PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

PROPUESTA DE DISEÑO DEL SISTEMA DE DRENAJE PLUVIAL SUPERFICIAL Y SUB SUPERFICIAL PARA EL LADO AIRE DE UN AEROPUERTO DE JULIACA

Tesis para optar el Título profesional de Ingeniero Civil

AUTOR:

Axel Fabrizio Rivera Medina

ASESOR:

Msc. Ing. Mitchel Jimmy Jara García

Lima, 2022

Declaración jurada de autenticidad

Yo, Mitchel Jimmy Jara García, docente de la Facultad de Ciencias e Ingeniería de la Pontificia Universidad Católica del Perú, asesor de la tesis/el trabajo de investigación titulado "Propuesta de diseño del sistema de drenaje pluvial superficial y sub superficial para el lado aire de un aeropuerto de Juliaca", del autor Axel Fabrizio Rivera Medina, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 15%. Así lo consigna el reporte de similitud emitido por el software *Turnitin* el <u>03/11/2022</u>.
- He revisado con detalle dicho reporte y confirmo que cada una de las coincidencias detectadas no constituyen plagio alguno.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima, 01 de diciembre del 2022

Apellidos y nombres del asesor:	
Jara García, Michel Jimmy	N
DNI: 40418282	Firma
ORCID: 0000-0000-0011-9879	

RESUMEN

La ausencia de medidas efectivas y consideraciones técnicas para el manejo y conducción del drenaje pluvial en el Perú genera como consecuencia problemas y daños en la infraestructura. Sobre lo anterior, las infraestructuras aeronáuticas no son ajenos a esta problemática. En ese sentido, un sistema de drenaje pluvial deficiente de un aeropuerto impacta negativamente a las actividades que se desarrollan en la infraestructura.

El presente trabajo de tesis propone el diseño del sistema de drenaje pluvial del lado aire del Aeropuerto Internacional Inca Manco Cápac ubicado en la ciudad de Juliaca, Perú. Este diseño fue realizado de acuerdo al circular AC 150/5320-5D: "*Airport Drainage Design*", propuesta por la Administración Federal de Aviación, debido a la falta de una normativa peruana para diseñar un sistema de drenaje pluvial para aeropuertos.

La metodología de este estudio fue divida en tres fases principales y una de conclusiones y recomendaciones. La primera fase consistió en la recolección de datos e información necesaria para determinar las características y consideraciones técnicas de la zona en estudio. La segunda fase consistió en realizar el análisis hidrológico para calcular las precipitaciones e intensidades máximas para periodos y duraciones específicas. Además, se determinó el método hidrológico para calcular las tasas de flujo máximo para cada tramo del sistema de drenaje pluvial principal. La tercera fase consistió en plantear y desarrollar el modelo BIM de la infraestructura aeronáutica y del sistema de drenaje pluvial para desarrollar los cálculos hidráulicos. La modelación de la información para la Construcción (BIM, por sus siglas en inglés) es una tecnología del cual permite representar la información funcional y física de un activo de manera digital. Finalmente, los tirantes y las líneas de gradiente hidráulico fueron determinados mediante el software EPA SWMM.

Respecto al análisis hidrológico, la función de probabilidad Log Normal 3 fue la mejor en ajustarse a los datos pluviométricos. Además, el método racional fue aplicado debido a que el área total de cada cuenca principal cumple con ser menor a 809,371 m^2 (200 acres). Respecto al diseño hidráulico, el drenaje superficial, sub superficial y redes principales consistieron en un sistema de conductos abiertos o a gravedad. Se determinó que las líneas de gradiente hidráulico de las redes de drenaje principales son iguales a la profundidad del agua libre. Se obtuvieron tramos con profundidades que superan los 10 metros debido a la extensión y poca pendiente del área en estudio, por lo que se recomienda emplear equipos de bombeo. Finalmente, desarrollar BIM permitió tomar decisiones, realizar cambios, proponer alternativas y definir el diseño del sistema de drenaje pluvial, así como obtener información de manera versátil y dinámica a partir del modelo digital.

RESUMENii	
Lista de Figurasvii	
Lista de Tablasix	
Capítulo 1. Introducción11	
1.1 Estado del arte11	
1.2 Alcance	
1.3 Justificación19	
1.4 Objetivos	
1.4.1 Objetivo general	
1.4.2 Objetivos específicos20	
1.5 Hipótesis	
Capítulo 2. Marco teórico21	
2.1 Criterios hidrológicos21	
2.1.1 Ciclo hidrológico21	
2.1.2 Precipitación	
2.1.3 Cuencas hidrográficas	
2.1.4 Periodo de retorno	
2.1.5 Intensidad de precipitación	
2.1.6 Hietograma	
2.1.7 Hidrología estadística	
2.1.7.1 Prueba de datos dudosos	
2.1.7.2 Análisis de frecuencias	
2.1.7.3 Prueba de bondad de ajuste	
2.1.8 Generación de curvas Intensidad – Duración – Frecuencia	
2.1.9 Tiempo de concentración	
2.1.10 Determinación de las tasas de flujo máximo	

INDICE

2.2 Hidráulica aplicada	
2.2.1 Diseño de canales de drenaje	34
2.2.2 Periodo de retorno para canales abiertos	36
2.2.3 Diseño de drenajes pluviales	36
2.2.3.1 Flujos a gravedad y flujos a presión	37
2.2.3.2 Línea de gradiente de energía y línea de gradiente hidráulico	37
2.2.3.3 Periodo de retorno para el diseño para drenajes	
2.2.3.4 Pendiente y Velocidad mínima	
2.3 Estructuras del sistema de drenaje pluvial	
2.3.1 Estructuras de entrada de drenaje pluvial	
2.3.2 Entradas	40
2.4 Drenaje subsuperficial	41
2.4.1 Aporte por abatimiento del nivel freático	41
2.4.2 Aporte por infiltración	42
2.4.3 Dimensiones y pendientes de los subdrenes	43
2.5 Consideraciones aeronáuticas	43
2.5.1 Clave de referencia	44
2.5.2 Área de movimiento	44
2.5.2.1 Pistas	45
2.5.2.2 Zona de Viraje en pista	45
2.5.2.3 Calles de rodaje	46
2.5.2.4 Plataformas	46
2.5.2.5 Márgenes	46
2.5.2.6 Franjas	47
2.5.2.7 Área de seguridad de extremo de pista (RESA)	47
2.5.2.8 Zona libre de obstáculos	48
2.5.2.9 Zona de parada	48

2.6 Modelación de la información para la Construcción (BIM)	
2.6.1 Nivel de Desarrollo (LOD)	
2.6.2 Usos BIM	49
Capítulo 3. Metodología	50
3.1 Primera fase: Caracterización y consideraciones de la zona de estudio	
3.2 Segunda fase: Análisis hidrológico	50
3.3 Tercera fase: Desarrollo del sistema de drenaje pluvial	51
3.4 Cuarta fase: Conclusiones y recomendaciones	51
Capítulo 4. Análisis y discusión de resultados	53
4.1 Características y consideraciones de la zona de estudio	53
4.1.1 Ubicación geográfica	53
4.1.2 Topografía de la zona	53
4.1.3 Información Hidrológica	54
4.1.4 Análisis del estado actual de la infraestructura	55
4.1.5 Consideraciones aeronáuticas para el diseño del drenaje pluvial	
4.1.6 Conceptualización del drenaje superficial y sub drenaje pluvial	
4.1.7 Propuesta de redes principales enterradas para el drenaje pluvial	62
4.2 Análisis hidrológico	63
4.2.1 Prueba de datos dudosos de los registros de precipitación	63
4.2.2 Análisis de frecuencia de la precipitación máxima de 24 horas	64
4.2.3 Cálculo de las precipitaciones máximas para cada periodo de retorno	65
4.2.4 Cálculo de intensidades máximas	67
4.2.5 Elección del método hidrológico para el cálculo de caudales	71
4.3 Desarrollo del sistema de drenaje pluvial	72
4.3.1 Desarrollo del modelo BIM del sistema de drenaje pluvial	72
4.3.2 Drenaje superficial del área pavimentada	74

4.3.3 Red de drenaje subsuperficial	84
4.3.4 Red de drenaje pluvial principal	
Capítulo 5. Conclusiones y recomendaciones	95
5.1 Respecto al diseño hidrológico	95
5.2 Respecto al diseño hidráulico	95
5.3 Comentarios adicionales	
REFERENCIAS	
Anexo A: Resultado de análisis hidrológico	
Anexo B: Resumen de resultados de las redes de drenaje pluvial principales	126
Anexo B: Resumen de resultados de las redes de drenaje pluvial principales Anexo C: Resultados del modelamiento hidráulico de la cuenca sur	126
Anexo B: Resumen de resultados de las redes de drenaje pluvial principales Anexo C: Resultados del modelamiento hidráulico de la cuenca sur Anexo D: Resultados del modelamiento hidráulico de la cuenca norte	126 127 138
Anexo B: Resumen de resultados de las redes de drenaje pluvial principales Anexo C: Resultados del modelamiento hidráulico de la cuenca sur Anexo D: Resultados del modelamiento hidráulico de la cuenca norte Anexo E: Vistas del modelo BIM	126 127 138 145
Anexo B: Resumen de resultados de las redes de drenaje pluvial principales Anexo C: Resultados del modelamiento hidráulico de la cuenca sur Anexo D: Resultados del modelamiento hidráulico de la cuenca norte Anexo E: Vistas del modelo BIM Anexo F: Cálculo y Resultados de diseño de drenaje pluvial	126 127 138 145 149

Lista de Figuras

<u>Figura</u> P	ág.
Figura 1. Flujograma sobre los antecedentes para el diseño de drenaje pluvial de aeropuerto	12
Figura 2. Nueva Pista de Brisbane para Aeronaves.	12
Figura 3. Aeropuerto de Barcelona en el año 2000.	13
Figura 4. División de la superficie del Aeropuerto de Barcelona en tres cuencas	14
Figura 5. Esquema de redes de canales para el sistema drenaje del Aeropuerto de Barcelona	14
Figura 6. Área de estudio en el Aeropuerto Internacional de Jartum.	15
Figura 7. Instalaciones del Aeropuerto Internacional de Jartum inundado en el 2015	15
Figura 8. Esquema de Modelado del drenaje del Aeropuerto Internacional de Jartum	16
Figura 9. Aeropuerto El Dorado inundado en el 2017	17
Figura 10 Revisión del drenaje pluvial del Aeropuerto Internacional El Dorado	17
Figura 11 Caudales transportados por cada tramo de red pluvial que drenan hasta un sumidero	18
Figura 12. El ciclo Hidrológico	22
Figura 13. Ejemplo de Curva IDF	28
Figura 14. Ejemplo de análisis del tiempo de duración para dos sub cuencas	30
Figura 15. Canales de drenaje en el Aeropuerto Guarulhos en São Paulo- Brasil	35
Figura 16. Instalación de tubería de polipropileno en aeropuerto.	36
Figura 17. Líneas de gradiente hidráulico y de energía de un flujo en una tubería	38
Figura 18. Estructuras de entrada de flujos provenientes de precipitaciones	39
Figura 19. Estructuras de entrada de flujos provenientes de precipitaciones	40
Figura 20. Tipos de entradas para un sistema de drenaje pluvial	40
Figura 21. Ubicación de RESA y franja de pista	45
Figura 22. Esquema sobre la metodología empleada en el trabajo de tesis	52
Figura 23. Ubicación geográfica del Aeropuerto Internacional Inca Manco Cápac	53
Figura 24. Topografía de la zona en estudio	54
Figura 25. Hietograma del registro histórico de las precipitaciones máximas en 24 horas	55
Figura 26. Zonas del área de movimiento.	55
Figura 27. Canal norte y sur existente del aeropuerto.	56
Figura 28. Carpeta asfáltica del aeropuerto dañada	56
Figura 29. Presencia de fisuras lineales y en malla en la pista de aterrizaje del aeropuerto	57
Figura 30. Estado actual de los canales perimetrales.	57
Figura 31. Franja o área libre de obstáculos del lado aire del aeropuerto.	58
Figura 32. Representación gráfica de canales con entrada de drenaje ranuradas paralelas a la pis	ta de
aterrizaje y despegue del aeropuerto en estudio.	59

Figura 33. Vista en planta de la nueva geometría modelada del lado aire del aeropuerto
Figura 34. Esquema general de la red de drenaje superficial a la red de drenaje exterior61
Figura 35. Planteamiento de drenaje pluvial y subsuperficial61
Figura 36 Detalle de descarga de caudales a la red de drenaje pluvial
Figura 37. Gráfica de funciones de probabilidad con los datos reajustados
Figura 38. Curva Intensidad-Duración-Frecuencia
Figura 39. Modelado del área de movimiento del aeropuerto71
Figura 40. División de áreas de aporte para un lado del área pavimentada
Figura 41. Modelado e información de buzones de red de drenaje principal73
Figura 42. Modelado e información de Tuberías de red de drenaje principal73
Figura 43. División de áreas de aporte para un lado del área pavimentada
Figura 44. Dimensiones de los canales prefabricados para el drenaje superficial75
Figura 45. Identificación de subcuencas o áreas tributarias en el lado Norte de la pista de aterrizaje y
despegue del aeropuerto en estudio78
Figura 46. Identificación de subcuencas o áreas tributarias en el lado Norte de la pista de aterrizaje y
despegue del aeropuerto en estudio
Figura 47. Resultados del modelamiento hidráulico de los diez primeros tramos de la red norte 93
Figura 48. Resultados del modelamiento hidráulico desde el buzón BZ-N01 al BZ-N06
Figura 51. Modelo BIM de la propuesta de diseño de drenaje pluvial del lado aire del aeropuerto 98

Lista de Tablas

Tabla	Pág.
Tabla 1. Valores de Kn para la prueba de datos dudosos	
Tabla 2. Funciones de distribución de probabilidad teóricas	
Tabla 3. Factores de reajuste de datos pluviométricos	
Tabla 4. Valores de "D" tabular para la prueba de Kolmogórov-Smirnov	
Tabla 5. Valores del coeficiente de intercepción	
Tabla 6. Ecuaciones de tiempo de viaje para cada caso	
Tabla 7. Métodos y sus rangos de aplicación para cálculo de caudales	
Tabla 8. Coeficiente de escorrentía según la Administración Federal de Aviación	
Tabla 9 Valores recomendados para Fi	
Tabla 10 Valores recomendados para Fr	
Tabla 11 Clave de referencia de aeródromo del Anexo 14 de OACI.	
Tabla 12 Pendientes máximas de las pistas para aeronaves.	
Tabla 13 Ancho mínimo total de las pistas de aeronaves con márgenes	
Tabla 14 Pendientes máximas y ancho de la franja de seguridad	
Tabla 15 Niveles de desarrollo	
Tabla 16. Características de la estación Juliaca	
Tabla 17. Características físicas de la pista y calle de rodaje	
Tabla 18. Parámetros estadísticos para la prueba de datos dudosos	
Tabla 19. Resultados de la prueba de datos dudosos	
Tabla 20. Función de probabilidad que mejor se ajusta a los datos de precipitación	
Tabla 21. Precipitación máxima para diferentes periodos de retorno	
Tabla 22. Precipitaciones máximas para intervalos menores a 24 horas	
Tabla 23 Intensidades máximas para intervalos menores a 24 horas	
Tabla 24. Valores de cada variable para un tiempo de retorno de 2 años	
Tabla 25. Valores de cada variable para un tiempo de retorno de 5 años	
Tabla 26 Áreas de las superficies divididas del caso en estudio	
Tabla 27 Resultado del tiempo de concentración para drenaje superficial	
Tabla 28 Resultado del caudales para drenaje superficial	
Tabla 29 Caudales calculados para el drenaje superficial	80
Tabla 30 Profundidad de tubería de drenaje superficial	
Tabla 31 Cálculo de caudales de la red de drenaje sub superficial para tiempor de retorno: 5 a	ños 87
Tabla 32 Valores utilizados de coeficiente de escorrentía para red drenaje pluvial	
Tabla 33 Cálculo de caudales de la red de drenaje sub superficial para tiempo de retorno: 50 a	ıños 89

Tabla 34 Cálculo del caudal de escorrentía mediante método racional de la red principal 90
Tabla 35 Cálculo del caudal total de los primeros 6 tramos de la red principal
Tabla 36 Pendientes mínimas de la red de drenaje pluvial según el diámetro de tubería
Tabla 37 Diámetro de tramo a flujo lleno para el caudal total de la red principal de drenaje
Tabla 38 Diámetro de diseño de y capacidad colector en tramo de red de drenaje pluvial principal 92
Tabla 39 Resultados de HGL del software EPA SWMM 92
Tabla 40 Relación tirante máximo - completo de diez tramos de red de drenaje pluvial principal94
Tabla 41 Diámetro de diseño de y capacidad colector en tramo de red de drenaje pluvial principal 94
Tabla 42 Resultados de las mayores descargas de drenaje superficial a buzones
Tabla 43 Resultados de las mayores descargas de drenaje subsuperficial a buzones
Tabla 44 Resumen de resultados de las redes de drenajes pluvial en el lado norte97

Capítulo 1. Introducción

1.1 Estado del arte

La red de drenaje pluvial tiene la finalidad de manejar y conducir el agua proveniente de lluvia. Asimismo, este sistema permite asegurar la integridad estructural y funcional de los elementos que componen una infraestructura. Por tanto, los proyectos de infraestructura deben considerar los aspectos técnicos de un sistema de drenaje pluvial para asegurar la operación de los vehículos durante un evento de tormenta (Federal Aviation Administration, 2013). Un entregable tangible en los proyectos del rubro de la construcción es la infraestructura vial. Este tipo de infraestructura es parte del sistema de transporte y está relacionado a elementos de soporte para vehículos terrestres, portuarios y aéreos (De Solminihac et al., 2018).

El aeropuerto es una infraestructura aeronáutica cuya finalidad es el transporte de cargas y pasajeros (Helios Comunicación, 2020). Los aeropuertos están integrados por dos lados principales: Lado Tierra y Aire. Por un lado, el lado tierra está conformado por edificios para el personal del aeropuerto. Las edificaciones que conforman el lado tierra de un aeropuerto son: terminal de pasajeros y carga, oficinas, vías internas, zonas comerciales, entre otros. Por otro lado, el lado aire está integrado por tres áreas: el área de movimiento, la zona industrial y el área del sistema de control de vuelo y navegación.

En primer lugar, el área de movimiento está conformado por las calles de rodadura, vías de acceso, plataformas y pistas de vuelo para aviones. En segundo, los hangares y talleres integran las zonas industriales y definen el área de apoyo y servicios. Por último, la torre de control desempeña como el sistema de control de vuelo y navegación aérea (Garcia, 2001). De esta manera, los proyectistas y constructores deben considerar los requisitos técnicos de cada lado que integra el aeropuerto en todo su ciclo de vida a fin de lograr las solicitudes del usuario final.

Por otro lado, el lado aire como infraestructura vial también está compuesto por otros elementos: señalizaciones, pasos peatonales, ductos, buzones, entre otros (De Solminihac et al., 2018). Así también, el área de movimiento está conformado por pavimentos, sistema de drenaje pluvial, sistema de combustible, sistema de iluminación, entre otros sistemas. En base a lo

anterior, todos los elementos y sistemas que componen la infraestructura aeronáutica deben funcionar integralmente para su correcto funcionamiento y operación.

Figura 1. Flujograma sobre los antecedentes para el diseño de drenaje pluvial de aeropuerto. Fuente: Elaboración Propia

Especialmente en el área de movimiento, existen dos componentes principales para el diseño. El primero es el pavimento, ya que aquí es donde las aeronaves realizan sus operaciones en el área de movimiento del lado aire del aeropuerto. Por tanto, los pavimentos son definidos como elementos básicos para la construcción de las vías de circulación en los proyectos de infraestructura aeronáutica (De Solminihac et al., 2018). A modo de ejemplo, la construcción de la nueva pista de Brisbane fue realizado entre los años 2012 y 2020. En efecto, el proyecto requirió la construcción de una pista de una distancia mayor a 3 kilómetros y el costo de inversión fue de 1.1 mil millones de dólares (Fig. 2).

Figura 2. Nueva Pista de Brisbane para Aeronaves. Fuente: (Brisbane Airport Corporation, 2021)

El segundo componente importante para el diseño del área de movimiento de una infraestructura aeronáutica es el sistema de drenaje pluvial. La finalidad de un sistema de drenaje pluvial es recolectar y conducir el agua de una tormenta que cae en el lado aire de una infraestructura aeronáutica a una estructura receptora (Federal Aviation Administration, 2013). En consecuencia, el desarrollo y construcción de un sistema de drenaje pluvial resulta indispensable en una infraestructura aeronáutica a fin de evitar paralizaciones de las operaciones de un aeropuerto.

Entre los modelamientos existentes para el diseño de drenaje pluvial, existe la modelación numérica. Un estudio de modelación numérica fue desarrollado para el diseño de un nuevo sistema de drenaje pluvial para la ampliación del Aeropuerto de Barcelona (Fig. 3). El estudio fue realizado por el Departamento de Ingeniería Hidráulica, Marítima y Ambiental de la Universitat Politècnica de Catalunya, en Barcelona, el cual consideró aspectos hidrológicos y geomórficos del lugar como las lluvias torrenciales y las reducidas pendientes.

Figura 3. Aeropuerto de Barcelona en el año 2000. Fuente: (Bladé i Castellet & Dolz Ripollès, 2009)

Así también, tres cuencas idealizadas independientes (Fig. 4) fueron definidas en el diseño del nuevo sistema de drenaje pluvial, siendo la información pluviométrica el dato principal para el diseño hidrológico. Del mismo modo, las simulaciones hidráulicas del estudio consideraron casos de régimen no permanente gradualmente variable.

Figura 4. División de la superficie del Aeropuerto de Barcelona en tres cuencas. Fuente: (Bladé i Castellet & Dolz Ripollès, 2009)

En general, las redes pluviales de cada cuenca del estudio estuvieron conformadas por canales, tuberías y bombas. Igualmente, los caudales obtenidos a partir del estudio hidrológico fueron de 43, 114 y 102 m^3/s para las cuencas este, central y oeste respectivamente. Asimismo, el tiempo de retorno del estudio fue de 25 años. De esta forma, el estudio concluyó que el esquema de almacenamiento de aguas en zonas inundables era la única alternativa para el aeropuerto. Así también, la alternativa de considerar redes de canales integrados con adecuados volúmenes de almacenamiento (Fig. 5) también fue una conclusión del estudio a fin de reemplazar las zonas inundables naturales (Bladé i Castellet & Dolz Ripollès, 2009).

Figura 5. Esquema de redes de canales para el sistema drenaje del Aeropuerto de Barcelona. Fuente: (Bladé i Castellet & Dolz Ripollès, 2009)

Similarmente, un estudio sobre la comparación entre un sistema de drenaje pluvial existente y una nueva propuesta de drenaje pluvial fue realizado para la Segunda Conferencia de Ingeniería Civil en Sudán, en el año 2018. El Aeropuerto Internacional de Jartum fue la infraestructura en evaluación.

Figura 6. Área de estudio en el Aeropuerto Internacional de Jartum. Adaptado de: (Lubna et al., 2018)

La zona de Jartum sufrió inundaciones por lluvias torrenciales en el año 2015 y 2020. A consecuencia de ello, varias casas colapsaron y los habitantes fueron evacuados de emergencia (Dabanga, 2020). De la misma forma, la infraestructura del Aeropuerto Internacional de Jartum fue inundada (Fig. 7) y las actividades económicas y turísticas de las zonas afectadas fueron paralizadas generando atrasos y cancelación de vuelos.

Figura 7. Instalaciones del Aeropuerto Internacional de Jartum inundado en el 2015. Fuente: (Lubna et al., 2018)

El estudio modeló dos casos: el sistema de drenaje pluvial actual y una propuesta de un nuevo sistema de drenaje pluvial. Por un lado, el drenaje pluvial existente del aeropuerto fue caracterizado por estar conformado por un canal abierto de 3,000 m de longitud y una pendiente de 0.18%. Por otro lado, la propuesta del nuevo diseño consistió en redes de drenaje pluvial diseñado mediante un modelo de simulación de precipitaciones y considerando toda el área del aeropuerto dividido en subcuencas (Fig. 8). Finalmente, el estudio concluyó que un rediseño del sistema de drenaje pluvial integral para el aeropuerto era necesario a fin de resolver los problemas de inundación que generaría un evento de lluvia torrencial en la ciudad de Jartum.

Figura 8. Esquema de Modelado del drenaje del Aeropuerto Internacional de Jartum. Fuente: Adaptado de (Lubna et al., 2018)

Igualmente, un estudio sobre el sistema de alcantarillado pluvial fue realizado para una plataforma interior del Aeropuerto Internacional El Dorado, ubicado en Colombia. El estudio fue realizado en consecuencia de un evento de precipitación en abril del 2017. Durante el evento de tormenta, el flujo en los canales del aeropuerto rebosó y el área de movimiento de las aeronaves presentó zonas inundadas (Fig.9). El impacto de la tormenta generó demoras en el desarrollo de las actividades económicas y cancelación de vuelos.

Figura 9. Aeropuerto El Dorado inundado en el 2017 Fuente: (Pulzo, 2017)

A partir del problema de inundación por lluvias en el Aeropuerto El Dorado, los autores del estudio presentaron una revisión de la red de drenaje pluvial de la infraestructura (Fig. 10). Del mismo modo, los investigadores evaluaron el desempeño y capacidad de la infraestructura para una tormenta de diseño de 10 años calculando los caudales transportados por cada tramo de la red pluvial (Fig. 11). Como conclusión, a partir de la modelación del comportamiento hidráulico, las redes de drenaje pluvial existentes presentarían problemas de presurización por inundaciones. (Bedoya & Fandiño, 2017).

Figura 10 Revisión del drenaje pluvial del Aeropuerto Internacional El Dorado Fuente: (Bedoya & Fandiño, 2017)

Figura 11 Caudales transportados por cada tramo de red pluvial que drenan hasta un sumidero Fuente: (Bedoya & Fandiño, 2017)

Por otra parte. una red de drenaje pluvial ineficiente puede ocasionar inundaciones y encharcamientos en la infraestructura durante un evento de tormenta. Asimismo, la infraestructura resulta vulnerable ante el fenómeno de hidroplaneo. Este fenómeno reduce el coeficiente de rozamiento de las superficies debido a la presencia de la lámina de agua producto de las precipitaciones (Garcia, 2001). En consecuencia, el frenado de las aeronaves resulta ineficiente y las aeronaves se encontrarían susceptibles a patinar.

1.2 Alcance

El trabajo de tesis consistió en realizar una propuesta de diseño de sistema drenaje pluvial superficial y sub superficial para el lado aire del Aeropuerto Internacional Inca Manco Cápac, ubicado en la ciudad de Juliaca, Perú. Asimismo, los datos topográficos y datos pluviométricos fueron obtenidos y empleados para el análisis de la zona en estudio. La red de drenaje pluvial del trabajo de tesis fue diseñada a partir de una nueva propuesta de pista, calle, estacionamiento y áreas del lado aire del aeropuerto.

Los cálculos hidrológicos e hidráulicos fueron obtenidos tomando como base los parámetros e indicaciones establecidos en: *Airport Drainage Design*, del circular AC 150/5320-5D propuesta por la Administración Federal de Aviación (FAA, por sus siglas en inglés). La norma técnica peruana OS.060 no es aplicable ya que sólo cubre medidas para un sistema de drenaje pluvial urbano. Del mismo modo, el Manual de Hidrología, Hidráulica y Drenaje de Ministerio de Transporte y Comunicaciones MTC está orientado para el diseño de infraestructura vial terrestre o carreteras. Por consiguiente, no existe una norma en el país para diseñar un sistema de drenaje pluvial de drenaje pluvial de aeropuertos.

El método tradicional para el diseño de una especialidad es realizar cálculos manuales y diseño asistido por computadora (CAD, por sus siglas en inglés) en 2D sin generar información del activo. Por otro lado, la modelación de la información para la construcción (BIM, por sus siglas en inglés) es una tecnología del cual permite representar la información funcional y física de un activo de manera digital. Este estudio estableció una metodología para implementar BIM sustentado por cálculos hidráulicos para el diseño de sistema de drenaje pluvial.

Asimismo, el trabajo de investigación fue desarrollado a fin de definir la recolección, conducción y evacuación del agua pluvial hasta una estructura o cámara receptora en el lado aire del aeropuerto en estudio. Por lo tanto, el cálculo del sistema de bombeo y el drenaje posterior a la cámara receptora no fue parte del alcance del trabajo de investigación.

1.3 Justificación

La actual red de drenaje pluvial del Aeropuerto Internacional Inca Manco Cápac cumplió su ciclo de vida y resulta ineficiente para la evacuación de aguas pluviales. Además, el mal estado estructural del drenaje actual aumenta el riesgo de dañar la infraestructura aeronáutica. Por consiguiente, el nivel de riesgo de generar una paralización de las actividades del aeropuerto debido a una falla de un ineficiente sistema de drenaje pluvial resulta alto.

Asimismo, la pista para aeronaves del aeropuerto presenta dos canales perimetrales en mal estado estructural y con una reducida pendiente. Del mismo modo, la infraestructura aeronáutica no presenta drenes subterráneos en el lado aire del aeropuerto genera el ingreso del agua subterránea al pavimento. Así, el pavimento es susceptible a daños que podrían afectar a las actividades y operaciones del aeropuerto.

1.4 Objetivos

1.4.1 Objetivo general

Proponer el diseño de un sistema de drenaje pluvial superficial y sub superficial para garantizar una adecuada conducción y evacuación pluvial para el lado aire del Aeropuerto Internacional Inca Manco Cápac, ubicado en la ciudad de Juliaca, Perú.

1.4.2 Objetivos específicos

- Recopilar información sobre las características y consideraciones de la zona en estudio.
- Realizar el planteamiento de la propuesta del sistema de drenaje pluvial.
- Realizar el análisis hidrológico de la zona de estudio.
- Desarrollar un modelo BIM de la nueva geometría del lado aire del aeropuerto y de la propuesta de diseño del sistema de drenaje pluvial
- Determinar los caudales de diseño para la red de drenaje superficial, sub superficial y redes de drenaje principales.
- Calcular y diseñar las dimensiones hidráulicas requeridas de los elementos del drenaje superficial, subsuperficial y redes de drenaje principales.
- Determinar que los tirantes de las redes de drenaje pluvial principales sean menores al 80% del diámetro de la tubería y que las líneas de gradiente hidráulico sea igual a la profundidad del agua libre mediante el software EPA SWMM.

1.5 Hipótesis

Ante la presencia importante de la precipitación en la ciudad de Juliaca, resulta indispensable proponer un sistema de drenaje para el lado aire del aeropuerto, a través de un sistema convencional por gravedad.

Capítulo 2. Marco teórico

El diseño de un sistema de drenaje pluvial es un requisito indispensable en el desarrollo de proyectos aeroportuarios. En ese sentido, una infraestructura aeronáutica asegura su funcionalidad y durabilidad al contemplar en su diseño un sistema de drenaje pluvial eficiente. Además, los parámetros y requisitos aeronáuticos de un aeropuerto deben ser considerados en el diseño de la red pluvial aeroportuaria. Por consiguiente, el siguiente capítulo describe los conceptos generales para el diseño de un sistema de drenaje pluvial para una infraestructura aeronáutica como un aeropuerto.

2.1 Criterios hidrológicos

El agua terrestre es el principal recurso en estudio dentro del campo de la hidrología. Asimismo, el agua está presente en toda actividad humana. Por lo tanto, la hidrología permite analizar la interacción entre el agua terrestre y las estructuras hidráulicas para su adecuado uso y dominio.

2.1.1 Ciclo hidrológico

El ciclo hidrológico representa todas las manifestaciones hídricas del agua. Además, el ciclo del agua permite entender la interacción entre el agua terrestre en todos sus estados, la Tierra y la vida sobre ella (Rocha, 1993). En consecuencia, resulta necesario entender los factores que interactúan entre el planeta Tierra y el agua terrestre.

El agua es manifestada a través de un ciclo repetitivo. En efecto, el ciclo del agua presenta los distintos procesos del agua terrestre, dominado principalmente por la infiltración, escorrentía, percolación, almacenamiento, evaporación, transpiración y precipitación (Rocha, 1993). Por lo tanto, el agua terrestre está en constante cambio de estado con la finalidad de estar en continuo movimiento por toda la superficie terrestre (USGS, 2019). Los factores que contribuyen a la funcionalidad y repetición del ciclo del agua son el sol, el viento, la altura, la gravedad. el suelo, la vegetación, entre otros (Fig. 12).

Figura 12. El ciclo Hidrológico Fuente: (Rocha, 1993)

2.1.2 Precipitación

La precipitación es una de las manifestaciones del ciclo hidrológico en donde el agua contenida por la atmósfera cae en lugares en específico. Por consiguiente, las precipitaciones originan otros eventos, como la escorrentía, el drenaje superficial y el drenaje subterráneo (Rocha, 1993). A partir de las precipitaciones que caen en una zona, las mediciones de este evento son realizadas mediante el empleo de pluviómetros para una estación determinada. Asimismo, las precipitaciones generalmente son expresadas en milímetros acumulados en un intervalo de tiempo para una zona en específica (Rocha, 1993).

2.1.3 Cuencas hidrográficas

Las cuencas hidrográficas son zonas terrestres donde el agua proveniente de precipitaciones converge y drenan hacia el mar, lago, río u otro cuerpo de agua (Rocha, 1993). En consecuencia, las cuencas hidrográficas son generadas a partir del evento de precipitaciones. El aporte de las cuencas y su medición resulta indispensable en la determinación de la cantidad de agua que fluye en una superficie (Garcia, 2001). Además, el área de la cuenca determina qué método hidrológico debe ser empleado.

2.1.4 Periodo de retorno

En el campo de la hidrología, el periodo de retorno es la cantidad de tiempo en la que se presentará un evento que sea igual o excedido (Chow et al., 1994), siendo la inversa de la

probabilidad de ocurrencia de un evento hidrológico (Rocha, 1993). El tiempo de retorno generalmente está expresado para un número determinado de años.

2.1.5 Intensidad de precipitación

La intensidad es definida como la ratio de una precipitación para un determinado tiempo. A pesar de que la intensidad de precipitación es variable durante un evento de tormenta, se asume la intensidad de precipitación como un valor constante (Federal Aviation Administration, 2013). Además, la unidad la intensidad de precipitación usualmente está dada por mm/hora.

2.1.6 Hietograma

El hietograma es una gráfica de barras o histograma el cual detalla la distribución de la precipitación caída para una estación pluviométrica y tiempo en específico (Chow et al., 1994). Esta gráfica permite identificar los periodos en dónde las precipitaciones máximas son desarrolladas en una zona de interés o estudio. Los hietogramas también pueden representar la variación de la intensidad de una tormenta particular a fin de compararlo con el registro de otras tormentas en el mismo lugar (Chow et al., 1994).

2.1.7 Hidrología estadística

Los datos hidrológicos son caracterizados de ser dinámicos, variables, independientes y aleatorios (Chow et al., 1994). Asimismo, estos datos permiten determinar la magnitud de un evento de tormenta para un tiempo de retorno en específico. Por lo tanto, los datos hidrológicos deben ser analizados por parámetros y funciones estadísticos (Chow et al., 1994).

2.1.7.1 Prueba de datos dudosos

La prueba de datos dudosos es el análisis que permite identificar aquellos datos que se encuentran lejos del rango de una tendencia estadística de información. Este análisis permite retener o eliminar datos que podrían generan un impacto en los cálculos estadísticos (Chow et al., 1994). Por lo tanto, los estudios estadísticos deben realizar esta prueba con el objetivo de identificar los datos dudosos de las muestras de precipitaciones máximas de 24 horas.

Las pruebas de datos dudosos requieren identificar umbrales o límites de datos. Al respecto, el valor de K_n es un coeficiente que se emplea para detectar datos dudosos en el 10% de significancia (Chow et al., 1994). El valor K_n está en función del número de datos de una muestra para detectar. Los umbrales calculados mediante el valor K_n determinan que datos no

n	Kn	n	Kn	n	Kn	n	Kn
10	2.04	24	2.47	38	2.66	60	2.84
11	2.09	25	2.49	39	2.67	65	2.87
12	2.13	26	2.5	40	2.68	70	2.89
13	2.18	27	2.52	41	2.69	75	2.92
14	2.21	28	2.53	42	2.7	80	2.94
15	2.25	29	2.55	43	2.71	85	2.96
16	2.28	30	2.56	44	2.72	90	2.98
17	2.31	31	2.58	45	2.73	95	3
18	2.34	32	2.59	46	2.74	100	3.11
19	2.36	33	2.6	47	2.74	110	3.05
20	2.39	34	2.62	48	2.75	120	3.08
21	2.41	35	2.63	49	2.76	130	3.1
22	2.43	36	2.64	50	2.77	140	3.13
23	2.25	37	2.65	55	2.8		

son considerados en el análisis estadístico. La siguiente tabla detalla los valores de K_n para una cantidad de muestra n.

Tabla 1. Valores de K_n para la prueba de datos dudosos.

Fuente: (Chow et al., 1994)

Los umbrales superiores e inferiores de datos son calculados a partir de las siguientes ecuaciones:

$$y_L = \overline{y} \pm K_n \times \sigma;$$

 $P_L = 10^{y_L}$

Donde:

 y_L : Umbral superior o inferior para dados dudosos en unidades logarítmicas.

 \bar{y} : Promedio de los logaritmos de las precipitaciones máximas.

 σ : Desviación estándar de los logaritmos de las precipitaciones máximas.

 K_n : Valor tabulado para muestras de tamaño n.

 P_L : Umbral superior o inferior para datos dudosos en milímetros.

n : Número de datos.

2.1.7.2 Análisis de frecuencias

Las funciones de probabilidad permiten determinar los parámetros estadísticos de un conjunto de datos pluviométricos. Además, la probabilidad acumulada para una determinada distribución podría ser representada gráficamente (Chow et al., 1994). En base a lo anterior, la tabla 2 indica las funciones de distribución de probabilidad principales usados en la rama de hidrología para el análisis de frecuencia.

