
parameters of a PID controller. Furthermore, in [70], the online parameter and state estimation of
an air handling unit based on MFM is considered. The MFM based parameter and state estimation
algorithms were implemented in real time, and the validation with experimental data showed a good
match between the resulting estimates and the measured data. Recently, [71] includes the MFM
to design a robust nonlinear controller for the control of liquid levels in a quadruple tank system
and to provide noise-free estimations of the required state variables.

At the same time, the MFM also became more and more interest w.r.t estimation problems in
PDEs. In [49], an algebraic approach based on the MFM to detect and isolate faults in a parabolic
PDE is presented. Furthermore, [43] presents a state estimation via the MFM for a linear reaction
diffusion PDE. This approach was extended in [51] to estimate states for a Coupled Reaction-
Diffusion PDE System. Moreover, [48] and [42] presented an approach to estimate source terms
in first order hyperbolic PDEs with application to the estimation of energy terms in heat transport
dynamics in concentrated solar collectors. These two publications [48, 42] are of great interest for
this work since the fluid dynamics according to the linear pipe model (2.4) are also described by a
hyperbolic PDE where the leak appears as a source term on the right-hand side.

Before the MFM is applied to the problem of leak size estimation and localization in pipe
systems, the following section reviews the basic properties of MFs.
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3.3.1. Modulating Function Method (MFM)

According to the literature [41, 42], we introduce the MF as follows.

Definition 3.3.1 (Modulating Function). A function φ : [0, ℓ] × [0, T ] → Rn, T > 0 is called Left
Modulating Function (LMF) of order k ∈ N :⇔ φ(·, ·) is sufficiently smooth and

∀i ∈ {0, 1, . . . , k − 1} : ∂iφ

∂ti
(z, 0) = 0,

∂iφ

∂ti
(z, T ) ̸= 0 . (3.22)

Furthermore, a function φ : [0, ℓ]× [0, T ] → Rn, T > 0 is called Total Modulating Function (TMF)
of order k ∈ N :⇔ φ(·, ·)) is sufficiently smooth and

∀i ∈ {0, 1, . . . , k − 1} : ∂iφ

∂ti
(z, 0) = ∂iφ

∂ti
(z, T ) = 0 . (3.23)

Based on this Definition 3.3.1, the modulation functional is introduced.

Definition 3.3.2. Let φ : [0, ℓ]× [0, T ] → Rn be an MF of order k and h : [0, ℓ]×R≥0 → Rm, m ∈
{1, n}. Then, the modulating functional is defined as

M[h](t) :=
∫ t

t−T

∫ ℓ

0
φ(z, τ − t + T )⊤h(z, τ)dzdτ . (3.24)

For reasons of clarity, the following abbreviation as an inner product

⟨φ, h⟩Ω,I := M[h] (3.25)

is defined where I := [t − T, t], t ≥ T describes the moving time horizon with the receding horizon
length T > 0 and Ω := [0, ℓ] the fixed spatial domain. Furthermore, the abbreviations ⟨φ, h⟩I and
⟨φ, h⟩Ω are introduced if the integration is realized only w.r.t. the temporal or spatial variable,
respectively.

The following theorem reveals the fundamental property of TMFs.

Lemma 3.3.1 (Fundamental properties of TMFs). Let φ : [0, ℓ] × [0, T ] → R be a TMF of order
k + 1 and m ∈ {1, n}. Then,
(i)

∀h(·) ∈ Ck+1(R,Rm) : ⟨φ, h(k+1)⟩Ω,I = (−1)k+1⟨φ(k+1), h⟩Ω,I (3.26)
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(ii)

∀h(·) ∈ C1([0, ℓ],Rm) : ⟨φ, h′⟩Ω,I = −⟨φ′, h⟩Ω,I + (⟨φ, h⟩I)|ℓ0 (3.27)

holds, where φ(k+1) := ∂k+1

∂tk+1 φ(z, t) denotes the (k + 1)-th temporal derivative and φ′ := ∂
∂z φ(z, t)

the first spatial derivative of the TMF.

Proof. (i) Using integration by parts iteratively and the boundary conditions (3.23) leads to

⟨φ, h(k+1)⟩Ω,I =
∫ t

t−T

∫ ℓ

0
φ(z, τ − t + T )⊤h(k+1)(z, τ)dzdτ

=
k∑

i=0
(−1)i

(
⟨φ(i), h(k−i)⟩Ω

)∣∣∣T
0

+ (−1)k+1⟨φ(k+1), h⟩Ω,I

(3.23)=
∫ t

t−T

∫ ℓ

0
φ(k+1)(z, τ − t + T )⊤h(z, τ)dzdτ

=: (−1)k+1⟨φ(k+1), h⟩Ω,I (3.28)

(ii) Using integration by parts results in

⟨φ, h′⟩Ω,I =
∫ t

t−T

∫ ℓ

0
φ⊤(z, τ − t + T )h′(z, τ)dzdτ

= −
∫ t

t−T

∫ ℓ

0
φ′(z, τ − t + T )h(z, τ)⊤dzd +

(∫ t

t−T
φ′(z, τ − t + T )⊤h(z, τ)dτ

)∣∣∣∣ℓ
0

= −⟨φ′, h⟩Ω,I + (⟨φ, h⟩I)|ℓ0 (3.29)

Theorem 3.3.1 shows that applying the modulating functional (3.24), time derivatives can be
shifted from a measured signal h(·) to the known MF φ(·, ·). Thereby, the differentiation of a noisy
signal h(·) can be avoided and replaced by the calculation of the known MF φ(·, ·). Furthermore,
unknown initial and final conditions are eliminated by the boundary conditions of the MF.

The following sections of this chapter show how to apply the MFM to the leak size estimation
and localization problem by employing the presented fundamental properties of MFs.

Therefore, at first, the leak size is estimated by using the MFM to transform the transformed
PDE system (3.3) into an algebraic IO relation that will be called the source estimation equation.
The corresponding auxiliary problem to determine the MF is derived, as well as an approach to
solve the auxiliary PDE problem. Based on the estimation of the leak size, two different approaches
to localize the leak position are presented. The first ansatz aims at localizing the leak directly by
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applying the MFM to the linear pipe model (2.4). Similar to the case of leak size estimation, the
leak distribution function d(·) is treated as an unknown source term on the right-hand side of the
linear pipe model (2.4). The second approach does not estimate the leak position directly, but
firstly estimates the states of the transformed PDE system (3.3) by applying the MFM. The MFM
results again in an algebraic IO relation and an auxiliary PDE problem that has to be solved to
obtain the MFs and to resolve the algebraic estimation equation regarding the states. Finally, this
state estimation is inserted together with the estimated leak size into the leak localization observer
system (3.19) to estimate the position of the leak.

3.3.2. Leak Size Estimation by MFM

This section deals with the estimation of the leak size by applying the MFM to the transformed
system (3.3). The unknown leak size χ that appears in the first boundary condition of the trans-
formed system (3.3) is regarded as a source term and an approach similar to [42] is followed. To this
end, the following section presents the derivation of the algebraic IO expression and the auxiliary
problem that result from the application of the modulating functional (3.24) to the transformed
system (3.3).

3.3.2.1. Derivation of the Algebraic Input-Output Expression and the Auxiliary Problem

This section derives the algebraic IO relation between the flow rate and pressure measurements at
the inlet and the outlet of the pipe and the leak size χ. Therefore, the modulating functional (3.24)
is applied to the transformed system (3.3) to derive the associated auxiliary problem that has to
be solved offline to generate the MFs. The main result is stated in the following Theorem 3.3.2.

Theorem 3.3.2. Let Σtrafo,lin be given in matrix form as stated in Remark 3. Then, the estimate
of the leak size is given by

χ̂ = 1
⟨φ1(0)⟩I

(⟨φ1(0), q0 − qin⟩I − ⟨φ1(1), Y ⟩I + ⟨φ2(1), U⟩I) (3.30)

where φ(·, ·) : [0, 1] × [0, T ] → R2 is a TMF of order 1 that solves the following auxiliary problem

Σaux,χ :



φ̇(x, τ) = Λ⊤
χ φ′(x, τ) − Σ⊤

χ (x)φ(x, τ)

φ1(0, τ) = −φ2(0, τ)

φ1(1, τ) = η1(τ)

φ(x, 0) = 0, φ(x, T ) = 0

(3.31)
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with
∫ t

t−T φ1(0, τ − t + T )dτ ̸= 0 where η1 : [0, T ] → R represents a remaining degree of freedom
in the design of the TMF.

Proof. Applying the modulating functional (3.24) with a TMF φ(·, ·) : [0, 1]× [0, T ] → R2 of order
1 to the transformed system Σtrafo,lin in matrix form (as defined in Remark 3 ) leads to:

⟨φ,

[
u̇

v̇

]
⟩Ω,I = ⟨φ, Λχ

[
u′

v′

]
⟩Ω,I + ⟨φ, Σχ(x)

[
u

v

]
⟩Ω,I quad. (3.32)

Employing that φ(·, ·) is a TMF of order 1, the left-hand side of Equation (3.32) is simplified with
Theorem 3.3.1 to:

⟨φ,

[
u̇

v̇

]
⟩Ω,I = −⟨φ̇,

[
u

v

]
⟩Ω,I . (3.33)

To simplify the right-hand side of (3.32), integration by part is applied to the first term:

⟨φ, Λχ

[
u′

v′

]
⟩Ω,I =

∫ t

t−T

∫ 1

0
φ(x, τ − t + T )⊤Λχ

[
u′(x, τ)
v′(x, τ)

]
dxdτ

= −
∫ t

t−T

∫ 1

0
φ′⊤(x, τ − t + T )Λχ

[
u(x, τ)
v(x, τ)

]
dxdτ (3.34)

+
(∫ t

t−T
φ⊤(x, τ − t + T )Λχ

[
u(x, τ)
v(x, τ)

])∣∣∣∣∣
1

0

= −⟨Λ⊤
χ φ′,

[
u

v

]
⟩Ω,I +

(
⟨Λ⊤

χ φ,

[
u

v

]
⟩I

)∣∣∣∣∣
1

0

.

(3.35)

Inserting Equation (3.33) and Equation (3.35) into Equation (3.32) leads to:

−⟨φ̇,

[
u

v

]
⟩Ω,I = −⟨Λ⊤

χ φ′,

[
u

v

]
⟩Ω,I +

(
⟨Λ⊤

χ φ,

[
u

v

]
⟩I

)∣∣∣∣∣
1

0

+ ⟨Σ⊤
χ (x)φ,

[
u

v

]
⟩Ω,I . (3.36)

To eliminate the unknown state variables in Equation (3.36), it is imposed that the TMF φ(·, ·)
solves the following auxiliary PDE:

φ̇ = Λ⊤
χ φ′ − Σχ(x)φ . (3.37)
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Thus, Equation (3.36) simplifies to

0 =
(

⟨Λ⊤
χ φ,

[
u

v

]
⟩I

)∣∣∣∣∣
1

0

= ⟨Λ⊤
χ φ(1, t),

[
u(1, t)
v(1, t)

]
⟩I − ⟨Λ⊤

χ φ(0, t),
[
u(0, t)
v(0, t)

]
⟩I . (3.38)

By inserting the known boundary conditions u(0, t) = −v(0, t) + q0(t) − qin − χ, v(1, t) = U(t)
and the known measurement u(1, t) = Y (t) of the transformed system, one obtains

0 =
∫ t

t−T
ϵ (−φ1(1, τ − t + T )Y (1, τ − t + T ) + φ2(1, τ − t + T )U(1, τ − t + T )

+ φ1(0, τ − t + T ) (−v(0, τ) + q0(τ) − qin − χ) − φ2(0, τ − t + T )v(0, τ)) dτ . (3.39)

To eliminate the dependence on the unknown boundary state v(0, τ), the following boundary
condition is imposed on the TMF to fulfill

φ1(0, τ) = −φ2(0, τ) . (3.40)

Therefore, Equation (3.39) simplifies to
∫ t

t−T
φ1(0, τ − t + T )χdτ =

∫ t

t−T
−φ1(1, τ − t + T )Y (1, τ − t + T ) + φ2(1, τ − t + T )U(1, τ − t + T )

+ φ1(0, τ − t + T ) (q0(τ) − qin) dτ . (3.41)

Since the leak size χ is assumed to be constant (see Assumption 9 in Chapter 2) and since∫ t
t−T φ1(0, τ − t + T )dτ ̸= 0 according to the requirements of the theorem, Equation (3.41) results

in the leak size estimation equation

χ = 1
⟨φ1(0)⟩I

(⟨φ1(0), q0 − qin⟩I − ⟨φ1(1), Y ⟩I + ⟨φ2(1), U⟩I) (3.42)

what completes the proof.

The leak size estimation Equation (3.30) establishes an algebraic IO relation between the mea-
surements taken from the pipe system (2.4) and the leak size χ where the TMF φ works as a filter
of the measurements. This relationship can be implemented as an FIR filter, as shown in Appendix
A.2.

Furthermore, the MFM basically transformed the estimation problem into a control problem,
i.e. the estimation of the leak size according to Equation (3.30) requires a solution of the auxiliary
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problem (3.31) such that the TMF φ is steered from the initial condition φ(x, 0) = 0 to the final
condition φ(x, T ) = 0 on the time horizon [0, T ] avoiding the trivial solution φ ≡ 0. A solution
of the auxiliary problem (3.31) is sought such that the dynamical equations, the initial and final
conditions and the boundary conditions are fulfilled. To this end, the following section addresses
the solution of the auxiliary problem by a power series approach.

3.3.2.2. Solution of the Auxiliary Problem

The auxiliary problem (3.31) can be regarded as a trajectory planning problem for the coupled
hyperbolic PDE system (3.31) where the states have to be steered in finite time T from the origin
φ(x, 0) = 0 to the origin φ(z, T ) = 0. To this end, we follow the approach presented in [72] and
set the formal power series

φ̂1(x, τ) =
∞∑

k=0
φ1,k(τ)xk

φ̂2(x, τ) =
∞∑

k=0
φ2,k(τ)xk

(3.43)

as an ansatz to solve the auxiliary problem (3.31). Inserting the power series approach (3.43) into
the auxiliary problem (3.31) leads to

∞∑
k=0

∂

∂τ
φ1,k(τ) ≈ −ϵ

∞∑
k=0

∂

∂x

(
φ1,k(τ)xk

)
− c2(x)

∞∑
k=0

φ2,k(τ)xk

= −ϵ
∞∑

k=0
φ1,k+1(k + 1)xk − c2(x)

∞∑
k=0

φ2,k(τ)xk

∞∑
k=0

∂

∂τ
φ2,k(τ) ≈ ϵ

∞∑
k=0

∂

∂x

(
φ2,k(τ)xk

)
− c1(x)

∞∑
k=0

φ1,k(τ)xk

(3.44)

where we set c1(x) :=
∫ 1

0 c1(x)dx and c2(x) :=
∫ 1

0 c2(x)dx as the spatial mean value of c1(x) and
c2(x).1 Finally, the coefficient comparison in (3.44) results in the recursive formulas

φ1,k+1(τ) = 1
ϵ(k + 1)

(
− ∂

∂τ
φ1,k(τ) − c2(x)φ2,k(τ)

)
φ2,k+1(τ) = 1

ϵ(k + 1)

(
∂

∂τ
φ2,k(τ) + c1(x)φ1,k(τ)

) (3.45)

1Since the denominator
√

βρ of c1(x) and c2(x) is in the range of 106, c1(x) and c2(x) do not vary strongly for
pipes of a length in the range of up to ℓ ∼ 105 m. In the simulation case regarded in Chapter 4, the mean values
c1(x) and c2(x) differ by maximum 6 % from the entries in c1(x) and c2(x). For a more detailed and sophisticated
approach to deal with spatially varying coefficients in the trajectory planning problem, see e.g. [73, 74].
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to determinate the coefficients φ1,k(τ) and φ2,k(τ). Furthermore, the boundary condition φ1(0, τ) =
−φ2(0, τ) imposes that

φ1,0(τ) = φ1(0, τ) = −φ2(0, τ) = −φ2,0(τ). (3.46)

To parametrize the solution and to resolve the recursive formula (3.45), we introduce the basic
variable b : [0, T ] → R and initialize the recursive formula by φ1,0(τ) = −φ2,0(τ) = b(τ). Since the
trajectory planned by Equation (3.43) and Equation (3.45) has to realize the non-trivial set point
transition from φ(x, 0) = 0 to φ(x, T ) = 0, the basic variable has to fulfill

∀k ∈ N : dk
τ b(τ) = 0 , (3.47)

i.e. the basic variable b(·) is a locally non-analytical function. Hence, we choose b(·) to be a so
called Gevrey function of order α. The class of these Gevrey functions was firstly proposed in 1918
by Maurice Gevrey [52] and is defined as follows:

Definition 3.3.3 (Gevrey Function [72]). A function b ∈ C∞([0, T ],R) is called Gevrey function of
order α

:⇔ ∃M, R > 0∀k ∈ N : sup
τ∈[0,T ]

|d k
τ b(τ)| ≤ M

Rk
(k!)α (3.48)

Remark 6. The Taylor expansion of a smooth, non-analytic function does not converge to that
function. The order α of the Gevrey function can be understood as a measure of this divergence
[72]. If α = 1, the Gevrey function is analytic. For α > 1, the Gevrey function is non-analytic
and its Taylor expansion diverges, where the larger α, the “more divergent” is the Taylor expansion
[72].

Remark 7. The scaling, integration, addition, multiplication, and composition of Gevrey functions
of order α > 1 is of order α [52].

Remark 8. An example of a Gevrey function is the normalized bump function which is of Gevrey
order α = 1 + 1

σ . The parameter σ can be used to adjust the slope of the function, as Figure 3.3
illustrates. In the following, this bump function will be used as a basic variable for the trajectory
planning problem. Thus, the requirement

∫ t
t−T φ1(0, τ − t + T )dτ ̸= 0 of Theorem 3.3.2 is fulfilled.

For alternative Gevrey functions based on the tangens hyperbolicus, and the recursive calculation
of their derivatives, see e.g. [75, 76].
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bσ(τ) =


0, if τ /∈ (0, T )

exp
(

− 1
((1− τ

T
) τ

T
)σ

)
∫ T

0 exp
(

− 1
((1− τ

T
) τ

T
)σ

)
dτ

, if τ ∈ (0, T )

(3.49)
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Figure 3.3.: Bump Function of Gevrey order
α = 1 + 1/σ for T = 1 varying
the slope σ.

The boundedness of the derivatives of Gevrey functions according to Equation (3.48) is essential
to achieve the convergence of the formal power series ansatz (3.43) and, thereby, to solve the
trajectory planning problem. Nevertheless, there was not found any analytical proof to guarantee
convergence of the formal power series ansatz (3.43) in dependence on the order α of the considered
Gevrey function. The utilization of proof schemes for parabolic PDEs or wave equations of second
order (see e.g., [72, 77]), that apply the Cauchy-Hadamard theorem [78], has failed. Even in
the case where the coupling in the recursive formula (3.45) is omitted resulting in a first order
transport equation, the convergence of the power series ansatz (3.43) by utilizing the Cauchy-
Hadamard theorem could not be shown. Thus, Section 4.1 deals with the simulative verification of
the MFs generated by the power series ansatz (3.43).

Altogether, this section has designed the first part of the algebraic observer that serves for the
estimation of the leak size. Based on this algebraic leak size estimation, the next section follows
two different approaches to estimate the unknown leak position.

3.3.3. Leak Localization by MFM

This section applies the MFM to the problem of locating the leak in the pipe. Therefore, two
different approaches will be presented: direct leak localization and leak localization via MFM based
state estimation. The direct leak localization treats the leak distribution d(·) appearing on the right-
hand side of the linear pipe model (2.4) as a spatial source term and performs the same steps as for
the leak size estimation by deriving the auxiliary PDE problem and the source estimation equation.
However, it turns out that the source estimation equation is not solvable for non-constant leak
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distributions d(·) and, as a consequence, not useful from a practical view. Hence, an alternative
way to estimate the leak localization is presented by primarily estimating the states u(x, t) and
v(x, t) of the transformed system (3.3) and afterwards exploiting the dynamic leak localization
observer (3.19) of the dynamic observer design.

3.3.3.1. Direct Leak Localization by MFM

In view of the physical pipe model (2.4), the leak distribution d(·) can be regarded as an unknown
spatial source term. Since the leak size can be estimated independently by the algebraic observer
presented in the previous Section 3.3.2, we follow the same steps as in the previous case of leak size
estimation to design an algebraic observer for the unknown leak localization: (i) Derivation of the
auxiliary problem by applying the MFM to the PDE system, (ii) Derivation of the source estimation
equation, (iii) Resolving the source estimation equation, (iv) Solving the auxiliary problem.

The following theorem presents the resulting auxiliary problem and the source estimation equa-
tion that establishes an algebraic IO relationship between the spatial source term d(·) and the
available measurement data at the inlet and the outlet of the pipe.

Theorem 3.3.3. Let ΣWHlin,leak be given in matrix form as stated in Remark 1. Then, the algebraic
IO relation to estimate the leak localization is given by

X ⊤⟨φ⊤, d(z)⟩Ω,I = −⟨φ, Θ(z)⟩Ω,I −
(

⟨Λ⊤φ,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0

(3.50)

where φ(·, ·) : [0, ℓ] × [0, T ] → R2 is a TMF of order 1 that solves the following auxiliary problem

Σaux,d :



φ̇(z, τ) = Λ⊤φ′(z, τ) − Σ⊤φ(z, τ)

φ1(ℓ, τ) = η1(τ)

φ2(0, τ) = η2(τ)

φ(z, 0) = 0, φ(z, T ) = 0

(3.51)

where the selection of the boundary condition functions η1 : [0, T ] → R, η2 : [0, T ] → R represent
a remaining degree of freedom in the design of the MF.

