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Abstract

The proportional hazard model plays a fundamental role in the analysis of time-to-event

data. In this thesis, we conduct a simulation study to evaluate the performance of M-splines

to estimate the baseline cumulative hazard function for the proportional hazard model. We

assess the effect of sample size and number of knots in the estimation process. Finally, we

apply this method to a sample of students from a university where the event of interest is

the payment on time of the last tuition fee.
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Chapter 1

Introduction

Motivation. The area of survival analysis studies the time to occurrence of certain event. It appears

in medicine to study the time to reinfection of diseases such as chlamydia (Brunham et al., 2005),

in the banking sector when trying to model the time to reach default (Bellotti and Crook, 2009), in

education to study the time until a drop-out from university (Ameri et al., 2016), in marketing when

analysing the time until a consumer purchases a product (Ihwah, 2015), among other areas.

In order to implement a regression model to assess the effect of several variables on the time to

the event of interest, we could go for either a parametric approach using known distributions via the

accelerated time failure model (AFT) or a semi-parametric proportional hazard model (PH) developed

by (Cox, 1972, 1975). The PH model assumes that the hazard function, given the covariates, is equal to

a baseline hazard function (that does not depend on the covariate) times the exponential of a linear

predictor. This is a popular choice because of its flexibility in not specifying the baseline hazard

function. However, we can still use the PH model and maintain some flexibility if we approximate

the baseline hazard function by a linear combination of spline functions.

Splines are widely used in different fields. For example, natural cubic splines have been used for

medical trials in patients suffering from Alzheimer(Donohue et al., 2022), and to describe soil water

retention (Kastanek and Nielsen, 2001). In survival analysis, natural cubic splines have been applied

to approximate the stepwise cumulative hazard function in the context of the PH model (Bantis et al.,

2020), and in the estimation of the hazard function using B-splines (Rosenberg, 1995).

Since the baseline hazard is a non-negative function we will approximate it via cubic M-splines,

measuring its performance and complementing previous analyses made by Angelos et al. (1991),

Rosenberg (1995),Bantis et al. (2020),Herndon and Harrell Jr (1995), Shih and Emura (2021), and

Etezadi-Amoli and Ciampi (1987). More specifically, Etezadi-Amoli and Ciampi (1987) developed

an extension for the hazard regression model, named Extended Hazard Regression (EHR), which has

the AFT and PH models as special cases. They also approximate the baseline hazard function via

quadratic splines for the Weibull, Log-Normal, and Generalised Gamma models.

Objectives. In this thesis we will carry out a deeper analysis of the work developed by Etezadi-

Amoli and Ciampi (1987) by performing multiple simulations and evaluating the performance of cubic
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M-splines to approximate the baseline hazard using different sample sizes and censoring levels of 30%,

40% and 50% approximately. Furthermore, we will assess the effect of the sample size and number

of knots in the estimation process, apply the method against a real-world dataset, and compare its

results with the Cox model implemented in R.

Document structure. This thesis is structured as follows. Chapter 2 presents the theoretical

background. In this chapter, we cover topics such as survival function, hazard function, cumulative

hazard function, censoring, distributions, regression models, and an introduction to splines: their

definition, continuity constraints, and a specific type called M-splines. In chapter 3, we derive the

proposed model, present the log-likelihood function, and briefly describe the estimation process. The

simulation study and its performance are presented in chapter 4. In chapter 5, we apply the method

against a dataset from an educational institution and compare these results with the ones provided by

the Cox model. Finally, chapter 6 concludes by gathering all the findings and giving a brief discussion

for future analyses.
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Chapter 2

Theoretical Background

2.1 Preliminary concepts

Cumulative distribution function. Let T be a non-negative random variable specifying the

failure time of a subject and t a value within its range. The cumulative distribution function is

defined as:

F (t) = P (T ≤ t), t > 0. (2.1)

This function represents the probability that T will take values less or equal to t. Its derivative

(when exists) is the probability density function defined as F ′(t) = f(t). This function follows the

properties of i) fT (t) ≥ 0 for all t and
∫

∞

−∞

fT (t) = 1

.

Survival function. The survival function is defined as the complement of the cumulative distribu-

tion function. This is defined as S(t) = 1−F (t) = P (T > t), t > 0. This function is a non-increasing

function and has the following property:

lim
t→0

S(t) = 1

lim
t→∞

S(t) = 0

Hazard function. The hazard function is defined as:

λ(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
. (2.2)

Since we know that the cumulative probability function is F (t) and if its derivative can be com-

puted, then

λ(t) =
F ′(t)

S(t)
=

f(t)

S(t)
. (2.3)

3



The hazard function can vary from zero (no risk) to infinity (certainty of failure at that instant),

i.e. is a positive function. Over time, the hazard rate does not have a pre-defined shape: it can

increase, decrease, remain constant, or take some more complex shapes.

Cumulative hazard function. The cumulative hazard function is defined as:

Λ(t) =

∫ t

0

λ(u)du. (2.4)

The cumulative hazard determines the total amount of risk that has been accumulated up to time

t. This can be easily understood under the count-data interpretation if only the failure event were

repeatable (Cleves et al., 2010). For example, if we get a cumulative hazard of 30 over 2 months, this

means we expect a failure 30 times.

All these equations presented before are linked as well. More specifically:

Λ(t) = −log S(t)

S(t) = exp(−Λ(t))

F (t) = 1− S(t)

f(t) = −S′(t)

Details are given in Kalbfleisch and Prentice (2002) Cleves et al. (2010) or Reid and Cox (2018).

Censoring. When the event happens and the subject is not under observation, then we have

censoring observations. We now present 3 types of censoring: i) right censoring, ii) interval censoring,

and iii) left censoring.

Right censoring. Let T ∼ F (·) and Y ∼ G(·), where the first represents the failure time and the

latter the censoring time, both following some distribution. A right-censored observation is when the

failure time is observed before or at the censoring time. The censoring indicator is defined as:

δ = I(T ≤ Y ),

where I(·) denotes the indicator function. This returns a 1 if the observation is censored and a 0 if

not. In an observed sample, we can identify the observed time and censoring indicator as the pair:

(T̃ , δ) = (min(T, Y ), δ).

This is the most common case of censoring. For example, this happens when the failure has not yet

occurred but the study was already over. Another cause might be if the subject leaves or withdraws

before the end of the study or if the subject is lost to follow-up meaning their disappearance from the

study (e.g. relocation to a different city).

Interval censoring. Occurs when the investigator knows that the event happened but he can not

track when the event took place. For example, in a clinical study, a patient has to visit the clinic

monthly for 12 months. In the 8-month the patient tested negative but the following month he tests
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positive. This means the event happened between the 8-month and 9-month but the clinician can not

know for sure when exactly.

Left censoring. This type of censoring occurs when the event happens and the subject was not

under observation. For example, a client that paid before the issue date of his credit card invoice.

Distributions. Common distributions used in survival analysis are part of the Generalised Gamma

(GG) family. Depending on the values of the parameters one can compute the Gamma, Weibull,

Log-Normal, and Exponential distribution. The Generalized Gamma is also part of a bigger family

called the generalised-F distribution (GF) which includes the Log-Logistic (Cox, 2008).

We will present briefly the probability density function, the hazard function, and the survival

function for three common distributions from the GG family as well as the Gompertz distribution.

Generalised Gamma distribution. T follows a Generalised Gamma distribution if its probability

density function is

f(t) =
pb(bt)pa−1exp(−(bt)p)

Γ(a)
, p > 0, b > 0, a > 0, (2.5)

where Γ(a) is the gamma function.

Gamma distribution. If p = 1 in (2.5) then T ∼ Gamma(a, b). For this specific case, the density,

survival, and hazard functions are given by:

f(t) =
1

Γ(a)
bata−1exp(−bt). (2.6)

S(t) =
Γ(a)− γ(a, bt)

Γ(a)
. (2.7)

λ(t) =
bata−1exp(−bt)

Γ(a)− γ(a, bt)
, (2.8)

where

Γ(a) =

∫
∞

bt

ua−1e−udu

γ(a, bt) =

∫ bt

0

ua−1e−udu

Weibull distribution. If a = 1 in (2.5), then T ∼ Weibull(p, b′) with b′ = bp. The density, survival,

and hazard functions are given by:

f(t) = pb′tp−1exp(−b′tp). (2.9)

S(t) = exp(−b′tp). (2.10)

λ(t) = pb′tp−1. (2.11)

Exponential distribution. If a = 1 and p = 1 in (2.5) then T ∼ Exponential(b). The density,

survival, and hazard functions are given by:
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f(t) = bexp(−bt). (2.12)

S(t) = exp(−bt). (2.13)

λ(t) = b. (2.14)

Gompertz distribution. The Gompertz distribution does not belong to the previous family,

however, is often used in survival analysis. T follows the Gompertz distribution if its probability

density function is

f(t) = beηtexp(−
b

η

(
eηt − 1)

)
, (2.15)

and

S(t) = exp

(

−
b

η
(eηt−1)

)

(2.16)

λ(t) = beηt (2.17)

2.2 Regression Models

2.2.1 Accelerated failure time

Let T be the time elapsed until a certain event and Z be a vector of covariates that can affect T .