<u>Distribución</u>	Función de distribución		
Normal	$f_{(x)} = \frac{1}{S\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{2})^2}$		
Log Normal con dos parámetros	$P_{(x \le x_i)} = \frac{1}{S\sqrt{2\pi}} \int_{-\infty}^{x_i} e^{(-(x-\overline{x})^2/2S^2)} dx$		
Log Normal con tres parámetros	$f_{(x)} = \frac{1}{(x - x_0)\sqrt{(2\pi)S_y}} e^{-\frac{1}{2}(Ln_{(x - x_0)} - u_y)/S_y}$		
Gamma 2 parámetros	$f_{(x)} = \frac{x^{\gamma - 1}e^{\frac{-x}{\beta}}}{\beta^{\gamma}\Gamma_{(\gamma)}}$		
Gamma 3 parámetros	$f_{(x)} = \frac{(x - x_0)^{\gamma - 1} e^{\frac{-(x - x_0)}{\beta}}}{\beta^{\gamma} \Gamma_{(\gamma)}}$		
Log Pearson Tipo III	$f_{(x)} = \frac{(\ln x - x_0)^{\gamma - 1} e^{\frac{-(\ln x - x_0)}{\beta}}}{x \beta^{\gamma} \Gamma_{(\gamma)}}$		
Gumbel	$F_{(x)} = e^{-e^{-\alpha(x-\beta)}}$		
Log Gumbel	$G_{(x)} = e^{-e^{-y}}$		

Tabla 2. Funciones de distribución de probabilidad teóricas

Fuente: Elaboración propia

Donde:

f ₍	(x)	:	Función	de	densidad
----------------	-----	---	---------	----	----------

- *x* : Variable independiente
- μ : Parámetro de localización, igual a la media aritmética de x
- *S* : Parámetro de escala, igual a la desviación estándar de x
- x_0 : Parámetro de posición
- U_y : Parámetro de escala o media

- S_{y}^{2} : Parámetro de forma o varianza
- γ : Parámetro de forma
- β : Parámetro de escala

La calidad de los datos de precipitación afecta considerablemente los cálculos y resultados estadísticos. De este modo, el análisis de frecuencia permite evaluar los datos de precipitaciones a partir de funciones de probabilidad de ocurrencia de una variable aleatoria. Así también, los datos de precipitación deben ser reajustados de acuerdo al número de observaciones que son realizadas en la estación pluviométrica (Organización Meteorológica Mundial "OMM," 2011).

En efecto, los datos de precipitaciones son obtenidos a horas fijas de observación para cada estación. Este aspecto generaría que las cantidades máximas verdaderas de precipitación durante un periodo no sean identificadas. Por lo tanto, los datos obtenidos de las estaciones deben ser corregidas multiplicando el valor de los datos por un factor de reajuste indicado en la tabla 3 (Organización Meteorológica Mundial "OMM," 2011).

Número de observaciones por día	Factor de reajuste
1	1.13
2	1.04
3-4	1.03
5-8	1.02
9-24	1.01

Tabla 3. Factores de reajuste de datos pluviométricos Fuente: (Organización Meteorológica Mundial "OMM," 2011)

2.1.7.3 Prueba de bondad de ajuste

Las pruebas de bondad de ajuste son evaluaciones de un conjunto de datos. Estas pruebas permiten determinar cuál de las funciones de distribución de probabilidad teóricas se ajustan mejor a las muestras de precipitación máximas. De esta manera, la función de distribución más próxima al conjunto de datos es obtenida para el cálculo de la precipitación máxima para diferentes periodos de retorno (Chow et al., 1994).

La teoría de estadística generalmente emplea dos métodos. Por un lado, la prueba de Chicuadrado, el cual solo es aplicable para la distribución normal. Por el otro, la prueba de Kolmogórov-Smirnov puede ser usada para las otras distribuciones. La prueba de KolmogórovSmirnov consiste en obtener un valor crítico de la diferencia "D" a partir de la cantidad de la muestra (Aparicio, 1996). La siguiente tabla indica el valor crítico tabular de "D", el cual es determinado según el nivel de significancia " α " y el tamaño de la muestra.

Tamaño de la muestra	α=0.10	α=0.05	α=0.01
5	0.50945	0.56328	0.66853
10	0.36866	0.40925	0.48893
15	0.30397	0.33750	0.40420
20	0.26473	0.29408	0.35241
25	0.23768	0.26404	0.31657
30	0.21756	0.24170	0.28986
40	0.18913	0.21012	0.25205
50	0.16959	0.18841	0.22604
n > 50	$\frac{1.22}{\sqrt{n}}$	$\frac{1.36}{\sqrt{n}}$	$\frac{1.63}{\sqrt{n}}$

Tabla 4. Valores de "D" tabular para la prueba de Kolmogórov-Smirnov Fuente: (Aparicio, 1996)

La prueba de bondad de ajuste requiere calcular el valor teórico de "D" para cada función de distribución (Aparicio, 1996). El valor de la diferencia "D" entre las funciones de probabilidad observada y estimada es obtenido a través de la siguiente fórmula:

$$D = max|F_0(x_m) - F(x_m)|$$

$$F_0(x_m) = 1 - \frac{m}{(n+1)}$$

Donde:

 $F_0(x_m)$: Función de probabilidad observada

 $F(x_m)$: Función de probabilidad estimada

$$m$$
: Número de orden de dato x_m para un grupo descendente de números

n : Número total de datos

El valor teórico "D" es comparado con el "valor tabular D". Si "D" resulta menor que "d," la hipótesis nula es aceptada. Si varias distribuciones cumplen con lo anterior mencionado, la distribución con el menor valor de "D" es escogida (Aparicio, 1996).

2.1.8 Generación de curvas Intensidad – Duración – Frecuencia

Las curvas Intensidad – Duración – Frecuencia o IDF han sido desarrollados para el análisis de frecuencia de precipitaciones. De hecho, las curvas IDF proporcionan un resumen de las características de precipitación de una zona. La figura 13 ilustra un ejemplo de curvas IDF, en la cual la duración de la tormenta y la probabilidad de excedencia (frecuencia) son relacionados para calcular la intensidad para un periodo de retorno dado (Federal Aviation Administration, 2013).

Figura 13. Ejemplo de Curva IDF Fuente: Adaptado de (Federal Aviation Administration, 2013)

Si el lugar en estudio se encuentra dentro del área de influencia de un pluviografo, la información de este instrumento presentará las curvas IDF del sitio. Sin embargo, si sólo se dispone de valores de precipitaciones máximas diarias P_{24} , se pueden determinar las precipitaciones con duraciones menores a 24 horas P_d empleando el criterio de Dyck y Peschke. Al respecto, las intensidades son calculadas en función de la precipitación máxima diaria de acuerdo a patrones de distribución de precipitación en el tiempo.

$$P_d = P_{24} \left(\frac{d}{1440}\right)^{0.25}$$
$$i = \frac{P_d}{d}$$

Donde:

i : Intensidad (mm/min)

 P_d : Precipitación para una duración "d" (mm)

 P_{24h} : Precipitación máxima en 24 horas (mm)

d : Duración de la precipitación (minutos)

Las intensidades de precipitación para una duración "*d*" son calculadas al dividir la precipitación " P_d " entre la duración "*d*" asignado a un periodo de retorno. A partir de los valores de intensidades de precipitación, se obtiene la curva IDF para sus respectivos periodos de retorno. Seguidamente, la ecuación de intensidad máxima es calculado mediante un análisis de regresión múltiple utilizando parámetros k, m, n, (Aparicio, 1996).

$$I = \frac{k \times T^m}{D^n}$$

Donde:

- I : Intensidad máxima (mm/h)
- T : Periodo de retorno (años)
- D : Duración de la precipitación equivalente al tiempo de concentración (min)

k, m, n : Coeficientes

2.1.9 Tiempo de concentración

El tiempo de concentración es la duración del recorrido del flujo desde el punto hidráulicamente más alejado hasta una estructura o punto en interés. Además, este tiempo es un parámetro determinante para el cálculo del caudal de diseño mediante el método Racional. Según el circular AC 150/5320-5D, la tasa de descarga en cualquier punto del sistema de drenaje pluvial no es la suma de las tasas de flujo de entrada de todas las entradas por encima de la sección de interés, sino es un valor menor (Federal Aviation Administration, 2013).

El tiempo de concentración presenta dos diferentes tipos de tiempo: El tiempo hasta la entrada o ingreso del sumidero o estructura de ingreso y el tiempo aguas arriba para el dimensionamiento de la red de drenaje pluvial. En primer lugar, el tiempo hasta la entrada del sumidero considera la duración del flujo desde el punto hidráulicamente más distante en la respectiva área de drenaje hasta el sumidero o estructura de entrada. En segundo lugar, el tiempo aguas arriba es la duración requerida del agua para viajar desde el punto hidráulicamente más alejado de todo el sistema hasta el punto de diseño o interés (Federal Aviation Administration, 2013).

Además, el tiempo de concentración es la duración total de los viajes o recorridos del agua pluvial en una determinada zona o área. En ese sentido, la duración considera desde el punto más alejado del área de drenaje hasta el punto de salida (Federal Aviation Administration, 2013). La siguiente figura ilustra un esquema del viaje o recorrido del agua pluvial en la Sub cuenca A y B en sus extremos más alejados.

Figura 14. Ejemplo de análisis del tiempo de duración para dos sub cuencas. Fuente: Elaboración propia

La figura 14 detalla los dos tipos de tiempo de concentración. Por un lado, las duraciones t_a y t_b representan los tiempos del recorrido del agua pluvial desde el punto más distante de las sub cuenca A y B respectivamente hasta las estructuras de entrada: Buzón A y Buzón B. En ese sentido, el tiempo hasta la entrada o ingreso de la estructura en interés considera una única área de drenaje que contribuye sólo a una estructura (Federal Aviation Administration, 2013).

Por otro lado, la duración t_c representa el tiempo aguas arriba para el dimensionamiento de la red de drenaje pluvial. En síntesis, el tiempo t_c indica la duración del viaje del agua de la tubería que conecta el Buzón A con el Buzón B. De este modo, la duración del recorrido del flujo del punto más alejado de la Subcuenca A hasta el buzón B está definido por la suma de los tiempos t_a y t_c . Por lo tanto, el tiempo de concentración para el cálculo del caudal acumulado en el buzón B resulta ser la mayor duración entre la duración del flujo en la Sub cuenca A $(t_a + t_c)$ y en la Sub cuenca B (t_b) .

Existen diversos métodos que son utilizados para determinar el tiempo de concentración los cuales varían dependiendo del entorno en que el flujo circula, ya sea un flujo superficial, poco profundo o flujo en canales y tuberías (Tabla 6). Algunas ecuaciones dependen del coeficiente de intercepción "k" (Federal Aviation Administration, 2013). Los valores del coeficiente de intercepción para flujos concentrados son presentados en la siguiente tabla:

Cobertura de suelo / Régimen de flujo	
Bosque con mucha basura en el suelo; pradera de heno (flujo terrestre)	
Cultivo de basuras en terreno sin o mínima labranza; contorno o franja recortada; bosque (flujo terrestre)	
Pastizales de pasto corto (flujo superficial)	
Hilera recta cultivada (flujo terrestre)	
Terreno casi desnudo y sin labrar (flujo terrestre); abanicos aluviales en el oeste regiones montañosas	
Vía fluvial con césped (flujo concentrado poco profundo)	
Sin pavimentar (flujo concentrado poco profundo)	
Área pavimentada (flujo concentrado poco profundo); pequeños barrancos de las tierras altas	

Tabla 5. Valores del coeficiente de intercepción

Fuente: Adaptado de (Federal Aviation Administration, 2013)

En base a lo anterior, el tiempo de concentración es calculado a partir de sus respectivas condiciones o casos y sus ecuaciones, los cuales son indicados en la tabla 6.

Caso	Fórmula
Flujos superficiales	$t_{ti} = \frac{K_c}{i^{0.4}} \left(\frac{nL}{\sqrt{S}}\right)^{0.6}$
Flujos concentrados poco profundo (Unidades en sistema inglés)	$V = (3.28)kS_p^{0.5}$
Canales abiertos y tuberías	$V = \frac{1}{n} R^{2/3} S^{1/2}$

Tabla 6. Ecuaciones de tiempo de viaje para cada caso. Fuente: Adaptado de (Federal Aviation Administration, 2013)

Donde:

 K_c : Coeficiente empírico equivalente a 0.933

i : intensidad (pulg/h)

 S_p : Pendiente (%)

k : Coeficientes de intercepción para flujos concentrados

Al respecto, el tiempo de viaje para flujos superficiales considera que las precipitaciones viajan a través de una superficie inclinada y un tirante uniforme. Es así que la duración anterior mencionada es calculada con una ecuación de onda cinemática de la fórmula de Manning. Aunado a esto, este efecto es raramente presentado para distancias mayores a 120 metros (Federal Aviation Administration, 2013).

Por otro lado, el tiempo de viaje para flujos concentrados poco profundo representa que el flujo laminar se concentra en arroyos. Así también, los flujos concentrados ocurren con frecuencia para distancias superiores a 90 metros (Federal Aviation Administration, 2013). De este modo, la velocidad es calculado a partir de la relación velocidad, pendiente y un coeficiente de intercepción.

El tiempo de viaje del agua pluvial para canales abiertos es calculado con la ecuación de Manning. Además, el tiempo de viaje del flujo puede ser calculado inicialmente considerando que el flujo dentro del canal fluye completamente. Seguidamente. después de definir las pendientes y diámetros finales de la red de drenaje pluvial, el tiempo de viaje del agua pluvial es calculado. El circular AC 150/5320-5D considera una duración mínima de concentración de 5 minutos. Así, para cualquier duración menor, será fijada a 5 minutos.

2.1.10 Determinación de las tasas de flujo máximo

Los drenajes superficiales y sub superficiales en aeropuertos deben ser estimados para intensidades específicas. En base a lo anterior, los caudales máximos para estos sistemas de drenaje son calculados a partir de intensidades específicas. De este modo, el campo de la hidrología permite utilizar diversos métodos para el cálculo de caudales para condiciones y requisitos en específico (Federal Aviation Administration, 2013).

De acuerdo a lo indicado por el circular AC 150/5320-5D, la siguiente tabla indica los métodos y su rango aplicable para el cálculo de caudales máximos.

Método	Rango de área o superfície aplicable
Racional	Menores a 200 acres o a 809,371 m^2
SCS TR-55	De 200 a 2000 acres (809,371 m ² a 809,371,284 m ²)
Ecuaciones de regresión USGS	Áreas muy extensas

Tabla 7. Métodos y sus rangos de aplicación para cálculo de caudalesFuente: Adaptado de (Federal Aviation Administration, 2013)

El método racional es uno de las fórmulas más usadas para el cálculo de caudales máximos. Al respecto, el método racional considera que la intensidad de las precipitaciones es la misma en toda el área de drenaje. Asimismo, la frecuencia del flujo máximo calculado en el método racional resulta ser igual que la intensidad de la tormenta (Federal Aviation Administration, 2013). La siguiente tabla indica el rango de valores del coeficiente de escorrentía para distintos tipos de drenaje que emplea el método racional.

Tipo de Area para drenaje	"C"
Residenciales	
Familiares simple	0.30 - 0.50
Multifamiliares separadas	0.40 - 0.60
Multifamiliares juntas	0.60 - 0.75
Industrial	
Áreas livianas	0.50 - 0.80
Áreas pesadas	0.60 - 0.90
Riendas ferrocarril	0.20 - 0.40
Áreas sin mejora	0.10 - 0.30
Asfalto	0.70 - 0.95
Concreto	0.80 - 0.95
Ladrillo	0.70 - 0.85
Suelo con césped	
Suelo impermeable con césped	0.30 - 0.55
Suelo ligeramente permeables con césped	0.10 - 0.30
Suelo moderadamente permeables con césped	0.00 - 0.10

Tabla 8. Coeficiente de escorrentía según la Administración Federal de AviaciónFuente: Adaptado de (Federal Aviation Administration, 2013)

Según el método racional, el caudal es calculado a través de la siguiente ecuación:

$$Q = C \times I \times A$$

Donde:

- Q : Caudal
- C : Coeficiente adimensional de escorrentía
- I : Intensidad de precipitación
- *A* : Área de drenaje

2.2 Hidráulica aplicada

La ecuación de Manning es generalmente empleada para estimar la velocidad promedio en tuberías y canales abiertos (Rocha Felices, 2007). En ese sentido, la ecuación está definida por la siguiente expresión:

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$

Donde:

V : Velocidad (m/s)

R : Radio hidráulico (m)

S : Pendiente (m/m)

n : Coeficiente de rugosidad.

Además, el coeficiente de rugosidad "n" es un valor adimensional. Al respecto, el valor del coeficiente de rugosidad varía según el material del canal o tubería (Rocha Felices, 2007).

2.2.1 Diseño de canales de drenaje

Los canales abiertos pueden ser empleados en un sistema de drenaje pluvial aeroportuario (Fig. 15). Los canales son diseñados para la recepción y conducción del agua pluvial hasta estructuras de entrada como buzones o arquetas. Además, el análisis y diseño de los canales para el lado aire de un aeropuerto considera los principios básicos de la hidráulica de canales abiertos (Federal Aviation Administration, 2013). En efecto, el tirante resulta ser la profundidad de un flujo en un canal. Asimismo, el tirante está definido para cada canal con su respectiva geometría, pendiente longitudinal y caudal y están en función de la rugosidad o la resistencia del canal para un flujo.

Figura 15. Canales de drenaje en el Aeropuerto Guarulhos en São Paulo– Brasil Fuente: (ULMA Architectural Solutions, 2014)

En base a lo anterior, la ecuación el diseño de canales abiertos y obtener el tirante es obtenido al juntar la ecuación de continuidad y la ecuación de Manning:

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

Donde:

- Q : Caudal (m^3/s)
- A : Área mojada (m^2)
- R : Radio hidráulico (m)
- S : Pendiente (m/m)
- n : Coeficiente de rugosidad adimensional

Así también, resulta importante mencionar que las infraestructuras aeronáuticas como pistas y calles suelen requerir canales adyacentes a los elementos mencionados anteriormente. Al respecto, en muchos casos las pendientes de los canales son iguales a las pendientes longitudinales de las pistas de aterrizaje y despegue y calles de acceso. De la misma manera, el circular AC 150/5320-5D recomienda que los canales deben considerar un borde libre de 0.5 pie (15 cm).
2.2.2 Periodo de retorno para canales abiertos

De acuerdo al circular AC 150/5320-5D, el periodo de retorno para el diseño de canales abiertos en aeropuertos comprende entre 5 a 10 años. (Federal Aviation Administration, 2013).

2.2.3 Diseño de drenajes pluviales

Generalmente, los proyectos que requieren construir sistemas de drenaje pluvial emplean tuberías circulares para la construcción de redes de drenaje pluvial. Además, los drenajes pluviales están conectados y unidos por medio de estructuras como buzones. Del mismo modo, el diseño del drenaje pluvial asume que el flujo es constante y uniforme. Así, la descarga y el tirante del flujo en cada segmento de la red es constante con respecto al tiempo y la distancia (Federal Aviation Administration, 2013).

A modo de ejemplo, la siguiente figura detalla el izaje e instalación de una tubería de una red de drenaje pluvial de polipropileno para un ciclo de vida de 100 años.

Figura 16. Instalación de tubería de polipropileno en aeropuerto. Fuente: (International Airport Review, 2017)

Las consideraciones mencionadas anteriormente permiten un diseño de redes de drenaje pluvial más conservador. En la realidad, el flujo en los drenajes pluviales no es realmente uniforme o estables (Federal Aviation Administration, 2013). Sin embargo, estas suposiciones no generan diferencias significantes con respecto a la realidad.

2.2.3.1 Flujos a gravedad y flujos a presión

El diseño de drenaje pluvial considera dos casos de flujo. En primer lugar, el flujo en condiciones de canal abierto o por gravedad, donde la superficie de agua permanece en contacto con la atmósfera. En segundo lugar, el flujo a presión, del cual la presión del flujo es mayor a la presión atmosférica (Federal Aviation Administration, 2013).

El diseño de una red de drenaje pluvial para flujos a gravedad presenta un mayor margen de seguridad frente al diseño de redes de drenaje para flujos a presión. Sin embargo, los métodos de estimación de escorrentía no son exactos y el reemplazo de redes drenaje pluvial son muy costosos (Federal Aviation Administration, 2013). Así, los análisis hidráulico y económico deben cumplir con lo requerido para el diseño y construcción de las redes de drenaje pluvial.

Así también, el circular AC 150/5320-5D recomienda calcular las dimensiones del drenaje pluvial a partir del criterio del flujo lleno o casi lleno. De este modo, la capacidad hidráulica del drenaje pluvial es controlada por el tamaño, pendiente, forma y coeficiente de fricción (Federal Aviation Administration, 2013). Además, la capacidad hidráulica completa para flujos a gravedad y a presión está definido según la fórmula de Manning junto a la ecuación de continuidad.

2.2.3.2 Línea de gradiente de energía y línea de gradiente hidráulico

La línea de gradiente de energía (EGL, siglas en inglés) es una imaginaria curva que describe la energía total del flujo cuando circula por una canal o conducto. Al respecto, la EGL representa las cargas de elevación, presión y velocidad. Además, las pérdidas por fricción y forma afectan a la línea de gradiente de energía (Federal Aviation Administration, 2013).

Así también, las líneas de gradiente hidráulico (HGL, siglas en inglés) determinan la aceptabilidad de una propuesta de sistema de drenaje pluvial. En efecto, la HGL indica la altura que alcanzaría el flujo en un canal o conducto. Por un lado, en conductos abiertos o a gravedad, la línea de gradiente hidráulico coincide con el nivel de agua del flujo. Por otro, en conductos cerrados a presión, la línea representa la altura que el agua alcanzaría verticalmente a lo largo de la tubería (Federal Aviation Administration, 2013). La siguiente figura ilustra dos casos de drenaje y sus respectivas gráficas de línea de gradiente hidráulico y energía.

Figura 17. Líneas de gradiente hidráulico y de energía de un flujo en una tubería Fuente: Adaptado de (Federal Aviation Administration, 2013)

2.2.3.3 Periodo de retorno para el diseño para drenajes

Los drenes pluviales tienen un impacto significante con respecto al costo de un sistema de drenaje pluvial. Además, en la etapa de operación y mantenimiento de una infraestructura aeronáutica, la reparación de drenajes resulta costoso. En base a lo anterior, la elección del periodo de retorno debe considerar los aspectos técnicos y económicos de un drenaje pluvial (Federal Aviation Administration, 2013). De acuerdo al circular AC 150/5320-5D, el periodo de retorno para las redes de drenaje pluvial debe ser 50 años como mínimo.

2.2.3.4 Pendiente y Velocidad mínima

El mantenimiento de los drenajes pluviales mediante la auto limpieza previene casos de sedimentación en los conductores. En consecuencia, una velocidad mínima es requerida en el diseño para evitar o reducir la pérdida de capacidad hidráulica de los drenajes y evitar depósitos de los sólidos en suspensión (Garcia, 2001). Además, la velocidad mínima está relacionado con las pendientes mínimas de los drenajes pluviales y pueden ser calculados a partir de la ecuación de Manning.

Asimismo, de acuerdo al circular AC 150/5320-5D, las pendientes mínimas del drenaje pluvial deben ser diseñados para obtener velocidades iguales o mayores a 3 pie/s (0.90 m/s). Al respecto, lo anterior expuesto debe ser analizado considerando que las tuberías estén completamente llenas. Asimismo, la velocidad mínima debe ser 2 pie/s (0.60 m/s) para casos donde los tirantes son igual al 25% del diámetro. De este modo, las pendientes mínimas bajo las consideraciones planteadas anteriormente son calculadas a partir de la ecuación de Manning (Federal Aviation Administration, 2013).

2.3 Estructuras del sistema de drenaje pluvial

2.3.1 Estructuras de entrada de drenaje pluvial

Las estructuras de entrada de drenaje pluvial son elementos del sistema de drenaje pluvial que reciben el agua proveniente de un evento de tormenta. Asimismo, estas estructuras son usadas para la limpieza y mantenimiento de la red de drenaje pluvial y deben ser diseñados para evitar cualquier interrupción en la operación del sistema (Federal Aviation Administration, 2013).

En efecto, las estructuras de entradas son conocidos en nuestro medio peruano como cajas y buzones (Fig. 18). Estas cuentan con entradas para recibir el agua superficial. Las entradas pueden ser tapas o rejillas (Fig. 19) de los cuales deben resistir las cargas solicitadas en una infraestructura aeronáutica (Federal Aviation Administration, 2013).

Figura 18. Estructuras de entrada de flujos provenientes de precipitaciones. Fuente: Elaboración Propia

Asimismo, el espaciamiento entre entradas es controlado por la geometría de la zona en estudio, la capacidad de apertura y la magnitud del área tributaria del drenaje pluvial. Estas estructuras pueden contar con zona de capturas en el fondo del buzón con el objetivo de retener escombros y sedimentos. El circular AC 150/5320-5D indica que es posible considerar los propios estándares de diseño de buzones y registros según las agencias y reglamentos locales (Federal Aviation Administration, 2013).

Figura 19. Estructuras de entrada de flujos provenientes de precipitaciones. Fuente: Adaptado de (Federal Aviation Administration, 2013)

2.3.2 Entradas

La geometría de las entradas de las estructuras de ingreso de drenaje pluvial afecta la capacidad hidráulica de un sistema de drenaje pluvial. Si las entradas son inadecuadas o ineficientes, el sistema de drenaje pluvial no cumpliría su función y generaría inundaciones. Por lo tanto, la configuración y dimensiones de las entradas deben garantizar el acceso del agua a una estructura como buzones o registros (Federal Aviation Administration, 2013). Existen 4 tipos de configuraciones de entradas: rejilla, abertura en sardinel, combinada y entrada ranurada (Fig.20).

Figura 20. Tipos de entradas para un sistema de drenaje pluvial Fuente: Adaptado de (Federal Aviation Administration, 2013)

2.4 Drenaje subsuperficial

El drenaje pluvial subsuperficial o subterráneo es la red encargada de recolectar y direccionar el flujo filtrado en las capas de suelo. Asimismo, la implementación de las redes conformadas por subdrenes reduce la generación de fisuras en los pavimentos y el deterioro de las capas de suelo. De esta manera, la red de drenaje subsuperficial garantiza el funcionamiento de la red superficial (Federal Aviation Administration, 2013).

El drenaje subsuperficial debe considerar dos fuentes de recolección de agua. Por un lado, la infiltración del agua pluvial es la principal fuente de ingreso de agua de las redes subsuperficiales. Por otro lado, la presencia de un nivel freático alto, fuerzas capilares, presión artesiana y acción de congelación-descongelación actúan como fuentes de ingreso secundarias (Federal Aviation Administration, 2013). Además, el diámetro y la pendiente de los drenes pueden ser calculados la ecuación de Manning (Garcia, 2001).

2.4.1 Aporte por abatimiento del nivel freático

El flujo subterráneo es expresado a través de la ley empírica de Darcy. La ley de Darcy indica que el agua subterránea fluye con movimiento laminar, es decir flujo unidimensional y espesor uniforme (Chereque, 1989). La siguiente ecuación expresa la Ley de Darcy.

$$v = k \times i$$
$$i = \frac{(N_d - N_f)}{B}$$

Donde:

- v : Velocidad del flujo ($\frac{m}{s}$).
- k : Coeficiente de permeabilidad $\left(\frac{m}{c}\right)$.
- N_d : Cota inferior del subdrén.
- N_f : Cota superior del nivel freático
- Mitad del ancho de la vía para subdrenes transversales / Distancia entre
 subdrenes para subdrenes longitudinales.
- *i* : Gradiente hidráulico.

Por otro lado, la ecuación puede expandirse para calcular la cantidad de flujo que circula en un área del suelo (Chereque, 1989). Lo anterior mencionado es conocido como el caudal por abatimiento del nivel freático y es expresado de la siguiente manera:

$$Q = k \times i \times A$$

Donde:

- Q : Caudal por abatimiento del nivel freático $\frac{m^3}{s}$.
- A : Área efectiva para el caso del abatimiento del nivel freático m^2 .

2.4.2 Aporte por infiltración

El estado y condición del pavimento influye considerablemente en la cantidad de agua que se infiltra. Por un lado, los pavimentos en muy mal estado presentan un porcentaje de retención de agua mayor al 50%. Por otro, los pavimentos con buen mantenimiento llegan a presentar un porcentaje de retención de agua muy cercano al 100% (Federal Aviation Administration, 2013). Por condiciones de seguridad, el circular AC 150/5320-5D recomienda que el diseño de subdrenajes para una infraestructura aeronáutica considere un pavimento deteriorado o pobremente conservado (Federal Aviation Administration, 2013).

La infiltración del agua a la carpeta asfáltica es definida a través de un factor de infiltración " F_i " detallado en la siguiente tabla:

Tipo de Carpeta	F _i
Carpetas asfálticas muy bien conservadas	0.30
Carpetas asfálticas normalmente conservadas	0.40
Carpetas asfálticas pobremente conservadas	0.50
Carpetas de concreto de cementa Portland	0.67

Tabla 9 Valores recomendados para Fi Fuente: (Geosistemas PAVCO, 2012)

Las bases del suelo que conforman el pavimento de la infraestructura aeronáutica considera un factor de retención " F_r " según su material y su tiempo de servicio.

Tipo de Carpeta	F_r
Bases bien gradadas, en servicio 5 años o más	1/4
Bases bien gradadas, en servicio menos de 5 años	1/3
Bases de gradación abierta, en servicio 5 años o más	1/3
Bases de gradación abierta, en servicio menos de 5 años	1/2

Tabla 10 Valores recomendados para Fr Fuente: (Geosistemas PAVCO, 2012) El agua de un evento de tormenta cae en el pavimento de la infraestructura, de los cuales no son estructuras permeables y permiten la infiltración del agua (Geosistemas PAVCO, 2012). En base a lo anterior, el área de infiltración de la carpeta asfáltica es definida como la longitud del tramo del subdrenaje multiplicado por la mitad del ancho de la pista. El caudal por aporte de infiltración de la carpeta asfáltica es calculado mediante la siguiente expresión:

$$Q_{inf} = P_{max} \times B \times L \times F_i \times F_r$$

Donde:

- B : Ancho
- *L* : Longitud
- F_i : Factor de Infiltración (Ver tabla 9)
- F_r : Factor de la retención (Ver tabla 10)

El aporte de infiltración a través de la franja de seguridad es calculado a partir de la expresión anterior, al reemplazar los coeficientes " F_i " y " F_r " de la ecuación anterior por un porcentaje de infiltración del suelo. Además, el ancho *B* para este caso es determinado a partir de una distancia de influencia del terreno de la franja de seguridad (Geosistemas PAVCO, 2012).

2.4.3 Dimensiones y pendientes de los subdrenes

El tamaño y la pendiente de los subdrenes deben garantizar la intercepción de la infiltración y la reducción del nivel freático. En base a lo anterior, la ecuación de Manning es usado para calcular la capacidad de los subdrenes circulares en un flujo completo. Asimismo, el circular AC 150/5320-5D recomienda que los subdrenes presenten un diámetro y pendiente mínimo de 150 mm y 0.15 por ciento respectivamente (Federal Aviation Administration, 2013).

2.5 Consideraciones aeronáuticas

Las consideraciones aeronáuticas de infraestructura aeroportuaria permiten asegurar las medidas de seguridad de las aeronaves en la fase de operación de un proyecto. Las consideraciones aeronáuticas son mencionadas a continuación en base al Anexo 14: Aeródromos de la Organización de Aviación Civil Internacional (OIAC).

2.5.1 Clave de referencia

La clave de referencia permite identificar y clasificar las zonas que conforman el área de movimiento de un aeropuerto con el objetivo de suministrar las instalaciones que requieran las aeronaves (OAIC, 2016).

Elementos 1 de la clave			Elementos 2 de	la clave
Núm. de clave	Longitud del campo de referencia del avión	Letra de clave	Envergadura	Anchura exterior entre ruedas del tren de aterrizaje principal
1	Menos de 800 m	Α	Hasta 15 metros (exclusive)	Hasta 4.5 metros (exclusive)
2	Desde 800 m hasta 1200 m (exclusive)	В	Desde 15 m hasta 24 m (exclusive)	Desde 4.5 m hasta 6 m (exclusive)
3	Desde 1200 m. hasta 1800 m (exclusive)	С	Desde 24 m hasta 36 m (exclusive)	Desde 6 m hasta 9 m (exclusive)
4	Desde 1800 m en adelante	D	Desde 36 m hasta 52 m (exclusive)	Desde 9 m hasta 14 m (exclusive)
		Е	Desde 52 m hasta 65 m (exclusive)	Desde 9 m hasta 14 m (exclusive)
		F	Desde 65 m hasta 80 m (exclusive)	Desde 14 m hasta 16 m (exclusive)

Tabla 11 Clave de referencia de aeródromo del Anexo 14 de OACI. Fuente: Adaptado de (OAIC, 2016)

2.5.2 Área de movimiento

El área de movimiento es el conjunto de zonas de la infraestructura aeroportuaria donde las aeronaves circulan, aterrizan y despegan. Esta área es integrada básicamente por las pistas, zona de viraje, áreas de seguridad en el extremo de la pista (RESA, por sus siglas en inglés), calles de rodaje y estacionamientos. Adicionalmente, la estructura de estas superficies debe resistir las solicitudes de cargas de tonelaje de las aeronaves (OAIC, 2016).

Figura 21. Ubicación de RESA y franja de pista. Fuente: Adaptado de (OAIC, 2016)

2.5.2.1 Pistas

Las pistas son áreas rectangulares en un aeródromo terrestre cuya geometría debe permitir y garantizar que las aeronaves alcancen altas velocidades. Asimismo, las pendientes máximas longitudinales y transversales y los anchos de las pistas son definidas a partir de la clave de referencia (OAIC, 2016).

Elementos 1 de la clave		Elementos 2 de la clave		
Núm. de	Pendiente longitudinal	Letra de	Pendiente	
clave	máxima	clave	transversal máxima	
1	2%	А	2%	
2	2%	В	2%	
3	1%	С	1.5%	
4	1%	D	1.5%	
		Е	1.5%	
		F	1.5%	

Tabla 12 Pendientes máximas de las pistas para aeronaves. Fuente: Adaptado de (OAIC, 2016)

2.5.2.2 Zona de Viraje en pista

La zona de viraje en pista tiene la función de asegurar un viraje de 180° de las aeronaves en la pista. De la misma forma, la zona de viraje es requerida en los extremos pistas sin conexiones

de calles de rodaje. Asimismo, las pistas con clave de referencia D, E o F deben tener obligatoriamente zonas de viraje (OAIC, 2016).

2.5.2.3 Calles de rodaje

Las calles de rodaje tienen la función de conectar varias zonas y plataformas del área de movimiento. Además, las calles de rodaje están conformados por calles de acceso a los estacionamientos de aeronaves, calle de rodaje en la plataforma y calle de salida rápida (OAIC, 2016).

2.5.2.4 Plataformas

Las plataformas son zonas destinadas al estacionamiento de aeronaves. Además, permiten la embarcación de pasajeros, el mantenimiento de las aeronaves y la recarga de combustible son realizados en las plataformas de aeronaves (OAIC, 2016).

2.5.2.5 Márgenes

Los márgenes son zonas adyacentes al borde de la superficie pavimentada. Estas cumplen con proporcionar un cambio entre el pavimento para la circulación de aeronaves y las superficies adyacentes. De este modo, los márgenes previenen que objetos entren a los motores de reacción de los aviones que sobresalen del borde de la pista. Igualmente, la implementación de los márgenes es obligatoria en todas las pistas con clave de referencia D o E y de ancho total menor a 60 metros y en clave de referencia F. Así también, los márgenes deben estar al mismo nivel que la pista, extenderse en ambos lados de la pista y presentar una pendiente transversal menor a 2.5% (OAIC, 2016).

Letra de clave	Ancho mínimo total de pista con márgenes
А	No requiere obligatoriamente márgenes
В	No requiere obligatoriamente márgenes
С	No requiere obligatoriamente márgenes
D	60 metros
Е	60 metros
F	75 metros

Tabla 13 Ancho mínimo total de las pistas de aeronaves con márgenes. Fuente: Adaptado de (OAIC, 2016)

2.5.2.6 Franjas

Las franjas son áreas integradas por las pistas y sus áreas adyacentes. Tienen el objetivo de mitigar el daño que ocasionaría el desvió de las aeronaves de las pistas para aviones (OAIC, 2016). En ese sentido, las franjas deben estar libre de obstáculos.

En efecto, ciertas redes, equipos y accesorios requieren estar situados en las zonas de operación de las aeronaves. Sin embargo, aquellas instalaciones superficiales que no tienen la función de brindar seguridad a la operación de aeronaves o navegación aérea deben ser emplazados hasta no encontrarse dentro de la franja (OAIC, 2016).

Así también, la clave de referencia permite identificar las dimensiones de la franja de seguridad. Por un lado, la longitud de franja de pista debe extenderse hasta 60 metros de los extremos de las pistas cuando el número de clave sea 2, 3 y 4 y clave 1 para pista de vuelo por instrumentos. Por otro lado, la longitud de la franja de pistas es de 30 metros para clave de referencia 1 y pista de vuelo visual (OAIC, 2016). La siguiente tabla detalla las dimensiones de la franja de seguridad.

Núm. de clave	Pendiente longitudinal máxima	Pendiente transversal máxima	Longitud	Ancho
1	2.00%	2.50%	30 m/ 60m	75 m
2	2.00%	2.50%	60 m	75 m
3	1.75%	3.00%	60 m	150 m
4	1.50%	3.00%	60 m	150 m

Tabla 14 Pendientes máximas y ancho de la franja de seguridad. Fuente: Adaptado de (OAIC, 2016)

2.5.2.7 Área de seguridad de extremo de pista (RESA)

El área de seguridad de extremo de pista (RESA siglas en inglés) es una plataforma ubicada en los extremos de las pistas (Fig. 21). La RESA tiene la función de mitigar el daño en caso de que las aeronaves realicen un aterrizaje demasiado pronto o demasiado largo. Además, RESA debe de cumplir con ciertos parámetros aeronáuticos. La longitud de la RESA debe ser por lo menos 90 metros. Las pendientes transversales y longitudinales de la RESA deben ser menores a 5% (OAIC, 2016).

2.5.2.8 Zona libre de obstáculos

La zona libre de obstáculos está ubicada en el extremo de la pista de despegue (Fig. 21). Esta presenta un ancho de hasta 75 metros y una longitud menor a la mitad de la longitud del recorrido en la pista de despegue (OAIC, 2016).

2.5.2.9 Zona de parada

La zona de parada tiene la función de soportar el peso de las naves en caso de un despegue interrumpido. Esta zona presenta una superficie pavimentada (Fig. 21). Además, el ancho de la zona de parada debe ser igual a la anchura de la pista de despegue asociada (OAIC, 2016).

2.6 Modelación de la información para la Construcción (BIM)

La modelación de la información para la Construcción (BIM, por sus siglas en inglés de Building Information Modelling) es una terminología vinculada a la tecnología dentro de la industria de la arquitectura, ingeniería, construcción y operación. BIM es una tecnología del cual permite representar la información funcional y física de un activo de manera digital (Jones, 2013).