Proof. To prove the Theorem 3.3.3, the same steps as in the proof of 3.3.2 are followed. Firstly,
the modulating functional (3.24) with a TMF φ(·, ·) : [0, 1] × [0, T ] → R2 of order 1 is applied to
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the transformed system ΣW Hlin,leak in matrix form (see Remark 1) and leads to:

⟨φ,

[
ṗ

q̇

]
⟩Ω,I = ⟨φ, Λ

[
p′

q′

]
⟩Ω,I + ⟨φ, Σ

[
p

q

]
⟩Ω,I + ⟨φ, Θ(z)⟩Ω,I + ⟨φ, X d(z)Ω,I . (3.52)

Exploiting that φ(·, ·) is a TMF of order 1 and using the fundamental derivative shifting properties
according to Theorem 3.3.1 leads to:

−⟨φ̇,

[
p

q

]
⟩Ω,I = −⟨Λ⊤φ′,

[
p

q

]
⟩Ω,I +

(
⟨Λ⊤φ,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0

+ ⟨Σ⊤φ,

[
p

q

]
⟩Ω,I

+ ⟨φ, Θ(z)⟩Ω,I + ⟨φ, X d(z)⟩Ω,I . (3.53)

To eliminate the unknown state variables in Equation (3.53), it is imposed that the TMF φ(·, ·)
solves the following auxiliary PDE:

φ̇ = Λ⊤φ′ − Σφ . (3.54)

Thus, Equation (3.53) simplifies to

⟨φ, X d(z)Ω,I =
(

⟨Λ⊤φ,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0

+ ⟨φ, Θ(z)⟩Ω,I . (3.55)

In accordance with the model assumptions, the leak size χ is assumed to be constant on the time
interval [t − T, t]. Consequently, replacing the real leak size χ in X by its estimate χ̂ given by
Equation (3.30) leads to

X ⊤⟨φ⊤, d(z)⟩Ω,I = −
(

⟨Λ⊤φ,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0

− ⟨φ, Θ(z)⟩Ω,I (3.56)

completing the proof.

Since the boundary values p0(t), pℓ(t), q0(t), qℓ(t) are assumed to be known by the measure-
ments, Equation (3.50) represents an algebraic IO relation between the given measurement data
and the unknown leak distribution, where the TMF works as a filter. However, in contrast to the
case of leak size estimation, the leak distribution function cannot be assumed as a constant over
the spatial domain. Consequently, a way to resolve the source estimation equation (3.50) for the
leak distribution is required. To this end, we represent the leak distribution function by a function
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expansion of the form

d(z) =
∞∑

k=0
ckΨk(z) ≈

N∑
k=0

ckΨk(z) (3.57)

where {Ψ(·)}∞
k=0 is an orthogonal and normalized function basis (i.e.

∫ ℓ
0 Ψk(z)dz = 1) and N ∈ N

is the approximation order. Consequently, the task consists in estimating the coefficient vector
c :=

[
c0 . . . cN

]⊤
∈ RN+1 of the basis representation. Therefore, it is necessary to solve N

auxiliary problems of the form Σaux,d offline. The resulting solution set of N TMFs is denoted by
{φk(·, ·)}N−1

k=0 . Inserting the basis representation (3.57) and the N TMFs into the source estimation
equation (3.50) leads to N equations of the form

∀k = 0, . . . , N − 1 :


X ⊤⟨φk ⊤, Ψ0⟩Ω,I

...
X ⊤⟨φk ⊤, ΨN−1⟩Ω,I


⊤

c =

−⟨φk, Θ(z)⟩Ω,I −
(

⟨Λ⊤φk,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0

 .

(3.58)

Furthermore, the normalization condition
∫ ℓ

0 d(z)dz = 1 imposes a further equation[
1 . . . 1

]
c = 1 (3.59)

on the coefficient vector c such that the in total N + 1 equations can be summarized in matrix
form as


X ⊤⟨φ0 ⊤, Ψ0⟩Ω,I . . . X ⊤⟨φ0 ⊤, ΨN ⟩Ω,I

... . . . ...
X ⊤⟨φN−1 ⊤, Ψ0⟩Ω,I . . . X ⊤⟨φN−1 ⊤, ΨN ⟩Ω,I

1 . . . 1


︸ ︷︷ ︸

:=M∈R(N+1)×(N+1)

c =



−⟨φ0, Θ(z)⟩Ω,I −
(

⟨Λ⊤φ0,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0...

−⟨φN−1, Θ(z)⟩Ω,I −
(

⟨Λ⊤φN−1,

[
p

q

]
⟩I

)∣∣∣∣∣
ℓ

0
1


︸ ︷︷ ︸

:=y∈RN+1

.

(3.60)

As a consequence, the coefficient vector c could be calculated by

c = M−1y . (3.61)

However, the following inspections of the entries of M prove analytically, that the linear regression
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problem (3.60) is ill-posed and that the matrix M is singular.
Since the entries of the matrix M are given by

∀i ∈ {0, . . . , N − 1}∀j ∈ {0, . . . , N − 1} : Mij = X T
∫ T

0

∫ ℓ

0
φi ⊤(z, τ)Ψj(z)dzdτ

= X T
∫ ℓ

0

(∫ T

0
φi ⊤(z, τ)dτ

)
Ψj(z)dz , (3.62)

an analytical expression of the temporal integral
∫ T

0 φ(z, τ)dτ of the TMF φ is sought to analyze
the invertibility of M . By differentiating the temporal integral

∫ T
0 φ(z, τ)dτ w.r.t. the spatial

variable z, we obtain:

d
dz

∫ T

0
φ(z, τ)dτ =

∫ T

0

∂

∂z
φ(z, τ)dτ (Leibniz integral rule)

=
∫ T

0
Λ̄−⊤

(
φ̇(z, τ) + Σ̄⊤φ(z, τ)

)
dτ (see Σaux,d)

= Λ̄−⊤Σ̄⊤
∫ T

0
φ(z, τ)dτ (since φ(z, T ) = φ(z, 0) = 0) (3.63)

The last Equation (3.63) shows that the temporal integral
∫ T

0 φ(z, τ)dτ fulfills a linear ODE in
space, whose solution is given by

∫ T

0
φ(z, τ)dτ = eΛ̄−⊤Σ̄⊤z

∫ T

0
φ(0, τ)dτ . (3.64)

Inserting Equation (3.64) into Equation (3.62) leads to

∀i ∈ {0, . . . , N − 1}∀j ∈ {0, . . . , N − 1} : Mij = X ⊤
∫ ℓ

0
(eΛ̄−⊤Σ̄⊤z)⊤Ψj(z)dz︸ ︷︷ ︸

=const. ∀i∈{0,...,N−1}

·
∫ T

0
φi(0, τ)dτ .

(3.65)

Equation (3.65) clearly reveals, that the remaining degrees of freedom in the auxiliary problem
(3.51), i.e., the choice of the boundary conditions φ1(ℓ, τ) and φ2(0, τ), can be factorized out
in every row of M . Therefore, the rows of M are linearly dependent, and the matrix M is not
invertible. Thus, the degrees of freedom in the choice of the boundary conditions of the auxiliary
problem (3.51) does not permit the solvability of the source estimation equation and the leak
distribution d(·) cannot be estimated directly by the presented approach. Hence, the following
section presents an alternative approach that firstly estimates the state of the transformed system
(3.3).
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3.3.3.2. Leak Localization by MFM-based State Estimation

This section presents a leak localization approach by a MFM-based state estimation of the trans-
formed system (3.3). In contrast to the previous Section 3.3.3.1, it is not aimed at estimating the
entire leak distribution function d(·) but only the value of the auxiliary variable δ(·) in z = 0. As
already discussed in corollary 3.2.3.1, the value δ(z = 0) is equal to the leak position z∗ for Dirac
or rectangular shaped leak distributions. To estimate the value δ(z = 0), we evaluate the inverse
state transformation (3.4) in z = 0

p0(t) =
√

βρ

A
(u(0, t) − v(0, t)) + pout + ρ

A2 ηχ + F

A
δ(0)χ . (3.66)

Since the boundary states u(0, t) and v(0, t) in Equation (3.66) are unknown, we seek to estimate
the states u(x, t) and v(x, t) to be able to resolve Equation (3.66) for the unknown leak position
δ(0) = z∗. As in the case of the leak localization by the ABSO, Equation (3.66) is not resolved
directly, but by the dynamic error feedback (3.19) to achieve a smoother and less noise-affected
estimate of the leak position.

Derivation of the Algebraic Input-Output Expression and the Auxiliary Problem To esti-
mate the needed states u(x, t) and v(x, t), we design an algebraic observer using LMFs for the
transformed system (3.3). The following procedure can be regarded as a simplification of the ob-
server design for coupled Reaction-Diffusion PDE Systems presented in [51]. In our case, we aim to
estimate the states of a coupled PDE system, namely the states u(x, t) and v(x, t) of the coupled
hyperbolic PDE system (3.3).

Firstly, we represent the states u(x, t) and v(x, t) by the following function expansion

v(x, t) =
∞∑

k=0
ck

1(t)Ψk(x) ≈
N∑

k=0
ck

1(t)Ψk(x)

v(x, t) =
∞∑

k=0
ck

2(t)Ψk(x) ≈
N∑

k=0
ck

2(t)Ψk(x)
(3.67)

where N is the approximation order and {Ψk}∞
k=0 denotes the spatial orthonormal basis functions.

The orthonormality of the basis functions is defined according to the scalar product ⟨f, g⟩w :=∫ 1
0 f(x)w(x)g(x)dx where w(·) is a weighting function. In view of Equation (3.67), the goal

consists in estimating the basis coefficients ck
1(t), ck

2(t) of the function expansion (3.67).
Next, we apply the modulating functional (3.24) to the transformed system (3.3). The following

theorem presents the resulting auxiliary problem and the algebraic IO relationship to determine the
basis coefficients ck

1(t), ck
2(t).
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Theorem 3.3.4 (State Estimation of the transformed system by MFM). Let Σtrafo,lin be given
in matrix form as stated in Remark 3. Then, the algebraic IO relation to estimate the m−th
coefficients of the function expansion (3.67) is given by

cm
1,2(t) = ϵ (⟨φm

2 (1), U⟩I − ⟨φm
1 (1), Y ⟩I + ⟨φm

1 (0), q0 − qin − χ⟩I) (3.68)

where φ(·, ·) : [0, ℓ] × [0, T ] → R2 is an LMF of order 1 that solves the following auxiliary problem

Σaux,u :


φ̇m(x, τ) = Λ⊤

χ φ′ m(x, τ) − Σ⊤
χ (x)φm(x, τ)

φ(x, 0) = 0, φ(x, T ) =
[
w(x)Ψm(x)

0

] (3.69)

or

Σaux,v :


φ̇m(x, τ) = Λ⊤

χ φ′ m(x, τ) − Σ⊤
χ (x)φm(x, τ)

φ(x, 0) = 0, φ(x, T ) =
[

0
w(x)Ψm(x)

] (3.70)

, respectively.

Proof. In the following, the proof will be only shown for the estimation of the m-th coefficient of
the function expansion (3.67) of the state v(x, t). The proof for the state u(x, t) is left to the
interested reader.

Applying the modulating functional (3.24) to the transformed system (3.3) and exploiting the
shifting property 3.3.1 of the modulating function φm(·, ·) regarding time and spatial derivatives
results in

−⟨φ̇m,

[
u

v

]
⟩Ω,I + [⟨φm,

[
u

v

]
⟩Ω]tt−T =

(
⟨Λ⊤

χ φm,

[
u

v

]
⟩I

)∣∣∣∣∣
1

0

− ⟨Λ⊤
χ φ′ m,

[
u

v

]
⟩Ω,I + ⟨Σ⊤(x)φm,

[
u

v

]
⟩ .

(3.71)

Since the MF φm(·, ·) fulfills the auxiliary problem Σaux,v, Equation (3.71) simplifies to

(
⟨φm,

[
u

v

]
⟩Ω

)∣∣∣∣∣
t

t−T

=
(

⟨Λ⊤
χ φm,

[
u

v

]
⟩I

)∣∣∣∣∣
1

0

. (3.72)

Imposing the initial condition φ(x, 0) = 0 and the final condition φ(x, T ) =
[

0
w(x)Ψm(x)

]
results
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in

[⟨φm,

[
u

v

]
⟩Ω]tt−T =

[
0∫ 1

0 w(x)Ψm(x)
∑∞

i=0 ci(t)Ψi(x)dx

]

=
[

0∑∞
i=0 ci(t)⟨Ψm(x), Ψi(x)⟩w

]

=
[

0
cm(t)

]
(3.73)

and introduces thereby the m-th coefficient of the function expansion (3.67) into Equation (3.72)
by[

0
cm(t)

]
=
(

⟨φm,

[
u

v

]
⟩Ω

)∣∣∣∣t
t−T

=
(

⟨Λ⊤
χ φm,

[
u

v

]
⟩I

)∣∣∣∣1
0

= ϵ

∫ t

t−T
−φm

1 (1, τ − t + T )Y (τ − t + T ) + φm
1 (0, τ − t + T ) (−v(0, τ − t + T ) + q0(τ − t + T ) − qin − χ(τ − t + T ))) dτ∫ t

t−T
φm

2 (1, τ − t + T )U(τ − t + T ) − φm
2 (0, τ − t + T )v(0, τ − t + T )dτ

 .

To eliminate the dependence on the unknown state v(0, t), we add the boundary condition φm
1 (0, τ) =

−φm
2 (0, τ) and sum up both vector entries. Consequently, the m-th coefficient of the function ex-

pansion (3.67) can be estimated by the following algebraic relationship:

cm(t) = ϵ (⟨φm
2 (1), U⟩I − ⟨φm

1 (1), Y ⟩I + ⟨φm
1 (0), q0 − qin − χ⟩I) . (3.74)

The following paragraph addresses the remaining task, the solution of the auxiliary problems
(3.69) and (3.70).

Solution of the Auxiliary Problem The auxiliary problems (3.69) and (3.70) represent a control
problem, where the state has to realize the transition from the origin φ(x, 0) = 0 to the desired
final condition φ(x, T ) in final time T . To bring the auxiliary problems (3.69) and (3.70) in the
form considered in [53], we reverse the time t and flip the coordinates according to the following
transformation for σ ∈ [0, T ]

[
ξm

1 (x, σ)
ξm

2 (x, σ)

]
:=
[
φm

2 (x, T − σ)
φm

1 (x, T − σ)

]
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what results in the following transformed auxiliary problem

Σaux,σ :



[
ξ̇m

1
ξ̇m

2

]
=
[
−ϵ 0
0 ϵ

] [
ξ′ m

1
ξ′ m

2

]
+
[

0 c1(x)
c2(x) 0

] [
ξm

1
ξm

2

]
ξm

1 (0, σ) = −ξm
2 (0, σ)

ξ(x, 0) ̸= 0, ξ(x, T ) = 0
ξm

2 (1, σ) = η(σ)

(3.75)

where the boundary condition η(·) represents the remaining degree of freedom to fulfill the state
transition. This transformed auxiliary problem (3.75) is a stabilizing problem over the finite time
horizon [0, T ]. In [53], a backstepping based boundary control law was derived to stabilize the
system in finite time that is presented in the following theorem.

Theorem 3.3.5 (Backstepping control for the auxiliary problem for state estimation). Consider
the following 2 × 2 hyperbolic PDE system

Σ :



[
ξ̇1

ξ̇2

]
=
[
−ϵ 0
0 ϵ

] [
ξ′

1
ξ′

2

]
+
[

0 c1(x)
c2(x) 0

] [
ξ1

ξ2

]
ξ1(0, σ) = −ξ2(0, σ)
ξ(z, 0) = ξ0

ξ2(1, σ) = η(σ)

where x ∈ [0, 1] , c1(·) ∈ C([0, 1],R) , c2(·) ∈ C([0, 1],R), ϵ > 0, ξ0 ∈ L2([0, 1],R2). Then, the
following control law

η(σ) =
∫ 1

0
Kvu(1, ζ)ξ1(ζ, σ)dζ +

∫ 1

0
Kvv(1, ζ)ξ2(ζ, σ)dζ (3.76)

where the backstepping kernels Kvu, Kvv are given as the solution of (see eq. (24-31) in [53])

ΣK :


ϵ∂Kvu

∂x − ϵ∂Kvu

∂ζ = c2(ζ)Kvv

ϵ∂Kvv

∂x − ϵ∂Kvv

∂ζ = c1(ζ)Kvu

Kvu(x, x) = − c2(x)
2ϵ

Kvv(x, 0) = −Kvu(x, 0)

(3.77)

stabilizes the system Σ in finite time tF = 2
ϵ .
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Proof. see [53, Theorem 1]

Remark 9. Interestingly, these backstepping kernel equations (3.77) were already solved analytically
in [27] to calculate the observer gains of the adaptive backstepping observer (see eq. (57)-(62) in
[27]).

The combination of the state estimation obtained from the algebraic IO relation (3.68) and the
leak localization observer (3.19) completes the design of the algebraic observer. Altogether, the
Figure 3.4 illustrates schematically the structure of the algebraic observer and specifies thereby the
general observer structure illustrated at the beginning of this chapter in Figure 3.1. The parts that
can be solved offline are marked in green, while the online parts are colored in red. Furthermore,
the design parameters, i.e., the lengths Tχ and Tδ of the moving time windows, the approximation
order N of the function expansion (3.67) and the observer gain γ for the leak localization observer
(3.19), are highlighted in purple.

ΣWHlin,leak(2.4)

Source estimation
Equation (3.30)

Auxiliary Problem
Σaux,χ (3.31)

Σtrafo, lin (3.3)

Trajectory Planning
(3.43)

ΣWHlin,leak (2.4)

Auxiliary Problem
Σaux,u, Σaux,v (3.69),(3.70)

Algebraic IO
Equation (3.68)

Backstepping
Stabilization (3.76) ×

Orthonormal
Basis {Ψk}N−1

k=0

Σobs,δ (3.19)

Tχ

Tδ γ > 0

N

p0(t), pℓ(t), q0(t), qℓ(t)MFM
MF φ(x, τ)

χ̂(t)

MF φ(x, τ) c1(t),

c2(t)

MFM
û(0, t),

v̂(0, t)

δ̂(t) ↷ z∗

Figure 3.4.: Schematic illustration of the structure of the algebraic observer.

In conclusion, this chapter lays the theoretical fundaments of the dynamic and the algebraic
observer design. The following chapter validates both observer structures in simulation for a realistic
water pipe system and compares the performance to identify strengths and limitations of both
observer types.
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4. Simulation-Based Results

Throughout this chapter, the two observer schemes derived in Chapter 3 are implemented in MAT-
LAB/Simulink and applied to the leak detection, size estimation and localization for an exemplary
water pipeline. The performance of both observers is evaluated and compared under different sim-
ulation conditions, such as the measurement noise level, the boundary conditions, the leak size, the
leak position, and the shape of the leak distribution function. Furthermore, the robustness of the
leak size estimation and leak localization w.r.t. uncertainties in the modeling of the fluid friction
losses is examined.

In the following sections, an exemplary pipeline according to the parametrization given in Table
4.1 will be regarded. The pipe has a length of ℓ = 20 km and a diameter of d = 1 m what
are reasonable values in comparison to existing, municipal and regional water pipes in Germany
[79, 80, 81]. Additionally, an inclination angle of θ = 0.0315◦ is considered, leading to a height
difference of h = 11 m. In the reference scenario, the boundary conditions are chosen to be con-
stant, i.e. the inlet flow q0(t) is equal to the nominal flow and the outlet pressure is equal to
the ambient pressure. Furthermore, the performance of both observer schemes for time-varying
boundary conditions in the pipe model will be examined in Section 4.2.4. Finally, the density and
compressibility of water are given by the literature [82]. The friction factor F is calculated for the
nominal flow using the Haaland Equation (2.9) and assuming the pipe material to be steel with a
pipe surface roughness of ϵp = 1.55 · 10−4 m [82].

Before the performance of the leak observers can be evaluated, the first step consists in gener-
ating the required measurement data of the flow rate and the pressure at the inlet and outlet of
the pipe by simulating the linear pipe model (2.4). Since the pipe is modelled as a PDE according
to (2.4), a way to reduce the dimension of the infinite dimensional model is required. To this
end, the Method of Lines (MOL) [45] is utilized because this technique is well-established in the
literature and widely applied to simulate chemical and physical systems that are modelled by PDEs
[83, 84, 85, 86, 87]. Furthermore, the MOL is simple to implement and allows the application of
model order reduction schemes like the balanced truncation [88] to reduce the order of the resulting
ODE system and thereby to reduce the computational costs.

The MOL introduces n spatial nodes. At these n nodes, the linear pipe model (2.4) is discretized
in space by applying, e.g., first order finite differences to approximate the spatial derivatives. Con-
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Parameter Variable name Value Unit
Length ℓ 20 [km] 

Pipe geometry

Diameter d 1 [m]
Cross-section area A 0.7854 [m2]
Inclination θ 0.0315 [◦]
Gravity g 9.81 [ m

s2 ]
Leak coefficient c 0.8 [-]
Friction factor F 8.84 [ kg

m3·s ]
Fluid propertiesCompressibility β 2.1 · 109 [Pa]

Density ρ 1000 [ kg
m3 ]

Inlet flow q0(t) 1 [m3

s ]
}

Boundary conditionsOutlet pressure pℓ(t) 1.1 · 105 [Pa]

Table 4.1.: Parametrization of the pipe model ΣWHlin,leak in the reference scenario.

sequently, the spatial discretization leads to an ODE of order 2n that can be resolved. Since the
pipe model (2.4) is linear in the states p(·, ·), q(·, ·), the ODE system resulting from the MOL
is also linear, such that the MATLAB routine c2d can be used to convert the ODE to discrete
time and to calculate the flow rate and pressure measurements at every time step. Following the
same procedure, the infinite dynamic observer is discretized in space by employing the MOL and
by implementing the resulting ODE system in MATLAB. For further regards, the interested reader
is referred to appendix A.3 where the spatial discretization and derivation of the ODE system is
described exemplarily for the linear pipe model (2.4).

