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Abstract

Asymmetries and heavy tails are well-known characteristics on compound daily returns stock market in-
dices. The THSV-SMN –Threshold Stochastic Volatility Model with Scale Mixture of Normal Distributions–
model has become an important tool for analysis regarding forecasting asset returns and Value at Risk and Ex-
pected Shortfall portfolio estimations in order to assess market risk. Therefore, under a Bayesian approach, we
develop an extension on the model proposed by Abanto & Garrafa (2019). This extension allows for an endoge-
nous threshold and will be studied under two theoretical frameworks: the use of order statistics and a random
walk Metropolis–Hasting algorithm (RWMH). We test the model extension upon stock market indices across the
globe along four regions (North America, LATAM, Europe and Asia) with our proposed RWMH algorithm and
compare the results with the original (fixed threshold) model using goodness-of-fit and error prediction criteria.
Evidence shows that stock markets indices differ both within and across regions, yet in most cases the extended
model outperforms the original THSV-SMN. Thus, prudence and a personalized analysis per index are strongly
recommended.
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1Instructor at Pontificia Universidad Católica del Perú (PUCP) and financial analyst at Ernst & Young (EY). The author would like to
thank advisor Ph.D. Carlos Abanto-Valle and revisor Ph.D. Carlos Trucios for their constructive comments which substantially improve the
quality of this research. All mistakes are author’s responsibility only and contents do not necessarily reflect opinions or represent PUCP and
EY. Author’s e-mail: ronaldo.robles@pucp.pe.

1

mailto:ronaldo.robles@pucp.pe


Contents

1 Introduction 3

2 The Heavy-Tailed Threshold Stochastic Volatility Model 4

2.1 SMN distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 THSV-SMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Parameter Estimation via MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Forecasting returns and volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Value at Risk and Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Empirical Application 11

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Estimation results — THSV-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Forecasting and VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Concluding remarks 44

5 Discussion 46

6 Bibliography 47

Appendix: Code Quality Review - Simulation 50

Part I: Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Part II: Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Part III: VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix: Order Statistics - Mathematical framework 74

2



1 Introduction

Financial econometrics have led the process of uncovering and studying financial asset returns and the main styl-
ized fact highlights a significant non-Gaussian behavior. Thus, literature has been widely developed in the analysis
of heavy-tailed distributions (Mandelbrot (1963), Fama (1965), Harvey & Shephard (1996), Liesenfeld & Jung
(2000), Chib et al (2002)), distribution asymmetries (Black (1967), Christie (1982), So et al (2002), Chen et al
(2008)) and volatility clustering (Taylor, (1982, 1994), among others).

In the current state of the literature, the Threshold Stochastic Volatility Model with Scale Mixture of Normal distri-
butions (hereinafter, THSV-SMN) emerges in a time where efficient and computational feasible algorithms can be
used to perform Markov chain Monte Carlo (hereinafter, MCMC) methods. The model has been consecutively ex-
tended since its first version, Taylor (1982, 1994), and encompasses a family of special cases such as the Stochastic
Volatility (hereinafter, SV) model, the SV-Scale Mixture of Normal Distributions (hereinafter, SV-SMN) and the
Threshold SV model (hereinafter, THSV). The THSV-SMN model studied in Abanto & Garrafa (2019) generalizes
these extensions and allows us not only to incorporate both asymmetries and heavy tails distributions, but also com-
prehend a family of heavy-tailed distributions such as the t-Student, Slash and the Variance Gamma distributions,
among others.

Our research aims to address and it conveys the following problem statement: what is the impact in goodness-of-fit
and error prediction when we allow for an extension in the THSV-SMN model developed by Abanto & Garrafa
(2019)? In order to do that, we have two main objectives: first, we propose an extension on the THSV-SMN model
where we endogenously estimate a threshold for regime switching. This will be addressed by proposing two the-
oretical frameworks: the use of order statistics (hereinafter, OS) as in Chib (1998) and the use of a Random Walk
Metropolis Hasting (hereinafter, RWMH) sampling algorithm as in Wirjanto et al (2016). Second, we intend to
submit both the original and the extended THSV-SMN model to analyse stock market indices across four regions
around the globe. We are interested in studying the goodness-of-fit with the Watanabe-Akaike information criteria
–Watanabe, (2010, 2013)– and error prediction with the Mean Square Prediction Error –Abanto & Garrafa (2019)–.
We also compute Kupiec (1995) likelihood ratio tests and Embrechts et al (2004) Expected Shortfall (hereinafter,
ES) accuracy measure in order to assess Value at Risk (hereinafter, VaR) and ES metrics as in Abanto & Garrafa
(2019).

Regarding our hypothesis, we expect to find a better fit when we compare results with the original heavy-tailed
case with our extended model, yet we also expect to find heterogeneous behavior across markets. Because of that,
goodness of fit can vary among the cases that have been studied. That is, we aim to complement the analysis by
studying different stock market indices in order to control our results for plausible differences regarding markets
behavior within and across regions.

Estimation results supports our hypothesis. The THSV-SMN model with endogenous threshold outperforms the
fixed (zero) exogenous threshold in goodness-of-fit criteria using the WAIC statistic in the majority of our sample
analysis. Results also have shown that persistence parameters in the compound return and the location parameters
in the log volatility equations do behave differently according to its regime. Last, results indicate that stock market
indices have clear differences across regions. Posterior modes of the parameters vary within and across regions.
Yet, those specific and tailored cases can be covered by these following facts: (i) the lower variance in the log-
volatility equation (ii) the close-to-zero location and close-to-unity persistence in the log-volatility equation, (iii)
in our sample data analysis, the threshold do ranges close to zero and clearly differentiates the posterior densities
in the compound return equation and (iv) posterior mean of the threshold locates slightly above zero and evidence
appear to link this threshold value to the mean of the observed compound return data. Future research and analysis
may address this issue.
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The final report is organized as follows. Section 2 provides the theoretical framework and addresses the issue
of SMN distributions (subsection 2.1), presents the THSV-SMN model (subsection 2.2), our proposed extension
(subsection 2.3) and the methodological approach (subsections 2.4, 2.5 and 2.7). Section 3 refers to the empirical
technique by describing our sample data-sets (subsection 3.1) and the estimation results (subsection 3.2 and 3.3).
Finally, Section 4 contains our concluding remarks and provides details regarding the current agenda for future
research.

2 The Heavy-Tailed Threshold Stochastic Volatility Model

2.1 SMN distributions

In this section we present excerpts from section 2 of Abanto & Garrafa (2019) and define the SMN distributions.
We will focus in the cases where we retrieve the Normal and the Slash distributions. For a more detailed exposition
regarding SMN distributions see Lange & Sinsheimer (1993) and Choy & Chang (2008).

A random variable X belongs to the SMN family if it can be expressed as

X = µ + κ (λ)1/2 ϵ

where µ is a location parameter, ϵ ∼ N
(
0, σ2

)
, λ is a positive random mixing variable2 with cumulative distribution

function (cdf) H (· | ν) and probability density function (pdf) h (· | ν), ν is a scalar or parameter vector indexing the
distribution of λ and κ(·) is a positive weight function. We restrict our attention to the case where κ (λ) = 1/λ
because its good mathematical properties 3. Given λ, we have X | λ ∼ N

(
µ, λ−1σ2

)
and the pdf of X yields:

fSMN
(
X | µ, σ2, ν

)
=

∫ ∞

0
N

(
X | µ, λ−1σ2

)
· h (λ | ν) dλ (1)

By choosing an appropriate mixing density4 h (· | ν), a rich class of continuous symmetric distributions can be
described by the density given in (1). They can accommodate thicker tales than the normal process. In that sense,
note that when λ = 1 (a degenerate random variable), we retrieve the normal distribution. Next, we present a
heavy-tailed density based on the choice of the mixing density h (· | ν).

• The Slash distribution X ∼ S
(
µ, σ2, ν

)
, ν > 0

This distribution includes the normal case when ν→ ∞. Its pdf is given by:

fSMN
(
X | µ, σ2, ν

)
= ν

∫ 1

0
λν−1N

(
x | µ, σ2λ−1

)
du

2A mixing variable is defined as the probability distribution of a random variable that is derived from a collection of other random
variables. First, a random variable is selected by chance from a collection according to given probabilities of selection, and then the value of
the selected random variable is realized. These underlying random variables may be random real numbers, or they may be random vectors.

3Lange & Sinsheimer (1993) illustrate another examples of positive weight functions such as κ(λ) = λ(ν/2),∀λ , 0 and uses it in the
power-exponential density or κ(λ) = κ(0)ϵ + λ1/2 − ϵ ln

(
ϵ + λ1/2

)
only when ν = 1 and with ϵ defined as a small positive constant. The

other cases, i.e. ν , 1, are impossible to calculate and the weight function is define as its first derivative κ′ (λ) = ν/
[
2
(
ϵ + λ1−ν/2

)]
. Other

examples also cannot be calculated and are defined as a first derivative, i.e κ′(λ2), satisfying being completely monotone and with density
κ(λ) = −2 ln

[∫ ∞
0

uk/2 exp
(
−uλ2/2

)
dH(u)

]
, where k is the order, i.e. size, of the λ vector. For those reasons, we follow Abanto & Garrafa

(2019), Choy & Chang (2008) and Lange & Sinsheimer (1993) and restrict our attention to κ(λ) = 1/λ
4A mixing density is defined as the probability density function of the outcome variable obtained from the underlying continuous random

variables.
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The distribution of λ is Beta i.e. Be (ν, 1) with density:

h (λ | ν) = νuν−1I(0,1)

Thus, the slash distribution is equivalent to the following hierarchical form:

X | µ, σ2, λ ∼ N

(
µ,
σ2

λ

)
, λ | ν ∼ Be (ν, 1)

As pointed out by Abanto et al (2008) the Slash distribution has been mainly used in simulation studies because
it represents an extreme situation. See for example Andrews et al. (1972), Gross (1973), and Morgenthaler and
Tukey (1991).

2.2 THSV-SMN

The THSV-SMN model is a generalization of the discrete SV model proposed by Taylor (1980). It was then
extended allowing for a threshold by So et al. (2002) with the objective to capture asymmetries and they called
it the THSV model. Next, Abanto et al (2008) introduced SMN distributions in the SV model allowing for a
generalization of distributions with heavy tails (SV-SMN). Last, Abanto-Valle & Garrafa (2019) combined those
characteristics reaching the THSV-SMN model. We keep the notation and present a model with the extension we
propose below:

yt = µst + βst yt−1 + exp (ht/2)λ−1/2
t ϵt (1a)

ht+1 = αst+1 + ϕst+1ht + σst+1ηt+1 (1b)

λt ∼ p(λt|ν) (1c)

st =

{
1 if yt−1 > r
0 if yt−1 ≤ r

(1d)

Where (1a) is the compound return equation and the innovations ϵt and ηt+1 are independent and identically dis-
tributed (hereinafter, iid) with a Normal distribution N (0, 1). (1b) is the log-volatility equation. In (1c), λt is the
scale factor, p (λt | ν) is the mixing density and ν the parameter that capture the heavy-tailness as in Abanto &
Garrafa (2019); finally, in (1d) we propose an endogenous threshold r.

Furthermore, in this class of models, the normal (THSV-N), Student-t (THSV-T), Slash (THSV-S) and Variance
Gamma (THSV-VG) distributions are special known cases. Abanto & Garrafa (2019) present the estimation results
in four Stock Market Indices for all these models and they find that the Slash distribution ranks first in goodness-
of-fit and prediction accuracy. That is the reason why in this research we focus our resources analyzing the Slash
distribution as the best candidate to represent the heavy tail densities’ family for stock market indices.

2.3 Extensions

As we have anticipated in the previous subsection, we develop an extension on the model proposed by Abanto &
Garrafa (2019). By generalizing the model, we can describe a family of studies as we next trace:

• With r = 0 we relate to the work of Abanto & Garrafa (2019) and So et al (2002) –with a slight different
notation in the volatility–. The threshold, r = 0, at time t incorporates unexpected moves in prices due to bad
or good news on t− 1. In that way, the parametric space Θ =

(
µ, β, α, ϕ, σ2

)′
switch between the two regimes

corresponding to the sign of yt−1.
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• With r , 0 we refer to the work of Chen et al (2008). They formulate the threshold variable for regime
switching in two cases (i) as an exogenous variable and (ii) as an endogenous variable that surrogates past
information. In (i) they set the value with -0.2 referring studies in market returns and in (ii) they sample the
threshold from an SV model.

• Also, with r , 0 Wirjanto et al (2016) propose a parsimonious model without location parameters where the
threshold differentiate the variances of the innovation in the compound return equation. As they refer, the
threshold determine the marginal distribution of future returns. They sample the threshold r with a RWMH
algorithm with a target density defined by the full conditional of r.

• In addition, r , 0 refer to Chiou & Tsay in a yet not published paper. They define an endogenous thresh-
old with a model selection criteria. They follow Tong (1990) to implement a self-exciting threshold auto-
regressive (SETAR) process. To update the threshold values they do not need the Metropolis-Hasting algo-
rithm as in Wirjanto et al (2016). In that sense, a more efficient model obtains an accurate and tight posterior
distribution. In order to do that, they use order statistics to re-arrange the regression setting on the observed
return values. Finally, they use the Bayes factors to choose the best model with the importance-function
approach suggested by Newton & Raftery (1994).

• With r = 0 and with correlation between innovations we refer to Harvey & Shephard (1996). They estimate
the correlation ρ recovering the information by carrying out inference conditional on the signs of the obser-
vations from a criterion function. Their state-space form is transformed to adopt a corresponding form with
a linear and uncorrelated measurement and transition equation disturbances.

After the review of the studies, we next present two theoretical frameworks in order to estimate the endogenous
threshold r. The first one uses order statistics and a transition probability matrix. The second includes a Random
walk Metropolis–Hastings algorithm in order to sample from the full conditional density of r.

• Threshold with Order Statistics

The identification of a unique threshold relies on the findings highlighted from Chiou & Tsay. They show that,
for stock market indices, a single threshold, i.e. two regimes, is the best specification to model regime switching.
In that sense, let us introduce some notation. The threshold value, r = yt−1, may assume the observed values
y0, y1, ..., yT−1, where T denotes the sample size. Let y(0) ≤ y(1) ≤ ... ≤ y(T−1) be the ordered values where t(n)
denotes the time index of y(n), for n = 0, 1, ...,T − 1. Now, equation (1d) can be re-written by using the nth order
statistics, i.e. y(1) ≤ y(2) ≤ ...y(T−1) from the values of yt(1) ≤ yt(2) ≤ ...yt(T−1):

yt(n)+1 = µ0 + β0yt(n) + exp
(
ht(n+1)

2

)
λ−1/2

t(n+1)ϵt(n)+1, if 0 ≤ n < τ ∧ Θ0 ⊂ Θ

yt(n)+1 = µ1 + β1yt(n) + exp
(
ht(n+1)

2

)
λ−1/2

t(n+1)ϵt(n)+1, if n > τ ∧ Θ1 ⊂ Θ

We will also refer to the subsets Θ0 and Θ1 to simplify notation regarding the parameters for the regimes. The
parametric space Θ clearly satisfies Θ = Θ0 ∪ Θ1 and Θ0 ∩ Θ1 = ∅. Now we can update the threshold variable
r following Chib (1998) and using the order statistics yt(n)+1. Let K2:T be the binary state vector that follows a
Markovian process with a transition probability matrix P2×2. A change point in Kt traduces in a break-jumping
point, i.e a point with no return in the arranged time index T . Therefore, the threshold value as mentioned before is
r = yt(τ). With the transition probability matrix P given by:

P =
(
p11 1 − p11
0 1

)
The sampling scheme may be resume as
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1. Θ(1), P(1) | y1:T ,K(0)
2:T

2. K( j)
2:T | y1:T ,Θ

( j−1), P( j−1)

3. Θ( j), P( j) | y1:T ,K
( j−1)
2:T

4. Set j = j + 1 and return to step (2) until convergence is achieved.

Appendix 6 includes details and derivations for the implementation of the sampling scheme.

• Threshold with a random-walk MH algorithm

We follow ideas of Wirjanto et al. (2016) in order to sample the threshold parameter, r. Therefore, given that all
other parameters and latent states in the model have been sampled, the full conditional of r can be expressed as
follows:

f (r | yt, ht,Θ−r) =
T−1∏

t=3,yt−1≤r

f (yt | ht,Θ−r) · f (ht | Θ−r)
T−1∏

t=3,yt−1>r

f (yt | ht,Θ−r) · f (ht | Θ−r) (2)

where

f (yt | ht,Θ−r) ∝
1

exp (ht/2)λ−1/2
t

exp

−1
2

(
yt − µst − βst yt−1

)2

exp (ht) λ−1
t


f (ht | Θ−r) ∝

1
σst

exp

−1
2

(
ht − αst − ϕst ht−1

)2

σ2
st


Θ−r defines the vector of parameters excluding r. The full conditional distribution of r is not in the form of any
standard distribution. Thus, we use a random-walk Metropolis Hastings algorithm with the target density given in
(2) in order to simulate r, where the proposal distribution is a univariate normal distribution with the mean value
given by the previous iteration, and the variance is adjusted so that the acceptance rate can be tuned to be at least
between 20% and 50% and such rates are commonly used in Bayesian literature as pointed out by Wirjanto et al.
(2016). In addition, in order to ensure that there is enough data in each of the two regimes, we require that r has a
uniform prior distribution over the interval between the first and the third quartiles of the observed data. This prior
distribution assumption for the threshold value has also been used in Chen et al. (2008).

2.4 Parameter Estimation via MCMC

The Bayesian estimation in the THSV-SMN class of models must incorporate an estimation for the unknown pro-
cess log-volatility ht. We follow the proposal developed by Abanto & Garrafa (2019) which consists in an algorithm
based on MCMC simulation to make the analysis feasible.

Following their notation, let h1:T = (h1, ..., hT )′ be the vector of unknown log-volatilities, λ1:T = (λ1, ..., λT )′ the
mixing variables and Θ =

(
ψ0, ψ1, φ0, φ1, σ

2
0, σ

2
1, ν, r, p11

)′
the complete parameter vector of the THSV-SMN class

of models, where ψst =
(
µst , βst

)′ and φst =
(
αst , ϕst

)′ for st = 0, 1. We draw random samples from the posterior
density p (Θ,h1:T , λ1:T | y1:T ) using Gibbs sampling. The algorithm is described below:
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Algorithm 1

1. Set j = 0, the starting values for the parameters Θ( j) and the latent h( j)
1:T and λ( j)

1:T .

2. Generate Θ( j+1) ∼ p
(
Θ | h( j)

1:T , λ
( j)
1:T ,K

( j)
1:T , y1:T

)
.

3. Update K( j+1)
1:T | y1:T ,Θ

( j+1).

4. Draw λ
( j+1)
1:T ∼ p

(
λ1:T | Θ

( j+1),h( j)
1:T ,K

( j+1)
1:T , y1:T

)
.

5. Update h( j+1)
1:T ∼ p

(
h1:T | Θ

( j+1), λ
( j+1)
1:T ,K( j+1)

1:T , y1:T
)
.

6. Set j = j + 1 and return to step (2) until convergence is achieved.

Given the fact that the Gibbs sampling algorithm requires to sample the parameters Θ and the latent quantities (h1:T
and λ1:T ) from their full conditionals, we will use the Multi-Move Procedure (hereinafter, MMP) following Abanto
& Garrafa (2019) in order to sample the log-volatility chain. The reason we use the MMP algorithm, as stated
by Abanto et al. (2010, 2014), is because Multi-move algorithms are computationally efficient and convergence is
achieve faster than using a single-move. Omori et al. (2007) and Kim et al. (1998) are also main references in the
use of Multi-move algorithms.

Multi-move sampler for the log-volatilities

To sample the latent variables h1:T we use the simulation smoothing method proposed by McCausland et al. (2011).
We do so from the states in a linear Gaussian state space-model defined by two equations. For that, we need to
transform (1a).