BIM puede ser desarrollado en todas las etapas de un proyecto de construcción: Conceptualización, diseño, ingeniería de detalle, construcción, operación y mantenimiento. Del mismo modo, BIM permite emplear una plataforma confiable que elabora, comparte e integra información del activo digital de manera colaborativa. Por consiguiente, los diferentes participantes e involucrados del proyecto de construcción puedan tomar decisiones a partir del modelado de la información para la construcción en todo el ciclo de vida del proyecto (Instituto Nacional de Calidad, 2021).

Existen diferentes fuentes literarias definen la modelación de la información para la construcción como una metodología. Así, BIM puede ser definido como una metodología desarrollado por un grupo interactivo de campos tecnológicos, procesos y políticos (Succar, 2009). Estos campos engloban especialistas o involucrados para el desarrollo de un trabajo colaborativo sincrónico.

2.6.1 Nivel de Desarrollo (LOD)

La expresión LOD puede ser entendido como nivel de detalle o nivel de desarrollo del modelo de información (por sus siglas en inglés "Level of Detail" y "Level of Development" respectivamente). Por un lado, la expresión "nivel de detalle" está relacionado con la cantidad de información gráfica que posee un elemento modelado (Instituto Nacional de Calidad, 2021). Por otro lado, el término "nivel de desarrollo" indica el nivel de información disponible de un elemento modelado a fin de que los involucrados del proyecto puedan confiar y usar la información del modelo (BIMForum, 2021).

Nivel de Desarrollo	Representación del Modelo
LOD 100	Símbolos o representación genérica.
LOD 200	Sistema, objeto o ensamblaje genérico con características aproximadas.
LOD 300	Sistema, objeto o ensamblaje específicos en términos de cantidad, tamaño, forma, ubicación y orientación.
LOD 350	Sistema, objeto o ensamblaje específicos en términos de cantidad, tamaño, forma, ubicación y orientación e interface con otro sistemas.
LOD 400	Sistema, objeto o ensamblaje específicos en términos de cantidad, tamaño, forma, ubicación y orientación con información sobre detalle, fabricación y ensamblaje.
	N LINLOD.

Tabla 15 Niveles de desarrollo.

Fuente: Adaptado de (BIMForum, 2021).

2.6.2 Usos BIM

Los usos BIM están relacionados a las diversas formas en que los modelos BIM puedan ser empleados por los involucrados del proyecto. A continuación, se mencionan tres usos BIM:

- Modelar múltiples alternativas de diseño para sus visualizaciones y sus comparaciones en la toma de decisiones a través de imágenes y renderizaciones (HARVARD UCMC, 2016)
- Obtener métricas de los elementos modelados para su análisis, revisión de ingeniería y procura (HARVARD UCMC, 2016).
- Coordinar el diseño y construcción para analizar y revisar interferencias entre distintos componentes de los sistemas de un proyecto con mayor versatilidad.

Capítulo 3. Metodología

En base a los objetivos de este estudio y al marco teórico desarrollado anteriormente, la metodología se divide en 3 fases principales y una de conclusiones y recomendaciones.

3.1 Primera fase: Caracterización y consideraciones de la zona de estudio

La primera fase consistió en la recolección de datos e información necesaria para determinar las características y consideraciones técnicas de la zona en estudio. Así, las precipitaciones máximas de 24 horas de la estación más cercana fueron recopiladas. Además, la topografía fue analizado a fin de identificar los requisitos y exigencias del diseño del drenaje pluvial. Del mismo modo, el estado actual de la infraestructura en estudio y de su sistema de drenaje pluvial fueron analizados con el objetivo de identificar sus funcionamientos y deficiencias.

Seguidamente, las condiciones aeronáuticas de la zona en estudio fueron determinadas según lo requerido por la Organización de Aviación Civil Internacional. La información obtenida permitió desarrollar una conceptualización del drenaje superficial y subsuperficial. De esta manera, el planteamiento de los drenajes superficiales y subterráneos cumplieron los requisitos aeronáuticos de la infraestructura en estudio. Finalmente, las redes colectoras principales enterradas fueron propuestas para el diseño del sistema de drenaje pluvial.

3.2 Segunda fase: Análisis hidrológico

La segunda fase consistió en realizar el análisis hidrológico a partir de datos de precipitaciones máximas de 24 horas del Servicio Nacional de Meteorología e Hidrología (SENAMHI) y mediante la hidrología estadística. En primer lugar, el análisis de consistencia de los datos

- Prueba de datos dudosos (Secc. 2.1.7.1) para identificar umbrales o límites de datos.
- Análisis de frecuencia (Sec. 2.1.7.2) mediante las funciones de probabilidad (Tabla 3) para realizar la prueba de bondad de ajuste (Sec. 2.1.7.3) y determinar la función de probabilidad que mejor se ajusta a los datos de precipitación.

- Determinar las precipitaciones máximas de diseño para duraciones menores de 24 horas y diferentes tiempos de recurrencia mediante el criterio de Dyck y Peschke.
- Determinar las intensidad máximas para una duración "d" al dividir la precipitación " P_d " entre la duración "d".
- Generar las curvas Intensidad –Duración Frecuencia y hallar la ecuación de intensidad máxima a través de una regresión múltiple.
- Determinar las cuencas principales y sus áreas para escoger el método hidrológico para el cálculo de caudales (Tabla 7).

3.3 Tercera fase: Desarrollo del sistema de drenaje pluvial

La tercera fase comprende el desarrollo del sistema de drenaje pluvial para el caso en estudio. Esta fase comprende el desarrollo del modelo BIM de la infraestructura aeronáutica y del sistema de drenaje pluvial, así como el desarrollo de cálculos para el diseño hidráulico de las estructuras del sistema.

El modelamiento de información para la construcción consideró una nueva geometría del lado aire del aeropuerto a partir de planos de planta y perfiles longitudinales de la nueva geometría de la infraestructura en estudio (Ver anexo G). El modelamiento de la información cumplió con las consideraciones y parámetros de diseño aeronáutico según lo indicado por la Organización de Aviación Civil Internacional "OACI".

Las cuencas principales fueron divididas en el modelo BIM en subcuencas. Seguidamente, los elementos del sistema de drenaje pluvial fueron planteados y desarrollados en el modelo BIM. Así, la información necesaria para realizar los cálculos hidráulicos (longitud, altura, cotas, áreas, entre otros) fue obtenida a partir del modelo BIM. Luego el modelo hidráulico de las redes de drenaje pluvial principales fue desarrollado mediante el software EPA SWMM a fin obtener las líneas de gradiente hidráulico de cada tramo y verificar que el tirante de cada red sea menor al 80% del diámetro de la tubería. En caso de que el diseño no cumplía con los requisitos hidráulicos exigidos por el circular AC 150/5320-5D, el sistema de drenaje pluvial era replanteado.

3.4 Cuarta fase: Conclusiones y recomendaciones

Los resultados finales de la propuesta de diseño de sistema de drenaje pluvial fueron expuestos respecto al diseño hidrológico y al diseño hidráulico. Asimismo, esta etapa comprende

recomendaciones y comentarios técnicos de los aspectos desarrollados en este trabajo de investigación.

La figura 22 detalla los procesos que describen la metodología empleada en el presente trabajo de investigación.

Figura 22. Esquema sobre la metodología empleada en el trabajo de tesis.

Fuente: Elaboración propia

Capítulo 4. Análisis y discusión de resultados

4.1 Características y consideraciones de la zona de estudio

4.1.1 Ubicación geográfica

El Aeropuerto Internacional Inca Manco Cápac está ubicado geográficamente en el distrito de Juliaca, provincia de San Román y Departamento de Puno. En ese sentido, la figura 23 indica una vista satelital de la ubicación de la zona en estudio.

Figura 23. Ubicación geográfica del Aeropuerto Internacional Inca Manco Cápac. Fuente: Elaboración propia

4.1.2 Topografía de la zona

El lado aire del aeropuerto presenta una extensión de más de 4.5 kilómetros. Asimismo, el aeropuerto presenta una cota máxima de 3827.47 metros y una cota mínima de 3822.80 metros. Por lo tanto, los datos topográficos empleados para este trabajo de tesis permitieron determinar que la pendiente longitudinal superficial de la zona en estudio es aproximadamente 0.10%.

Dentro de este marco, la información topográfica permitió caracterizar el área de estudio como una zona muy plana. Esta característica también fue considerada en el diseño de sistemas de drenaje y subdrenajes pluvial del presente trabajo de tesis. A continuación, la figura 24 detalla la topografía de la zona en estudio.

Figura 24. Topografía de la zona en estudio Fuente: Elaboración propia

4.1.3 Información Hidrológica

El presente estudio utilizó los datos de precipitaciones máximas de 24 horas de la estación meteorológica convencional Juliaca por año hidrológico. Así también, estos datos son administrados por el Servicio Nacional de Meteorología e Hidrología (SENAMHI). En ese sentido, la tabla 16 detalla las características de la estación que fue utilizado en el presente trabajo de tesis.

	Estación Juliaca		
Departamento	Puno		
Provincia	San Roman		
Distrito	Juliaca		
Latitud	15°26'39.1" S		
Longitud	70°12'28.4" W		
Altitud (msnm)	3830 msnm.		
Тіро	Convencional - Meteorológica		
Código	115138		
Año Inicio P24h	1961		
Año Final P24h	2019		
Total de años	54		

Tabla 16. Características de la estación Juliaca Fuente: Elaboración propia Las precipitaciones máximas anuales obtenidas para el estudio abarcaron un periodo de tiempo comprendido desde el año 2001 al 2021, siendo un total de 21 datos. La figura 25 muestra un hietograma con los datos de precipitaciones máximas anuales, donde se visualiza que los años 2002, 2011 y 2017 presentan los valores máximos y el año 2010, como el valor mínimo.

Figura 25. Hietograma del registro histórico de las precipitaciones máximas en 24 horas Fuente: Elaboración propia

4.1.4 Análisis del estado actual de la infraestructura

La figura 26 ilustra el lado aire del aeropuerto en estudio, el cual destaca por presentar una pista de aterrizaje y despegue de aproximadamente 4200 metros de longitud. Además, el eje de la pista de aterrizaje y despegue permitió inferir que el área de movimiento del aeropuerto está dividido en dos lados: superior e inferior. Así también, la infraestructura presenta dos calles de acceso, y un estacionamiento para aeronaves.

Figura 26. Zonas del área de movimiento.

Fuente: Elaboración propia

Asimismo, dos canales perimetrales con pendientes de 0.1% y revestidos de cemento fueron identificados en el aeropuerto de estudio. La dirección de los dos canales es de izquierda a derecha, donde el flujo descargaría a una alcantarilla externa del aeropuerto (Fig. 27). En ese sentido, el sistema actual de drenaje pluvial es un sistema convencional.

Figura 27. Canal norte y sur existente del aeropuerto. Fuente: Elaboración propia

Por otro lado, numerosas fisuras fueron identificados en la pista de aterrizaje y despegue (Fig. 28 y 29) y en los canales descubiertos (Fig. 30). Además, el nivel freático alto en esta zona permitió inferir que el agua subterránea infiltró y deterioró el pavimento. De este modo, se concluyó que el sistema de drenaje pluvial actual es ineficiente y, en concordancia al circular AC 150/5320-5D, se recomendó incluir una red de drenaje sub superficial en el diseño.

Figura 28. Carpeta asfáltica del aeropuerto dañada. Fuente: (Scvartzer, 2013)

Figura 29. Presencia de fisuras lineales y en malla en la pista de aterrizaje del aeropuerto. Fuente: (Carlos Enrique, 2017)

Figura 30. Estado actual de los canales perimetrales. Fuente: Elaboración propia

4.1.5 Consideraciones aeronáuticas para el diseño del drenaje pluvial

Las zonas que conforman el área de movimiento del aeropuerto han sido identificadas con la clave de referencia 4D (Ver tabla 11). Al respecto, la pista de aterrizaje y despegue del Aeropuerto Internacional Inca Manco Cápac presenta más de 4200 metros de longitud. Además, sus pendientes longitudinales y transversales máximas son 1% y 1.5% respectivamente (Ver tabla 12). Del mismo modo, el ancho total de la pista es de 60 metros (Ver tabla 13) y los márgenes son de 7.50 metros.

La clave de referencia 4D de este aeropuerto también permitió determinar el ancho, la pendiente longitudinal y transversal máxima de la franja de las pistas y calles (Ver tabla 14). En efecto, en concordancia con la clasificación de aeródromos de la Organización de Aviación Civil Internacional (OACI), la franja de seguridad considerada fue de 75 metros a partir del eje de la pista, como se muestra en la figura 31. De la misma forma, la pendiente longitudinal y transversal máxima de la franja de seguridad fue 1.50% y 3.00% respectivamente.

Figura 31. Franja o área libre de obstáculos del lado aire del aeropuerto. Fuente: Elaboración propia

Los sistemas de drenaje pluvial no son ajenos a la franja de seguridad. Por esta razón, el planteamiento de la red de drenaje pluvial superficial no consideró canales abiertos o cunetas descubiertas dentro de esta área. Sin embargo, los canales con entradas de drenaje ranuradas, arquetas y sus respectivas rejillas sí fueron considerados adyacentes al margen de seguridad.

Al respecto, los canales y sus rejillas en el área de movimiento de un aeropuerto deben resistir las cargas de vehículos de gran tonelaje. En efecto, los canales y sus dispositivos de cierre pueden ser diseñados para resistir las cargas de las aeronaves clasificadas como cargas clase F900 (Comité técnico AEN/CTN 149 Ingeniería del agua, 2015). Por lo tanto, el empleo de canales con entradas de drenaje ranuradas sí resultó técnicamente viable en la propuesta de drenaje pluvial.

Asimismo, la pendiente longitudinal de estos canales fue considerada igual a la pendiente longitudinal del tramo de pista o calle adyacente, siendo estos menores al 1% (Ver tabla 12). Igualmente, los canales perimetrales tienen como función la recolección del agua de las precipitaciones sobre la pista hasta las arquetas respectivas, como se muestra en la figura 32. En ese sentido, el flujo recolectado de las arquetas fue conducido hasta la red de drenaje pluvial fuera de la franja de seguridad de la pista de despegue y aterrizaje del aeropuerto.

Figura 32. Representación gráfica de canales con entrada de drenaje ranuradas paralelas a la pista de aterrizaje y despegue del aeropuerto en estudio. Fuente: Elaboración propia

4.1.6 Conceptualización del drenaje superficial y sub drenaje pluvial

La nueva geometría del lado aire del aeropuerto fue modelado (Fig. 33) a partir de la información preliminar de nuevas secciones longitudinales, cuyas pendientes varían en tramos (Ver Anexo G), Dentro de este marco, las calles de rodaje A y B fueron clasificados con clave de referencia D (Ver tabla 17). Estas calles cumplen con permitir el acceso directo al puesto de estacionamiento de aeronaves. Por lo tanto, las calles de acceso al estacionamiento A y B no requirieron estar dentro de una franja (OAIC, 2016).

Figura 33. Vista en planta de la nueva geometría modelada del lado aire del aeropuerto

Fuente: Elaboración propia

	Pista	Calle de rodaje	
Clave de referencia	4D		
Anchura	45 m	23 m	
Pendiente longitudinal máxima	1.00%	1.50%	
Pendiente transversal máxima	1.50%	1.50%	
Margen			
Anchura total minima	60 m	38 m	
Franjas			
Extensión a partir del extremo de pista	60 m	-	
Anchura total minima	150 m	-	
Pendiente longitudinal máxima	1.50%	-	
Pendiente transversal máxima	2.50%	2.50%	

Tabla 17. Características físicas de la pista y calle de rodaje.

Fuente: Elaboración propia

La red de drenaje pluvial superficial fue desarrollada en base a las características geométricas de la pista, calle de acceso y estacionamiento identificados mediante el modelo BIM. Este planteamiento consideró que el agua proveniente de los eventos de precipitaciones circula

transversal (desde el eje hasta el borde) y longitudinalmente (en tramos) por la pista y calles de acceso. Por lo tanto, se consideró canaletas y buzones arquetas para captar el agua superficial en tramos y conducirlo a una red de drenaje exterior mediante una tubería conductora (Fig. 34).

Figura 34. Esquema general de la red de drenaje superficial a la red de drenaje exterior Fuente: Elaboración propia

Las redes de drenaje sub superficial fueron ubicados adyacente en cada lado de la pista, debajo de los canales con entrada de drenaje ranuradas y a la altura del nivel freático (Fig. 35). De este modo, el agua superficial y sub superficial serían conducidos a la red de drenaje pluvial fuera de la franja de pista para cado lado de la pista.

Figura 35. Planteamiento de drenaje pluvial y subsuperficial Fuente: Elaboración propia

4.1.7 Propuesta de redes principales enterradas para el drenaje pluvial

La propuesta de redes de drenaje pluvial fue conformada por un sistema de conducción por gravedad. Este sistema mixto constituyó dos redes por cada lado del aeropuerto. De esta manera, el agua pluvial recolectada del área de movimiento del lado aire del aeropuerto en estudio llegaría a una estructura ubicada en la zona baja topográficamente para el bombeo y conducción del agua pluvial a la red exterior.

Para tal efecto, las redes principales del drenaje pluvial estuvieron conformados por buzones y tuberías. Por un lado, la finalidad de los buzones fue de colectar el caudal de escorrentía y el caudal subterráneo. Por otro lado, los drenajes pluviales permitieron conducir el flujo hasta el punto de interés. La figura 36 ilustra el funcionamiento del sistema de drenaje pluvial.

Figura 36 Detalle de descarga de caudales a la red de drenaje pluvial Fuente: Elaboración propia

La propuesta de diseño de la red principal de drenaje pluvial difirió de la red de drenaje pluvial existente. Si bien es cierto que la red existente sólo está conformada por canales superficiales, la propuesta de las redes principales de drenaje pluvial fue desarrollados mediante redes enterradas. Este cambio fue realizado debido a que los drenajes superficiales y subsuperficial planteados trabajaron bajo un sistema gravitacional. Así, los caudales de escorrentía y subterráneo descargaron a los buzones a una cota inferior que el nivel del terreno.

4.2 Análisis hidrológico

4.2.1 Prueba de datos dudosos de los registros de precipitación

Los datos fueron reajustados por un valor de 1.13, según la Guía de Prácticas Hidrológicas vol.2, publicada por la Organización Mundial Meteorológica (Ver tabla 2). Este reajuste es recomendado cuando la recolección de datos ocurre una vez al día, como es el caso de la estación Juliaca. A partir de los datos de precipitación reajustados, el logaritmo de cada dato fue calculado. Asimismo, los parámetros estadísticos fueron hallados para el conjunto de datos de precipitación y para el logaritmo del conjunto de datos. La tabla 18 detalla los resultados de los parámetros estadísticos para realizar la prueba de datos dudosos.

PARÁMETROS ESTADISTICOS	P24hr	Log(P24hr)
Número de datos (N)	21	21
Sumatoria	875.98	33.62
Valor Máximo	71.53	1.85
Valor Mínimo	22.83	1.36
Media:	41.713	1.601
Varianza:	176.698	0.017
Desviación Estándar:	13.293	0.131
Coeficiente Variación:	0.319	0.082
Coeficiente de Sesgo:	1.029	0.346

Tabla 18. Parámetros estadísticos para la prueba de datos dudosos.Fuente: Elaboración propia.

Dentro de este análisis, el valor tabulado " K_n " fue hallado a través de la Tabla 1. Valores de " K_n " para la prueba de datos dudosos. El valor " K_n " considerado fue de 2.41 debido a que el número de datos fue de 22. En consecuencia, los valores de los umbrales de datos dudosos superiores e inferiores fueron calculados.

El umbral de datos dudosos superior es expresado mediante la siguiente ecuación:

$$y_s = \overline{y} + K_n \times \sigma$$
$$y_s = 1.601 + 2.41 \times 0.131 = 1.92$$

La precipitación máxima para la aceptación de datos es definida a continuación:

$$P_{\rm s} = 10^{y_{\rm s}} = 10^{1.92} = 82.50 \ mm$$

Del mismo modo, el umbral de datos dudosos inferior es calculado:

$$y_i = \bar{y} - K_n \times \sigma$$

 $y_i = 1.601 - 2.41 \times 0.131 = 1.29$

La precipitación mínima para la aceptación de datos es expresada a continuación:

$$P_i = 10^{y_i} = 10^{1.29} = 19.30 \ mm$$

Asimismo, los datos pluviométricos reajustados estuvieron dentro del límite estadístico calculado. Por lo tanto, la muestra no presentó datos dudosos. La tabla 19 muestra los resultados obtenidos por la prueba de datos dudosos para precipitaciones máximas de 24 horas.

Estación	P _{medio} (mm)	$P_{m \acute{a} x} (mm)$	P_s (mm)	Condición	P_{min} (mm)	P_i (mm)	Condición
Juliaca	39.0	71.53	82.50	OK	22.83	19.30	OK

Tabla 19. Resultados de la prueba de datos dudosos.

Fuente: Elaboración propia.

4.2.2 Análisis de frecuencia de la precipitación máxima de 24 horas

Las precipitaciones máximas anuales de 24 horas de la estación Juliaca fueron ajustadas a cada función de probabilidad (Tabla 3). Asimismo, las funciones de probabilidad empleados fueron las distribuciones Normal, Log Normal 2, Log Normal 3 parámetros, Gamma 2 parámetros, Gamma 3 parámetros, Log Pearson Tipo III, Gumbel y Log Gumbel. La figura 37 ilustra los resultados de los gráficos de las distribuciones de probabilidad empleados.

Figura 37. Gráfica de funciones de probabilidad con los datos reajustados. Fuente: Elaboración propia

A partir de los resultados de las funciones de probabilidad, la prueba de bondad de ajuste permitió calcular los valores de la diferencia D para cada distribución. Además, el valor crítico de la prueba de Kolgomorov-Smirnov "D tabular" fue de 0.2968 obtenido a partir de la tabla 4, considerando un nivel de significancia " α " igual a 0.05 y el tamaño de la muestra "n" igual a 22. En base a lo anterior, la distribución Log Gumbel fue la mejor función que se ajusta a los datos de precipitación utilizados debido a que fue el menor de los valores D (Tabla 20) y menor al valor crítico "D tabular".

Distribuciones	Diferencia D
Normal	0.1789
Log normal 2 parámetros	0.1201
Log normal 3 parámetros	0.0991
Gamma 2 parámetros	0.1393
Gamma 3 parámetros	0.1105
Log Pearson tipo III	0.0981
Gumbel	0.1085
Log Gumbel	0.0909
D mínimo	0.0909

Tabla 20. Función de probabilidad que mejor se ajusta a los datos de precipitaciónFuente: Elaboración propia

4.2.3 Cálculo de las precipitaciones máximas para cada periodo de retorno

El cálculo de caudales máximos consideró diversos periodos de retorno "T" de acuerdo a los requisitos hidrológicos e hidráulicos de la infraestructura. Estos periodos son estimaciones de probabilidad de ocurrencia. En base a lo anterior, las probabilidades resultaron ser el valor inverso de un periodo determinado. Así también, el rango de periodos de retorno utilizados fue entre 2 a 500 años. La tabla 21 muestra los resultados de las precipitaciones máximas para un periodo de retorno determinado a partir de la distribución Log Gumbel (Ver tabla 3).

En el Perú, debido a la escasa información pluviométrica, resulta complejo y complicado armar las curvas de intensidad – duración – frecuencia o IDF. Sin embargo, la información de precipitaciones máximas en 24 horas para un periodo de retorno permite determinar las precipitaciones "Pd" para duraciones menores a 24 horas a partir del criterio de Dyck y Peschke y calcular las intensidades de precipitación. Los resultados de las precipitaciones "Pd" calculados mediante el criterio de Dyck y Peschke son indicados en la tabla 22.

Pariada da ratorna T (años)	Drobabilidad	Precipitaciones máximas Distribución Log Gumbel		
Tenodo de Telonio T (allos)	Probabilidad			
2	0.500	33.60		
5	0.200	43.86		
10	0.100	52.32		
20	0.050	61.96		
30	0.033	68.29		
50	0.020	77.13		
80	0.013	86.21		
100	0.010	90.88		
140	0.007	98.4		
200	0.005	107.03		
500	0.002	132.79		

Tabla 21. Precipitación máxima para diferentes periodos de retorno

Fuente: Elaboración Propia

	Periodo de Retorno (T)										
	2	5	10	20	30	50	80	100	140	200	500
Duración (min)	Precipitación Máxima 24h (mm)										
()	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79
	Precipitación Pd (mm)										
5	8.16	10.65	12.70	15.04	16.58	18.72	20.93	22.06	23.89	25.98	32.23
10	9.70	12.66	15.10	17.89	19.71	22.27	24.89	26.23	28.41	30.90	38.33
20	11.53	15.06	17.96	21.27	23.44	26.48	29.60	31.20	33.78	36.74	45.59
30	12.77	16.66	19.88	23.54	25.94	29.30	32.75	34.53	37.38	40.66	50.45
60	15.18	19.82	23.64	27.99	30.85	34.85	38.95	41.06	44.46	48.36	59.99
90	16.80	21.93	26.16	30.98	34.15	38.57	43.11	45.44	49.20	53.52	66.40
120	18.05	23.57	28.11	33.29	36.69	41.44	46.32	48.83	52.87	57.51	71.35
180	19.98	26.08	31.11	36.84	40.61	45.86	51.26	54.04	58.51	63.64	78.96
240	21.47	28.02	33.43	39.59	43.63	49.28	55.08	58.07	62.87	68.39	84.85
360	23.76	31.01	37.00	43.81	48.29	54.54	60.96	64.26	69.58	75.68	93.90
600	27.00	35.24	42.04	49.78	54.87	61.97	69.26	73.02	79.06	85.99	106.69
720	28.25	36.88	44.00	52.10	57.42	64.86	72.49	76.42	82.74	90.00	111.66
1440	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79

Tabla 22. Precipitaciones máximas para intervalos menores a 24 horas

Fuente: Elaboración propia

4.2.4 Cálculo de intensidades máximas

Las intensidades máximas fueron determinadas al dividir los resultados de precipitación máximas para duraciones menores a 24 horas (Ver tabla 22) por la duración, cuyos valores son indicados en la tabla 23.

	Periodo de Retorno (T)										
	2	5	10	20	30	50	80	100	140	200	500
Duración (min)				F	Precipitaci	ón Máxin	na 24h (m	m)			
()	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79
					Inte	ensidad (n	nm/h)				
5	97.88	127.76	152.41	180.49	198.93	224.68	251.13	264.73	286.63	311.77	386.81
10	58.20	75.97	90.62	107.32	118.28	133.59	149.32	157.41	170.43	185.38	230.00
20	34.60	45.17	53.88	63.81	70.33	79.43	88.79	93.60	101.34	110.23	136.76
30	25.53	33.33	39.75	47.08	51.89	58.61	65.51	69.05	74.77	81.33	100.90
60	15.18	19.82	23.64	27.99	30.85	34.85	38.95	41.06	44.46	48.36	59.99
90	11.20	14.62	17.44	20.65	22.76	25.71	28.74	30.29	32.80	35.68	44.26
120	9.03	11.78	14.06	16.65	18.35	20.72	23.16	24.41	26.43	28.75	35.67
180	6.66	8.69	10.37	12.28	13.54	15.29	17.09	18.01	19.50	21.21	26.32
240	5.37	7.01	8.36	9.90	10.91	12.32	13.77	14.52	15.72	17.10	21.21
360	3.96	5.17	6.17	7.30	8.05	9.09	10.16	10.71	11.60	12.61	15.65
600	2.70	3.52	4.20	4.98	5.49	6.20	6.93	7.30	7.91	8.60	10.67
720	2.35	3.07	3.67	4.34	4.79	5.40	6.04	6.37	6.90	7.50	9.31
1440	1.40	1.83	2.18	2.58	2.85	3.21	3.59	3.79	4.10	4.46	5.53

Tabla 23 Intensidades máximas para intervalos menores a 24 horas

Fuente: Elaboración propia.

A modo de ejemplo la intensidad máxima para un periodo de retorno de 2 años y duración de 5 minutos fue calculada de la siguiente manera:

$$i_{d} = P_{d} \times \frac{1}{t}$$

$$i_{d} = P_{24} \left(\frac{d}{1440}\right)^{0.25} \times \frac{1}{t}$$

$$i_{d=5 min} = 33.60 \left(\frac{5}{1440}\right)^{0.25} \times \frac{1}{5} \times 60$$

$$i_{d=5 min} = 97.88 \ mm/h$$

A partir de los valores de intensidad para diferentes periodos de retorno y duraciones (ver tabla 23), las curvas de intensidad-duración-frecuencia o IDF fueron determinados y mostrados en la figura 38.

Figura 38. Curva Intensidad-Duración-Frecuencia Fuente: Elaboración propia

Seguidamente, la ecuación de intensidad máxima fue determinado mediante un análisis de regresión múltiple utilizando parámetros k, m, n. En primer lugar, la ecuación de intensidad máxima fue transformada a una ecuación logarítmica.

$$i_{máx} = \frac{K T^{m}}{t^{n}}$$
$$log_{i_{máx}} = log_{K} + m log_{T} - n log_{t}$$

En segundo lugar, cada logaritmo y sus coeficientes fueron reemplazados por una variable respectivamente.

$$y = a + b x_1 - c x_2$$

Donde:

$$log_{i_{máx}} = y$$
$$log_K = a$$
$$b = m$$
$$c = -n$$
$$x_1 = log_T$$
$$x_2 = log_t$$

Después, las variables que reemplazaron los logaritmos fueron definidos por los valores de intensidad indicados en la tabla 23 según su duración y periodo de retorno respectivamente. A modo de ejemplo, la tabla 24 muestra los valores de las variables y, x_1 y x_2 para un periodo de retorno de 2 años y sus respectivas duraciones.

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	У	x1	x2
2	5	97.88	1.991	0.301	0.699
2	10	58.20	1.765	0.301	1.000
2	20	34.60	1.539	0.301	1.301
2	30	25.53	1.407	0.301	1.477
2	60	15.18	1.181	0.301	1.778
2	90	11.20	1.049	0.301	1.954
2	120	9.03	0.956	0.301	2.079
2	180	6.66	0.823	0.301	2.255
2	240	5.37	0.730	0.301	2.380
2	360	3.96	0.598	0.301	2.556
2	600	2.70	0.431	0.301	2.778
2	720	2.35	0.372	0.301	2.857
2	1440	1.40	0.146	0.301	3.158

Tabla 24. Valores de cada variable para un tiempo de retorno de 2 años Fuente: Elaboración propia

De la misma forma, la tabla 25 muestra los valores de las variables $y, x_1 y x_2$ para un periodo de retorno de 5 años y sus respectivas duraciones. En efecto, todos los valores de las variables $y, x_1 y x_2$ para diferentes periodos de retorno (De 2 a 500 años) y duraciones (5 a 1440 min.) según la tabla 23 son mostrados en el Anexo A.

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	У	x1	x2
5	5	127.76	2.106	0.699	0.699
5	10	75.97	1.881	0.699	1.000
5	20	45.17	1.655	0.699	1.301
5	30	33.33	1.523	0.699	1.477
5	60	19.82	1.297	0.699	1.778
5	90	14.62	1.165	0.699	1.954
5	120	11.78	1.071	0.699	2.079
5	180	8.69	0.939	0.699	2.255
5	240	7.01	0.845	0.699	2.380
5	360	5.17	0.713	0.699	2.556
5	600	3.52	0.547	0.699	2.778
5	720	3.07	0.488	0.699	2.857
5	1440	1.83	0.262	0.699	3.158

Tabla 25. Valores de cada variable para un tiempo de retorno de 5 años Fuente: Elaboración propia

A partir de los valores de y, x_1 y x_2 para todos los periodos de retorno y duraciones (Ver anexo A), la regresión estadística permitió calcular los valores de a, b y c.

 $a = log_{\kappa} = 2.455$ b = m = 0.246c = -n = -0.75

Luego, los valores de a, b y c calculados fueron reemplazados en la siguiente ecuación:

$$y = a + b x_1 - c x_2$$
$$y = 2.455 + 0.246x_1 - (-0.75) x_2$$

A continuación, cada coeficiente de la ecuación anterior fue igualada con las variables de la ecuación logarítmica. Ello fue posible debido a que la ecuación logarítmica fue inicialmente reemplazada por variables.

$$log_{K} = a = 2.455$$
$$\therefore k = 285.217$$
$$m = b = 0.246$$

$$n = -c = 0.75$$

Finalmente, la ecuación de intensidad máxima fue determinado al reemplazar los coeficientes k, m y n por los resultados obtenidos.

$$i_{max} = \frac{285.217 \ T^{0.246}}{t^{0.75}}$$

4.2.5 Elección del método hidrológico para el cálculo de caudales

El circular AC 150/5320-5D indica el método a emplear para calcular los caudales máximos. Al respecto, el lado aire del aeropuerto en estudio fue dividido en dos cuencas independientes: lado norte y lado sur, como se muestra en la figura 39. Las áreas de las dos cuencas independientes son menores a 809,371 m^2 (200 acres) y son indicados en la tabla 26. Por lo tanto, el método hidrológico a emplear fue el método racional (Ver tabla 7).

Cuenca	Suelo	Área (m2)	Área total (m2)	¿Área menor a 809,371 <i>m</i> ²?		
Lado	Pavimento	129,358.78	319.080.07	Sí, usar método racional		
Norte	Césped	189,721.29	515,080.07			
Lado	Pavimento	160,968.53	540 129 42	Sí, usar método		
Sur	Césped	388,159.90	349,120.43	racional		

Tabla 26 Áreas de las superficies divididas del caso en estudio.

Fuente: Elaboración propia

Figura 39. Modelado del área de movimiento del aeropuerto. Fuente: Elaboración propia
4.3 Desarrollo del sistema de drenaje pluvial

4.3.1 Desarrollo del modelo BIM del sistema de drenaje pluvial

El modelo BIM permitió determinar las subcuencas del lado norte y sur, así como plantear, diseñar y modelar los elementos que conforman el sistema de drenaje pluvial. De este modo, las informaciones requeridas para realizar los cálculos hidráulicos (Áreas, longitudes, pendientes, geometría de tuberías y canales) fueron obtenidos a partir del modelo BIM. El nivel de desarrollo (LOD por sus siglas en inglés) trabajado fue LOD 300 (Ver tabla 15).

A partir de la información inicial del lado aire del aeropuerto (Ver anexo G), se realizó el modelamiento BIM de la geometría del aeropuerto en estudio. Seguidamente, se propuso sub cuencas a fin de dividir en tramos la cuenca norte y sur (Ver figura 39). De este modo, el modelo BIM generó el área de las sub cuencas (Figura 40), de los cuales fueron valores de entrada para utilizar el método racional. Las áreas de las sub cuencas fueron modificados a fin de obtener de cumplir los requisitos hidráulicos del drenaje superficial, sub superficial y redes principales. Los resultados finales de las áreas de las sub cuencas son mostrados en el Anexo F.

etodromo 3D Drenaje 🦳 Aerodromo 2D Geomatria 🛅 Sub cuencas 2D 🗙	🐨 🔟 Tabla d	e planificación de Subc				
	0	<tabla de="" pavimento="" planificación="" subcuencas=""></tabla>				
	6. A	B	C	D	E	
SC IN01	Tipo	Buzón que descarga	Buzón que recibe	Subcuenca	Área m	
30.3.101						
	Subcue	nca BZ-N01	AN-01	SC-01	3000.1	
	Subcue	sca BZ-N02	AN-02	SC-02	2985.3	
SC-JN02	Subcue	aca BZ-N03	AN-03	SC-03	2550,9	
SC-01	Subcue	nca BZ-N04	AN-04	SC-05	1996.5	
	Subcue	nca BZ-N04	AN-04	SC-04	975.4	
	Subcue	nca BZ-N05	AN-05	SC-06	2964.7	
SC-02 SC-J	N03 Subcue	nca BZ-N07	AN-06	SC-07	2991.1	
SC-62	Subcue	nca BZ-N08	AN-07	SC-08	3173.4	
	Subcue	nca BZ-N09	AN-08	SC-09	2967.3	
SC-63	Subcue	aca BZ-N10	AN-09	SC-10	2969.0	
SC-64 SC-03	Subcue	nca BZ-N11	AN-10	SC-11	2966.4	
	Subcue	sca BZ-N12	AN-11	SC-12	2969.0	
	SC-04 Subcue	nca BZ-N13	AN-12	SC-13	2971.5	
SC 45	Subcue	nca BZ-N14	AN-13	SC-14	2974.1	
30-03	Subcue	aca BZ-N15	AN-14	SC-15	2971.3	
02 // /	SC-66 Subcue	nca BZ-N16	AN-15	SC-16	2966.1	
/ / SC-JS04 /	Subcue	nca BZ-N17	AN-16	SC-17	2966.1	
	Subcue	aca BZ-N18	AN-17	SC-18	2966.1	
	Subcue	nca BZ-N19	AN-18	SC-19	2966.15	
	Subcue	nca BZ-N20	AN-19	SC-20	2966.1	
SC ISOS	Subcue	nca BZ-N21	AN-20	SC-21	2966.1	
3	Subcue	nca BZ-N22	AN-21	SC-22	2995.8	
	Subcue	nca BZ-N23	AN-22	SC-23	3003.6	
	SC-JS06 Subcue	nca BZ-N24	AN-23	SC-24	2975.4	
	Subcue	aca BZ-N25	AN-24	SC-25	2975.4	
	Subcue	nca BZ-N26	AN-25	SC-26	2975.4	
	Subcue	aca BZ-N27	AN-26	SC-27	2975.4	
-	Subcue	aca BZ-N28	AN-27	SC-28	2975.4	
			and the second se			

Figura 40. División de áreas de aporte para un lado del área pavimentada. Fuente: Elaboración propia

Del mismo modo, la figura 41 indica los buzones de la red de drenaje principal generados en el modelo. Por un lado, se planteó dos redes de drenaje principal para el lado norte y sur del aeropuerto (Ver figura 39). Por otro lado, la figura 41 muestra las cotas de los buzones

generados en el modelo, tomando como la cota 3828 m.s.n.m. como nivel de referencia 0 m. Así también, la figura 42 indica las tuberías de la red de drenaje principal modelados, así como sus longitudes, diámetros, y profundidades. Los valores geométricos generados de las tuberías y buzones a partir del modelo BIM fueron utilizados en los cálculos hidráulicos. Los valores finales son indicados en el Anexo F.

Figura 41. Modelado e información de buzones de red de drenaje principal

Fuente: Elaboración propia

Figura 42. Modelado e información de Tuberías de red de drenaje principal Fuente: Elaboración propia

4.3.2 Drenaje superficial del área pavimentada

Los caudales y las dimensiones para los canales superficiales fueron calculados en base a la superficie de diferentes tramos del área pavimentada. A partir del modelo BIM se obtuvieron 62 y 75 subcuencas en las zonas pavimentadas para las cuencas norte y sur respectivamente a partir de los cambios de pendiente longitudinales. Aunado a ello, la trayectoria y duración del flujo fueron determinados para cada área representada hasta los buzones arquetas.