Through the sections 4.2.1 to 4.2.5, the performance of the dynamic observer, the ABSO, and
the MFM based algebraic observer is analyzed under various operating conditions of the simulation
plant. The resulting KPIs are compared and the strengths and limitations of both observer schemes
are evaluated. Beforehand, the following Section 4.1 discusses the generation of the required MFs
that are needed to implement the algebraic observer.

4.1. Generation of the Modulating Functions

This section deals with the generation of the MFs that are required to implement the algebraic
observer and calculated offline as the solutions of the auxiliary problem (3.31) for the leak size
estimation and the auxiliary problems (3.69) and (3.70) for the state estimation. In this context, it is
of great interest to verify that the Gevrey Function based trajectory planning approach according to
the Equations (3.43) and (3.45) as well as the backstepping based control law according to Theorem
3.3.5 solve the auxiliary problems (3.31) and (3.69) as well as (3.70) accurately. Furthermore, the
choice of the remaining degrees of freedom in the generation of the MFs is not that intuitive as
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the tuning of the ABSO such that some remarks on the adjustment of the design parameters of
the algebraic, MFM-based observer are given. To generate and adjust the MFs, the exemplary
pipe is regarded as defined in the reference scenario according to Table 4.1 with a leak whose size
represents 1 % of the nominal flow and that occurs after t = 60 s. Throughout this verification
and adjustment process of the algebraic observer, measurement noise will not be considered.

First, the MFs for the leak size estimation via the algebraic IO relationship according to Equation
(3.30) are generated. Therefore, the recursive formulas (3.45) are implemented to obtain the
coefficients φ1,k(τ) and φ2,k(τ) of the power series approach (3.43). The remaining degrees of
freedom are namely the choice of the Gevrey function b(·), the slope σ of the Gevrey function, the
length Tχ of the moving time window and the truncation order N of the power series approach
(3.43). In this work, the bump function bσ(·) as defined in Remark 8 is utilized as Gevrey function.
The slope is chosen as σ = 2 to simplify the calculations of the required derivatives of bσ(·) and a
truncation order of N = 10 is used. The adjustment of the length Tχ of the moving time window
is done by comparing the solution of the auxiliary problem (3.31) obtained by the power series
approach (3.43) with the solution that is obtained by discretizing the auxiliary problem (3.31) by
means of the MOL.In the second case, the boundary condition φ1(1, τ) = η1(τ) that is required
to simulate the resulting ODE system is taken from the solution obtained by the power series
approach. In Figure 4.1, the resulting MFs φ1(0), φ1(1) and φ2(1), that are required to implement
the algebraic IO relationship (3.30), are compared for Tχ = 130 s and the pipe model given by the
reference scenario as defined in Table 4.1. Furthermore, the temporal trajectory of the error norm
||eφ(τ)||2 =

∫ 1
0 ||φP S(x, τ) − φMOL(x, τ)||2dx between the solution φP S(x, τ) obtained from the

power series approach (3.43) and the solution φMOL obtained by means of the MOL is displayed.
As the visual coincidence of the trajectories of both solutions φP S(x, τ) and φMOL(x, τ) and the
low error norm of ||eφ(τ)|| < 4 · 10−3 indicate, the power series approach according to (3.43) with
the temporal coefficients defined by the recursive formulas (3.45) solves the auxiliary problem (3.31)
and realizes the required non-trivial set point change φ(x, 0) = 0 ⇝ φ(x, Tχ) = 0, φ(x, τ) ̸≡ 0.
Applying the resulting MFs φ1(0), φ1(1) and φ2(1) to implement the algebraic IO relationship
(3.30), an accurate estimate of the leak size in the noise free reference scenario is obtained with
deviations under 0.28 % as Figure 4.2 illustrates. The convergence speed of the leak size estimate
calculated by the algebraic observer is mainly determined by the length of the moving time horizon
Tχ. The shorter the moving time window is, the faster converges the estimate. However, it is
noted that for moving time windows of length smaller than Tχ = 130 s, there was not found any
configuration of slope σ and truncation order N such that the solution obtained from the power
series approach and the solution simulated by the MOL coincide and such that an accurate result
of the leak size estimation is provided.

After generating the MFs for the leak size estimation, the second part consists in calculating the
MFs that are required to estimate the states of the transformed system (3.3) according to Theorem
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(a) MF φ1(0, τ) for leak size estimation.
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(b) MF φ1(1, τ) for leak size estimation.
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(c) MF φ2(1, τ) for leak size estimation.
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(d) Error norm ||eφ(τ)||2.
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Figure 4.1.: Comparison and error norm ||eφ(τ)||2 of the MFs for the leak size estimation obtained
by the power series approach (3.43) and the MOL-based solution for the pipe in the
reference scenario according to Table 4.1.

(3.3.4). To this end, the auxiliary problems (3.69) as well as (3.70) are discretized by means of
the MOL. Subsequently, the analytic solution of the backstepping kernels (3.77) is calculated and
the control law presented in Theorem 3.3.5 is implemented to realize the required state transition
according to Theorem 3.3.4. During this process, tuning parameters emerge at two points.

The first tuning parameters occur during the parametrization of the function expansion according
to Equation (3.67) in form of the approximation order N , the choice of the orthonormal base
functions {Ψk}∞

k=0 and the choice of the weighting function w(·). In this work, the weighting
function is chosen as w(x) = 20x2(1 − x)2. This function has its maximum at the centre x = 1

2
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Figure 4.2.: Leak size estimation for the pipe in the noise free reference scenario defined in Table
4.1 with leakage of 1 % of the nominal flow occurring after t = 60 s.

and decreases symmetrically towards the boundaries x = 0 and x = 1 such that a symmetric
weighting is established. A stronger weighting of one of the boundaries (e.g., w(x) = 20x4(1 − x)2

or w(x) = 20x2(1 − x)4) has not shown any improvement during the design process. Based on the
selected weighting function, the orthonormal base functions are obtained from applying the Gram-
Schmidt procedure to the canonical polynomial basis {xk}∞

k=0. This choice of the orthonormal
basis functions is widely applied in the MFM community [89, 43, 51]. Alternative function bases
of the L2(R,R) like, e.g., a trigonometric basis, did not lead to a better performance of the
leak localization in the reference scenario according to Table 4.1. The choice of an appropriate
approximation order N is not straightforward and requires some testing to achieve the desired
accuracy of the leak localization. In this work, an approximation order of N = 5 for the simulation
pipe according to Table 4.1 provides a valid estimate of the leak position. The impact of higher or
lower approximation orders N is discussed at the end of the section.

A further tuning parameter is given by the length Tδ of the time horizon that is considered to
realize the state transition of the auxiliary problems (3.69) and (3.70). According to Theorem 3.3.5,
the control law (3.76) achieves this state transition in final time tF = 2

ϵ , i.e. the final time depends
only on the system parameters ℓ, β and ρ of the pipe (remind: ϵ := 1

ℓ

√
β
ρ ). However, the control

law (3.76) does not transfer the states of the auxiliary problems (3.69) and (3.70) exactly to the
desired final state φ(x, Tδ) due to numerical inaccuracies, e.g., provoked by the discretization by
means of the MOL, as Figure 4.3 indicates. On the other side, the leak localization is a highly
sensitive problem. The estimated states û(0, t), v̂(0, t) are multiplied in Equation (3.66) with
the factor

√
βρ

A that is in the range of 107 (β ∼ 109, ρ ∼ 103, A ∼ 10−1). Therefore, it is
recommended to augment the time horizon Tδ such that the deviations from the desired final state
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decrease. In this work, a time horizon of Tδ = 6 · tF = 165.6 s leading to deviations in the range
of 10−10, as Figure 4.3 illustrates, is chosen for the reference scenario according to Table 4.1.
Finally, the performance of the state estimation of the algebraic observer is validated, and the

(a) Error e(x, Tδ) in state transition of auxiliary
problem (3.69).
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(b) Error e(x, Tδ) in state transition of auxiliary
problem (3.70).
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Figure 4.3.: Error e(x, Tδ) =
[
e1(x, Tδ) e2(x, Tδ)

]⊤
in state transition of the auxiliary problems

(3.69) and (3.70) for N = 0, pipe parametrization according to the reference scenario
in Table 4.1.

estimated states are utilized to localize the leak according to the leak localization observer system
(3.19). Moreover, the influence of the approximation order N and the length Tδ of the moving
time window on the accuracy of the leak localization is discussed. Therefore, the pipe is regarded
in the reference scenario according to Table 4.1 with a leak of 1 % of the nominal flow that occurs
after t = 60 s at the position z∗ = 10 km. In Figure 4.4, the states estimated by the algebraic
observer are presented at the end of the simulation time at t = 1000 s under variation of the length
Tδ of the moving time window and the approximation order. At first glance, the algebraic observer
estimates well the states of the transformed system (3.3). The estimates û(0, t) and v̂(0, t), that are
needed to estimate the leak position according to (3.19), show deviations smaller than 10−3, as the
zoom indicates. However, small deviations in the estimated states are highly amplified in the leak
localization observer system (3.19) by the factor

√
βρ

A that is in the range of 107. Consequently,
the parametrization with an approximation order N = 5 and a moving time window of length
Tδ = 165.6 s is chosen to achieve the desired accuracy of the leak localization, while a shorter
moving time window or a variation in the approximation order results in deviations of up to 50 %
from the real leak position, as Figure 4.5 shows. Furthermore, as Figure 4.4 indicates, the states
û(x, t) and v̂(x, t) estimated by the algebraic observer show the highest deviations near to the
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(a) Estimated state u(x, tf ).
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(b) Estimated state v(x, tf ).
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(c) Estimated state u(x, tf ), Zoom at boundary x =
0.
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(d) Estimated state v(x, tf ), Zoom at boundary x =
0.
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Figure 4.4.: Estimated states u(x, tf ) (left) and v(x, tf ) (right) at end time tf = 1000 s of simu-
lation under variation of the approximation order N and the length Tδ of the moving
time window, pipe parametrization according to the reference scenario in Table 4.1
with leak of 1 % of the nominal flow occurring at z∗ = 10 km.

boundaries x = 0 and x = 1, i.e. exactly where the state information is needed to localize the leak.
This problem is well-known in the MFM community and can be explained by the orthonormal basis
functions that reach their extremes at the boundaries, what increases the sensitivity to numerical
errors. To improve the estimate accuracy at the boundaries and to allow thereby shorter moving
time windows that lead to a faster convergence of the leak position estimate, future work could
include homogenization of the transformed system (3.3). This homogenization ansatz requires the
solution of (3.3) and splits it into two parts, a homogeneous solution and a particular solution.
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Figure 4.5.: Leak size localization for the pipe in the noise free reference scenario defined in Table
4.1 with leakage of 1 % of the nominal flow occurring after t = 60 s, variation of
approximation order N and length Tδ of the moving time window of the algebraic
observer, γ = 0.2.

Thereby, the known boundary information can be reflected better during the design of the algebraic
observer [90].

In summary, this section has pointed out that the parametrization of the remaining degrees of
freedom of the algebraic observer is not straightforward. The accuracy of the leak size estimation
and leak localization exhibits strong sensitivity to this parametrization, such that a profound analysis
has to be performed offline before the algebraic observer can be implemented. In light of this
sensitivity, the following Section 4.2 validates the chosen parametrization by analyzing the accuracy
of the algebraic observer, as well as of the ABSO, under various measurement and operating
conditions.

4.2. KPI-based Evaluation of the Leak Observer Results for a
Simulation Plant

This section presents and analyzes the performance of both observers under various measurement
and operating conditions of the linear pipe model (2.4). Based on these comparative simulation
studies, it is aimed at identifying advantages and limitations of both observer schemes. To evaluate
the performance of both observers concisely, the following KPIs, as summarized in Table 4.2, are
introduced: the mean error ∆χ[%] of the leak size estimation regarding the total leak size, the
mean error ∆z∗[%] of the leak localization regarding the total length of the pipeline, the standard
deviations σχ[ l

s ] and σz[m] of the estimated leak size and leak localization, the convergence times

54



Simulation-Based Results Julius Paul Rußmann

tconv,χ and tconv,z until the estimates are in the range of the accuracy specifications declared in
Section 1.2.1 and the runtime texec of both observer schemes. The first two KPIs give indication
about the accuracy of the observers, while the standard deviations σχ[ l

s ] and σz[m] of the estimated
leak size and leak localization serve as an indicator of the reliability of the estimates. A high standard
deviation of the estimates indicates strong fluctuations, what makes a reasonable leak detection
and localization more difficult for the user. Furthermore, the convergence times tconv,χ and tconv,z

are considered to rank how fast a leak can be detected and localized by both observer schemes.
Finally, the runtime texec of both observer schemes is compared to verify the real-time capability.
The indicated runtime includes the parts of the dynamic and the algebraic observer that have
to be executed online according to the indications given in Figure 3.2 and Figure 3.4, i.e., the
computational costs to calculate the observer gains p1(·), p2(·) of the ABSO or to generate the
MFs of the algebraic observer are not included in the indicated runtimes.1

KPI Variable name Unit
Mean Error (Leak size estimation) ∆χ [%]

}
AccuracyMean Error (Leak localization) ∆z∗ [%]

Standard Deviation (Leak size estimation) σχ [ l
s ]

}
ReliabilityStandard Deviation (Leak localization) σz [m]

Convergence Time (Leak size estimation) tconv,χ [s]
}

RapidityConvergence Time (Leak localization) tconv,z [s]
Runtime texec [s]

}
Real-time capability

Table 4.2.: KPIs for the evaluation of the simulation-based leak size estimation and localization
results.

4.2.1. Simulation-based Leak Observer Results under Variation of the
Measurement Noise Level

In real technical applications, the measurements of physical variables of the system are always
affected by measurement noise. Consequently, it is of great theoretical and practical interest to
evaluate the performance of the leak observers when the measurements of the flow rate and the
pressure are contaminated by noise. Hence, this section analyzes the performance of the dynamic
and the algebraic observer regarding the KPIs defined in Chapter 4 for the case that white noise is
added to the measurements of the simulation plant generated according to the explications given
in the previous Section 4. To this end, three different measurement noise scenarios, as depicted in

1The implementation of both observer algorithms is done in MATLAB. The author does not claim to provide the
runtime-optimal implementation. Hence, the indications on the runtime are rather to be understood as an upper
limit of the runtime to verify the real-time capability of both observers in general.
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Table 4.3 will be examined: (i) a low measurement noise level with standard deviations σp = 100
Pa and σq = 10−5 m3

s of the white noise added to the flow rate and pressure measurements, (ii)
a medium measurement noise level with standard deviations σp = 250 Pa and σq = 10−4 m3

s , and
(iii) a high measurement noise level with standard deviations σp = 400 Pa and σq = 2 · 10−3 m3

s .

noise level
standard deviation low medium high

σp[Pa] 100 250 400
σq[m3

s ] 10−5 10−4 2 · 10−3

Table 4.3.: Definition of the standard deviations of the additive white Gaussian noise in the three
noise scenarios.

It is pointed out that the standard deviations in the low noise scenario are in the range of the
standard deviations that were observed for the sensors installed at the pilot plant at the PUCP.

Subsequently, the performance of the observers is examined in the reference scenario according
to Table 4.1 for a single one-point leak that occurs after t = 60 s at z∗ = ℓ

2 = 10 km and whose
size χ = 10−3 m3

s = 1 l
s represents 1 % of the nominal flow. The noise corrupted data of the

pressure and the flow rate at the inlet and the outlet is utilized without any prefiltering.
The PDE system, that realizes the leak size and state estimation part of the ABSO, is im-

plemented via the MOL with a discretization of n = 500 nodes. The tunable observer gains of
the ABSO were adjusted according to the tuning guidelines indicated in Section 3.2 resulting in
L = −0.3 for the leak size estimation and γ = 0.2 for the leak localization. The algebraic, MFM-
based observer uses the same leak localization gain γ while the moving time horizons of the MFs
for leak detection and localization are given as derived in the previous Section 4.1 by Tχ = 130
s and Tδ = 165.6 s, respectively, and an approximation order of N = 5 is used for the function
expansion (3.67). Both observers are implemented with a sampling time of 10 ms.

The results for the low noise scenario are shown in Figure 4.6. For reasons of better illustration,
the leak size χ will always be displayed in l

s and the leak position z∗ in km. In Table 4.4 the
resulting KPIs are listed. KPIs where the ABSO outperforms the algebraic observer are highlighted
in bold type, and vice versa.

It is observed that both observers fulfill the desired specifications. The mean error w.r.t. the leak
size is smaller than 0.13 % and smaller than 0.75 % w.r.t. the leak localization for both observers.
It is noticed that the ABSO performs better regarding the accuracy of the leak size estimation
while the algebraic, MFM-based observer reaches a better accuracy of the leak localization. The
deviations of the estimates are in the same range for both observers and significantly less than
the respective 5 % error tolerance bounds, such that a reliable estimate of the leak size and leak
position is provided. Furthermore, for both observers the needed runtime is significantly smaller
than the simulated time of tsim = 1000 s such that the real-time capability of both observers is
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proven. It is observed that the ABSO requires less runtime than the algebraic observer. A further
visible difference in the performance of both observers can be seen in the convergence time. While
the algebraic observer needs about 77.13 s and 195.41 s to reach the error bound of deviations
smaller than 5 %, the dynamic observer provides much faster a reliable estimation of the leak size
and localization by needing only 24.45 s and 142.21 s. Consequently, the ABSO indicates faster
the appearance of a leak and allows localizing the leak more rapidly.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.6.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
in the low noise case.

The results of the medium noise scenario, that are displayed in Figure 4.7 and Table 4.5, solidify
the conclusions drawn from the low noise scenario. Both observers perform well regarding the leak
size estimation and leak localization and overfulfill the predefined accuracy objectives visibly. The
ABSO performs better regarding the leak size estimation with a mean error smaller than 0.003 %
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Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.003 0.75 0.003 20.38 24.45 142.21 35.69

Algebraic Observer
(MFM-based)

0.13 0.35 0.002 24.43 77.13 195.41 135.57

Table 4.4.: KPIs of the dynamic and the algebraic observer in the low noise scenario.

while the algebraic observer gives a smaller deviation regarding the leak localization. The standard
deviations of both estimates are smaller than 0.25 % of the mean values of the estimates, such
that reliable estimates are provided once the observers have converged. This desirable convergence
behaviour is also illustrated graphically by Figure 4.7 where the estimates stay inside the error
tolerance bound and show oscillations of smaller than 0.2 % once the observers have converged. A
significant difference between both observers is identified w.r.t. the convergence speed. The ABSO
needs about 50 s less to provide estimates of the leak size and the leak localization which differ
less than 5 % from the real value. Furthermore, both observers are real-time capable, whereby the
implementation of the ABSO requires significantly less runtime.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.009 0.79 0.006 37.92 24.44 144.01 33.12

Algebraic Observer
(MFM-based)

0.13 0.36 0.004 46.50 77.08 195.25 145.81

Table 4.5.: KPIs of the dynamic and the algebraic observer in the medium noise scenario.

Finally, the high noise scenario is investigated. In this scenario, the standard deviation of the
white noise added to the flow rate measurements represents 20 % of the leak size, leading to an SNR
of 13.9 dB, while the standard deviation of the white noise added to the pressure measurements is
in the range of 35 % of the pressure change caused by the leak. These numbers stress the severe
measurement conditions under which the observers have to detect and localize the leak in the high
noise scenario.

Nevertheless, concerning the mean errors of the leak size and leak position estimates, the
observers still perform well and fulfill the predefined objectives by providing estimates with a mean
error significantly smaller than 1 %. However, it is seen that the noise causes a drastic increase in the
standard deviations of the estimates. The standard deviations indicate that the algebraic observer
filters better the noise w.r.t. the leak size estimation, while the ABSO gives a less oscillating
estimate of the leak position. As Figure 4.8 illustrates graphically, in particular the estimates of
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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(c) Estimation of the leak size χ (Zoom).

0 200 400 600 800

9.4

9.6

9.8

10

10.2

10.4

10.6

(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.7.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
in the medium noise case.

the leak position oscillate strongly such that the estimated leak positions need over 11 min to stay
inside the predefined error tolerance bounds. Therefore, it is recommended to filter the leak position
estimates in the high noise scenario. To this end, the estimates are passed by a moving average
filter with a length of T = 40 s. By applying this additional filter, it is achieved, that the standard
deviation of the leak position estimates significantly reduces such that the filtered estimates stay
inside the predefined error tolerance bounds once the error is smaller than 5 % w.r.t. the total pipe
length. Thereby, a more reliable estimation of the leak position is provided to the user.

Altogether, the analysis of the performance of both observers under different measurement noise
scenario demonstrates that the ABSO and the algebraic, MFM-based observer, fulfill the predefined
objectives by providing accurate estimates of the leak size and leak position. Both observers are
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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(c) Estimation of the leak size χ (Zoom).
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Figure 4.8.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
in the high noise case.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.11 0.55 0.08 330.58 24.09 740.98 31.37

Algebraic Observer
(MFM-based)

0.14 0.13 0.03 533.33 77.25 878.37 160.17

Table 4.6.: KPIs of the dynamic and the algebraic observer in the high noise scenario.

real-time capable and show a certain robustness to measurement noise. For noise levels comparable
to industrial flow rate and pressure sensors, both observers reach the predefined accuracy objectives
and provide estimates with mean errors significantly smaller than 1 %. It is noticed, that for both
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observers, the leak size can be estimated with a higher accuracy. Moreover, the results of the high
noise scenario illustrate that especially the estimation of the leak position is affected significantly
by the measurement noise. The standard deviation of the estimates increases drastically, such that
the estimated leak position does not stay in between the error tolerance bounds. Nevertheless, an
additional filtering of the estimated leak position estimates by a moving average filter improves
the results visibly such that reliable estimates with oscillations significantly smaller than the error
tolerance bounds are achieved.