Then, the accelerated failure time model (AFT) is defined as:

log(T ) = Zβ + σW, (2.18)

where the error term, W , follows certain distribution while σ is a scale parameter. This model assumes

that the covariates can accelerate or decelerate the time-to-event.

Its hazard notation has the form of:

λ(t|Z) = e−βZλ0(te
−βZ) = θλ0(tθ), (2.19)

where θ = e−βZ . As seen, the covariates affect time by multiplying it by θ giving us the acceleration

or deceleration of an event.

In order to get from (2.18) to (2.19) we can start by taking the exponential of (2.18)

T = eZβeσW . (2.20)

Since the term eZβ is affected by covariates we could define T0 = eσW as a reference subject when

the covariates are 0. The probability of survival for the reference subject after time t is:

S0(t) = P(T0 > t) = P(eσW > t) = P

(

W >
log(t)

σ

)

. (2.21)

Considering the effect of the covariates, the probability that a subject with covariates values Z to

be alive after time t is:
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S(t|Z) = P(T > t) = P(T0e
Zβ > t) = P(T0 > te−βZ) = S0(te

−βZ). (2.22)

Recall that (2.21) represents the probability of a reference subject to survive after t, now (2.22)

follows the same logic representing the survival function for the subject affected by covariates. As

seen, this is no other than the reference subject survival function evaluated at time te−βZ instead of

t.

Since the probability density function is the negative of the derivative of the survival function,

then:

f(t|Z) = S′

0(te
−βZ) = e−βZ −S′

0(te
−βZ)

︸ ︷︷ ︸

f0(te−βZ)

= f0(te
−βZ)e−βZ , (2.23)

where f0(·) is the probability density function for the reference subject.

Using the definition of the hazard function and (2.3) we have:

λ(t|Z) =
f0(te

−βZ)

S0(te−βZ)
· e−βZ . (2.24)

The ratio f0(·)/S0(·) represents the baseline hazard λ0(·) = f0(·)/S0(·) and reordering terms we

get:

λ(t|Z) = e−βZλ0(te
−βZ) = θλ0(tθ), (2.25)

where θ = e−βZ is a common way of representing the covariates and their effects. And as we can see,

the covariates affect time by multiplying it by θ giving us the acceleration or deceleration of an event.

Example. Suppose we have a covariate that follows a binomial distribution that takes the value

of 1 when the covariate is active and 0 if not. Also, we have a regression coefficient β = −0.5. In

this context, imagine we have 2 groups A and B, where the former receives a new treatment and the

latter receives a standard treatment. If we say that the probability of survival in 12 months is 0.5 for

group B then, using (2.21), the survival for group A is:

SA = SB(e
−(−0.5)(1) × 12) = SB(19.785).

As we see, to get the probability of survival for A we need to evaluate a higher time (19.785

vs 12 months) in the survival function of B, in other words, we have multiplied the time of B by

e−(−0.5) = 1.649 increasing it by 65%. The same analysis can be done for the hazard via (2.24)

resulting in λA = 1.649× λB(19.785).

Mean survival time. Since we have defined the probability density function in (2.23) we can

compute the mean as

E(T ) = µT =

∫
∞

0

f0(te
−βZ)e−βZdt

= e−βZ

∫
∞

0

f0(te
−βZ)dt

︸ ︷︷ ︸
µ0

= e−βZµ0. (2.26)
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This result implies that the expected time for the subject with covariates Z is e−βZ times greater

than the mean for the reference subject. Furthermore, if β is small we can obtain the relative change

between means from (2.26) as µT /µ0 − 1 = e−βZ − 1.

Example: Exponential Regression. Let us assume that W follows an extreme value distribution.

More specifically:

f(w) = exp(w − exp(w)), w > 0, (2.27)

then it is easy to see that the hazard and survival functions are expressed by:

λ(t|Z) = exp(−Zβ). (2.28)

S(t|Z) = exp(−t exp(−Zβ)). (2.29)

Example: Weibull Regression. If W follows an extreme value distribution with a probability

density function of the form:

f(w) =
1

σ
exp

(w

σ
− exp

(w

σ

))

, (2.30)

then the hazard and survival functions can be expressed as:

λ(t|Z) = σ−1exp(Zβ)tσ
−1

−1. (2.31)

S(t|Z) = exp
(

−tσ
−1

exp [(−1/σ)(Zβ)]
)

. (2.32)

Example: Log-Logistic Regression. IfW follows an extreme value distribution with the following

probability density function:

f(w) =
ew

(1 + ew)2
, (2.33)

then the hazard and survival functions can be expressed as:

λ(t|Z) =
σ−1exp(−Zβ)(t exp(−Zβ))σ

−1
−1

[1 + (t exp(−Zβ))σ−1 ]
. (2.34)

S(t|Z) =
1

1 + (t exp(−Zβ))σ−1
. (2.35)

Estimation: Full Likelihood. Considering a sample of size N and

(ti, δi, Zi), i = 1, ..., N, (2.36)

where t refers to the observed time, δ is the censoring indicator (1 if time is observed and 0 if not),

Z is a covariate vector and i is the index for each observation. The likelihood function is
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L(β) =

N∏

i:δi=1

f(ti|Zi) ·

N∏

i:δi=0

S(ti|Zi)

=

N∏

i=1

f(ti|Zi)
δi · S(ti|Zi)

1−δi

=

N∏

i=1

λ(ti|Zi)
δi · S(ti|Zi)

δi · S(ti|Zi)
1−δi

=

N∏

i=1

λ(ti|Zi)
δ · S(ti|Zi)

By replacing λ(ti|Zi) and S(ti|Zi) for their respective forms based on the selected model (e.g.

Exponential, Weibull, Log-Logistic) we can get the estimates for the regression coefficients.

2.2.2 Proportional hazards model

The proportional hazard model is defined as:

λ(t|Z) = λ0(t) exp(Zβ), (2.37)

where λ0(t) is left unspecified which corresponds to the hazard at time t when the vector of covariates

is equal to zero, Z = 0, for all t. To understand why this is called a proportional hazard model, let

us assume a case in which Z is an indicator covariate (z = 1 for the treatment group and z = 0 for

the control group). Then the hazard ratio at time t between the two groups is:

λ(t|z1 = 1)

λ(t|z0 = 0)
=

λ0(t)exp(β)

λ0(t)
= exp(β).

As we see the hazard in the two groups are proportional and β measures the effect of the treatment

which remains the same even at different time points. Similarly, if we had a continuous covariate,

λ(t|Z = z1)

λ(t|Z = z0)
=

λ0(t)exp(βz1)

λ0(t)exp(βz2)
= exp((z1 − z2)β).

Estimation: Partial Likelihood. This estimation method was proposed by Cox (1972) and

developed further in Cox (1975). The partial likelihood is expressed as:

Lp(β) =

m∏

j=1

exp(Zjβ)
∑

ℓ∈R(tj)
exp(Zℓβ)

, (2.38)

where ti are the times where at least an event is observed, R(tj) represents all individuals at risk at

time ti, and m are the number of observed events.

The partial likelihood focuses on the estimation of the regression parameters without the need of

specifying the baseline hazard. The baseline hazard is cancelled out in the derivation of the expression.

For a deep understanding, we can redirect to Cox (1975), Kalbfleisch and Prentice (2002), and Wong

(1986) for its asymptotic theory.

It is important to point out that the partial likelihood method works well in the majority of cases,

nevertheless is important to state that, when faced with outliers, the partial likelihood could lead to
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non-robust estimates (Ghosh and Basu 2019; Hutton and Monaghan 2002).

2.3 Introduction to Splines

Let us start by using a simple regression model: yi = β0+β1xi+β2x
2
i +ϵ. In this, we see a polynomial

of degree 2, which means that we have the following functions: i) f0(xi) = 1 (the intercept represented

by a constant function), ii) f1(xi) = xi (linear function), and iii) f2(xi) = x2
i (quadratic function).

These three functions are called basis functions. Now in order to fit the data we need to find the

optimal weights that, in combination with the basis functions, allow us to model the response yi.