Dentro de este marco, la instalación de canales prefabricados de hormigón polimérico considera la construcción de una vereda de concreto en su perímetro. Esta vereda perimetral permite fijar los canales prefabricados en las zonas aeroportuarias. Por lo tanto, el ancho mínimo de losa de concreto fue 0.15 metros para cada lado de los canales (Fig. 43).

Figura 43. División de áreas de aporte para un lado del área pavimentada. Fuente: Elaboración propia

Así también, el presente trabajo de tesis consideró canales y buzones arquetas prefabricados de hormigón polimérico en el diseño del drenaje superficial. El material propuesto puede soportar cargas de compresión mayores a $1000 kg/cm^2$. En ese sentido, los canales y buzones presentan mayores resistencias y duraciones que los canales tradicionales. De este modo, los elementos que conforman la red de drenaje superficial serán menos vulnerables a los esfuerzos y vibraciones mecánica originados por la circulación y maniobras de las aeronaves.

Asimismo, los canales prefabricados de hormigón polimérico son hidráulicamente más eficientes. Al respecto, el coeficiente de Manning para un hormigón polimérico es de 0.009, a diferencia del coeficiente de Manning de 0.014 para canales de concreto hecho in-situ. Aunado a ello, la implementación de elementos prefabricados permite reducir el tiempo de construcción e instalación de canales en la etapa de construcción del proyecto.

Igualmente, el presente trabajo de tesis consideró dos geometrías de canales prefabricados de hormigón polimérico, tomando como referencia la geometría de productos del mercado. Así también, la geometría planteada de las canaletas cumplió con los cálculos y requisitos hidráulicos, cuyos desarrollos son mostrados en los siguientes párrafos y los resultados son indicados en el Anexo F. Por un lado, los canales de ancho 0.30 metros fueron de forma rectangular (Fig. 44a). Por otro lado, el área de los canales de espejo de agua de 0.20 metros estuvo conformado por un semicírculo de radio 0.10m y un área rectangular (Fig. 44b).

Figura 44. Dimensiones de los canales prefabricados para el drenaje superficial Fuente: Elaboración propia

Por otra parte, el tiempo de concentración fue determinado para cada área considerada. Es por ello que la duración del viaje del flujo fue calculada desde el eje de la pista hasta su extremo. Seguidamente, la duración del viaje del flujo en el canal fue calculado desde la elevación del canal aguas arriba hasta el buzón arqueta.

Para flujos superficiales en el pavimento, la distancia L, cuyo valor es determinado desde el eje de la pista hasta el extremo del margen o la mitad del ancho de la pista, fue de 30 metros (98.43 pies) de casi todos los tramos de drenaje superficial. Resulta necesario indicar que todos los anchos de pistas L determinados por cada tramo de drenaje superficial son indicados en el Anexo F. Igualmente, la pendiente transversal según la nueva geometría considerada fue de 1.50% (Ver tabla 17). Asimismo, el coeficiente de Manning del pavimento asfáltico fue de 0.011 y el coeficiente empírico k_c es 0.933, de acuerdo a lo indicado por el circular AC 150/5320-5D.

Al reemplazar las variables en la ecuación para flujos superficiales (Ver tabla 6), el tiempo de concentración es determinado mediante la siguiente expresión:

$$t_{ti} = \frac{K_c}{i^{0.4}} \left(\frac{nL}{\sqrt{S}}\right)^{0.6}$$
$$t_1 = \frac{0.933}{i_{1'}^{0.4}} \left(\frac{0.011 \times 30}{\sqrt{0.015}}\right)^{0.6}$$
$$t_1 = \frac{1.691}{i_{1'}^{0.4}}$$

Asimismo, la intensidad de precipitación i_1 , fue calculado a partir de la ecuación de intensidad máxima, al asumir una duración t_1 y considerando un periodo de retorno de 5 años, según lo indicado por el circular AC 150/5320-5D para flujos superficiales. Luego el valor de i_1 , fue reemplazado en la ecuación para el cálculo de t_1 . Así, el proceso se repitió hasta que el valor de t_1 convergiera.

En ese sentido, el valor final de la duración t_1 para una distancia L de 30 m y un suelo pavimentado fue de 1.175 min.

La intensidad fue calculada para una duración de 1.055 min para un periodo de 5 años.

$$i_{max} = \frac{285.217 \ T^{0.246}}{t^{0.75}}$$
$$i_{1\prime} = \frac{285.217 \ (5)^{0.246}}{(1.175)^{0.75}} \ mm/h$$
$$i_{1\prime} = 375.486 \ mm/h \ (14.778 \ pulg/h)$$

La duración del viaje del flujo desde el eje de la pista hasta el extremo del margen fue calculada.

$$t_1 = \frac{1.691}{i_{1'}^{0.4}}$$
$$t_1 = \frac{1.691}{14.778^{0.4}}$$
$$t_1 = 1.17 min$$

De la misma forma, la duración del flujo en el canal fue calculada a partir de la ecuación de Manning para la condición de flujo lleno de acuerdo al circular AC 150/5320-5D.

A modo de ejemplo, para la subcuenca SC-01, cuyo flujo superficial descarga en el buzón arqueta AN-01, la distancia longitudinal fue de 100 metros (Ver anexo F). Así también, el flujo superficial fue descargado longitudinalmente al buzón arqueta AN-01 mediante canaletas rectangulares tipo a) de espejo de agua 0.30 metros (Ver figura 44). En base a lo anterior, la velocidad fue calculada a partir de la ecuación de Manning, considerando un radio hidráulico de 0.0857 metros, así como la pendiente del tramo fue de 0.0661%.

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$
$$V = \frac{1}{0.009} 0.0857^{2/3} (0.0661\%)^{1/2}$$
$$V = 0.555 \, m/s$$

El tiempo de viaje t_2 del flujo en las canaletas longitudinales fue calculado al dividir la longitud entre la velocidad.

$$t_2 = \frac{L}{V}$$
$$t_2 = \frac{100 m}{0.555 m/s}$$
$$t_2 = 3.00 min$$

Por lo tanto, la duración total del flujo superficial para la subcuenca SC-01 que descarga en el buzón arqueta AN-01 fue calculada al sumar las duraciones previamente calculadas.

$$t_c = t_1 + t_2 = 1.17 + 3.00$$

 $t_c = 4.17 min$

El resultado fue menor a 5 minutos. En ese sentido, la duración mínima t_c a considerar fue de 5 minutos, en concordancia al circular AC 150/5320-5D.

La tabla 27 indica el resultado del tiempo de concentración de las 10 primeras subcuencas de la cuenca norte (Fig. 45). Los resultados de los tiempos de concentración para el drenaje superficial de todas las sub cuencas son mostrados en el Anexo F.

Figura 45. Identificación de subcuencas o áreas tributarias en el lado Norte de la pista de aterrizaje y despegue del aeropuerto en estudio.

SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho m	Distancia longitudinal m	Pendiente S (%)	t1 (min)	t2 (min)	tc considerado (min)
SC-01	AN-01	BZ-N01	30.00	100.00	0.0661%	1.17	2.46	5.00
SC-02	AN-02	BZ-N02	30.00	99.51	0.0661%	1.17	2.45	5.00
SC-03	AN-03	BZ-N03	30.00	85.03	0.0661%	1.17	2.09	5.00
SC-04	AN-04	BZ-N04	30.00	32.52	0.0661%	1.17	0.80	5.00
SC-05	AN-04	BZ-N04	30.00	66.55	0.0852%	1.17	1.44	5.00
SC-06	AN-05	BZ-N05	30.00	98.83	0.0852%	1.17	2.14	5.00
SC-07	AN-06	BZ-N07	30.00	99.84	0.0541%	1.17	2.72	5.00
SC-08	AN-07	BZ-N08	30.00	105.83	0.0541%	1.17	2.88	5.00
SC-09	AN-08	BZ-N09	30.00	98.87	0.0718%	1.17	2.34	5.00
SC-10	AN-09	BZ-N10	30.00	98.84	0.0718%	1.17	2.33	5.00

Tabla 27 Resultado del tiempo de concentración para drenaje superficial.

Fuente: Elaboración propia

Para el caso de drenaje superficial, el cual el periodo de retorno a considerar fue de 5 años, la intensidad máxima de escorrentía para un tiempo de concentración de 5 minutos (Ver tabla 27) fue calculada:

$$i_{max} = \frac{285.217 \ T^{0.246}}{t^{0.75}}$$
$$i_1 = \frac{285.217 \ (5)^{0.246}}{(5)^{0.75}} \ mm/h$$
$$i_1 = 126.69 \ mm/h$$

Al mismo tiempo, la tabla 8 presenta un rango de valores del coeficiente de escorrentía para una superficie asfáltica entre 0.70 a 0.95, siendo 0.77 el valor que consideró el estudio.

Aplicando el método racional para el drenaje superficial de la sub cuenca SC-01 (área igual a 30 metros por 100 metros), el caudal fue determinado:

$$Q = C \times I \times A$$
$$Q = 0.77 \times 126.69 \ mm/h \times (30 \ m \times 100 \ m)$$
$$Q = 81.296 \ l/s$$

De la misma manera, el caudal del drenaje superficial fue calculado empleando el método racional para todas las sub cuencas planteadas en el estudio. Los resultados de los caudales calculados para el drenaje superficial y con un tiempo de retorno de 5 años son mostrados en el Anexo F. La tabla 28 indica el resultado de los caudales calculados de las 10 primeras subcuencas del lado norte de la infraestructura en estudio.

Sub Cuenca SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	tc considerado (min)	Intensidad mm/h	Area m2	Coef. Esc. C	Q (unitario) L/s
SC-01	AN-01	BZ-N01	5.00	126.69	3,000.10	0.77	81.296
SC-02	AN-02	BZ-N02	5.00	126.69	2,985.32	0.77	80.895
SC-03	AN-03	BZ-N03	5.00	126.69	2,550.90	0.77	69.123
SC-04	AN-04	BZ-N04	5.00	126.69	975.48	0.77	26.433
SC-05	AN-04	BZ-N04	5.00	126.69	1,996.54	0.77	54.102
SC-06	AN-05	BZ-N05	5.00	126.69	2,964.79	0.77	80.339
SC-07	AN-06	BZ-N07	5.00	126.69	2,995.27	0.77	81.165
SC-08	AN-07	BZ-N08	5.00	126.69	3,174.93	0.77	86.033
SC-09	AN-08	BZ-N09	5.00	126.69	2,966.04	0.77	80.373
SC-10	AN-09	BZ-N10	5.00	126.69	2,965.13	0.77	80.348

Tabla 28 Resultado del caudales para drenaje superficial.

Fuente: Elaboración propia

Así también, el tirante y de la canaleta para el tramo de la sub cuenca SC-01 fue determinado al emplear la ecuación de Manning:

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

81.296
$$l/s = \frac{1}{0.009} (0.3 \times y) \left(\frac{0.3 \times y}{0.3 + 2y}\right)^{2/3} (0.0661\%)^{1/2}$$

 $y = 0.414 m$

Además, el circular AC 150/5320-5D sugiere un borde libre de 0.5 pie (15 cm). Por lo tanto, la altura de la canaleta para el tramo de drenaje superficial de la sub cuenca SC-01 fue calculado:

$$h_{canaleta} = y + 0.15 = 0.51 m$$

 $h_{canaleta} = 0.414 + 0.15 \approx 0.57 m$

En base al planteamiento anterior, numerosas subcuencas fueron representadas en el modelo 3D. Aunado a ello, la geometría de aeródromo permitió identificar, proponer y desarrollar la geometría y ubicación de diversas subcuencas. En efecto, el área de las subcuencas fue calculado a través del parámetro "área" del elemento generado o modelado en el software.

A partir de las subcuencas identificadas, las canaletas y buzones arquetas fueron modelados por cada área generada. Además, los buzones-arquetas fueron asignados con una nomenclatura para poder identificarlos. De este modo, los dos tipos de geometrías de canales fueron asignados de acuerdo al área y buzón arqueta que descargaron. Igualmente, la ecuación de Manning y la ecuación de continuidad permitieron calcular el tirante.

La tabla 29 indica el resultado de los tirantes para las diez primeras subcuencas del lado	norte.
--	--------

N° Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-01	AN-01	0.0661%	0.300	0.414	0.124	1.128	0.564	0.081
SC-02	AN-02	0.0661%	0.300	0.412	0.124	1.124	0.562	0.081
SC-03	AN-03	0.0661%	0.300	0.361	0.108	1.022	0.511	0.069
SC-04	AN-04	0.0661%	0.300	0.168	0.050	0.635	0.318	0.026
SC-05	AN-04	0.0852%	0.272	0.299	0.081	0.870	0.449	0.054
SC-06	AN-05	0.0852%	0.272	0.416	0.113	1.104	0.566	0.080
SC-07	AN-06	0.0541%	0.273	0.510	0.139	1.292	0.660	0.081
SC-08	AN-07	0.0541%	0.273	0.536	0.146	1.345	0.686	0.086
SC-09	AN-08	0.0718%	0.273	0.447	0.122	1.167	0.597	0.080
SC-10	AN-09	0.0718%	0.273	0.447	0.122	1.167	0.597	0.080

Tabla 29 Caudales calculados para el drenaje superficial.

Fuente: Elaboración propia

Los tirantes calculados para todas las sub cuencas del lado norte y sur son mostrados en el anexo F. Asimismo, si bien los dos tipos de canaletas fueron analizados, el criterio para definir el canal a emplear fue que los resultados del tirante y el borde libre sean los menores posibles. En ese sentido, los resultados indicaron que las alturas máximas de los canales de 0.30 metros de ancho fueran 600 y 750 mm y para los canales de 0.20 metros, 475 y 570 mm.

Luego, el planteamiento consideró que el flujo sería descargado de los buzones arquetas a tuberías sólidas. Estas tuberías estarían enterradas y con una respectiva pendiente. De este modo, el flujo superficial descargaría de los buzones arquetas a los buzones de la red de drenaje principal.

Dentro de este marco, el tiempo de concentración fue calculado a partir de la trayectoria más lejana de la pista. De este modo, la trayectoria abarcó desde el eje de la pista hasta el extremo del margen. Seguidamente, el viaje del flujo consideró la distancia longitudinal de los canales hasta los buzones arquetas. Finalmente, la trayectoria continuó desde los buzones arquetas hasta los buzones de la red de drenaje principal.

Asimismo, el diámetro de estas tuberías fue de 300 mm. Este valor fue considerado debido a que el resultado del tirante para diámetros menores a 300 mm era incongruente. Además, el material y el coeficiente de Manning considerado de estas tuberías fue de HDPE y 0.010 respectivamente.

El tiempo de retorno empleado en los cálculos de la tubería fue de 5 años al ser parte del drenaje superficial del área pavimentada. De la misma forma, la pendiente mínima fue calculado según lo indicado en el circular AC 150/5320-5D. Al respecto, este valor fue calculado con la finalidad de obtener una velocidad mínima de 0.90 m/s para la condición de flujo lleno. De este modo, la pendiente mínima fue determinado al emplear la ecuación de Manning.

$$v = \frac{1}{n} R^{2/3} S^{1/2}$$

0.90 m/s = $\frac{1}{0.010} \left(\frac{\pi \times 0.3^2}{\pi \times 0.3 \times 4}\right)^{2/3} (S_{min})^{1/2}$
 $S_{min} = 0.256 \%$

Así también. la tubería sólida se encontraría enterrada dentro de la franja de seguridad. Aunado a ello, el presente trabajo de tesis consideró que la distancia entre la parte superior de la tubería

y el nivel de terreno no debe ser menor a 0.30 metros. Este aspecto fue considerado al determinar la pendiente de las tuberías sólidas enterradas.

Además, los buzones arquetas tendrían una altura de 1.15 metros. De este modo, la parte inferior de la tubería de 0.30 metros estaría ubicado a una profundidad de 1.00 metro. En consecuencia, la diferencia entre la cota de terreno y la parte inferior de la tubería ubicado al extremo de la franja de seguridad debe ser mayor a 0.60 metros.

La longitud de la tubería de descarga de drenaje pluvial es de 43.87 metros, siendo este valor la distancia desde el buzón arqueta hasta el buzón de la red de drenaje principal. Asimismo, la pendiente transversal de la franja fue de 2.50%, de acuerdo a la clave de referencia 4D. Por lo tanto, las profundidades de la tubería de descarga de drenaje pluvial fueron determinados para un nivel de referencia de la cota de tapa del buzón arqueta y los resultados son mostrados en la tabla 30.

	Distancia vertical a partir de la cota de tapa del buzón arqueta				
	Terreno o franja (Pendiente = 2.50 %)	Tubería enterrada (Pendiente = 1.60%)			
Longitud x pendiente	1.125 m	0.72 m			
Profundidad	1.125 m	1.845 m			

Tabla 30 Profundidad de tubería de drenaje superficial. Fuente: Elaboración propia

La diferencia entre la profundidad de la cota de terreno y la profundidad de la parte inferior de la tubería con una pendiente de 1.60% en el extremo de la franja fue de 0.72 metros. De este modo, el resultado es mayor a 0.60 metros. Por lo tanto, la pendiente longitudinal de las tuberías de descarga de drenaje pluvial fue de 1.60%.

A continuación, la velocidad fue calculada en la tubería de 0.30 metros de diámetro para la condición de flujo lleno.

$$v = \frac{1}{n} R^{2/3} S^{1/2}$$
$$\frac{1}{0.010} \left(\frac{\pi \times 0.3^2}{\pi \times 0.3 \times 4}\right)^{2/3} (1.60\%)^{1/2}$$

v =

$$v = 2.25 m/s$$

La duración del flujo t_3 en la tubería fue determinada.

$$t_3 = \frac{L}{v}$$
$$t_3 = \frac{43.87}{2.25 \times 60} = 0.325 \text{ min}$$

Después, la duración o tiempo de viaje del flujo para la tubería de descarga de drenaje superficial del área pavimentada fue calculada para la sub cuenca SC-01 considerando los tiempos de viaje desde el eje de la pista hasta el extremo del margen t_1 , desde la cota superior de las canaletas longitudinales hasta el buzón arqueta t_2 y la longitud de la tubería desde los buzones arquetas hasta los buzones de la red principal de drenaje pluvial t_3 .

$$t_c = t_1 + t_2 + t_3 = 1.17 + 2.46 + 0.325$$

 $t_c = 3.962 min$

El resultado fue menor a 5 minutos. En consecuencia, el tiempo de concentración utilizado para la tubería de la sub cuenca SC-01 fue de 5 minutos. Por lo tanto, los caudales calculados para los canales y buzones arquetas fueron empleados para la verificación hidráulica para el diseño de las tuberías redondas.

La ecuación de Manning y continuidad fue empleado para un caudal de 92.49 L/s de la subcuenca SC-58b.

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

$$0.0925 = \frac{1}{0.010} \frac{\left(0.5 \times (\frac{0.3}{2})^2 (\theta - sin\theta)\right)^{5/3}}{\left(\frac{0.3}{2}\theta\right)^{2/3}} (1.60\%)^{1/2}$$

$$\theta = 2cos^{-1} (1 - \left(\frac{y}{0.3/2}\right))$$

El tirante fue calculado al reemplazar y resolver las ecuaciones anteriores.

$$y = 0.164 m$$

La ecuación de Manning fue empleada para determinar la velocidad del flujo.

$$v = \frac{1}{n} R^{2/3} S^{1/2}$$

$$v = \frac{1}{0.010} \frac{\left(0.5 \times (\frac{0.3}{2})^2 (\theta - \sin\theta)\right)^{2/3}}{\left(\frac{0.3}{2}\theta\right)^{2/3}} (1.60\%)^{1/2}$$
$$\theta = 2\cos^{-1}(1 - \left(\frac{0.164}{0.3/2}\right))$$

Después la velocidad fue calculada al reemplazar y resolver las ecuaciones anteriores.

$$v = 2.334 m/s$$

Los resultados indicaron que la velocidad y pendiente mínima de las tuberías de descarga de drenaje superficial cumplieron con los parámetros mínimos hidráulicos de diseño del circular AC 150/5320-5D.

4.3.3 Red de drenaje subsuperficial

El drenaje subsuperficial o subterráneo consistió en redes de tubos recolectores. El diseño consideró que estas tuberías estuvieran localizadas al extremo de los márgenes de todo el largo de la pista de aterrizaje y despegue. Así, los caudales recogidos por estas redes fueron conducidos a los colectores principales de la red principal de drenaje pluvial.

Dentro de este marco, las tuberías de estos subdrenes consistieron en colectores perforados. Además, el presente trabajo de tesis consideró que el material y diámetro de estas tuberías fueran de HDPE y 150 mm (6") respectivamente. Igualmente, estas tuberías perforadas incluirán accesorios tipo Codo 45° para conducir el flujo a tuberías sólidas y después a los buzones de la red principal de drenaje pluvial.

En ese mismo contexto, el nivel freático en la pista fue encontrado a una profundidad de 1.40 metros, de acuerdo a estudios geotécnicos (Scvartzer, 2013). Así también, el nivel freático fue encontrado a una profundidad de 1.00 metro, de acuerdo a la "Evaluación Funcional y Estructural 2017 de Pavimentos en el Aeropuerto Internacional Inca Manco Cápac-Juliaca". De este modo, el presente trabajo de tesis consideró que los subdrenes estarían instaladas a una profundidad 1.50 - 1.70 metros.

El cálculo por el aporte del abatimiento del nivel freático fue realizado en base a la nueva geometría de lado aire del aeropuerto. En efecto, el ancho de acción fue determinado como la mitad de la pista de aterrizaje de y despegue. Asimismo, el presente trabajo de tesis asume una

diferencia de 1.50 metros entre el nivel freático y la cota de la tubería del sub dren. El gradiente hidráulico fue calculado.

$$i = \frac{(N_d - N_f)}{B} = \frac{(1.50)}{(\frac{60}{2})}$$
$$i = 0.05 \ m/m$$

Luego, el área efectiva fue calculado para una longitud de 100 metros.

$$A_e = (N_d - N_f) \times L = 1.50 \times 100$$
$$A_e = 150 \ m^2$$

Seguidamente, el caudal por abatimiento del nivel freático fue calculado al considerar un coeficiente de permeabilidad de asfalto de 1×10^{-6} .

$$Q_{NF} = (1 \times 10^{-6}) \times 0.05 \times 150$$

 $Q_{NF} = 0.0075 \ l/s$

El aporte por infiltración en el pavimento fue calculado al considerar la mitad del ancho de la pista para el lado norte y sur de la infraestructura. Por un lado, el factor de infiltración " F_i " empleado fue de 0.50 considerando por seguridad que las carpetas asfálticas estén pobremente conservadas (Ver tabla 9). Por otro lado, el factor de retención " F_r " de la base fue de ¼ debido a que la estructura debe tener un tiempo de servicio mayor a 5 años (Ver tabla 10). De este modo, se emplea la ecuación del cálculo de aporte por infiltración:

Seguidamente, el valor de la precipitación máxima " P_{max} " para calcular el aporte de infiltración a través de la franja de seguridad fue considerado para una duración de 120 minutos y un tiempo de retorno de 5 años, de acuerdo al Manual de Diseño con Geo sintéticos (Geosistemas PAVCO, 2012). De acuerdo al análisis hidrológico, el valor de la precipitación máxima " P_{max} " fue de 23.57 mm/h. Para la sub cuenca SC-01, el caudal de infiltración en el pavimento fue calculado, siendo la distancia longitudinal *L* del tramo igual a 100 metros.

$$Q_{inf} = P_{max} \times B \times L \times F_i \times F_r$$
$$Q_{inf1} = 23.57 \times (\frac{60}{2}) \times 100 \times 0.5 \times \frac{1}{4}$$
$$Q_{in} = 2.45 \ l/s$$

La franja de seguridad (zona no pavimentada) presentó un suelo con césped. Según la tabla 8, el estudio consideró un coeficiente de escorrentía de 0.15, es decir, el 85% de la precipitación de infiltra y estanca. Considerando que un 20% de la precipitación se estanca, el aporte de infiltración a través de la franja de seguridad fue determinado al considerar un porcentaje de infiltración de 65%. Del mismo modo, el área de aporte fue definido entre la longitud del sub dren multiplicado por un ancho tributario considerado de 5.00 metros.

El caudal de aporte por infiltración en la franja fue determinado como sigue:

$$Q_{inf} = P_{max} \times B \times L \times F_i$$
$$Q_{inf2} = 23.57 \times (5 \times 100) \times 65\%$$
$$Q_{inf2} = 2.13 \ l/s$$

Asimismo, el caudal por abatimiento del nivel freático se presenta por ambos lados de la sección transversal de los subdrenajes. En consecuencia, el aporte por abatimiento del nivel freático fue duplicado. En base a lo anterior, el caudal de diseño de la red de drenaje sub superficial fue determinado para la sub cuenca SC-01.

$$Q = 2Q_{NF} + Q_{inf1} + Q_{inf2}$$
$$Q = 2 \times 0.0075 + 2.45 + 2.13$$
$$Q = 4.60 \ l/s$$

A partir del caudal calculado, las dimensiones de las tuberías de drenaje sub superficial para la sub cuenca SC-01 fueron verificadas a través de la ecuación de Manning.

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

$$0.0046 = \frac{1}{0.010} \frac{\left(0.5 \times (\frac{0.15}{2})^2 (\theta - \sin\theta)\right)^{5/3}}{\left(\frac{0.3}{2}\theta\right)^{2/3}} (0.30\%)^{1/2}$$
$$\theta = 2\cos^{-1}(1 - \left(\frac{y}{0.15/2}\right))$$

El tirante fue determinado para este tipo de tuberías.

$$y = 0.0525 m$$

Por lo tanto, el diseño de las tuberías de la red de drenaje subsuperficial cumple con los requisitos hidráulicos y estuvo conformado por tuberías HDPE 150 mm (6") perforadas.

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-01	AN-01	BZ-N01	100.00	0.00245	0.00213	0.0000075	0.00460	4.597
SC-02	AN-02	BZ-N02	99.51	0.00244	0.00212	0.0000075	0.00457	4.575
SC-03	AN-03	BZ-N03	85.03	0.00209	0.00181	0.0000064	0.00391	3.909
SC-04	AN-04	BZ-N04	32.52	0.00080	0.00069	0.0000024	0.00149	1.495
SC-05	AN-04	BZ-N04	66.55	0.00163	0.00142	0.0000050	0.00306	3.059
SC-06	AN-05	BZ-N05	98.83	0.00243	0.00210	0.0000074	0.00454	4.543
SC-07	AN-06	BZ-N07	99.84	0.00245	0.00212	0.0000075	0.00459	4.590
SC-08	AN-07	BZ-N08	105.83	0.00260	0.00225	0.0000079	0.00487	4.865
SC-09	AN-08	BZ-N09	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-10	AN-09	BZ-N10	98.84	0.00243	0.00210	0.0000074	0.00454	4.544

La tabla 31 muestra los resultados de los caudales de la red de drenaje sub superficial de 10 sub cuencas del lado norte. Los resultados de totales son mostrados en el Anexo F.

Tabla 31 Cálculo de caudales de la red de drenaje sub superficial para tiempor de retorno: 5 años.Fuente: Elaboración propia

4.3.4 Red de drenaje pluvial principal

Las propuestas de red de drenaje pluvial estuvieron conformadas por buzones conectados por tuberías de polietileno de alta densidad. Estos conductos tuvieron la finalidad de transportar el flujo superficial sobre el área pavimentada y el área de la franja de seguridad o césped y el flujo captado por la red subsuperficial. Así mimo, el tiempo de retorno empleado para el diseño de la red de drenaje principal fue de 50 años, según lo recomendado por el circular AC 150/5320-5D. En consecuencia, el coeficiente de escorrentía del pavimento fue escogido para un tiempo de retorno de 50 años y es indicado en la tabla 32.

Característica de la superficie	Valor
Pavimento: Asfáltico	0.90
Césped ligeramente permeable	0.15

Tabla 32 Valores utilizados de coeficiente de escorrentía para red drenaje pluvial Fuente: Elaboración propia

El modelo 3D permitió obtener los valores de entrada para los cálculos hidrológicos e hidráulicos. Las superficies de subcuencas modeladas permitieron obtener el área tributaria (Fig. 41) de cada tramo y los buzones modelados (Fig. 42) permitieron identificar las cotas de fondo de buzón y de tapa.

Igualmente, las tuberías colectoras de la red fueron modelados en 3D en el software Revit (Fig. 43). En efecto, el software permitió obtener las longitudes y pendiente de cada tramo entre buzones. De este modo, la duración del viaje del flujo en la tubería colectora fue calculado.

Asimismo, el tiempo de viaje del flujo fue determinado para cada estructura de entrada o buzón. Por un lado, el tiempo de viaje del extremo superior de la subcuenca o tramo hasta el buzón respectivo fue determinado en los cálculos para el diseño del drenaje superficial. Por otro lado, la duración del viaje del flujo en la tubería colectora fue calculado al asumir una pendiente y diámetro de tubería.

El tiempo de viaje del flujo en la tubería fue calculado a partir de la ecuación de Manning para la condición de flujo lleno operando como canal abierto. Esta duración está en función del diámetro y la pendiente de la tubería. Por lo tanto, el valor final de la duración del flujo fue determinado cuando la red de drenaje pluvial fue diseñada definitivamente. La figura 46 ilustra la división de sub cuencas, buzones, los recorridos del flujo al buzón BZ-N01 y BZ-N02 y sus respectivos tiempos de viaje.

Figura 46. Identificación de subcuencas o áreas tributarias en el lado Norte de la pista de aterrizaje y despegue del aeropuerto en estudio. Fuente: Elaboración propia

Seguidamente, el tiempo de concentración fue calculado a partir del mayor valor entre los dos tipos de duraciones de viaje del flujo pluvial y así, emplear el método racional. En ese sentido, el caudal total de escorrentía fue calculado para cada buzón y tramo.

Así también, el caudal de infiltración fue considerado en los cálculos para un tiempo de retorno de 50 años. Al respecto, la precipitación máxima para este tiempo de retorno y duración 120 min fue de 41,44 mm (Ver tabla 22). De esta manera, los nuevos valores por el aporte de infiltración y el caudal de infiltración fueron empleados en este análisis.

Para la sub cuenca SC-01, cuya distancia longitudinal es de 100 metros, el caudal de infiltración fue calculado.

 $Q = 2Q_{NF} + Q_{inf1} + Q_{inf2}$ $Q = 2 \times 0.0075 + 4.32 + 3.74$ $Q = 8.073 \ l/s$

La tabla 33 indica los resultados de los caudales de la red de drenaje sub superficial para un tiempo de retorno de 50 años. Los resultados de los caudales de la red de drenaje sub superficial para un tiempo de retorno de 50 años son mostrados en el Anexo F.

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño L/s
SC-01	AN-01	BZ-N01	100.00	0.00432	0.00374	0.0000075	8.073
SC-02	AN-02	BZ-N02	99.51	0.00430	0.00372	0.0000075	8.033
SC-03	AN-03	BZ-N03	85.03	0.00367	0.00318	0.0000064	6.864
SC-04	AN-04	BZ-N04	32.52	0.00140	0.00122	0.0000024	2.625
SC-05	AN-04	BZ-N04	66.55	0.00287	0.00249	0.0000050	5.373
SC-06	AN-05	BZ-N05	98.83	0.00427	0.00370	0.0000074	7.978
SC-07	AN-06	BZ-N07	99.84	0.00431	0.00374	0.0000075	8.060
SC-08	AN-07	BZ-N08	105.83	0.00457	0.00396	0.0000079	8.544
SC-09	AN-08	BZ-N09	98.87	0.00427	0.00370	0.0000074	7.982
SC-10	AN-09	BZ-N10	98.84	0.00427	0.00370	0.0000074	7.979

Tabla 33 Cálculo de caudales de la red de drenaje sub superficial para tiempo de retorno: 50 años Fuente: Elaboración propia

Igualmente, los caudales generados por escorrentía para un periodo de retorno de 50 años fueron calculado al emplear el método racional y la ecuación de intensidad máxima obtenida del

análisis hidrológico. La tabla 34 indica los resultados de los primeros seis tramos de la red de drenaje pluvial del lado norte. Del mismo modo, el caudal total del tramo de la red de drenaje principal fue calculado al sumar los caudales de escorrentía y los caudales del drenaje sub superficial para tiempos de retorno de 50 años, como son indicados en la tabla 35. Los resultados finales de los caudales en todos los tramos de las redes principales de drenaje son indicados en el Anexo F.

TRAMO	Longitud m	Area de sub cuenca Acumulado (pavimento / césped) m2	tc (Valor final) min	Coeficiente de escorrentia (pavimento / césped) C	Intensidad mm/h	Caudal Escorrentía L/s
N01	98.14	3,000.10	5.19	0.90	216.96	204.39
		4,608.83	PAI	0.15		
N02	84.14	5,985.42	6.19	0.90	190.05	356.99
		9,167.77		0.15		
N03	31.15	8,536.32	6.55	0.90	182.28	488.37
		13,082.71		0.15		
N04	66.12	11,508.34	7.27	0.90	168.55	608.57
		17,602.66		0.15		
N05	99.19	14,473.13	8.27	0.90	153.03	695.77
	- P	22,280.63		0.15		
N06	98.15	14,473.13	9.26	0.90	140.59	639.23
		22,280.63		0.15		

Tabla 34 Cálculo del caudal de escorrentía mediante método racional de la red principal

1 1

TRAMO	ENTRADA	SALIDA	Caudal Escorrentía L/s	Caudal acumulado por drenaje sub superficial (en pista y franja) L/s	Caudal acumulado por drenaje sub superficial (en buzones) L/s	Total Caudal Q L/s
N01	BZ-N01	BZ-N02	204.39	8.03	0.11	212.53
N02	BZ-N02	BZ-N03	356.99	14.90	0.22	372.10
N03	BZ-N03	BZ-N04	488.37	17.52	0.32	506.22
N04	BZ-N04	BZ-N05	608.57	25.50	0.43	634.50
N05	BZ-N05	BZ-N06	695.77	25.50	0.54	721.80
N06	BZ-N06	BZ-N07	639.23	33.56	0.65	673.44

Tabla 35 Cálculo del caudal total de los primeros 6 tramos de la red principal

Fuente: Elaboración propia

El circular AC 150/5320-5D sugiere considerar un tirante máximo para una red de drenaje pluvial. Sin embargo, este circular no indica el rango de valores máximos que el tirante del flujo debe llegar. De este modo, se consideró un tirante máximo del 80% del diámetro de la tubería, tomando el criterio indicado en la norma técnica peruana CE.040 drenaje pluvial.

Asimismo, la pendiente mínima del tramo de la red fue calculado para diferentes diámetros nominales. El cálculo de la pendiente mínima fue realizado mediante la ecuación de Manning para la condición de flujo lleno y una velocidad mínima de 0.90 m/s, de los cuales son mostrados en la tabla 36. Así también, el coeficiente de Manning empleado fue de 0.010 (tubería circular HDPE lisa). Por lo tanto, a mayor diámetro del colector, la pendiente mínima resultó menor.

Diámetro (mm)	Pendiente mínima (%)
650	0.0913
700	0.0827
750	0.0755
800	0.0693
900	0.0592
1050	0.0482

Tabla 36 Pendientes mínimas de la red de drenaje pluvial según el diámetro de tubería. Fuente: Elaboración propia

A partir del caudal total (Ver tabla 35), la pendiente propuesta de la red y su longitud, el diámetro de la tubería en condición de flujo lleno fue calculado al emplear la ecuación de Manning. La tabla 37 muestra los resultados finales del diámetro de tubería a flujo lleno para los primeros seis tramos de la red de drenaje pluvial del lado norte.

TRAMO	ENTRADA	SALIDA	Longitud m	Total Caudal Q L/s	Pendiente de la alcantarilla S %	Diámetro (Flujo lleno) D mm
N01	BZ-N01	BZ-N02	98.14	212.53	0.20%	493.97
N02	BZ-N02	BZ-N03	84.14	372.10	0.20%	609.41
N03	BZ-N03	BZ-N04	31.15	506.22	0.20%	683.98
N04	BZ-N04	BZ-N05	66.12	634.50	0.20%	744.43
N05	BZ-N05	BZ-N06	99.19	721.80	0.20%	781.30
N06	BZ-N06	BZ-N07	98.15	673.44	0.20%	761.25

En base al resultado del diámetro a flujo lleno (Ver tabla 37) calculado a partir del caudal total (Ver tabla 36), se propuso el diámetro de diseño de cada tramo de la red de drenaje pluvial. Seguidamente, la velocidad y capacidad del tramo a flujo lleno en función del diámetro de diseño fue calculado empleando la ecuación de Manning, como se muestra en la tabla 38 para los seis primeros tramos de la red de drenaje del lado norte. Los resultados finales de los diámetros de diseño de las redes de drenaje pluvial son indicados en el Anexo F.

TRAMO	ENTRADA	SALIDA	Total Caudal Q L/s	Pendiente de la alcantarilla S %	Diámetro (Flujo lleno) D mm	Diámetro Diseño Dd mm	Velocidad de diseño (Flujo lleno) v m/s	Capacidad de diseño (Flujo lleno) Q L/s
N01	BZ-N01	BZ-N02	212.53	0.20%	493.97	650	1.33	441.91
N02	BZ-N02	BZ-N03	372.10	0.20%	609.41	700	1.40	538.47
N03	BZ-N03	BZ-N04	506.22	0.20%	683.98	750	1.47	647.23
N04	BZ-N04	BZ-N05	634.50	0.20%	744.43	800	1.53	768.78
N05	BZ-N05	BZ-N06	721.80	0.20%	781.30	900	1.65	1052.47
N06	BZ-N06	BZ-N07	673.44	0.20%	761.25	900	1.65	1052.47

 Tabla 38 Diámetro de diseño de y capacidad colector en tramo de red de drenaje pluvial principal

 Fuente: Elaboración propia

La capacidad de la tubería con el diámetro de diseño debe ser mayor al caudal total del tramo, a fin de que el flujo en el colector de drenaje pluvial opere como canal abierto. Además, el tirante del colector con el diámetro de diseño debe ser menor al 80% del diámetro de la tubería. A fin de cumplir y verificar los requisitos hidráulicos mencionados, se desarrolló una modelización hidráulica.