Let zt = ln
[(

yt − rtϕst

)2
]
, where rt = (1 yt−1)′. With the log-square transformation, (1a) can be expressed as:

zt = − ln λt + ht + ln ϵ2
t (2)

where ln ϵ2
t ∼ ln χ2

1. With (2) and (1b) we have a linear state-space model, yet a non-Gaussian one. So, as in Abanto
& Garrafa (2019) we follow the ideas of Kim et al. (1998) and Omori et al. (2007) to approximate ln ϵ2

t by a finite
mixture of normal distributions as follows:

f
(
ln ϵ2

t

)
≈

Q∑
i=1

qi · f
(
ln ϵ2

t | kt = i
)

where kt is a discrete mixing variable, ln ϵ2
t | kt = i ∼ N

(
ϑi, ϖ

2
i

)
and qi = Pr (kt = i). Now equation (2) can be

written as:

zt = − ln λt + ht + ξt (3)

where ξt | kt = i ∼ N
(
ϑi, ϖ

2
i

)
.

For the number Q of normal distributions and for the parameters of the mixture of normal distributions ϑi and
ϖ2

i , ∀i = 1, ..., 10 , we use the results found by Omori et al. (2007) where Q = 10 gives a satisfactory approxi-
mation of the ln χ2

1 density and the discrete mixing variable kt can be drawn from the conditional probability:
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Pr (kt = i | zt, λt, ht) ∝ qi · exp
[
−

1
2ϖ2 (zt + ln λt − ht − ϑt)2

]
, ∀i = 1, ..., 10 ∧ t = 1, ...,T

Section 6 shows more details in the updmix function. Now, with (3) and (1b) we have the following linear Gaussian
state space model

zt = − ln λt + ht + ξt

ht+1 = αst+1 + ϕst+1ht + σst+1ηt

and we could use MMP algorithm developed by McCausland et al. (2011).

MMP

if h1:T | z1:T ∼ N
(
Ω−1c, Ω−1

)
, where Ω is defined in section 6, then

ht | ht+1, y1:T ∼ N
(
mt − Σt ·Ωt,t+1 · ht+1, Σt

)
E [h1:T | z1:T ] = (µ1, ..., µT )′

where Σ1 = Ω
−1
11 , m1 = Σ1c1, Σt =

(
Ωt,t −Ω

2
t−1,t · Σt−1

)−1
, mt = Σt

(
ct −Ωt−1,t · mt−1

)
, µT = mT and

µt = mt − Σt,t+1 · µt+1.

Now we can describe the simulation process for the j−th MCMC iteration:

Algorithm - MMP

1. Simulate h( j)
T ∼ N

(
m( j)

T , Σ
( j)
T

)
2. For t = T − 1,T − 2, ..., 1, simulate h( j)

t ∼ N
(
m( j)

t − Σ
( j)
t ·Ω

( j)
t,t+1 · h

( j)
t+1, Σ

( j)
t

)
2.5 Forecasting returns and volatility

We also follow Abanto & Garrafa (2019) in the process of forecasting the compound return and the log-volatilities.
The K-step ahead prediction densities can be computed using the following recursive procedure:

p (yT+K | y1:T ) =
∫ [

p (yT+K | hT+K , λT+K) · p (λT+K | Θ)

× p (hT+K | Θ, y1:T ) · p (Θ | y1:T )
]
· dhT+KdλT+KdΘ,

p (hT+K | Θ, y1:T ) =
∫

p (hT+K | Θ, hT+K−1) · p (hT+K−1 | Θ, y1:T ) · dhT+K−1

To initialize the recursion, we use h(i)
T and Θ(i) for i = 1, ...,N from the MCMC output. Given the N draws, we

sample h(i)
T+K from p

(
hT+K | Θ

(i), h(i)
T+K−1

)
and λ(i)

T+K from p
(
λT+K | Θ

(i)
)

by using (1b) and (1c). Finally, using (1a)

we sample y(i)
T+K from p

(
yT+K | Θ

(i), h(i)
T+K , λ

(i)
T+K

)
.
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2.6 Value at Risk and Expected Shortfall

• Value at Risk

To evaluate the performance of the model on VaR metrics, the likelihood ratio test introduced in Kupiec (1995)
is used to test the null hypothesis which states that the expected proportion of the number of ”beyond VaR” or
”violations” during the test periods is equal to α (the percentile level). The violation is formulated by:

It (α) = I
[
yT+1 < ˆVaRt (α)

]
It (α) = I

[
yT+1 > ˆVaRt (α)

]
for the left and right tail, respectively, where I [·] is an indicator function and ˆVaRt (α) is the estimated VaR at
level α, which can be obtained by simulation using the k-step ahead densities described below. Next, let xα be
the number of violations, that is, xα =

∑T+m
t=T+1 It (α) and α̂ = xα/m. The unconditional test of Kupiec (1995) is a

likelihood ratio test with the χ2
1− distributed test statistic defined as:

LRuc = 2
(
log

[
α̂xα (1 − α̂)m−xα] − log

[
αxα (1 − α)m−xα])

• Expected Shortfall

The Expected Shortfall (ES) is formally defined by:

ESt (α) = E
[
yt | yt < VaRt (α)

]
ESt (α) = E

[
yt | yt > VaRt (α)

]
Following Aas and Haff (2006) and Nakajima (2013), we compute the measure developed by Embrechts et al.
(2004) for evaluating the performance of the predicted ES, denoted by ÊS t (α). We define

δt (α) = yt − ÊS t (α)

as an excess of return. Let δα be the αth quantile of [δt (α)]T+m
t=T+1. Next, we define:

S t (α) = I [δt (α) < δα]

S t (α) = I [δt (α) > δα]

for the left and right tail. Then, let be sα =
∑T+m

t=T+1 S t (α). Now we have all the inputs to compute Embrechts et al.
(2004) measure given by:

D (α) =
1
2

[| D1 (α) | + | D2 (α)]

where

D1 (α) =
1
xα

∑
It(α)=1

δt (α)

D2 (α) =
1
sα

∑
S t(α)=1

δt (α)

As discussed in Aas and Haff (2006) and Nakajima (2013), D1 (α) is the standard back-testing measure for expected
shortfall estimates. Its weakness is that it strongly depends on the VaR estimates without adequately reflecting the
correctness of these values. D2 (α) is computed to correct it because it measures an average difference between
the return and the estimated ES for the α-level tail of that difference from all the tested periods. A smaller D (α)
implies a more precise prediction of ES.
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2.7 Bayesian Model Comparison

To compare the goodness of fit for the estimated models we cannot use the standard Deviance Information Criterion
(DIC) because our complete posterior distribution of Θ is not Multivariate Normal, Ando (2010, 2011). To over-
come this issue, Abanto & Garrafa (2019) rely on the Watanabe-Akaike Information Criterion (hereinafter, WAIC)
Watanabe (2010, 2013). The WAIC is defined as:

WAIC = −2
(
lppd − pWAIC

)
(4)

where lppd is the log point-wise predictive density defined by:

lppd =
T∑

t=1

ln
∫

p (yt | Θ,h1:T ) · p (h1:T | y1:T ) dΘdh1:T (5)

and

pWAIC = 2
T∑

t=1

[
ln EΘ,h1:T |y1:T

[
p (yt | Θ,h1:T )

]
− EΘ,h1:T |y1:T

[
ln p (yt | Θ,h1:T )

]]
(6)

To estimate (5) and (6) we use the MCMC output with the computations given by:

l̂ppd =
T∑

t=1

ln

1
I

I∑
i=1

p (yt | Θt)


p̂WAIC = 2

T∑
t=1

ln
1

I

I∑
i=1

p (yt | Θt)

 − 1
I

I∑
i=1

ln p (yt | Θt)


where i = 1, ..., I is the i−th iteration. The minimum value of the WAIC indicates evidence of the best fit.

3 Empirical Application

3.1 Data

We use daily adjusted closing price data for all our markets sample. Also, data-sets were downloaded from the
Yahoo Finance repository. Given the adjusted closing price Pt on day t and apply the following transformation in
order to obtain our compound return data-sets:

yt = 100 × (ln Pt − ln Pt−1)

The period of analysis ranges from January 5th, 1998 – April 30th, 2022. The starting point follows Abanto &
Garrafa (2019) and end-to-date point has been chosen with the last closing month at the recollection. We have
selected four regions for the analysis: North America, Latam, Europe and Asia. Within region, four Stock Market
Indices were chosen. Election criteria was defined by: (i) availability in the main source, (ii) Stock Market Index
that have been already studied were preferred and (iii) well-known Indices in the region.

The African region and country Peru were excluded due to: (i) liquidity, (ii) relative peer-to-peer volume of trans-
actions and (iii) availability in the main data source. Table 1 presents a complete description of the sample analysis.
We use the country code according to ISO-3166 Alpha-3 criteria. SMX Code Reference names are for abbrevia-
tions within the document. Tables 2, 3, 4 and 5 proffer the summary statistics for each region. For the mode, we
compute the Meanshift mode estimator developed by Fukunaga, K. and Hostetler, L. (1975).
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Table 1: Regions — Sample Analysis

Region Country ISO-3166 Stock Market Index SMX Code Reference

North America

United States USA Standard & Poor’s 500 S&P500
United States USA National Association of Securities Nasdaq

Dealers Automated Quotation
United States USA Dow Jones Industrial Average DowJones
Canada CAN S&P/TSX Composite Index TSX

LATAM

Brasil BRA IBOVESPA Bovespa
Mexico MEX IPC Mexico IPC
Argentina ARG S&P Merval Merval
Chile CHL S&P/CLX IPSA IPSA

Europe

Belgium BEL Euronext Bruselas BFX
Germany GER DAX Performance Index DAX
England GBR Financial Times Stock Exchange FTSE 100
France FRA Cotation Assistée en Continu CAC 40

Asia

Singapore SGP Straits Times Index STI
Japan JPN Nikkei 225 Nikkei
South Korea KOR Korea Composite Stock Price Index KOSPI
Hong Kong HKG Hang Seng Index Hang Seng

From the data, we describe the following main characteristics:

• All regions show evidence of leptokurtic distributions. This has been intensively described in Liesenfeld &
Jung (2000), Chib et al (2002), So et al (2002), Jacquier et al (2004) and Abanto et al (2010).

• North America exhibits left sided asymmetries in all its markets. In LATAM, only Merval supports the
statement (with even a higher degree). This is our first indicator that markets have a non-homogeneous
behaviour.

• In LATAM, IPC (MEX) and IPSA (CHL) distance themselves from their peers in extreme values. Not all
markets in LATAM show the greatest extreme values.

• In the EURO region, we highlight the within narrower volatility (given by the SD) compared with other
regions. The region also exhibits leptokurtic distributions and left-sided asymmetries.

• Regarding Asia (and among all regions), Singapore exhibits the only negative mode value.

• Markets with the higher mean are Kospi (KOR), Merval (ARG) and Nasdaq (USA).

Table 2: Summary statistics — North America

Return size mean median mode min max SD Skewness Kurtosis N° Returns ≥ 0

S&P500 6, 120 0.02356 0.06371 0.04319 -12.7652 10.9572 1.23928 −0.39131 13.20159 3, 283
Nasdaq 6, 120 0.03343 0.11055 0.10878 -13.1491 13.2546 1.59957 −0.16810 8.94648 3, 339
DowJones 6, 120 0.02319 0.04972 0.03465 -13.8418 10.7643 1.18699 −0.37850 15.31859 3, 246
TSX (CAN) 6, 111 0.01841 0.07449 0.07853 -13.1758 11.2945 1.11506 −0.91821 18.99115 3, 320
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Table 3: Summary statistics — LATAM

Return size mean median mode min max SD Skewness Kurtosis N° Returns ≥ 0

Bovespa (BRA) 6, 014 0.03857 0.07802 0.08824 -17.2082 28.8324 1.95694 0.24777 17.74931 3, 118
IPC (MEX) 6, 102 0.03755 0.05212 0.01960 -10.3409 12.1536 1.35251 0.08664 9.03298 3, 194
Merval (ARG) 4, 947 0.08257 0.12633 0.10869 -47.6922 16.1165 2.35173 −1.64371 35.1129 3, 165
IPSA (CHL) 4, 345 0.03339 0.04515 0.01049 -7.2362 11.8033 0.96232 0.02869 13.33454 2, 270

Table 4: Summary statistics — EURO

Return size mean median mode min max SD Skewness Kurtosis N° Returns ≥ 0

BFX (BEL) 6, 203 0.00777 0.04136 0.01738 -15.3275 9.3339 1.25385 −0.37676 12.13572 3, 244
DAX (GER) 6, 167 0.01882 0.07888 0.13420 -13.0548 10.7974 1.49208 −0.17273 8.39919 3, 277
FTSE 100 6, 143 0.00586 0.04832 0.09382 -11.5117 9.3842 1.18935 −0.30902 10.16639 3, 190
CAC 40 (FRA) 6, 205 0.01216 0.05073 0.02969 -13.0983 10.5945 1.43304 −0.20573 8.95752 3, 225

Table 5: Summary statistics — ASIA

Return size mean median mode min max SD Skewness Kurtosis N° Returns ≥ 0

STI (SGP) 6, 086 0.01328 0.02446 −0.01003 -9.1534 12.8737 1.22369 −0.05135 11.67528 3, 116
Nikkei 225 5, 961 0.00981 0.04121 0.01841 -12.1110 13.2345 1.48005 −0.31280 8.78926 3, 070
KOSPI (KOR) 6, 205 0.03194 0.07221 0.05462 -12.8047 11.2843 1.63890 −0.19682 8.99814 3, 212
Hang Seng 5, 997 0.01194 0.05170 0.06896 -13.5820 13.4068 1.54820 0.08494 10.30979 3, 103

Next, we assess the data-sets and evaluate the linear and quadratic dependence with the auto-correlation function
(hereinafter, ACF). Figure 1 and 2 prints the ACF plots for the compound returns and the quadratic compound
returns in our sample analysis.

Figure 1: Stock Market Indices’ ACF
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Figure 2: Squared Stock Market Indices’ ACF
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As expected, evidence supports the widely studied stylized fact of the nonlinear dependence of stock market indices:
while the ACF on the compound returns cannot show evidence on linear dependence, the ACF plots in the quadratic
compound returns clearly reports dependence. Nevertheless, IPSA (CHL) and Merval (ARG) stand out: the first
one shows evidence of a first order linear dependence in the compound return ACF plot. The second one, even when
still reflects evidence of a non-linear dependence, it only holds for the first lag. So far, we recall that we are not only
observing differences in the summary statistics but also in the linear and quadratic auto correlation dependence. We
also have computed the Durbin-Watson statistic in order to test for first-order serial auto correlation. The statistic
is defined bellow and Table 6 presents the results for our sample analysis:

DW =
∑n

t=2 (xt − xt−1)2∑n
t=1 x2

t
(7)

With the DW statistic we test the null hypothesis that stands the following statement: there is not first order serial
auto-correlation. For our compound return data-sets, in all cases we cannot reject the null hypothesis, as expected.
Yet, in the quadratic compound returns, even when we clearly reject the null for the majority of the stock market
indices, IPC (MEX), Merval (ARG) and IPSA (CHL) for Latam, and BFX (BEL) and DAX (GER) for Euro cannot
reject the null hypothesis.

Finally, Figure 3 plot the densities of the compound returns data-sets group by region. These densities were
estimated using the R base density function: its algorithm disperses the mass of the empirical distribution function
over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this approximation
with a discretized version of the kernel and then uses linear approximation to evaluate the density at the specified
points, Venables, W. N. & Ripley, B. D. (2002). We prefer this strategy instead of plotting the histograms because
overlaying panes are not that clear. This visualization may also anticipate evidence of heterogeneous behavior
between stock market indices.
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Table 6: Durbin Watson Statistics

North America

S&P500 Nasdaq DowJones TSX (CAN)
yt 2.2009 2.1073 2.1966 2.0666
y2

t 1.2609 1.2742 1.2775 1.1692

LATAM

Bovespa (BRA) IPC (MEX) Merval (ARG) IPSA (CHL)
yt 2.0307 1.8286 1.9463 1.6821
y2

t 1.4081 1.5054 1.7680 1.3859

EURO

BFX (BEL) DAX (GER) FTSE 100 (GBR) CAC 40 (FRA)
yt 1.8688 2.0154 2.0553 2.0308
y2

t 1.5080 1.5173 1.4242 1.4868

ASIA

STI (SGP) Nikkei 225 (JPN) KOSPI (KOR) Hang Seng (HKG)
yt 1.8519 2.0595 1.9088 1.9726
y2

t 1.3311 1.2897 1.3915 1.2431
Note.
Bold numbers indicate we reject H0: there is not first order serial auto-correlation.

3.2 Results

We have submitted the extended THSV-SMN original model (fixed-zero threshold) and the extended model with
our proposed RWMH methodology. First, in order to set up the priors for the parameters, we follow Abanto &
Garrafa (2019) and for most cases we use non-informative priors. Those are defined as:

ψi ∼ N2[|βi |<1]
(
ψ̄i,Sψi

)
ψ̄i = (0, 0)′ Sψi = diag (100, 100)

φi ∼ N2[|ϕi |<1]
(
φ̄i,Sφi

)
φ̄i = (0, 0.98)′ Sφi = diag (100, 100)

σ2
i ∼ IG (5, 0.5) ∀i = 0, 1 r = 0

Second, the full posterior conditional distributions are detailed in Appendix 6. Third, for each data-set we have
selected 40,000 MCMC iterations where the first 10,000 draws correspond to a burn-in period. Fourth, we have
computed the posterior mode, the 95% credible intervals and the convergence diagnostic (CD statistics). In the
latter, the null hypothesis states the sequence is stationary and we cannot reject the null with a 95% confidence if
CD ∈ (−1.96 : 1.96). Finally, Tables 7, 8, 9 and 10 refer details on the estimation results.

Regarding the estimation results, we present key-points we highlight under our analysis:

• Location (µ0 and µ1) and persistence (β0 and β1) parameters in the compound return process vary both in
magnitude and sign among stock market indices and regions. Likewise summary statistics in Tables 2, 3, 4
and 5 this is evidence that markets do behave differently within and across regions.

• Posterior modes and 95% credibility intervals of ϕ0 and ϕ1 are close to unity. This results reflect a high
degree of persistence in the log-volatility process and were also found by Harvey & Shephard (1996), Chen
et al (2008), Wirjanto et al (2016) and Abanto & Garrafa (2019).
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Data densities

Figure 3: Compound returns densities
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• σ2
0 and σ2

1, on the other hand, are close to zero. This indicates that the log-volatility process has a low degree
of random variability.

• The threshold impact relies on both the compound return and the log-volatility equations: in the first one over
its persistence (β0 and β1) and, in the second one, over its location (α0 and α1). Even with the two regimes,
location (µ0 and µ1), persistence (ϕ0 and ϕ1) and variance (σ2

0 and σ2
1) show no significant differences on the

posterior modes. Threshold posterior mean is positive located slightly close to the mean of the compound
returns data mean.

• Location parameters α0 and α1 in the log-volatility process are also close to zero. This results could also
indicate that a random walk process with no drift and lower variability may be another process to proper
describe the log volatility behavior. This also has been mentioned in Harvey et al (1994) and studied in
Harvey & Shephard (1996). Nevertheless, authors conclude that allowing ht to follow a more complex linear
process does not affect the basic statistical issues.

In addition we have selected the S&P500 Stock Market Index in order to present (i) posterior densities and (ii)
box-plots. Figures 4, 5, 6, 7, 8, 10 and 9 account for those items. Furthermore, Figure 11 presents the log-volatility
posterior mode and the 95% confidence interval. It also presents the ht ratio computed by exp

(
h1

t − h0
t

)
where

h1
t is the log volatility chain with the endogenous threshold and h0

t is the log volatility chain with the fixed zero
threshold. Finally, Figure 12 shows the absolute compound returns for our representative market and the instant
volatility computed by exp (ht/2) · λ−1/2

t . A key-point we highlight at first glance: estimation results supports the
existence of a custom–specific threshold over the S&P500.

After the individual results of our representative stock market index case study, next in Figures 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24 and 25 we present the joint posterior densities group by region for each estimated
parameter. The joint results clearly illustrate how stock market indices do behave differently within and across
regions when we study the same parameter across its peers. LATAM and Asia, i.e. regions with a higher degree of
variability in the compound return data, show the most asymmetric behavior. We also have taken into consideration
plotting the comparison for regime switching grouped by region, but keeping in mind that each pane would result in
eight overlays instead of four and that the resulting figures where clumsy and impractical, we decided no to include
them.