Figure 2.1 shows this fitting process using the three basis functions to fit the data represented by the

black dots.
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2 2

0
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0
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8
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Linear combination of basis

y = β0f0(xi) + β1f1(xi) + β2f2(xi)

Figure 2.1: Basis functions and Linear combination

As seen, if we combine the optimal weights, that for this example were β0 = −18.25, β1 = 6.74,

and β2 = −0.10, with the basis functions we end up with the blue solid line from the right panel

representing the linear combination.

2.3.1 Definition of a Spline

Following Agarwal (1989), if we have a sequence of real numbers, t1, t2, ..., tm, a spline function S(t)

of degree k − 1 with internal knots an interval [a, b] having these 2 properties:

• In each interval [ti, ti+1] for i = 0, 1, ...,m, where t0 = a and tm+1 = b, S(t) is given by some

polynomial of degree k − 1 or less.

• S(t) and its derivatives of order 1, 2, ..., k − 2 are continuous everywhere.
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To get a better understanding of this we could use a function S that takes values from an interval

[a, b] and maps them to the set of real numbers R and make it piecewise-defined. For this, let the

interval [a, b] be covered by m ordered disjoint intervals such as,

[ti, ti+1], i = 0, ..., k − 1

[a, b] = [t0, t1) ∪ [t1, t2) ∪ ... ∪ [tm−1, tm] ∪ [tm]

a = t0 ≤ t1 ≤ ... ≤ tk−1 ≤ tk = b

On each of these m pieces of [a, b] we define a polynomial Pi.

Pi : [ti, ti+1] → R

On the i-th subinterval of [a, b], S is defined by Pi as follows:

S(t) = P0(t) , t0 ≤ t < t1

S(t) = P1(t) , t1 ≤ t < t2
...

S(t) = Pm−1(t) , tm−1 ≤ t < tm

For the second property, related to the smoothness, the two polynomial pieces Pi−1 and Pi need

to share a common derivative at ti,

P 0
i−1(t) = P 0

i (t)

P 1
i−1(t) = P 1

i (t)
...

P ri
i−1(t) = P ri

i (t),

where the superscript represents the order of the derivative.

Example. Suppose we have the interval [a, b] = [0, 3] and the subintervals are [0, 1], [0, 2] and [2, 3]

and the polynomial pieces to be a quadratic polynomial. The pieces on [0, 1] and [1, 2] must join in

value and first derivative at t = 1 while the pieces on [1, 2] and [2, 3] must join in value and first

derivative at t = 2. Based on this, we could define a spline S(t) as:

S(t) = P0(t) = −1 + 4t− t2 , 0 ≤ t < 1

S(t) = P1(t) = 2t , 1 ≤ t < 2

S(t) = P2(t) = 2− t+ t2 , 2 ≤ t ≤ 3

Then, it is easy to see that i) follows the condition of being polynomials defined by pieces on

subintervals of degree 2 or less and ii) S(t) and its derivatives are continuous everywhere since at

t = 1 → P0(t) = P1(t) as well as P ′

0(t) = P ′

1(t) and at t = 2 → P1(t) = P2(t) as so their derivative

P ′

1(t) = P ′

2(t); so we can say S(t) is a spline function of degree 2.
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2.3.2 M-splines and I-splines

M-splines. Since our objective is to estimate a non-negative function (i.e. the hazard), it would be

reasonable to think about a family of splines that share the same characteristic (being non-negative).

The M-spline family is one type that satisfies this condition.

This spline, is positive inside the internal knots [ti, ti+k] and zero elsewhere and has the normal-

isation
∫
Mi(t)dt = 1 (De Boor, 1978). Based on this, we can see that each Mi of the family has

the properties of a probability density function in the interval [ti, ti+k]. As we can recall, a function

fX(x) is a probability density function of some random variable X if and only if fX(x) ≥ 0 for all x

and
∫
∞

−∞
fX(x) = 1 which holds for Mi.

As a recap, we list the following properties for Mi

1. Mi is non-negative.

2. Mi is zero unless ti ≤ t < ti+k.

3. Mi has k − 2 continuous derivatives at interior knots, k being the order of the spline.

4. Mi integrates to 1.

Additional to the previous properties, in order to assure non-negativity, the associate coefficients

must be positive as well (i.e. γi ≥ 0). Moreover, the total degrees of freedom (df), which represents

the number of independent variables in a spline (number of parameters), is given by the degree and

the number of knots, df = k +m. If we estimate an intercept then df = k +m+ 1.

The computation can be defined by a recursion method since is more appropriate from a compu-

tational perspective (Ramsay, 1988). More specifically, for Mi of degree 1 (k = 1) we have

Mi(t) =







1/(ti+1 − ti) if ti ≤ t < ti+1

0, otherwise.

(2.39)

For a higher degree (k > 1) and p0 = (t− ti), p1 = (ti+k − t), p2 = (ti+k − ti),

Mi(t) =







k[p0Mi(t) + p1Mi+1(t)]/(k − 1)p2, if ti ≤ t < ti+1

0, otherwise.

(2.40)

I-splines. The cumulative hazard is the integral of the hazard. It is a non-decreasing function

representing the accumulation of risks until a certain time. To obtain this we can employ the integral

of M-splines, called I-splines, which are monotonically non-decreasing functions of the form

Ii(t) =

∫ t

tmin

Mi(u)du, (2.41)

where tmin is the lower limit of the interval of the splines. The computation for this family at each

interior boundary tj ≤ tj+1 has the form

12



Ii(t) =







0, i > j

∑j
m=i(tm+k+1 − tm)Mk+1

m /(k + 1), j − k + 1 ≤ i ≤ j

1, i < j − k + 1.

(2.42)

Finally, we present in Figure 2.2 a family of cubic M-splines (k = 3) with 3 knots (m = 3) and

their integral with the resultant curve in a red dashed line.
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Figure 2.2: Cubic Mi and Ii splines with 3 knots (m = 3).The red curve was generated using
equation 1.1M1 + 1.9M2 + 1.2M3 + 1.2M4 + 3M5 + 0.06M6
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Chapter 3

Estimation of the baseline hazard

function via M-splines

3.1 M-splines approximation of the baseline hazard function

Angelos et al. (1991), Rosenberg (1995), Herndon and Harrell Jr (1995) and Etezadi-Amoli and Ciampi

(1987) use splines to approximate the baseline hazard function. They use quadratic, cubic, and B-

Splines, respectively. However, the use of M-splines is not covered. Knowing that M-splines share

the same property of non-negativity with the baseline hazard function it would seem valid to propose

this approximation. We will evaluate this approximation under the proportional hazard model using

simulations and a real-world data application.

Etezadi-Amoli and Ciampi (1987) defined the approximation of the baseline hazard using quadratic

splines of the form λ0(t) ≈ sp2,m(t), where sp2,m(t) is defined as:

sp2,m(t) =

2∑

k=0

γ0,kt
k +

m∑

n=1

γn2(t− τm)2+, (3.1)

being (a)+ = a if a > 0 and 0 otherwise, m the number of knots, and τ1, ..., τm the knots.

For example, if we have one knot t = τ1 we can rewrite (3.1) as

sp2,1(t) = γ00 + γ01t+ γ02t
2 + γ10 + γ11(t− τ1)+ + γ12(t− τ1)

2
+.

Similarly, we propose the following approximation via cubic M-splines. We select cubic splines

since these are C2 continuous, meaning that their second derivatives are the same at the joints where

they meet and giving us a higher level of smoothness than linear or quadratic splines.

What we propose is to approximate the baseline hazard function by an M-spline of order three.

More specifically: λ0(t) ≈ M3
i,m(t) of the form

M3
i,m(t) =

3∑

k=0

γkt
k +

m∑

i=1

ϕiM
3
i , (3.2)
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where m represents the number of knots, k is the degree of the splines, γ indicates the coefficients

for the polynomial part at the left side of the equation and ϕi are the coefficients for the M-splines

associated with the number of knots.

Example. If we set m = 0, there are no internal knots, so the condition ti ≤ t < ti+1 does not hold

since we are not dividing our data points, then Mi = 0 and

M3
i,m =

3∑

k=0

γ0t
k +

✚
✚

✚
✚✚

m∑

i=1

ϕiM
3
i = γ0 + γ1t+ γ2t

2 + γ3t
3. (3.3)

The estimation of four parameters in this case comes from an ordinal polynomial approximation.