La modelización hidráulica de las redes de drenaje pluvial principal fue desarrollada para el lado norte y sur del área de movimiento del aeropuerto mediante el software EPA SWMM (Ver Anexo C, D y F). Al respecto, los tirantes en cada tramo de la red de drenaje pluvial fueron determinados en el software a fin verificar que los tirantes sean menores al 80% del diámetro de la tubería. Asimismo, la cota 3828 m.s.n.m. fue considerado como la elevación 0 metros en la modelización hidráulica. La figura 47 muestra los resultados del modelamiento hidráulico para los tramos 01 al 09 de la red de drenaje principal norte, del cual se observa que los tirantes son menores al diámetro de tubería.

Figura 47. Resultados del modelamiento hidráulico de los diez primeros tramos de la red norte. Fuente: Elaboración propia

La tabla 39 indica los resultados del software EPA SWMM de las alturas HGL para los diez primeros tramos de la red de drenaje del lado norte, como se observa en la figura 47. Resulta preciso aclarar que la elevación 0 corresponde a la cota 3828 m.s.n.m, valor que fue modificado para fines prácticos. De la misma forma, la tabla 40 indica los resultados de la relación tirante máxima – completa de los diez primeros tramos de la red de drenaje del lado norte. Los resultados finales son presentados en el Anexo F.

Buzón	Caudal Parcial (LPS)	Caudal Total (LPS)	Profundidad Promedio (m)	Máxima Profundidad (m)	Máxima HGL (m)
BZ-N01	212.53	212.53	0.32	0.32	-3.17
BZ-N02	159.57	372.1	0.43	0.43	-3.31
BZ-N03	134.12	506.22	0.5	0.5	-3.46
BZ-N04	128.28	634.5	0.55	0.55	-3.51
BZ-N05	87.31	721.81	0.65	0.65	-3.65
BZ-N06	-48.36	673.45	0.55	0.55	-3.95
BZ-N07	80.4	753.85	0.56	0.56	-4.13
BZ-N08	81.58	835.43	0.6	0.6	-4.3
BZ-N09	71.13	906.56	0.75	0.75	-4.5
BZ-N10	65.35	971.91	0.59	0.59	-4.85

Tabla 39 Resultados de HGL del software EPA SWMM

Fuente: Elaboración propia

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Relación Caudal Máxima/Llena descarga	Relación Tirante Máxima//Completa tirante
N-01	212.53	1.32	0.48	0.49
N-02	372.10	1.51	0.69	0.61
N-03	506.22	1.62	0.78	0.67
N-04	634.50	1.71	0.83	0.69
N-05	721.81	1.78	0.69	0.61
N-06	673.45	1.76	0.64	0.58
N-07	753.85	1.80	0.72	0.63
N-08	835.43	1.84	0.79	0.67
N-09	906.56	1.84	0.59	0.55
N-10	971.91	1.92	0.61	0.57

Tabla 40 Relación tirante máximo – completo de diez tramos de red de drenaje pluvial principal Fuente: Elaboración propia

Los procesos mencionados fueron iterados hasta cumplir con los requisitos hidráulicos. Por lo tanto, en concordancia al circular AC 150/5320-5D, se verifica que el sistema de drenaje pluvial planteado fue a gravedad. Finalmente, la tabla 41 muestra los resultados finales de las cotas de los buzones de los primeros diez tramos de la red de drenaje norte. Los resultados finales de todos los tramos son mostrados en el Anexo F.

	Buzón		Cota del drenaje (N.Ref. C.F. Primer Buzón)			Cota de I Bu	Fondo de zón	Cota de S	Superficie
TRAMO	ENTRADA	SALIDA	Aguas arriba m	Aguas abajo m	Diferencia niveles m	Aguas arriba m	Aguas abajo m	Aguas arriba m	Aguas abajo m
N01	BZ-N01	BZ-N02	0.000	-0.196	0.196	3824.508	3824.262	3826.120	3826.044
N02	BZ-N02	BZ-N03	-0.196	-0.365	0.168	3824.262	3824.043	3826.044	3826.000
N03	BZ-N03	BZ-N04	-0.365	-0.427	0.062	3824.043	3823.931	3826.000	3825.966
N04	BZ-N04	BZ-N05	-0.427	-0.559	0.132	3823.931	3823.699	3825.966	3826.023
N05	BZ-N05	BZ-N06	-0.559	-0.757	0.198	3823.699	3823.501	3826.023	3826.108
N06	BZ-N06	BZ-N07	-0.757	-0.954	0.196	3823.501	3823.304	3826.108	3826.056
N07	BZ-N07	BZ-N08	-0.954	-1.164	0.211	3823.304	3823.094	3826.056	3826.000
N08	BZ-N08	BZ-N09	-1.164	-1.361	0.196	3823.094	3822.747	3826.000	3825.928
N09	BZ-N09	BZ-N10	-1.361	-1.557	0.196	3822.747	3822.551	3825.928	3825.857
N10	BZ-N10	BZ-N11	-1.557	-1.753	0.196	3822.551	3822.355	3825.857	3825.785

Tabla 41 Diámetro de diseño de y capacidad colector en tramo de red de drenaje pluvial principalFuente: Elaboración propia

Capítulo 5. Conclusiones y recomendaciones

5.1 Respecto al diseño hidrológico

El análisis hidrológico fue desarrollado a partir de las precipitaciones máximas en 24 horas para un total de 21 años. Como resultado de lo anterior, la función Log Gumbel parámetros fue la función de probabilidad que mejor se ajustó a los datos de precipitación. En consecuencia, las curvas IDF y la ecuación de la intensidad máxima fue calculado para determinar las intensidades máximas de tormenta para respectivos periodos de retorno y duración de tormenta o tiempo de concentración.

$$i_{max} = \frac{285.217 \ T^{0.246}}{t^{0.75}}$$

Asimismo, el método hidrológico empleado para el cálculo de caudales de escorrentía fue el método racional. Lo anterior mencionado fue concluido debido a que el área de las cuencas principales y sus respectivas subcuencas fueron menores al área mínima requerida por el circular AC 150/5320-5D para poder emplear el método racional. De este modo, los caudales de diseño fueron calculados para el sistema de drenaje pluvial según las respectivas áreas tributarias acumuladas generados en el modelo en 3D.

De igual forma, la elección de los periodos de retorno fue considerado en base a las recomendaciones del circular AC 150/5320-5D. Por un lado, el diseño de la red de drenaje superficial y subterránea consideró un periodo de retorno de 5 años. Por otro, el diseño de la red principal de drenaje pluvial consideró un periodo de retorno de 50 años. Los datos empleados y los resultados se encuentran en el anexo A.

5.2 Respecto al diseño hidráulico

Los buzones arquetas AN-07 y AS-09 fueron los buzones con mayor descarga de agua superficial y sub superficial por sus subcuencas respectivamente y tiempo de retorno de 5 años. Sin embargo, el área de estacionamiento SC-E01 presentó mayor extensión. De este modo los resultados con respecto al área de estacionamiento fueron los valores máximos obtenidos (Tabla 42 y 43).

N° Área	Buzón que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Q m3/s
SC-08	AN-07	0.0541%	0.300	0.000	0.503	0.503	0.151	0.093
SC-70	AS-09	0.0541%	0.300	0.000	0.503	0.503	0.151	0.093
SC-E01	BZ-E01	0.1982%	0.600	0.000	0.481	0.481	0.289	0.463

Tabla 42 Resultados de las mayores descargas de drenaje superficial a buzones.

Fuente: Elaboración propia

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal (m)	Q infl pav (m3/s)	Q infl franj. (m3/s)	qNF (m3/s)	Q diseño (L/s)
SC-08	AN-07	BZ-N08	105.83	0.00280	0.00149	0.0000079	4.303
SC-70	AS-09	BZ-S10	105.83	0.00280	0.00149	0.0000079	4.303
SC-E01	-	BZ-E02	210.88	0.00557	0.00000	0.0000158	5.602

Tabla 43 Resultados de las mayores descargas de drenaje subsuperficial a buzones.

Fuente: Elaboración propia

Del mismo modo, el modelamiento hidráulico de las redes de drenaje pluvial principales fue desarrollado para la cuenca norte y sur y con un tiempo de retorno de 50 años. La figura 48 muestra los resultados del modelamiento hidráulico del buzón BZ-N01 al buzón BZ-N10, el cual se determina que la conducción del flujo es a gravedad (Ver anexo F). De la misma manera, los valores de la relación tirante – diámetro de cada tramo fue menor a 80%, según lo requerido por el circular AC 150/5320-5D (Ver anexo C y D).

Figura 48. Resultados del modelamiento hidráulico desde el buzón BZ-N01 al BZ-N06. Fuente: Elaboración propia

Así también, las líneas de gradiente hidráulico (HGL en sus siglas en inglés) fueron determinados mediante el software EPA SWMM. Al respecto la altura 3828.0 m.s.n.m. fue utilizado como nivel de referencia +0.00. Por otro lado, los HGL coincidieron con el tirante de cada tramo de las redes de drenaje pluvial principales (Ver Anexo C y D).

Por lo tanto, la propuesta de diseño de drenaje pluvial consistió en un sistema de conductos abiertos o a gravedad para el lado norte y sur del aeropuerto. El resumen de sus resultados finales es indicado en la tabla 44. Los cálculos y resultados del drenaje superficial, sub superficial y de las redes de drenaje principales son mostrados en el Anexo F.

	Rango de	Buzón	Buzón	Longitud total	Pendiente	Diámetro de diseño	Capacidad hidráulica
	Tramos	Inicial	Final	m	%	mm	L/s
	N01	BZ-N01	BZ-N02	98.14	0.20	650	441.91
	N02	BZ-N02	BZ-N03	84.14	0.20	700	538.47
Е	N03	BZ-N03	BZ-N04	31.15	0.20	750	647.23
DRT	N04	BZ-N04	BZ-N05	66.12	0.20	800	768.78
NC NC	N05-N08	BZ-N05	BZ-N09	400.74	0.20	900	1052.47
ADO	N09-N17	BZ-N09	BZ-N18	883.15	0.20	1050	1587.58
Γ /	N18-N35	BZ-N18	BZ-N36	1301.77	0.20	1200	2266.63
	N36-N37	BZ-N37	BZ-N38	63.20	0.20	1250	2527.31
	N38-N59	BZ-N38	BZ-N60	1160.83	0.30	1200	2776.05
	S01	BZ-S01	BZ-S02	38.60	0.20	650	441.91
	S02-S03	BZ-S02	BZ-S03	117.29	0.20	750	647.23
	S04	BZ-S04	BZ-S05	84.13	0.20	800	768.78
	S05-S06	BZ-S05	BZ-S07	97.48	0.20	900	1052.47
	S07-S12	BZ-S07	BZ-S13	596.90	0.20	1050	1584.58
	S13	BZ-S13	BZ-S14	98.18	0.25	1050	1774.97
	S13	BZ-S13	BZ-S14	98.18	0.25	1050	1774.97
R	S14-S25	BZ-S14	BZ-S26	882.86	0.20	1050	1587.58
DS (S26-S27	BZ-S28	BZ-S26	35.11	0.20	400	121.08
NDC	S28	BZ-S26	BZ-S32	84.50	0.20	1200	2266.63
Γ_{F}	S29	BZ-S30	BZ-S29	15.25	0.20	500	219.53
	S30	BZ-S29	BZ-S32	12.59	0.20	650	441.91
	S31-S32	BZ-S32	BZ-S33	86.36	0.20	1300	2805.95
	S33-S34	BZ-S31	BZ-S33	28.18	0.20	650	441.91
	S35	BZ-S33	BZ-S35	86.06	0.20	1300	2805.95
	S36-38	BZ-E01	BZ-S35	204.16	0.20	900	1052.47
	S39	BZ-S35	BZ-S36	72.10	0.25	1300	3137.15
	S40-S71	BZ-S36	BZ-S68	1644.95	0.30	1300	3436.58

Tabla 44 Resumen de resultados de las redes de drenajes pluvial en el lado norte

Fuente: Elaboración propia

Finalmente, los resultados finales pudieron desarrollar y actualizar el modelo BIM de la propuesta de diseño de drenaje pluvial del lado aire del aeropuerto en estudio (Figura 51). Al respecto, la información de los elementos modelados permitió brindar mayor detalle, interpretación y entendimiento del diseño propuesto. De este modo, la toma de decisiones a partir del modelo BIM resultó ser más versátil y práctica (Ver Anexo E).

Figura 49. Modelo BIM de la propuesta de diseño de drenaje pluvial del lado aire del aeropuerto Fuente: Elaboración propia

5.3 Comentarios adicionales

La propuesta de diseño de drenaje pluvial difirió de la red de drenaje pluvial existente. Si bien es cierto que la red existente está conformada por canales superficiales, la propuesta de la red de drenaje pluvial principal consistió en canales y tuberías perforadas ubicados en tramos longitudinales y en redes de drenaje enterradas. Este planteamiento fue desarrollado debido a que los caudales de escorrentía y subterráneos fueron recolectados y conducidos por gravedad hasta elevaciones inferiores. Además, el empleo de drenajes enterrados resulta ser una ventaja frente a los canales superficiales para este tipo de infraestructura. En efecto, una red descubierta aumenta el riesgo de atraer fauna silvestre (OAIC, 2016). En consecuencia, las actividades del aeropuerto serían impactadas perjudicialmente.

La propuesta de diseño de drenaje pluvial consistió en un sistema a gravedad conformados por redes de tuberías y buzones y que requerirá un sistema de bombeo en el tramo final de la red propuesta. Al respecto, las profundidades de las tuberías en los tramos finales que superan los 10 metros de profundidad de acuerdo a los cálculos desarrollados en el presente trabajo de tesis. En efecto, la profundidad calculada de las redes de drenaje pluvial principales se debe a que la superficie del terreno a lo largo del área de movimiento del aeropuerto es muy plana (pendiente 0.10%). Por lo tanto, un equipo de bombeo en la estructura final de los tramos por cada cuenca en estudio permitirá que el agua pluvial sea evacuada a una red externa con mayor elevación.

Asimismo, otra propuesta de sistema de drenaje pluvial sería considerar cámaras de bombeo para el agua pluvial a lo largo de la pista de aterrizaje y despegue de aeronaves. Al respecto, la implementación de cierta cantidad de cámaras de bombeo para la zona norte y sur del área de movimiento del aeropuerto permitiría reducir la profundidad de excavación que requiere la red de drenaje pluvial. Sin embargo, la propuesta mencionada anteriormente debe también considerar los costos por la operación y mantenimiento de los equipos de bombeo.

De igual forma, la propuesta de drenaje pluvial desarrollada en el trabajo de tesis podría ser complementada con un análisis de la red de alcantarillado pluvial de la ciudad. Así también, el drenaje pluvial del aeropuerto en estudio podría ser conducido hacía el río Lampa mediante método de excavación sin zanjas. Resulta preciso mencionar que este análisis no es parte del alcance del trabajo de tesis.

Respecto a la implementación BIM, el desarrollo del trabajo de tesis fue más versátil en la etapa de conceptualización, planteamiento y actualización del diseño del sistema de drenaje pluvial. Las métricas de los diferentes elementos modelados (Canaletas, superficies, buzones, tuberías) fueron obtenidos versátilmente, siendo una práctica más rápida en esta etapa de diseño. El modelo BIM puede ser usado para compatibilizar o coordinar con el modelo BIM de otras especialidades para el desarrollo de un proyecto completo del diseño de un nuevo lado aire del aeropuerto. Si bien se usó un software sólo para el modelar, sería más práctico usar un solo software que pueda realizar los cálculos y modelar la información del sistema de drenaje pluvial para que sea usado en todas las etapas del proyecto (Diseño, construcción, operación y mantenimiento).

Así también, el buzón BZ-E01 recibe la descarga pluvial del Estacionamiento de aeronaves. La descarga en el buzón BZ-E01 podría contener combustible debido al mantenimiento de las aeronaves que se realiza en el Estacionamiento. Por lo tanto, la estructura de este buzón debe

considerar una trampa de hidrocarburos. Sin embargo, lo anterior mencionado no es parte del alcance del trabajo de tesis.

La versión B del año 1970 del circular AC 150/5320-5: "*Airport Drainage Design*" de la Administración Federal de Aviación (FAA, por sus siglas en inglés) consideraba un gráfico de curvas y la siguiente fórmula para calcular el tiempo de concentración:

$$t_c = \frac{0.8(1.1 - C)\sqrt{L}}{S^{0.333}}$$

Donde L,S,C son la longitud (metros), pendiente y coeficiente de escurrimiento respectivamente. Sin embargo, la versión B de este circular (Emitida en el año 1970) fue superada por la versión D (actualmente vigente) del circular AC 150/5320-5D (Emitida en el año 2013). Por lo tanto, no se empleó la ecuación mencionada. La versión vigente del circular (AC 150/5320-5D del año 2013) indica otro cálculo del tiempo de concentración, la cual fue explicado en el marco teórico (Sec. 2.1.9) y desarrollado en este estudio. Por lo tanto, se concluye que la ecuación Ec.105 se encuentra superada.

Actualmente, la sección 3.9 del "Manual de hidrología, hidráulica y drenaje" del Ministerio de Transportes y Comunicaciones (MTC) indica emplear la Ec. 105 de la FAA para el cálculo del tiempo de concentración. Sin embargo, esta ecuación está superada por los cálculos y metodología indicados en el circular AC 150/5320-5D de la FAA. En base a lo anterior, así como lo desarrollado en este trabajo de tesis, se recomienda actualizar el cálculo del tiempo de concentración del "Manual de hidrología, hidráulica y drenaje" del MTC.

El "Manual de hidrología, hidráulica y drenaje" del MTC está orientado al diseño de drenaje superficial y subterráneo de infraestructura vial para vehículos terrestres. Sin embargo, este manual no sería aplicable al diseño de drenaje de infraestructura aeroportuaria para vehículos aéreos. Por lo tanto, se recomienda desarrollar una normativa peruana para el diseño y desarrollo de hidrología, hidráulica y drenaje para aeropuertos.

REFERENCIAS

Aparicio, F. . (1996). Fundamentos de Hidrología de Superficie (Editoral L).

- Bedoya, M., & Fandiño, J. (2017). Caracterización del drenaje de aguas lluvias de la plataforma interior del Aeropuerto El Dorado [Universidad Católica de Colombia]. https://repository.ucatolica.edu.co/bitstream/10983/15314/1/Trabajo de grado v0.pdf
- BIMForum. (2021). Level of development (LOD) specification. https://bimforum.org/wpcontent/uploads/2022/02/LOD-Spec-2021-Part-I-FINAL-2021-12-28.pdf
- Bladé i Castellet, E., & Dolz Ripollès, J. (2009). Drenaje de aguas pluviales de la Ampliación del Campo de Vuelo en el Aeropuerto de Barcelona. *Jornadas de Ingeniería Del Agua* 2009: Agua y Energía, 1–8.
- Brisbane Airport Corporation. (2021). Brisbane's New Runway. https://www.bne.com.au/corporate/projects/bne-projects/completed-projects/brisbanesnew-runway
- Carlos Enrique. (2017). Aterrizando en Juliaca (SPJL) Inca Manco Cápac. https://youtu.be/5qmBdOfo6h8
- Chereque, W. (1989). *Hidrologia para estudiantes de ingeniería civil*. Pontificia Universidad Católica del Perú.
- Chow, V. Te, Maidment, D., & Mays, L. (1994). Hidrología Aplicada (McGRAW-HILL (ed.)).
- Comité técnico AEN/CTN 149 Ingeniería del agua. (2015). *Dispositivos de cubrimiento y de cierre para zonas de circulaión utilizadas por peatones y vehículos* (AENOR (ed.)).
- Dabanga. (2020). Sudan Torrential Rains Flood Khartoum. http://floodlist.com/africa/sudan-flood-khartoum-august-2020
- De Solminihac, H., Echaveguren, T., & Chamorro, A. (2018). *Gestión de Infraestructura vial* (Tercera Ed). EDICIONES UNIVERSIDAD CATÓLICA DE CHILE.
- Federal Aviation Administration. (2013). Advisory Circular 150/5320-5D: Airport Drainage Design.

Garcia, M. (2001). Ingeniería Aeroportuaria (Segunda Ed).

Geosistemas PAVCO. (2012). Manuel de Diseño con Geosintéticos (Departamento de

Ingeniería -Geosistema (ed.); Novena Edi).

- HARVARDUCMC.(2016).BimUsesguide.https://home.planningoffice.harvard.edu/files/hppm/files/harvardbep_bim_uses.pdf
- Helios Comunicación. (2020). Revista Mexicana de la Construcción, Año 65, número 642, Febrero 2020. *Revista Mexicana de La Construcción*. https://issuu.com/helios comunicacion/docs/rmc6-42fin
- Instituto Nacional de Calidad. (2021). NTP-ISO 19650-1:2021.
- International Airport Review. (2017). The importance of storm water drainage for airports.
- Jones, S. A. (2013). National BIM Standard United States. https://www.nationalbimstandard.org/
- Lubna, M., Awadelkarim, M., & Hishasm, A.-M. (2018). Assessment of Stormwater Drainage Systems: Case Study of Khartoum International Airport. 1–10. https://onlinejournals.uofk.edu/index.php/CCE2018/article/view/2121
- OAIC. (2016). Anexo 14. Aeródromos Volumen I, Diseño y operaciones de aeródromos (ORGANIZACIÓN DE AVIACIÓN CIVIL INTERNACIONAL (ed.); Séptima ed).
- Organización Meteorológica Mundial "OMM." (2011). *Guía de Prácticas Hidrológicas vol. 2* (Sexta edic).
- Pulzo. (2017). Así se inundó el aeropuerto El Dorado por fuertes lluvias en las últimas horas. https://www.pulzo.com/nacion/inundaciones-dorado-bogota-PP253501
- Rocha, A. (1993). Recursos Hidráulicos (Primera Ed).
- Rocha Felices, A. (2007). Hidraulica de Tuberías y Canales.
- Scvartzer, F. (2013). *Rehabilitación de la Pista Problemática de climas muy rigurosos*. https://www.icao.int/NACC/Documents/Meetings/2013/ALACPA10/ALACPA10-P07.pdf
- Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. *Automation in Construction, Volume 18*(3). https://doi.org/ISSN 0926-5805
- ULMA Architectural Solutions. (2014). Aeropuerto Guarulhos en SÃO PAULO Brasil.

USGS. (2019). *El Ciclo del Agua, The Water Cycle, Spanish*. https://www.usgs.gov/special-topic/water-science-school/science/el-ciclo-del-agua-water-cycle-spanish?qt-science_center_objects=0#qt-science_center_objects

Anexo A: Resultado de análisis hidrológico

Características de la estación Juliaca

	Estación Juliaca		
Departamento	Puno		
Provincia	San Roman		
Distrito Juliaca			
Latitud	15°26'39.1" S		
Longitud	70°12'28.4" W		
Altitud (msnm)	3830 msnm.		
Тіро	Convencional - Meteorológica		
Código	115138		
Año Inicio P24h	2001		
Año Final P24h	2021		
Nº Años	21		

Valores de precipitación máxima de 24 horas de 2001 a 2021

N°	Año	Ppmax (mm)
1	2001	35.90
2	2002	63.30
3	2003	36.50
4	2004	32.80
5	2005	47.40
6	2006	30.30
7	2007	39.30
8	2008	45.00
9	2009	28.90
10	2010	20.20
11	2011	55.40
12	2012	23.00
13	2013	28.50
14	2014	37.00
15	2015	33.60
16	2016	36.60
17	2017	61.80
18	2018	32.60
19	2019	24.20
20	2020	33.50
21	2021	29.40

Fuente: SENAMHI

Histograma de registro histórico – Estación Juliaca

Resultados de la prueba de datos dudosos

PRECIPITACION MAXIMA 24 HORAS								
N°	Año	Ppmax (mm)	Ppmax (mm) Corregida (x 1.13)					
1	2001	35.90	40.57					
2	2002	63.30	71.53					
3	2003	36.50	41.25					
4	2004	32.80	37.06					
5	2005	47.40	53.56					
6	2006	30.30	34.24					
7	2007	39.30	44.41					
8	2008	45.00	50.85					
9	2009	28.90	32.66					
10	2010	20.20	22.83					
11	2011	55.40	62.60					
12	2012	23.00	25.99					
13	2013	28.50	32.21					
14	2014	37.00	41.81					
15	2015	33.60	37.97					
16	2016	36.60	41.36					
17	2017	61.80	69.83					
18	2018	32.60	36.84					
19	2019	24.20	27.35					
20	2020	33.50	37.86					
21	2021	29.40	33.22					
	Número o	le datos n	21.00					
	Pron	nedio	41.71					
	Desv	. Est.	13.29					
Máx.	Valor regi	strado corregido	71.53					
Min.	Valor regis	strado corregido	22.83					

Cuadro: Valores para coeficiente de Kn								
n	Kn	n	Kn	n	Kn	n	Kn	
10	2.04	24	2.47	38	2.66	60	2.84	
11	2.09	25	2.49	39	2.67	65	2.87	
12	2.13	26	2.5	40	2.68	70	2.89	
13	2.18	27	2.52	41	2.69	75	2.92	
14	2.21	28	2.53	42	2.7	80	2.94	
15	2.25	29	2.55	43	2.71	85	2.96	
16	2.28	30	2.56	44	2.72	90	2.98	
17	2.31	31	2.58	45	2.73	95	3	
18	2.34	32	2.59	46	2.74	100	3.11	
19	2.36	33	2.6	47	2.74	110	3.05	
20	2.39	34	2.62	48	2.75	120	3.08	
21	2.41	35	2.63	49	2.76	130	3.1	
22	2.43	36	2.64	50	2.77	140	3.13	
23	2.25	37	2.65	55	2.8			

PARÁMETROS ESTADISTICOS	P24hr	Log(P24hr)
Número de datos (N)	21	21
Sumatoria	875.98	33.62
Valor Máximo	71.53	1.85
Valor Mínimo	22.83	1.36
Media:	41.713	1.601
Varianza:	176.698	0.017
Desviación Estándar:	13.293	0.131
Coeficiente Variación:	0.319	0.082
Coeficiente de Sesgo:	1.029	0.346
n=	21.00	
-----	--	
Kn=	2.41	
Kn:	Valor recomendado, varia según el valor de n	
	(significancia:10%)	

Umbral de datos dudosos altos (xH: unidad. Logaritmicas)

$$x_H = \bar{x} + k_n \cdot s \qquad \text{xH=} \qquad 1.92$$

Precipitacion maxima aceptaba

NO EXISTEN DATOS DUDOSOS ALTO DE LA MUESTRA

Umbral de datos dudosos bajos (xL: unidad. Logaritmicas)

$$x_L = \bar{x} - k_n \cdot s$$
 xL= 1.29

Precipitacion minima aceptaba

$$PH= 10^{xH}$$
 PL= 19.30 mm

NO EXISTEN DATOS DUDOSOS MINIMO DE LA MUESTRA

DISTRIBUCION NORMAL				
m	X	P(X)	F(Z) Ordinario	Delta
1	20.2	0.0455	0.0777	0.0322
2	23	0.0909	0.1184	0.0275
3	24.2	0.1364	0.1399	0.0035
4	28.5	0.1818	0.2372	0.0554
5	28.9	0.2273	0.2478	0.0206
6	29.4	0.2727	0.2615	0.0112
7	30.3	0.3182	0.287	0.0312
8	32.6	0.3636	0.3569	0.0067
9	32.8	0.4091	0.3633	0.0458
10	33.5	0.4545	0.3858	0.0687
11	33.6	0.5	0.3891	0.1109
12	35.9	0.5455	0.4656	0.0798
13	36.5	0.5909	0.486	0.105
14	36.6	0.6364	0.4893	0.147
15	37	0.6818	0.5029	0.1789
16	39.3	0.7273	0.5804	0.1469
17	45	0.7727	0.7541	0.0187
18	47.4	0.8182	0.8136	0.0045
19	55.4	0.8636	0.942	0.0783
20	61.8	0.9091	0.9828	0.0737
21	63.3	0.9545	0.9876	0.033

Resultados de prueba de bondad de ajuste

∆teorico	0.1789	Los datos se ajustan a la distribución Normal, con un nivel de
∆tabular	0.2968	significación del 5%

DISTRIBUCION LOGNORMAL 2 PARÁMETROS				
m	X	P(X)	F(Z) Ordinario	Delta
1	20.2	0.0455	0.032	0.0135
2	23	0.0909	0.0775	0.0134
3	24.2	0.1364	0.1051	0.0313
4	28.5	0.1818	0.2387	0.0568
5	28.9	0.2273	0.2532	0.026
6	29.4	0.2727	0.2718	0.001
7	30.3	0.3182	0.3059	0.0123
8	32.6	0.3636	0.3956	0.032
9	32.8	0.4091	0.4035	0.0056
10	33.5	0.4545	0.4308	0.0238
11	33.6	0.5	0.4347	0.0653
12	35.9	0.5455	0.522	0.0234
13	36.5	0.5909	0.5439	0.047
14	36.6	0.6364	0.5475	0.0889
15	37	0.6818	0.5617	0.1201
16	39.3	0.7273	0.6388	0.0884
17	45	0.7727	0.7895	0.0168
18	47.4	0.8182	0.8357	0.0176
19	55.4	0.8636	0.9325	0.0688
20	61.8	0.9091	0.9684	0.0593
21	63.3	0.9545	0.9736	0.0191

∆teorico	0.1201	Los datos se ajustan a la distribución Log Normal de dos parámetros,
∆tabular	0.2968	con un nivel de significación del 5%

DISTRIBUCION LOGNORMAL 3 PARÁMETROS					
m	X	P(X)	Z	F(Z)	Delta
1	20.2	0.0455	-2.0996	0.0179	0.0276
2	23	0.0909	-1.5351	0.0624	0.0285
3	24.2	0.1364	-1.3276	0.0922	0.0442
4	28.5	0.1818	-0.7	0.242	0.0601
5	28.9	0.2273	-0.649	0.2582	0.0309
6	29.4	0.2727	-0.5865	0.2788	0.006
7	30.3	0.3182	-0.478	0.3163	0.0019
8	32.6	0.3636	-0.2203	0.4128	0.0492
9	32.8	0.4091	-0.1991	0.4211	0.012
10	33.5	0.4545	-0.1263	0.4497	0.0048
11	33.6	0.5	-0.1161	0.4538	0.0462
12	35.9	0.5455	0.1082	0.5431	0.0024
13	36.5	0.5909	0.1636	0.565	0.0259
14	36.6	0.6364	0.1727	0.5685	0.0678
15	37	0.6818	0.2088	0.5827	0.0991
16	39.3	0.7273	0.4068	0.6579	0.0694
17	45	0.7727	0.8387	0.7992	0.0265
18	47.4	0.8182	1.0004	0.8414	0.0233
19	55.4	0.8636	1.474	0.9298	0.0661
20	61.8	0.9091	1.7973	0.9639	0.0548
21	63.3	0.9545	1.8673	0.9691	0.0145

∆teorico	0.0991	Los datos se ajustan a la distribución Log Normal de tres parámetros,
∆tabular	0.2968	con un nivel de significación del 5%

DISTRIBUCION GAMMA 2 PARÁMETROS				
m	X	P(X)	G(Y) Ordinario	Delta
1	20.2	0.0455	0.0403	0.0051
2	23	0.0909	0.084	0.0069
3	24.2	0.1364	0.1093	0.027
4	28.5	0.1818	0.2307	0.0489
5	28.9	0.2273	0.2441	0.0168
6	29.4	0.2727	0.2612	0.0116
7	30.3	0.3182	0.2929	0.0253
8	32.6	0.3636	0.3778	0.0142
9	32.8	0.4091	0.3854	0.0237
10	33.5	0.4545	0.4118	0.0427
11	33.6	0.5	0.4156	0.0844
12	35.9	0.5455	0.5022	0.0433
13	36.5	0.5909	0.5243	0.0666
14	36.6	0.6364	0.528	0.1084
15	37	0.6818	0.5425	0.1393
16	39.3	0.7273	0.6225	0.1048
17	45	0.7727	0.7849	0.0122
18	47.4	0.8182	0.8359	0.0177
19	55.4	0.8636	0.9413	0.0776
20	61.8	0.9091	0.9771	0.068
21	63.3	0.9545	0.9819	0.0273

∆teorico	0.1393	Los datos se ajustan a la distribución Gamma 2 parámetros, con un
∆tabular	0.2968	nivel de significación del 5%

DISTRIBUCION GAMMA 2 PARÁMETROS					
m	X	P(X)	G(Y) Ordinario	Delta	
1	20.2	0.0455	0.0403	0.0051	
2	23	0.0909	0.084	0.0069	
3	24.2	0.1364	0.1093	0.027	
4	28.5	0.1818	0.2307	0.0489	
5	28.9	0.2273	0.2441	0.0168	
6	29.4	0.2727	0.2612	0.0116	
7	30.3	0.3182	0.2929	0.0253	
8	32.6	0.3636	0.3778	0.0142	
9	32.8	0.4091	0.3854	0.0237	
10	33.5	0.4545	0.4118	0.0427	
11	33.6	0.5	0.4156	0.0844	
12	35.9	0.5455	0.5022	0.0433	
13	36.5	0.5909	0.5243	0.0666	
14	36.6	0.6364	0.528	0.1084	
15	37	0.6818	0.5425	0.1393	
16	39.3	0.7273	0.6225	0.1048	
17	45	0.7727	0.7849	0.0122	
18	47.4	0.8182	0.8359	0.0177	
19	55.4	0.8636	0.9413	0.0776	
20	61.8	0.9091	0.9771	0.068	
21	63.3	0.9545	0.9819	0.0273	

∆teorico	0.1393	Los datos se ajustan a la distribución Gamma 2 parámetros, con un
∆tabular	0.2968	nivel de significación del 5%

DISTRIBUCION GAMMA 3 PARÁMETROS				
m	X	P(X)	G(Y) Ordinario	Delta
1	20.2	0.0455	0.0279	0.0175
2	23	0.0909	0.0815	0.0094
3	24.2	0.1364	0.1133	0.0231
4	28.5	0.1818	0.2577	0.0759
5	28.9	0.2273	0.2727	0.0454
6	29.4	0.2727	0.2916	0.0189
7	30.3	0.3182	0.326	0.0078
8	32.6	0.3636	0.4139	0.0503
9	32.8	0.4091	0.4215	0.0124
10	33.5	0.4545	0.4477	0.0068
11	33.6	0.5	0.4514	0.0486
12	35.9	0.5455	0.5341	0.0113
13	36.5	0.5909	0.5546	0.0363
14	36.6	0.6364	0.558	0.0784
15	37	0.6818	0.5713	0.1105
16	39.3	0.7273	0.6433	0.084
17	45	0.7727	0.7846	0.0119
18	47.4	0.8182	0.8289	0.0107
19	55.4	0.8636	0.9252	0.0615
20	61.8	0.9091	0.9634	0.0543
21	63.3	0.9545	0.9692	0.0147

∆teorico	0.1105	Los datos se ajustan a la distribución Gamma 3 parámetros, con un
∆tabular	0.2968	nivel de significación del 5%

DISTRIBUCION LOG PEARSON TIPO III							
m	Х	P(X)	G(Y) Ordinario	Delta			
1	20.2	0.0455	0.0207	0.0247			
2	23	0.0909	0.0668	0.0241			
3	24.2	0.1364	0.0971	0.0393			
4	28.5	0.1818	0.2471	0.0653			
5	28.9	0.2273	0.2632	0.036			
6	29.4	0.2727	0.2837	0.011			
7	30.3	0.3182	0.321	0.0028			
8	32.6	0.3636	0.4165	0.0528			
9	32.8	0.4091	0.4246	0.0156			
10	33.5	0.4545	0.4529	0.0016			
11	33.6	0.5	0.4569	0.0431			
12	35.9	0.5455	0.5449	0.0006			
13	36.5	0.5909	0.5664	0.0245			
14	36.6	0.6364	0.5699	0.0665			
15	37	0.6818	0.5838	0.0981			
16	39.3	0.7273	0.6575	0.0697			
17	45	0.7727	0.7959	0.0232			
18	47.4	0.8182	0.8374	0.0192			
19	55.4	0.8636	0.9249	0.0613			
20	61.8	0.9091	0.9595	0.0504			
21	63.3	0.9545	0.9649	0.0104			

∆teorico	0.0981	Los datos se ajustan a la distribución Log Pearson III, con un nivel de
∆tabular	0.2968	significación del 5%

DISTRIBUCION GUMBEL							
m	Х	P(X)	G(Y) Ordinario	Delta			
1	20.2	0.0455	0.031	0.0144			
2	23	0.0909	0.0773	0.0136			
3	24.2	0.1364	0.1059	0.0305			
4	28.5	0.1818	0.2453	0.0635			
5	28.9	0.2273	0.2605	0.0332			
6	29.4	0.2727	0.2798	0.007			
7	30.3	0.3182	0.3151	0.0031			
8	32.6	0.3636	0.4071	0.0435			
9	32.8	0.4091	0.4151	0.006			
10	33.5	0.4545	0.4428	0.0118			
11	33.6	0.5	0.4467	0.0533			
12	35.9	0.5455	0.5341	0.0113			
13	36.5	0.5909	0.5558	0.0351			
14	36.6	0.6364	0.5593	0.077			
15	37	0.6818	0.5734	0.1085			
16	39.3	0.7273	0.6486	0.0786			
17	45	0.7727	0.7925	0.0198			
18	47.4	0.8182	0.8361	0.0179			
19	55.4	0.8636	0.9279	0.0643			
20	61.8	0.9091	0.9634	0.0544			
21	63.3	0.9545	0.9689	0.0143			
∆teorico	0.1085	Los datos se	ajustan a la distribución Gumbel, con	n un nivel de			
∆tabular	0.2968		significación del 5%				

DISTRIBUCION LOG GUMBEL							
m	Х	P(X)	G(Y) Ordinario	Delta			
1	20.2	0.0455	0.0024	0.0431			
2	23	0.0909	0.0309	0.06			
3	24.2	0.1364	0.0607	0.0756			
4	28.5	0.1818	0.2474	0.0656			
5	28.9	0.2273	0.2681	0.0408			
6	29.4	0.2727	0.2941	0.0214			
7	30.3	0.3182	0.3408	0.0227			
8	32.6	0.3636	0.4546	0.0909			
9	32.8	0.4091	0.4639	0.0548			
10	33.5	0.4545	0.4955	0.041			
11	33.6	0.5	0.4999	0.0001			
12	35.9	0.5455	0.5927	0.0472			
13	36.5	0.5909	0.6142	0.0233			
14	36.6	0.6364	0.6177	0.0187			
15	37	0.6818	0.6313	0.0506			
16	39.3	0.7273	0.7005	0.0268			
17	45	0.7727	0.8187	0.046			
18	47.4	0.8182	0.8518	0.0337			
19	55.4	0.8636	0.9207	0.0571			
20	61.8	0.9091	0.9495	0.0404			
21	63.3	0.9545	0.9542	0.0003			