Figure 4: (S&P 500) — µ0 and µ1
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Figure 5: (S&P 500) — β0 and β1
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Figure 6: (S&P 500) — α0 and α1
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Figure 7: (S&P 500) — ϕ0 and ϕ1
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Figure 8: (S&P 500) — σ2
0 and σ2
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Figure 9: (S&P 500) — r
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Figure 10: (S&P 500) — ν
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Estimation results — THSV-S

Table 7: Estimation results — North America — THSV-S

Parameter
S&P500 (US) Nasdaq (US) Dow Jones (US) TSX (CAN)

THSV–S THSV–S THSV–S THSV–S
(1) (2) (1) (2) (1) (2) (1) (2)

µ0

0.077143 0.071325 0.130044 0.107274 0.061210 0.063872 0.061664 0.060183
(0.0350 : 0.1136) (0.0300 : 0.1353) (0.0756 : 0.1832) (0.0076 : 0.1674) (0.0183 : 0.0953) (−0.0237 : 0.0959) (0.0230 : 0.0964) (0.0155 : 0.1121)

0.6941 −0.3565 0.9744 0.5259 −0.0050 −0.2281 −0.8580 −1.7890

µ1

0.055394 0.061398 0.090336 0.109861 0.071239 0.068310 0.056638 0.055041
(0.0179 : 0.0893) (0.0025 : 0.1247) (0.0388 : 0.1327) (0.0199 : 0.1714) (0.0327 : 0.1036) (0.0228 : 0.1368) (0.0228 : 0.0913) (0.0016 : 0.1087)
−1.4350 0.9278 0.0146 −0.7169 −1.0120 −0.7479 −0.1511 1.3330

β0

−0.091490 −0.097160 −0.026391 −0.037524 −0.077979 −0.073315 0.014783 0.020409
(−0.1429 : −0.0381) (−0.1433 : −0.0305) (−0.0798 : 0.0265) (−0.1068 : 0.0125) (−0.1350 : −0.0287) (−0.1565 : −0.0311) (−0.0355 : 0.0704) (−0.0342 : 0.0816)

1.8050 −1.8060 1.5400 −0.6931 1.2240 −2.2810 −0.1476 −0.7035

β1

−0.008954 −0.017147 −0.002625 −0.021378 −0.027903 −0.028956 0.052377 0.050403
(−0.0612 : 0.0391) (−0.0784 : 0.0474) (−0.0561 : 0.0454) (−0.0759 : 0.0470) (−0.0762 : 0.0234) (−0.0931 : 0.0262) (−0.0084 : 0.1018) (−0.0144 : 0.1188)

1.7490 −0.1501 1.0340 −0.3596 1.1920 1.7300 −0.5656 −1.6090

α0

−0.003304 −0.002113 0.007042 0.005260 −0.004713 −0.005183 −0.004275 −0.004425
(−0.0138 : 0.0076) (−0.0131 : 0.0100) (−0.0020 : 0.0153) (−0.0026 : 0.0163) (−0.0165 : 0.0057) (−0.0162 : 0.0065) (−0.0145 : 0.0051) (−0.0141 : 0.0063)

−1.4620 −7.6490 −1.3570 1.6600 −0.9395 −2.0610 0.7895 −1.7330

α1

−0.018235 −0.017443 −0.003384 −0.002321 −0.020520 −0.019298 −0.015801 −0.015577
(−0.0295 : −0.0074) (−0.0310 : −0.0068) (−0.0108 : 0.0040) (−0.0145 : 0.0040) (−0.0323 : −0.0090) (−0.0332 : −0.0088) (−0.0264 : −0.0066) (−0.0268 : −0.0058)

−0.4448 −2.1470 −1.2990 1.5790 −0.4014 −0.9535 2.0760 −2.2100

ϕ0

0.981696 0.979762 0.987479 0.987192 0.980108 0.979526 0.986336 0.985170
(0.9697 : 0.9903) (0.9676 : 0.9906) (0.9777 : 0.9945) (0.9782 : 0.9956) (0.9683 : 0.9893) (0.9689 : 0.9905) (0.9757 : 0.9938) (0.9753 : 0.9944)
−0.0428 6.2550 1.1300 0.0224 −0.1625 1.6890 0.2982 0.8248

ϕ1

0.977752 0.978087 0.983827 0.986076 0.977041 0.977415 0.982272 0.982144
(0.9676 : 0.9874) (0.9660 : 0.9902) (0.9758 : 0.9918) (0.9765 : 0.9946) (0.9667 : 0.9872) (0.9673 : 0.9899) (0.9730 : 0.9904) (0.9726 : 0.9921)
−0.2923 5.1850 1.3290 −0.5259 −0.2548 1.5210 0.5735 0.6199

σ2
0

0.044214 0.043103 0.031643 0.030256 0.044710 0.042502 0.034153 0.033999
(0.0333 : 0.0560) (0.0341 : 0.0624) (0.0238 : 0.0412) (0.0230 : 0.0397) (0.0333 : 0.0566) (0.0312 : 0.0555) (0.0233 : 0.0437) (0.0265 : 0.0439)

0.0670 −5.1950 0.2195 1.2170 0.1142 −1.1290 −0.3921 −0.3988

σ2
1

0.043764 0.045080 0.031026 0.030821 0.043383 0.042501 0.034148 0.034833
(0.0335 : 0.0561) (0.0343 : 0.0631) (0.0239 : 0.0412) (0.0231 : 0.0399) (0.0335 : 0.0568) (0.0313 : 0.0558) (0.0233 : 0.0437) (0.0264 : 0.0438)

0.0750 −5.2610 0.2083 1.4770 0.0841 −1.0830 −0.4075 −0.3934

ν

3.405908 3.697091 4.338820 3.918407 3.458358 3.558294 4.628053 6.264360
(2.9495 : 6.0661) (2.9560 : 15.2593) (3.4043 : 8.7556) (3.1710 : 8.4834) (2.9180 : 6.1752) (2.7255 : 6.6051) (3.7390 : 15.1603) (4.5573 : 36.6905)
−0.6687 −3.8410 −0.6115 1.2790 −0.3132 −1.3970 −0.1157 −3.7980

r
0 0.074954 0 0.075840 0 0.054215 0 0.043854
- (−0.4304 : 0.5587) - (−0.5753 : 0.7367) - (−0.4244 : 0.5262) - (−0.4013 : 0.5115)
- −0.2892 - −0.7548 - 0.5006 - −0.1913

Note. First row: posterior mode. Second row: posterior 95% credible interval in parenthesis. Third row: CD statistics.
Index (1) stands for the original THSV-SMN, (2) stands for the extended THSV-SMN model with endogenous threshold,
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Table 8: Estimation results — LATAM — THSV-S

Parameter
Bovespa (BRA) IPC MEXICO Merval (ARG) IPSA (CHL)

THSV–S THSV–S THSV–S THSV–S
(1) (2) (1) (2) (1) (2) (1) (2)

µ0

0.038556 0.056476 0.021441 0.040150 −0.042499 0.056381 0.009242 0.031134
(−0.0489 : 0.1121) (−0.1032 : 0.1281) (−0.0276 : 0.0699) (−0.1162 : 0.0726) (−0.1267 : 0.0546) (−0.3242 : 0.1243) (−0.0389 : 0.0526) (−0.1463 : 0.0610)

−0.4658 2.6220 −0.52080 1.8440 0.09962 0.1187 0.9692 1.5940

µ1

0.056351 0.063918 0.054488 0.055960 0.161185 0.136001 0.071588 0.073683
(−0.0261 : 0.1346) (−0.1069 : 0.1310) (0.0069 : 0.1009) (−0.0234 : 0.1112) (0.0792 : 0.2509) (0.0644 : 0.3210) (0.0295 : 0.1201) (0.0290 : 0.1756)

−0.2434 −1.6370 2.9690 0.3099 2.7190 0.4748 −0.2682 0.14230

β0

−0.061492 −0.045886 0.022905 0.040012 −0.057686 −0.040158 0.120988 0.147526
(−0.1160 : −0.0011) (−0.1330 : 0.0029) (−0.0279 : 0.0795) (−0.0719 : 0.0832) (−0.1143 : −0.0061) (−0.1730 : 0.0309) (0.0525 : 0.1900) (−0.0382 : 0.2035)

−0.6494 1.9040 −1.0830 1.8470 0.3779 0.1334 1.5000 1.5800

β1

0.018837 0.023650 0.082007 0.082552 0.058443 0.071361 0.149526 0.148402
(−0.0355 : 0.0761) (−0.0311 : 0.1063) (0.0304 : 0.1318) (0.0305 : 0.1487) (0.0057 : 0.1084) (−0.0116 : 0.1158) (0.0876 : 0.2159) (0.0454 : 0.2189)

−0.6747 2.85 −1.5110 0.4731 −2.4900 −0.9213 1.5600 −0.2033

α0

0.012743 0.013189 0.000377 0.000555 0.026963 0.027000 −0.011695 −0.012440
(0.0045 : 0.0240) (0.0027 : 0.0234) (−0.0058 : 0.0079) (−0.0060 : 0.0086) (0.0125 : 0.0450) (0.0111 : 0.0476) (−0.0255 : 0.0020) (−0.0278 : 0.0035)

−1.199 3.9990 −1.6770 −1.847 −1.3140 0.2740 3.2230 1.4510

α1

0.010083 0.010098 −0.006597 −0.006247 0.022081 0.023143 −0.025700 −0.027166
(0.0019 : 0.0197) (−0.0015 : 0.0196) (−0.0136 : 0.0000) (−0.0148 : 0.0004) (0.0097 : 0.0376) (0.0056 : 0.0390) (−0.0447 : −0.0142) (−0.0476 : −0.0141)
−1.0440 2.2550 −4.5120 −2.382 −1.3050 0.2061 1.6970 0.0910

ϕ0

0.984674 0.984387 0.988689 0.988406 0.970817 0.970715 0.973190 0.972129
(0.9744 : 0.9932) (0.9748 : 0.9953) (0.9798 : 0.9961) (0.9799 : 0.9966) (0.9546 : 0.9843) (0.9534 : 0.9855) (0.9562 : 0.9871) (0.9548 : 0.9901)

2.1660 −3.0140 −0.5269 −0.4375 1.8140 −0.5744 −0.9419 −1.1010

ϕ1

0.979933 0.980188 0.984316 0.985255 0.966023 0.967039 0.962423 0.962955
(0.9698 : 0.9891) (0.9700 : 0.9911) (0.9742 : 0.9910) (0.9749 : 0.9929) (0.9505 : 0.9794) (0.9481 : 0.9800) (0.9440 : 0.9770) (0.9428 : 0.9794)

1.7910 −2.6860 −0.7469 0.2772 1.5790 −0.3773 −0.8917 −0.7844

σ2
0

0.019102 0.018926 0.023181 0.021640 0.041699 0.042031 0.041158 0.039847
(0.0147 : 0.0266) (0.0137 : 0.0267) (0.0162 : 0.0310) (0.0168 : 0.0301) (0.0291 : 0.0601) (0.0302 : 0.0638) (0.0292 : 0.0575) (0.0300 : 0.0595)
−1.5200 2.4140 0.6474 0.0191 −1.5200 0 0.8793 0.7033

σ2
1

0.019216 0.019577 0.023110 0.021065 0.042154 0.040753 0.040654 0.040342
(0.0146 : 0.0264) (0.0137 : 0.0266) (0.0161 : 0.0306) (0.0167 : 0.0299) (0.0289 : 0.0596) (0.0303 : 0.0636) (0.0289 : 0.0567) (0.0298 : 0.0585)
−1.4140 2.4780 0.6128 0.0590 −1.5650 0.3425 0.9397 0.6513

ν

4.416235 4.022336 3.594941 3.606456 2.590226 2.610205 7.367838 8.538462
(3.6340 : 6.5000) (3.2676 : 7.2825) (2.8142 : 5.5591) (2.8870 : 5.6645) (2.2238 : 3.1517) (2.2311 : 3.1536) (4.8186 : 42.0700) (5.3043 : 34.1569)
−0.0228 1.0820 −1.1700 −0.6882 0.3342 −0.6603 1.636 1.9220

r
0 0.034324 0 0.064120 0 0.006715 0 0.044785
- (−0.8861 : 0.9994) - (−0.5471 : 0.6674) - (−0.9228 : 1.1023) - (−0.4163 : 0.5140)
- 0.9471 - 1.5340 - 0.1582 - 1.5010

Note. First row: posterior mode. Second row: posterior 95% credible interval in parenthesis. Third row: CD statistics.
Index (1) stands for the original THSV-SMN, (2) stands for the THSV-SMN model with extensions.
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Table 9: Estimation results — EURO — THSV-S

Parameter
BEL 20 (BEL) DAX (GER) FTSE 100 (GBR) CAC 40 (FRA)

THSV–S THSV–S THSV–S THSV–S
(1) (2) (1) (2) (1) (2) (1) (2)

µ0

0.080628 0.062905 0.107558 0.096169 0.027008 0.038612 0.095417 0.083470
(0.0374 : 0.1254) (0.0259 : 0.1498) (0.0557 : 0.1635) (0.0370 : 0.1815) (−0.0152 : 0.0713) (−0.0447 : 0.0850) (0.0504 : 0.1497) (0.0135 : 0.1550)
−1.0680 1.5890 0.6646 1.4370 −0.3025 −0.9852 0.8993 −0.8342

µ1

0.024721 0.043260 0.071115 0.082578 0.042499 0.038765 0.033863 0.060527
(−0.0167 : 0.0666) (−0.0639 : 0.0784) (0.0189 : 0.1168) (−0.0728 : 0.1179) (−0.0018 : 0.0797) (−0.0280 : 0.0998) (−0.0125 : 0.0815) (−0.0939 : 0.0951)

−0.0934 2.0240 −2.1700 1.1800 0.1039 0.0598 −0.6576 0.0126

β0

0.048014 0.031274 −0.000007 −0.009638 −0.046178 −0.040206 −0.010646 −0.020646
(−0.0094 : 0.1016) (−0.0182 : 0.1083) (−0.0517 : 0.0548) (−0.0593 : 0.0572) (−0.1019 : 0.0081) (−0.1071 : 0.0161) (−0.0625 : 0.0411) (−0.0769 : 0.0391)

0.3239 2.1230 1.5590 1.2230 −0.5147 −2.5420 −0.4049 −0.1943

β1

0.071654 0.057621 −0.001909 −0.012548 −0.010308 −0.010870 0.015906 0.004966
(0.0202 : 0.1240) (0.0106 : 0.1518) (−0.0535 : 0.0461) (−0.0555 : 0.0880) (−0.0636 : 0.0439) (−0.0690 : 0.0579) (−0.0342 : 0.0669) (−0.0462 : 0.1084)
−0.1493 −1.8980 −0.3889 −0.7757 −0.4928 −0.6005 1.8230 0.1582

α0

0.001399 −0.000911 0.003902 0.003470 −0.000442 −0.001240 0.002353 0.002224
(−0.0078 : 0.0103) (−0.0085 : 0.0105) (−0.0036 : 0.0118) (−0.0035 : 0.0141) (−0.0093 : 0.0080) (−0.0098 : 0.0090) (−0.0046 : 0.0105) (−0.0045 : 0.0121)

4.2290 −0.3382 −5.7550 −2.2160 −7.7590 −2.9700 1.9890 −0.0862

α1

−0.011895 −0.012561 −0.004823 −0.004735 −0.012982 −0.012622 −0.006871 −0.006890
(−0.0218 : −0.0033) (−0.0249 : −0.0042) (−0.0118 : 0.0020) (−0.0158 : 0.0022) (−0.0223 : −0.0040) (−0.0227 : −0.0036) (−0.0147 : 0.0002) (−0.0166 : 0.0003)

3.2740 0.0984 0.0363 −1.3520 −1.5730 −1.2830 1.3330 1.1530

ϕ0

0.982076 0.982117 0.985880 0.985185 0.984234 0.984469 0.985713 0.985670
(0.9708 : 0.9911) (0.9719 : 0.9933) (0.9765 : 0.9944) (0.9756 : 0.9942) (0.9730 : 0.9923) (0.9730 : 0.9937) (0.9753 : 0.9933) (0.9757 : 0.9941)

1.0180 −1.3550 3.2650 1.6740 4.3850 3.0020 −2.2520 2.2900

ϕ1

0.977258 0.977251 0.983614 0.983333 0.979399 0.980786 0.982728 0.984132
(0.9653 : 0.9859) (0.9668 : 0.9891) (0.9736 : 0.9910) (0.9737 : 0.9931) (0.9697 : 0.9889) (0.9697 : 0.9918) (0.9732 : 0.9909) (0.9738 : 0.9931)

0.8524 −2.4530 4.1770 0.4565 3.9060 2.9000 −1.0640 2.8660

σ2
0

0.034739 0.035276 0.025168 0.026772 0.030714 0.030067 0.028325 0.025591
(0.0284 : 0.0497) (0.0273 : 0.0461) (0.0191 : 0.0371) (0.0201 : 0.0369) (0.0219 : 0.0421) (0.0209 : 0.0436) (0.0196 : 0.0377) (0.0203 : 0.0359)
−1.0390 1.6990 −3.0460 −0.9555 −3.2250 −2.3160 0.9606 −1.6740

σ2
1

0.035542 0.034882 0.025204 0.026691 0.030954 0.0293546 0.027435 0.025318
(0.0281 : 0.0494) (0.0272 : 0.0456) (0.0190 : 0.0371) (0.0201 : 0.0370) (0.0218 : 0.0420) (0.0209 : 0.0438) (0.0196 : 0.0381) (0.0203 : 0.0361)
−1.0220 1.5260 −3.0420 −1.0580 −3.0000 −2.2270 0.8266 −1.7560

ν

5.177608 4.919699 3.218609 3.201330 5.199634 3.961265 2.985812 2.994778
(3.7058 : 15.7965) (3.5602 : 8.3856) (2.6356 : 4.3890) (2.6341 : 4.6525) (3.3983 : 13.9329) (3.2588 : 14.4082) (2.6002 : 3.8539) (2.5152 : 3.9383)

0.6123 −0.2922 −2.4650 −0.8468 −2.0140 −1.6140 1.6720 0.0819

r
0 0.048120 0 0.053080 0 0.046499 0 0.041038
- (−0.5125 : 0.6001) - (−0.6103 : 0.7064) - (−0.5003 : 0.5624) - (−0.5971 : 0.6795)
- −2.0900 - −1.3860 - −1.0390 - −0.0926

Note. First row: posterior mode. Second row: posterior 95% credible interval in parenthesis. Third row: CD statistics.
Index (1) stands for the original THSV-SMN, (2) stands for the THSV-SMN model with extensions.
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Table 10: Estimation results — ASIA — THSV-S

Parameter
STI Index (SGP) Nikkei 225 (JPN) KOSPI (KOR) Hang Seng Index (HKG)

THSV–S THSV–S THSV–S THSV–S
(1) (2) (1) (2) (1) (2) (1) (2)

µ0

0.043753 0.043147 0.027439 0.024949 0.030869 0.039095 −0.010777 0.023278
(0.0047 : 0.0840) (−0.0108 : 0.0944) (−0.0388 : 0.0810) (−0.1364 : 0.0763) (−0.0128 : 0.0856) (−0.0417 : 0.0953) (−0.0717 : 0.0447) (−0.1576 : 0.0652)
−0.2116 1.7780 1.8180 −0.3030 −1.6700 1.2810 1.8620 1.4870

µ1

0.017652 0.028630 0.011874 0.030090 0.038263 0.041908 0.053394 0.039864
(−0.0203 : 0.0585) (−0.0884 : 0.0564) (−0.0418 : 0.0750) (−0.0562 : 0.1581) (−0.0123 : 0.0820) (−0.0249 : 0.1178) (−0.0036 : 0.1051) (−0.0584 : 0.1040)

−1.1150 2.8170 0.0485 −0.3815 0.2244 0.1732 −0.1896 −1.0510

β0

0.023148 0.016761 −0.076789 −0.085461 −0.030385 −0.028902 −0.044531 −0.017345
(−0.0338 : 0.0723) (−0.0400 : 0.0747) (−0.1347 : −0.0260) (−0.1743 : −0.0302) (−0.0796 : 0.0187) (−0.0860 : 0.0232) (−0.0974 : 0.0081) (−0.1286 : 0.0242)

−2.6260 2.1420 −0.0860 1.4370 −2.5700 −0.9265 1.2060 1.6040

β1

0.046229 0.044804 0.040451 0.023591 0.058254 0.056462 0.038491 0.046197
(−0.0049 : 0.1015) (−0.0029 : 0.1468) (−0.0143 : 0.0913) (−0.0494 : 0.0962) (0.0095 : 0.1079) (−0.0054 : 0.1107) (−0.0129 : 0.0907) (−0.0086 : 0.1096)