If we use one internal knot (m = 1), then we would have to estimate five parameters,

M3
i,m=1(t) = γ0 + γ1t+ γ2t

2 + γ3t
3 + ϕ1M

3
1 . (3.4)

For I-splines with one knot, we have:

I3i,m=1(t) = γ0 + γ1t+ γ2t
2 + γ3t

3 + ϕ1

∫ t

ti

M3
1 (u)du. (3.5)

3.2 Likelihood Estimation

The proposed extended hazard regression (EHR) from Etezadi-Amoli and Ciampi (1987) will serve

us as a guide to later estimate the baseline hazard with M-splines. This general form for the hazard

entails both models, the proportional hazard and the accelerated failure time. The EHR has the form

λ(t|Z) = λ0[g(Zα)t] g(Zβ), (3.6)

where g(x) = exp(x), λ0(t) is the baseline hazard and α and β are regression parameters associated

to the vector of covariates Z.

Depending on the values of α and β, the previous expression could yield different results. For

example, if we define β = α then (3.6) turns to the accelerated failure time model,

λ(t|Z) = λ0[exp(Zβ)t] exp(Zβ). (3.7)

On the other hand, if we set α = 0 then the EHR yields a proportional hazard model similar to

(2.41).

λ(t|Z) = λ0(t) exp(Zβ). (3.8)

Using (3.8) with a sample size of N observations with times (ti), the censoring indicator (δi), and

a vector of covariates zi, we have: (ti, δi, zi), i = 1, ..., N

We can write the likelihood function for the N observations as
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L =

N∏

i=1

f(ti, zi)
δi · S(ti, zi)

1−δi (3.9)

=

N∏

i=1

λ(ti, zi)
δi · S(ti, zi)

δi · S(ti, zi)
1−δi

=

N∏

i=1

λ(ti, zi)
δ · S(ti, zi). (3.10)

Since S(t) = exp(−Λ(t)), then

L =

N∏

i=1

λ(ti, zi)
δi · exp[−Λ(ti, zi)]. (3.11)

Taking the logarithmic value of the last expression, the log likelihood function is defined as:

l =

N∑

i=1

[

δi[log λ(ti, zi)]− Λ(ti, zi)
]

(3.12)

=

N∑

i=1

[

δi [log λ(ti, zi)]−

∫ t

0

λ(ti, zi)dt

]

(3.13)

Replacing (3.6) in (3.13)

l =

N∑

i=1

[

δi [log {g(β · zi)λ0[g(α · zi)t]}]−

∫ t

0

g(β · zi)λ0[g(α · zi)t]dt

]

=

N∑

i=1

[

δi [log {g(β · zi)λ0[g(α · zi)t]}]− g(β · zi)

∫ t

0

λ0[g(α · zi)t]dt

]

. (3.14)

If we define u = g(α · z)t, then du = g(α · z)dt and replacing this in (3.14),

l =

N∑

i=1

[

δi [log {g(β · zi)λ0(ui)}]− g(β · zi)

∫ (α·zi)t

0

λ0(ui)

g(α · zi)
du

]

=

N∑

i=1

[

δi [log {g(β · zi)λ0(ui)}]−
g(β · zi)

g(α · zi)

∫ g(α·zi)t

0

λ0(ui)du

]

. (3.15)

Given that the integral of λ0 is Λ0 we can rewrite (3.15) as

l =

N∑

i=1

[

δi [log g(β · zi) + log λ0(ui, ξi)]−
g(β · zi)

g(α · zi)
Λ0(ui, ξi)

]

=

N∑

i=1

δi [log g(β · zi) + log λ0(ui, ξi)]−

N∑

i=1

g(β · zi)

g(α · zi)
Λ0(ui, ξi), (3.16)

where ξi = (γ0,k, ϕi) are the coefficients for the M and I-splines, similar to (3.4) and (3.5). Then our

approximations are λ0(ui, ξi) ≈ M3
m(t) and Λ0(ui, ξi) ≈

∫ t

ti
M3

m(t) = I3m(t).

However, since our work focuses on the proportional hazard model, then α = 0 and the general

form given by (3.16) reduces to:

l =
N∑

i=1

δi [log g(β · zi) + log λ0(ξi)]−
N∑

i=1

g(β · zi)Λ0(ξi). (3.17)
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To optimize this function we will use the optimx package from R. This package, as documented

is “a wrapper function that calls other R tools for optimization including the existing optim”. Since

the baseline hazard is a non-negative function we need to ensure that the coefficients of the M-

splines are positive. For this, we use exp(ξ) instead of ξ. This allows us to solve an unconstrained

optimization that can be solved by using a quasi-Newton method like the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. This is an iterative method that also computes an approximation of the

Hessian matrix which also allows us to compute the covariance matrix, hence finding the estimators

of the standard errors. An example of this and its code can be found in Appendix A.
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Chapter 4

Simulation Analysis

In this chapter, we focus on a simulation study to evaluate the performance of the proportional hazard

model via M-splines. For this, we generate data sets of size 250, 500, and 1,000 and we set the number

of simulations to 1,000 datasets replication.

Time-to-event of interest will be simulated considering three parametric models: Exponential,

Weibull, and Gompertz. The formulas for each model are presented in Table 4.1. This is a similar

setting as the one described in Austin (2012).

Table 4.1: From Austin (2012)

Characteristic Exponential Weibull Gompertz

Scale(Rate) b > 0 b > 0 b > 0

Shape a > 0 −∞ < η < ∞

Baseline hazard λ0(t) = b λ0(t) = batb−1 λ0(t) = beηt

Cumulative baseline Λ0(t) = bt Λ0(t) = bta Λ0(t) =
b
η (e

ηt − 1)

Prob.Density Function b exp(−bt) bata−1 exp(−bta) b exp( bη (1− exp(ηt)))

Time u ∼ U(0, 1) T = − log(u)
b exp(β′z) T =

(

− log(u)
b exp(β′z)

)1/a
T = 1

η log
(

1− η log(u)
b exp(β′z)

)

For the censoring times, we assume a uniform distribution,

Yi ∼ U(0, ρ), i = 1, ..., n

where ρ defines the censoring level. For this, we test 30%, 40%, and 50% of censoring. To define

ρ, since we are using the same combination of covariates, we need to define P (Y < T ) which is the

probability that the censored times beat the observed times in order to obtain a censored observation,

P (Y < T ) = P (Y < T ∩ T < ρ) + P (T ≥ ρ) (4.1)
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The first part of the equation relates to events that happened before the observed time and the

right side represents the events that happened after.

The two terms of (4.1) are defined as

P (Y < T ∩ T < ρ) =

∫ ρ

0

∫ t

0

1

ρ
f(t)dt. (4.2)

P (T ≥ ρ) =

∫
∞

ρ

f(t)dt. (4.3)

Replacing (4.2) and (4.3) in (4.1) and solving for ρ we get the value needed for a particular level

of censoring

P (Y < T ) =

∫ ρ

0

∫ t

0

1

ρ
f(t)dt+

∫
∞

ρ

f(t)dt

=
1

ρ

∫ ρ

0

tf(t)dt+

∫
∞

ρ

f(t)dt. (4.4)

Once we obtain the times T from Table 4.1 and the censoring times Y based on the value of ρ,

we identify the observed and unobserved times based on the censoring indicator δi,

(T̃i, δi) = (min(Yi, Ti), I(Ti ≤ Yi)),

where T̃ is the observed time. Then, we set the regression coefficients to β1 = 0.5, β2 = 0.7, and the

scale and shape parameters to b = 2, a = η = 3. We also use two covariates: Z1 ∼ Bernouilli(0.5)

and Z2 ∼ N(0, 1).

To evaluate our approximation we compute the relative bias and the coverage for the regression

parameters,

Relative Bias =
1

1000

1000∑

i=1

(

β̂i − β

β

)

.

Coverage =
1

1000

1000∑

i=1

I(β ∈ [LIi, LSi]).

where LIi and LSi are the lower and upper bound for the 95% confidence interval for each simulation.

19



4.1 Results

Polynomial Approximation: No knots. As a first exercise, we start with zero knots (i.e.

m = 0), by doing this we are approximating the baseline hazard using a similar polynomial to (3.3).

The results are presented in Table 4.2.

Table 4.2: Bias and coverage for regression parameters with zero knots (m = 0).