Additionally, significant differences in the performance of both observers are noticed regarding
the convergence time and the runtime. The ABSO has speed advantages over the algebraic observer
and leads to lower runtimes that are needed to execute the MATLAB code. Moreover, the estimates
need a shorter convergence time to reach the predefined error tolerance bounds.

The following sections, that analyze the impact of the leak size, the leak localization, the
boundary conditions and of model uncertainties, will apply the medium noise level scenario and, if
not otherwise stated, the same parametrization of the observers as in this Section 4.2.1.

4.2.2. Simulation-based Leak Observer Results under Variation of the Leak Size

This section analyzes the performance of the dynamic and the algebraic observer under variations
of the leak size. In real water pipelines, leaks with different magnitudes do appear, depending on
whether the leak is a small background leak or caused by an entire pipe burst. For example, the
case study of a real water distribution network presented in [91], distinguishes leak scenarios that
range from leak magnitudes smaller than 1 % w.r.t. the nominal flow up to leak sizes of almost
50 %. Keeping this wide range of possible leak sizes in mind, it is of great practical importance to
verify in simulation that both observers are capable to detect and localize relatively small leakages
as well as leakages with a large magnitude. Therefore, this section aims at verifying that both
observers detect and localize larger as well as smaller leakages in an accurate and reliable way. In
this context, the identification of the minimal leak size that can be detected and localized is of
special interest.

Firstly, the performance of both observers for a leak of large magnitude is examined. To this
end, the simulation plant according to Table 4.1 is regarded in the reference scenario including
measurement noise as in the medium noise case. The appearance of a single one-point leak after
t = 60 s at z∗ = ℓ

2 = 10 km with a leak magnitude of χ = 0.2 m3

s , that represents 20 % of the
nominal flow, is simulated. According to Remark 5, the convergence speed depends linearly on
the leak size χ. As a consequence, the amplification of measurement noise in the leak localization
observer (3.19) also rises if the leak size χ augments. To take this into account, the leak localization
observer gain γ is lowered to γ = 0.02, for the ABSO as well as for the algebraic, MFM-based
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observer.
The Figure 4.9 compares the results graphically, while Table 4.7 compares the resulting KPIs

of both observers for the scenario of a large leak. It is observed, that the convergence time to
estimate the leak size is comparable to previous cases (see e.g. Table 4.5) while the leak position
can be estimated around 30 % much faster. Moreover, it is still noticed that the ABSO needs a
shorter convergence time to provide accurate results of the leak size and position. Furthermore, for
both observers, the mean error of the leak localization reduces to about 0.1 % while the standard
deviations of the leak position estimates stay in the same range as in the case of a smaller leak of
1 % of the nominal flow (see Table 4.5).

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.9.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a large leak of 20 % of the nominal flow.

This analysis of the leak observer performance in the case of a bigger leak confirms the intuitive
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Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

6 · 10−4 0.09 0.05 19.45 24.43 83.25 31.85

Algebraic Observer
(MFM-based)

0.006 0.13 0.03 38.10 77.25 140.91 163.36

Table 4.7.: KPIs of the dynamic and the algebraic observer for a big leak (20 % of the nominal
flow).

assumption that leaks with larger magnitudes can be localized more rapidly and more accurate due
to its stronger impact on the changes of the fluid dynamics.

In the following, the case of a leak smaller than 1 % of the nominal flow is investigated. Thereby,
we aim at validating the ability of both observers to identify small leaks like they do appear, e.g.,
because of a leaking joint part or due to intentional provoked leaks. In these scenarios, the leak
detection and localization problem becomes an even more challenging problem due to the small
effects of the leak on the fluid dynamics and due to resolution limits caused by the measurement
noise. The following Figure 4.10 and Table 4.8 contrast the performance of both observers for a
leak size of χ = 10−3 m3

s that represents 0.1 % of the nominal flow. Due to the small leak and the
thereby provoked smaller convergence rate (see Remark 5), the observer gain for leak localization
is changed to γ = 0.6. The standard deviations of the measurement noise are chosen as in the
medium noise scenario defined in Table 4.3. Consequently, the noise causes an SNR of 20 dB
between leak size and flow rate measurement noise, and an SNR of −7.3 dB between total pressure
change caused by the leak and pressure measurement noise. The results for this case of a small
leak illustrate that the algebraic, MFM-based outperforms the ABSO visibly w.r.t. the accuracy
of the leak position estimation. While the ABSO is not able to reach the predefined error bound
and shows deviations after convergence of about 2 km from the real leak position, the algebraic
observer provides an accurate and reliable estimated leak position. The mean error and the standard
deviation of the estimate is higher than in the reference case of a leak of 1 % of the nominal flow
(see Table 4.5), but still lies clearly inside the predefined error bounds. Furthermore, it is noticed
that the smaller leak size causes a slower convergence of the leak localization estimation. A simple
increase in the observer gain γ is not recommended since it would lead to a stronger amplification of
the measurement noise. Besides, both observers fulfill the predefined accuracy objective regarding
the leak size estimation clearly, whereby the ABSO provides an estimate with a significantly smaller
mean error.

To improve the accuracy of the ABSO regarding the leak localization, the only remaining tuning
parameter is the number of spatial discretization nodes n. In this scenario, a number of n = 1200
spatial discretization nodes is needed to reach predefined accuracy goals. As Figure 4.10 illustrates,
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the larger number of nodes allows the ABSO to estimate the leak position with the desired accuracy,
although the accuracy of the ABSO is still less than the one by the algebraic observer. Moreover,
the higher number causes also higher computational, emerging by a runtime of texec = 333.10 s.

(a) Estimation of the leak size χ.
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.10.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a small leak of 0.1 % of the nominal flow.

As a concluding statement, this section demonstrates that both observers perform with the
desired accuracy concerning leak size and leak localization if leaks with a magnitude greater than
1 % are regarded. In this context, a larger leak magnitude can be localized more accurate and
faster by both observers due to the stronger impacts on the fluid dynamics regarding the pressure
and the flow rate drop. Concerning a small leak of 0.1 % of the nominal flow, it is shown that the
algebraic observer performs significantly better than the ABSO w.r.t. the estimation of the leak
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Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.09 10.33 0.005 226.19 24.13 − 33.72

Algebraic Observer
(MFM-based)

1.40 1.66 0.003 202.25 76.63 390.20 147.87

Table 4.8.: KPIs of the dynamic and the algebraic observer for a small leak (0.1 % of the nominal
flow).

position. The only way to reach the same accuracy range for the ABSO is increasing the number
of spatial discretization nodes, what implies at the same time higher computational costs.

4.2.3. Simulation-based Leak Observer Results under Variation of the Leak
Localization and Distribution

Besides the leak magnitude, the leak position and the shape of the leak distribution function is
another important part of the leak characteristics whose impact on the observer performance has
to be evaluated. In previous works that investigated on the design of a KF for the leak detection
and localization problem, it has turned out that the accuracy of the leak position estimated by
the KF got significantly worse if the leak appears near to the inlet or the outlet of the pipe [40].
To figure out, whether this problem also arises for the here concerned late-lumped, dynamic and
algebraic observer, the reference scenario will be regarded with a leak near to the inlet and near
to the outlet of the pipe. Furthermore, the previous Sections 4.2.1 and 4.2.2 examined only the
case of one-point leakages where the leak distribution function is assumed as a Dirac impulse. This
assumption might be reasonable if intentionally caused leaks or leaking joints are concerned. For an
entire pipe burst, that is caused, e.g., by ground movement, where the leakage appears distributed
over a wider range of the entire pipe, the assumption of a one-point leak does not seem to be
adequate. Therefore, the section addresses this case by assuming the leak distribution function as
rectangular and by evaluating the resulting observer performance.

Firstly, the case of leakages near to the inlet and near to the outlet is examined. To this end,
the reference scenario of the simulation plant with medium measurement noise level is regarded
for the case that a one-point leak with a leak size of 1 % of the nominal flow appears at z∗ = 2
km and z∗ = 18 km. For the first case, an observer gain of γ = 0.1 and for the second case of
γ = was chosen. The Figures 4.11 and 4.12 show the results graphically, while the Tables 4.9 and
4.10 contrast the resulting KPIs of both observers. It is noticed that in both cases, the accuracy
of the leak size estimation and leak localization is in the same range as for the case that the leak
appears in the middle of the pipe (see Table 4.5). The desired accuracy is clearly achieved, and
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a reliable estimate is provided by both observers. Again, it is observed that the ABSO performs
better w.r.t. the convergence speed, the runtime, and the accuracy of the leak size estimation while
the algebraic observer achieves a higher accuracy of the estimated leak position.

(a) Estimation of the leak size χ.
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(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.11.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow appearing at z∗ = 2 km.

Finally, the case of a pipe burst distributed over a wider range of the pipe is examined. To this
end, the leakage is assumed to be modelled by a rectangular shape leak distribution function that
is centred at z∗ = 10 km and that has a width of 500 m in each direction. As derived in A.1,
the relationship δ(z = 0) = z∗ also holds true for a rectangular-shaped leak distribution function.
The Figure 4.13 and the Table 4.11 compare the performance of the dynamic and the algebraic
observer for the case of a rectangular-shaped leakage of 1 % of the nominal flow. The accuracy of
the leak position is indicated w.r.t. the centre of the rectangular leak distribution function. It is
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Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.01 0.79 0.007 20.84 20.29 90.01 49.29

Algebraic Observer
(MFM-based)

0.14 0.29 0.004 19.84 73.50 140.90 147.34

Table 4.9.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
appearing at z∗ = 2 km.

(a) Estimation of the leak size χ.
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(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.12.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow appearing at z∗ = 18 km.

seen that the accuracy of the leak size estimation and the leak localization is in the same range as
for a one-point leak (see Table 4.5). The algebraic observer outperforms the ABSO in the accuracy
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Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.006 0.73 0.005 72.56 30.04 77.3 35.38

Algebraic Observer
(MFM-based)

0.14 0.07 0.004 96.12 82.58 140.29 145.76

Table 4.10.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
appearing at z∗ = 18 km.

of the leak localization. On the contrary, the ABSO provides a faster convergence speed as well as
a more accurate leak size estimation and needs less runtime. Thereby, it is shown that the desired
accuracy objectives are also achieved for leakages that appear over a wider range of the pipe.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.010 1.03 0.006 41.67 24.38 144.70 34.29

Algebraic Observer
(MFM-based)

0.14 0.05 0.003 42.86 77.13 196.22 175.18

Table 4.11.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
appearing at z∗ = 10 km and over a width of 500 m.

In summary, this section has demonstrated two important performance characteristics of both
observers. Firstly, both observers perform well and with a comparable accuracy regardless where
the leak occurs. Observations, that the leak localization gets worse for leaks near to the inlet or
near to the outlet, as it is the case for the KF [40], were not made. Moreover, the performance of
both observers is maintained if an entire pipe burst over a wider range of the pipe modelled by a
rectangular-shaped leak distribution function is concerned instead of a one-point leak. Consequently,
and in conjunction with the investigations on the leak size presented in Section 4.2.2, the ability of
both observers to detect and localize accurately leaks of various characteristics is shown.

4.2.4. Simulation-based Leak Observer Results under Variation of the Operating
Point

In this section, the performance of both observers under variation of the operating point is examined.
Like already discussed in Section 2.1.1, the linear pipe model (2.4) is only valid to an operating
point where the flow rate stays approximately constant. Furthermore, Section 4.1 pointed out that
the leak localization accuracy provided by the algebraic observer is highly sensitive w.r.t. the choice
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(a) Estimation of the leak size χ.

0 200 400 600 800

0

2

4

6

8

10

(b) Estimation of the leak position z∗.

0 200 400 600 800

0

2

4

6

8

10

(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.13.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow appearing at z∗ = 10 km and over a width of
500 m.

of the tuning parameters. Considering these two aspects, it is of great interest to verify that the
algebraic observer also performs well if another operating point is regarded. To this end, this section
investigates two different scenarios: the first scenario is similar to the reference scenario according
to Table 4.1 with a different constant inlet flow rate q0(t) while the second case considers sinusoidal
oscillations in the inlet flow rate q0(t) and the outlet pressure pℓ(t), e.g., to model changes in the
supply at the inlet or in the demand at the outlet.

The first scenario is defined as given by the reference scenario in Table 4.1, but with a different
inlet flow rate of q0(t) = 1.5 m3

s . Analogue to the reference scenario, the friction factor F is
calculated again for this nominal flow q0(t) using the Haaland Equation (2.9) what results in
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F = 13.02 kg
m3·s . In light of the changed operating conditions, the lengths Tχ and Tδ of the moving

time windows of the algebraic observer were readjusted. The tuning process, similar to Section 4.1,
resulted in lengths of Tχ = 180 s and Tδ = 100 s for the leak size estimation and leak localization,
respectively. Further parameters of the algebraic observer remain unchanged in comparison to
Section 4.1 as well as the parametrization of the ABSO.

In Figure 4.14, the resulting leak size and leak position estimates of the ABSO and the algebraic
observer are displayed graphically. It is observed, that both observers detect well the leak and
estimate the leak size with deviations significantly below 0.1 %. However, the accuracy of the leak
localization differs visibly between the two observers. This impression is confirmed numerically by
the respective KPIs that are listed in Table 4.12. While the mean error of the leak position estimate
provided by the ABSO reaches more rapidly the error tolerance bound and shows deviations of about
250 m from the real the leak position, the algebraic observer needs over 5 min to provide a leak
position estimate with deviations of under 5 % w.r.t. to the total length of the pipe. Moreover,
the deviations of the estimated leak position from the real leak position remain in the range of 800
m signifying a notably less accuracy than the ABSO.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.02 1.23 0.006 26.74 24.39 82.02 36.53

Algebraic Observer
(MFM-based)

0.008 4.54 0.003 36.95 100.34 323.19 155.23

Table 4.12.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
q0(t) = 1.5 m3

s appearing at z∗ = 10 km.

Furthermore, it is commented that the accuracy of the leak localization estimation of the
ABSO could be further improved by introducing more spatial nodes, while there was not found any
parametrization of the algebraic observer that would improve the leak localization accuracy in this
case. This observation underlines the high sensitivity of the algebraic observer w.r.t. the tuning
parameters and the challenging problem of parametrizing well the algebraic observer.

In the second scenario, that will be discussed in this section, the inlet flow q0(t) and the outlet
pressure pℓ(t) are chosen to oscillate sinusoidally about a mean value. The interest in these boundary
conditions is twofold. Firstly, the previous analysis has shown the tuning parameters of the algebraic
observer have to be adjusted if the operating point changes. Therefore, it is worthwhile to subject
the algebraic observer to a stress test if the operating conditions are not constant. Secondly, the
case of slowly varying operating conditions represents an interesting use case of the pipe, e.g, to
model variations in the demand at the end of the pipe or in the delivery rate at the inlet of the
pipe between day and night.
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(a) Estimation of the leak size χ.
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(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.14.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow q0(t) = 1.5 m3

s appearing at z∗ = 10 km.

The Figure 4.15 and the Table 4.13 present the results of the leak size estimation and localization
for the case of boundary conditions q0(t) and pℓ(t) that oscillate sinusoidally around the mean
values utilized in the reference scenario of Table 4.1, i.e. q0(t) = (1 + 10−2 · sin( 2π

100 t)) m3

s and
pℓ(t) = (1.1 · 105 + 103 · sin( 2π

100 t)) Pa. In comparison to the parametrization of the algebraic
observer presented in Section 4.1, only the length Tδ of the moving time window for the state
estimation was readjusted to Tδ = 100 s. The other tuning parameters of the algebraic observer
and the ABSO are given as described in Section 4.2.1. Regarding the like size estimation, it is
seen that both observers reach the same accuracy as in the case of constant boundary conditions
(see Table 4.5) and estimate the leak size with deviations of under 0.15 % from the leak size. To
highlight the significance of this performance under the chosen boundary conditions, Figure 4.15a
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shows additionally the flow difference q0(t) − qℓ(t) between the inlet flow q0(t) and the outlet flow
qℓ(t). Since the inlet flow varies over time, the leak size χ is not equal to the flow difference
between inlet and outlet. Consequently, the two leak observers presented in this work, the ABSO
and the algebraic observer, provide a clearly more accurate and reliable leak detection and leak
size estimation than a simple comparison between inlet flow and outlet flow of the pipe would do.
While the flow difference q0(t)−qℓ(t) oscillates between 4 and 16 l

s and does not allow a reasonable
conclusion whether a leak has occurred or not, the leak size estimated either by the ABSO or the
algebraic observer converges to the real, constant leak size and allows for a reliable leak detection.
Moreover, both observers estimate accurately the position of the leak. In the zoomed view shown
in Figure 4.15d, sinuslike oscillations are observed in the leak position estimates. Nonetheless, the
amplitudes of these oscillations have amplitudes less than 300 m, what represents about 1.5 % of
the total length of the pipe, such that the estimates stay inside the 5 % error tolerance bound and
the mean errors of the leak position estimation lie under 1 %.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.01 0.76 0.01 86.13 24.25 135.77 38.31

Algebraic Observer
(MFM-based)

0.14 0.38 0.007 139.94 76.99 195.26 116.12

Table 4.13.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
q0(t) = 1 m3

s appearing at z∗ = 10 km, sinusoidally varying boundary conditions q0(t)
and pℓ(t).

This investigation of the observer performance under time-varying boundary conditions highlights
a main advantage of the observers developed in the present work. Since the ABSO, as well as the
algebraic observer, are derived and designed based on a physical pipe model, the flow dynamics are
considered in the observer design independently of the boundary conditions. Hence, the presented
observers go beyond less sophisticated leak detection methods, which would simply evaluate the flow
difference between inlet and outlet without taking the flow dynamics into account. Furthermore, the
investigations discussed in this section point out, that the algebraic observer requires an appropriate
fine-tuning of the remaining design parameters for every operating condition to achieve the desired
accuracy goals regarding the leak size estimation localization. While the ABSO only requires an
adjustment of the number n of spatial discretization nodes used for the MOL, the tuning process
of the algebraic observer is more complicated and time-consuming. The auxiliary problems (3.31)
as well as (3.69) and (3.70) to obtain the needed MFs have to be simulated offline again, varying
the lengths Tχ and Tδ of the moving time windows until a parametrization is found that leads to
an accurate estimation of the leak size and leak position. This procedure is less intuitive than the
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.

0 200 400 600 800

0

2

4

6

8

10

12

(c) Estimation of the leak size χ (Zoom).
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(d) Estimation of the leak position z∗ (Zoom).
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Figure 4.15.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow q0(t) = 1 m3

s appearing at z∗ = 10 km,
sinusoidally varying boundary conditions q0(t) and pℓ(t).

tuning of the ABSO and does not guarantee that the algebraic observer reaches the same accuracy
regarding the leak localization as the ABSO, as the first scenario for a higher constant inlet flow
rate has demonstrated.

4.2.5. Simulation-based Leak Observer Results under Model Uncertainty

This final section is dedicated to the evaluation of the observer performance under model uncer-
tainties. As discussed in Section 2.1.1, the main uncertainty w.r.t. to the pipe model (2.2) consists
in the modeling of the friction losses. An essential assumption for the design of both observers

73



Simulation-Based Results Julius Paul Rußmann

presented in Chapter 3 is that the friction losses depend linearly on the flow rate, such that they
can be parametrized by a constant friction factor F . However, this assumption is a simplification of
the fluid dynamics in two respects. Firstly, the friction losses depend strongly on the pipe geometry
and material such that the friction factor F may vary over the pipe length, e.g., due to joints and
elbow segments that cause additional friction losses or due to variations in the roughness of the
inside pipe wall. Secondly, the assumption of linear friction losses is only valid near to an operating
point where the flow rate stays approximately constant. If larger flow rate ranges are considered or
if the flow rate differs significantly between the inlet and the outlet, e.g. because of a large leak,
the nonlinear pipe model (2.10) that involves friction losses depending quadratically on the flow
rate, is supposed to be more accurate [63].

In view of these limitations of the utilized linear pipe model (2.4), it is indispensable to validate
the robustness of both observers w.r.t. model uncertainties. To this end, two different scenarios
will be examined. The first scenario analyzes the case where the measurement data is generated by
the linear pipe model (2.4) assuming a nominal linear friction factor F , but the dynamic and the
algebraic observer are designed with a linear friction factor F that differs by up to ±0.45 % from
the nominal one. In the second scenario, the nonlinear pipe model (2.10) is utilized to generate
the required measurement data of the flow rate and the pressure at the inlet and the outlet of
the pipe for the case of a large leak of 10 % of the nominal flow. This measurement data, that
differs significantly from the case where a linear friction factor would have been considered, is fed
to both observers and the performance is evaluated. Thereby, the robustness of both observers
w.r.t numerical and structural model uncertainties is examined.

The following Figure 4.16 and Table 4.14 present the first case where numerical model uncer-
tainty in the linear friction factor F is regarded. Both observers are designed based on the reference
scenario 4.1 while the required measurement data of the pressure and the flow rate at the inlet
and the outlet is generated from the linear pipe model (2.4) with a different linear friction factor
F = 8.85 kg

m3·s , i.e., an uncertainty of 0.23 % w.r.t. the nominal case F = 8.83 kg
m3·s is regarded.

A leak appears after t = 60 s in the center of the pipe at z∗ = 10 km in form of a one-point
leak with a magnitude of 1 % of the nominal flow and the noise level is chosen as in the medium
measurement noise scenario.

The results indicate that both observers are able to detect and estimate the leak size correctly
and with the same accuracy as in the nominal case (see Table 4.5). On the contrary, it is observed
that the accuracy of the leak localization is affected strongly by the model uncertainty, such that
the desired accuracy is not achieved. The estimated leak positions differ by about 20 % from the
real leak position, whereby the algebraic observer performs slightly better.