−0.9139 −3.6260 −1.3180 0.4239 −0.0003 0.0178 −0.1657 1.5820

α0

−0.001702 −0.003011 0.005665 0.005656 0.001514 0.001135 0.001481 0.001593
(−0.0097 : 0.0059) (−0.0107 : 0.0058) (−0.0018 : 0.0147) (−0.0021 : 0.0167) (−0.0041 : 0.0074) (−0.0043 : 0.0088) (−0.0034 : 0.0067) (−0.0035 : 0.0071)
−10.3200 −1.0140 −1.1660 −0.7296 −2.9380 1.6340 −0.5053 3.6720

α1

−0.009529 −0.011060 −0.001258 −0.001230 −0.002401 −0.002733 −0.001987 −0.002152
(−0.0185 : −0.0021) (−0.0206 : −0.0027) (−0.0084 : 0.0063) (−0.0115 : 0.0069) (−0.0083 : 0.0026) (−0.0104 : 0.0027) (−0.0069 : 0.0027) (−0.0080 : 0.0028)

−7.7080 0.2364 −1.5520 −1.4140 −3.6630 −2.2680 −1.7360 1.1270

ϕ0

0.987015 0.988747 0.978071 0.978212 0.992942 0.992842 0.992039 0.991823
(0.9790 : 0.9950) (0.9799 : 0.9962) (0.9655 : 0.9891) (0.9652 : 0.9894) (0.9872 : 0.9983) (0.9866 : 0.9983) (0.9848 : 0.9977) (0.9849 : 0.9980)

7.1990 1.1750 0.2341 1.0310 −0.1888 −2.4290 −0.5307 −1.6310

ϕ1

0.984079 0.984721 0.978928 0.977990 0.993160 0.992607 0.990045 0.989954
(0.9747 : 0.9910) (0.9753 : 0.9929) (0.9659 : 0.9884) (0.9647 : 0.9896) (0.9869 : 0.9975) (0.9863 : 0.9983) (0.9836 : 0.9956) (0.9835 : 0.9967)

5.4970 0.2195 −0.4006 1.5760 0.5401 −1.3530 −1.9230 −1.1790

σ2
0

0.026101 0.025627 0.025377 0.024945 0.016155 0.016207 0.011473 0.011409
(0.0192 : 0.0365) (0.0189 : 0.0343) (0.0171 : 0.0370) (0.0186 : 0.0366) (0.0116 : 0.0210) (0.0118 : 0.0233) (0.0089 : 0.0159) (0.0087 : 0.0156)
−4.8940 −0.4917 −0.0884 −0.9047 −0.2732 1.4950 −0.7858 1.0990

σ2
1

0.026103 0.025670 0.025116 0.025055 0.015973 0.016683 0.011396 0.011767
(0.0191 : 0.0363) (0.0188 : 0.0344) (0.0170 : 0.0370) (0.0185 : 0.0367) (0.0116 : 0.0210) (0.0118 : 0.0234) (0.0089 : 0.0158) (0.0087 : 0.0158)
−4.8280 −0.5231 −0.0511 −0.8877 −0.2323 0.0118 1.0500 1.0630

ν

4.249733 4.016712 3.244536 −0.6498 2.683087 2.869879 2.848309 2.884411
(3.2710 : 21.7040) (3.1229 : 8.5218) (2.7480 : 5.1465) (2.6685 : 7.1599) (2.3329 : 3.5295) (2.3190 : 3.7426) (2.4412 : 3.7208) (2.4105 : 3.6075)

−3.1840 −0.9172 −0.8876 −1.0380 −3.0820 −0.2709 −1.2290 3.0530

r
0 0.041005 0 0.078646 0 0.057573 0 0.033746
- (−0.4870 : 0.5437) - (−0.6490 : 0.7547) - (−0.5882 : 0.7129) - (−0.6351 : 0.7099)
- −2.4650 - 0.0262 - 0.5027 - 1.6620

Note. First row: posterior mode. Second row: posterior 95% credible interval in parenthesis. Third row: CD statistics.
Index (1) stands for the original THSV-SMN, (2) stands for the THSV-SMN model with extensions.
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Figure 11: (S&P 500) — log-volatilities ht and 95% CI
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Figure 12: (S&P 500) — Absolute returns and instant volatility
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Figure 13: µ0 posterior densities
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Figure 14: µ1 posterior densities
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Figure 15: β0 posterior densities
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Figure 16: β1 posterior densities
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Figure 17: α0 posterior densities
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Figure 18: α1 posterior densities
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Figure 19: ϕ0 posterior densities
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Figure 20: ϕ1 posterior densities
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Figure 21: σ2
0 posterior densities
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Figure 22: σ2
1 posterior densities
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Figure 23: Scale factor ν posterior densities
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Figure 24: Threshold r posterior densities
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Figure 25: log volatility chain ht posterior densities
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After the estimation results, in Table 11 we present the WAIC statistics. Results vary from region. For instance, in
the Euro region evidence support our hypothesis: by a goodness-of-fit criteria, the THSVS model with endogenous
threshold has a better performance than the original THSVS model –which assumes a fixed exogenous threshold
in zero–. On the contrary, in the Asia region, evidence indicate that the fixed-zero threshold results in a better fit.
North America and Latam regions are mixed: on each of them, two of the four stock market indices have a better
fit with the endogenous threshold. Here, in addition to data analysis and estimations results, performance metrics
like goodness-of-fit criteria also indicates that not all indices have the same expected behavior.

Table 11: Model Comparison — WAIC Statistics

North America

S&P500 Nasdaq DowJones TSX (CAN)
THSVS (1) 102,901 125, 368 99, 813 94,135
THSVS (2) 103, 030 125,338 99,767 94, 144

LATAM

Bovespa (BRA) IPC (MEX) Merval (ARG) IPSA (CHL)
THSVS (1) 149, 464 117,295 160, 511 92,232
THSVS (2) 149,426 117, 311 160,488 92, 258

EURO

BFX (BEL) DAX (GER) FTSE 100 (GBR) CAC 40 (FRA)
THSVS (1) 109, 263 124, 247 106, 024 120,917
THSVS (2) 109,037 124,235 106,030 120, 955

ASIA

STI (SGP) Nikkei 225 (JPN) KOSPI (KOR) Hang Seng (HKG)
THSVS (1) 104, 988 128,780 126,078 128,071
THSVS (2) 104,870 128, 793 126, 101 128, 151

Note.
THSVS (1) refers to the original Slash THSV model.
THSVS (2) refers to the extended model with endogenous threshold.

3.3 Forecasting and VaR

We will use two metrics regarding accuracy prediction i.e. Mean Square Predictive Error (hereinafter, MSPE). The
first one follows Abanto & Garrafa (2019) and is computed by:

MSPE1 =
1
m
·

1
N

 T+m∑
t=T+1

N∑
i=1

(
y(i)

t − yt
)2


y(i)

t is obtained with a simulation from the MCMC procedure. m is the number of projections (from T + 1 to T +m)
and N is the number of simulations (i). The second one will be defined as follows:

MSPE2 =

T+m∑
t=T+1

1
m

(
ȳ(i)

t − yt
)2

ȳ(i)
t is the mean of the N simulations for each of the one-step-ahead projections. The difference we highlight

between MSPE1 and MSPE2 consists in the following: for a single one-step-ahead projection, MSPE1 computes
the squared deviations from all the N simulations. In contrast, MSPE2 directly computes the squared deviation
from the posterior mean of the N draws. Because of that, generally MSPE1 will be greater than MSPE2 as it uses
extreme values from the N simulations in the squared deviations.
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For MSPE metrics, VaR’s Kupiec (1995) likelihood ratio test and Embrechts et al (2004) Expected Shortfall accu-
racy measure statistic we use m = 100. That is, we use a 100 out-of-sample observations in order to estimate the
metrics. Table 12 shows the results for the MSPE and Tables 13, 14, 15 and 16 presents the results for VaR and ES
risk metrics estimates.

Table 12: Forecasting — MSPE

MSPE THSV - N (1) THSV - N (2) THSV - S (1) THSV - S (2)
North America

S&P500 (I) 3.6725 3.6711 3.7540 3.7967
(II) 1.8659 1.8489 1.8878 1.8955

Nasdaq (I) 7.2357 7.2868 7.2693 7.3336
(II) 3.7929 3.7550 3.7663 3.7603

DowJones (I) 2.4229 2.4665 2.5651 2.5373
(II) 1.2071 1.2061 1.1941 1.2159

TSX (CAN) (I) 1.4652 1.4667 1.4553 1.4899
(II) 0.6859 0.6914 0.6821 0.6757

LATAM
Bovespa (BRA) (I) 2.6621 2.6833 2.7575 2.7491

(II) 1.2295 1.2260 1.2233 1.2226
IPC (MEX) (I) 2.2468 2.2536 2.3185 2.3332

(II) 1.0865 1.0795 1.0655 1.1034
Merval (ARG) (I) 6.9718 6.8718 7.1290 7.1552

(II) 3.5470 3.4837 3.4654 3.4179
Ipsa (CHL) (I) 0.9235 0.9188 0.9233 0.9338

(II) 0.3857 0.3849 0.3904 0.3914

EURO
BFX (BEL) (I) 3.3983 3.3219 3.3025 3.3396

(II) 1.7023 1.6541 1.6322 1.6904
DAX (GER) (I) 5.4978 5.4827 5.5662 5.3808

(II) 2.8945 2.9001 2.9637 2.8590
FTSE 100 (GBR) (I) 2.5281 2.5351 2.5085 2.5597

(II) 1.2619 1.2462 1.2331 1.2657
CAC 40 (FRA) (I) 5.1163 5.1753 5.1374 5.2740

(II) 2.6175 2.7148 2.6581 2.7694

ASIA
STI (SGP) (I) 1.3272 1.3275 1.2995 1.3206

(II) 0.5908 0.5871 0.5896 0.5975
Nikkei 225 (I) 4.0573 4.1177 4.2665 4.1593

(II) 2.0528 2.0961 2.0768 2.0373
Kospi (KOR) (I) 2.5014 2.5567 2.5945 2.6114

(II) 1.1666 1.1901 1.1592 1.2094
Hang Seng (HGK) (I) 7.0735 7.1216 7.0511 7.0262

(II) 4.0883 4.0730 4.0365 3.9482
Note.
(1) Stands for the original fixed-zero threshold THSV-SMN model.
(2) Stands for the RWMH threshold THSV-SMN model.
(I) Stands for the MSPE1 metric.
(II) Stands for the MSPE2 metric.

The main reason we use the additional prediction accuracy metric relies in controlling for sensibility. Steady and far
superior models will result outperforming the other ones in both metrics. Nonetheless, evidence shows that it does
not holds for all cases. While in the Euro region we clearly identify a single (but not unique) model that outperform
the other ones, for North America, Latam and Asia that statement does not holds true. Results indicate that for
prediction accuracy we do not only have to take into consideration models but also the sensibility of the metric.
The ranking of the models therefore will depend on the nature of the study and the preference in the sensibility
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of the metric. Results on prediction accuracy criteria are the most heterogeneous so far. Depending on the stock
market index, evidence shows the following key-items for prediction accuracy: (i) there are markets where the
THSV-N model outperforms the THSV-S, (ii) the best performing model is not the same within a region, (iii) the
sensibility of the metric yields in different best-performing models and (iv) the endogenous THSV-S has the best
performing score in the four regions: TSX (CAN) for North America, Bovespa (BRA) and Merval (ARG) for
Latam, DAX (GER) for Euro and Hang Seng (HGK) for Asia are the stock market indices that obtain the highest
performing scores with the endogenous THSV-S model.

Now let us assess the risk metrics statistics. Due to the intensive use of computational resources, we first highlight
the fact that, in order to compute these risk metrics, we had to run the models K · N · H = 6, 400 times, where
K are the one hundred recursive one-step-ahead rolling estimations, N equals the number of our markets sample
and H the number of models being tested. Each one of them, properly estimated with their total number of 40,000
simulations.

In Tables 13, 14, 15 and 16 we present the results in four models: the originals fixed-zero threshold THSV-N
and THSV-S, and the endogenous THSV-N and THSV-S with our RWMH methodology. In addition, we use
four different levels of α ∈ [0.01, 0.05, 1 − 0.95, 1 − 0.99] that account for the, left and right tail, 1% (99%) and
5% (95%) percentile. We validate the 100 one-step-ahead rolling projections with real validation-data and, for the
Violation Rate, we expect to have a α̂ close to the true α. This Violation Rate accounts for the % of the observations
in the validation-data sets that falls outside the given α percentile. For Kupiec’s VaR LR we present the p-value
of the statistic: a significant p-value, i.e. < 0.05, will give us evidence to reject Kupiec’s null hypothesis (α̂ = α).
Finally, for the Embrecht’s et al ES measure, the lowest D will be preferred.

In the North America region we highlight the following key-points: first, for the left-tailed VaR at 1% violations
range from 1 up to 3 cases. In consequence, LR tests indicate us we have no evidence to reject α̂ = α. Also, D
statistics rank first the E-THSV-N5 for S&P 500, the F-THSV-N for Nasdaq, the E-THSV-S for DowJones and for
TSX (CAN), F-THSV-N, F-THSV-S and E-THSV-N tie. Second, for the left-tailed VaR at 5% violations range
from 5 up to 11 cases. in the LR test, the F-THSV-N perform as expected with evidence that fail to reject the null
and D statistic rank first the E-THSV-N for S&P 500, the F-THSV-N for Nasdaq, the E-THSV-S for DowJones and
the F-THSV-N for TSX (CAN). Third, for the right-tailed VaR at 1% and 5%, we are well aware that market risk
analysis does not focus its attention in assessing unexpected profits, but let us look into the statistical properties:
in the 5% right-tailed VaR, violations ranges from 2 to 4. Regarding LR test, in all models and markets we have
no evidence to reject the null and for the ES accuracy measure D statistic, the E-THSV-N model ranks first for the
S&P 500, the E-THSV-N for Nasdaq, the E-THSV-S for DowJones and the F-THSV-N and F-THSV-S for TSX
(CAN). Finally, in the 1% right-tailed VaR, violations ranges from 0 to 2. Regarding LR test, in all models and
markets we also have no evidence to reject the null and for the ES accuracy measure D statistic, we have multiple
ties in all the models for the S&P 500, Nasdaq and DowJones. For TSX (CAN), the F-THSV-N model ranks first.

For Latam, in the left-tailed 1% VaR, violations ranges from 0 to 4. Regarding LR test, except for the F-THSV-
N model in Bovespa (BRA), in all models and markets we have no evidence to reject the null and for the ES
accuracy measure D statistic, the E-THSV-S model ranks first for Bovespa (BRA), the E-THSV-N for IPC (MEX),
the E-THSV-N for Merval (ARG) and the all the models tie for Ipsa (CHL). In addition, in the left-tailed 5% VaR,
violations ranges from 3 to 10. Regarding LR test, in all models and markets we have no evidence to reject the null
and for the ES accuracy measure D statistic, the F-THSV-N, E-THSV-N and the F-THSV-S models tie for Bovespa
(BRA), the E-THSV-S for IPC (MEX), the E-THSV-S and F-THSV-S for Merval (ARG) and the F-THSV-N for
Ipsa (CHL). Next, in the right-tailed 5% VaR, violations ranges from 2 to 7. Regarding LR test, except for the
E-THSV-N in Merval (ARG) and the E-THSV-N for Ipsa (CHL), in all models and markets we have no evidence
to reject the null and for the ES accuracy measure D statistic, the E-THSV-S model ranks first for Bovespa (BRA),
the F-THSV-S for IPC (MEX), the E-THSV-N for Merval (ARG) and the F-THSV-S and the E-THSV-S for Ipsa
(CHL).

5Prefixes F- and E- will indicate ”Fixed” and ”Endogenous” in order to differentiate the models. Because of that, as an example,
F-THSV-N and E-THSV-S will denote the fixed-zero THSV normal model and the endogenous RWMH THSV slash model.
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Table 13: Value at Risk and Expected Shortfall metrics - USA & CANADA

Violation Rate Kupiec’s VaR LR test Embrecht´s et al ES measure
(0.01) (0.05) (0.95) (0.99) LRuc (0.01) LRuc (0.05) LRuc (0.95) LRuc (0.99) D (0.01) D (0.05) D (0.95) D (0.99)

North America

S&P 500
Normal I 0.03 0.11 0.03 0.00 0.0228 0.0166 0.3229 0.1562 0.5508 0.2991 0.0457 1.2686
Normal II 0.03 0.10 0.03 0.00 0.1047 0.0421 0.3229 0.1562 0.4367 0.3092 0.0314 1.2686
Slash I 0.02 0.09 0.02 0.00 0.3763 0.0971 0.1191 0.1562 0.2102 0.2222 0.0543 1.2686
Slash II 0.03 0.10 0.02 0.00 0.1047 0.0421 0.1191 0.1562 0.5463 0.2913 0.0675 1.2686

Nasdaq
Normal I 0.03 0.10 0.06 0.00 0.1047 0.0421 0.6559 0.1562 0.1809 0.2877 0.0335 1.8494
Normal II 0.01 0.11 0.04 0.00 1.0000 0.0166 0.6350 0.1562 0.4293 0.3513 0.0009 1.8494
Slash I 0.01 0.08 0.07 0.00 1.0000 0.2036 0.3855 0.1562 0.4293 0.3163 0.0554 1.8494
Slash II 0.01 0.11 0.05 0.00 1.0000 0.0166 1.0000 0.1562 0.4293 0.3346 0.0093 1.8494

DowJones
Normal I 0.02 0.12 0.04 0.00 0.3763 0.0060 0.6350 0.1562 0.0132 0.2901 0.0665 1.2409
Normal II 0.01 0.07 0.03 0.00 1.0000 0.3855 0.3229 0.1562 0.0000 0.2434 0.0599 1.2409
Slash I 0.03 0.07 0.02 0.00 0.1047 0.3855 0.1191 0.1562 0.2987 0.2444 0.0432 1.2409
Slash II 0.01 0.09 0.03 0.00 1.0000 0.0971 0.3229 0.1562 0.2991 0.0599 0.0000 1.2409

TSX (CAN)
Normal I 0.03 0.05 0.03 0.02 0.1047 0.0000 0.3229 0.1209 0.1070 0.0311 0.0239 0.0553
Normal II 0.03 0.06 0.04 0.00 0.1047 0.6559 0.6350 0.1562 0.1070 0.0495 0.0318 0.9326
Slash I 0.03 0.06 0.03 0.01 0.1047 0.6559 0.3229 0.1382 0.1070 0.0680 0.0239 0.1107
Slash II 0.01 0.09 0.03 0.00 0.3763 0.0000 0.6350 0.1562 0.1605 0.0486 0.0318 0.9326

Note.
Normal I stands for the original fixed-zero threshold THSV-SMN (normal) model.
Normal II stands for the endogenous RWMH threshold THSV-SMN (normal) model.
Slash I stands for the original fixed-zero threshold THSV-SMN (slash) model.
(Slash II stands for the endogenous RWMH threshold THSV-SMN (slash) model.