Exponential Weibull Gompertz

Bias Coverage Bias Coverage Bias Coverage

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring ∼ 30%

N = 250 0.13 0.14 0.90 0.74 0.03 0.03 0.94 0.93 0.02 0.02 0.94 0.95

N = 500 0.16 0.16 0.85 0.47 0.01 0.02 0.95 0.94 0.01 0.01 0.94 0.94

N = 1000 0.19 0.18 0.73 0.11 0.01 0.02 0.94 0.94 0.00 0.00 0.93 0.94

Censoring ∼ 40%

N = 250 0.25 0.26 0.85 0.46 0.05 0.04 0.94 0.93 0.00 0.02 0.95 0.95

N = 500 0.28 0.27 0.72 0.16 0.04 0.03 0.95 0.94 0.02 0.02 0.95 0.95

N = 1000 0.29 0.29 0.56 0.01 0.03 0.03 0.95 0.93 0.02 0.02 0.94 0.95

Censoring ∼ 50%

N = 250 0.35 0.36 0.81 0.27 0.03 0.05 0.95 0.92 0.01 0.01 0.95 0.96

N = 500 0.39 0.37 0.65 0.05 0.04 0.05 0.95 0.92 0.00 0.01 0.95 0.95

N = 1000 0.41 0.39 0.41 0.00 0.05 0.06 0.93 0.87 0.00 -0.01 0.96 0.95

We can notice that the exponential model presents difficulties in the recovery of the parameters.

As the level of censoring increases, the bias also increases and the coverage decreases. For scenario

I, with 30 percent of censoring, we get 0.13 as the lowest bias for β1 and 0.14 for β2. In terms of

coverage, the highest is 0.9 for β1 and 0.74 for β2 with a sample size of 250 while the lowest coverage

is 0.73 for β1 and only 0.11 for β2 for the largest sample size. If we increase the level of censoring

to 40%, the bias increases by nearly 10 percentage points for a sample size of 1,000 and the coverage

decreases by nearly 20 percentage points for β1 and 10 percentage points for β2 returning a coverage

of 1%. This pattern repeats when we look at scenario III (Censoring ∼ 50%) where the bias for both

parameters is no less than 35% and the coverage decreases to 0% for β2, results that prevent us to

make any inference about the parameters.

However, the opposite happens for the Weibull and Gompertz models. Focusing on the Weibull

model we can see that among all three scenarios the highest bias is 0.05 (5%) for β1 when the level

of censoring is 40% and 50%. The lowest coverage is for β2 when the censoring grasps 50% returning

0.87 (87%). For the rest of the values, the bias is very low reaching 0.01 and the coverage reaches

0.93 or higher among the studied scenarios. The results for the Gompertz model are slightly better

than the Weibull. As we see, the bias in every case is less than 5% or even less than 1% regardless of

the censoring level being as high as 50% for both parameters. The coverage for every scenario, except

for the value of 0.93, goes from 0.94 to 0.96.

Setting knots. Based on previous results, we noticed that, at least, for the Exponential model an
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approximation using only polynomials (i.e. m = 0) is not enough to get the proper level of coverage

and bias. Etezadi-Amoli and Ciampi (1987) study was conducted on three models that did not

include the Exponential (e.g. Weibull, Generalised Gamma, and Log-normal). In their study, they

conclude that m = 0 suffices to retrieve the regression parameters and the results were acceptable

when compared to m = 1 or m = 2. However, they also mention that inference on the regression

parameters could depend on the number of knots and one should observe this by testing if the addition

of extra knots does not change the log-likelihood substantially. Given this statement and knowing

the limitations of polynomial approximations (De Boor, 1978), we run another simulation to evaluate

how the bias and the coverage may vary with additional knots. We test m = 3 and m = 5 for all

3 models from Table 4.2. Just to keep in mind that, in doing this, we estimate 7 parameters when

m = 3 and 9 when m = 5, this is 4 γ’s parameters for the polynomial part of (3.2) plus the associated

parameters for the knots ϕi. For the placement of the knots, they were placed evenly in the range of

T which is the default method in the splines2 package from R.

The results for the exponential model are shown in Table 4.3.

Table 4.3: Bias and coverage for regression parameters for the Exponential model with zero,
three, and five knots.

Exponential (m = 0) Exponential (m = 3) Exponential (m = 5)

Bias Coverage Bias Coverage Bias Coverage

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring ∼ 30%

N = 250 0.13 0.14 0.90 0.74 0.02 0.02 0.96 0.94 0.04 0.03 0.95 0.96

N = 500 0.16 0.16 0.85 0.47 0.00 0.01 0.93 0.94 0.03 0.02 0.94 0.95

N = 1000 0.19 0.18 0.73 0.11 0.00 0.00 0.96 0.95 0.03 0.03 0.94 0.94

Censoring ∼ 40%

N = 250 0.25 0.26 0.85 0.46 0.00 0.02 0.95 0.94 0.02 0.02 0.95 0.95

N = 500 0.28 0.27 0.72 0.16 0.04 0.03 0.95 0.94 0.02 0.02 0.95 0.95

N = 1000 0.29 0.29 0.56 0.01 0.03 0.03 0.95 0.93 0.02 0.02 0.94 0.95

Censoring ∼ 50%

N = 250 0.35 0.36 0.81 0.27 0.03 0.05 0.95 0.92 0.01 0.01 0.95 0.96

N = 500 0.39 0.37 0.65 0.05 0.02 0.01 0.94 0.95 0.01 0.00 0.95 0.96

N = 1000 0.41 0.39 0.41 0.00 0.00 0.00 0.96 0.95 0.00 0.00 0.95 0.95

As we can see there is a substantial change from m = 0 to m = 3. The bias decreases to less than

4% in each scenario while the coverage is no lower than 0.93. If we compare one of the poorest results

with m = 0 (with a censoring level of 50% with a sample size of 1,000) with m = 3, we get a steep

decrease in bias to less than 1% in comparison of what we had with m = 0, while the coverage for β1

increases from 0.41 to 0.96 and β2 goes from basically no coverage at all to 0.95 (95%). These same

results can be seen in each scenario for m = 3 in which the lowest coverage now is 0.93 instead of 0

when the approximation was made with no knots. These results also hold if we increase two more

knots to m = 5. As we can also see, there is a marginal improvement in the coverage of the regression

parameters and the bias remain low, but the change is minimal in comparison to what m = 0 vs
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m = 3 showed.

We do the same for the Weibull model. In this case, the results obtained with m = 0 were

satisfactory in most cases except for, perhaps, the coverage of β2 for a sample size of 1,000 with ∼

50% of censoring where the coverage was less than 0.9 (90%) and a bias of 6%. Table 4.4 shows the

results with m = 3 and m = 5 for the Weibull model. And similar to what we expressed already,

we can see that with m = 3 there is no bias greater than 0.05, as a matter of fact, the bias for each

scenario decreases which also leads to an increase in the coverage of the parameters. As we see, the

lowest coverage is no longer 0.87 for a censoring level of 50%, instead increases to 0.96. Furthermore,

if we increase two more knots (m = 5) there is a marginal improvement in terms of bias and coverage.

Table 4.4: Bias and coverage for regression parameters for the Weibull model with zero,
three, and five knots m = 0, m = 2 and m = 3.

Weibull (m = 0) Weibull (m = 3) Weibull (m = 5)

Bias Coverage Bias Coverage Bias Coverage

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring ∼ 30%

N = 250 0.03 0.03 0.94 0.93 0.02 0.02 0.96 0.94 0.03 0.02 0.95 0.95

N = 500 0.01 0.02 0.95 0.94 0.00 0.01 0.93 0.94 0.00 0.01 0.95 0.95

N = 1000 0.01 0.02 0.94 0.94 0.00 0.00 0.96 0.95 0.00 0.00 0.94 0.95

Censoring ∼ 40%

N = 250 0.05 0.04 0.94 0.93 0.00 0.02 0.95 0.94 0.01 0.02 0.95 0.95

N = 500 0.04 0.03 0.95 0.94 0.02 0.01 0.95 0.95 0.01 0.00 0.94 0.95

N = 1000 0.03 0.03 0.95 0.93 0.00 0.00 0.96 0.95 0.00 0.01 0.94 0.95

Censoring ∼ 50%

N = 250 0.03 0.05 0.95 0.92 0.00 0.03 0.95 0.94 0.03 0.01 0.95 0.94

N = 500 0.04 0.05 0.95 0.92 0.02 0.01 0.94 0.95 0.01 0.00 0.96 0.94

N = 1000 0.05 0.06 0.93 0.87 0.00 0.00 0.96 0.95 0.01 0.00 0.95 0.96

Finally, we can do the same for the Gompertz model and the results are presented in Table 4.5.

This model yielded more than decent results with m = 0. Its bias was less than 0.05 and the coverage

for the regression parameters was no lower than 0.93 among all scenarios. If we increase the number

of knots we see a decrease in bias (however, the bias was really small from the beginning) and the

coverage increases a bit even reaching a maximum value of 0.97 with m = 5. At least for this model,

we can see more clearly that an increase in the level of complexity of the model (reflected in the

number of parameters to estimate) does not vary much from the results obtained with m = 0.
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Table 4.5: Bias and coverage for regression parameters for the Gompertz model with zero,
three and five knots.