If a higher model uncertainty of ∆F = 0.45 % w.r.t. to the friction factor is concerned, the
accuracy of the leak localization gets worse for both observers, as Figure 4.17 and Table 4.15
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 4.16.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow appearing at z∗ = 10 km with an uncertainty
of ∆F = 0.23 % in the friction factor F .

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.002 21.50 0.006 47.76 24.44 − 38.54

Algebraic Observer
(MFM-based)

0.18 18.70 0.003 58.83 77.11 − 143.71

Table 4.14.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
appearing at z∗ = 10 km with an uncertainty of ∆F = 0.23 % in the friction factor
F .

demonstrate. The leak size can still be estimated accurately, but the estimated leak positions show
mean errors of over 40 % such that the desired accuracy goals are clearly violated if uncertainty in
the friction factor F is concerned.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.003 44.08 0.006 30.64 24.44 − 32.65

Algebraic Observer
(MFM-based)

0.20 41.31 0.003 44.65 77.08 − 149.88

Table 4.15.: KPIs of the dynamic and the algebraic observer for a leak of 1 % of the nominal flow
appearing at z∗ = 10 km with an uncertainty of ∆F = 0.45 % in the friction factor
F .
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 4.17.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 1 % of the nominal flow appearing at z∗ = 10 km with an uncertainty
of ∆F = 0.45 % in the friction factor F .

The leak localization scheme of both observers relies strongly on the transformation (3.2) of
the linear pipe model (2.4) to decouple the unknown leak size from the leak distribution. If there
is model uncertainty, e.g., in the friction factor F , the linear pipe model (2.4) and the transformed
model (3.3) are not related by the transformation (3.2). As a consequence, the states u(x, t) and
v(x, t) estimated either by the ABSO or the algebraic observer differ from the nominal case. Since
the leak localization of both observers bases on the inverse state transformation (3.4) and applies
Equation (3.19) where the estimates are multiplied with the factor

√
βρ

A ∼ 107, small errors in the
estimation of the transformed states are amplified strongly and deteriorate finally the accuracy of
the leak localization.

As a last investigation of this section, the performance of both observers is evaluated if the
required measurement data of the pressure and the flow rate at the inlet and the outlet is not
generated by the linear pipe model (2.4) but by the nonlinear model (2.10). The nonlinear friction
coefficient fd is chosen such that in the steady state case without leak, the pressure, and the flow
rate of the linear and the nonlinear model coincide, i.e. that F = fd· ρ q0

2·d·A . In the following, constant
boundary conditions according to the reference scenario described in Table 4.1 are concerned and a
leak with a size of 10 % of the nominal flow rate occurs after t = 60 s. Furthermore, two different
leak positions are regarded.

In the first case, the leak occurs near to the outlet at z∗ = 19 km. The change of the utilized
model to generate the measurement data mainly affects the pressure drop from the inlet to the
outlet and the value of the inlet pressure p0(t) as Figure 4.18 illustrates.2 Due to the leak, the flow

2The boundary conditions p(ℓ, t) = pℓ(t) and q(0, t) = q0(t) are unchanged and the flow rate at the outlet in steady
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rate is smaller in the pipe segment behind the leak such that the friction loss reduces in comparison
to the linear model and the pressure decreases.

(a) Inlet pressure p0(t) in steady state for leakage
case.
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(b) Pressure drop in steady state for leakage case.
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Figure 4.18.: Inlet pressure p0(t) (left) and pressure drop (right) for a leakage of 10 % of the
nominal flow at z∗ = 19 km, linear and nonlinear pipe model.

As the Figure 4.19 and the Table 4.10 indicate, the change of the utilized model to generate
the measurement data for the observers has a significant impact on the accuracy of both observers
regarding the leak localization. While the leak size is estimated with an accuracy that lies in the
same range as in the reference scenario (see Table 4.5), the accuracy of the estimated leak position
reduces, and both observers show a mean error of almost 5 %.

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

6 · 10−6 4.47 0.007 16.68 30.77 264.77 33.71

Algebraic Observer
(MFM-based)

0.01 4.36 0.004 19.14 83.47 259.4 147.83

Table 4.16.: KPIs of the dynamic and the algebraic observer for a leak of 10 % of the nominal flow
appearing at z∗ = 19 km, measurement data generated by the nonlinear pipe model
(2.10).

In the second case, the leak occurs in the center of the pipe at z∗ = 10 km. Consequently, the
second half of the pipe works in a lower flow rate regime, such that in this pipe segment the friction
losses according to the nonlinear pipe model (2.10) are smaller than the friction losses calculated

state is given directly from the mass balance as q(ℓ, t) = q0(t) − χ.
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 4.19.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 10 % appearing at z∗ = 19 km, measurement data generated by the
nonlinear pipe model (2.10).

by the linear pipe model (2.4). Hence, the inlet pressure and the pressure drop simulated by both
models differ more than in the previous case, as Figure 4.20 illustrates.

(a) Inlet pressure p0(t) in steady state for leakage
case.
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(b) Pressure drop in steady state for leakage case.
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Figure 4.20.: Inlet pressure p0(t) (left) and pressure drop (right) for a leakage of 10 % of the
nominal flow at z∗ = 10 km, linear and nonlinear pipe model.

As Figure 4.21 and Table 4.17 depict illustratively and numerically, both observers achieve the
desired accuracy w.r.t. the leak size estimation with deviations that are in the same range as in
the nominal case (see Table 4.5). In contrast, neither the ABSO nor the algebraic observer provide
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an accurate estimate of the leak position. Since the inlet pressure p0(t) that is obtained from
the nonlinear pip model (2.10) is significantly smaller than the inlet pressure that would have been
expected using the linear pipe model (2.4), the leak localization observer part according to Equation
(3.19) underestimates the leak position drastically with deviations of almost 45 %.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 4.21.: Estimation of the leak size (left) and leak localization (right) for the simulation plant
for a leak of 10 %, measurement data generated by the nonlinear pipe model (2.10).

Observer
KPI ∆χ[%] ∆z∗[%] σχ[ l

s ] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.001 44.93 0.03 94.04 28.87 − 37.95

Algebraic Observer
(MFM-based)

0.01 44.83 0.03 69.80 79.82 − 138.37

Table 4.17.: KPIs of the dynamic and the algebraic observer for a leak of 10 % of the nominal flow
appearing at z∗ = 10 km, measurement data generated by the nonlinear pipe model
(2.10).

In summary, this section has figured out the main drawback of the two presented observer
designs. While the leak size is estimated with the desired accuracy even in the case of model
uncertainties, the accuracy of the leak localization shows a low robustness to uncertainties in
the parametrization of the friction factor F and to the utilized friction loss model. In general,
RTTM approaches require an accurate parametrization of the friction losses because uncertainties
in the friction loss model have an effect, similar to a leakage, on the characteristics of the resulting
pressure drop from the inlet to the outlet. Since these measurements of the inlet and outlet pressure
are the base for the leak localization, the accuracy of the leak localization decreases significantly
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if uncertainty in the friction loss model is considered. Similar observations regarding the low
robustness to uncertainties in the friction model were also found for KF-based leak detection and
localization observers [63]. To overcome this drawback, future works could include the dynamical
observer design based on the nonlinear model as presented in [64] and dynamic online-estimation
of the friction factor [20, 92] to register changes in the friction characteristics and adapt the ABSO
rapidly. To improve the application of the algebraic observer and to adapt the observer design if
the flow rates change continuously over a wide range between inlet and outlet, the nonlinear pipe
model (2.10) could be considered for the derivation of the MFs and the corresponding auxiliary
problem, taking the approach presented in [93] for nonlinear PDEs as a starting point.

As a concluding statement for this chapter, it is reminded that the goal of a high-accurate,
real-time capable and fast leak detection and localization that is robust to measurement noise
and model uncertainties is a multi-criterial problem that does not have a singular and objective
one fits all solution rather than a parametrization of the observers that fulfills all objectives in a
well-balanced manner is part of the tuning process and subject to the operating conditions of the
examined pipe and the practical requirements. In this sense, the chosen parametrization of the
ABSO and the algebraic, MFM-based observer are interpreted to be a possible configuration of
the observer such that the multi-criterial goals are combined in a balanced way. Naturally, this
configuration is not unique. Exemplarily, the accuracy of the ABSO relies heavily on the number of
nodes that is chosen to apply the MOL. As Figure 4.22 indicates for the case of a single one-point
leak with a size of 1 % that occurs at z∗ = ℓ

2 , the mean error of the estimates of the ABSO
decreases significantly, especially w.r.t. the leak localization if more nodes are utilized up to a
critical number of n ≈ 500 nodes. For further increasing number of nodes, the accuracy of the

(a) Accuracy of the estimation of
the leak size χ vs. the number
of the nodes for the ABSO.
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(b) Accuracy of the estimation of
the leak localization z∗ vs. the
number of the nodes for the
ABSO.
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(c) Runtime vs. number of nodes
for the ABSO.
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Figure 4.22.: Accuracy of the leak size estimation and leak localization (left) and needed runtime
(right) vs. number of spatial discretization nodes n of the ABSO.

leak localization estimation does not improve significantly, and the curve flattens. Moreover, at

80



Simulation-Based Results Julius Paul Rußmann

the same time, the required runtime increases exponentially to up to 230 s. In the context of this
work, model reduction algorithms were examined to reduce the order of the resulting ODE system
and to lower the computational costs. The application of a well-established and popular model
reduction algorithm, the balanced truncation method [88], reduced indeed the required runtime
but also introduces a noticeable, physically senseless undershoot in the leak size estimation since
the classical balanced truncation method does not include the effect of the initial conditions of the
considered ODE system into the model order reduction. Further investigations could address this
topic by using balance truncation approaches like [94] that include the initial conditions. Another
model reduction approach, that bases directly on the undiscretized observer PDE-system (3.9) can
be found in [95]. Further trade-offs appear, e.g., in the parameterization of the observer gains L and
γ of the ABSO between convergence speed and noise robustness or in the parameterization of the
length of the moving time horizons of the algebraic observers between accuracy, noise robustness
and convergence speed.
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5. Experimental-Based Results

In this chapter, the presented dynamic and algebraic observer are used to detect and localize leakages
in the pilot fluid transport plant installed in the laboratory of Advanced Control Engineering at the
PUCP. The goal is to verify and validate the simulation-based results in a test environment with
experimental data to examine the accuracy and performance of the designed observers for a real
pipe system and to identify possible limitations in a real application environment.

The instrumentation and initial operation of the pilot plant at PUCP was realized in [54] and is
subsequently briefly described. The dimensions of the plant are summarized in Table 5.1. The pilot
plant consists of a steel pipe with a length of ℓ = 94.56 m and a diameter of d = 52.5 mm and is
arranged in the form of a circuit, as illustrated in the photo and the P & I diagram of the plant
in Figure 5.1. For reasons of space constraints, the pipe has 14 horizontal sections and is bent at
the end of these sections with an angle of ±90◦ such that a height difference of 0.85 m results.
This inclination will be considered in the pipe model (2.4) by the inclination angle θ, as shown in
Figure 5.2. The pilot plant operates with water that is provided by a water tank and fed back at
the end of the pipe. To transport the water through the pipe, two centrifugal electrical pumps of
the type MULTI-H404 by Salmson [96] supply the required flow rate. The rotational speed of the
pump motors is controlled by a variable-frequency drive such that the pump motor velocity can be
changed to set a desired flow rate at the inlet of the pipe. It is important to notice that the valves
between the water tank and the pumps are configured such that the two pumps work in parallel.
Thereby, the pipe can operate with one pump over a flow range of q0 ∈ [0, 2.5] · 10−3 m3

s and with
two pumps over a flow range of q0 ∈ [0, 5] · 10−3 m3

s .
Furthermore, four flow sensors (FT1, FT2, FT3, FT4) and four pressure sensors (PT1, PT2,

PT3, PT4) are installed over the whole pipe length. The flow rate is measured with magnetic flow
meters of the model AXW050 of Yokogawa [97], while the pressure is measured with differential
pressure transmitters of the model EJA530E by Yokogawa [98]. Regarding the pipe model (2.4),
the flow sensors (FT1, FT4) and the pressure sensors (PT1, PT4) are used as the required inlet
and outlet flow and pressure measurements. The flow sensors (FT2, FT3), installed at z = 28.1 m
and z = 53.15 m respectively, as well as the pressure sensors (PT2, PT2) installed at z = 28.4 m
and z = 53.45 m are used to validate the pipe model (2.4). Furthermore, these additional sensors
(FT2, FT3) and (PT3, PT4) allow to analyze partial segments of the pipe, by using e.g. (FT2)
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(a) Photo of the pilot plant.

(b) Schematic P & I Diagram of the pilot plant,
based on [54, Figure 2.13].

Figure 5.1.: Pilot Plant at PUCP.
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Figure 5.2.: Inclination angle of the pilot plant at PUCP.

and (PT2) as inlet flow and pressure and (FT4) and (PT4) as outlet flow and pressure. For the
following investigations, the resulting measurement data of the flow sensors and pressure sensors
is logged and fed to the dynamic and algebraic observer with the aim to validate the linear pipe
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model (2.4) and to estimate the leak size and the leak position.
The process instrumentation of the pilot plant is completed by two solenoid valves (SV1, SV2)

that are installed at z = 36.35 m and z = 60.99 m and two proportional valves (PV1, PV2)
installed at z = 11.73 m and z = 85.59 m, i.e. the valves are each placed between two flow rate
sensors. By opening one or several of these valves, the case of leakage in the pipe can be examined.
It is important to point out that the current measurement equipment does not allow to measure
the leak size, i.e. the flow rate that escapes through the solenoid or proportional valves, directly.
Thus, the measurements in the leakage case will be only taken when the system is in steady state,
i.e. a constant inlet flow rate q0(t) is set. Thereby, the leak size can be inferred from the difference
in the flow rate measurements of the sensors in front of and behind the leak. The following Section

Parameter Value Unit
Length ℓ 94.56 m

}
Pipe geometryDiameter d 52.5 mm

Position (FT1) 0 m
Flow sensorsPosition (FT2) 28.1 m

Position (FT3) 53.15 m
Position (FT4) 94.86 m
Position (PT1) 0.28 m

Pressure sensorsPosition (PT2) 28.4 m
Position (PT3) 53.45 m
Position (PT4) 94.56 m
Position (PV1) 11.73 m

Leakage valvesPosition (SV1) 36.35 m
Position (SV2) 60.99 m
Position (PV2) 85.59 m

Table 5.1.: Dimensions of the pilot plant installed at PUCP.

5.1 deals with the identification of the remaining unknown of the pipe parametrization, the friction
factor F . Subsequently, in Section 5.2, the resulting linear pipe model according to (2.4) is validated
and compared to the nonlinear pipe model (2.10). The underlying model assumptions presented in
Chapter 2 are verified and the limitations of the linear pipe model are discussed. Finally, in Section
5.3, the presented dynamic and algebraic observer schemes are used to estimate the leak size and
to localize the leak, based on measurement data from the pilot plant in the case of leakage.

5.1. Friction Identification of the Pilot Plant

This section deals with the identification of the linear friction factor F to complete the parametriza-
tion of the linear pipe model (2.4). Furthermore, the Darcy-Weisbach friction coefficient fd of the
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nonlinear model (2.10) is estimated from the measurement data to enable the verification and
validation of the linear pipe model (2.4) against the nonlinear model (2.10).

The identification of the linear friction factor F and the nonlinear friction coefficient fd is per-
formed by analysing the general pipe model (2.1) in steady state for constant boundary conditions
without leakage. In steady state, the partial derivatives ∂p

∂t (z, t) and ∂q
∂t (z, t) vanish such that we

obtain 
0 = − β

A
∂q
∂z (z, t)

0 = −A
ρ

∂p
∂z (z, t) − A g sin(θ(z))

−A J(q(z, t))
(5.1)

⇒

 q(z, t) = const. = q(0, t)
∂p
∂z (z, t) = −ρg sin(θ(z)) − ρ J(q(0, t))

. (5.2)

Furthermore, the inlet flow rate q0(t) and the outlet pressure pℓ(t) are assumed to be constant.
Inserting the boundary conditions q0(t) = q(0, t) = q0,∞ and pℓ(t) = p(ℓ, t) = pℓ,∞ leads to



q(z, t) = q0,∞∫ ℓ
z

∂p
∂z̄ (z̄, t)dz̄ = pℓ,∞ − p(z, t)

= −ρg
∫ ℓ

z sin(θ(z̄))dz̄ − ρ J(q0,∞) (ℓ − z)

⇒ p(z, t) = p(z) = pℓ,∞ + ρg
∫ ℓ

z sin(θ(z̄))dz̄ + ρ J(q0,∞) (ℓ − z) .

(5.3)

The Equation (5.3) reveals that in steady state, the flow rate q(·, ·) is constant over the whole
pipe and corresponds to the inlet flow rate q0,∞. In contrary, the friction term J(q(·, ·)) leads to
a pressure drop from the inlet of the pipe to the outlet and contributes a term that is linear in
the position z. Moreover, the inclination of the pipe affects the pressure by adding the geodetic
pressure term ρg

∫ ℓ
z sin(θ(z̄))dz̄ such that the pressure drop is nonlinear if the inclination angle θ(·)

is non-constant. Rearranging (5.3) and inserting the linear friction model (2.3) or the nonlinear
friction model (2.6) allows to resolve for the unknown linear friction factor F or the nonlinear
friction coefficient fd:

F = A

q0,∞ (ℓ − z) ·
(

p(z) − pℓ,∞ − ρg

∫ ℓ

z
sin(θ(z̄))dz̄

)
(5.4)

fd = 2dA2

ρ|q0,∞|q0,∞ (ℓ − z)

(
p(z) − pℓ,∞ − ρg

∫ ℓ

z
sin(θ(z̄))dz̄

)
. (5.5)

In the following, this friction identification approach is applied to the pilot plant. Therefore, the
power of the centrifugal pump is varied in steps of 10 % to establish different flow rate levels in the
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pipe. Once the flow rate and the pressure reach steady state, the Equations (5.4) and (5.5) are
evaluated. To address possible variations of the friction over the pipe length (e.g. due to different
roughness of the pipe interior), the friction identification is performed for each segment separately
by using the values of the corresponding flow rate (FT1, FT2, FT3, FT4) and pressure sensors
(PT1, PT2, PT3, PT4). Additionally, an overall linear friction factor F and an overall nonlinear
friction coefficient fd for the whole pipe is calculated based on the values of the flow rate sensor
FT1 and the pressure sensors (PT1, PT4).

In Figure 5.3, the flow rate and pressure trajectories at the four measurement points are illus-
trated for changes in the pump power in steps of 10 %. It is observed, that, in accordance with
Equation (5.3), the flow rate reaches a constant value at all four measurement points with devia-
tions smaller than 1.4 % that mainly appear for flow rates higher than 2.5 m3

s where both pumps are
actuated. In these scenarios, the system is virtually working in steady state, but the flow measure-
ments are not constant. The variation of the flow rate was already observed in other publications
[99] and originates from variations in the pump power due to the control by variable-frequency
drives that cause disturbances in the pipe. In contrast, the pressure reaches a constant value at
each measurement point but drops monotonously from the first to the last measurement point due
to the friction. Moreover, in Figure 5.4, the corresponding linear friction factor F and the nonlinear

(a) Flow rate measurement.
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(b) Pressure measurement.
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Figure 5.3.: Flow rate and pressure measurement of pilot plant for stepwise increasing pump power.

friction coefficient fd that result from Equation (5.4) and Equation (5.5) are displayed with their
corresponding uncertainties. It is noted that the estimated linear friction factor F increases for
all segments significantly if the flow rate rises. The approximation by a straight line shows that
this relationship is approximately linear with a Normalized Root Mean Square Error (NRMSE) less
than 0.051. Besides, the friction factor F increases by more than 1 % per 1 % increase in the flow
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rate. This observation can be explained by the fluid flow characteristics in the pipe. For the whole
examined flow rate range q0 ∈ [1.5, 4.2] · 10−3 m3

s , the Reynolds number is greater than 104 such
that the flow is assumed to be mainly turbulent [59]. Therefore, the assumption of one constant
linear friction factor F for the whole flow rate range is not valid.

Contrary to that, the nonlinear friction factor fd stays almost constant for all segments over the
whole flow rate range with variations smaller than 6 %, as shown in Figure 5.4.

Furthermore, the comparison of the identified linear friction factor F between the different
segments shows that the friction factor varies with differences up to 26 % between the different
segments, although the flow rate is the same. The same observation holds true for the nonlinear
friction coefficient fd where differences of up to 25 % between the segments can be noticed. In
particular, the identified friction parameters for the first segment differ significantly from the other
segments and the overall friction parameters. Since the error bars overlap partially, these differ-
ences in the friction parameters can be explained in some part by the uncertainties in the pipe
geometry and in the measurements. Moreover, it is argued that the relatively complex geometry
of the pipe over a relatively short length causes different friction characteristics in each segment.
First, at the U-shaped parts of the pipe that are located at one end of the horizontal parts of
the pipe, the direction of the horizontal flow changes by 180◦. As a wide range of investigations
[100, 101, 102, 103, 104] on the friction losses in curved or bent pipes indicates, pipe turns imply
higher pressure losses than in the horizontal parts. The curved part of the pipe causes that the
velocity profile is not symmetric to the axis of the pipe, as it is the case for the horizontal parts of
the pipe. Because of the change of the direction of the flow, centrifugal force occurs and provokes
that the highest velocity is not located at the center of the pipe section but is displaced towards the
pipe wall. This distortion of the velocity profile results, together with other effects of the centrifugal
force like a presence of local high and low pressures, eddy zones and streamlines that form in a helix,
in higher friction losses [100, 104]. Likewise, the elbow joints at the other end of the horizontal
parts of the pipe and the thereby resulting change of the fluid flow direction from a horizontal flow
to a vertical flow cause additional friction losses in comparison to a horizontal flow. This spatial
variation of the friction losses between the horizontal parts, U-shaped parts and elbow joints is not
considered by the friction models (2.3) and (2.6) which assume a horizontal flow direction and a
global and constant friction parameter. The additional friction losses can differ from segment to
segment, depending on the number of U-shaped pipe turns and elbow joints in each segment, and
result in different friction factors F and friction coefficients fd for every segment.