∆teorico	0.0909	Los datos se ajustan a la distribución Gumbel, con un nivel de
∆tabular	0.2968	significación del 5%

Resultados de Prueba de bondad de ajuste

PRUEBA DE BONDAD DE AJUSTE SMIRNOV-KOLGOMOROV

		ΔΤΕÓRICO DE LAS DISTRIBUCIONES									
Δ TABULAR	NORMAL	LOGNORMAL 2 PARÁMETROS	LOGNORMAL 3 PARÁMETROS	GAMMA 2 PARÁMETROS	GAMMA 3 PARÁMETROS	LOGPEARSON TIPO III	GUMBEL	LOG GUMBEL			
0.2968	0.1789	0.1201	0.0991	0.1393	0.1105	0.0981	0.1085	0.0909			
MIN Δ	0.0909										

Precipit	Precipitación máxima para diferentes periodos de retorno						
T (años)	Р	DISTRIBUCION LOG GUMBAL					
2	0.500	33.6					
5	0.200	43.86					
10	0.100	52.32					
20	0.050	61.96					
30	0.033	68.29					
50	0.020	77.13					
80	0.013	86.21					
100	0.010	90.88					
140	0.007	98.4					
200	0.005	107.03					
500	0.002	132.79					
Δ	0.2968	0.0909					

Resultado de los cálculos de precipitaciones e intensidades para duraciones menores de 24 horas

		Periodo de Retorno (T)											
	2	5	10	20	30	50	80	100	140	200	500		
Duración (min)		Precipitación Máxima 24h (mm)											
()	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79		
					Preci	pitación	Pd (mm)					
5	8.16	10.65	12.70	15.04	16.58	18.72	20.93	22.06	23.89	25.98	32.23		
10	9.70	12.66	15.10	17.89	19.71	22.27	24.89	26.23	28.41	30.90	38.33		
20	11.53	15.06	17.96	21.27	23.44	26.48	29.60	31.20	33.78	36.74	45.59		
30	12.77	16.66	19.88	23.54	25.94	29.30	32.75	34.53	37.38	40.66	50.45		
60	15.18	19.82	23.64	27.99	30.85	34.85	38.95	41.06	44.46	48.36	59.99		
90	16.80	21.93	26.16	30.98	34.15	38.57	43.11	45.44	49.20	53.52	66.40		
120	18.05	23.57	28.11	33.29	36.69	41.44	46.32	48.83	52.87	57.51	71.35		
180	19.98	26.08	31.11	36.84	40.61	45.86	51.26	54.04	58.51	63.64	78.96		
240	21.47	28.02	33.43	39.59	43.63	49.28	55.08	58.07	62.87	68.39	84.85		
360	23.76	31.01	37.00	43.81	48.29	54.54	60.96	64.26	69.58	75.68	93.90		
600	27.00	35.24	42.04	49.78	54.87	61.97	69.26	73.02	79.06	85.99	106.69		
720	28.25	36.88	44.00	52.10	57.42	64.86	72.49	76.42	82.74	90.00	111.66		
1440	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79		

		Periodo de Retorno (T)											
	2	5	10	20	30	50	80	100	140	200	500		
Duración (min)		Precipitación Máxima 24h (mm)											
()	33.60	43.86	52.32	61.96	68.29	77.13	86.21	90.88	98.40	107.03	132.79		
		Intensidad (mm/h)											
5	97.88	127.76	152.41	180.49	198.93	224.68	251.13	264.73	286.63	311.77	386.81		
10	58.20	75.97	90.62	107.32	118.28	133.59	149.32	157.41	170.43	185.38	230.00		
20	34.60	45.17	53.88	63.81	70.33	79.43	88.79	93.60	101.34	110.23	136.76		
30	25.53	33.33	39.75	47.08	51.89	58.61	65.51	69.05	74.77	81.33	100.90		
60	15.18	19.82	23.64	27.99	30.85	34.85	38.95	41.06	44.46	48.36	59.99		
90	11.20	14.62	17.44	20.65	22.76	25.71	28.74	30.29	32.80	35.68	44.26		
120	9.03	11.78	14.06	16.65	18.35	20.72	23.16	24.41	26.43	28.75	35.67		
180	6.66	8.69	10.37	12.28	13.54	15.29	17.09	18.01	19.50	21.21	26.32		
240	5.37	7.01	8.36	9.90	10.91	12.32	13.77	14.52	15.72	17.10	21.21		
360	3.96	5.17	6.17	7.30	8.05	9.09	10.16	10.71	11.60	12.61	15.65		
600	2.70	3.52	4.20	4.98	5.49	6.20	6.93	7.30	7.91	8.60	10.67		
720	2.35	3.07	3.67	4.34	4.79	5.40	6.04	6.37	6.90	7.50	9.31		
1440	1.40	1.83	2.18	2.58	2.85	3.21	3.59	3.79	4.10	4.46	5.53		

Resultado de curva IDF

Resultados de estadística de regresión para determinar la ecuación de intensidad máxima

log I = logK + m logTr - nLogt

y=a+bx1+cx2

y = log I	tr= x1
a = logk	t= x2
b = m	
c= -n	

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	У	x1	x2
2	5	97.88	1.991	0.301	0.699
2	10	58.20	1.765	0.301	1.000
2	20	34.60	1.539	0.301	1.301
2	30	25.53	1.407	0.301	1.477
2	60	15.18	1.181	0.301	1.778
2	90	11.20	1.049	0.301	1.954
2	120	9.03	0.956	0.301	2.079
2	180	6.66	0.823	0.301	2.255
2	240	5.37	0.730	0.301	2.380
2	360	3.96	0.598	0.301	2.556
2	600	2.70	0.431	0.301	2.778
2	720	2.35	0.372	0.301	2.857
2	1440	1.40	0.146	0.301	3.158
5	5	127.76	2.106	0.699	0.699
5	10	75.97	1.881	0.699	1.000
5	20	45.17	1.655	0.699	1.301
5	30	33.33	1.523	0.699	1.477
5	60	19.82	1.297	0.699	1.778
5	90	14.62	1.165	0.699	1.954
5	120	11.78	1.071	0.699	2.079
5	180	8.69	0.939	0.699	2.255
5	240	7.01	0.845	0.699	2.380
5	360	5.17	0.713	0.699	2.556
5	600	3.52	0.547	0.699	2.778
5	720	3.07	0.488	0.699	2.857
5	1440	1.83	0.262	0.699	3.158

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	У	x1	x2
10	5	152 41	2 183	1 000	0.699
10	10	90.62	1.957	1.000	1.000
10	20	53.88	1.731	1.000	1.301
10	30	39.75	1.599	1.000	1.477
10	60	23.64	1.374	1.000	1.778
10	90	17.44	1.242	1.000	1.954
10	120	14.06	1.148	1.000	2.079
10	180	10.37	1.016	1.000	2.255
10	240	8.36	0.922	1.000	2.380
10	360	6.17	0.790	1.000	2.556
10	600	4.20	0.624	1.000	2.778
10	720	3.67	0.564	1.000	2.857
10	1440	2.18	0.338	1.000	3.158
20	5	180.49	2.256	1.301	0.699
20	10	107.32	2.031	1.301	1.000
20	20	63.81	1.805	1.301	1.301
20	30	47.08	1.673	1.301	1.477
20	60	27.99	1.447	1.301	1.778
20	90	20.65	1.315	1.301	1.954
20	120	16.65	1.221	1.301	2.079
20	180	12.28	1.089	1.301	2.255
20	240	9.90	0.996	1.301	2.380
20	360	7.30	0.863	1.301	2.556
20	600	4.98	0.697	1.301	2.778
20	720	4.34	0.638	1.301	2.857
20	1440	2.58	0.412	1.301	3.158
30	5	198.93	2.299	1.477	0.699
30	10	118.28	2.073	1.477	1.000
30	20	70.33	1.847	1.477	1.301
30	30	51.89	1.715	1.477	1.477
30	60	30.85	1.489	1.477	1.778
30	90	22.76	1.357	1.477	1.954
30	120	18.35	1.264	1.477	2.079
30	180	13.54	1.131	1.477	2.255
30	240	10.91	1.038	1.477	2.380
30	360	8.05	0.906	1.477	2.556
30	600	5.49	0.739	1.477	2.778
30	720	4.79	0.680	1.477	2.857
30	1440	2.85	0.454	1.477	3.158

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	у	x1	x2
50	5	224.68	2.352	1.699	0.699
50	10	133.59	2.126	1.699	1.000
50	20	79.43	1.900	1.699	1.301
50	30	58.61	1.768	1.699	1.477
50	60	34.85	1.542	1.699	1.778
50	90	25.71	1.410	1.699	1.954
50	120	20.72	1.316	1.699	2.079
50	180	15.29	1.184	1.699	2.255
50	240	12.32	1.091	1.699	2.380
50	360	9.09	0.959	1.699	2.556
50	600	6.20	0.792	1.699	2.778
50	720	5.40	0.733	1.699	2.857
50	1440	3.21	0.507	1.699	3.158
80	5	251.13	2.400	1.903	0.699
80	10	149.32	2.174	1.903	1.000
80	20	88.79	1.948	1.903	1.301
80	30	65.51	1.816	1.903	1.477
80	60	38.95	1.591	1.903	1.778
80	90	28.74	1.458	1.903	1.954
80	120	23.16	1.365	1.903	2.079
80	180	17.09	1.233	1.903	2.255
80	240	13.77	1.139	1.903	2.380
80	360	10.16	1.007	1.903	2.556
80	600	6.93	0.841	1.903	2.778
80	720	6.04	0.781	1.903	2.857
80	1440	3.59	0.555	1.903	3.158
100	5	264.73	2.423	2.000	0.699
100	10	157.41	2.197	2.000	1.000
100	20	93.60	1.971	2.000	1.301
100	30	69.05	1.839	2.000	1.477
100	60	41.06	1.613	2.000	1.778
100	90	30.29	1.481	2.000	1.954
100	120	24.41	1.388	2.000	2.079
100	180	18.01	1.256	2.000	2.255
100	240	14.52	1.162	2.000	2.380
100	360	10.71	1.030	2.000	2.556
100	600	7.30	0.863	2.000	2.778
100	720	6.37	0.804	2.000	2.857
100	1440	3.79	0.578	2.000	3.158

Tiempo de Retorno (Años)	Duracion (min)	Intensidad (mm/h)	У	x1	x2
140	5	286.63	2.457	2.146	0.699
140	10	170.43	2.232	2.146	1.000
140	20	101.34	2.006	2.146	1.301
140	30	74.77	1.874	2.146	1.477
140	60	44.46	1.648	2.146	1.778
140	90	32.80	1.516	2.146	1.954
140	120	26.43	1.422	2.146	2.079
140	180	19.50	1.290	2.146	2.255
140	240	15.72	1.196	2.146	2.380
140	360	11.60	1.064	2.146	2.556
140	600	7.91	0.898	2.146	2.778
140	720	6.90	0.839	2.146	2.857
140	1440	4.10	0.613	2.146	3.158
200	5	311.77	2.494	2.301	0.699
200	10	185.38	2.268	2.301	1.000
200	20	110.23	2.042	2.301	1.301
200	30	81.33	1.910	2.301	1.477
200	60	48.36	1.684	2.301	1.778
200	90	35.68	1.552	2.301	1.954
200	120	28.75	1.459	2.301	2.079
200	180	21.21	1.327	2.301	2.255
200	240	17.10	1.233	2.301	2.380
200	360	12.61	1.101	2.301	2.556
200	600	8.60	0.934	2.301	2.778
200	720	7.50	0.875	2.301	2.857
200	1440	4.46	0.649	2.301	3.158
500	5	386.81	2.587	2.699	0.699
500	10	230.00	2.362	2.699	1.000
500	20	136.76	2.136	2.699	1.301
500	30	100.90	2.004	2.699	1.477
500	60	59.99	1.778	2.699	1.778
500	90	44.26	1.646	2.699	1.954
500	120	35.67	1.552	2.699	2.079
500	180	26.32	1.420	2.699	2.255
500	240	21.21	1.327	2.699	2.380
500	360	15.65	1.194	2.699	2.556
500	600	10.67	1.028	2.699	2.778
500	720	9.31	0.969	2.699	2.857
500	1440	5.53	0.743	2.699	3.158

Resumen de la estadística de regresión

Estadísticas de la regresión						
Coeficiente de						
correlación	1.000					
múltiple						
Coeficiente de	1 000					
determinación R^2	1.000					
R [^] 2 ajustado	1.000					
Error típico	0.006					
Observaciones	143.000					

ANÁLISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2.000	45.723	22.862	636463.000	0.000
Residuos	140.000	0.005	0.000		
Total	142.000	45.728			

Cálculo de las variables de la ecuación

	Coeficientes
Intercepción	2.455
Variable X 1	0.246
Variable X 2	-0.750

a 2.455	= logk = logk	b 0 246	=m =m	с -0 750	= -n = -n
k=	285.217	m=	0.246	n=	0.750

Reemplazo y determinación de la ecuación de intensidad máxima

	Rango de	Buzón	Buzón Final	Longitud total	Pendiente	Diámetro de diseño	Capacidad hidráulica
	Tramos	Inicial		m	%	mm	L/s
	N01	BZ-N01	BZ-N02	98.14	0.20	650	441.91
	N02	BZ-N02	BZ-N03	84.14	0.20	700	538.47
Щ	N03	BZ-N03	BZ-N04	31.15	0.20	750	647.23
DRT	N04	BZ-N04	BZ-N05	66.12	0.20	800	768.78
NC	N05-N08	BZ-N05	BZ-N09	400.74	0.20	900	1052.47
DQ	N09-N17	BZ-N09	BZ-N18	883.15	0.20	1050	1587.58
Γ^{\prime}	N18-N35	BZ-N18	BZ-N36	1301.77	0.20	1200	2266.63
	N36-N37	BZ-N37	BZ-N38	63.20	0.20	1250	2527.31
	N38-N59	BZ-N38	BZ-N60	1160.83	0.30	1200	2776.05
	S01	BZ-S01	BZ-S02	38.60	0.20	650	441.91
	S02-S03	BZ-S02	BZ-S03	117.29	0.20	750	647.23
	S04	BZ-S04	BZ-S05	84.13	0.20	800	768.78
	S05-S06	BZ-S05	BZ-S07	97.48	0.20	900	1052.47
	S07-S12	BZ-S07	BZ-S13	596.90	0.20	1050	1584.58
	S13	BZ-S13	BZ-S14	98.18	0.25	1050	1774.97
	S13	BZ-S13	BZ-S14	98.18	0.25	1050	1774.97
R	S14-S25	BZ-S14	BZ-S26	882.86	0.20	1050	1587.58
DS (S26-S27	BZ-S28	BZ-S26	35.11	0.20	400	121.08
ADC	S28	BZ-S26	BZ-S32	84.50	0.20	1200	2266.63
Γ	S29	BZ-S30	BZ-S29	15.25	0.20	500	219.53
	S30	BZ-S29	BZ-S32	12.59	0.20	650	441.91
	S31-S32	BZ-S32	BZ-S33	86.36	0.20	1300	2805.95
	S33-S34	BZ-S31	BZ-S33	28.18	0.20	650	441.91
	S35	BZ-S33	BZ-S35	86.06	0.20	1300	2805.95
	S36-38	BZ-E01	BZ-S35	204.16	0.20	900	1052.47
	S39	BZ-S35	BZ-S36	72.10	0.25	1300	3137.15
	S40-S71	BZ-S36	BZ-S68	1644.95	0.30	1300	3436.58

Anexo B: Resumen de resultados de las redes de drenaje pluvial principales

Anexo C: Resultados del modelamiento hidráulico de la cuenca sur Resultados desde el Buzón BZ-S01 al Buzón BZ-S07

Resultados desde el Buzón BZ-S07 al Buzón BZ-S15

Resultados desde el Buzón BZ-S15 al Buzón BZ-S22

Resultados desde el Buzón BZ-S22 al Buzón BZ-S25

Resultados desde el Buzón BZ-S25 al Buzón BZ-S36

Resultados desde el Buzón BZ-S36 al Buzón BZ-S45

Resultados desde el Buzón BZ-S45 al Buzón BZ-S55

Resultados desde el Buzón BZ-S28 al Buzón BZ-S32' (Ramal)

Resultados desde el Buzón BZ-S30 al Buzón BZ-S33

Resultados desde el Buzón BZ-E01 al Buzón BZ-S36

Resultados de descarga y profundidades en los buzones

Buzón	Caudal Parcial (LPS)	Caudal Total (LPS)	Profundidad Promedio (m)	Máxima Profundidad (m)	Máxima HGL (m)
BZ-E01	730.63	730.63	0.53	0.53	-4.72
BZ-E02	-56.18	674.45	0.53	0.53	-4.89
BZ-S01	166.35	166.35	0.28	0.28	-2.52
BZ-S02	279.39	445.74	0.53	0.53	-2.59
BZ-S03	61.59	507.33	0.5	0.5	-2.71
BZ-S04	93.21	600.54	0.53	0.53	-2.82
BZ-S05	161.85	762.39	0.57	0.57	-2.95
BZ-S06	148.63	911.02	0.64	0.65	-2.94
BZ-S07	112.75	1023.77	0.64	0.65	-3.07
BZ-S08	-67.95	955.82	0.61	0.61	-3.3
BZ-S09	94.88	1050.7	0.62	0.62	-3.49
BZ-S10	98.23	1148.93	0.66	0.66	-3.66
BZ-S11	79.44	1228.37	0.69	0.69	-3.83
BZ-S12	72.8	1301.17	0.72	0.72	-3.99
BZ-S13	74.16	1375.33	0.71	0.72	-4.19
BZ-S14	68.28	1443.61	0.69	0.7	-4.46
BZ-S15	64.05	1507.66	0.71	0.72	-4.64
BZ-S16	60.14	1567.8	0.72	0.73	-4.81
BZ-S17	57.08	1624.88	0.74	0.75	-4.99
BZ-S18	54.09	1678.97	0.76	0.77	-5.17
BZ-S19	51.6	1730.57	0.77	0.78	-5.35
BZ-S20	49.35	1779.92	0.79	0.8	-5.53
BZ-S21	47.59	1827.51	0.8	0.82	-5.71
BZ-S22	45.48	1872.99	0.82	0.83	-5.89
BZ-S23	43.82	1916.81	0.83	0.85	-6.08
BZ-S24	42.29	1959.1	0.84	0.86	-6.26

Buzón	Caudal Parcial (LPS)	Caudal Total (LPS)	Profundidad Promedio (m)	Máxima Profundidad (m)	Máxima HGL (m)
BZ-S25	56.4	2015.5	0.84	0.86	-6.45
BZ-S26	-28.13	2070.47	2.98	2.98	-4.53
BZ-S27	48.27	83.13	0.26	0.26	-4.51
BZ-S28	34.83	34.83	0.14	0.14	-4.58
BZ-S29	133.73	279.98	0.37	0.39	-4.48
BZ-S30	136.03	136.03	0.37	0.37	-4.48
BZ-S31	174.96	174.96	0.28	0.28	-5.41
BZ-S32	-170.76	2169.47	2.99	2.99	-4.74
BZ-S32'	38.15	2207.62	0.84	0.86	-6.97
BZ-S33	-188.34	2334.79	2.63	2.65	-5.31
BZ-S33'	140.55	340.26	0.42	0.44	-5.28
BZ-S34	42.32	716.77	0.54	0.54	-5.05
BZ-S35	-377.35	2674.21	3.4	3.41	-5.14
BZ-S36	19.44	2693.65	0.9	0.92	-7.8
BZ-S37	40.47	2734.12	0.86	0.88	-8.14
BZ-S38	52.57	2786.69	0.87	0.89	-8.39
BZ-S39	13.92	2800.61	0.87	0.89	-8.5
BZ-S40	12.75	2813.36	0.87	0.9	-8.6
BZ-S41	14.48	2827.84	0.87	0.9	-8.7
BZ-S42	12.59	2840.43	0.87	0.9	-8.8
BZ-S43	11.46	2851.89	0.89	0.92	-8.87
BZ-S44	12.12	2864.01	0.89	0.92	-8.97
BZ-S45	12.4	2876.41	0.89	0.91	-9.07
BZ-S46	11.21	2887.62	0.89	0.91	-9.16
BZ-S47	11.9	2899.52	0.89	0.91	-9.25

Buzón	Caudal Parcial (LPS)	Caudal Total (LPS)	Profundidad Promedio (m)	Máxima Profundidad (m)	Máxima HGL (m)
BZ-S48	12.17	2911.7	0.89	0.92	-9.34
BZ-S49	11.32	2923.73	0.9	0.92	-9.44
BZ-S50	11.37	2934.8	0.9	0.93	-9.53
BZ-S51	11.96	2946.44	0.9	0.93	-9.62
BZ-S52	10.85	2957.39	0.9	0.93	-9.71
BZ-S53	11.47	2968.76	0.91	0.93	-9.81
BZ-S54	11.73	2980.57	0.91	0.93	-9.9
BZ-S55	10.67	2991.13	0.91	0.94	-9.99
BZ-S56	11.29	3002.38	0.91	0.94	-10.08
BZ-S57	11.52	3014.21	0.91	0.94	-10.18
BZ-S58	10.5	3024.59	0.92	0.95	-10.27
BZ-S59	9.08	3033.81	0.92	0.95	-10.36
BZ-S60	19.69	3053.47	0.92	0.96	-10.47
BZ-S61	22.35	3075.82	0.93	0.96	-10.64
BZ-S62	-14.49	3061.21	0.93	0.96	-10.85
BZ-S63	30.96	3091.96	0.93	0.97	-11.35
BZ-S64	30.4	3122.36	0.94	0.97	-11.64
BZ-S65	29.95	3152.31	0.94	0.98	-11.93
BZ-S66	30.19	3182.5	0.95	0.99	-12.21
BZ-S67	36.81	3219.31	0.95	0.99	-12.5
BZ-S68	0	3219.31	0.9	0.94	-12.75

Resultados de descarga y profundidades en tramos

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Máxima/Llena descarga	Máxima/Llena tirante
S-1	166.35	1.24	0.38	0.43
S-2	445.74	1.58	0.69	0.61
S-3	507.33	1.62	0.78	0.67
S-4	600.54	1.69	0.78	0.67
S-5	762.39	1.80	0.73	0.63
S-6	911.02	1.86	0.86	0.72
S-7	1023.77	1.95	0.64	0.58
S-8	955.82	1.92	0.60	0.56
S-9	1050.70	1.96	0.66	0.59
S-10	1148.93	2.00	0.72	0.63
S-11	1228.37	2.02	0.77	0.66
S-12	1301.17	2.05	0.82	0.69
S-13	1375.33	2.26	0.78	0.66
S-14	1443.61	2.13	0.64	0.58
S-15	1507.66	2.14	0.67	0.60
S-16	1567.80	2.16	0.69	0.61
S-17	1624.88	2.18	0.72	0.63
S-18	1678.97	2.19	0.74	0.64
S-19	1730.57	2.21	0.76	0.65
S-20	1779.92	2.22	0.79	0.67
S-21	1827.51	2.23	0.81	0.68

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Máxima/Llena descarga	Máxima/Llena tirante
S-22	1872.99	2.24	0.83	0.69
S-23	1916.81	2.25	0.84	0.70
S-24	1959.10	2.25	0.87	0.72
S-25	2015.50	2.73	0.71	0.62
S-39	2674.21	2.65	0.85	0.71
S-40	2693.65	2.86	0.78	0.67
S-41	2734.12	2.88	0.79	0.67
S-42	2786.69	2.88	0.81	0.68
S-43	2800.61	2.88	0.82	0.69
S-44	2813.36	2.88	0.82	0.69
S-45	2827.84	2.90	0.82	0.69
S-46	2840.43	2.93	0.81	0.69
S-47	2851.89	2.85	0.84	0.71
S-48	2864.01	2.90	0.83	0.70
S-49	2876.41	2.89	0.84	0.70
S-50	2887.62	2.90	0.84	0.70
S-51	2899.53	2.91	0.84	0.70
S-52	2912.41	2.90	0.85	0.71
S-53	2923.43	2.90	0.85	0.71
S-54	2934.48	2.90	0.86	0.71
S-55	2946.54	2.92	0.85	0.71

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Máxima/Llena descarga	Máxima/Llena tirante
S-56	2957.29	2.91	0.86	0.72
S-57	2968.84	2.91	0.87	0.72
S-58	2980.46	2.92	0.86	0.72
S-59	2991.09	2.91	0.87	0.72
S-60	3002.69	2.91	0.88	0.73
S-61	3014.09	2.93	0.87	0.72
S-62	3024.73	2.92	0.88	0.73
S-63	3033.78	2.92	0.88	0.73
S-29	146.25	0.92	0.95	0.75
S-30	284.96	2.52	0.30	0.37
S-31	2169.47	2.33	0.77	0.66
S-26	34.86	0.87	0.27	0.36
S-27	83.88	0.97	0.76	0.65
S-28	2070.47	2.56	0.79	0.67
S-33	199.71	1.39	0.44	0.45
S-32	2207.62	2.93	0.59	0.55
S-34	334.94	1.43	0.79	0.67
S-36	730.63	1.89	0.65	0.59
S-37	674.45	1.75	0.64	0.58
S-38	716.77	1.80	0.67	0.60
S-35	2334.79	3.79	0.45	0.47
S-64	3053.47	2.92	0.89	0.73

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Máxima/Llena descarga	Máxima/Llena tirante
S-65	3075.70	2.93	0.89	0.74
S-66	3061.00	2.92	0.89	0.74
S-67	3091.96	2.93	0.90	0.74
S-68	3122.36	2.93	0.91	0.75
S-69	3152.31	2.94	0.92	0.75
S-70	3182.50	2.93	0.93	0.76
S-71	3219.31	3.15	0.87	0.72

Anexo D: Resultados del modelamiento hidráulico de la cuenca norte

Resultados desde el Buzón BZ-N01 al Buzón BZ-N10

Resultados desde el Buzón BZ-N10 al Buzón BZ-N20

Resultados desde el Buzón BZ-N20 al Buzón BZ-N30

Resultados desde el Buzón BZ-N40 al Buzón BZ-N50

Resultados desde el Buzón BZ-N50 al Buzón BZ-N60

Resultados de descarga y profundidades en tramos

Buzón	Caudal Parcial (LPS)	Caudal Total (LPS)	Profundidad Promedio (m)	Máxima Profundidad (m)	Máxima HGL (m)
BZ-N01	212.53	212.53	0.32	0.32	-3.17
BZ-N02	159.57	372.1	0.43	0.43	-3.31
BZ-N03	134.12	506.22	0.5	0.5	-3.46
BZ-N04	128.28	634.5	0.55	0.55	-3.51
BZ-N05	87.31	721.81	0.65	0.65	-3.65
BZ-N06	-48.36	673.45	0.55	0.55	-3.95
BZ-N07	80.4	753.85	0.56	0.56	-4.13
BZ-N08	81.58	835.43	0.6	0.6	-4.3
BZ-N09	71.13	906.56	0.75	0.75	-4.5
BZ-N10	65.35	971.91	0.59	0.59	-4.85
BZ-N11	60.51	1032.42	0.61	0.62	-5.03
BZ-N12	56.42	1088.84	0.63	0.64	-5.2
BZ-N13	57.67	1146.51	0.63	0.64	-5.4
BZ-N14	49.84	1196.35	0.67	0.68	-5.6
BZ-N15	47.28	1243.63	0.69	0.7	-5.78
BZ-N16	44.81	1288.44	0.71	0.72	-5.96
BZ-N17	42.73	1331.17	0.72	0.74	-6.14
BZ-N19	42.62	1418.19	0.68	0.69	-6.58
BZ-N20	42.62	1460.81	0.69	0.7	-6.76
BZ-N21	39.54	1500.35	0.7	0.71	-6.94
BZ-N22	38.21	1538.56	0.71	0.73	-7.13
BZ-N23	38.21	1576.77	0.72	0.74	-7.31
BZ-N24	36.02	1612.79	0.73	0.75	-7.5
BZ-N25	36.96	1649.75	0.74	0.76	-7.68
BZ-N26	33.98	1683.73	0.75	0.77	-7.87
BZ-N27	33.08	1716.81	0.76	0.78	-8.05
BZ-N28	34.56	1751.37	0.77	0.79	-8.24
BZ-N29	42.69	1794.06	0.78	0.81	-8.4
BZ-N30	11.9	1805.96	0.79	0.81	-8.47
BZ-N31	10.97	1816.93	0.79	0.81	-8.54

BZ-N32	12.24	1829.17	0.79	0.82	-8.6
BZ-N33	10.71	1839.88	0.8	0.82	-8.66
BZ-N34	9.83	1849.71	0.8	0.83	-8.72
BZ-N35	10.32	1860.03	0.8	0.83	-8.78
BZ-N36	10.78	1870.81	0.8	0.83	-8.84
BZ-N37	9.88	1880.69	0.81	0.84	-8.9
BZ-N38	12.05	1892.74	0.81	0.84	-8.96
BZ-N39	12.17	1904.91	0.71	0.73	-9.16
BZ-N40	11.47	1916.38	0.71	0.73	-9.26
BZ-N41	11.67	1928.05	0.71	0.74	-9.35
BZ-N42	11.93	1939.98	0.72	0.74	-9.44
BZ-N43	11.12	1951.1	0.72	0.74	-9.53
BZ-N44	11.58	1962.68	0.72	0.75	-9.62
BZ-N45	11.7	1974.38	0.72	0.75	-9.72
BZ-N46	10.92	1985.3	0.72	0.75	-9.81
BZ-N47	11.37	1996.67	0.73	0.75	-9.9
BZ-N48	11.52	2008.19	0.73	0.76	-9.99
BZ-N49	10.77	2018.96	0.73	0.76	-10.08
BZ-N50	10.07	2029.03	0.73	0.76	-10.18
BZ-N51	39.71	2068.74	0.75	0.77	-10.28
BZ-N52	22.38	2091.12	0.75	0.78	-10.45
BZ-N53	-1.28	2089.84	0.75	0.78	-10.66
BZ-N54	30.66	2120.5	0.76	0.79	-11.16
BZ-N55	30.11	2150.61	0.76	0.79	-11.45
BZ-N56	34.79	2185.4	0.77	0.8	-11.73
BZ-N57	33.43	2218.83	0.78	0.81	-11.96
BZ-N58	33.16	2251.99	0.79	0.82	-12.15
BZ-N18	44.4	1375.57	0.72	0.74	-6.33
BZ-N59	24.46	2276.45	0.79	0.82	-12.29
BZ-N60	0	2276.45	0.75	0.78	-12.53

Resultados de descarga y profundidades en tramos

Tramo	Caudal Total (LPS)	Velocidad máxima (m/s)	Máxima/Llena descarga	Máxima//Completa tirante
N-01	212.53	1.32	0.48	0.49
N-02	372.10	1.51	0.69	0.61
N-03	506.22	1.62	0.78	0.67
N-04	634.50	1.71	0.83	0.69
N-05	721.81	1.78	0.69	0.61
N-06	673.45	1.76	0.64	0.58
N-07	753.85	1.80	0.72	0.63
N-08	835.43	1.84	0.79	0.67
N-09	906.56	1.84	0.59	0.55
N-10	971.91	1.92	0.61	0.57
N-11	1032.42	1.95	0.65	0.59
N-12	1088.84	1.97	0.69	0.61
N-13	1146.51	2.18	0.65	0.59
N-14	1196.35	2.01	0.75	0.65
N-15	1243.63	2.03	0.78	0.67
N-16	1288.44	2.04	0.81	0.68
N-17	1331.17	2.05	0.84	0.70
N-18	1375.57	2.10	0.61	0.56
N-19	1418.19	2.11	0.63	0.57
N-20	1460.81	2.13	0.64	0.58
N-21	1500.35	2.14	0.66	0.59
N-22	1538.56	2.15	0.68	0.60
N-23	1576.77	2.16	0.70	0.61
N-24	1612.79	2.17	0.71	0.62
N-25	1649.75	2.19	0.73	0.63
N-26	1683.73	2.20	0.74	0.64
N-27	1716.81	2.20	0.76	0.65
N-28	1751.37	2.21	0.77	0.66
N-29	1794.06	2.22	0.79	0.67
N-30	1805.96	2.22	0.80	0.68
N-31	1816.93	2.24	0.80	0.67
------	---------	------	------	------
N-32	1829.17	2.23	0.81	0.68
N-33	1839.88	2.23	0.81	0.68
N-34	1849.71	2.23	0.82	0.69
N-35	1860.03	2.23	0.82	0.69
N-36	1870.81	2.25	0.82	0.69
N-37	1880.69	2.24	0.83	0.70
N-38	1892.74	2.64	0.68	0.61
N-39	1904.91	2.64	0.69	0.61
N-40	1916.38	2.65	0.69	0.61
N-41	1928.05	2.65	0.70	0.61
N-42	1939.98	2.65	0.70	0.62
N-43	1951.10	2.66	0.70	0.62
N-44	1962.68	2.66	0.71	0.62
N-45	1974.38	2.66	0.71	0.62
N-46	1985.30	2.67	0.71	0.62
N-47	1996.67	2.67	0.72	0.63
N-48	2008.19	2.67	0.72	0.63
N-49	2018.96	2.67	0.73	0.63
N-50	2029.03	2.69	0.73	0.63
N-51	2068.74	2.69	0.75	0.64
N-52	2091.12	2.69	0.75	0.65
N-53	2089.84	2.70	0.75	0.65
N-54	2120.50	2.70	0.76	0.65
N-55	2150.61	2.71	0.78	0.66
N-56	2185.40	2.72	0.79	0.67
N-57	2218.83	2.73	0.80	0.68
N-58	2251.99	2.73	0.81	0.68
N-59	2276.45	2.93	0.76	0.65

Anexo E: Vistas del modelo BIM

Vista 01: Zona de Viraje superior

Vista 02: Zona de Viraje superior y pista de aterrizaje y despegue

Vista 03: Calles de acceso

Vista 04: Pista de aterrizaje y despegue inferior

Vista 05: Zona de Viraje inferior

Vista 06: Calles de acceso y estacionamiento de aeronaves

Vista 07: Calles de acceso y estacionamiento de aeronaves

Vista 08: Conexión del canal de estacionamiento de aeronaves y red

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO SUR

								Cálculo del ca	udal máximo p	oor el método ra	acional								
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	Ь	у	R	v	tl	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-60	AS-01	BZ-S01	62.70	40.00	131.23	0.1050%	0.30	0.50	0.12	0.85	2.21	0.78	5.00	126.69	2,509.92	0.00251	0.77	68.013	0.068
SC-61	AS-02	BZ-S02	62.70	39.51	129.63	0.0831%	0.30	0.50	0.12	0.76	2.21	0.87	5.00	126.69	2,504.36	0.00250	0.77	67.862	0.068
SC-62	AS-02	BZ-S02	30.00	32.53	106.73	0.1140%	0.30	0.50	0.12	0.89	1.17	0.61	5.00	126.69	1,485.52	0.00149	0.77	40.254	0.040
SC-63	AS-03	BZ-S03	30.00	31.90	104.66	0.0850%	0.30	0.50	0.12	0.77	1.17	0.69	5.00	126.69	1,028.98	0.00103	0.77	27.883	0.028
SC-64	AS-04	BZ-S04	30.00	64.77	212.50	0.0542%	0.30	0.50	0.12	0.61	1.17	1.76	5.00	126.69	1,941.79	0.00194	0.77	52.618	0.053
SC-65	AS-05	BZ-S05	30.00	84.97	278.78	0.0661%	0.30	0.50	0.12	0.68	1.17	2.09	5.00	126.69	2,549.16	0.00255	0.77	69.076	0.069
SC-66	AS-06	BZ-S06	30.00	32.50	106.64	0.0661%	0.30	0.50	0.12	0.68	1.17	0.80	5.00	126.69	975.13	0.00098	0.77	26.424	0.026
SC-67	AS-06	BZ-807	30.00	66.59	218.46	0.0852%	0.30	0.50	0.12	0.77	1.17	1.44	5.00	126.69	1,997.62	0.00200	0.77	54.131	0.054
SC-68	AS-07	BZ-S08	30.00	99.13	325.23	0.0852%	0.30	0.50	0.12	0.77	1.17	2.15	5.00	126.69	2,973.91	0.00297	0.77	80.586	0.081
SC-69	AS-08	BZ-809	30.00	99.59	326.73	0.0541%	0.30	0.50	0.12	0.61	1.17	2.71	5.00	126.69	2,987.58	0.00299	0.77	80.956	0.081
SC-70	AS-09	BZ-S10	30.00	105.83	347.21	0.0541%	0.30	0.50	0.12	0.61	1.17	2.88	5.00	126.69	3,174.93	0.00317	0.77	86.033	0.086
SC-71	AS-10	BZ-S11	30.00	98.87	324.37	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.04	0.00297	0.77	80.373	0.080
SC-72	AS-11	BZ-S12	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-73	AS-12	BZ-813	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-74	AS-13	BZ-S14	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-75	AS-14	BZ-815	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-76	AS-15	BZ-S16	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-77	AS-16	BZ-817	30.00	99.04	324.95	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,971.32	0.00297	0.77	80.516	0.081
SC-78	AS-17	BZ-S18	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-79	AS-18	BZ-819	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-80	AS-19	BZ-820	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-81	AS-20	BZ-821	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-82	AS-21	BZ-822	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-83	AS-22	BZ-823	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-84	AS-23	BZ-824	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-85	AS-24	BZ-825	30.00	98.87	324.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-86	AS-25	BZ-826	30.00	62.49	205.02	0.1916%	0.30	0.50	0.12	1.15	1.17	0.90	5.00	126.69	1,880.84	0.00188	0.77	50.966	0.051
SC-87a	AS-26	BZ-S28	17.38	23.25	76.28	0.2623%	0.30	0.50	0.12	1.35	0.74	0.29	5.00	126.69	403.48	0.00040	0.77	10.933	0.011
SC-87b	AS-26	BZ-528	17.38	87.78	287.99	0.3201%	0.30	0.50	0.12	1.49	0.74	0.98	5.00	126.69	1,524.58	0.00152	0.77	41.313	0.041
SC-88	AS-27	BZ-S27	30.00	74.23	243.54	0.2623%	0.30	0.50	0.12	1.35	1.13	0.92	5.00	126.69	2,407.33	0.00241	0.77	65.233	0.065