Gompertz (m = 0) Gompertz (m = 3) Gompertz (m = 5)

Bias Coverage Bias Coverage Bias Coverage

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

Censoring ∼ 30%

N = 250 0.02 0.02 0.94 0.95 0.01 0.01 0.94 0.95 0.01 0.02 0.93 0.94

N = 500 0.01 0.01 0.94 0.94 0.00 0.01 0.95 0.95 0.00 0.01 0.95 0.95

N = 1000 0.00 0.00 0.93 0.94 0.00 0.00 0.95 0.95 0.00 0.00 0.95 0.94

Censoring ∼ 40%

N = 250 0.00 0.02 0.95 0.95 0.01 0.02 0.95 0.96 0.02 0.01 0.95 0.96

N = 500 0.02 0.02 0.95 0.95 0.00 0.01 0.96 0.95 0.00 0.02 0.96 0.95

N = 1000 0.02 0.02 0.94 0.95 0.00 0.01 0.95 0.96 0.00 0.01 0.95 0.97

Censoring ∼ 50%

N = 250 0.01 0.01 0.95 0.96 0.03 0.03 0.94 0.93 0.01 0.02 0.95 0.95

N = 500 0.00 0.01 0.95 0.95 0.01 0.02 0.96 0.95 0.00 0.01 0.93 0.94

N = 1000 0.00 -0.01 0.96 0.95 0.03 0.02 0.95 0.93 0.00 0.01 0.95 0.94

4.2 Model comparison

In the previous section, we described that the number of knots could lead to an improvement in bias

and coverage hence in the inference on the regression parameters. The results showed a substantial

improvement for m = 3 for the Exponential model and a slight improvement for m = 5 not only in

the former but in the Weibull and Gompertz as well. Being aware that model complexity increases

when we set a higher number of knots, we use the Akaike Information Criterion (AIC), the Bayesian

Information Criterion (BIC), and the Likelihood Ratio Test (LRT) which are described below to

compare different models:

AIC = 2k − 2log(L̂). (4.5)

BIC = klog(N)− 2log(L̂). (4.6)

λLR = −2
[

ℓ(θ0)− ℓ(θ̂)
]

, (4.7)

where L refers to the Likelihood evaluated in the parameters and ℓ the log-likelihood. The likelihood

ratio, under regularity conditions and with a large sample size, follows a chi-squared distribution

with parameter r, which is the difference between the dimensions of θ0 and θ̂ for the reduced and

full model, respectively. We reject the null hypothesis if λLR > χ2
1−α where χ2

1−α is the 100(1 − α)

percentile of the chi-squared distribution with r degrees of freedom. In our case, the null hypothesis is

the approximation of the baseline hazard with no knots (i.e. reduced model) and how this compares

with more complex models using three or five knots.

For this, we use one artificial data set for each sample size with an approximate censoring level

of 30% and we estimate the parameters defining m = 0, m = 3, and m = 5 and compute their AIC

and BIC. The results are presented in Table 4.6
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Table 4.6: AIC and BIC for m = 0, m = 3 and m = 5

N = 250 N = 500 N = 1000

AIC BIC ℓ AIC BIC ℓ AIC BIC ℓ

Exponential ∼ 30%
m = 0 86.01 107.14 -37.01 28.16 53.45 -8.08 107.65 137.1 -47.82
m = 3 84.23 115.92 -33.11 27.05 64.99 -4.53 71.65 115.82 -26.83
m = 5 87.8 126.54 -32.9 16.93 63.29 2.53 52.43 106.42 -15.22

Weibull ∼ 30%
m = 0 146.76 167.89 -67.38 360.16 385.45 -174.08 563.01 592.45 -275.5
m = 3 149.49 181.18 -65.75 364.5 402.43 -173.25 561.89 606.06 -271.95
m = 5 150.97 189.7 -64.48 367.91 414.27 -172.95 564.53 618.52 -271.27

Gompertz ∼ 30%
m = 0 -110.5 -89.37 61.25 -230.37 -205.08 121.18 -475.93 -446.48 243.96
m = 3 -108.78 -77.08 63.39 -226.12 -188.19 122.06 -473.16 -428.99 245.58
m = 5 -105.02 -66.29 63.51 -223.78 -177.42 122.89 -469.18 -415.19 245.59

Focusing on the Exponential model with N = 250 the lowest AIC and BIC are obtained with

m = 3 having a value of 84.23 and 115.92, respectively while the log-likelihood gets a higher value

with m = 3 vs m = 0. This pattern also repeats itself for larger sample sizes. In the case of N = 500,

going from m = 0 to m = 3 increases the likelihood in 44% (from -8.08 to -4.53), and the same

happens with the larger sample size (N = 1000). Now, for m = 5, the change in likelihood is not as

high as in going from 0 to 3, while the AIC and BIC tend to increase for a sample size of 250 but gets

a lower value for N = 500 and N = 1000.

For the Weibull model, the lowest AIC and BIC are the ones obtained with m = 0 with the

exception of N = 1, 000. However, if we look at the log-likelihood values, the best fit occurs when we

use m = 5 with an improvement of 2% approximately.

A similar behavior occurs for the Gompertz model. In this model, we see that m = 0 suffices in

terms of AIC and BIC while the change in the log-likelihood is also small. For example, not being

greater than 3% when we compare m = 0 vs m = 3 for N = 250.

Now we present the likelihood ratio test for each model presented in Table 4.7 where we reject the

null hypothesis for N = 500 and N = 1, 000 for the Exponential model (a result that was expected

since we saw the Exponential model had a poor performance with m = 0). Also, we are available

to reject the null hypothesis when comparing m = 3 vs m = 5 and m = 0 vs m = 5. The only

contradiction is with N = 250, when we fail to reject the null hypothesis for all scenarios, however

since we are using only one data set for this example, we are inclined to believe that in a repeated

experiment we would end up rejecting the null hypothesis multiple times.

For the other 2 models, fail to reject the null hypothesis in every scenario so we could use a

polynomial approximation with no knots for these. However, taking into consideration the results for

the Exponential model with m = 5 and also the improvement for the Weibull model when going from

m = 3 to m = 5, we conclude that 5 knots could be suitable since this number of knots suffices and

passes the tests for all models.
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Table 4.7: Likelihood Ratio Test for 3 data sets with a censoring level of ∼ 30%

χr LR

Parameters r χ2

r
Exponential Weibull Gompertz

N = 250

m = 0 vs m = 3 6 vs 9 3 7.81 7.79 3.27 4.28

m = 3 vs m = 5 9 vs 11 2 5.99 0.43 2.52 0.25

m = 0 vs m = 5 6 vs 11 5 11.07 8.21 5.79 4.53

N = 500

m = 0 vs m = 3 6 vs 9 3 7.81 7.10 1.66 1.75

m = 3 vs m = 5 9 vs 11 2 5.99 14.12 0.59 1.66

m = 0 vs m = 5 6 vs 11 5 11.07 21.22 2.26 3.41

N = 1000

m = 0 vs m = 3 6 vs 9 3 7.81 42.00 7.11 3.24

m = 3 vs m = 5 9 vs 11 2 5.99 23.22 1.36 0.02

m = 0 vs m = 5 6 vs 11 5 11.07 65.21 8.47 3.25

Finally, while performing the simulations the algorithm encountered a few numerical problems in

finding the standard errors (SEs) even though convergence was reached. For example, with m = 0

the polynomial approximation is unable to compute the SE for 3 simulations for the exponential and

7 for the Weibull. When we increase the number of knots to m = 3 we notice that the Exponential

model with 50% of censoring for a sample size of 250 has the most difficulty with 18 observations

where the SEs were not computed followed by the Weibull model with 17 observations, however, both

of them are less than 2% of the cases. With m = 5 the behaviour repeats itself, even reaching 43% for

only one case of the exponential model with a sample size of 500 and censoring of 50%. Nevertheless,

we found that by changing the initial parameters to the Cox regression estimates this issue either

decreases totally or reduces significantly. For example, we found that for the Exponential model, we

reduce the NAs from 43% to 22% for m = 5. So, in order, to apply this method we suggest feeding the

algorithm with the Cox regression estimates as initial values to tackle this inconvenience and if the

problem persists, we could suggest using Bootstrap to find the SEs given the asymptotic normality

of the maximum likelihood estimator.
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Chapter 5

Analysis of Students Data

5.1 Data Description

In this chapter, we analyse the payment behaviour of students from an educational Institution. We will

apply the standard proportional hazards model implemented in R and compare it with the proposed

methodology to assess the effect of different factors on the risk of payment.

Data description. The data contains a cohort of 50,146 students with a censoring level of 27%.