Table 14: Value at Risk and Expected Shortfall metrics - LATAM

Violation Rate Kupiec’s VaR LR test Embrecht´s et al ES measure
(0.01) (0.05) (0.95) (0.99) LRuc (0.01) LRuc (0.05) LRuc (0.95) LRuc (0.99) D (0.01) D (0.05) D (0.95) D (0.99)

LATAM

Bovespa (BRA)
Normal I 0.04 0.06 0.02 0.00 0.0228 0.6559 0.1191 0.1562 0.2121 0.0881 0.0393 1.1981
Normal II 0.02 0.06 0.02 0.01 0.3763 0.6559 0.1191 0.2390 0.1112 0.0881 0.0745 0.0000
Slash I 0.02 0.06 0.03 0.00 0.3763 0.6559 0.3229 0.1562 0.3630 0.0881 0.0167 1.1981
Slash II 0.02 0.07 0.03 0.00 0.3763 0.3855 0.3229 0.1562 0.0872 0.1032 0.0111 1.1981

IPC (MEX)
Normal I 0.02 0.07 0.06 0.00 0.3763 0.3855 0.6559 0.1562 0.2246 0.1191 0.0656 1.0591
Normal II 0.01 0.08 0.06 0.00 1.0000 0.2036 0.6559 0.1562 0.0000 0.1039 0.0746 1.0591
Slash I 0.02 0.08 0.06 0.01 0.3763 0.2036 0.6559 0.0583 0.1788 0.1404 0.0456 0.2281
Slash II 0.00 0.07 0.05 0.00 0.1562 0.3855 1.0000 0.1562 1.1903 0.0883 0.0686 1.0591

Merval (ARG)
Normal I 0.00 0.08 0.06 0.02 0.1562 0.2036 0.6559 0.0228 2.3246 0.3535 0.2590 0.5220
Normal II 0.03 0.10 0.06 0.02 0.1047 0.3855 0.0421 0.6559 0.0228 0.4020 0.1421 1.5912
Slash I 0.02 0.07 0.06 0.01 0.3763 0.3855 0.6559 0.0583 0.4298 0.2973 0.2014 0.0000
Slash II 0.02 0.07 0.04 0.02 0.3763 0.3855 0.6350 0.0593 0.4298 0.2973 0.0311 0.5220

IPSA (CHL)
Normal I 0.02 0.03 0.02 0.00 0.3763 0.3229 0.1191 0.1562 0.0725 0.0017 0.1143 0.8099
Normal II 0.02 0.05 0.01 0.01 0.3763 1.0000 0.0261 1.0000 0.0725 0.0800 0.1789 0.0000
Slash I 0.02 0.04 0.02 0.00 0.3763 0.6350 0.1191 0.1562 0.0725 0.0284 0.0188 0.8099
Slash II 0.02 0.05 0.02 0.00 0.3763 1.0000 0.1191 0.1562 0.0725 0.0197 0.0188 0.8099

Note.
Normal I stands for the original fixed-zero threshold THSV-SMN (normal) model.
Normal II stands for the endogenous RWMH threshold THSV-SMN (normal) model.
Slash I stands for the original fixed-zero threshold THSV-SMN (slash) model.
Slash II stands for the endogenous RWMH threshold THSV-SMN (slash) model.
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Table 15: Value at Risk and Expected Shortfall metrics - EURO

Violation Rate Kupiec’s VaR LR test Embrecht´s et al ES measure
(0.01) (0.05) (0.95) (0.99) LRuc (0.01) LRuc (0.05) LRuc (0.95) LRuc (0.99) D (0.01) D (0.05) D (0.95) D (0.99)

Europe

BFX (BEL)
Normal I 0.03 0.08 0.02 0.02 0.1047 0.2036 0.1191 0.3763 0.6827 0.2133 0.8085 0.3824
Normal II 0.02 0.08 0.03 0.02 0.3763 0.2036 0.3229 0.1209 0.5363 0.2819 0.2501 0.3824
Slash I 0.01 0.06 0.02 0.02 1.0000 0.6559 0.1191 0.3763 0.0000 0.3462 0.8085 0.3824
Slash II 0.02 0.09 0.02 0.02 0.3763 0.0971 0.1191 0.3763 0.5363 0.2154 0.8085 0.3824

DAX (GER)
Normal I 0.03 0.09 0.04 0.01 0.1047 0.0971 0.6350 0.0958 0.5161 0.4403 0.0497 0.0000
Normal II 0.04 0.09 0.03 0.01 0.0228 0.0971 0.3229 0.1382 0.3871 0.4403 0.1478 0.0000
Slash I 0.03 0.08 0.06 0.01 0.1047 0.2036 0.6559 0.0583 0.1840 0.3847 0.1579 0.0000
Slash II 0.03 0.08 0.04 0.01 0.1047 0.2036 0.6350 0.0958 0.6092 0.3806 0.0502 0.0000

FTSE 100 (GBR)
Normal I 0.03 0.07 0.04 0.01 0.1047 0.3855 0.6350 0.0958 0.2865 0.2965 0.0950 0.0000
Normal II 0.03 0.08 0.04 0.01 0.1047 0.2036 0.6350 0.0958 0.6426 0.2801 0.0950 1.1485
Slash I 0.02 0.08 0.06 0.00 0.3763 0.2036 0.6559 0.1562 0.3246 0.2801 0.1126 1.9224
Slash II 0.02 0.08 0.03 0.01 0.3763 0.2036 0.0000 0.0000 0.3246 0.2801 0.0129 0.0000

CAC 40 (FRA)
Normal I 0.03 0.08 0.03 0.02 0.1047 0.2036 0.3229 0.1209 0.3713 0.4361 0.3241 0.9619
Normal II 0.03 0.10 0.03 0.01 0.1047 0.0421 0.3229 0.1382 0.3713 0.5355 0.3241 0.0000
Slash I 0.02 0.10 0.06 0.01 0.3763 0.0421 0.6559 0.0583 0.5570 0.5355 0.3503 0.0000
Slash II 0.04 0.09 0.03 0.01 0.0228 0.0971 0.3229 0.1382 0.4127 0.4697 0.3241 0.0000

Note.
Normal I stands for the original fixed-zero threshold THSV-SMN (normal) model.
Normal II stands for the endogenous RWMH threshold THSV-SMN (normal) model.
Slash I stands for the original fixed-zero threshold THSV-SMN (slash) model.
Slash II stands for the endogenous RWMH threshold THSV-SMN (slash) model.

Table 16: Value at Risk and Expected Shortfall metrics - ASIA

Violation Rate Kupiec’s VaR LR test Embrecht´s et al ES measure
(0.01) (0.05) (0.95) (0.99) LRuc (0.01) LRuc (0.05) LRuc (0.95) LRuc (0.99) D (0.01) D (0.05) D (0.95) D (0.99)

Asia

STI (SGP)
Normal I 0.01 0.04 0.02 0.02 1.0000 0.6350 0.1191 0.3763 0.0000 0.0246 0.0704 0.1345
Normal II 0.01 0.05 0.02 0.01 1.0000 1.0000 0.1191 0.2390 0.0000 0.0918 0.0704 0.0000
Slash I 0.01 0.05 0.02 0.01 1.0000 1.0000 0.1191 0.2390 0.0000 0.0307 0.0704 0.0000
Slash II 0.01 0.05 0.03 0.02 1.0000 1.0000 0.3229 0.1209 0.0000 0.0910 0.0225 0.1345

Nikkei 225 (JPN)
Normal I 0.02 0.01 0.06 0.01 0.3763 0.0421 0.6559 0.0583 0.1052 0.2515 0.0857 0.0000
Normal II 0.02 0.09 0.04 0.01 0.3763 0.0971 0.6350 0.0958 0.1424 0.1880 0.0063 0.0000
Slash I 0.02 0.07 0.04 0.01 0.3763 0.3855 0.6350 0.0958 0.0818 0.1128 0.0889 0.0000
Slash II 0.01 0.06 0.03 0.00 1.0000 0.6559 0.3229 0.1562 0.0000 0.0483 0.1101 1.9302

Kospi (KOR)
Normal I 0.03 0.08 0.02 0.00 0.1047 0.2036 0.1191 0.1562 0.4577 0.2099 0.1064 1.0923
Normal II 0.03 0.08 0.01 0.01 0.1047 0.2036 0.0261 1.0000 0.4485 0.1901 0.0267 0.1684
Slash I 0.03 0.08 0.02 0.00 0.1047 0.2036 0.1191 0.1562 0.4577 0.1901 0.1064 0.4295
Slash II 0.02 0.07 0.02 0.00 0.3763 0.3855 0.1191 0.1562 0.2311 0.1355 0.0028 0.4295

Hang Seng (HGK)
Normal I 0.05 0.10 0.07 0.04 0.0040 0.0421 0.3855 0.0018 0.8513 0.5647 0.3538 1.5911
Normal II 0.02 0.09 0.08 0.03 0.3763 0.0971 0.2036 0.0035 0.1964 0.4816 0.5214 1.7830
Slash I 0.02 0.09 0.08 0.04 0.3763 0.0971 0.2036 0.0010 0.1964 0.5271 0.5214 1.6452
Slash II 0.03 0.10 0.08 0.02 0.1047 0.0421 0.2036 0.0118 0.4543 0.5227 0.5214 1.4844

Note.
Normal I stands for the original fixed-zero threshold THSV-SMN (normal) model.
Normal II stands for the endogenous RWMH threshold THSV-SMN (normal) model.
Slash I stands for the original fixed-zero threshold THSV-SMN (slash) model.
Slash II stands for the endogenous RWMH threshold THSV-SMN (slash) model.
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Finally, in the right-tailed 1% VaR, violations ranges from 0 to 2. Regarding LR test, except for the F-THSV-S
in IPC (MEX) and the F-THSV-N, F-THSV-S and E-THSV-S for Merval (ARG), in all models and markets we
have no evidence to reject the null and for the ES accuracy measure D statistic, the E-THSV-N model ranks first
for Bovespa (BRA), the F-THSV-S for IPC (MEX), the F-THSV-S for Merval (ARG) and the F-THSV-S and the
E-THSV-N for Ipsa (CHL).

For the Euro region, in the left-tailed 1% VaR, violations ranges from 1 to 4. Regarding LR test, except for the
E-THSV-N in DAX (GER) and the E-THSV-S for CAC 4O (FRA), in all models and markets we have no evidence
to reject the null and for the ES accuracy measure D statistic, the F-THSV-S model ranks first for BFX (BEL),
the F-THSV-S for DAX (GER), the F-THSV-N for FTSE 100 (GBR) and the F-THSV-N and the E-THSV-N for
CAC 40 (FRA). In in the left-tailed 5% VaR, violations ranges from 6 to 10. Regarding LR test, except for the
E-THSV-N and the F-THSV-S for CAC 4O (FRA), in all models and markets we have no evidence to reject the
null and for the ES accuracy measure D statistic, the F-THSV-N model ranks first for BFX (BEL), the E-THSV-S
for DAX (GER), the F-THSV-N, F-THSV-S and the E-THSV-S tie for FTSE 100 (GBR) and the F-THSV-N for
CAC 40 (FRA). Next, in the right-tailed 5% VaR, violations ranges from 2 to 6. Regarding LR test, except for the
E-THSV-S in FTSE 100 (GBR), in all models and markets we have no evidence to reject the null and for the ES
accuracy measure D statistic, the E-THSV-N model ranks first for BFX (BEL), the F-THSV-N for DAX (GER), the
E-THSV-S for FTSE 100 (GBR) and the F-THSV-N, E-THSV-N and the E-THSV-S for CAC 40 (FRA). Finally,
in the right-tailed 1% VaR, violations ranges from 1 to 2. Regarding LR test, except for the E-THSV-S in FTSE
100 (GBR), in all models and markets we have no evidence to reject the null and for the ES accuracy measure D
statistic, all models tie for BFX (BEL) and DAX (GER), the F-THSV-N and the E-THSV-S also tie for FTSE 100
(GBR) and the E-THSV-N, F-THSV-S and the E-THSV-S for CAC 40 (FRA) also tie.

For the Asia region, in the left-tailed 1% VaR, violations ranges from 1 to 5. Regarding LR test, except for the
F-THSV-N in Hang Seng (HGK), in all models and markets we have no evidence to reject the null and for the ES
accuracy measure D statistic, for STI (SGP) all models tie, the E-THSV-S for Nikkei 225 (JPN) ranks first, the
E-THSV-S for Kospi (KOR) and the E-THSV-N and the F-THSV-S for Hang Seng (HGK). In in the left-tailed 5%
VaR, violations ranges from 4 to 10. Regarding LR test, except for the F-THSV-N in the Nikkei 225 (JPN) and
the F-THSV-N for Hang Seng (HGK), in all models and markets we have no evidence to reject the null and for
the ES accuracy measure D statistic, the F-THSV-N model ranks first for STI (SGP), the E-THSV-S for Nikkei
225 (JPN), the E-THSV-S for Kospi (KOR) and the E-THSV-N for Hang Seng (HGK). Next, in the right-tailed 5%
VaR, violations ranges from 2 to 8. Regarding LR test, except for the E-THSV-N in Kospi (KOR), in all models
and markets we have no evidence to reject the null and for the ES accuracy measure D statistic, the E-THSV-S
model ranks first for STI (SGP), the E-THSV-N for Nikkei 225 (JPN), the E-THSV-S for Kospi (KOR) and the
F-THSV-N for Hang Seng (HGK). Finally, in the right-tailed 1% VaR, violations ranges from 0 to 4. Regarding
LR test, except for Hang Seng (HGK), in all models and markets we have no evidence to reject the null and for the
ES accuracy measure D statistic, E-THSV-N and F-THSV-S models tie for STI (SGP), the F-THSV-N, E-THSV-N
and the F-THSV-S also tie for Nikkei 225 (JPN), E-THSV-N ranks first for Kospi (KOR) and the E-THSV-S for
Hang Seng (HGK) as well.

From the risk metrics statistics results we reinforce the fact that markets behave differently and a tailored-analysis
should be made in order to assess the study in the market risk. Interestingly, Asia region leans towards our extended
THSV-S model. From North America, Latam and Euro, results vary widely. For all that reasons, we present an
additional graphical approach in order to clarify how violations occur. Figure 26 provides details in the rolling
one-step forecast procedure. We use the TSX (CAN) index as an example. As previous mentioned, we have used a
rolling forecast window for the last one-hundred observations in our complete data-set. In all cases, the estimation
of the models have been run over the T − 100 observations. The one-step rolling forecast, in addition, estimates
the model another one-hundred times. Thus, for each estimation, we forecast the current T + 1 observation. Then,
we roll the data one step in a way that we keep the total number T observations but on each step we move forward
one-step. We do so, from T + 1 to T + 100. Also, for each forecast we have sampled 40,000 draws (with a 10,000
burnin period). With all that mentioned, Figure 26 contrasts the out-of-sample observations with the 0.01 percentile
computed independently for each point in the endogenous THSV Normal (dotted red lines) and the endogenous
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THSV Slash (dotted blue lines) and highlights the violations i.e. the true out-of-sample data-validation that is lower
than the 0.01 percentile in both procedures. Those 0.01 percentiles for each point reflect the estimated left-tailed
Value at Risk. In both cases we use the RWMH endogenous threshold methodology (for results over the fixed-
threshold forecasts and the left and right tailed 99% and 95% VaR we refer the reader to already described Tables
13, 14, 15 and 16).

Figure 26: Out-of-sample violations in one-step projection
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Finally, Figure 27 presents the same information, but for all the stock market indices that have been studied. We
fixed the y-axis in order to highlight how one-step-ahead rolling projections differ among markets and also how the
in-sample data, for where we present the last fifty observations -black lines- also differ in variability.

4 Concluding remarks

Let us recall that our problem statement sought to study the impact in goodness-of-fit and prediction accuracy when
we allow for an endogenous threshold extension in the THSV-SMN model developed by Abanto & Garrafa (2019).
Yet, the research has a second main objective: we submit our model to a regional analysis for stock market indices
across four regions in the globe. Recalling the objectives, along the document we have continually shown how
markets do behave differently in terms of summary statistics, estimated posterior parameters’ densities, goodness-
of-fit criteria, prediction accuracy and risk metrics properties.
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Figure 27: Out-of-sample violations in one-step projection – Stock Market Indices

●

●
●

●

●●

●

●●●

●
●●
●

●●●●
●
●●●●

●
●

●

●

●
●●
●

●

●
●●

●
●

●●

●

●
●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●
●
●

●●
●●

●

●

●

●
●●
●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

0 50 100 150

−
8

−
4

0
4

S&P 500 (USA)

Index

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

0 50 100 150

−
8

−
4

0
4

Nasdaq (USA)

Index

●

●●
●

●
●

●

●

●●

●
●●●●●

●●
●●

●
●●●

●●
●●
●
●●●

●
●●●

●
●●●

●

●●
●●

●●
●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●●
●

●●●●

●

●

●

●
●●
●
●

●

●●
●●
●●

●
●

●

●●

●
●

●

●

●

●

●

●

0 50 100 150

−
8

−
4

0
4

DowJones (USA)

Index

●●

●●
●
●●
●
●●
●

●

●●
●
●
●●●

●
●●●

●●
●
●
●

●
●●●●●●

●
●
●
●

●

●
●
●●

●●
●

●

●●●
●●
●

●

●
●

●

●
●

●●

●
●
●
●

●

●●

●
●
●
●
●●●

●
●
●
●●

●●
●●
●●
●
●●
●
●

●
●

●

●

●

0 50 100 150

−
8

−
4

0
4

TSX (CAN)

Index

●
●
●●

●

●

●●

●●

●
●

●
●●
●

●●

●

●
●
●
●

●

●●

●

●

●●

●●
●
●

●●
●

●

●●

●
●
●
●●●

●
●●
●●

●
●●

●

●●

●●

●
●●

●

●

●●
●

●●●

●●
●

●

●●

●
●●

●

●

●

●
●
●
●
●

●
●●●●●

●

●
●

●

0 50 100 150

−
8

−
4

0
4

Bovespa (BRA)

Index

●●●●

●

●

●
●

●

●

●●●●●●
●

●
●
●
●●●●

●
●

●

●●
●

●
●●
●●

●
●
●

●
●●●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●
●

●
●●
●

●

●
●

●
●
●

●●
●●

●

●

●

●

●●

●

●

●
●
●

●●
●
●
●

●
●
●

●●
●
●
●●
●

●

0 50 100 150
−

8
−

4
0

4

IPC (MEX)

Index

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●
●
●
●
●

●

●●

●●
●

●

●
●

●●

●
●

●

●●

●

●

●

●
●●

●

●●

●
●

●
●

●
●

●●

●

●
●
●
●●

●

●
●
●

●●

0 50 100 150

−
8

−
4

0
4

Merval (ARG)

Index

●●
●●
●●
●
●
●
●
●
●
●
●●●●

●
●
●●●

●
●●

●

●●●
●
●●●●

●
●
●●●

●

●

●
●●●

●●
●
●

●
●

●
●●●●●●

●●
●●●●●

●
●
●

●
●●
●
●●●

●

●●
●
●●●●●●

●●●●
●
●●
●
●●
●●●

0 50 100 150

−
8

−
4

0
4

IPSA (CHL)

Index

●
●●●

●
●
●●

●
●●●

●●
●
●
●
●●
●●
●

●

●
●●●●●

●●
●●●

●

●●●

●●

●●
●
●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●
●
●●

●

●
●

●●●

●

●

●

●
●●
●
●

●
●

●●

●●●
●

0 50 100 150

−
8

−
4

0
4

BFX (BEL)

Index

●

●
●●●

●
●
●

●
●

●●●●●

●
●
●●●

●
●●

●
●●
●
●

●

●●
●

●

●

●

●●
●

●●

●●

●

●●

●

●

●
●
●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●

●●

●●
●

●

●

●

●●●
●
●

●●

●●

●
●●

0 50 100 150

−
8

−
4

0
4

DAX (GER)

Index

●●

●●●●
●
●

●
●
●

●
●●●

●
●●

●

●
●

●
●

●●●●

●

●
●●
●

●●●

●

●
●●

●
●
●
●
●
●
●

●

●
●
●
●●
●●

●

●

●

●

●
●

●
●

●

●

●●
●

●●
●●●

●●●●
●●

●
●●●

●●

●

●●
●●●

●●

●

●●
●
●

0 50 100 150

−
8

−
4

0
4

FTSE 100 (GBR)

Index

●●●●
●
●

●●

●●●
●
●●
●●●

●●●

●

●
●

●●
●●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●
●

●
●
●

●

●●●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●

●
●●
●

●

●●

●●

●
●

●

●
●●●

●

●

●●

●●

●
●●●

0 50 100 150

−
8

−
4

0
4

CAC 40 (FRA)

Index

●
●
●●
●●
●
●
●

●●●●●
●
●
●●
●
●

●

●●●●●●
●
●●●

●●●
●

●
●●
●

●

●
●●
●●●●●

●●●
●

●
●
●

●

●

●

●
●●●

●●
●
●
●

●
●
●
●
●
●
●
●●●●

●

●●
●

●●●●●

●
●
●
●
●●●

●●
●
●●

0 50 100 150

−
8

−
4

0
4

STI (SGP)

Index

●

●

●

●
●

●
●

●

●
●

●

●●

●

●
●
●●

●

●●

●

●●
●

●

●●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●●●
●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●●●
●●

●●

●
●

●

●
●

●
●

●●
●

●●

●

●

●

0 50 100 150

−
8

−
4

0
4

Nikkei 225 (JPN)

Index

●
●
●●●

●

●●●
●
●●●●●●

●
●

●●
●

●●

●

●
●

●

●
●●
●●

●

●
●
●

●●●

●●
●
●
●
●
●

●

●
●●

●

●
●●
●

●

●
●

●

●

●●●

●●
●

●

●●
●●●

●●●
●

●
●
●
●

●●
●

●

●
●
●
●
●●

●
●

●

●

●●

0 50 100 150
−

8
−

4
0

4

Kospi (KOR)

Index

●
●

●

●

●
●

●
●
●●
●

●
●

●●●●●
●
●
●

●
●

●

●
●
●
●

●

●●●●
●

●

●

●●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●●

●

●
●
●

●

●●

●

●

0 50 100 150

−
8

−
4

0
4

Hang Seng (HKG)

Index

454545



Because of that, we conclude that our estimation results supports our hypothesis. The THSV-SMN model with
endogenous threshold outperforms the fixed-zero threshold in goodness-of-fit criteria using the WAIC statistic in
the majority of our sample analysis. But most importantly, results show evidence that stock market indices do have a
specific behavior. Specially, evidence in the parameters’ posterior distributions indicate that there exists differences
within and across regions. Regarding the risk metric statistics, the use of the THSV-SMN models in order to assess
value at risk computation and analysis has also shown that we ought to be prudent assessing the distribution VaR
analysis: results vary widely but in the Asia region, the endogenous THSV slash model outperforms the others.