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO SUR

	Cálculo del caudal máximo por el método racional																		
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	Ь	у	R	v	t1	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-89	AS-28	BZ-S29	30.00	68.79	225.69	0.2623%	0.30	0.50	0.12	1.35	1.17	0.85	5.00	126.69	2,395.57	0.00240	0.77	64.914	0.065
SC-90	AS-29	BZ-833	30.00	93.20	305.77	0.1916%	0.30	0.50	0.12	1.15	1.17	1.35	5.00	126.69	2,804.49	0.00280	0.77	75.995	0.076
SC-91a	AS-30	BZ-S30	17.38	23.50	77.10	0.2623%	0.30	0.50	0.12	1.35	0.74	0.29	5.00	126.69	402.22	0.00040	0.77	10.899	0.011
SC-91b	AS-30	BZ-S30	60.90	28.99	95.11	0.2623%	0.30	0.50	0.12	1.35	2.16	0.36	5.00	126.69	2,337.28	0.00234	0.77	63.335	0.063
SC-92	AS-31	BZ-S32'	60.90	60.25	197.67	0.1378%	0.30	0.50	0.12	0.98	2.16	1.03	5.00	126.69	3,375.06	0.00338	0.77	91.456	0.091
SC-93	AS-32	BZ-831	52.00	56.55	185.53	0.2493%	0.30	0.50	0.12	1.31	1.88	0.72	5.00	126.69	3,026.45	0.00303	0.77	82.010	0.082
SC-94a	AS-33	BZ-831	17.00	16.48	54.07	0.6371%	0.30	0.50	0.12	2.10	0.72	0.13	5.00	126.69	274.07	0.00027	0.77	7.427	0.007
SC-94b	AS-33	BZ-S31	52.25	40.66	133.40	0.6261%	0.30	0.50	0.12	2.08	1.88	0.33	5.00	126.69	2,583.88	0.00258	0.77	70.017	0.070
SC-95	AS-34	BZ-S33'	30.00	74.79	245.37	0.7688%	0.30	0.50	0.12	2.31	1.17	0.54	5.00	126.69	2,491.13	0.00249	0.77	67.504	0.068
SC-96	AS-35	BZ-S34	17.66	88.66	290.88	0.3806%	0.30	0.50	0.12	1.62	0.75	0.91	5.00	126.69	2,491.13	0.00249	0.77	67.504	0.068
SC-97	AS-36	BZ-835	17.62	91.82	301.25	0.6394%	0.30	0.50	0.12	2.11	0.75	0.73	5.00	126.69	2,778.30	0.00278	0.77	75.285	0.075
SC-98	AS-37	BZ-836	30.00	78.19	256.53	0.1916%	0.30	0.50	0.12	1.15	1.17	1.13	5.00	126.69	2,353.07	0.00235	0.77	63.763	0.064
SC-99	AS-38	BZ-837	30.00	99.81	327.46	0.1916%	0.30	0.50	0.12	1.15	1.17	1.44	5.00	126.69	2,994.31	0.00299	0.77	81.139	0.081
SC-100	AS-39	BZ-S38	30.00	90.79	297.88	0.1916%	0.30	0.50	0.12	1.15	1.17	1.31	5.00	126.69	2,723.80	0.00272	0.77	73.809	0.074
SC-101	AS-40	BZ-839	30.00	36.38	119.36	0.0101%	0.30	0.50	0.12	0.26	1.17	2.29	5.00	126.69	1,091.43	0.00109	0.77	29.575	0.030
SC-102	AS-41	BZ-S40	30.00	35.39	116.09	0.0101%	0.30	0.50	0.12	0.26	1.17	2.23	5.00	126.69	1,061.57	0.00106	0.77	28.766	0.029
SC-103	AS-42	BZ-S41	30.00	36.39	119.39	0.0101%	0.30	0.50	0.12	0.26	1.17	2.30	5.00	126.69	1,091.66	0.00109	0.77	29.581	0.030
SC-104	AS-43	BZ-S42	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-105	AS-44	BZ-843	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-106	AS-45	BZ-S44	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-107	AS-46	BZ-845	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-108	AS-47	BZ-S46	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	972.02	0.00097	0.77	26.339	0.026
SC-109	AS-48	BZ-S47	30.00	33.38	109.50	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.31	0.00100	0.77	27.133	0.027
SC-110	AS-49	BZ-S48	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-111	AS-50	BZ-S49	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-112	AS-51	BZ-S50	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-113	AS-52	BZ-851	30.00	33.40	109.58	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.00	0.00100	0.77	27.152	0.027
SC-114	AS-53	BZ-852	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-115	AS-54	BZ-853	30.00	33.40	109.58	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.00	0.00100	0.77	27.152	0.027
SC-116	AS-55	BZ-854	30.00	33.41	109.61	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.28	0.00100	0.77	27.159	0.027

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO SUR

		Cálculo del caudal máximo por el método racional																	
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	b	у	R	V	t1	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-117	AS-56	BZ-855	30.00	32.42	106.36	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	972.53	0.00097	0.77	26.353	0.026
SC-118	AS-57	BZ-856	30.00	33.40	109.59	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.11	0.00100	0.77	27.155	0.027
SC-119	AS-58	BZ-857	30.00	33.48	109.85	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,004.47	0.00100	0.77	27.219	0.027
SC-120	AS-59	BZ-858	30.00	32.49	106.59	0.0101%	0.30	0.50	0.12	0.26	1.17	2.05	5.00	126.69	974.63	0.00097	0.77	26.410	0.026
SC-121	AS-60	BZ-859	30.00	33.49	109.87	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,004.68	0.00100	0.77	27.224	0.027
SC-122a	AS-61	BZ-S60	30.00	39.33	129.03	0.0101%	0.30	0.50	0.12	0.26	1.17	2.48	5.00	126.69	1,179.84	0.00118	0.77	31.971	0.032
SC-122b	AS-61	BZ-S60	30.00	59.85	196.37	0.1916%	0.30	0.50	0.12	1.15	1.17	0.87	5.00	126.69	1,795.57	0.00180	0.77	48.656	0.049
SC-123	AS-62	BZ-S61	30.00	69.78	228.95	0.1916%	0.30	0.50	0.12	1.15	1.17	1.01	5.00	126.69	2,093.52	0.00209	0.77	56.730	0.057
SC-124	AS-63	BZ-S62	30.00	71.72	235.31	0.1916%	0.30	0.50	0.12	1.15	1.17	1.04	5.00	126.69	2,151.65	0.00215	0.77	58.305	0.058
SC-125	AS-64	BZ-S63	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-126	AS-65	BZ-S64	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-127	AS-66	BZ-S65	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-128	AS-67	BZ-866	30.00	99.75	327.26	0.0845%	0.30	0.50	0.12	0.77	1.17	2.17	5.00	126.69	2,992.44	0.00299	0.77	81.088	0.081
SC-129	AS-68	BZ-S67	30.00	97.29	319.20	0.1330%	0.30	0.50	0.12	0.96	1.17	1.69	5.00	126.69	2,918.78	0.00292	0.77	79.092	0.079

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO NORTE

	Cálculo del caudal máximo por el método racional																		
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	Ь	у	R	V	tl	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-01	AN-01	BZ-N01	30.00	100.00	328.09	0.0661%	0.30	0.50	0.12	0.68	1.17	2.46	5.00	126.69	3,000.10	0.00300	0.77	81.296	0.081
SC-02	AN-02	BZ-N02	30.00	99.51	326.48	0.0661%	0.30	0.50	0.12	0.68	1.17	2.45	5.00	126.69	2,985.32	0.00299	0.77	80.895	0.081
SC-03	AN-03	BZ-N03	30.00	85.03	278.97	0.0661%	0.30	0.50	0.12	0.68	1.17	2.09	5.00	126.69	2,550.90	0.00255	0.77	69.123	0.069
SC-04	AN-04	BZ-N04	30.00	32.52	106.68	0.0661%	0.30	0.50	0.12	0.68	1.17	0.80	5.00	126.69	975.48	0.00098	0.77	26.433	0.026
SC-05	AN-04	BZ-N04	30.00	66.55	218.34	0.0852%	0.30	0.50	0.12	0.77	1.17	1.44	5.00	126.69	1,996.54	0.00200	0.77	54.102	0.054
SC-06	AN-05	BZ-N05	30.00	98.83	324.23	0.0852%	0.30	0.50	0.12	0.77	1.17	2.14	5.00	126.69	2,964.79	0.00296	0.77	80.339	0.080
SC-07	AN-06	BZ-N07	30.00	99.84	327.57	0.0541%	0.30	0.50	0.12	0.61	1.17	2.72	5.00	126.69	2,995.27	0.00300	0.77	81.165	0.081
SC-08	AN-07	BZ-N08	30.00	105.83	347.21	0.0541%	0.30	0.50	0.12	0.61	1.17	2.88	5.00	126.69	3,174.93	0.00317	0.77	86.033	0.086
SC-09	AN-08	BZ-N09	30.00	98.87	324.37	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.04	0.00297	0.77	80.373	0.080
SC-10	AN-09	BZ-N10	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-11	AN-10	BZ-N11	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-12	AN-11	BZ-N12	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-13	AN-12	BZ-N13	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-14	AN-13	BZ-N14	30.00	98.84	324.27	0.0718%	0.30	0.50	0.12	0.71	1.17	2.33	5.00	126.69	2,965.13	0.00297	0.77	80.348	0.080
SC-15	AN-14	BZ-N15	30.00	99.04	324.95	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,971.32	0.00297	0.77	80.516	0.081
SC-16	AN-15	BZ-N16	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-17	AN-16	BZ-N17	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-18	AN-17	BZ-N18	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-19	AN-18	BZ-N19	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-20	AN-19	BZ-N20	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-21	AN-20	BZ-N21	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-22	AN-21	BZ-N22	30.00	98.87	324.39	0.0718%	0.30	0.50	0.12	0.71	1.17	2.34	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-23	AN-22	BZ-N23	30.00	98.87	324.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,966.18	0.00297	0.77	80.377	0.080
SC-24	AN-23	BZ-N24	30.00	99.18	325.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,975.41	0.00298	0.77	80.627	0.081
SC-25	AN-24	BZ-N25	30.00	99.18	325.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,975.41	0.00298	0.77	80.627	0.081
SC-26	AN-25	BZ-N26	30.00	99.18	325.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,975.41	0.00298	0.77	80.627	0.081
SC-27	AN-26	BZ-N27	30.00	99.18	325.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,975.41	0.00298	0.77	80.627	0.081
SC-28	AN-27	BZ-N28	30.00	99.18	325.39	0.1916%	0.30	0.50	0.12	1.15	1.17	1.43	5.00	126.69	2,975.41	0.00298	0.77	80.627	0.081
SC-29	AN-28	BZ-N29	30.00	90.22	296.00	0.1916%	0.30	0.50	0.12	1.15	1.17	1.30	5.00	126.69	2,706.63	0.00271	0.77	73.343	0.073
SC-30	AN-29	BZ-N30	30.00	36.38	119.36	0.0101%	0.30	0.50	0.12	0.26	1.17	2.29	5.00	126.69	1,091.43	0.00109	0.77	29.575	0.030

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO NORTE

	Cálculo del caudal máximo por el método racional																		
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	b	у	R	v	tl	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-31	AN-30	BZ-N31	30.00	35.39	116.09	0.0101%	0.30	0.50	0.12	0.26	1.17	2.23	5.00	126.69	1,061.57	0.00106	0.77	28.766	0.029
SC-32	AN-31	BZ-N32	30.00	36.39	119.39	0.0101%	0.30	0.50	0.12	0.26	1.17	2.30	5.00	126.69	1,091.66	0.00109	0.77	29.581	0.030
SC-33	AN-32	BZ-N33	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-34	AN-33	BZ-N34	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-35	AN-34	BZ-N35	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-36	AN-35	BZ-N36	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-37	AN-36	BZ-N37	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	972.02	0.00097	0.77	26.339	0.026
SC-38	AN-37	BZ-N38	30.00	33.38	109.50	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.31	0.00100	0.77	27.133	0.027
SC-39	AN-38	BZ-N39	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-40	AN-39	BZ-N40	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-41	AN-40	BZ-N41	30.00	33.39	109.55	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,001.72	0.00100	0.77	27.144	0.027
SC-42	AN-41	BZ-N42	30.00	33.40	109.58	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.00	0.00100	0.77	27.152	0.027
SC-43	AN-42	BZ-N43	30.00	32.40	106.30	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	971.97	0.00097	0.77	26.338	0.026
SC-44	AN-43	BZ-N44	30.00	33.40	109.58	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.00	0.00100	0.77	27.152	0.027
SC-45	AN-44	BZ-N45	30.00	33.41	109.61	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.28	0.00100	0.77	27.159	0.027
SC-46	AN-45	BZ-N46	30.00	32.42	106.36	0.0101%	0.30	0.50	0.12	0.26	1.17	2.04	5.00	126.69	972.53	0.00097	0.77	26.353	0.026
SC-47	AN-46	BZ-N47	30.00	33.40	109.59	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,002.11	0.00100	0.77	27.155	0.027
SC-48	AN-47	BZ-N48	30.00	33.48	109.85	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,004.47	0.00100	0.77	27.219	0.027
SC-49	AN-48	BZ-N49	30.00	32.49	106.59	0.0101%	0.30	0.50	0.12	0.26	1.17	2.05	5.00	126.69	974.63	0.00097	0.77	26.410	0.026
SC-50	AN-49	BZ-N50	30.00	33.49	109.87	0.0101%	0.30	0.50	0.12	0.26	1.17	2.11	5.00	126.69	1,004.68	0.00100	0.77	27.224	0.027
SC-51a	AN-50	BZ-N51	30.00	39.33	129.03	0.0101%	0.30	0.50	0.12	0.26	1.17	2.48	5.00	126.69	1,179.84	0.00118	0.77	31.971	0.032
SC-51b	AN-50	BZ-N51	30.00	59.85	196.37	0.1916%	0.30	0.50	0.12	1.15	1.17	0.87	5.00	126.69	1,795.57	0.00180	0.77	48.656	0.049
SC-52	AN-51	BZ-N52	30.00	69.78	228.95	0.1916%	0.30	0.50	0.12	1.15	1.17	1.01	5.00	126.69	2,093.52	0.00209	0.77	56.730	0.057
SC-53	AN-52	BZ-N53	30.00	71.72	235.31	0.1916%	0.30	0.50	0.12	1.15	1.17	1.04	5.00	126.69	2,151.65	0.00215	0.77	58.305	0.058
SC-54	AN-53	BZ-N54	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-55	AN-54	BZ-N55	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-56	AN-55	BZ-N56	30.00	99.23	325.56	0.0542%	0.30	0.50	0.12	0.61	1.17	2.70	5.00	126.69	2,976.92	0.00298	0.77	80.668	0.081
SC-57a	AN-56	BZ-N57	30.00	60.82	199.55	0.0542%	0.30	0.50	0.12	0.61	1.17	1.65	5.00	126.69	1,818.57	0.00182	0.77	49.279	0.049
SC-57b	AN-56	BZ-N57	30.00	99.32	325.86	0.7718%	0.30	0.50	0.12	2.31	1.17	0.72	5.00	126.69	1,311.14	0.00313	0.77	84.808	0.085
SC-58a	AN-57	BZ-N58	49.23	56.65	185.87	0.7718%	0.30	0.50	0.12	2.31	1.80	0.41	5.00	126.69	1,274.78	0.00127	0.77	34.544	0.035

CÁLCULO DE CAUDALES MEDIANTE MÉTODO RACIONAL: CUENCA DEL LADO NORTE

	Cálculo del caudal máximo por el método racional																		
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	b	у	R	v	t1	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-58b	AN-57	BZ-N58	62.53	56.65	185.87	0.0754%	0.30	0.50	0.12	0.72	2.20	1.31	5.00	126.69	1,899.29	0.00317	0.77	86.010	0.086
SC-59	AN-58	BZ-N59	62.53	49.20	161.42	0.0754%	0.30	0.50	0.12	0.72	2.20	1.13	5.00	126.69	3,077.00	0.00308	0.77	83.380	0.083

DRENAJE SUPERFICIAL DE ÁREA PAVIMENTADA cálculo de caudales mediante método racional: cuenca del lado sur (estacionamiento de aeronaves)

	Cálculo del caudal máximo por el método racional																		
SC	Buzón arqueta que descarga	Buzón de red exterior que descarga	Ancho de pista m	Distancia longitudinal m	Distancia longitudinal ft	Pendiente S (%)	b	у	R	v	t1	t2	tc considerado (min)	Intensidad mm/h	Area m2 (ocultar)	Area km2	Coef. Esc. C	Q (unitario) L/s	Q (unitario) m3/s
SC-E01	-	BZ-E01	76.59	210.89	691.90	0.1982%	0.30	0.50	0.12	1.17	2.63	3.00	5.62	116.01	16,121.52	0.01612	0.77	400.031	0.400

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-60	AS-01	0.1050%	0.300	0.000	0.294	0.294	0.088	0.887	0.444	0.068
SC-61	AS-02	0.0831%	0.300	0.000	0.323	0.323	0.097	0.945	0.473	0.068
SC-62	AS-02	0.1140%	0.300	0.000	0.188	0.188	0.056	0.675	0.338	0.040
SC-63	AS-03	0.0850%	0.300	0.000	0.159	0.159	0.048	0.617	0.309	0.028
SC-64	AS-04	0.0542%	0.300	0.000	0.313	0.313	0.094	0.926	0.463	0.053
SC-65	AS-05	0.0661%	0.300	0.000	0.361	0.361	0.108	1.022	0.511	0.069
SC-66	AS-06	0.0661%	0.300	0.000	0.168	0.168	0.050	0.635	0.318	0.026
SC-67	AS-06	0.0852%	0.300	0.000	0.266	0.266	0.080	0.832	0.416	0.054
SC-68	AS-07	0.0852%	0.300	0.000	0.369	0.369	0.111	1.038	0.519	0.081
SC-69	AS-08	0.0541%	0.300	0.000	0.449	0.449	0.135	1.198	0.599	0.081
SC-70	AS-09	0.0541%	0.300	0.000	0.473	0.473	0.142	1.246	0.623	0.086
SC-71	AS-10	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-72	AS-11	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-73	AS-12	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-74	AS-13	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-75	AS-14	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-76	AS-15	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-77	AS-16	0.0718%	0.300	0.000	0.396	0.396	0.119	1.092	0.546	0.081
SC-78	AS-17	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-79	AS-18	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-80	AS-19	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-81	AS-20	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-82	AS-21	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-83	AS-22	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-84	AS-23	0.0718%	0.300	0.000	0.395	0.395	0.119	1.090	0.545	0.080
SC-85	AS-24	0.1916%	0.300	0.000	0.264	0.264	0.079	0.828	0.414	0.081
SC-86	AS-25	0.1916%	0.200	0.100	0.266	0.366	0.069	1.160	0.516	0.051
SC-87a	AS-26	0.2623%	0.200	0.100	0.022	0.122	0.020	0.671	0.272	0.011

N° Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-87b	AS-26	0.3201%	0.200	0.100	0.162	0.262	0.048	0.952	0.412	0.041
SC-88	AS-27	0.2623%	0.300	0.000	0.198	0.198	0.059	0.696	0.348	0.066
SC-89	AS-28	0.2623%	0.300	0.000	0.197	0.197	0.059	0.694	0.347	0.065
SC-90	AS-29	0.1916%	0.300	0.000	0.252	0.252	0.076	0.804	0.402	0.076
SC-91a	AS-30	0.2623%	0.200	0.100	0.021	0.121	0.020	0.671	0.271	0.011
SC-91b	AS-30	0.2623%	0.300	0.000	0.193	0.193	0.058	0.686	0.343	0.063
SC-92	AS-31	0.1378%	0.300	0.000	0.336	0.336	0.101	0.971	0.486	0.092
SC-93	AS-32	0.2493%	0.300	0.000	0.241	0.241	0.072	0.782	0.391	0.082
SC-94a	AS-33	0.6371%	0.100	0.000	0.084	0.084	0.008	0.269	0.234	0.007
SC-94b	AS-33	0.6261%	0.200	0.100	0.200	0.300	0.056	1.028	0.450	0.070
SC-95	AS-34	0.7688%	0.200	0.100	0.172	0.272	0.050	0.972	0.422	0.068
SC-96	AS-35	0.3806%	0.300	0.000	0.176	0.176	0.053	0.652	0.326	0.068
SC-97	AS-36	0.6394%	0.300	0.000	0.157	0.157	0.047	0.614	0.307	0.076
SC-98	AS-37	0.1916%	0.300	0.000	0.220	0.220	0.066	0.739	0.370	0.064

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-99	AS-38	0.1916%	0.300	0.000	0.266	0.266	0.080	0.832	0.416	0.081
SC-100	AS-39	0.1916%	0.300	0.000	0.247	0.247	0.074	0.794	0.397	0.074
SC-101	AS-40	0.0101%	0.300	0.000	0.390	0.390	0.117	1.080	0.540	0.030
SC-102	AS-41	0.0101%	0.300	0.000	0.381	0.381	0.114	1.062	0.531	0.029
SC-103	AS-42	0.0101%	0.300	0.000	0.390	0.390	0.117	1.080	0.540	0.030
SC-104	AS-43	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-105	AS-44	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-106	AS-45	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-107	AS-46	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-108	AS-47	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-109	AS-48	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-110	AS-49	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-111	AS-50	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-112	AS-51	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-113	AS-52	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-114	AS-53	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-115	AS-54	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-116	AS-55	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-117	AS-56	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-118	AS-57	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-119	AS-58	0.0101%	0.300	0.000	0.363	0.363	0.109	1.026	0.513	0.027
SC-120	AS-59	0.0101%	0.300	0.000	0.354	0.354	0.106	1.008	0.504	0.026
SC-121	AS-60	0.0101%	0.300	0.000	0.364	0.364	0.109	1.027	0.514	0.027
SC-122a	AS-61	0.0101%	0.300	0.000	0.416	0.416	0.125	1.132	0.566	0.032
SC-122b	AS-61	0.1916%	0.200	0.100	0.254	0.354	0.067	1.136	0.504	0.049
SC-123	AS-62	0.1916%	0.300	0.000	0.200	0.200	0.060	0.700	0.350	0.057
SC-124	AS-63	0.1916%	0.300	0.000	0.205	0.205	0.061	0.709	0.355	0.058
SC-125	AS-64	0.0542%	0.300	0.000	0.447	0.447	0.134	1.194	0.597	0.081

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-126	AS-65	0.0542%	0.300	0.000	0.447	0.447	0.134	1.194	0.597	0.081
SC-127	AS-66	0.0542%	0.300	0.000	0.447	0.447	0.134	1.194	0.597	0.081
SC-128	AS-67	0.0845%	0.300	0.000	0.372	0.372	0.112	1.044	0.522	0.081
SC-129	AS-68	0.1330%	0.300	0.000	0.302	0.302	0.091	0.904	0.452	0.079

N° Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-01	AN-01	0.0661%	0.300	0.000	0.414	0.414	0.124	1.128	0.564	0.081
SC-02	AN-02	0.0661%	0.300	0.000	0.412	0.412	0.124	1.124	0.562	0.081
SC-03	AN-03	0.0661%	0.300	0.000	0.361	0.361	0.108	1.022	0.511	0.069
SC-04	AN-04	0.0661%	0.300	0.000	0.168	0.168	0.050	0.635	0.318	0.026
SC-05	AN-04	0.0852%	0.272	0.000	0.299	0.299	0.081	0.870	0.449	0.054
SC-06	AN-05	0.0852%	0.272	0.000	0.416	0.416	0.113	1.104	0.566	0.080
SC-07	AN-06	0.0541%	0.273	0.000	0.510	0.510	0.139	1.292	0.660	0.081
SC-08	AN-07	0.0541%	0.273	0.000	0.536	0.536	0.146	1.345	0.686	0.086
SC-09	AN-08	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-10	AN-09	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-11	AN-10	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-12	AN-11	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-13	AN-12	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-14	AN-13	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-15	AN-14	0.0718%	0.273	0.000	0.448	0.448	0.122	1.169	0.598	0.081
SC-16	AN-15	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-17	AN-16	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-18	AN-17	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-19	AN-18	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-20	AN-19	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-21	AN-20	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-22	AN-21	0.0718%	0.273	0.000	0.447	0.447	0.122	1.167	0.597	0.080
SC-23	AN-22	0.1916%	0.272	0.000	0.297	0.297	0.081	0.865	0.447	0.081
SC-24	AN-23	0.1916%	0.272	0.000	0.297	0.297	0.081	0.866	0.447	0.081
SC-25	AN-24	0.1916%	0.272	0.000	0.297	0.297	0.081	0.866	0.447	0.081
SC-26	AN-25	0.1916%	0.272	0.000	0.297	0.297	0.081	0.866	0.447	0.081
SC-27	AN-26	0.1916%	0.272	0.000	0.297	0.297	0.081	0.866	0.447	0.081
SC-28	AN-27	0.1916%	0.272	0.000	0.297	0.297	0.081	0.866	0.447	0.081

N° Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-29	AN-28	0.1916%	0.272	0.000	0.276	0.276	0.075	0.823	0.426	0.074
SC-30	AN-29	0.0101%	0.273	0.000	0.441	0.441	0.120	1.154	0.591	0.030
SC-31	AN-30	0.0101%	0.273	0.000	0.431	0.431	0.117	1.134	0.581	0.029
SC-32	AN-31	0.0101%	0.273	0.000	0.441	0.441	0.120	1.155	0.591	0.030
SC-33	AN-32	0.0101%	0.273	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-34	AN-33	0.0101%	0.273	0.000	0.400	0.400	0.109	1.072	0.550	0.026
SC-35	AN-34	0.0101%	0.273	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-36	AN-35	0.0101%	0.273	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-37	AN-36	0.0101%	0.272	0.000	0.400	0.400	0.109	1.072	0.550	0.026
SC-38	AN-37	0.0101%	0.272	0.000	0.410	0.410	0.111	1.092	0.560	0.027
SC-39	AN-38	0.0101%	0.272	0.000	0.410	0.410	0.111	1.092	0.560	0.027
SC-40	AN-39	0.0101%	0.272	0.000	0.400	0.400	0.109	1.072	0.550	0.026
SC-41	AN-40	0.0101%	0.272	0.000	0.410	0.410	0.111	1.092	0.560	0.027
SC-42	AN-41	0.0101%	0.272	0.000	0.410	0.410	0.112	1.092	0.560	0.027

Nº Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-43	AN-42	0.0101%	0.272	0.000	0.400	0.400	0.109	1.072	0.550	0.026
SC-44	AN-43	0.0101%	0.272	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-45	AN-44	0.0101%	0.272	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-46	AN-45	0.0101%	0.272	0.000	0.400	0.400	0.109	1.072	0.550	0.026
SC-47	AN-46	0.0101%	0.272	0.000	0.410	0.410	0.112	1.092	0.560	0.027
SC-48	AN-47	0.0101%	0.272	0.000	0.411	0.411	0.112	1.094	0.561	0.027
SC-49	AN-48	0.0101%	0.272	0.000	0.401	0.401	0.109	1.074	0.551	0.026
SC-50	AN-49	0.0101%	0.272	0.000	0.411	0.411	0.112	1.094	0.561	0.027
SC-51a	AN-50	0.0101%	0.273	0.000	0.471	0.471	0.128	1.215	0.621	0.032
SC-51b	AN-50	0.1916%	0.179	0.100	0.294	0.394	0.068	1.216	0.544	0.049
SC-52	AN-51	0.1916%	0.270	0.000	0.225	0.225	0.061	0.719	0.375	0.057
SC-53	AN-52	0.1916%	0.270	0.000	0.230	0.230	0.062	0.729	0.380	0.058
SC-54	AN-53	0.0542%	0.273	0.000	0.507	0.507	0.138	1.287	0.657	0.081
SC-55	AN-54	0.0542%	0.273	0.000	0.507	0.507	0.138	1.287	0.657	0.081

N° Área	Buzón arqueta que descarga	Pendiente S (%)	Espejo de agua T (m)	Tirante lado circular (m)	Tirante lado recto (m)	Tirante total y (m)	Área (m2)	Perímetro (m)	Altura de la canaleta (m)	Q m3/s
SC-56	AN-55	0.0542%	0.273	0.000	0.507	0.507	0.138	1.287	0.657	0.081
SC-57a	AN-56	0.0542%	0.272	0.000	0.334	0.334	0.091	0.939	0.484	0.049
SC-57b	AN-56	0.7718%	0.178	0.100	0.255	0.355	0.061	1.138	0.505	0.085
SC-58a	AN-57	0.7718%	0.169	0.100	0.091	0.191	0.031	0.811	0.341	0.035
SC-58b	AN-57	0.0754%	0.272	0.000	0.465	0.465	0.126	1.202	0.615	0.086
SC-59	AN-58	0.0754%	0.272	0.000	0.452	0.452	0.123	1.176	0.602	0.083

CUENCA LADO SUR (ESTACIONAMIENTO DE AERONAVES)

№ Área	Buzón arqueta que	Pendiente	Espejo de agua	Tirante lado	Tirante lado	Tirante total	Área	Perímetro	Altura de la	Q
	descarga	S (%)	T (m)	circular (m)	recto (m)	y (m)	(m2)	(m)	canaleta (m)	m3/s
SC-E01	-	0.1982%	0.600	0.000	0.429	0.579	0.257	1.457		0.400

CÁLCULO DE APORTE DEL DRENAJE SUB-SUPERFICIAL

Aporte Infiltración a través del pavimento

T. retorno	5 años]
F. infiltración	0.5	
F. retención	1/4	
Fr	13%	
Pmax	23.57 mm	(t=120 min, Tr= 5 años)
Pmax	0.566 m/dia	
Infiltracion	0.071 m/dia	

Largo	100 m
Ancho	30 m
Q infl pav	0.002454721 m3/s
Q infl pav	2.455 l/s

Aporte Infiltración a través de la franja de seguridad

T. retorno	5 años	
Fi	65%	
Pmax	23.57 mm	(t=120 min, Tr= 5 años)
Pmax	0.566 m/dia	
Infiltracion	0.368 m/dia	

Largo	100 m	entada
Ancho	5 m	
Q infl franj	0.002127425 m3/s	
Q infl franj	2.127 l/s	110

Aporte por abatimiento del nivel freático <u>existente</u>

L	100 m
В	30 m
Nd-Nf	1.5 m
i	0.05 m/m
Ae	150 m2
К	1.00E-06 m/s
qNF	0.0000075 m3/s
qNF	0.0075 l/s

T. retorno	50 años
F. infiltración	0.5
F. retención	1/4
Fr	13%
Pmax	41.44 mm
Pmax	0.995 m/dia
Infiltracion	0.124 m/dia

Largo	100 m
Ancho	30 m
Q infl pav	0.004316749 m3/s
Q infl pav	4.317 l/s

Aporte Infiltración a través de la franja <u>de seguridad</u>

T. retorno	50 años
Fi	65%
Pmax	41.44 mm
Pmax	0.995 m/dia
Infiltracion	0.646 m/dia

Largo	100 m
Ancho	5 m
Q infl franj	0.003741182 m3/s
Q infl franj	3.741 l/s
< min mang	5.711.1/3

<u>Aporte por abatimiento del nivel</u> <u>freático existente</u>

L	100 m
В	30 m
Nd-Nf	1.5 m
	0.05 m/m
Ae	150 m2
K	1.00E-06 m/s
qNF	0.0000075 m3/s
ŊNF	0.0075 l/s

CÁLCULO DE APORTE DEL DRENAJE SUB-SUPERFICIAL

<u>Aporte Infiltración a través de la franja por</u> <u>cada buzón</u>

T. retorno	50 años
Fr	65%
Pmax	23.57 mm/hr
Pmax	0.566 m/dia
Infiltracion	0.368 m/dia

Largo	100 m
Ancho	5 m
Q infl franj	0.002127425 m3/s
Q infl franj	2.127 l/s

Aporte por abatimiento del nivel freático por cada buzón

L	7.4 m
В	5 m
Nd-Nf	1.5 m
i	0.3 m/m
Ae	11.1 m2
K	1.00E-06 m/s
qNF	0.00000333 m3/s
qNF	0.00333 l/s

<u>Caudal de Diseño para Tr= 5 años:</u>

Q infl pav	+	Q infl franj	+	2 x qNF
0.002454721	+	0.002127425	+	0.000015
	Total =	0.004597145 4.597145284	m3/s l/s	

	Distancia longitudinal m	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
Filtración por cada Buzón	5.05	0.00011	0.0000023	0.00011	0.110

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-01	AN-01	BZ-N01	100.00	0.00245	0.00213	0.0000075	0.00460	4.597
SC-02	AN-02	BZ-N02	99.51	0.00244	0.00212	0.0000075	0.00457	4.575
SC-03	AN-03	BZ-N03	85.03	0.00209	0.00181	0.0000064	0.00391	3.909
SC-04	AN-04	BZ-N04	32.52	0.00080	0.00069	0.0000024	0.00149	1.495
SC-05	AN-04	BZ-N04	66.55	0.00163	0.00142	0.0000050	0.00306	3.059
SC-06	AN-05	BZ-N05	98.83	0.00243	0.00210	0.0000074	0.00454	4.543
SC-07	AN-06	BZ-N07	99.84	0.00245	0.00212	0.0000075	0.00459	4.590
SC-08	AN-07	BZ-N08	105.83	0.00260	0.00225	0.0000079	0.00487	4.865
SC-09	AN-08	BZ-N09	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-10	AN-09	BZ-N10	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-11	AN-10	BZ-N11	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-12	AN-11	BZ-N12	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-13	AN-12	BZ-N13	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-14	AN-13	BZ-N14	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-15	AN-14	BZ-N15	99.04	0.00243	0.00211	0.0000074	0.00455	4.553
SC-16	AN-15	BZ-N16	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-17	AN-16	BZ-N17	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-18	AN-17	BZ-N18	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-19	AN-18	BZ-N19	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-20	AN-19	BZ-N20	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-21	AN-20	BZ-N21	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-22	AN-21	BZ-N22	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-23	AN-22	BZ-N23	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-24	AN-23	BZ-N24	99.18	0.00243	0.00211	0.0000074	0.00456	4.559
SC-25	AN-24	BZ-N25	99.18	0.00243	0.00211	0.0000074	0.00456	4.559
SC-26	AN-25	BZ-N26	99.18	0.00243	0.00211	0.0000074	0.00456	4.559

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-27	AN-26	BZ-N27	99.18	0.00243	0.00211	0.0000074	0.00456	4.559
SC-28	AN-27	BZ-N28	99.18	0.00243	0.00211	0.0000074	0.00456	4.559
SC-29	AN-28	BZ-N29	90.22	0.00221	0.00192	0.0000068	0.00415	4.148
SC-30	AN-29	BZ-N30	36.38	0.00089	0.00077	0.0000027	0.00167	1.672
SC-31	AN-30	BZ-N31	35.39	0.00087	0.00075	0.0000027	0.00163	1.627
SC-32	AN-31	BZ-N32	36.39	0.00089	0.00077	0.0000027	0.00167	1.673
SC-33	AN-32	BZ-N33	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-34	AN-33	BZ-N34	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-35	AN-34	BZ-N35	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-36	AN-35	BZ-N36	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-37	AN-36	BZ-N37	32.40	0.00080	0.00069	0.0000024	0.00149	1.490
SC-38	AN-37	BZ-N38	33.38	0.00082	0.00071	0.0000025	0.00153	1.534
SC-39	AN-38	BZ-N39	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-40	AN-39	BZ-N40	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-41	AN-40	BZ-N41	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-42	AN-41	BZ-N42	33.40	0.00082	0.00071	0.0000025	0.00154	1.535
SC-43	AN-42	BZ-N43	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-44	AN-43	BZ-N44	33.40	0.00082	0.00071	0.0000025	0.00154	1.535
SC-45	AN-44	BZ-N45	33.41	0.00082	0.00071	0.0000025	0.00154	1.536
SC-46	AN-45	BZ-N46	32.42	0.00080	0.00069	0.0000024	0.00149	1.490
SC-47	AN-46	BZ-N47	33.40	0.00082	0.00071	0.0000025	0.00154	1.536
SC-48	AN-47	BZ-N48	33.48	0.00082	0.00071	0.0000025	0.00154	1.539
SC-49	AN-48	BZ-N49	32.49	0.00080	0.00069	0.0000024	0.00149	1.494
SC-50	AN-49	BZ-N50	33.49	0.00082	0.00071	0.0000025	0.00154	1.540
SC-51a	AN-50	BZ-N51	39.33	0.00097	0.00084	0.0000029	0.00181	1.808
SC-51b	AN-50	BZ-N51	59.85	0.00147	0.00127	0.0000045	0.00275	2.751

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-52	AN-51	BZ-N52	69.78	0.00171	0.00148	0.0000052	0.00321	3.208
SC-53	AN-52	BZ-N53	71.72	0.00176	0.00153	0.0000054	0.00330	3.297
SC-54	AN-53	BZ-N54	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-55	AN-54	BZ-N55	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-56	AN-55	BZ-N56	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-57a	AN-56	BZ-N56	60.82	0.00149	0.00129	0.0000046	0.00280	2.796
SC-57b	AN-56	BZ-N57	99.32	0.00244	0.00211	0.0000074	0.00457	4.566
SC-58a	AN-57	BZ-N58	56.65	0.00139	0.00121	0.0000042	0.00260	2.604
SC-58b	AN-57	BZ-N58	56.65	0.00139	0.00121	0.0000042	0.00260	2.604
SC-59	AN-58	BZ-N59	49.20	0.00121	0.00105	0.0000037	0.00226	2.262

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-60	AS-01	BZ-S01	40.00	0.00098	0.00085	0.0000030	0.00184	1.839
SC-61	AS-02	BZ-S02	39.51	0.00097	0.00084	0.0000030	0.00182	1.816
SC-62	AS-02	BZ-S03	32.53	0.00080	0.00069	0.0000024	0.00150	1.495
SC-63	AS-03	BZ-S03	31.90	0.00078	0.00068	0.0000024	0.00147	1.466
SC-64	AS-04	BZ-S04	64.77	0.00159	0.00138	0.0000049	0.00298	2.978
SC-65	A8-05	BZ-S05	84.97	0.00209	0.00181	0.0000064	0.00391	3.906
SC-66	AS-06	BZ-S06	32.50	0.00080	0.00069	0.0000024	0.00149	1.494
SC-67	AS-06	BZ-S07	66.59	0.00163	0.00142	0.0000050	0.00306	3.061
SC-68	AS-07	BZ-S08	99.13	0.00243	0.00211	0.0000074	0.00456	4.557
SC-69	AS-08	BZ-S09	99.59	0.00244	0.00212	0.0000075	0.00458	4.578
SC-70	AS-09	BZ-S10	105.83	0.00260	0.00225	0.0000079	0.00487	4.865
SC-71	AS-10	BZ-S11	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-72	AS-11	BZ-S12	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-73	AS-12	BZ-S13	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-74	AS-13	BZ-S14	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-75	AS-14	BZ-S15	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-76	AS-15	BZ-S16	98.84	0.00243	0.00210	0.0000074	0.00454	4.544
SC-77	AS-16	BZ-S17	99.04	0.00243	0.00211	0.0000074	0.00455	4.553
SC-78	AS-17	BZ-S18	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-79	AS-18	BZ-S19	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-80	AS-19	BZ-S20	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-81	AS-20	BZ-S21	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-82	AS-21	BZ-S22	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-83	AS-22	BZ-S23	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-84	AS-23	BZ-S24	98.87	0.00243	0.00210	0.0000074	0.00455	4.545
SC-85	AS-24	BZ-S25	98.87	0.00243	0.00210	0.0000074	0.00455	4.545