For this study we use seven covariates: i) tuition fee, ii) cumulative credits, iii) absence to classes,

iv) current grade point average (GPA), and payment behaviour from the first three out of a total of

four academic fees: v) payment behaviour of the first fee, vi) payment behaviour of the second fee,

and vii) payment behaviour of the penultimate fee. The explanations of these seven covariates and

the response are as follow:

• Tuition fee: Students have a tuition fee that is calculated at the beginning of the enrolment

stage. This can vary according to the number of credits, the faculty, and the campus.

• Cumulative credits: Researches like McGrath and Braunstein (1997), Anderson (1981), Pan-

tages and Creedon (1978) show that students from the first o second year are more likely to

drop out from college. Based on this, we are interested in how the level of seniority could have

an impact on the risk of payment.
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• Absence to classes until week 12: Absences from scheduled classes can affect grades (Jones,

1984) and also can have an impact on attrition (Whannell, 2013) and based on this we are

interested to see if there is an impact on the risk of payment.

• Grade point average (GPA): GPA is an indicator of how a student is performing in university

and we would like to know how this covariate can affect the risk of payment on time.

• Payment behaviour of the first 3 fees: Financial variables tend to have an autoregressive compo-

nent. For example, if we want to forecast credit growth (Dinh, 2020) or study non-performing

loans (Radivojevic et al., 2017) we would have to dive into their past behaviour. In relation to

that, we want to test if the past behaviour can shed some light on the payment of the last fee.

• Days until payment (days): This is our response variable. Is a vector containing 50,146 times

of which 27% of them are censored.

5.2 Model Fitting

After fitting the PH model via M-splines we find a negative relationship between the amount of the

tuition fee (tfee) and the absence from classes until week 12 (abs), and the response variable, whereas

we find a positive relationship between cumulative credits, GPA, and their payment behaviour of the

previous fees. In Table 5.1 we can see that all covariates are statistically significant at 5% since their

confidence intervals do not contain 0, yielding similar results to the Cox model.

Table 5.1: Factors associated with time to payment of fee 4 using a proportional hazard
model.

PH via M-splines Cox PH

coef HR Lower Upper coef HR Lower Upper

Tuition fee −0.062 0.940 0.918 0.963 −0.060 0.942 0.919 0.964
(0.012) (0.012)

Cumulative credits 0.078 1.081 1.054 1.109 0.079 1.082 1.055 1.110
(0.013) (0.013)

Absences −0.504 0.604 0.550 0.664 −0.505 0.604 0.549 0.663
(0.048) (0.048)

GPA 0.039 1.040 1.030 1.050 0.041 1.041 1.032 1.051
(0.005) (0.005)

Fee 1 0.420 1.522 1.488 1.558 0.425 1.530 1.495 1.566
(0.012) (0.012)

Fee 2 0.475 1.607 1.564 1.652 0.466 1.594 1.550 1.638
(0.014) (0.014)

Fee 3 0.849 2.338 2.278 2.401 0.842 2.320 2.260 2.382
(0.013) (0.013)

Values inside parenthesis represent the standard errors of the regression coefficients.
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In the following paragraphs, we will interpret the regression coefficients.

For tuition fees, holding the other covariates constant, if the tuition fee is greater than 3,000 then there

is a decrease in the relative risk in comparison with students with tuition fees less than 3,000. The estimated

relative risk is exp(−0.062) = 0.940, with a confidence interval of exp(−0.062± 1.96× 0.012) = (0.918, 0.963).

For cumulative credits, Holding the rest of covariates constant, if the cumulative credits increase in

1 unit then there is an increase in the relative risk of payment on time. The estimated relative risk is

exp(0.078) = 1.081 with a confidence interval of exp(0.078± 1.96× 0.013) = (1.054, 1.109).

Focusing on absence to classes until week 12, a student with one additional percentage point in absence

of classes reduces the relative risk of payment on time while keeping the rest of the variables constant. The

estimated relative risk is exp(−0.504) = 0.604 with a confidence interval of exp(−0.504 ± 1.96 × 0.048) =

(0.550, 0.664).

For GPA, controlling for the rest of covariates, students with 1 more point in their GPA increases the

relative risk of payment on time. For this the estimated relative risk is exp(0.039) = 1.040 with a confidence

interval of exp(0.039± 1.96× 0.005) = (1.030, 1.050).

For the case of payment behaviour for the first 3 fees, we find that the penultimate fee has the strongest

effect. Holding all other covariates constant, if a student has paid on time the third fee, then there is an

increase in the relative risk of payment. Furthermore, the estimated relative risk is exp(0.849) = 2.338 with

a confidence interval of exp(0.849 ± 1.96 × 0.013) = (2.278, 2.401). The second strongest effect comes from

the payment behaviour of the second fee with the estimated relative risk being exp(0.475) = 1.607 with a

confidence interval of exp(0.475 ± 1.96 × 0.014) = (1.564, 1.652) while for the first fee, we have an estimated

relative risk of exp(0.420) = 1.522 with a confidence interval of exp(0.420± 1.96× 0.012) = (1.488, 1.558).

Furthermore, Figure 5.1 shows the baseline curves thanks to the estimated coefficients associated with

M-splines.
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Figure 5.1: From left to right one has the baseline hazard, cumulative hazard, and the baseline
survival function.
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Focusing on the left side panel, we see that the hazard decreases at the start but then increases abruptly

since more students start paying their fees approximately on day 10. After that, we can see a decrease in the

risk of payment. Also, we need to consider that normally students have some more days after the due date to

be considered on time (otherwise they could be susceptible to additional charges) which is why there are still

payments but every single day that passes the risk of payment on time decreases. This is also reflected in the

cumulative hazard from the centre panel. As we see, there is an increase until almost day 20, then apparently

reaches a plateau. While in the right-side panel, we can see that the survival function decreases rapidly since

the majority of payments occur in the first 20 days approximately.
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Chapter 6

Conclusions

This thesis has developed a methodology to estimate the baseline hazard function via M-splines by maximising

the log-likelihood. The contributions of this work are: i) to have a broader explanation of survival analysis

and splines as well as the extended hazard regression model (EHR) proposed by Etezadi-Amoli and Ciampi

(1987), ii) understand via simulation study why the number of knots is important in the inference of the

parameters, even for models that are not complex like the Exponential model, iii) evidence the difficulties

this method has as well as their strengths, since as stated in Shih and Emura (2021), Bryson and Johnson

(1981) and Wichitsa-Nguan et al. (2016) the partial likelihood might not always have a maximum and a spline

approximation could be useful in these cases, and iv) serve as a starting point for further studies.

In our simulation study, we tested three models: i) Exponential, ii) Weibull, and iii) Gompertz. The first

had difficulties when we used only a polynomial approximation (i.e. no knots), while the others had a decent

level of bias and coverage for the regression parameters with m = 0. Then, we decided to add more knots

equally spaced in the range of the time variable. Using three and five knots we saw an improvement in terms

of bias and coverage enabling us to make inferences about the regression parameters. The greater impact

was seen in the Exponential model that went from basically no coverage at all to 95% when m = 5. We also

saw marginal improvements in the other models as well (for example, a 0.93 coverage increases to 0.95 for

the Weibull and Gompertz model). These results lead us to conclude that 5 knots might be suitable for this

method.

Apart from this we also identified that the computational time to get the estimates is higher than the Cox

proportional model, mainly because of the number of parameters the M-splines method needs to compute.

Furthermore, we encountered negative values in the inverse of the Hessian matrix which caused problems with

the computation of the standard errors. This was present in only a few of the simulated samples so we do not

consider this a major issue. One approach to deal with this is using the estimates of the Cox regression as

initial values for the algorithm and, if the problem persists, one could use Bootstrap methods to approximate

the standard errors.
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6.1 Suggestions for further analysis

As potential lines of research, we could: i) study a way to implement a penalised maximization if we would want

to use more than 5 knots, ii) test this method with more complex models from the generalised F distribution,

iii) evaluate its performance for the Accelerated Failure Time model, iv) evaluate how this method could

deal with repeated times (ties), v) evaluate the trade-off between this method and the Cox regression from

a computational perspective, and vi) test this implementation against the splineCox.reg() function from the

joint.Cox package in R developed by Emura et al. (2017).
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Appendix A

R code

Packages used: survival, splines2 y optimx.

llph: Negative of the log-likelihood function

Description: Computes the negative of the log likelihood function

llph <- function(dat ,time_col ,cen_col ,covar_cols ,df ,ms_degree ,par){

To <- dat[,time_col]

d <- dat[,cen_col]

Z <- as.matrix(dat[,covar_cols])

n_reg_par <- ncol(Z)

betas <- as.matrix(par[1:n_reg_par])

xi <- as.matrix(par[(n_reg_par + 1): length(par )])

# Baseline hazard

ho <- mSpline(To ,intercept = TRUE ,

df = df ,degree = ms_degree) %*% exp(xi)

ht <- exp(Z %*% betas) * ho # Hazard function

# Cumulative baseline hazard

Ho <- mSpline(To ,intercept = TRUE , df = df ,

degree = ms_degree , integral = TRUE) %*% exp(xi)

# Log -Likelihood

val <- sum(d*log(ht)) - sum((exp(Z %*% betas))*Ho)

return(-val)

}
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wrap_llph <- function(par ,...){

# wrapper for llph that prints optimisation

cat(par ,"\n")

llph(par ,...)