In short, the analysis of the identified friction parameter reveals that the assumption of a friction
factor that stays constant over all segments and over the whole flow rate range is an idealized model
assumption that does not reflect the identified behavior of the friction losses in the pilot plant. It
is concluded that the assumption of a nonlinear friction model according to Equation (2.6) is more
accurate to describe the friction losses in the pipe if the whole flow rate range of the pilot plant is
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(a) Identification of friction factor F .
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(b) Identification of friction coefficient fd.
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Figure 5.4.: Identification of the linear friction factor F (above, left), the nonlinear friction coeffi-
cient fd (above, right) and the Reynolds number Re (below).

regarded. However, the following Section 5.2 examines whether the assumption of a linear friction
factor F is valid at least for small changes in the flow rate, like it is the case when a leak appears.

5.2. Validation of the Pipe Model

Throughout this section, the linear pipe model (2.4) is verified and validated against the nonlinear
pipe model (2.10) for small changes in the inlet flow rate. Firstly, the model verification and
validation is performed in Section 5.2.1 for the case without leakage. Therefore, small variations
in the pump power with steps smaller than 5 % are applied to the pilot plant and the accuracy of
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both models regarding the flow rate and the pressure at the four measurement points is evaluated.
Subsequently, the accuracy of both models is compared in Section 5.2.2 for the leakage case.
Moreover, this section discusses the model assumptions made in Chapter 2 regarding the leak
characteristics. In the following, the model verification and validation without and with leakage is
realized for an operating point where both pumps work at 60 % of their maximum power leading
to an inlet flow rate of q0(t) ≈ 3.1 · 10−3 m3

s .

5.2.1. Model Verification and Validation without Leakage

Since the previous Section 5.1 has pointed out that the identified friction factor F differs from pipe
segment to pipe segment, the model verification and validation is split up into two parts.

Firstly, only the last segment between the pressure sensor (PT3) and (PT4), that is with a length
of ℓ = 41.11 m the largest segment of the pilot plant, is regarded, i.e. the flow measurement of
sensor (FT3) and the pressure measurement of sensor (PT4) are taken as inlet flow rate and outlet
pressure. The operating point where both pumps work at 60 % of their maximum power leading to
an inlet flow rate of q0(t) = 3.1 · 10−3 m3

s is set. For this operating point, a linear friction factor of
F = 409 kg

m3s and a nonlinear friction coefficient of fd = 0.0299 are identified. After t = 30 s, the
power of the first pump is increased to 65 % resulting in an increase of about 3.3 % of the inlet
flow rate that enters the pipe segment. The Figure 5.5 presents the resulting flow rate measured
by the sensor (FT3) and the pressure measured by the sensor (PT4). These measurements are

(a) Inlet flow rate at (FT3).
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(b) Outlet pressure at (PT4).
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Figure 5.5.: Inlet flow rate at sensor (FT3) (left) and outlet pressure pℓ(t) at sensor (PT4) (right)
of last pipe segment for operating point q0(t) ≈ 3.1 · 10−3 m3

s and step-like increase of
5 % in power of first pump.
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filtered by a moving average filter with a window length of T = 7 s and fed as boundary conditions
q(0, t) = q0(t), p(ℓ, t) = pℓ(t) to the linear pipe model (2.4) and the nonlinear pipe model (2.10).
Thereby, the outlet flow rate qℓ(t) and the inlet pressure p0(t) are obtained by simulating both
models via the MOL with n = 20 spatial nodes and are compared to the measurement of the
sensors (FT4) and (PT3), respectively. As the Figures 5.6a and 5.6c illustrate, both models reflect
well the dynamics of the outlet flow rate. The differences between the inlet flow rate simulated by
the linear pipe model (2.4) and the nonlinear pipe model (2.10) as well as the difference between
the simulated flow rates and the filtered measured flow rate are negligible. The high accuracy of
both models w.r.t. the flow rate is also expressed numerically by a NRMSE less than 7 · 10−4

for both models. However, the comparison of the simulated pressure at the inlet of the segment
displayed in Figure 5.6b reveals clearly visible differences in the accuracy of both models. On the
one hand, the nonlinear pipe model (2.4) reflects well the pressure change due to the increased
inlet flow rate. The dynamics as well as the value in the stationary case are reproduced accurately,
leading to an NRMSE less than 2 · 10−3. In contrast, the linear pipe model (2.4) shows deviations
of about 25 % in steady state. According to the analysis of the friction losses performed in Section
5.1, the friction factor F increases approximately linear with the flow rate. Therefore, the friction
factor of F = 409 kg

m3s identified for the operating point q0(t) = 3.1 · 10−3 m3

s is significantly
smaller than the friction factor of F = 430 kg

m3s that is identified for the flow rate that establishes in
the stationary case after the increase in the pump power. Consequently, the friction losses and the
pressure drop from the inlet to the outlet are underestimated by the friction factor identified for the
first operating point, such that the simulated increase in the inlet pressure is significantly smaller
than the measured pressure increase. An ansatz to overcome this drawback of the linear pipe model
(2.4) would be to approximate the linear relationship between the friction factor F over the inlet
flow rate to perform gain scheduling. The friction factor F in the linear pipe model (2.4) would be
permanently updated according to the current inlet flow rate. As Figure 5.6b demonstrates, this
adaptation of the linear pipe model (2.4) approximates significantly better the pressure dynamics
and leads to the same accuracy as the nonlinear pipe model (2.10).

To broad the model verification and validation, a sequence of rectangular pulses is applied to
the power of the first pump such that the power varies between 58 % and 62 %. Figure 5.7 shows
the resulting flow rate at the inlet to the last segment, i.e. at the flow rate sensor (FT3), and the
outlet pressure pℓ(t) at the sensor (PT4). Analogue to the previous analysis, this measurement
data is smoothed by a moving average filter and applied to the linear pipe model (2.4) and the
nonlinear pipe model (2.10). In Figure 5.6, the simulated and measured flow rate at the outlet as
well as the pressure at the inlet are compared. As in the previous case where only one step-like
change in the pump power was considered, the dynamics of the flow rate at the outlet are reflected
well by both models and an NRMSE less than 7 · 10−4 is obtained. On the contrary, the linear
pipe model (2.4) does not reproduce accurately the changes in the pressure at the inlet. Visible
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(a) Outlet flow rate at (FT4).
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(b) Inlet pressure at (PT3).
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(c) Outlet flow rate at (FT4) (Zoom).
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(d) Inlet Pressure at (PT3) (Zoom).
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Figure 5.6.: Comparison of the measured and simulated outlet flow rate (left) and inlet pressure
(right) for the last pipe segment, and an increase in the pump power of 5 %. Simulation
with linear pipe model (2.4) and nonlinear pipe model (2.10).

deviations between the measured pressure and the pressure simulated by the linear pipe model
(2.4) show up since the friction factor F is assumed to be constant, while the previous Section 5.1
pointed out that the friction factor F depends on the flow rate. Consequently, the dynamics of the
pressure are better represented by the nonlinear pipe model (2.10) that takes the quadratic increase
in the friction losses into account and leads to an NRMSE smaller than 0.14. The second part
of this section considers not only the last segment but the whole pipe of a length of ℓ = 94.56
m. The linear pipe model (2.4) and the nonlinear model (2.10) are parametrized with the friction

91



Experimental-Based Results Julius Paul Rußmann

(a) Inlet flow rate at (FT3).
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(b) Outlet pressure pℓ(t) at (PT4).
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Figure 5.7.: Inlet flow rate at sensor (FT3) (left) and outlet pressure pℓ(t) at sensor (PT4) (right)
of last pipe segment for operating point q0(t) ≈ 3.1 · 10−3 m3

s and rectangular steps of
the power of the first pump.

(a) Outlet flow rate at (FT4).
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(b) Inlet pressure at (PT3).

0 50 100 150 200 250 300 350 400

1.385

1.39

1.395

1.4

1.405

1.41

1.415

1.42
10

5

Figure 5.8.: Comparison of the measured and simulated outlet flow rate (left) and inlet pressure
(right) for the last pipe segment, and rectangular steps of the power of the first pump.
Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

factor F and the friction coefficient fd identified according to the previous Section 5.1 and both
models are regarded for the same variations of the pump power as in the previous paragraph, a
step-like increase and a sequence of alternating rectangular impulses around the operating point
of q0(t) ≈ 3.1 · 10−3 m3

s . For this operating point and considering the whole length ℓ = 94.56 m,
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a friction factor of F = 372.5 kg
m3s and a friction coefficient of fd = 0.0272 were identified. The

measured inlet flow rate q0(t) at the sensor point (FT1) and the outlet pressure pℓ(t) at the sensor
point (PT4) are logged and filtered to simulate both models. The measured flow rates at the sensor
points (FT2), (FT3) and (FT4) as well as the measured pressure at the sensor points (PT1), (PT2),
(PT3) are compared with the results of the simulation and the validity of both models is evaluated.

In Figure 5.9, the inlet flow rate q0(t) at sensor (FT1) and the outlet pressure at sensor (PT4)
are shown for a step-like increase in the power of the first pump from 60 % to 65 % while the
second pump operates constantly at 60 %. This measurement data is utilized as the boundary
conditions of the linear pipe model (2.4) and the nonlinear pipe model (2.10) resulting in the flow
rate and pressure curves depicted in Figure 5.10 and Figure 5.11. The comparison of the flow rates

(a) Inlet flow rate q0(t) at (FT1).
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(b) Outlet pressure at (PT4).
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Figure 5.9.: Inlet flow rate q0(t) at sensor (FT1) (left) and outlet pressure pℓ(t) at sensor (PT4)
(right) for operating point q0(t) = 3.1 · 10−3 m3

s and step-like increase in the power of
the first pump.

in Figure 5.10 shows that the simulated flow rate corresponds well with the measured flow rate at
each measurement point, both for the linear pipe model (2.4) and the nonlinear pipe model (2.10).
The dynamic behavior and the stationary values are reproduced accurately with an NRMSE smaller
than 0.19 %. Contrary to that, the comparison of the measured and simulated pressure reveals that
both models are less accurate than in the previous case, where only the last segment was considered.
Like the analysis of the friction losses performed in Section 5.1 demonstrated, the friction factor
F and the friction coefficient fd differ from pipe segment to pipe segment. Since the linear pipe
model (2.4) and the nonlinear pipe model (2.10) are parametrized with an overall friction factor
F and friction coefficient fd, that are assumed to be constant over the whole pipe length, only
the inlet pressure at the sensor point (PT1) is simulated with an accuracy similar to the previously
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(a) Flow rate at (FT2).
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(b) Flow rate at (FT3).
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(c) Flow rate at (FT4).
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Figure 5.10.: Comparison of the measured and simulated flow rates at (FT2), (FT3) and (FT4) for
step-like increase in the power of the first pump. Simulation with linear pipe model
(2.4) and nonlinear pipe model (2.10).

regarded case. The nonlinear pipe model (2.10) reflects well the dynamics and the stationary values
of the pressure while the linear pipe model (2.4) does not take the linear relationship between the
friction factor F and the flow rate into account, such that the amplitude of the pressure change
due to the increased inlet flow rate is underestimated. At the following two pressure sensor points
(PT2) and (PT3), both the linear pipe model (2.4) and the nonlinear pipe model (2.10) deviate
visibly from the measurement data. The linear pipe model (2.4) reproduces neither the values in
the stationary case nor the amplitude of the pressure changes, while the nonlinear pipe model (2.10)
leads at least to a pressure increase similar to the pressure change in the measurement data. Since
both models use a global value for the friction factor F or the friction coefficient fd to parametrize
the friction losses, but the identification of these parameters for each segment separately leads to
deviations of up to 11 % from the globally identified parameter, the pressure drop from the inlet
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.11.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3) for
step-like increase in the power of the first pump. Simulation with linear pipe model
(2.4) and nonlinear pipe model (2.10).

to the outlet of the pipe according to Equation (5.3) has a slope that differs from segment to
segment. Consequently, the simulated pressure at the points that were not used to identify the
global friction parameters, i.e. at the sensor points (PT2) and (PT3), do not coincide with the
measurement data. To consider the variation of the friction factor F and the friction coefficient fd

in the parametrization of the models (2.4) and (2.10), respectively, one ansatz could be to define
both parameters as spatially varying, i.e. F = F (z) fd = fd(z), and to set a different friction
parameter for each segment. In Figure 5.12, the simulated pressure resulting from this ansatz is
illustrated. It is observed that this model leads to a higher accuracy at the sensor points (PT2)
and (PT3). The flow rate and pressure curves shown in Figure 5.14 and Figure 5.15 that result
from a sequence of rectangular shaped changes of the power of the first pump between 58 % and
62 % and lead to the inlet flow rate q0(t) and the outlet pressure shown in Figure 5.13, strengthen
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.12.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3) for
step-like increase in the power of the first pump. Simulation with linear pipe model
(2.4) and nonlinear pipe model (2.10) parametrized with spatially varying friction
parameters F = F (z), fd = fd(z).

the previous drawn conclusions. While the flow rate dynamics are reproduced accurately by both
models with an NRMSE lower than 0.13 %, the simulated pressure, especially at the sensor points
(PT2) and (PT3), shows severe deviations from the measured pressure. De novo, it is observed
that the nonlinear pipe model reproduces approximately the pressure change between the stationary
establishing values, but the stationary values of the pressure itself differ by up to 30 mbar. On the
contrary, the linear pipe model (2.4) reproduces neither the stationary values of the pressure nor
the magnitude of the pressure changes.

In summary, the model verification and validation in the non-leakage case has pointed out
several limitations of the linear pipe model (2.4) as well as of the nonlinear pipe model (2.10).
It has become clear that both models reflect well the dynamics of the flow rate under step-like
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(a) Inlet flow rate q0(t) at (FT1).
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(b) Outlet pressure at (PT4).
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Figure 5.13.: Inlet flow rate q0(t) at sensor (FT1) (left) and outlet pressure pℓ(t) at sensor (PT4)
(right) for operating point q0(t) ≈ 3.1 · 10−3 m3

s and rectangular steps of the power
of the first pump.

variations of the inlet flow rate q0(t). However, the linear pipe model (2.4) results in a simulated
pressure change that is smaller than the pressure change observed in the measurement data since the
model uses a constant friction factor F such that the higher friction losses for increasing flow rates
are not considered. Consequently, the magnitude of the pressure drop is not reproduced accurately
and the pressure at the inlet differs between simulation and measurement. This limitation could
be overcome by applying a gain scheduling of the friction factor F over the flow rate, leading to a
more complex system structure similar to the nonlinear pipe model (2.10). Moreover, the analysis
of the simulations where the whole pipe is regarded and the friction parameters F and fd are set as
globally constant over the pipe length, pointed out that both models do not reflect well the pressure
at the sensor points that are not used to identify the global friction parameters, i.e. at the sensor
points (PT2) and (PT3). Like the identification of the friction losses performed in Section 5.1 has
shown, the identified friction parameters F and fd vary from segment to segment, e.g., because
of the elbows that change the flow direction. Consequently, the slope of the pressure drop is not
constant, but varies from segment to segment. To overcome this limitation, an ansatz that models
the friction parameters as spatially variant was applied successfully. However, this ansatz leads to
a more complex structure of the pipe model and according to the current literature, there is still
no late lumping RTTM approach that detects and localizes leakage based on such a model with
spatially varying friction parameters. Furthermore, it has to be born in mind that the pilot plant
has a relatively short length of under 100 m and, at the same time, a relative complex geometric
structure including bent and inclined parts. Therefore, the variations in the friction parameters
appear particularly more noticeable than it would be the case for a longer pipe.
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(a) Flow rate at (FT2).
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(b) Flow rate at (FT3).
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(c) Flow rate at (FT4).
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Figure 5.14.: Comparison of the measured and simulated flow rates at (FT2), (FT3) and (FT4) for
rectangular steps of the power of the first pump. Simulation with linear pipe model
(2.4) and nonlinear pipe model (2.10).

Before the measurement data is applied to detect and localize leaks in the pilot plant with the
presented dynamic and algebraic observer structures, the following Section 5.2.2 extends the model
validation to the case with leakage in the pipe. A further focus lies on the verification of the
assumptions regarding the leak characteristics that were drawn in Chapter 2.

5.2.2. Model Verification and Validation in the Leakage Case

This section deals with the model verification and validation in the case that a leak occurs at one
of the solenoid or proportional valves of the pilot plant. The accuracy of the linear pipe model
(2.4) and the nonlinear pipe model (2.10) is examined under variation of the leak size and the leak
position.
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.15.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3) for
rectangular steps of the power of the first pump. Simulation with linear pipe model
(2.4) and nonlinear pipe model (2.10).

Firstly, the case of a relatively small leak near to the end of the pipe is investigated. To this
end, both pumps operate at 60 % of their maximum power leading to an inlet flow of q0(t) ≈
3.1 · 10−3 m3

s . After t = 30 s, the proportional valve installed at z = 85.59 m is opened partially,
which results in a leak size χ that represents about 3 % of the nominal inlet flow. After t = 180 s,
the proportional valve is closed. The leak size is inferred from the flow measurements in front of
and behind the leak position, i.e. as the difference in the flow rate between the sensor point (FT3)
and the sensor point (FT4). In Figure 5.16, the measured inlet flow, the measured outlet pressure
and the inferred leak size are depicted. It is observed that the leak size is not constant, but varies
around a mean value of approximately χ = 8 · 10−5 m3

s . The amplitude of the variation of the
leak size is in the range of the variations of the flow rates for the case without leakage, such that
they can be explained by the measurement noise and the oscillations in the inlet flow due to the
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variable-frequency drive that controls the pump power. Moreover, it is noticed that the leak size
needs about 10 s after opening the valve to reach its mean value. Consequently, the assumption 9
of a constant leak size, that was drawn in Chapter 2, is valid if the pipe operates in steady state,
i.e. that the flow rate at the inlet and the outlet have stabilized. To simulate the linear pipe model

(a) Inlet flow rate q0(t) at (FT1).
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(b) Outlet pressure at (PT4).
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(c) Leak size χ.
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Figure 5.16.: Inlet flow rate q0(t) at sensor (FT1) (left), outlet pressure pℓ(t) at sensor (PT4)
(middle) and leak size χ(t) (right) inferred from flow rate measurements (FT3) and
(FT4), operating point q0(t) ≈ 3.1 · 10−3 m3

s , small leak occurring after t = 30 s at
z∗ = 85.59 m.

(2.4) and the nonlinear pipe model (2.10), this measurement data is filtered by a moving average
filter and fed to the models that are discretized via the MOL. The friction factor F and the friction
coefficient fd are identified according to Section 5.1 at the operating point before the leak occurs
and considering the whole pipe length. The identified parameters for the considered operating point
q0(t) ≈ 3.1 · 10−3 m3

s are F = 371 kg
m3s and fd = 0.0271. The leak distribution is modelled by a

Dirac impulse, i.e., a point leak is assumed. In Figure 5.17 and Figure 5.18, the resulting simulated
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flow rate and pressure are compared to the measurement data. Similar to the previous investigated
cases without leakage, the flow rate is reproduced with a high accuracy and maximal deviations
of under 0.5 %. Regarding the pressure at the three sensor points, it is observed again that the
simulated pressure at the sensor points (PT2) and (PT3) differs significantly by about 20 mbar from
the measurement data due to the different friction loss characteristics of each segment. Contrary
to that, the pressure at the inlet, i.e. at the pressure sensor (PT1), is reproduced accurately by
both models with deviations lying in the range of the measurement noise of about 2 mbar. In

(a) Flow rate at (FT2).
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(b) Flow rate at (FT3).
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(c) Flow rate at (FT4).
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Figure 5.17.: Comparison of the measured and simulated flow rates at (FT2), (FT3) and (FT4),
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 85.59
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

the second scenario, the leak that occurs at the same position z∗ = 85.59 m, but has a bigger size
of about 16 % of the nominal flow. The Figure 5.19 presents the inlet flow, the outlet pressure
and the inferred leak size that result from this leak. It is observed, that the flow rate at the inlet
increases by about 1 %, as well as at the other flow sensors (FT2) and (FT3) in front of the leak,
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.18.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3),
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 85.59
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

after the leak has occurred. This effect has already been noticed in other publications [63] and is
explained by the dynamic behavior of the pumps which produce for the same rotational velocity a
higher inlet flow rate if the pressure at the inlet, e.g. due to a leak, decreases. In Figure 5.20 and
5.21, the simulated flow rate and pressure curves are compared to the measurement data. Besides
the high accuracy of both models regarding the flow rate and the deviations in the pressure at the
sensor points (PT2) and (PT3), it is noticed that also at the inlet, the simulated pressure differs
visibly by about 100 mbar from the measured pressure. Since the occurred leak is relatively big
with about 16 % of the nominal flow, the segment of the pipe behind the leak position operates in
a significantly lower flow rate regime. Consequently, the friction losses are smaller than it would be
expected by the friction parameters F and fd that were identified for the whole pipe at a operating
point with a higher flow rate of q0(t) ≈ 3.1 · 10−3 m3

s . An ansatz to overcome this drawback and
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(a) Inlet flow rate q0(t) rate at (FT1).
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(b) Outlet pressure at (PT4).
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(c) Leak size χ.
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Figure 5.19.: Inlet flow rate q0(t) at sensor (FT1) (left), outlet pressure pℓ(t) at sensor (PT4)
(middle) and leak size χ(t) inferred from flow rate measurements (FT3) and (FT4),
operating point q0(t) ≈ 3.1 · 10−3 m3

s , big leak occurring after t = 30 s at z∗ = 85.59
m.

to improve the accuracy of the simulated pressure, would be to define the friction parameters as
function of the flow rate, i.e. F = F (q(z, t)), fd = fd(q(z, t)). In Figure 5.21a, this approach is
implemented exemplarily for the nonlinear model (2.10). The friction coefficient for the segment
behind the leak is calculated to be about 1.1 % smaller than the global friction coefficient such
that the simulated pressure at the inlet corresponds visibly better to the measurement data.