Regarding the parameters’ posterior distributions, results clear show evidence on the existence of a threshold.
More specifically, the persistence parameters, βst , in the compound return and the location parameters, αst , in the
log volatility equations do behave differently according to its regime. Future research could also aim to study the
impact in the implementation of a more parsimonious model, yet we anticipate that time-efficiency gains would be
marginal.

Finally, results indicate that stock market indices have also clear differences across regions. Posterior modes of
the parameters vary within and across regions. Nevertheless, those specific and tailored cases can be covered by
these following facts: (i) the lower variance, σ2

st
in the log-volatility equation (ii) the close-to-zero location, αst ,

and close-to-unity persistence, ϕst , in the log-volatility equation, (iii) in our sample data analysis, the threshold, r,
ranges close to zero and clearly differentiates the posterior distributions in the compound return equation, yt, and
(iv) posterior mean of the threshold, r, locates slightly above zero and evidence appear to link this threshold value
to the mean of the observed compound return data. Future research and analysis may address this issue.

5 Discussion

In this research, we have proposed an endogenous threshold stochastic volatility model with scale mixture of
normal distributions as an alternative to the standard normal -symmetric- assumption in the conditional distribution
of the returns. The THSV-SMN class of models have proven to be flexible and comprehensive in the treatment
of both the skewness and the kurtosis in the error distribution. Within a Bayesian framework, we have extended
the MCMC sampling procedure proposed in Abanto & Garrafa (2019) in order to estimate all the parameters and
latent quantities in our proposed THSV-SMN model allowing for an additional sampling step for the threshold. As
a consequence of the MCMC algorithm, we have been able to produce an estimate of the latent information process
which can be used in financial modeling. Also, we have applied our methods to the analysis of sixteen representative
stock market indices across four regions –i.e. North America, Latam, Europe and Asia–, whose results mainly have
shown that exists an important difference in the behavior within and across regions: stock market indices do behave
differently and the study of each case should be addressed independently. As a consequence, an endogenous
threshold has shown the capacity to improve the robustness in the majority of the cases.

Future research topic follows directly from the empirical application of our proposed endogenous threshold using
the order statistics methodology. Additional extensions also can be assessed allowing for a non-zero correlation
between the innovations in the compound return and the log-volatility equations.
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Appendix: Code Quality Review – Extended THSVS Simulation

Part I: Functions

a. THSV-S simulation

The function defined bellow simulates the following THSV-S model:

yt = µst + βst yt−1 + e(ht/2)λ−1/2
t ϵt

ht+1 = αst+1 + ϕst+1ht + σS t+1ηt

ϵt ∼ N(0, 1)

ηt ∼ N(0, 1)

st =

{
1 if yt−1 ≥ r
0 if yt−1 < r

The inputs are described bellow as well:

Table 17: Inputs for THSVS

Argument Description

µ0, µ1 Constants terms of (1)
α0, α1 Constants terms of (2)
β0, β1 AR(1) coefficients terms of yt

ϕ0, ϕ1 AR(1) coefficients terms of ht+1
σ0, σ1 Variance coefficients terms of ηt

ν Mixture Scale coefficient
r Threshold value
p11 Transition probability matrix main coefficient
y1 Initial value for the compounded return equation
n Sample size desired

We begin the sequence at t = 1 and designed the vectors so they all can have the same size. That is, the vectors
yt, ϵt, ηt, ht, λt and S t are defined as:

y1:N =
[
y1, y2, ..., yN−1, yN

]
ϵ1:N = [ϵ1, ϵ2, ..., ϵN−1, ϵN]

η1:N =
[
η1, η2, ..., ηN−1, ηN

]
h1:N = [NA, h2, ..., hN−1, hN]

λ1:N = [NA, λ2, ..., λN−1, λN]

S1:N = [NA, S 2, ..., S N−1, S N]

Finally, the initial value for the log-volatility is defined as follows:

h2 =
αS t=2

1 − ϕS t=2

+

√√
σ2

S t=2

1 − ϕ2
S t=2

· η2
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With the initial values y1 and h2 we can obtain y2 and the recursion can begin.

1 sim_thsv <- function(mu_0, mu_1, beta_0, beta_1, alpha_0, alpha_1,
2 phi_0, phi_1, sigma2_0, sigma2_1, nu, y_1, r, n){
3 y_t <- rep(NA,n)
4 h_t <- rep(NA,n)
5 s_t <- rep(NA, n)
6 lambda_t <- rep(NA, n)
7

8 y_t[1] <- y_1
9 s_t[2] <- ifelse(y_1 > r, 1, 0)

10 lambda_t[2] <- rbeta(1,nu,1)
11 alpha <- (1 - s_t[2])*alpha_0 + (s_t[2]*alpha_1)
12 phi <- (1 - s_t[2])*phi_0 + (s_t[2]*phi_1)
13 sigma2 <- (1 - s_t[2])*sigma2_0 + (s_t[2]*sigma2_1)
14 mu <- (1 - s_t[2])*mu_0 + (s_t[2]*mu_1)
15 beta <- (1 - s_t[2])*beta_0 + (s_t[2]*beta_1)
16 h_t[2] <- (alpha/(1-phi)) + sqrt(sigma2/(1-phiˆ2))*rnorm(1)
17 y_t[2] <- mu + (beta*y_t[1]) +
18 (exp(h_t[2]/2)*(lambda_t[2]ˆ(-0.5))*rnorm(1))
19

20 for(j in 3:n){
21 s_t[j] <- ifelse(y_t[j-1] > r, 1, 0)
22 lambda_t[j] <- rbeta(1,nu,1)
23 alpha <- (1 - s_t[j])*alpha_0 + (s_t[j]*alpha_1)
24 phi <- (1 - s_t[j])*phi_0 + (s_t[j]*phi_1)
25 sigma2 <- (1 - s_t[j])*sigma2_0 + (s_t[j]*sigma2_1)
26 mu <- (1 - s_t[j])*mu_0 + (s_t[j]*mu_1)
27 beta <- (1 - s_t[j])*beta_0 + (s_t[j]*beta_1)
28 h_t[j] <- alpha + (phi*h_t[j-1]) + (sqrt(sigma2)*rnorm(1))
29 y_t[j] <- mu + (beta*y_t[j-1]) +
30 (exp(h_t[j]/2)*(lambda_t[j]ˆ(-0.5))*rnorm(1))
31 }

32 return(THSVS <- data.table(vY = y_t, vH = h_t, vS = s_t, vL = lambda_t))
33 }

We have simulated N = 4000 observations with the following values for the mean of our true parameters’ distribu-
tions:

µ0 = 0.0825 β0 = −0.0680 α0 = −0.0062 ϕ0 = 0.9865 σ2
0 = 0.0250

µ1 = 0.0183 β1 = 0.0130 α1 = −0.0154 ϕ1 = 0.9854 σ2
1 = 0.0251

r = 0 ν = 1.7532

Figure (28) presents the simulated compound returns and the latent log-volatility:
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Figure 28: Simulated data - Returns and Log-volatility

0 1000 2000 3000 4000

−
15

−
10

−
5

0
5

10

Simulated Compound Returns

Observations

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−
15

−
10

−
5

0
5

10

Compound Returns boxplot

0 1000 2000 3000 4000

−
4

−
3

−
2

−
1

0
1

2

Simulated log−volatility

Observations

●

●●
●
●●
●

●

●●●

●●

●●

●●

●

●

●
●

●

●
●●

●

●

●

●
●●

●

●

●
●
●●

●

●
●

●
●

●

●●

●
●

●●

●●●

●

●
●
●
●●●●
●●

●

●
●

●●

●●

●

●

●

●
●

●
●

●

●●●
●
●
●

●

●

●
●

●●●

●●●
●
●

●

●
●

●
●
●

●
●
●

●

●●●●●●

●

−
4

−
3

−
2

−
1

0
1

2

Log−volatility boxplot

b. randis

The randis function returns a random integer value given a vector of probabilities. This is an auxiliary function:

1 randis <- function(weight){
2 ns <- length(weight)
3 ff <- as.integer(rep(0,ns+1))
4 f2 <- as.integer(rep(0,1))
5 f1 <- 0
6 gg <- cumsum(c(f1,weight))
7 uu <- runif(1)
8

9 for(j in 1:(ns+1)){
10 ff[j] <- ifelse( gg[j] < uu, 1, 0)
11 f2 <- sum(ff)
12 }

13 return(f2)

c. updvZ

We use the ‘updvZ function in the process of sampling the log-volatilities. We have defined:

zt = ln
(
yt − µst − βst yt−1

)2

So, the vector zt has the following structure compared with yt:

z1:N = [NA, z2, ..., zN−1, zN]

y1:N =
[
y1, y2, ..., yN−1, yN

]
1 updvZ <- function(N, vY, vMu, vBeta){
2 updvZ <- rep(0,N)
3 updvZ[1] <- NA
4 updvZ[N] <- NA
5 for(t in 2:N){
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6 updvZ[t] <- log( (vY[t] - vMu[t] - (vBeta[t]*vY[t-1]) )ˆ2 )
7 }

8 return(updvZ)
9 }

d. updmix

Recall that zt, after the log-square transformation, can be re-written as:

zt = − ln λt + ht + ln ϵ2
t

where ln ϵ2
t ∼ ln χ2

1. Now, note that we have a non-Gaussian state space model. Following Kim et al. (1998) and
Omori et al. (2007), we approximate ln ϵ2

t by a finite mixture of normal distributions. The updmix function returns
a vector of indices from where we are going call both the mean and variance from the 10 distributions of normal
densities that gives an approximation of the ln χ2

1 density:

f (ln ϵ2
1 ) =

P∑
i=1

qi f (ln ϵ2
t |kt = i)

where kt is a discrete mixing variable, ln ϵ2
t |kt = i ∼ N(ϑi, ϖ

2
i ) and qi = Pr(kt = i):

1 updmix <- function(N, vY, vH, vL, pmix, mumix, varmix){
2 index <- rep(NA,N)
3 gmix <- length(pmix)
4

5 for(jt in 2:N){
6 qf <- rep(0,gmix)
7 pf <- rep(0,gmix)
8 for(k in 1:gmix){
9 qf[k] <- pmix[k] * dnorm( vZ[jt] + log(vL[jt]) -

10 vH[jt] - mumix[k], sd = sqrt(varmix[k]) )
11 }

12 pf <- qf / sum(qf)
13 index[jt] <- randis(pf)
14 }

15 return(index)
16 }

e. updvS

The updvS function computes the vector St. Recall that the THSV-SMN requires:

S t =

{
1 if yt−1 > r
0 if yt−1 ≤ r

So, the structure of the St vector takes the form:

S1:N = [NA, S 2, ..., S N−1, S N]

The r input will give us the flexibility to change the conditions and compute St with different characteristics.
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1 updvS <- function(N, r, vY){
2 vS <- rep(0, N)
3 vS[1] <- NA
4 for (jt in 2:N ){
5 vS[jt] <- ifelse( vY[jt-1] > r, 1, 0)
6 }

7 return(vS)
8 }

f. updsigma

The updsigma function computes the full conditional of σ2
S t

for i = 0, 1. We have set as prior σ2
st
∼ IG(5, 0.5) and

the full conditional is given by:

σ2
st
∼ IG

(
n∗i
2
,

S ∗i
2

)
where

n∗i = ni +

N∑
t=0

I(S t+1 = i)

S ∗i = S i +

N∑
t=0

(ht+1 − H′t+1φst )
2 ∀S t = 0, 1

with H′t+1 = [1 ht] and φst =
[
αst ϕst

]′:
1 updsigma <- function(N, vH, vAlpha, vPhi, g_S0, g_S1, g_n0, g_n1, vS){
2 sigma2upd <- rep(0,2)
3 S00 <- g_S0
4 S11 <- g_S1
5 n0 <- g_n0 + length(na.omit(vS[vS==0]))
6 n1 <- g_n1 + length(na.omit(vS[vS==1]))
7

8 for (j in 3:N ){
9 if(vS[j] == 0)

10 S00 <- S00 + (( vH[j] - vAlpha[j] - (vPhi[j] * vH[j-1]) )ˆ2)
11 else S00 <- S00 + 0
12

13 if(vS[j] == 1)
14 S11 <- S11 + (( vH[j] - vAlpha[j] - (vPhi[j] * vH[j-1]) )ˆ2)
15 else S11 <- S11 + 0
16 }

17 sigma2upd[1] <- 1 / rgamma(1, shape = n0/2, rate = S00/2)
18 sigma2upd[2] <- 1 / rgamma(1, shape = n1/2, rate = S11/2)
19 return(sigma2upd)
20 }

Figure (29) presents the posterior 20,000 draws of σ2
st

where the blue vertical lines are the true simulated means:
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Figure 29: Posterior draws of σ2
st
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g. updalphaphi

The updalphaphi function computes the full conditional of φst for i = 0, 1. We have set as prior

φst ∼ N2[|ϕst |<1](φ̄st , S φ)

and the full conditional is given by:

φst ∼ N2[|ϕst |<1]
(
φ̄∗st
,Σφ

)
where N2[|ϕst |<1] denotes the bi-variate truncated normal distribution and

φ̄∗st
= Σφ

S −1
φ φ̄st +

N∑
t=0

ht+1Ht+1

σ2
st


Σφ =

S −1
φ +

N∑
t=0

Ht+1H′t+1

σ2
st


−1

∀S t = 0, 1

1 updalphaphi <- function(vH, N, gSvp0, gSvp1, gvp0, gvp1, vSigma2, vS){
2 vphi0 <- rep(0,2)
3 vphi1 <- rep(0,2)
4 s00 <- matrix(0,2,2)
5 s01 <- matrix(0,2,2)
6 m00 <- rep(0,2)
7 m01 <- rep(0,2)
8 mvp0 <- rep(0,2)
9 mvp1 <- rep(0,2)

10 Ht <- matrix(0,N,2)
11 Ht[,1] <- 1
12 Ht[,2] <- vH
13

14 for (j in 3:N){
15

16 if(vS[j] == 0)
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17 s00 <- s00 + (( Ht[j-1,] % * % t(Ht[j-1,]) ) / vSigma2[j])
18 else s00 <- s00 + matrix(0,2,2)
19

20 if(vS[j] == 0)
21 m00 <- m00 + (( vH[j]*Ht[j-1,] ) / vSigma2[j])
22 else m00 <- m00 + 0
23 }

24

25 s00 <- s00 + solve(gSvp0)
26 m00 <- m00 + (solve(gSvp0) % * % gvp0)
27 invs00 <- solve(s00)
28 mvp0 <- invs00 % * % m00
29 B0 <- chol(invs00)
30 d0 <- 2
31

32 while (d0 > 0){
33 vphi0 <- mvp0 + (t(B0) % * % rnorm(2))
34 if ( (vphi0[2] > -1) & (vphi0[2] < 1) )
35 {d0 = 0}

36 }

37

38 for (j in 3:N){
39

40 if(vS[j] == 1)
41 s01 <- s01 + (( Ht[j-1,] % * % t(Ht[j-1,]) ) / vSigma2[j])
42 else s01 <- s01 + matrix(0,2,2)
43

44 if(vS[j] == 1)
45 m01 <- m01 + ( vH[j]*Ht[j-1,] ) / vSigma2[j]
46 else m01 <- m01 + 0
47 }

48

49 s01 <- s01 + solve(gSvp1)
50 m01 <- m01 + (solve(gSvp1) % * % gvp1)
51 invs01 <- solve(s01)
52 mvp1 <- invs01 % * % m01
53 B1 <- chol(invs01)
54 d1 <- 2
55

56 while (d1 > 0){
57 vphi1 <- mvp1 + (t(B1) % * % rnorm(2))
58 if ( (vphi1[2] > -1) & (vphi1[2] < 1) )
59 {d1 = 0}

60 }

61

62 vphi <- cbind(t(vphi0), t(vphi1))
63 colnames(vphi) <- c("alpha0", "phi0", "alpha1", "phi1")
64 return(vphi)
65 }

Figure (30) presents the posterior 20,000 draws of φst where the blue vertical lines are the true simulated means
(first row: α0, ϕ0; second row: α1, ϕ1):
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Figure 30: Posterior draws of φst =
(
αst , ϕst

)
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h. updmubeta

The updmubeta function computes the full conditional of ψst for i = 0, 1. We have set as prior

ψst ∼ N2[|βst |<1](ψ̄st , S ψ)

and the full conditional is given by:
ψst ∼ N2[|βst |<1]

(
ψ̄∗st
,Σψ

)
where N2[|βst |<1] denotes the bi-variate truncated normal distribution and

ψ̄∗st
= Σψ

S −1
ψ ψ̄st +

N∑
t=0

λt exp (−ht)rtyt


Σψ =

S −1
ψ +

N∑
t=0

λt exp (−ht)rtr′t

 ∀S t = 0, 1

where r′t =
[
1 yt−1

]
1 updmubeta <- function(vY, vH, vL, N, gSps0, gSps1, gps0, gps1, vS){
2 vpsi0 <- rep(0,2)
3 vpsi1 <- rep(0,2)
4 S00 <- matrix(0,2,2)
5 S01 <- matrix(0,2,2)
6 m00 <- rep(0,2)
7 m01 <- rep(0,2)
8 mps0 <- rep(0,2)
9 mps1 <- rep(0,2)

10

11 Mt <- matrix(0,N,2)
12 Mt[,1] <- 1
13 Mt[,2] <- vY
14

15 for (j in 2:N){
16

17 if(vS[j] == 0)
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18 S00 <- S00 + ( vL[j]*exp(-vH[j]) * (Mt[j-1,] % * % t(Mt[j-1,]) ) )
19 else S00 <- S00 + matrix(0,2,2)
20

21 if(vS[j] == 0)
22 m00 <- m00 + (Mt[j-1,] * vL[j] * exp(-vH[j]) * vY[j])
23 else m00 <- m00 + 0
24 }

25

26 S00 <- S00 + solve(gSps0)
27 m00 <- m00 + (solve(gSps0) % * % gps0)
28 invS00 <- solve(S00)
29 mps0 <- invS00 % * % m00
30 B0 <- chol(invS00)
31 d0 <- 2
32

33 while (d0 > 0){
34 vpsi0 <- mps0 + (t(B0) % * % rnorm(2))
35 if ( (vpsi0[2] > -1) & (vpsi0[2] < 1) )
36 {d0 = 0}

37 }

38

39 for (j in 2:N){
40

41 if(vS[j] == 1)
42 S01 <- S01 + ( vL[j]*exp(-vH[j]) * (Mt[j-1,] % * % t(Mt[j-1,]) ) )
43 else S01 <- S01 + matrix(0,2,2)
44

45 if(vS[j] == 1)
46 m01 <- m01 + (Mt[j-1,] * vL[j] * exp(-vH[j]) * vY[j])
47 else m01 <- m01 + 0
48 }

49

50 S01 <- S01 + solve(gSps1)
51 m01 <- m01 + (solve(gSps1) % * % gps1)
52 invS01 <- solve(S01)
53 mps1 <- invS01 % * % m01
54 B1 <- chol(invS01)
55 d1 <- 2
56

57 while (d1 > 0){
58 vpsi1 <- mps1 + (t(B1) % * % rnorm(2))
59 if ( (vpsi1[2] > -1) & (vpsi1[2] < 1) )
60 {d1 = 0}

61 }

62

63 vpsi <- cbind(t(vpsi0), t(vpsi1))
64 colnames(vpsi) <- c("mu0", "beta0", "mu1", "beta1")
65 return(vpsi)
66 }

Figure (31) presents the posterior 20,000 draws of ψst where the blue vertical lines are the true simulated means
(first row: µ0, β0; second row: µ1, β1):
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Figure 31: Posterior draws of ψst =
(
µst , βst

)
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i. updvH

The updvH function simulates the states for the log-volatility ht. We use the simulation smoothing method proposed
by McCausland et al. (2011) to sample from the states in the system defined by the following equations:

zt = − ln λt + ht + ξt, ξt|kt = i ∼ N(ϑi, ϖ
2
i )

ht+1 = αst+1 + ϕst+1ht + σst+1ηt

Conditional to kt and S t, the system follows a linear Gaussian state space model. This method has been already
described in Section 2.4. Nevertheless, the simulations using the MMP procedure for the j − th iteration are also
described below:

MMP algorithm

1. Simulate h( j)
T ∼ N

(
m( j)

T , Σ
( j)
T

)
2. For t = T − 1, ..., 1, simulate h( j)

t ∼ N
(
m( j)

t − Σ
( j)
t Ω

( j)
t,t+1h( j)

t+1, Σ
( j)
t

)
where

Σ1 =
1
Ω11

Σt =
(
Ωt,t −Ω

2
t−1,tΣt−1

)−1

m1 = Σ1c1

mt = Σt
(
ct −Ωt−1,tmt−1

)
Ω, a T × T symmetric matrix, on its general form is defined as follows:

Ω =



Ω11 Ω12 0 ... 0
Ω12 Ω22 Ω23 ... 0

0 Ω23
. . .