}

Arguments:

1. dat: Data.

2. time col: Column index for time.

3. cen col: Column index for the censoring indicator.

4. covar cols: Index for the columns containing the covariates.

5. df: Degree of freedom regarding the number of knots. For more information check the splines2 docu-

mentation.

6. ms degree: M-spline degree

7. par: Initial parameters.

sim df: Data simulation

Description: Simulates data for a proportional hazard model for the Exponential, Weibull, and Gompertz

distribution with two covariates. For this, the function identifies the value of ρ that meets the desired level of

censoring. The covariates are: z1 ∼ Binomial(0.5) and z2 ∼ N(0, 1). Finally, the scale and shape parameters

were fixed to b = 2, a = η = 3 in the simulation process.

Note: For the Gomperz distribution, the function works with a transformation of the probability density

function in order to avoid numerical difficulties. It uses exp(log(f(t)) instead of f(t).

dataSim <- function(dist ,N,a,b,eta ,betasTrue ,targetCensProb ){

z1 <- rbinom(N,1 ,0.5)

z2 <- rnorm(N)

Z <- cbind(z1,z2)

# Exponential distribution

if(dist == "exp"){

f1 <- function(t){t * b*exp(-b*t)}

f2 <- function(t){b*exp(-b*t)}

# Generating times (similar for weibull and gompertz)

tvals <- (-log(runif(N))/(b*exp(Z %*% betasTrue )))

}
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# Weibull distribution

if(dist == "wei"){

f1 <- function(t){t*b*a*(t**(a-1))*exp(-b*t**a)}

f2 <- function(t){b*a*(t**(a-1))*exp(-b*t**a)}

tvals <- tvals <- (-log(runif(N))/(b*exp(Z %*% betasTrue )))**(1/a)

}

# Gompertz distribution

if(dist == "gomp"){

f1 <- function(t){t * exp(log(b) + eta*t + b/eta*(1-exp(eta*t)))}

f2 <- function(t){exp(log(b) + eta*t + b/eta*(1-exp(eta*t)))}

tvals <- (1/eta)*log(1-((eta*log(runif(N)))/(b*exp(Z %*% betasTrue ))))

}

# Finding rho for desired level of censoring

f <- function(rho){

int1 <- integrate(f1 ,lower = 0,upper = rho )[["value"]]

int2 <- integrate(f2 ,lower = rho ,upper = Inf )[["value"]]

res <- targetCensProb - (1/rho)*int1 - int2

}

resTmp <- uniroot(f,lower = 0.001, upper = 5)

rho <- resTmp$root

Y <- runif(N,0,rho) # Censoring times

To <- pmin(tvals ,Y) # Observed times

d <- as.numeric(tvals < Y) # delta indicator (censoring indicator)

simData <- as.data.frame(cbind(tvals ,d,Z))

colnames(simData )[1] <- "t"

return(simData)

}

Arguments:

1. dist: Distribution. For Exponential = ’exp’, for Weibull = ’wei’, for Gompertz = ’gomp’.

2. N: Sample size.

3. a: Shape for the Weibull distribution.

4. b: Scale for the Exponential and Weibull distribution.

5. eta: Shape for the Gompertz distribution.

6. betasTrue: True values of the regression parameters to recover.

7. targetCensProb: Desired level of censoring (i.e. 30%, 40%, 50%).

ll ehr opt: Optimisation procedure via maximum likelihood
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Description: Returns the estimates of the regression parameters, the coefficients for the M-splines, the

standard errors, the lower and upper bound, and other relevant information of the optimisation.

llphOpt <- function(par ,dat ,time_col ,cen_col ,

covar_cols ,ms_degree ,df,printOpt =1 ,...){

fun <- ifelse(printOpt == 0,llph ,wrap_llph)

opt <- optimx(fun ,

par = par ,

method = "BFGS",

dat = dat ,

time_col = time_col ,

cen_col = cen_col ,

covar_cols = covar_cols ,

ms_degree = ms_degree ,

df = df)

# 1. M-splines and regression coefficients

# 1.1 Estimates for regression parameters (betas)

b_est <- coef(opt )[1: length(covar_cols)]

# 1.2 Estimates for M-spline coefficients

m_est <- coef(opt)[( length(covar_cols )+1): length(coef(opt))]

# 1.2.1 Estimates for polynomial part

gamma_est <- m_est [1:(ms_degree +1)]

# 1.2.2 Estimates for coefficients related to knots

phi_est <- if(df > 0){

m_est[((ms_degree +1)+1): length(m_est)]

} else{NULL}

# 2. Hessian Matrix and Inverse Hessian to compute SE

temp_hessian <- attributes(opt)$details["BFGS", ][["nhatend"]]

temp_inv_hessian <- tryCatch(solve(temp_hessian),

error = function(e) NULL)

sd_b_est <- sqrt(diag(temp_inv_hessian ))[1: length(b_est)]

# 3. Confidence Interval (95%)

sig_level <- 0.05

conf_level <- 1-(sig_level)/2

lb <- b_est - qnorm(conf_level)*sd_b_est

ub <- b_est + qnorm(conf_level)*sd_b_est

est_results <- c(opt$value ,b_est ,sd_b_est ,lb ,ub ,m_est ,

opt$convcode ,opt$kkt1 ,opt$kkt2 ,opt$xtime)
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vecNames <- if(df > 0){

c("negLogLikeVal",

paste("estimate" ,1:length(b_est),sep = ""),

paste("SE" ,1:length(b_est),sep = ""),

paste("Lower" ,1:length(b_est),sep = ""),

paste("Upper" ,1:length(b_est),sep = ""),

paste("gam", 0:( length(gamma_est)-1), sep = ""),

paste("phi", 1: length(phi_est),sep = ""),

"convcode","kkt1", "kkt2","xtimes")

}else{

c("negLogLikeVal",

paste("estimate" ,1:length(b_est),sep = ""),

paste("SE" ,1:length(b_est),sep = ""),

paste("Lower" ,1:length(b_est),sep = ""),

paste("Upper" ,1:length(b_est),sep = ""),

paste("gam", 0:( length(gamma_est)-1), sep = ""),

"convcode","kkt1", "kkt2","xtimes")

}

names(est_results) <- vecNames

return(est_results)

}

Arguments:

1. par: Initial values.

2. dat: Data.

3. time col: Column index for time.

4. cen col: Column index for the censoring indicator.

5. covar cols: Column index for the censoring indicator.

6. ms degree: M-spline degree.

7. df: Degrees of freedom. For more information check the splines2 documentation

8. printOpt: Indicator if optimisation should be printed. Default = 1 (prints optimisation) if 0 does not.
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Example: Optimisation of an artificial dataset of 250 observations from a Weibull distribution with an ap-

proximate censoring level of 40% with coefficients values of 0.5 and 0.7. Optimisation using 7 degrees of

freedom resulting in 3 knots.

library(survival)

library(splines2)

library(optimx)

set.seed (123456)

tmpData <- dataSim(dist = "wei",N = 250, a = 3, b = 2,

betasTrue = c(0.5 ,0.7) , targetCensProb = 0.4)

opt <- llphOpt(par = c(0,0,rep (0.01 ,7)) , dat = tmpData ,

time_col = 1,cen_col = 2,covar_cols = c(3,4),

ms_degree = 3,df = 7,printOpt =1)

print(opt)

#negLogLikeVal estimate1 estimate2 SE1 SE2

# 65.31887104 0.38404277 0.73870963 0.15934918 0.09053048

# Lower1 Lower2 Upper1 Upper2 gam0

# 0.07172412 0.56127315 0.69636142 0.91614611 -4.67555640

# gam1 gam2 gam3 phi1 phi2

# -3.16898221 -2.16743105 -0.28314826 0.20925607 -2.15265130

# phi3 convcode kkt1 kkt2 xtimes

# -0.71285462 0.00000000 1.00000000 1.00000000 0.14000000
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