Finally, the model accuracy is examined under variation of the leak position. To this end, the
proportional valve installed at z = 11.73 m is opened partially after t = 30 s leading to a relatively
small leak of about 4.8 % of the nominal flow. The Figure 5.22 presents the inlet flow q0(t), the
outlet pressure pℓ(t) and the leak size χ inferred from the measurements of the flow rate sensors
(FT1) and (FT2). In Figure 5.23 and Figure 5.24, the simulated flow rate and pressure curves are
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(a) Flow rate at (FT2).
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(b) Flow rate at (FT3).
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(c) Flow rate at (FT4).
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Figure 5.20.: Comparison of the measured and simulated flow rates at (FT2), (FT3) and (FT4),
operating point q0(t) ≈ 3.1 · 10−3 m3

s , big leak occurring after t = 30 s at z∗ = 85.59
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

compared against the measurement data. The comparison of the pressure simulated by the linear
pipe model (2.4) and the nonlinear pipe model (2.10) at the sensor point (PT1) reveals, that the
nonlinear pipe model (2.10) reproduces more accurately the value of the pressure in steady state.
While the linear pipe model (2.4) leads to deviations of over 15 mbar, the nonlinear model (2.10)
results in deviations of under 5 mbar. For the sensor points (PT2) and (PT3) it is noticed, that the
linear pipe model (2.4) reproduces better the absolute value of the pressure, but the nonlinear pipe
model (2.10) shows a higher accuracy considering the amplitude of the pressure decrease caused
by the leak. This observation can be explained by the Figure 5.4 that illustrates the friction factor
F over the flow rate q0(t). The curve in Figurew 5.4 reveals that the friction factor F depends
strongly on the flow rate regime and changes by more than 1 % per a flow rate change of 1 %.
Since the leak occurs relatively close to the inlet, a large part of the pipe operates in a lower flow
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.21.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3),
operating point q0(t) ≈ 3.1 · 10−3 m3

s , big leak occurring after t = 30 s at z∗ = 85.59
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

rate regime after the leak has occurred. Consequently, the friction factor F identified for the higher
operating point ≈ 3.1 · 10−3 m3

s does not reflect well the friction losses in the leakage case. Since
the pressure drop according to Equation (5.3) depends linearly on the friction factor F and due
to the high sensitivity of the friction factor F regarding the flow rate, the pressure simulated by
the linear pipe model (2.4) shows visible deviations from the measurement data. In contrast, the
nonlinear pipe model (2.10) assumes friction losses that depend quadratically on the flow rate,
such that the linear relationship between the friction factor F and the flow rate is reflected in the
model. Consequently, the nonlinear pipe model (2.10) leads to a higher model accuracy regarding
the pressure if a small leak further away from the outlet occurs.

In sum, this section has shown that both models, the linear pipe model (2.4) and the nonlinear
pipe model (2.10) have several limitations concerning the accuracy of the pressure model if a
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(a) Inlet flow rate q0(t) rate at (FT1).
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(b) Outlet pressure at (PT4).
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(c) Leak size χ.
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Figure 5.22.: Inlet flow rate q0(t) at sensor (FT1) (left), outlet pressure pℓ(t) at sensor (PT4)
(middle) and leak size χ(t) inferred from flow rate measurements (FT3) and (FT4),
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 11.73
m.

leakage occurs. While the flow rate is reproduced in the simulations with a high accuracy, the
pressure shows visible deviations if leaks of a larger size are considered. Thereby, this section has
pointed out, that the friction parameters F and fd not only depend on the position z, as shown
in the previous Section 5.2.1, but also on the flow rate q(z, t). Furthermore, it has become clear
that the linear pipe model (2.4) underestimates the amplitude of the pressure change if a leakage
occurs further away from the outlet. In these scenarios, a large part of the pipe operates in a lower
flow regime such that the friction factor F , that was previously identified for a higher flow regime,
does not fit well the pressure drop in steady state with leakage. These limitations and inaccuracies
of the linear pipe model (2.4) have to be considered as a constraining framework in the following
section, where the performance of the dynamic and the algebraic observer is evaluated utilizing
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(a) Flow rate at (FT2).
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(b) Flow rate at (FT3).
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(c) Flow rate at (FT4).
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Figure 5.23.: Comparison of the measured and simulated flow rates at (FT2), (FT3) and (FT4),
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 11.73
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

measurement data from the pilot plant.

5.3. KPI-based Evaluation of the Leak Observer Results for the
Pilot Plant

This section presents the highlight of the chapter, the evaluation of the performance of both
observers, the ABSO and the algebraic observer, w.r.t. to the leak detection, size estimation
and localization by utilizing measurement data obtained from the pilot plant in the leakage case.
The previous Sections 5.1 and 5.2 form the basis for this analysis by identifying the unknown
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(a) Pressure at (PT1).
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(b) Pressure at (PT2).
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(c) Pressure at (PT3).
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Figure 5.24.: Comparison of the measured and simulated pressure at (PT1), (PT2) and (PT3),
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 11.73
m. Simulation with linear pipe model (2.4) and nonlinear pipe model (2.10).

model parameters and by providing a constraining framework, revealing the differences between the
model assumptions drawn in Chapter 2 and the dynamic behavior of the pilot plant. To compare
the performance of both observers in a fair and generic way, the KPIs defined in Chapter 4 and
summarized in Table 4.2 are reutilized, i.e., the accuracy, the standard deviation and the convergence
speed of the leak size and leak position estimates provided by both observers are contrasted. Since
Section 5.2.2 has revealed that the leak size χ is not exactly constant in the measurements, the
evaluation of the standard deviation of the leak size estimate is omitted. Furthermore, the real-time
capability of the ABSO and the algebraic observer is verified by comparing the required runtime.
Moreover, the impact of the operating conditions and the leak characteristics on the KPIs is
analyzed. To this end, the pilot plant is regarded for different leak sizes, leak positions and inlet
flows. It is reminded that the real leak size escaping through one of the solenoid valves (SV1, SV2)
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or one of the proportional valves (PV1, PV2) can only be inferred from the flow rate measurements
(FT1) and (FT4) at the inlet and the outlet, but cannot be directly measured. Therefore, the
performance of both observers will only be analyzed for the steady state case, i.e., the pump power
is held constant to keep the inlet flow rate approximately constant.

In the first scenario, that will form the reference scenario for the following investigations, the
pumps of the pilot plant work both at 60 % of their maximum power, leading to an inlet flow of
q0(t) ≈ 3.1 · 10−3 m3

s . After t = 30 s, the proportional valve (PV2), that is located near to the
outlet of the pipe at z = 85.59 m, is opened partially, leading to a leak size that represents in
steady state about 2.55 % of the inlet flow rate. At t = 180 s, the proportional valve (PV2) is
closed. The inlet and outlet flow rate and pressure data measured by the sensors (FT1, FT4) and
(PT1, PT4), respectively, is logged. Hereinafter, this measurement data is filtered by a moving
average filter with a time window of length T = 5 s.1. Finally, this filtered measurement data is
fed to the ABSO and the algebraic observer.

In Figure 5.25, the measured pressure and flow rate at the inlet and outlet are shown together
with the filtered data. The linear friction factor F is identified according to Equation (5.3) from the
flow and pressure measurements before the leakage occurs, resulting in F = 371 kg

m3s . The tuning
of the ABSO is done according to the tuning guidelines presented in Section 3.2 and led to an
observer gain for the leak size of L = −100, an observer gain γ = 0.005 for the leak localization2

and a spatial discretization with n = 90 nodes. On the other hand, the design of the algebraic
observer is realized following the indications described in Section 4.1. The adjustment process of
the design parameters resulted in moving time windows of length Tχ = 1 s and Tδ = 3.9 s for the
leak size estimation and the state estimation and an approximation order of N = 1 for the function
expansion (3.67). Since the pilot plant is much shorter than the pipe considered in Chapter 4, the
wave velocity ϵ = 1

L

√
β
ρ increases. As Theorem 3.3.5 indicates, the wave velocity ϵ determines the

required time tF to control the auxiliary problems (3.69) and (3.70). The greater ϵ, the smaller
the required time tF . Moreover, the small approximation order of N = 1 also originates from
the short length of the pilot plant in comparison to the pipe examined in Chapter 4. Since the
length ℓ is relatively small, the term e

± ℓF

2
√

βρ
x

in the state transformation (3.2) varies by about less
than 1.2 % over the domain of the spatial variable x. Consequently, the relationship between the
states u(·, ·), v(·, ·) and the spatial variable x is approximately linear, such that it is reasonable
to also take a linear approximation for the function expansion (3.67). Besides, a relatively short
time window Tδ for the leak size estimation is chosen to capture well the variations of the inferred

1Since the main focus lies on the comparison of both observers and the required computational costs for their
implementation, the filtering process is not considered in the indicated runtimes.

2According to Remark 5, the convergence, speed of the leak localization depends linearly on the friction factor F .
Since the friction factor F identified for the pilot plant is about two dimensions greater than the friction factor F
assigned to the simulation plant examined in Chapter 4, the observer gain γ is significantly smaller than for the
simulation plant.
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(a) Inlet flow rate q0(t) at (FT1).
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(b) Inlet pressure p0(t) at (PT1).
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(c) Outlet flow rate qℓ(t) at (FT4).
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(d) Outlet pressure pℓ(t) at (PT4).
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Figure 5.25.: Flow rate (left) and pressure (right) at inlet (above) and outlet (below) of pilot plant
at PUCP, operating point q0(t) ≈ 3.1 · 10−3 m3

s , small leak occurring after t = 30 s
at z∗ = 85.59 m.

leak size χ due to fluctuations in the inlet flow. Furthermore, an observer gain of γ = 0.003
is chosen. It is commented that for higher observer gains γ, the estimate of the leak position
oscillates strongly with amplitudes of up to 20 m such that a reasonable leak localization was not
possible. Furthermore, a longer time window Tδ has not led to a better noise suppression. Finally,
both observers work with a sample time of Ts = 1 ms and the leak estimation is initialized with
χ̂(0) = 0, δ̂(t = 0) = ℓ

2 .
In Figure 5.26 and Table 5.2, the leak size and leak position estimates are compared graphically
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as well as numerically. For reasons of better visibility, the leak size χ is displayed in l
s . It is clearly

noticed that both observers estimate accurately and rapidly the current leak size. Although the
leak size is relatively small with under 2.5 % of the nominal flow, both observers provide a leak
size estimate with deviations of significantly under 0.1 % from the real leak size within a time
period of under 0.5 s. The analysis of the KPIs summarized in Table 5.2 shows that the ABSO
provides a more rapid and slightly more accurate estimate of the leak size. However, the more
noticeable differences between both observers are regarded considering the estimation of the leak
position. Firstly, it is highlighted that both observers fulfill the predefined accuracy goal of a leak
localization with an error less than 5 % w.r.t. the length of the pipe. While the ABSO needs less
than 1 min to provide an accurate estimate of the leak position that stays inside the desired error
tolerance bounds, the algebraic observer needs about 30 s more to reach the same accuracy. On
the other side, it is seen that the algebraic observer provides a more accurate estimate of the leak
position with a mean deviation of under 1 % once the estimate has converged. Furthermore, the
comparison of the runtime points out that the implementation ABSO is noticeably faster than the
implementation of the algebraic observer. Nonetheless, it is underlined that the runtime of both
observers is significantly smaller than the considered time horizon, such that an implementation in
real time is enabled.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.26.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 85.59
m.

The following Sections 5.3.1 through 5.3.3 extend the validation and comparison of the leak
estimation performance by considering different leak sizes and positions at the pilot plant, as well
as different inlet flow rates.
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Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.0001 2.59 1.31 0.07 56.07 2.16

Algebraic Observer
(MFM-based)

0.004 0.85 1.53 0.47 90.51 89.78

Table 5.2.: KPIs of the dynamic and the algebraic observer for a small leak of 2.5 % of the nominal
flow q0(t) ≈ 3.1 · 10−3 m3

s appearing at z∗ = 85.59 m.

5.3.1. Experimental-based Leak Observer Results under Variation of the Leak
Size

In this section, the performance of both observers is examined for a smaller and a higher leak
size than in the reference scenario. The goal is to validate that both observers perform well leaks
of different size to ensure that in a real application environment small background leaks as well
as larger leaks that could be caused, e.g., by a pipe burst, are detected and localized accurately.
The operating point and the leak position are the same as in the reference scenario, and only the
aperture of the proportional valve (PV2) is varied.

In the first case, the proportional valve (PV2) is opened wider than in the reference scenario,
leading to a flow rate through the leak that represents about 15.66 % of the nominal inlet flow rate.
The resulting leak size and position estimates provided by both observers are shown graphically and
numerically in Figure 5.27 and Table 5.3. Firstly, it is clearly noticed that both observers estimate
accurately the current leak size with negligible deviations. Moreover, the ABSO detects the leak size
within one sample period while the algebraic observer has a delay of under 0.5 s due to the moving
time window Tχ that incorporates the past measurements of the flow rate and the pressure. On the
other hand, the leak localization is less accurate than in the reference scenario and the mean value
of the estimates of both observers are almost violating the 5 % error tolerance bound. Furthermore,
the estimates of the leak position do not stay inside the desired error tolerance bounds. Since the
leak is relatively large with over 15 % of the nominal inlet flow, the segment of the pipe behind
the leak operates in a significantly smaller flow rate regime. Consequently, the friction losses and
the friction factor F in this part of the pipe are smaller than it is described by the friction factor
F = 371 kg

m3s . Therefore, both observers underestimate the real leak position. These results agree
with the model validation performed in Section 5.2.2 that has revealed that the linear pipe model
(2.4) is less accurate for larger leaks. Besides, it is observed, that although the leak localization
estimates do not stay inside the desired error tolerance bound, they converge faster than in the
reference scenario. The ABSO needs about 5 s and the algebraic observer about 30 s to reach
the range of their final values what represents a reduction of 90 % and 65 %, respectively, in
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comparison to the reference scenario (see Table 5.2). The faster convergence speed agrees with
the results presented in Section 4.2.2 (see Table 4.7) and is explained by Remark 5.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.27.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 3.1·10−3 m3

s , large leak occurring after t = 30 s at z∗ = 85.59
m.

Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.001 4.98 0.58 0.001 − 2.00

Algebraic Observer
(MFM-based)

0.006 4.72 1.63 0.43 − 88.02

Table 5.3.: KPIs of the dynamic and the algebraic observer for a large leak of 15.66 % of the
nominal flow q0(t) ≈ 3.1 · 10−3 m3

s appearing at z∗ = 85.59 m.

The second part of this section examines a small leak that represents less than 1.4 % of the
nominal inlet flow. In this case, the variation of the pressure pℓ(t) that is measured at the outlet due
to the leak is in the range of the measurement noise and results in an SNR of 8 dB between pressure
variation at the outlet and measurement noise of the flow rate measurements and an SNR of about
24 dB between leak size and measurement noise of the flow rate measurements. Nonetheless, both
observers estimate well the leak size with deviations of clearly under 0.1 % as Figure 5.28 illustrates.
Besides, it is noticed that the leak size inferred from the measurements at the inlet and the outlet
shows fluctuations of about 20 % around the mean value χ̄ = 0.05 l

s . These fluctuations also
affect the estimation of the leak position, such that the estimates triple their standard deviation
w.r.t. the reference scenario (see Table 5.2). It is seen that both observers provide a leak position
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estimate that roughly reflects the real leak position. However, the fluctuations in the inferred leak
size effect that the estimates do not stay inside the predefined error bounds. In particular, the
algebraic observer that converges slower, shows oscillations with amplitudes of about 10 m such
that the desired accuracy goal of a mean error of under 5 % is not reached. On the other hand,
the leak localization provided by the ABSO oscillates less and leads to a mean error of about 1 %.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.28.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 85.59
m.

Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.008 1.08 3.47 0.01 − 2.22

Algebraic Observer
(MFM-based)

0.07 5.75 4.28 0.54 − 81.21

Table 5.4.: KPIs of the dynamic and the algebraic observer for a small leak of 1.4 % of the nominal
flow q0(t) ≈ 3.1 · 10−3 m3

s appearing at z∗ = 85.59 m.

In summary, this section has pointed out that both observers estimate accurately the leak size
for different magnitudes of the leakage. Thereby, a reasonable and valid leak detection is enabled.
Moreover, it turns out that the size of the leakage is crucial for the accuracy of the leak localization.
For a leak size of about 2.5 %, both observers provide an accurate estimate of the leak position
with deviations clearly under 5 %. In this reference scenario, the algebraic observer estimates less
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rapid but more accurate the leak position. If a very large leak of over 15 % of the nominal flow is
considered, the accuracy of the linear pipe model (2.4) decreases as Section 5.2.2 revealed. Since
both models base on this model and on the assumption of a constant linear friction factor F , the
leak localization becomes less accurate with deviations of up to 5 % from the real leak position.
Moreover, the performance of the observer was analyzed for a small leak whose characteristics w.r.t.
to its size and to the caused pressure change are near to the resolution limits of the measurement
equipment. It has been shown that the leak position can be estimated roughly by both observers,
but that the impact of the fluctuations in the inlet flow and the leak size disturb the leak localization
such that the estimates do not stay inside the desired error tolerance bounds. In this scenario, the
ABSO provides a more accurate leak position estimate with a mean error of about 1 % while the
algebraic observer does not reach the desired accuracy. In the following section, the impact of
another leak characteristic, the leak position, on the observer accuracy is examined.

5.3.2. Experimental-based Leak Observer Results under Variation of the Leak
Position

This section analyzes the performance of both observers if the leak occurs not near to the outlet, as
in the previous scenarios discussed above, but nearer to the inlet. The further operating conditions
(inlet flow rate, leak size) are not changed.

In the first scenario, the solenoid valve (SV2) is opened partially after t = 60 s and closed at
t = 250 s, i.e. the leak occurs at z = 60.99 m. The leak has a magnitude of about 2.5 % of
the inlet flow. In Figure 5.29 and Table 5.5 the leak size and leak position estimates provided by
both observers are compared graphically and numerically. Firstly, it is seen that both observers
estimate well the current leak size with deviations clearly under 0.1 %. Thereby, a valid and
reasonable leak detection is performed. However, the accuracy of the leak localization decreases
drastically and mean errors of over 20 % are obtained. The mean error of the algebraic observer
is about 1 % than the mean error of the ABSO, but in total, both observers fail clearly to fulfill
the desired accuracy goal. Since the leak occurs nearer to the inlet, a significant pipe segment

Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.08 24.81 0.43 0.03 − 3.27

Algebraic Observer
(MFM-based)

0.07 23.28 3.99 0.41 − 106.75

Table 5.5.: KPIs of the dynamic and the algebraic observer for a small leak of 2.5 % of the nominal
flow q0(t) ≈ 3.1 · 10−3 m3

s appearing at z∗ = 60.99 m.
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.29.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 60 s at z∗ = 60.99
m.

with a length of over 30 m operates in a lower flow regime than the pipe segment in front of
the leak. Therefore, the friction losses in the pipe segment behind the leak are smaller than it is
assumed according to the friction factor F identified for the nominal inlet flow. Consequently, both
observers visibly underestimate the leak position.To overcome this drawback, the extension of the
ABSO to the nonlinear pipe model (2.10) is implemented based on the instructions in [64]. The
friction coefficient fd is identified as fd = 0.027 from the measurements in steady state without
leakage. It is observed that this nonlinear ABSO provides a more accurate leak position estimate
with a mean error of under 4.3 % while the runtime increases to about texec = 45.6 s.

In the second scenario, the proportional valve installed at z = 11.73 m is opened partially
after t = 30 s, resulting in a leak size that represents about 4 % of the nominal inlet flow. The
Figure 5.30 and the Table 5.6 present the leak size and leak position estimates for both observers.
The results strengthen the conclusion drawn from the previous scenario. While the leak size is
estimated accurately with deviations of under 0.1 %, both observers fail to estimate accurately
the leak position. The estimates of the leak position stay constantly in z = 0 m once they have
converged, leading to deviations of over 10 % from the real leak position. The linear pipe model
(2.4) that is the base for the design of both observers does not reflect well the friction losses, since
the segment in front of and the segment behind the leak operate in different flow rate regimes,
such that the friction factor of the first segment is greater than the friction factor of the second
segment. Consequently, the friction factor F identified for the nominal inlet flow rate is too high
and the pressure p̂0(t) at the inlet estimated by the leak localization observer (3.19) is higher than
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(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.30.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 3.1·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 11.73
m.

Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.002 12.44 0 0.002 − 2.37

Algebraic Observer
(MFM-based)

0.004 12.44 0 0.42 − 82.16

Table 5.6.: KPIs of the dynamic and the algebraic observer for a small leak of 4 % of the nominal
flow q0(t) ≈ 3.1 · 10−3 m3

s appearing at z∗ = 11.73 m.

the measured pressure p0(t). Hence, the estimated leak position is visibly smaller than the real leak
position and the accuracy goal is not reached. On the contrary, the nonlinear ABSO based on [64]
leads to a mean error of under 4.1 % and fulfills thereby the desired accuracy goal.