. . .
...

...
...

. . . ΩT−1,T−1 ΩT−1,T
0 0 ... ΩT−1,T ΩT,T


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where

Ω11 = A1,1 +
[
(1 − S 1)ϕ0 + S tϕ1

]
× A1,2 +

1
Pt

Ωtt = At,1 +
[
(1 − S t)ϕ0 + S tϕ1

]
× At,2 + At−1,2

ΩTT =
1
ϖ2

kT

+ AT−1,2

Ωt,t+1 = −
[
(1 − S t)ϕ0 + S tϕ1

]
× At,2

We also have defined At as:

At =


A1,1 A1,2
A2,1 A2,2
...

...

At,1 At,2


where

A1,t =
1
ϖ2

kt

A2,t =
1[

(1 − S t)σ2
0 + S tσ

2
1

]
and

c1 = A1,1 ×
[
z1 + log(λ1) + ϑk1

]
−

[
(1 − S 1)ϕ0 + S 1ϕ1

]
× A1,2 × [(1 − S 1)α0 + S 1α1] +

a1

P1

ct = A1,1 ×
[
zt + log(λt) + ϑkt

]
−

[
(1 − S t)ϕ0 + S tϕ1

]
× At,2 × [(1 − S t)α0 + S tα1]

+ At−1,2 × [(1 − S t−1)α0 + S t−1α1]

cT =
1
ϖ2

kT

[
zT + log(λT ) + ϑkT

]
+ AT−1,2 × [(1 − S T−1)α0 + S T−1α1]

with
a1 =

αS t=1

1 − ϕS t=1

P1 =
σ2

S t=1

1 − ϕ2
S t=1

1 updvH <- function(N, vZ, vL, vSigma2, vAlpha, vPhi, kmix, mumix, varmix){
2 P1 <- vSigma2[2] / (1 - vPhi[2]ˆ2)
3 a1 <- vAlpha[2] / (1 - vPhi[2])
4 states <- rep(NA, N)
5 Omegat <- rep(0, N)
6 Omegattplus1 <- rep(0, N)
7 Sigmat <- rep(0, N)
8 mt <- rep(0, N)
9 At <- matrix(NA, N, 2)

10 ct <- rep(NA,N)
11

12 for (j in 2:N){
13 At[j,1] <- 1 / varmix[kmix[j]]
14 At[j,2] <- 1 / vSigma2[j]
15 }

16

17 Omegat[2] <- At[2,1] + At[2,2]*((vPhi[2])ˆ2) + (1/P1)
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18 ct[2] <- At[2,1]*(vZ[2] + log(vL[2]) - mumix[kmix[2]]) -
19 (vPhi[2]*At[2,2]*vAlpha[2]) + (a1/P1)
20 Sigmat[2] <- 1/Omegat[2]
21 mt[2] <- Sigmat[2]*ct[2]
22 Omegattplus1[2] <- -vPhi[2]*At[2,2]
23

24 for(j in 3:(N-1) ){
25 Omegat[j] <- At[j,1] + (At[j,2]*(vPhi[j]ˆ2)) + At[j-1,2]
26 ct[j] <- At[j,1]*(vZ[j] + log(vL[j]) - mumix[kmix[j]]) -
27 (vPhi[j]*At[j,2]*vAlpha[j]) + (At[j-1,2]*vAlpha[j-1])
28 Omegattplus1[j] <- -vPhi[j]*At[j,2]
29 Sigmat[j] <- 1 / (Omegat[j] - (Omegattplus1[j-1]ˆ2)*Sigmat[j-1])
30 mt[j] <- Sigmat[j]*(ct[j] - Omegattplus1[j-1]*mt[j-1])
31 }

32

33 Omegat[N] <- 1/varmix[kmix[N]] + At[N-1,2]
34 ct[N] <- (1/varmix[kmix[N]])*(vZ[N] + log(vL[N]) - mumix[kmix[N]])
35 + (At[N-1,2]*vAlpha[N-1])
36 Sigmat[N] <- 1/(Omegat[N] - ((Omegattplus1[N-1]ˆ2)*Sigmat[N-1]))
37 mt[N] <- Sigmat[N]*(ct[N] - (Omegattplus1[N-1]*mt[N-1]))
38 states[N] <- mt[N] + (sqrt(Sigmat[N])*rnorm(1))
39

40 for(j in (N-1):2){
41 states[j] <- mt[j] - (Sigmat[j]*Omegattplus1[j]*states[j+1]) +
42 (sqrt(Sigmat[j])*rnorm(1))
43 }

44 return(states)
45 }

Figure (32) presents the posterior 20,000 draws mean (black line), the 95% CI (i.e. Confidence Intervals in red
dotted lines) and the true simulated chain (gray line) for each point of the chain ht :

Figure 32: Log-volatility - Posterior mean and 95% CI vs. True data
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j. upd r
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The upd r function computes the full conditional of rt. We have set the true mean as r = 0 and the full conditional
of rt, has been already defined in section 2.4:

1 target <- function(N, vY, vH, vL, mu_0, mu_1, beta_0, beta_1, alpha_0,
2 alpha_1, phi_0, phi_1, sigma2_0, sigma2_1, r){
3 likel <- rep(NA, N)
4 likel_vY <- rep(NA, N)
5 likel_vH <- rep(NA, N)
6 Smix <- rep(NA, N)
7

8 for (jt in 2:N){
9 Smix[jt] <- ifelse( vY[jt-1] > r, 1, 0)

10 }

11 vMu <- mu_1*Smix + ( rep(1,N) - Smix ) * mu_0
12 vBeta <- beta_1*Smix + ( rep(1,N) - Smix ) * beta_0
13 vAlpha <- alpha_1*Smix + ( rep(1,N) - Smix ) * alpha_0
14 vPhi <- phi_1*Smix + ( rep(1,N) - Smix ) * phi_0
15 vSigma2 <- sigma2_1*Smix + ( rep(1,N) - Smix ) * sigma2_0
16

17 for(i in 3:N){
18 likel_vY <- (1/(exp(vH[i]/2)*(vL[i]ˆ(-0.5))))*
19 exp(-0.5*(1/(exp(vH[i])*vL[i]ˆ-1))*
20 (vY[i]-vMu[i]-vBeta[i]*vY[i-1])ˆ2)
21 likel_vH[i] <- (1/vSigma2[i])*exp(-0.5*(1/vSigma2[i])*
22 (vH[i]-vAlpha[i]-vPhi[i]*vH[i-1])ˆ2)
23 likel[i] <- likel_vY[i] * likel_vH[i]
24 }

25

26 likel2 <- log(likel)
27 sum_llikel <- sum(na.omit(likel2))
28 return(sum_llikel)
29 }

30

31 proposed <- function(x){
32 rnorm(1, mean=x, sd=0.15)
33 }

34

35 upd_r <- function(r){
36 dd <- 2
37 while (dd > 0){
38 r_proposed <- proposed(r)
39 if ( r_proposed > q1 & r_proposed < q3)
40 {dd = 0}

41 }

42 alpha <- min(1, exp(target(N, vY, vH, vL, vpsi, vphi, sigma2, r_proposed) -
43 target(N, vY, vH, vL, vpsi, vphi, sigma2, r)))

44 accept <- runif(1) < alpha
45 r <- ifelse(accept, r_proposed , r)
46 return(r)
47 }

Figure (33) presents the posterior 20,000 draws histogram:
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Figure 33: RW-MH rt
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k. updnu

The updnu function extract draws from the posterior distribution of ν. The prior and the full conditional posterior
distribution for ν are:

ν ∼ G (aν, bν)

ν∗ ∼ G(ν>1)

T + aν, bν −
T∑

t=1

log λt


1 updnu <- function(vL, N){
2 Saux <- sum(log(vL), na.rm = T)
3 TT <- N - 1
4 a <- TT + gl0
5 b <- gl1 - Saux
6

7 dd <- 2
8 while (dd > 0){
9 nu <- rgamma(1, shape = a, rate = b)

10 if ( nu > 1 )
11 {dd = 0}

12 }

13 return(nu)
14 }

Figure (34) presents the posterior 20,000 draws histogram of ν:

Figure 34: ν posterior draws
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l. updvL

In order to simulate λt we rely on our updvL function. For that, we have computed and auxiliary function
igaright:

1 igaright <- function(a, b, U){
2 yaux = exp(-b*U) * runif(1)
3 xaux = min(b, -log(yaux))
4 igr = exp( (1/a)*log(runif(1)) + log(xaux))
5 igr = igr/b
6 return(igr)
7 }

For λt, following Abanto & Garrafa (2019) we have both the prior and the posterior distribution below:

λt ∼ Be (ν, 1)

λt | yt, yt−1, ht,Θ ∼ G(λt<1)

(
ν +

1
2
,

1
2

[
yt − r′tϕst

]2 e−ht

)

We use the igaright function in order to sample the λt chain more efficiently. Now we present the updvL function:

1 updvL <- function(vH, vY, vMu, vBeta, nu, vLprev){
2 vL <- rep(NA, N)
3 aa = nu + 0.5

4

5 for(j in 2:N){
6 bb <- 0.5*exp(-vH[j])*((vY[j] - vMu[j] - vBeta[j]*vY[j-1])ˆ2)
7 vL[j] <- igaright(aa, bb, vLprev[j])
8 }

9 return(vL)
10 }

Figure (35) presents the posterior 20,000 draws histogram of λt:

Figure 35: λt posterior draws vs true chain boxplots
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The upd forecast function has been also used to compute the one-step ahead forecast of yt.

1 upd_forecast <- function(vphi, vpsi, sigma2, nu, r, vY, vH){
2 Sn1 <- ifelse(vY[N] > r, 1, 0)
3 alpha <- (1 - Sn1)*vphi[1,1] + Sn1*vphi[1,3]
4 phi <- (1 - Sn1)*vphi[1,2] + Sn1*vphi[1,4]
5 sigma2 <- (1 - Sn1)*sigma2[2] + Sn1*sigma2[1]
6 mu <- (1 - Sn1)*vpsi[1,1] + Sn1*vpsi[1,3]
7 beta <- (1 - Sn1)*vpsi[1,2] + Sn1*vpsi[1,4]
8

9 Hn1 <- alpha + phi + vH[N] + sqrt(sigma2)*rnorm(1)
10 Ln1 <- rbeta(1, nu, 1)
11 Yn1 <- mu + beta*vY[N] + exp(Hn1/2)*((Ln1)ˆ(-1/2))*rnorm(1)
12 return(Yn1)
13 }

n. deviance

The deviance function has been used to compute the Watanabe-Akaike information criterion proposed by Watan-
abe (2010, 2013).

1 deviance <- function(N, vY, vH, vL, vMu, vBeta){
2 llikel <- 0
3

4 for (tt in 2:N){
5 llikel <- llikel + dnorm(vY[tt] - vMu[tt] - (vBeta[tt] * vY[tt-1])
6 , sd = sqrt(1/vL[tt])*exp(0.5*vH[tt]), log=T)
7 }

8 dev <- -2*llikel
9 return(dev)

10 }

o. devWAIC

The devWAIC function has been also used to compute the Watanabe-Akaike information criterion (WAIC).

1 devWAIC <- function(N, vY, vH, vL, vMu, vBeta){
2 dev1 <- rep(NA, N)
3 dev2 <- rep(NA, N)
4

5 for (tt in 2:N){
6 dev1[tt] <- dnorm(vY[tt] - vMu[tt] - (vBeta[tt]*vY[tt-1]),
7 sd = sqrt(1/vL[tt])*exp( 0.5*vH[tt]))
8 dev2[tt] <- dnorm(vY[tt] - vMu[tt] - (vBeta[tt]*vY[tt-1]),
9 sd = sqrt(1/vL[tt])*exp( 0.5*vH[tt]), log=T)

10 }

11 waic <- cbind(dev1, dev2)
12 return(waic)
13 }

Part II: Main

The following code corresponds to the main structure to estimate the original THSV-SMN in the specific case
where the mixture results is a Slash distribution. This includes the endogenous threshold extension:

65



1 ##### THSV - SMN Slash - Random Walk Metropoli Hasting Threshold #####

2 ##### Written by: Ronaldo Robles (PUCP - PER)

3 ##### Main reference and C++ code: Ph. D Carlos Abanto (UFRJ - BRA)

4

5 # Calling functions ####

6

7 set.seed(20051997)
8 source("THSV-S - Threshold - Functions.R")
9

10 # Priors ####

11

12 #sigma2

13 sigma2 <- rep(0,2)
14 sigma2[1] <- mean(1/rgamma(10000, shape = 5, rate = 0.5))
15 sigma2[2] <- mean(1/rgamma(10000, shape = 5, rate = 0.5))
16 g_n0 <- 10.0
17 g_n1 <- 10.0
18 g_S0 <- 0.1
19 g_S1 <- 0.1
20

21 #varpsi

22 mu <- rep(0,2)
23 mu[1] <- 0.05
24 mu[2] <- 0.05
25 beta <- rep(0,2)
26 beta[1] <- 0.05
27 beta[2] <- 0.05
28 gps0 <- rep(0,2)
29 gps1 <- rep(0,2)
30 gSps0 <- 100*diag(2)
31 gSps1 <- 100*diag(2)
32

33 #varphi

34 alpha <- rep(0,2)
35 alpha[1] <- 0.05
36 alpha[2] <- 0.05
37 phi <- rep(0.98,2)
38 phi[1] <- 0.98
39 phi[2] <- 0.98
40 gSvp0 <- 100*diag(2)
41 gSvp1 <- 100*diag(2)
42 gvp0 <- rep(0,2)
43 gvp0[2] <- 0.98
44 gvp1 <- rep(0,2)
45 gvp1[2] <- 0.98
46

47 r <- 0
48 gl0 <- 0.08
49 gl1 <- 0.04
50 nu <- mean(rgamma(10000, shape = gl0, rate = gl1))
51

52 # Data ####

53 Proyect <- getwd()
54 Data <- read.table("Global/Data/LATAM/MERVAL.txt")$V1
55 vY <- Data[1:(length(Data)-100)]
56

57 N <- length(vY)
58 q1 <- summary(vY)[2]
59 q3 <- summary(vY)[5]
60 pmix <- c(0.00609, 0.04775, 0.13057, 0.20674, 0.22715, 0.18842, 0.12047,
61 0.05591, 0.01575, 0.00115) #probs
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62 mumix <- c(1.92677, 1.34744, 0.73504, 0.02266, -0.85173, -1.97278, -3.46788,
63 -5.55246, -8.68384, -14.65000) #means

64 varmix <- c(0.11265, 0.17788, 0.26768, 0.40611, 0.62699, 0.98583, 1.57469,
65 2.54498, 4.16591, 7.33342) #variances

66

67 # Ordering data ####

68

69 #Order <- sort(vY, index.return= TRUE)
70 #iy <- Order$ix
71 #vYsort <- Order$x
72 vS <- updvS(N, r, vY)
73

74 # Parameters (given S = 1 o S = 0) ####

75

76 vMu <- mu[2]*vS + ( rep(1,N) - vS ) * mu[1]
77 vBeta <- beta[2]*vS + ( rep(1,N) - vS ) * beta[1]
78 vAlpha <- alpha[2]*vS + ( rep(1,N) - vS ) * alpha[1]
79 vPhi <- phi[2]*vS + ( rep(1,N) - vS ) * phi[1]
80 vSigma2 <- sigma2[2]*vS + ( rep(1,N) - vS ) * sigma2[1]
81

82 # Number of simulations ####

83

84 burnin = 10000

85 finit = 40000

86 vH <- rep(0,N)
87 vL <- rbeta(N, nu, 1)
88

89 # Gibbs Sampling ####

90

91 vZ <- updvZ(N, vY, vMu, vBeta)
92 kmix <- updmix(N, vY, vH, vL, pmix, mumix, varmix)
93 vH <- updvH(N, vZ, vL, vSigma2, vAlpha, vPhi, kmix, mumix, varmix)
94 nu <- updnu(vL, N)
95 vL <- updvL(vH, vY, vMu, vBeta, nu, vL)
96

97 for (jt in 1:burnin){
98 #sigma

99 sigma2 <- updsigma(N, vH, vAlpha, vPhi, g_S0, g_S1, g_n0, g_n1, vS)
100 vSigma2 <- sigma2[2] * vS + ( rep(1,N) - vS ) * sigma2[1]
101

102 #alpha and phi

103 vphi <- updalphaphi(vH, N, gSvp0, gSvp1, gvp0, gvp1, vSigma2, vS)
104 vAlpha <- vphi[1,3] * vS + ( rep(1,N) - vS ) * vphi[1,1]
105 vPhi <- vphi[1,4] * vS + ( rep(1,N) - vS ) * vphi[1,2]
106

107 #mu y beta

108 vpsi <- updmubeta(vY, vH, vL, N, gSps0, gSps1, gps0, gps1, vS)
109 vMu <- vpsi[1,3] * vS + ( rep(1,N) - vS ) * vpsi[1,1]
110 vBeta <- vpsi[1,4] * vS + ( rep(1,N) - vS ) * vpsi[1,2]
111

112 vZ <- updvZ(N, vY, vMu, vBeta)
113 kmix <- updmix(N, vY, vH, vL, pmix, mumix, varmix)
114 vH <- updvH(N, vZ, vL, vSigma2, vAlpha, vPhi, kmix, mumix, varmix)
115 nu <- updnu(vL, N)
116 vL <- updvL(vH, vY, vMu, vBeta, nu, vL)
117 r <- upd_r(r)
118

119 vS <- updvS(N, r, vY)
120 vSigma2 <- sigma2[2] * vS + ( rep(1,N) - vS ) * sigma2[1]
121 vAlpha <- vphi[1,3] * vS + ( rep(1,N) - vS ) * vphi[1,1]
122 vPhi <- vphi[1,4] * vS + ( rep(1,N) - vS ) * vphi[1,2]
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123 vMu <- vpsi[1,3] * vS + ( rep(1,N) - vS ) * vpsi[1,1]
124 vBeta <- vpsi[1,4] * vS + ( rep(1,N) - vS ) * vpsi[1,2]
125 print(jt)
126 }

127

128 # Containers

129

130 vHfile <- matrix(NA,finit, N)
131 vLfile <- matrix(NA,finit, N)
132 nusimf <- rep(NA, finit)
133

134 sigma2simf <- matrix(NA,finit ,2)
135 colnames(sigma2simf) <- c("sigma0", "sigma1")
136