Overall, this section has revealed one of the major drawbacks of both observers, namely the
localization of leaks that are located further away from the outlet of the pipe. The design of
the ABSO and the algebraic observer is based on a model that assumes friction losses that are
linear to flow rate and are parametrized by a constant friction factor F . However, the system
identification of the friction parameters in Section 5.1 has demonstrated that the friction losses
rather depend quadratically on the flow rate and the friction factor F is not constant. Therefore,
as the model validation in Section 5.2.2 has pointed out, a nonlinear pipe model represents better
the flow dynamics. If a leak occurs, that is not near to the outlet of the pipe, a significant part
of the pipe operates in a lower flow regime than the flow regime concerned for the identification
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of the friction factor F and thereby, for the design of the algebraic and the dynamic observer.
Consequently, the linear pipe model (2.4) parametrized for the higher flow regime does not reflect
well the flow dynamics in the pipe segment behind the leak. Since both observers show low
robustness to uncertainties in the friction modeling, as Section 4.2.5 has revealed, the accuracy of
the leak localization decreases significantly if the leak is not near to the outlet. For the case of
a leak near to the inlet, both observers fail to localize the leak and show deviations of over 50 %
w.r.t. to the total length of the pipe. However, it has to be noticed, that the resolution limits of
the measurement equipment and the dead zone of the solenoid and proportional valves have not
permitted to provoke leaks smaller than 2 % of the nominal inlet flow. Furthermore, the relative
short length of the pilot plant of the pipe of under 100 m has to be born in mind. Therefore, it
would be interesting to validate the observer performance for a longer pipe where smaller leaks can
be provoked, It is expected that a smaller leak changes less the parametrization of the friction losses
such that a higher accuracy for leaks that are located further away from the outlet is obtained.
Furthermore, the extension of the ABSO based on [64] has improved significantly the accuracy of
the leak localization. However, the stability performed in [64] analysis of this nonlinear observer
similar to Theorem 3.2.2 and Theorem 3.2.3 is still part of current research. Beyond that, an
extension of the algebraic observer to the nonlinear pipe model (2.10), e.g., based on the ansatz
presented in [93], is not realized yet, but part of current investigations in the research group at
PUCP. The following section complements the analysis of the performance of both observers with
real measurement data by examining the impact of the inlet flow rate.

5.3.3. Experimental-based Leak Observer Results under Variation of the Inlet
Flow Rate

This final section of the chapter validates the performance of both observers for a further operating
point. To this end, the second pump is turned off and the power of the first pump is increased to
80 %, resulting in an inlet flow of q0(t) ≈ 2.4 · 10−3 m3

s . After t = 30 s, the proportional valve
(PV2) is opened partially, leading to a flow rate that escapes through the valve of approximately
χ = 0.08 · 10−3 m3

s , i.e. less than 3 % of the nominal flow. In Figure 5.31, the measurements
of the flow rate and the pressure at the inlet and the outlet are illustrated. For the operating
point q0(t) ≈ 2.4 · 10−3 m3

s , a linear friction factor F = 289.5 kg
m3s is identified. For the following

analysis of the observer performance, the design parameters of the ABSO were not changed in
comparison to the reference scenario considered in Table 5.2. The auxiliary problems (3.31) as
well as (3.69) and (3.70) were solved with the same lengths Tχ = and Tδ = of the moving time
windows, considering the new friction factor F .

In Figure 5.32 and Table 5.7, the performance of both observers is contrasted graphically and
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(a) Inlet flow rate q0(t) at (FT1).
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(b) Inlet pressure p0(t) at (PT1).
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(c) Outlet flow rate qℓ(t) at (FT4).
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(d) Outlet pressure pℓ(t) at (PT4).
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Figure 5.31.: Flow rate (left) and pressure (right) at inlet (above) and outlet (below) of pilot plant
at PUCP, operating point q0(t) ≈ 2.4 · 10−3 m3

s , small leak occurring after t = 30 s
at z∗ = 85.59 m.

numerically. The mean error of the leak size estimation is in the same range as in the previous
investigated cases throughout this chapter, and lies clearly under 0.01 %. Once again, it is noticed
that the ABSO detects more rapidly and slightly more accurate the leak size. Regarding the
estimation of the leak position, it is seen that both observer fulfill the desired accuracy goal and
provide a leak localization estimate with a mean error of clearly under 5 %. It is noticed that the
mean error of the algebraic observer is about 1 % smaller in comparison to the ABSO. However,
the leak position estimate of the ABSO converges faster into the range of the real leak position and
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shows fewer fluctuations, as the comparison of the standard deviations σz demonstrates numerically.
Furthermore, it is observed that the leak position estimates do not stay inside the 5 % error tolerance
bound once they have converged. However, the maximal deviations are in the range of under 6 %
such that the accuracy and reliability of the leak localization affected strongly.

(a) Estimation of the leak size χ.
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(b) Estimation of the leak position z∗.
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Figure 5.32.: Estimation of the leak size χ and the leak position z∗ for the pilot plant at PUCP,
operating point q0(t) ≈ 2.4·10−3 m3

s , small leak occurring after t = 30 s at z∗ = 85.59
m.

Observer
KPI ∆χ[%] ∆z∗[%] σz[m] tconv,χ[s] tconv,z[s] texec[s]

Dynamic Observer
(ABSO)

0.0002 2.26 0.59 0.06 − 1.65

Algebraic Observer
(MFM-based)

0.004 1.17 3.79 0.45 − 95.94

Table 5.7.: KPIs of the dynamic and the algebraic observer for a small leak of under 3.0 % of the
nominal flow q0(t) ≈ 2.4 · 10−3 m3

s appearing at z∗ = 85.59 m.

To sum up the results of this section, it is verified that both observers perform well, complying
with the desired accuracy goals w.r.t. the leak localization and leak size estimation if another
operating point of the pilot plant is considered. Since the leak size cannot be measured directly,
but only inferred from the flow rate measurements at the inlet and the outlet, a validation of the
observer performance under time-varying boundary conditions similar to the case investigated in
Table 4.13 is omitted.
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6. Conclusion and Outlook

The main goal of this work, as formulated in Section 1.2.1, is to derive, implement and validate
a dynamic and an algebraic observer to detect in real-time leaks smaller than 1 % of the nominal
flow rate, estimate its size and localize its position with deviations under 5 % regarding the real
leak size and the total length of the pipe. This final chapter summarizes the main results of this
work and points out whether this general objective is achieved and where are the limitations of the
two presented leak observers. Furthermore, an outlook is given how future work could face these
limitations to further improve the performance of the two presented leak observers.

Since both observers are model-based, Chapter 2 presents the modeling of the fluid dynamics
in the water pipe by two coupled linear hyperbolic PDEs of first order. The main difference in
comparison to other literature [56] is the assumption of a constant leak size and of friction losses
that depend linearly on the flow rate.

The theoretical core of this work lies in Chapter 3 where the model-based design of the dynamic
and the algebraic observer is derived. It is strongly emphasized that both observers are late lumped,
and in contrast to other model-based leak observer (e.g., KF-type leakage observers [56]), the
observer design bases directly on the PDE model of the pipe and no spatial discretization is needed
to derive the observer. While the design of the dynamic observer is extracted from [27], the
algebraic observer presents a novel approach for a model-based late lumped leak observer and
addresses thereby a current research gap. The MFM is applied to transform the pipe model into
the auxiliary PDE problems Σaux,χ and Σaux,u, Σaux,u and the algebraic IO equations (3.30) and
(3.68). It is shown mathematically that a direct estimation of the leak position by applying the
MFM to the pipe model is not possible. Instead, the leak position is estimated, similar to the
scheme of the dynamic observer, via a (MFM-based) state estimation.

A remaining issue for future work is the proof of the convergence of the power series ansatz (3.43)
to solve the transition problem formulated by the auxiliary problem Σaux,χ based on Gevrey functions.
Alternatively, one could try to solve the auxiliary problem Σaux,χ by utilizing the backstepping control
law (3.76) and subdividing the time horizon into two parts. During the first part t ∈ [0,

Tχ

2 ] of
the time horizon, the state φ(x, τ) of the auxiliary problem would be steered from φ(x, 0) = 0
to an (arbitrary) final state φ(x,

Tχ

2 ) = φ∗
0 ̸= 0 taking the approach from Theorem 3.3.5. During

the second part t ∈ (Tχ

2 , Tχ] of the time horizon, the auxiliary problem Σaux,χ would be stabilized,
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applying the backstepping control law (3.76), to finally complete the state transition φ(x, 0) =
0 ⇝ φ(x, Tχ) = 0. Once the MF φ(·, ·) is obtained by joining the two subtrajectories, one has to
verify that the condition

∫ t
t−Tχ

φ1(0, τ − t + Tχ)dτ ̸= 0 of Theorem 3.3.2 is fulfilled.
Moreover, the backstepping control law (3.76) that is used to solve the auxiliary problems

Σaux,u, Σaux,v does not have any tuning parameters, but the time horizon for stabilizing the auxiliary
problems depends only on the physical parameterization of the pipe. Future work could examine if
and how additional tuning parameters can be introduced into the backstepping control law (3.76),
such that the transition error could be minimized not only by augmenting the time horizon Tδ, but
by adjusting the introduced tuning parameters.

The comprehensive simulation studies performed in Chapter 4 show that the initially defined
objective is achieved by both observers if the linear pipe model (2.4) is concerned without any
model uncertainty. A leak size that represents 1 % of the nominal flow is estimated with mean
deviations of about 0.1 % and the leak position is localized with a mean deviation of under 1 %
under various operating conditions regarding the measurement noise and the leak position. It is
observed that both observers are real-time capable and that the algebraic observer achieves a higher
accuracy of the leak localization, while the dynamic observer estimates more accurate the leak size.
For a small leak size of 0.1 % of the nominal flow, the algebraic observer clearly outperforms the
dynamic observer regarding the accuracy of the leak localization, as shown in Section 4.2.2.

However, the algebraic observer has several drawbacks in comparison to the dynamic observer.
First, the convergence time that the algebraic observer needs to detect and to localize the leak
accurately is significantly higher than for the dynamic observer. Since the lengths Tχ and Tδ of
the moving time windows for the leak size and state estimation have to be chosen relatively large
to ensure an accurate solution of the auxiliary problems, the algebraic observer needs more time to
detect and to localize the leak. Furthermore, the large time windows increase the computational
costs of the implementation of the algebraic observer as the comparison with the run time of
the dynamic observer indicates. Future work could investigate on whether alternative ways to
solve the auxiliary problem Σaux,χ, e.g., like described above, would reduce the convergence time.
Furthermore, a main drawback of the algebraic observer is the time-consuming tuning of the design
parameters. While the tuning of the ABSO is relatively straightforward (number of spatial nodes n

to adjust the desired leak localization accuracy, observer gains L and γ to balance convergence speed
and robustness to measurement noise), the tuning of the algebraic observer is more challenging. As
discussed in Section 4.1, the accuracy of the leak localization reveals a strong sensitivity w.r.t. the
choice of the length Tδ of the moving time window for the state estimation and the approximation
order N of the function expansion (3.67). Small variations in these parameters or in the operating
point, as shown in Section 4.2.4, can deteriorate the accuracy of the leak localization strongly.
Therefore, it is recommended to research in the future on approaches to improve the accuracy of
the solution of the auxiliary problems Σaux,u, Σaux,v in particular at the boundary x = 0, e.g., by
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integrating the homogenization ansatz from [90].
Besides, both observers have a low robustness of the accuracy of the leak localization regarding

uncertainties in the friction loss model. Small variations of the friction factor F of under 0.5 %
deteriorate visibly the leak localization and lead to deviations of up to over 40 % from the real
leak position. Hence, the robustification of both observers against model uncertainties, e.g., by
estimating the friction factor F via a dynamic update law similar to [20, 92], is an important issue
to improve the observer performance in real applications where the friction parameters may be
uncertain or vary in time and space.

Finally, the evaluation of the measurement data from the pilot fluid transport plant installed
in the laboratory of Advanced Control Engineering at the PUCP reveals that the friction losses
are not linear in the flow rate, contrastingly to the linear pipe model (2.4) that is utilized for the
design of both observers. Even in the case of small step-line changes in the inlet flow with an
amplitude of about 3 % of the inlet flow, the linear pipe model 2.4 does not reflect accurately the
pressure change at the inlet. In contrast, the nonlinear pipe model (2.10) reproduces significantly
more accurate the pressure change due to variations in the inlet flow. Moreover, it is observed
that the friction parameters vary from pipe segment to pipe segment such that at the intermediate
pressure sensors, the pressure simulated by the linear as well as the nonlinear pipe model differ
significantly from the measured pressure. To overcome this limitation and to improve the model
accuracy, spatially varying friction parameters F = F (z), fd = fd(z) can be introduced. However,
it remains an open question how the state transformation (3.2) and the observer design have to be
adjusted for this case of a more complex model structure.

The discrepancies between the model assumption of linear friction losses and the friction loss
behavior observed at the pilot plant leads to one of the major drawbacks of both observers, the
localization of leaks that do not occur near to the outlet. For a leak that occurs near to the outlet
of the pipe, both observers estimate the leak position with an acceptable accuracy, whereby the
dynamic observer outperforms the algebraic observer in particular for smaller leak sizes (see Table
5.4). In this case, only a short segment of the pipe is affected by the variation of the friction losses
due to the lower flow rate. By contrast, leaks that do not occur near to the outlet cannot be localized
accurately, neither by the dynamic nor by the algebraic observer. In these scenarios, the friction
factor, F that is assumed to be constant, varies in time and in space. After the leak has occurred,
the segment behind the leak operates in a lower flow regime as before, such that the friction factor
F between the segment in front of and behind the leak differs significantly. Consequently, and
in accordance with the low robustness of the observers against model uncertainties in the friction
model, the leak position is not estimated accurately and deviations of up to over 20 % from the
real leak position are recognized. Hence, it is strongly recommended to extend the design of
the dynamic and the algebraic observer based on the nonlinear pipe model (2.10) to achieve an
accurate leak localization in real application cases. It is demonstrated that the nonlinear dynamic
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observer according to [64] clearly improves the leak localization and reaches the desired accuracy
independently of the leak position. The concise stability proof for this nonlinear observer remains
as an open issue for future work. Similarly, the current observations motivate to deal with the
further development of the algebraic observer by applying the MFM to the nonlinear pipe model
(2.10). Since the ansatz of the MFM is strongly related to linear systems, the extension for
nonlinear systems is a challenging and ongoing research topic. An inspiring starting point to deal
with nonlinearities inside the MFM framework can be found in [93].

Finally, it is reminded that the present work only regards the case of water pipes. It remains as
an open issue for the future how the results of the present work can be transferred to the application
case of oil pipelines, where temperature effects have to be considered such that the mathematical
model becomes more complex.
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A. Appendix

A.1. Leak Localization with ABSO for different Leak Distribution
Functions

This section of the appendix examines the leak localization by means of Theorem 3.2.3 for dif-
ferent modelling of the leak distribution. Therefore, the value of the auxiliary variable δ(z) =
ℓ − z −

∫ ℓ
z

∫ η
0 d(γ)dγdη for different shapes of the leak distribution function d(z).

Corollary A.1.0.1. (i) Assume that the leak distribution function is given by d(z) = 1
M rect( z−z∗

M ),
i.e. the leak is modelled by a rectangular distribution of length M .Then, δ(0) = z∗

Proof. (i) The integral
∫ η

0 d(γ)dγ is split into 3 parts:

∀η ∈ [0, z∗ − M

2 ] :
∫ η

0
d(γ)dγ = 0

∀η ∈ (z∗ − M

2 , z∗ + M

2 ) :
∫ η

0
d(γ)dγ = 1

M

(
η − (z∗ − M

2 )
)

∀η ∈ [z∗ + M

2 , ℓ] :
∫ η

0
d(γ)dγ = 1

Therefore, the value δ(0) is given by

δ(0) = ℓ − 0 −
∫ z∗− M

2

0
0dη −

∫ z∗+ M
2

z∗− M
2

1
M

(
η − (z∗ − M

2 )
)

dη −
∫ ℓ

z∗+ M
2

1dη

= ℓ − 1
M

((
z∗ + M

2

)2
−
(

z∗ − M

2

)2
− M(z∗ − M

2 )
)

− ℓ + z∗ + M

2

= z∗
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A.2. FIR Filter Realization of the Algebraic Leak Size Estimation
Equation

To implement the leak size estimation equation

χ̂ = 1
⟨φ1(0)⟩I

(⟨φ1(0), q0 − qin⟩I − ⟨φ1(1), Y ⟩I + ⟨φ2(1), U⟩I) (A.1)

via a FIR filter, firstly, the involved integrals are approximated by

∫ t

t−T
φ1(0, τ − t + T )dτ ≈ Ts

M∑
m=0

Wmφ1(0, mTs)

∫ t

t−T
φ1(0, τ − t + T ) (q0(τ − qin) dτ ≈ Ts

M∑
m=0

Wmφ1(0, mTs) (q0((l − M + m)Ts) − qin)

∫ t

t−T
φ2(1, τ − t + T )U(τ)dτ ≈ Ts

M∑
m=0

Wmφ1(0, mTs)U((l − M + m)Ts)

∫ t

t−T
φ2(1, τ − t + T )Y (τ)dτ ≈ Ts

M∑
m=0

Wmφ1(0, mTs)Y ((l − M + m)Ts)

(A.2)

where Ts := T
M is the sampling time and the approximation coefficients Wm are given dependingly

on the selected integration method by

W0 =


1 : forward
0 : backward
1
2 : trapedoizal

; ∀m = 1, . . . , M − 1 : Wm =


1 : forward
1 : backward
1 : trapedoizal

; WM =


0 : forward
1 : backward
1
2 : trapedoizal

(A.3)
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to shift the available measurements in time, the following discrete system is defined

z(l + 1) =



0 1
. . . . . .

. . . 1
0

0 0

0

0 1
. . . . . .

. . . 1
0

0

0 0

0 1
. . . . . .

. . . 1
0


︸ ︷︷ ︸

:=Aχ

z(l) +



0
...
1

0 0

0
0
...
1

0

0 0
0
...
1


︸ ︷︷ ︸

:=Bχ


q0(l)
U(l)
Y (l)


︸ ︷︷ ︸

:=y(l)

(A.4)

Furthermore, the filter coefficients Kq, KU , KY are defined as

∀m = 1, . . . , M : Kq = TsWmφ1(0, mTs)

∀m = 1, . . . , M : KU = TsWmφ2(1, mTs)

∀m = 1, . . . , M : KY = −TsWmφ1(1, mTs)

(A.5)

Thus, the estimated leak size χ̂ is given by the output of the following time discrete system

z(l + 1) = Aχz(l) + Bχy(l)

χ̂(l) = 1∑M
m=0 Kq(mTs)

[
Kq(0) . . . Kq((M − 1)Ts)KU (0) . . . Kq

U ((M − 1)Ts)KY (0) . . . KY ((M − 1)Ts)
]

z(l)

+ 1∑M
m=0 Kq(mTs)

[
Kq(MTs)KU (MTs)KY (MTs)

]
y(l)

(A.6)

where l ∈ N indicates the discrete time index with t = lTs.
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A.3. Spatial Discretization of the Pipe Model

To reduce the infinite-dimensional pipe model, we apply the MOL by introducing n spatial nodes and
the spatial discretization step size ∆z := ℓ

n . Then, the spatial derivatives ∂
∂z p(z, t) and ∂

∂z q(z, t)
are approximated by means of forward and backward finite differences, respectively:

∂

∂z
p(z, t) ≈ p(z + ∆z, t) − p(z, t)

∆z
∂

∂z
q(z, t) ≈ q(z, t) − q(z − ∆z, t)

∆z

(A.7)

Furthermore, we introduce the state vectors pd(t), qd(t) containing the states at the discrete
nodes:

pd(t) =


pd,1(t)

...
pd,n(t)

 :=


p(0, t)

...

p(n−1
n ℓ, t)



qd(t) =


qd,1(t)

...
qd,n(t)

 :=


q( ℓ

n , t)
...

q(ℓ, t)


(A.8)
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Replacing the spatial derivatives in the pipe model (2.4) by the finite differences (A.7) gives:

ṗd,1(t) = − β

A

∂

∂z
q(0, t) − β

A
d(0)χ

≈ − β

A∆z
(q(∆z, t) − q(0, t)) − β

A
d(0)χ

= − β

A∆z
(qd,1(t) − q0(t)) − β

A
d(0)χ

∀i ∈ {2, . . . , n} : ṗd,i(t) ≈ − β

A∆z
(qd,i(t) − qd,i−1(t)) − β

A
d( i − 1

n
ℓ)χ

q̇d,1(t) = −A

ρ

∂

∂z
p(∆z, t) − F

ρ
q(∆z, t) − Ag sin(θ(∆z)) − η

A
d(∆z)χ

≈ − A

ρ∆z
(p(d,2(t) − pd,1(t)) − F

ρ
qd,1(t) − Ag sin(θ(∆z)) − η

A
d(∆z)χ

∀i ∈ {2, . . . , n − 1} : q̇d,i(t) ≈ − A

ρ∆z
(p(d,i+1(t) − pd,i(t)) − F

ρ
qd,i(t) − Ag sin(θ(i∆z)) − η

A
d(i∆z)χ

q̇d,n(t) = − A

ρ∆z
(p(ℓ(t) − pd,n(t)) − F

ρ
qd,n(t) − Ag sin(θ(n∆z)) − η

A
d(n∆z)χ

(A.9)
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Finally, summarizing the equations (A.9) in matrix-vector-notation leads to the following set of 2n

linear ODE’s:



ṗd,1(t)
...

ṗd,n(t)
q̇d,1(t)

...
q̇d,n(t)


=



0

− β
A∆z

β
A∆z
. . . . . .

. . . β
A∆z

− β
A∆z

A
ρ∆z − A

ρ∆z
. . . . . .

. . . − A
ρ∆z
A

ρ∆z

−F
ρ

. . .
. . .

−F
ρ





pd,1(t)
...

pd,n(t)
qd,1(t)

...
qd,n(t)



+



0
0
...
0

β
A∆z

0
...
0

− β
A∆z d(0)

− β
A∆z d(0)

...
− β

A∆z d(n−1
n ℓ)

0
0
...

− A
ρ∆z

0
0
...
0

− η
Ad(∆z)

− η
Ad(2∆z)

...
− η

Ad(ℓ)




pℓ(t)
q0(t)

χ

+



0
...
0

−Ag sin(θ(∆z))
...

−Ag sin(θ(ℓ))


(A.10)
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