137 vphisimf <- matrix(NA,finit ,4)
138 colnames(vphisimf) <- c("alpha0", "alpha1", "phi0", "phi1")
139

140 vpsisimf <- matrix(NA,finit ,4)
141 colnames(vpsisimf) <- c("mu0", "mu1", "beta0", "beta1")
142

143 r_simf <- rep(NA, finit)
144 vY_Tplus1_simf <- rep(NA, finit)
145 devsimf <- rep(NA, finit)
146 waic <- matrix(0, N, 2)
147 dev <- 0
148

149 for (jt in (burnin+1):(burnin+finit) ){
150 #sigma

151 sigma2 <- updsigma(N, vH, vAlpha, vPhi, g_S0, g_S1, g_n0, g_n1, vS)
152 vSigma2 <- sigma2[2] * vS + ( rep(1,N) - vS ) * sigma2[1]
153

154 #alpha and phi

155 vphi <- updalphaphi(vH, N, gSvp0, gSvp1, gvp0, gvp1, vSigma2, vS)
156 vAlpha <- vphi[1,3] * vS + ( rep(1,N) - vS ) * vphi[1,1]
157 vPhi <- vphi[1,4] * vS + ( rep(1,N) - vS ) * vphi[1,2]
158

159 #mu y beta

160 vpsi <- updmubeta(vY, vH, vL, N, gSps0, gSps1, gps0, gps1, vS)
161 vMu <- vpsi[1,3] * vS + ( rep(1,N) - vS ) * vpsi[1,1]
162 vBeta <- vpsi[1,4] * vS + ( rep(1,N) - vS ) * vpsi[1,2]
163

164 vZ <- updvZ(N, vY, vMu, vBeta)
165 kmix <- updmix(N, vY, vH, vL, pmix, mumix, varmix)
166 vH <- updvH(N, vZ, vL, vSigma2, vAlpha, vPhi, kmix, mumix, varmix)
167 nu <- updnu(vL, N)
168 vL <- updvL(vH, vY, vMu, vBeta, nu, vL)
169 r <- upd_r(r)
170

171 vS <- updvS(N, r, vY)
172 vSigma2 <- sigma2[2] * vS + ( rep(1,N) - vS ) * sigma2[1]
173 vAlpha <- vphi[1,3] * vS + ( rep(1,N) - vS ) * vphi[1,1]
174 vPhi <- vphi[1,4] * vS + ( rep(1,N) - vS ) * vphi[1,2]
175 vMu <- vpsi[1,3] * vS + ( rep(1,N) - vS ) * vpsi[1,1]
176 vBeta <- vpsi[1,4] * vS + ( rep(1,N) - vS ) * vpsi[1,2]
177 dev <- dev + deviance(N, vY, vH, vL, vMu, vBeta)
178

179 rr = jt%%20
180 ss = (jt-burnin)/1
181 if (rr == 0){
182 sigma2simf[ss,] <- t(sigma2)
183 vphisimf[ss,] <- c(vphi[1,1], vphi[1,3], vphi[1,2], vphi[1,4])
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184 vpsisimf[ss,] <- c(vpsi[1,1], vpsi[1,3], vpsi[1,2], vpsi[1,4])
185 vHfile[ss,] <- t(vH)
186 vLfile[ss,] <- t(vL)
187 nusimf[ss] <- nu
188 r_simf[ss] <- r
189 devsimf[ss] <- dev
190 waic <- waic + devWAIC(N, vY, vH, vL, vMu, vBeta)
191 vY_Tplus1_simf[jt] <- upd_forecast(vphi, vpsi, sigma2, nu, r, vY, vH)
192 }

193 else {rr = 1}
194 print(jt)
195 }

196

197 dev1 <- waic[,1]
198 dev2 <- waic[,2]
199 vHmean <- rep(NA,N)
200 vHmode <- rep(NA,N)
201 vHmode025 <- rep(NA,N)
202 vHmode097 <- rep(NA,N)
203

204 for (i in 2:N) {
205 vHmean[i] <- mean(vHfile[,i], na.rm = T)
206 vHmode[i] <- mlv(na.omit(vHfile[,i]), method = "meanshift")
207 vHmode025[i] <- quantile(vHfile[,i], probs = 0.025)
208 vHmode097[i] <- quantile(vHfile[,i], probs = 0.975)
209 print(i)
210 }

211

212 vHsimf <- cbind(vHmean, vHmode, vHmode025 , vHmode097)
213

214 vLmean <- rep(NA,N)
215 vLmode <- rep(NA,N)
216 vLmode025 <- rep(NA,N)
217 vLmode097 <- rep(NA,N)
218

219 for (i in 2:N) {
220 vLmean[i] <- mean(vLfile[,i], na.rm = T)
221 vLmode[i] <- mlv(na.omit(vLfile[,i]), method = "meanshift")
222 vLmode025[i] <- quantile(vLfile[,i], probs = 0.025)
223 vLmode097[i] <- quantile(vLfile[,i], probs = 0.975)
224 print(i)
225 }

226 vLsimf <- cbind(vLmean, vLmode, vLmode025 , vLmode097)
227

228 for(i in 1:length(devsimf)){
229 if(is.infinite(devsimf[i])){
230 devsimf[i] <- NA
231 }

232 }

233

234 dbar <- mean(na.omit(devsimf))
235

236 for(i in 1:length(dev1)){
237 if(is.infinite(dev1[i])){
238 dev1[i] <- NA
239 }

240 }

241 for(i in 1:length(dev2)){
242 if(is.infinite(dev2[i])){
243 dev2[i] <- NA
244 }
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245 }

246

247 dev1mean <- mean(na.omit(dev1))
248 dev2mean <- mean(na.omit(dev2))
249

250 # Parametros finales ####

251

252 sigma2mean <- rep(0,2)
253 sigma2mean[1] <- mean(sigma2simf[,1], na.rm = T)
254 sigma2mean[2] <- mean(sigma2simf[,2], na.rm = T)
255 sigma2mode <- rep(0,2)
256 sigma2mode[1] <- mlv(sigma2simf[,1], method = "meanshift")
257 sigma2mode[2] <- mlv(sigma2simf[,2], method = "meanshift")
258

259 alphamean <- rep(0,2)
260 alphamean[1] <- mean(vphisimf[,1], na.rm = T)
261 alphamean[2] <- mean(vphisimf[,2], na.rm = T)
262 alphamode <- rep(0,2)
263 alphamode[1] <- mlv(vphisimf[,1], method = "meanshift")
264 alphamode[2] <- mlv(vphisimf[,2], method = "meanshift")
265

266 phimean <- rep(0,2)
267 phimean[1] <- mean(vphisimf[,3], na.rm = T)
268 phimean[2] <- mean(vphisimf[,4], na.rm = T)
269 phimode <- rep(0,2)
270 phimode[1] <- mlv(vphisimf[,3], method = "meanshift")
271 phimode[2] <- mlv(vphisimf[,4], method = "meanshift")
272

273 mumean <- rep(0,2)
274 mumean[1] <- mean(vpsisimf[,1], na.rm = T)
275 mumean[2] <- mean(vpsisimf[,2], na.rm = T)
276 mumode <- rep(0,2)
277 mumode[1] <- mlv(vpsisimf[,1], method = "meanshift")
278 mumode[2] <- mlv(vpsisimf[,2], method = "meanshift")
279

280 betamean <- rep(0,2)
281 betamean[1] <- mean(vpsisimf[,3])
282 betamean[2] <- mean(vpsisimf[,4])
283 betamode <- rep(0,2)
284 betamode[1] <- mlv(vpsisimf[,3], method = "meanshift")
285 betamode[2] <- mlv(vpsisimf[,4], method = "meanshift")
286

287 r_mean <- mean(r_simf)
288 r_mode <- mlv(r_simf, method="meanshift")
289

290 numean <- mean(nusimf)
291 numode <- mlv(nusimf, method = "meanshift")
292

293 vS <- updvS(N, r_mean, vY)
294 vSigma2 <- mumean[2] * vS + ( rep(1,N) - vS ) * sigma2[1]
295 vAlpha <- alphamean[2] * vS + ( rep(1,N) - vS ) * alphamean[1]
296 vPhi <- phimean[2] * vS + ( rep(1,N) - vS ) * phimean[1]
297 vMu <- mumean[2] * vS + ( rep(1,N) - vS ) * mumean[1]
298 vBeta <- betamean[2] * vS + ( rep(1,N) - vS ) * betamean[1]
299

300 # WAIC Statistic ####

301

302 # With the mean

303 dv <- deviance(N, vY, vHmean, vLmean, vMu, vBeta)
304 pD <- dbar - dv
305 DIC <- dbar + pD

70



306 lppd <- sum (log(na.omit(dev1mean)))
307 pwaic <- 2 * ( lppd - sum(na.omit(dev2mean)))
308 WAIC <- -2 * ( lppd - pwaic )
309 Statistics <- cbind(dbar, pD, DIC, lppd, pwaic, WAIC)
310 colnames(Statistics) <- c("dBar", "pD", "DIC", "lppd", "pWAIC", "WAIC")
311

312 save.image("Workspace - Merval.RData")

Part III: VaR

For VaR and ES statistics, we have to use an abrasive and computationally intensive procedure. This is the recursion
we use for each T + 1 estimation. We have computed the likelihood ratio test Kupiec (1995) for the VaR theoretic
percentiles and the measure of Embrechts et al (2004) for the Expected Shortfall prediction accuracy. We compare
four models i.e the THSV - Normal with a fixed-zero threshold, the THSV - Normal with a RWMH endogenous
threshold and the THSV - Slash, also with a fixed-zero and a RWMH threshold:

1 # VaR Estimation

2 # Written by: Ronaldo Robles

3 # Based on R code from Phd. Carlos Abanto

4

5 #### Runnning the model with the One-step ahead forecast

6 vY <- read.table("WD/SP500.txt")$V1
7 N <- length(vY) - 100
8

9

10 # Initial point

11 l<- 1
12 vY <- vY[1:N]
13 source("THSV-N - Endo threshold - Light.R")
14 vY[(N+1)] <- mean(vYforesimf)
15 rm(list=setdiff(ls(), c("vY","N")))
16

17 # Recursion

18 for(l in 2:100){
19 vY <- vY[2:(N+1)]
20 source("THSV-N - Endo threshold - Light.R")
21 vY[(N+1)] <- mean(vYforesimf)
22 rm(list=setdiff(ls(), c("vY","N")))
23 }

24

25

26 vY_forecast_means <- matrix(NA, 100, 5)
27 # Load recursive data and store means and quantiles

28 for(k in 1:100){
29 vY_nn <- read.table(paste("Results THSV-N Endo/vY_forecasts_",k,".txt"))$V1
30 vY_forecast_means[k,1] <- mean(vY_nn)
31 vY_forecast_means[k,2] <- quantile(vY_nn, probs = 0.05)
32 vY_forecast_means[k,3] <- quantile(vY_nn, probs = 0.95)
33 vY_forecast_means[k,4] <- quantile(vY_nn, probs = 0.01)
34 vY_forecast_means[k,5] <- quantile(vY_nn, probs = 0.99)
35 print(k)
36 }

37

38 # Load real out of sample data

39 SP500 <- read_csv("WD/SP500.txt",
40 col_names = FALSE)$X1
41 N <- length(SP500)
42 SP500 <- SP500[(N-100+1):N]
43
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44 # LRuc Kupiec (1995) likelihood ratio test

45

46 mn <- 100
47

48 test005 <- rep(NA, mn)
49 test095 <- rep(NA, mn)
50 test001 <- rep(NA, mn)
51 test099 <- rep(NA, mn)
52

53 test005 <- ifelse(market < vY_forecast_means[,2],1,0)
54 test095 <- ifelse(market > vY_forecast_means[,3],1,0)
55 test001 <- ifelse(market < vY_forecast_means[,4],1,0)
56 test099 <- ifelse(market > vY_forecast_means[,5],1,0)
57

58 xnhat005 <- sum(test005)
59 alphahat005 <- xnhat005/mn
60

61 xnhat095 <- sum(test095)
62 alphahat095 <- xnhat095/mn
63

64 xnhat001 <- sum(test001)
65 alphahat001 <- xnhat001/mn
66

67 xnhat099 <- sum(test099)
68 alphahat099 <- xnhat099/mn
69

70 # LRuc 0.01

71

72 s00 <- log( (alphahat001ˆxnhat001) * ((1-alphahat001)ˆ(mn-xnhat001)) )
73 s01 <- log( (0.01ˆxnhat001) * ( (1 - 0.01)ˆ(mn-xnhat001)) )
74 LRuc001 <- 2*( s00 - s01 )
75

76 pchisq(q=LRuc001, df=1, lower.tail = F)
77

78 # LRuc 0.05

79

80 s00 <- log( (alphahat005ˆxnhat005) * ((1-alphahat005)ˆ(mn-xnhat005)) )
81 s01 <- log( (0.05ˆxnhat005) * ( (1 - 0.05)ˆ(mn-xnhat005)) )
82 LRuc005 <- 2*( s00 - s01 )
83

84 # p-value

85 pchisq(q=LRuc005, df=1, lower.tail = F)
86

87 # LRuc 0.95

88

89 s00 <- log( (alphahat095ˆxnhat095) * ((1-alphahat095)ˆ(mn-xnhat095)) )
90 s01 <- log( (0.05ˆxnhat095) * ( (1 - 0.05)ˆ(mn-xnhat095)) )
91 LRuc095 <- 2*( s00 - s01 )
92

93 pchisq(q=LRuc095, df=1, lower.tail = F)
94

95 # LRuc 0.99

96

97 s00 <- log( (alphahat095ˆxnhat099) * ((1-alphahat099)ˆ(mn-xnhat099)) )
98 s01 <- log( (0.01ˆxnhat099) * ( (1 - 0.01)ˆ(mn-xnhat099)) )
99 LRuc099 <- 2*( s00 - s01 )

100

101 pchisq(q=LRuc099, df=1, lower.tail = F)
102

103 # Measure of Embrechts et al (2004) for Expected Shortfall

104
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105 # D 0.05

106 shortfall05n <- mean(SP500[test005==1])
107

108 deltan <- SP500 - shortfall05n
109 deltan05 <- quantile(deltan ,0.05)
110

111 Sn005 <- ifelse(deltan < deltan05, 1, 0)
112 ss005 <- sum(Sn005)
113 D1 <- sum(deltan[test005==1]) / xnhat005 # standard back-testing for ES estimates
114 D2 <- sum(deltan[Sn005==1]) / ss005 # correction for VaR dependence

115 D005 <- ( abs(D1) + abs(D2) ) / 2
116

117 # D 0.095

118 shortfall95n <- mean(SP500[test095==1])
119

120 deltan <- SP500 - shortfall95n
121 deltan95 <- quantile(deltan ,0.95)
122

123 Sn095 <- ifelse(deltan > deltan95, 1, 0)
124 ss095 <- sum(Sn095)
125 D1 <- sum(deltan[test095==1]) / xnhat095 # standard back-testing for ES estimates
126 D2 <- sum(deltan[Sn095==1]) / ss095 # correction for VaR dependence

127 D095 <- ( abs(D1) + abs(D2) ) / 2
128

129

130 # D 0.01

131 shortfall01n <- mean(SP500[test001==1])
132

133 deltan <- SP500 - shortfall01n
134 deltan01 <- quantile(deltan ,0.01)
135

136 Sn001 <- ifelse(deltan < deltan01, 1, 0)
137 ss001 <- sum(Sn001)
138 D1 <- sum(deltan[test001==1]) / xnhat001 # standard back-testing for ES estimates
139 D2 <- sum(deltan[Sn001==1]) / ss001 # correction for VaR dependence

140 D001 <- ( abs(D1) + abs(D2) ) / 2
141

142 # D 0.099

143 shortfall99n <- mean(SP500[test099==1])
144

145 deltan <- SP500 - shortfall99n
146 deltan99 <- quantile(deltan ,0.99)
147

148 Sn099 <- ifelse(deltan > deltan99, 1, 0)
149 ss099 <- sum(Sn099)
150 D1 <- sum(deltan[test099==1]) / xnhat099 # standard back-testing for ES estimates
151 D2 <- sum(deltan[Sn099==1]) / ss099 # correction for VaR dependence

152 D099 <- ( abs(D1) + abs(D2) ) / 2
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Appendix: Order Statistics - Mathematical framework

Endogenous threshold with order statistics

In this appendix we present our mathematical framework for our proposed methodology based on work from Chib
(1998). For a fixed two regime model, with data following the specific behavior of financial assets returns, the
posterior density of our state kt will be defined as follows:

p
(
kt | y1:T ,Kt+1,Θ, P

)
∝ p (kt Yt,Θ, P) · p (kt+1 | kt, P)

where

p (kt = q | Yt,Θ, P) =
p (kt = q | Yt−1,Θ, P) · f

(
yt | Yt−1,Θq

)
∑q

r=q−1 p (kt = r | Yt−1,Θ, P) · f (yt | Yt−1,Θr)
(8)

with

p (kt = q | Yt−1,Θ, P) =
q∑

r=q−1

prq · p (kt−1 = r | Yt−1,Θ, P) (9)

In our unique threshold specification, q = 0, 1. First, we expand (8):

p (kt = q | Yt,Θ, P) =
p (kt = q | Yt−1,Θ, P) · f

(
yt | Yt−1,Θq

)
p (kt = q − 1 | Yt−1,Θ, P) · f

(
yt | Yt−1,Θq−1

)
+ p (kt = q | Yt−1,Θ, P) · f

(
yt | Yt−1,Θq

)
Given the values of q, we analyze the expression for both cases:

• q = 0

p (kt = 0 | Yt,Θ, P) =
p (kt = 0 | Yt−1,Θ, P) · f (yt | Yt−1,Θ0)

p (kt = −1 | Yt−1,Θ, P) · f (yt | Yt−1,Θ−1) + p (kt = 0 | Yt−1,Θ, P) · f (yt | Yt−1,Θ0)

=
p (kt = 0 | Yt−1,Θ, P) · f (yt | Yt−1,Θ0)

0 + p (kt = 0 | Yt−1,Θ, P) · f (yt | Yt−1,Θ0)
= 1

• q = 1

p (kt = 1 | Yt,Θ, P) =
p (kt = 1 | Yt−1,Θ, P) · f (yt | Yt−1,Θ1)

p (kt = 0 | Yt−1,Θ, P) · f (yt | Yt−1,Θ0) + p (kt = 1 | Yt−1,Θ, P) · f (yt | Yt−1,Θ1)
(10)

The former expression is not trivial. Nevertheless, we can use (9) with q = 1.

p (kt = 1 | Yt−1,Θ, P) = p01 · p (kt−1 = 0 | Yt−1,Θ, P) + p11 · p (kt−1 = 1 | Yt−1,Θ, P)

If we simplify the notation, we can present:

p (kt = 1) = (1 − p00) · p (kt−1 = 0) + p (kt−1 = 1) (11)

After that, we replace (11) in (10):

p (kt = 1 | Yt) =
[
(1 − p00) · p (kt−1 = 0) + p (kt−1 = 1)

]
· f (yt | Θ1)

p (kt = 0) · f (yt | Θ0) +
[
(1 − p00) · p (kt−1 = 0) + p (kt−1 = 1)

]
· f (yt | Θ1)
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We can also obtain the first addend in the denominator from (9) with q = 0:

p (kt = 0) = p−10 · p (kt−1 = −1) + p00 · p (kt−1 = 0)

= p00 · p (kt−1 = 0)

and finally we have:

p (kt = 1 | Yt) =
[
(1 − p00) · p (kt−1 = 0 | Yt−1) + p (kt−1 = 1 | Yt−1)

]
· f (yt | Θ1)

p00 · p (kt−1 = 0 | Yt−1) · f (yt | Θ0) +
[
(1 − p00) · p (kt−1 = 0 | Yt−1) + p (kt−1 = 1 | Yt−1)

]
· f (yt | Θ1)

(12)

Regarding p00, we have defined the transition probability matrix P as:

P =
(
p00 1 − p00
0 1

)
Following Chib (1998), the prior for p00 will be:

p(0)
00 ∼ Beta (a, b)

with mean a/(a + b) and duration d = ab · (1 − a)(1−b). Both a and b are positive and satisfy a ≫ b. The full
conditional of p00 is equivalent to:

p00 = Beta (a + nii, b + 1)

where nii is the number on transitions from state i to i, and only when i = 0 (i.e the total number of zeros in the
vector state Kt minus 1).
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