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-86	AS-25	BZ-S26	62.49	0.00153	0.00133	0.0000047	0.00287	2.873
SC-87a	AS-26	BZ-S28	23.25	0.00057	0.00049	0.0000017	0.00107	1.069
SC-87b	AS-26	BZ-S28	87.78	0.00215	0.00187	0.0000066	0.00404	4.035
SC-88	AS-27	BZ-S27	74.23	0.00182	0.00158	0.0000056	0.00341	3.412
SC-89	AS-28	BZ-S29	68.79	0.00169	0.00146	0.0000052	0.00316	3.162
SC-90	AS-29	BZ-S33	93.20	0.00229	0.00198	0.0000070	0.00428	4.285
SC-91a	AS-30	BZ-S30	23.50	0.00058	0.00050	0.0000018	0.00108	1.080
SC-91b	AS-30	BZ-S30	28.99	0.00071	0.00062	0.0000022	0.00133	1.333
SC-92	AS-31	BZ-S32'	60.25	0.00148	0.00128	0.0000045	0.00277	2.770
SC-93	AS-32	BZ-S31	56.55	0.00139	0.00120	0.0000042	0.00260	2.600
SC-94a	AS-33	BZ-S31	16.48	0.00040	0.00035	0.0000012	0.00076	0.758
SC-94b	AS-33	BZ-S31	40.66	0.00100	0.00087	0.0000030	0.00187	1.869
SC-95	AS-34	BZ-833'	74.79	0.00184	0.00159	0.0000056	0.00344	3.438
SC-96	AS-35	BZ-S34	88.66	0.00218	0.00189	0.0000066	0.00408	4.076
SC-97	AS-36	BZ-S35	91.82	0.00225	0.00195	0.0000069	0.00422	4.221
SC-98	AS-37	BZ-S36	78.19	0.00192	0.00166	0.0000059	0.00359	3.595
SC-99	AS-38	BZ-S37	99.81	0.00245	0.00212	0.0000075	0.00459	4.588
SC-100	AS-39	BZ-S38	90.79	0.00223	0.00193	0.0000068	0.00417	4.174
SC-101	AS-40	BZ-S39	36.38	0.00089	0.00077	0.0000027	0.00167	1.672
SC-102	AS-41	BZ-S40	35.39	0.00087	0.00075	0.0000027	0.00163	1.627
SC-103	AS-42	BZ-S41	36.39	0.00089	0.00077	0.0000027	0.00167	1.673
SC-104	AS-43	BZ-S42	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-105	AS-44	BZ-S43	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-106	A8-45	BZ-S44	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-107	AS-46	BZ-S45	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-108	AS-47	BZ-S46	32.40	0.00080	0.00069	0.0000024	0.00149	1.490

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-109	AS-48	BZ-S47	33.38	0.00082	0.00071	0.0000025	0.00153	1.534
SC-110	AS-49	BZ-S48	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-111	AS-50	BZ-S49	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-112	AS-51	BZ-S50	33.39	0.00082	0.00071	0.0000025	0.00154	1.535
SC-113	AS-52	BZ-S51	33.40	0.00082	0.00071	0.0000025	0.00154	1.535
SC-114	AS-53	BZ-S52	32.40	0.00080	0.00069	0.0000024	0.00149	1.489
SC-115	AS-54	BZ-S53	33.40	0.00082	0.00071	0.0000025	0.00154	1.535
SC-116	A8-55	BZ-S54	33.41	0.00082	0.00071	0.0000025	0.00154	1.536
SC-117	AS-56	BZ-855	32.42	0.00080	0.00069	0.0000024	0.00149	1.490
SC-118	AS-57	BZ-S56	33.40	0.00082	0.00071	0.0000025	0.00154	1.536
SC-119	AS-58	BZ-S57	33.48	0.00082	0.00071	0.0000025	0.00154	1.539
SC-120	AS-59	BZ-S58	32.49	0.00080	0.00069	0.0000024	0.00149	1.494
SC-121	AS-60	BZ-S59	33.49	0.00082	0.00071	0.0000025	0.00154	1.540
SC-122a	AS-61	BZ-S60	39.33	0.00097	0.00084	0.0000029	0.00181	1.808
SC-122b	AS-61	BZ-S60	59.85	0.00147	0.00127	0.0000045	0.00275	2.751
SC-123	AS-62	BZ-S61	69.78	0.00171	0.00148	0.0000052	0.00321	3.208
SC-124	AS-63	BZ-S62	71.72	0.00176	0.00153	0.0000054	0.00330	3.297
SC-125	AS-64	BZ-S63	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-126	A8-65	BZ-S64	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-127	AS-66	BZ-S65	99.23	0.00244	0.00211	0.0000074	0.00456	4.562
SC-128	AS-67	BZ-S66	99.75	0.00245	0.00212	0.0000075	0.00459	4.586
SC-129	AS-68	BZ-S67	97.29	0.00239	0.00207	0.0000073	0.00447	4.473
SC-E01	-	BZ-E02	210.88	0.00518	0.00000	0.0000158	0.00521	5.208

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-01	AN-01	BZ-N01	100.00	0.00432	0.00374	0.0000075	0.00807	8.073
SC-02	AN-02	BZ-N02	99.51	0.00430	0.00372	0.0000075	0.00803	8.033
SC-03	AN-03	BZ-N03	85.03	0.00367	0.00318	0.0000064	0.00686	6.864
SC-04	AN-04	BZ-N04	32.52	0.00140	0.00122	0.0000024	0.00262	2.625
SC-05	AN-04	BZ-N04	66.55	0.00287	0.00249	0.0000050	0.00537	5.373
SC-06	AN-05	BZ-N05	98.83	0.00427	0.00370	0.0000074	0.00798	7.978
SC-07	AN-06	BZ-N07	99.84	0.00431	0.00374	0.0000075	0.00806	8.060
SC-08	AN-07	BZ-N08	105.83	0.00457	0.00396	0.0000079	0.00854	8.544
SC-09	AN-08	BZ-N09	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-10	AN-09	BZ-N10	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-11	AN-10	BZ-N11	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-12	AN-11	BZ-N12	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-13	AN-12	BZ-N13	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-14	AN-13	BZ-N14	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-15	AN-14	BZ-N15	99.04	0.00428	0.00371	0.0000074	0.00800	7.996
SC-16	AN-15	BZ-N16	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-17	AN-16	BZ-N17	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-18	AN-17	BZ-N18	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-19	AN-18	BZ-N19	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-20	AN-19	BZ-N20	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-21	AN-20	BZ-N21	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-22	AN-21	BZ-N22	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-23	AN-22	BZ-N23	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-24	AN-23	BZ-N24	99.18	0.00428	0.00371	0.0000074	0.00801	8.007
SC-25	AN-24	BZ-N25	99.18	0.00428	0.00371	0.0000074	0.00801	8.007

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-26	AN-25	BZ-N26	99.18	0.00428	0.00371	0.0000074	0.00801	8.007
SC-27	AN-26	BZ-N27	99.18	0.00428	0.00371	0.0000074	0.00801	8.007
SC-28	AN-27	BZ-N28	99.18	0.00428	0.00371	0.0000074	0.00801	8.007
SC-29	AN-28	BZ-N29	90.22	0.00389	0.00338	0.0000068	0.00728	7.283
SC-30	AN-29	BZ-N30	36.38	0.00157	0.00136	0.0000027	0.00294	2.937
SC-31	AN-30	BZ-N31	35.39	0.00153	0.00132	0.0000027	0.00286	2.857
SC-32	AN-31	BZ-N32	36.39	0.00157	0.00136	0.0000027	0.00294	2.938
SC-33	AN-32	BZ-N33	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-34	AN-33	BZ-N34	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-35	AN-34	BZ-N35	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-36	AN-35	BZ-N36	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-37	AN-36	BZ-N37	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-38	AN-37	BZ-N38	33.38	0.00144	0.00125	0.0000025	0.00269	2.695
SC-39	AN-38	BZ-N39	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-40	AN-39	BZ-N40	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-41	AN-40	BZ-N41	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-42	AN-41	BZ-N42	33.40	0.00144	0.00125	0.0000025	0.00270	2.696
SC-43	AN-42	BZ-N43	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-44	AN-43	BZ-N44	33.40	0.00144	0.00125	0.0000025	0.00270	2.696
SC-45	AN-44	BZ-N45	33.41	0.00144	0.00125	0.0000025	0.00270	2.697
SC-46	AN-45	BZ-N46	32.42	0.00140	0.00121	0.0000024	0.00262	2.617
SC-47	AN-46	BZ-N47	33.40	0.00144	0.00125	0.0000025	0.00270	2.697
SC-48	AN-47	BZ-N48	33.48	0.00145	0.00125	0.0000025	0.00270	2.703
SC-49	AN-48	BZ-N49	32.49	0.00140	0.00122	0.0000024	0.00262	2.623
SC-50	AN-49	BZ-N50	33.49	0.00145	0.00125	0.0000025	0.00270	2.704

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-51a	AN-50	BZ-N51	39.33	0.00170	0.00147	0.0000029	0.00317	3.175
SC-51b	AN-50	BZ-N51	59.85	0.00258	0.00224	0.0000045	0.00483	4.832
SC-52	AN-51	BZ-N52	69.78	0.00301	0.00261	0.0000052	0.00563	5.634
SC-53	AN-52	BZ-N53	71.72	0.00310	0.00268	0.0000054	0.00579	5.790
SC-54	AN-53	BZ-N54	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-55	AN-54	BZ-N55	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-56	AN-55	BZ-N56	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-57a	AN-56	BZ-N56	60.82	0.00263	0.00228	0.0000046	0.00491	4.910
SC-57b	AN-56	BZ-N57	99.32	0.00429	0.00372	0.0000074	0.00802	8.018
SC-58a	AN-57	BZ-N58	56.65	0.00245	0.00212	0.0000042	0.00457	4.573
SC-58b	AN-57	BZ-N58	56.65	0.00245	0.00212	0.0000042	0.00457	4.573
SC-59	AN-58	BZ-N59	49.20	0.00212	0.00184	0.0000037	0.00397	3.972

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-60	AS-01	BZ-S01	40.00	0.00173	0.00150	0.0000030	0.00323	3.229
SC-61	AS-02	BZ-S02	39.51	0.00171	0.00148	0.0000030	0.00319	3.190
SC-62	AS-02	BZ-S03	32.53	0.00140	0.00122	0.0000024	0.00263	2.626
SC-63	AS-03	BZ-S03	31.90	0.00138	0.00119	0.0000024	0.00258	2.575
SC-64	AS-04	BZ-S04	64.77	0.00280	0.00242	0.0000049	0.00523	5.229
SC-65	AS-05	BZ-S05	84.97	0.00367	0.00318	0.0000064	0.00686	6.860
SC-66	AS-06	BZ-S06	32.50	0.00140	0.00122	0.0000024	0.00262	2.624
SC-67	AS-06	BZ-S07	66.59	0.00287	0.00249	0.0000050	0.00538	5.376
SC-68	AS-07	BZ-S08	99.13	0.00428	0.00371	0.0000074	0.00800	8.003
SC-69	AS-08	BZ-S09	99.59	0.00430	0.00373	0.0000075	0.00804	8.040
SC-70	AS-09	BZ-S10	105.83	0.00457	0.00396	0.0000079	0.00854	8.544
SC-71	AS-10	BZ-S11	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-72	AS-11	BZ-S12	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-73	AS-12	BZ-S13	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-74	AS-13	BZ-S14	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-75	AS-14	BZ-S15	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-76	AS-15	BZ-S16	98.84	0.00427	0.00370	0.0000074	0.00798	7.979
SC-77	AS-16	BZ-S17	99.04	0.00428	0.00371	0.0000074	0.00800	7.996
SC-78	AS-17	BZ-S18	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-79	AS-18	BZ-S19	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-80	AS-19	BZ-S20	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-81	AS-20	BZ-S21	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-82	AS-21	BZ-S22	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-83	AS-22	BZ-S23	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-84	AS-23	BZ-S24	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
CÁLCULO DE DESCARGA DEL DRENAJE SUB-SUPERFICIAL POR CADA SUBCUENCA (TIEMPO DE RETORNO IGUAL A 50 AÑOS)

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-85	AS-24	BZ-S25	98.87	0.00427	0.00370	0.0000074	0.00798	7.982
SC-86	AS-25	BZ-S26	62.49	0.00270	0.00234	0.0000047	0.00504	5.045
SC-87a	AS-26	BZ-S28	23.25	0.00100	0.00087	0.0000017	0.00188	1.877
SC-87b	AS-26	BZ-S28	87.78	0.00379	0.00328	0.0000066	0.00709	7.086
SC-88	AS-27	BZ-S27	74.23	0.00320	0.00278	0.0000056	0.00599	5.993
SC-89	AS-28	BZ-S29	68.79	0.00297	0.00257	0.0000052	0.00555	5.553
SC-90	AS-29	BZ-S33	93.20	0.00402	0.00349	0.0000070	0.00752	7.524
SC-91a	AS-30	BZ-S30	23.50	0.00101	0.00088	0.0000018	0.00190	1.897
SC-91b	AS-30	BZ-S30	28.99	0.00125	0.00108	0.0000022	0.00234	2.340
SC-92	AS-31	BZ-832'	60.25	0.00260	0.00225	0.0000045	0.00486	4.864
SC-93	AS-32	BZ-S31	56.55	0.00244	0.00212	0.0000042	0.00457	4.565
SC-94a	AS-33	BZ-S31	16.48	0.00071	0.00062	0.0000012	0.00133	1.330
SC-94b	AS-33	BZ-S31	40.66	0.00176	0.00152	0.0000030	0.00328	3.282
SC-95	AS-34	BZ-833'	74.79	0.00323	0.00280	0.0000056	0.00604	6.038
SC-96	AS-35	BZ-S34	88.66	0.00383	0.00332	0.0000066	0.00716	7.157
SC-97	AS-36	BZ-S35	91.82	0.00396	0.00344	0.0000069	0.00741	7.413
SC-98	AS-37	BZ-S36	78.19	0.00338	0.00293	0.0000059	0.00631	6.312
SC-99	AS-38	BZ-S37	99.81	0.00431	0.00373	0.0000075	0.00806	8.058
SC-100	AS-39	BZ-S38	90.79	0.00392	0.00340	0.0000068	0.00733	7.330
SC-101	AS-40	BZ-S39	36.38	0.00157	0.00136	0.0000027	0.00294	2.937
SC-102	AS-41	BZ-S40	35.39	0.00153	0.00132	0.0000027	0.00286	2.857
SC-103	AS-42	BZ-S41	36.39	0.00157	0.00136	0.0000027	0.00294	2.938
SC-104	AS-43	BZ-S42	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-105	AS-44	BZ-S43	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-106	AS-45	BZ-S44	33.39	0.00144	0.00125	0.0000025	0.00270	2.696

CUENCA SUR

CÁLCULO DE DESCARGA DEL DRENAJE SUB-SUPERFICIAL POR CADA SUBCUENCA (TIEMPO DE RETORNO IGUAL A 50 AÑOS)

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-107	AS-46	BZ-S45	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-108	AS-47	BZ-S46	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-109	AS-48	BZ-S47	33.38	0.00144	0.00125	0.0000025	0.00269	2.695
SC-110	AS-49	BZ-S48	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-111	AS-50	BZ-S49	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-112	AS-51	BZ-S50	33.39	0.00144	0.00125	0.0000025	0.00270	2.696
SC-113	AS-52	BZ-S51	33.40	0.00144	0.00125	0.0000025	0.00270	2.696
SC-114	AS-53	BZ-852	32.40	0.00140	0.00121	0.0000024	0.00262	2.616
SC-115	AS-54	BZ-853	33.40	0.00144	0.00125	0.0000025	0.00270	2.696
SC-116	AS-55	BZ-S54	33.41	0.00144	0.00125	0.0000025	0.00270	2.697
SC-117	AS-56	BZ-855	32.42	0.00140	0.00121	0.0000024	0.00262	2.617
SC-118	AS-57	BZ-856	33.40	0.00144	0.00125	0.0000025	0.00270	2.697
SC-119	AS-58	BZ-857	33.48	0.00145	0.00125	0.0000025	0.00270	2.703
SC-120	AS-59	BZ-S58	32.49	0.00140	0.00122	0.0000024	0.00262	2.623
SC-121	AS-60	BZ-S59	33.49	0.00145	0.00125	0.0000025	0.00270	2.704
SC-122a	AS-61	BZ-S60	39.33	0.00170	0.00147	0.0000029	0.00317	3.175
SC-122b	AS-61	BZ-S60	59.85	0.00258	0.00224	0.0000045	0.00483	4.832
SC-123	AS-62	BZ-S61	69.78	0.00301	0.00261	0.0000052	0.00563	5.634
SC-124	AS-63	BZ-S62	71.72	0.00310	0.00268	0.0000054	0.00579	5.790
SC-125	AS-64	BZ-S63	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-126	AS-65	BZ-S64	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-127	AS-66	BZ-S65	99.23	0.00428	0.00371	0.0000074	0.00801	8.011
SC-128	AS-67	BZ-S66	99.75	0.00431	0.00373	0.0000075	0.00805	8.053
SC-129	AS-68	BZ-S67	97.29	0.00420	0.00364	0.0000073	0.00785	7.854

CUENCA SUR

CÁLCULO DE DESCARGA DEL DRENAJE SUB-SUPERFICIAL POR CADA SUBCUENCA (TIEMPO DE RETORNO IGUAL A 50 AÑOS)

Subcuenca de Referencia	Referencia de Buzón Arqueta	Buzón de red exterior que descarga	Distancia longitudinal m	Q infl pav m3/s	Q infl franj. m3/s	qNF m3/s	Q diseño m3/s	Q diseño L/s
SC-E01	-	BZ-E02	210.88	0.00910	0.00000	0.0000158	0.00913	9.135

CUENCA SUR

	Bu	zón		Área t	ributaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infiltr buz	rado por cada zón	
TRAMO	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
			m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
N01	BZ-N01	BZ-N02	98.14	3,000.10	3,000.10	3.96	1.23	5.19	0.90	216.96	204.39	8.03	8.03	0.11	0.11	212.53
				4,608.83	4,608.83				0.15							
N02	BZ-N02	BZ-N03	84.14	2,985.32	5,985.42	3.95	1.00	6.19	0.90	190.05	356.99	6.86	14.90	0.11	0.22	159.57
				4,558.94	9,167.77		1		0.15							
N03	BZ-N03	BZ-N04	31.15	2,550.90	8,536.32	3.59	0.35	6.55	0.90	182.28	488.37	2.62	17.52	0.11	0.32	134.12
				3,914.94	13,082.71				0.15	6						
N04	BZ-N04	BZ-N05	66.12	2,972.02	11,508.34	2.30	0.72	7.27	0.90	168.55	608.57	7.98	25.50	0.11	0.43	128.28
				4,519.95	17,602.66				0.15	12						
N05	BZ-N05	BZ-N06	99.19	2,964.79	14,473.13	3.64	1.00	8.27	0.90	153.03	695.77	0.00	25.50	0.11	0.54	87.31
				4,677.97	22,280.63		~		0.15							
N06	BZ-N06	BZ-N07	98.15	0.00	14,473.13	0.00	0.99	9.26	0.90	140.59	639.23	8.06	33.56	0.11	0.65	-48.36
				0.00	22,280.63				0.15							
N07	BZ-N07	BZ-N08	105.25	2,995.27	17,468.40	4.22	1.06	10.32	0.90	129.61	710.98	8.54	42.10	0.11	0.75	80.40
				4,561.74	26,842.37				0.15							
N08	BZ-N08	BZ-N09	98.15	3,174.93	20,643.33	4.38	0.99	11.30	0.90	121.01	784.48	7.98	50.09	0.11	0.86	81.58
				4,882.45	31,724.82				0.15							
N09	BZ-N09	BZ-N10	98.15	2,966.04	23,609.37	3.83	0.89	12.20	0.90	114.31	847.52	7.98	58.07	0.11	0.97	71.13
				4,561.72	36,286.54				0.15							
N10	BZ-N10	BZ-N11	98.15	2,965.13	26,574.50	3.83	0.89	13.09	0.90	108.41	904.78	7.98	66.04	0.11	1.08	65.35
				4,561.85	40,848.39				0.15							
N11	BZ-N11	BZ-N12	98.18	2,965.13	29,539.63	3.83	0.89	13.98	0.90	103.18	957.21	7.98	74.02	0.11	1.18	60.51
				4,562.01	45,410.40				0.15							
N12	BZ-N12	BZ-N13	98.17	2,965.13	32,504.76	3.83	0.89	14.87	0.90	98.50	1005.55	7.98	82.00	0.11	1.29	56.42

	Buz	zón		Área tr	ributaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infiltr buz	ado por cada zón	
TRAMO	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
			m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				4,562.14	49,972.54				0.15							
N13	BZ-N13	BZ-N14	98.10	2,965.13	35,469.89	3.83	0.80	15.67	0.90	94.72	1055.13	7.98	89.98	0.11	1.40	57.67
				4,562.28	54,534.82				0.15							
N14	BZ-N14	BZ-N15	98.10	2,965.13	38,435.02	3.83	0.89	16.56	0.90	90.87	1096.86	8.00	97.98	0.11	1.51	49.84
				4,562.42	59,097.24		113		0.15	S						
N15	BZ-N15	BZ-N16	98.10	2,971.32	41,406.34	3.84	0.89	17.45	0.90	87.36	1136.05	7.98	105.96	0.11	1.61	47.28
				4,560.01	63,657.25		$\langle \rightarrow \rangle$		0.15	6						
N16	BZ-N16	BZ-N17	98.10	2,966.18	44,372.52	3.84	0.89	18.35	0.90	84.16	1172.78	7.98	113.94	0.11	1.72	44.81
				4,560.01	68,217.26				0.15							
N17	BZ-N17	BZ-N18	98.10	2,966.18	47,338.70	3.84	0.89	19.24	0.90	81.21	1207.42	7.98	121.92	0.11	1.83	42.73
				4,560.01	72,777.27				0.15							
N18	BZ-N18	BZ-N19	98.10	2,966.18	50,304.88	3.84	0.82	20.05	0.90	78.72	1243.72	7.98	129.91	0.11	1.94	44.40
				4,560.01	77,337.28				0.15							
N19	BZ-N19	BZ-N20	98.10	2,966.18	53,271.06	3.84	0.82	20.87	0.90	76.40	1278.25	7.98	137.89	0.11	2.04	42.62
				4,560.01	81,897.29				0.15							
N20	BZ-N20	BZ-N21	98.10	2,966.18	56,237.24	3.84	0.82	21.69	0.90	74.24	1311.17	7.98	145.87	0.11	2.15	41.01
				4,560.01	86,457.30				0.15							
N21	BZ-N21	BZ-N22	98.10	2,966.18	59,203.42	3.84	0.82	22.50	0.90	72.21	1342.62	7.98	153.85	0.11	2.26	39.54
				4,560.01	91,017.31				0.15							
N22	BZ-N22	BZ-N23	98.10	2,966.18	62,169.60	3.84	0.82	23.32	0.90	70.31	1372.74	7.98	161.83	0.11	2.37	38.21
				4,563.54	95,580.85				0.15							
N23	BZ-N23	BZ-N24	98.10	2,966.18	65,135.78	2.93	0.82	24.13	0.90	68.52	1401.63	8.01	169.84	0.11	2.47	37.00
				4,563.54	100,144.39				0.15							

	Bu	zón		Área tr	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: Franja	Caudal infilt buz	rado por cada zón	
TRAMO	FNTR A D A	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
TRAWO	LIVIKADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
N24	BZ-N24	BZ-N25	98.10	2,975.41	68,111.19	2.93	0.82	24.95	0.90	66.83	1429.53	8.01	177.85	0.11	2.58	36.02
				4,563.83	104,708.22				0.15							
N25	BZ-N25	BZ-N26	98.10	2,975.41	71,086.60	2.93	0.82	25.76	0.90	65.24	1456.38	8.01	185.85	0.11	2.69	34.96
				4,563.83	109,272.05		~		0.15							
N26	BZ-N26	BZ-N27	98.10	2,975.41	74,062.01	2.93	0.82	26.58	0.90	63.73	1482.25	8.01	193.86	0.11	2.80	33.98
				4,563.83	113,835.88				0.15	6						
N27	BZ-N27	BZ-N28	98.10	2,975.41	77,037.42	2.93	0.82	27.40	0.90	62.30	1507.21	8.01	201.87	0.11	2.90	33.08
				4,563.83	118,399.71				0.15	2						
N28	BZ-N28	BZ-N29	89.10	2,975.41	80,012.83	2.93	0.74	28.14	0.90	61.07	1534.38	7.28	209.15	0.11	3.01	34.56
				4,563.41	122,963.12		~		0.15							
N29	BZ-N29	BZ-N30	35.10	2,706.63	82,719.46	2.80	0.29	28.43	0.90	60.59	1574.02	2.94	212.09	0.11	3.12	42.69
				4,148.22	127,111.34				0.15							
N30	BZ-N30	BZ-N31	34.10	1,091.43	83,810.89	3.79	0.28	28.71	0.90	60.15	1582.95	2.86	214.94	0.11	3.23	11.90
				1,674.52	128,785.86				0.15							
N31	BZ-N31	BZ-N32	35.10	1,061.57	84,872.46	3.73	0.29	29.00	0.90	59.69	1590.88	2.94	217.88	0.11	3.34	10.97
				1,628.26	130,414.12				0.15							
N32	BZ-N32	BZ-N33	32.10	1,091.66	85,964.12	3.79	0.27	29.27	0.90	59.28	1600.32	2.70	220.58	0.11	3.44	12.24
				1,678.72	132,092.84				0.15							
N33	BZ-N33	BZ-N34	31.10	1,001.72	86,965.84	3.61	0.26	29.53	0.90	58.89	1608.30	2.62	223.19	0.11	3.55	10.71
				1,533.78	133,626.62				0.15							
N34	BZ-N34	BZ-N35	32.10	971.97	87,937.81	3.54	0.27	29.80	0.90	58.50	1615.33	2.70	225.89	0.11	3.66	9.83
				1,488.71	135,115.33				0.15							
N35	BZ-N35	BZ-N36	32.10	1,001.72	88,939.53	3.61	0.27	30.06	0.90	58.11	1622.84	2.70	228.58	0.11	3.77	10.32

	Buz	zón		Área tri	ibutaria	Tien	npo de conce	ntración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infilt buz	rado por cada zón	
			Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
TRAMO	ENTRADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				1,541.12	136,656.45				0.15							
N36	BZ-N36	BZ-N37	31.10	1,001.72	89,941.25	3.61	0.25	30.32	0.90	57.74	1630.90	2.62	231.20	0.11	3.87	10.78
				1,541.12	138,197.57				0.15							
N37	BZ-N37	BZ-N38	32.10	972.02	90,913.27	3.54	0.26	30.58	0.90	57.38	1637.98	2.69	233.89	0.11	3.98	9.88
				1,481.37	139,678.94				0.15							
N38	BZ-N38	BZ-N39	32.10	1,001.31	91,914.58	3.60	0.22	30.79	0.90	57.07	1647.22	2.70	236.59	0.11	4.09	12.05
				1,541.12	141,220.06		$/ \rightarrow$		0.15	5						
N39	BZ-N39	BZ-N40	31.10	1,001.72	92,916.30	3.61	0.21	31.00	0.90	56.78	1656.67	2.62	239.21	0.11	4.20	12.17
				1,541.12	142,761.18	111			0.15							
N40	BZ-N40	BZ-N41	32.10	971.97	93,888.27	3.54	0.22	31.22	0.90	56.48	1665.34	2.70	241.90	0.11	4.30	11.47
				1,541.12	144,302.30		R		0.15							
N41	BZ-N41	BZ-N42	32.10	1,001.72	94,889.99	3.61	0.22	31.44	0.90	56.19	1674.20	2.70	244.60	0.11	4.41	11.67
				1,476.90	145,779.20				0.15							
N42	BZ-N42	BZ-N43	31.10	1,002.00	95,891.99	3.61	0.21	31.65	0.90	55.91	1683.41	2.62	247.21	0.11	4.52	11.93
				1,541.12	147,320.32				0.15							
N43	BZ-N43	BZ-N44	32.10	971.97	96,863.96	3.54	0.22	31.87	0.90	55.62	1691.73	2.70	249.91	0.11	4.63	11.12
				1,487.91	148,808.23				0.15							
N44	BZ-N44	BZ-N45	32.10	1,002.00	97,865.96	3.61	0.22	32.09	0.90	55.34	1700.51	2.70	252.61	0.11	4.73	11.58
				1,536.53	150,344.76				0.15							
N45	BZ-N45	BZ-N46	31.10	1,002.28	98,868.24	3.61	0.21	32.30	0.90	55.06	1709.49	2.62	255.22	0.11	4.84	11.70
				1,536.53	151,881.29				0.15							
N46	BZ-N46	BZ-N47	32.10	972.53	99,840.77	3.54	0.22	32.52	0.90	54.79	1717.61	2.70	257.92	0.11	4.95	10.92
				1,488.48	153,369.77				0.15							

	Bu	zón		Área tri	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: Franja	Caudal infilt buz	rado por cada zón	
ΤΡΑΜΟ	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
TRAMO	ENTRADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
N47	BZ-N47	BZ-N48	32.10	1,002.11	100,842.88	3.61	0.22	32.73	0.90	54.51	1726.17	2.70	260.62	0.11	5.06	11.37
				1,536.53	154,906.30				0.15							
N48	BZ-N48	BZ-N49	31.10	1,004.47	101,847.35	3.61	0.21	32.95	0.90	54.25	1734.96	2.62	263.25	0.11	5.16	11.52
				1,536.53	156,442.83		-		0.15							
N49	BZ-N49	BZ-N50	32.10	974.63	102,821.98	3.55	0.22	33.16	0.90	53.98	1742.92	2.70	265.95	0.11	5.27	10.77
				1,495.25	157,938.08				0.15							
N50	BZ-N50	BZ-N51	38.10	1,004.68	103,826.66	3.61	0.26	33.42	0.90	53.67	1749.71	3.17	269.12	0.11	5.38	10.07
				1,536.53	159,474.61				0.15	2						
N51	BZ-N51	BZ-N52	59.10	2,975.41	106,802.07	3.98	0.40	33.82	0.90	53.19	1783.68	5.63	274.76	0.11	5.49	39.71
				4,510.87	163,985.48		~		0.15							
N52	BZ-N52	BZ-N53	68.10	2,093.52	108,895.59	2.51	0.46	34.29	0.90	52.65	1800.16	5.79	280.55	0.11	5.59	22.38
				3,187.73	167,173.21				0.15							
N53	BZ-N53	BZ-N54	170.10	2,151.65	111,047.24	2.54	1.15	35.44	0.90	51.36	1790.76	8.01	288.56	0.11	5.70	-1.28
				3,345.61	170,518.82				0.15							
N54	BZ-N54	BZ-N55	98.10	2,976.92	114,024.16	4.20	0.67	36.11	0.90	50.65	1813.31	8.01	296.57	0.11	5.81	30.66
				4,589.31	175,108.13				0.15							
N55	BZ-N55	BZ-N56	98.10	2,976.92	117,001.08	4.20	0.67	36.77	0.90	49.96	1835.30	8.01	304.58	0.11	5.92	30.11
				4,565.17	179,673.30				0.15							
N56	BZ-N56	BZ-N57	77.75	2,976.92	119,978.00	4.20	0.53	37.30	0.90	49.43	1861.97	8.02	312.60	0.11	6.02	34.79
				4,563.73	184,237.03				0.15							
N57	BZ-N57	BZ-N58	66.68	3,129.71	123,107.71	3.15	0.45	37.75	0.90	48.98	1890.72	4.57	317.17	0.11	6.13	33.43
				3,528.04	187,765.07				0.15							
N58	BZ-N58	BZ-N59	48.10	3,174.07	126,281.78	2.53	0.33	38.08	0.90	48.67	1919.80	3.97	321.14	0.11	6.24	33.16

	Bu	Izón		Área tr	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: Franja	Caudal infilt buz	ado por cada zón	
ΤΡΑΜΟ	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
TRAMO	ENIKADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				1,302.20	189,067.27				0.15							
N59	BZ-N59	BZ-N60	55.50	3,077.00	129,358.78	3.66	0.38	38.46	0.90	48.31	1944.15	0.00	321.14	0.11	6.35	24.46
				654.02	189,721.29				0.15							
							4	TEN	EBRI							
S01	BZ-S01	BZ-S02	38.60	2,509.92	2,509.92	3.32	0.48	5.00	0.90	223.11	163.05	3.19	3.19	0.11	0.11	166.35
				2,479.68	2,479.68	1	\rightarrow		0.15	3						
S02	BZ-S02	BZ-S03	44.08	3,989.88	6,499.80	3.40	0.50	5.00	0.90	223.11	439.71	2.63	5.82	0.11	0.22	279.39
				5,820.59	8,300.27	111			0.15							
S03	BZ-S03	BZ-S04	73.21	1,028.98	7,528.78	2.19	0.83	5.13	0.90	218.77	495.96	5.23	11.04	0.11	0.32	61.59
				937.08	9,237.35				0.15							
S04	BZ-S04	BZ-S05	84.13	1,941.79	9,470.57	3.26	0.92	6.05	0.90	193.40	582.21	6.86	17.90	0.11	0.43	93.21
		1		6,188.80	15,426.15				0.15							
S05	BZ-S05	BZ-S06	31.22	2,549.16	12,019.73	3.59	0.31	6.36	0.90	186.19	741.33	2.62	20.53	0.11	0.54	161.85
				8,014.84	23,440.99				0.15							
S06	BZ-S06	BZ-S07	66.26	2,972.75	14,992.48	2.30	0.67	7.03	0.90	172.77	884.48	5.38	25.90	0.11	0.65	148.63
				9,472.21	32,913.20				0.15							
S07	BZ-S07	BZ-S08	99.00	2,973.91	17,966.39	2.94	0.90	7.93	0.90	157.85	989.11	8.00	33.91	0.11	0.75	112.75
				9,680.53	42,593.73				0.15							
S08	BZ-S08	BZ-S09	98.28	0.00	17,966.39	3.65	0.89	8.83	0.90	145.70	913.02	8.04	41.95	0.11	0.86	-67.95
				0.00	42,593.73				0.15							
S09	BZ-S09	BZ-S10	105.14	2,987.58	20,953.97	4.21	0.96	9.78	0.90	134.89	999.06	8.54	50.49	0.11	0.97	94.68
				9,439.39	52,033.12				0.15							

		Buz	zón		Área tri	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: Franja	Caudal infilt buz	ado por cada zón	
	TRAMO	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
		Livitetbri	STEIDT	m	m2	m2	min	min	te min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
ĺ	S10	BZ-S10	BZ-S11	98.16	3,174.93	24,128.90	4.38	0.89	10.67	0.90	126.34	1089.19	7.98	58.47	0.11	1.08	98.23
					10,102.34	62,135.46				0.15							
	S11	BZ-S11	BZ-S12	98.14	2,966.04	27,094.94	3.83	0.89	11.57	0.90	118.96	1160.54	7.98	66.45	0.11	1.18	79.44
					9,438.67	71,574.13				0.15							
	S12	BZ-S12	BZ-S13	98.18	2,965.13	30,060.07	3.83	0.89	12.46	0.90	112.51	1225.25	7.98	74.43	0.11	1.29	72.80
					9,438.87	81,013.00	1			0.15							
	S13	BZ-S13	BZ-S14	98.18	2,965.13	33,025.20	3.83	0.80	13.26	0.90	107.39	1291.33	7.98	82.41	0.11	1.40	74.16
					9,439.07	90,452.07				0.15	12						
	S14	BZ-S14	BZ-S15	97.67	2,965.13	35,990.33	3.83	0.81	14.07	0.90	102.70	1351.52	7.98	90.39	0.11	1.51	68.28
					9,439.34	99,891.41		~		0.15							
	S15	BZ-S15	BZ-S16	97.73	2,965.13	38,955.46	3.83	0.81	14.88	0.90	98.47	1407.49	7.98	98.37	0.11	1.61	64.05
					9,438.81	109,330.22				0.15							
	S16	BZ-S16	BZ-S17	98.22	2,965.13	41,920.59	3.83	0.82	15.70	0.90	94.60	1459.52	8.00	106.36	0.11	1.72	60.14
					9,438.70	118,768.92				0.15							
	S17	BZ-S17	BZ-S18	98.20	2,971.32	44,891.91	3.84	0.82	16.51	0.90	91.07	1508.51	7.98	114.34	0.11	1.83	57.08
					9,439.34	128,208.26				0.15							
	S18	BZ-S18	BZ-S19	98.28	2,966.18	47,858.09	3.84	0.82	17.33	0.90	87.83	1554.51	7.98	122.33	0.11	1.94	54.09
					9,440.00	137,648.26				0.15							
	S19	BZ-S19	BZ-S20	98.22	2,966.18	50,824.27	3.84	0.82	18.15	0.90	84.84	1598.03	7.98	130.31	0.11	2.04	51.60
					9,440.00	147,088.26				0.15							
	S20	BZ-S20	BZ-S21	98.22	2,966.18	53,790.45	3.84	0.82	18.97	0.90	82.09	1639.29	7.98	138.29	0.11	2.15	49.35
					9,439.36	156,527.62				0.15							
	S21	BZ-S21	BZ-S22	97.71	2,966.18	56,756.63	3.84	0.81	19.78	0.90	79.55	1678.79	7.98	146.27	0.11	2.26	47.59

	Bu	zón		Área tril	outaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infilt buz	ado por cada zón	
TRAMO	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
TRAMO	LIVINADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				9,439.99	165,967.61				0.15							
S22	BZ-S22	BZ-S23	98.22	2,966.18	59,722.81	3.84	0.82	20.59	0.90	77.17	1716.17	7.98	154.25	0.11	2.37	45.48
				9,439.95	175,407.56				0.15							
S23	BZ-S23	BZ-S24	98.20	2,966.18	62,688.99	3.84	0.82	21.41	0.90	74.95	1751.90	7.98	162.24	0.11	2.47	43.82
				9,439.28	184,846.84				0.15	S						
S24	BZ-S24	BZ-S25	98.20	2,966.18	65,655.17	3.84	0.82	22.23	0.90	72.88	1786.11	7.98	170.22	0.11	2.58	42.29
				9,439.29	194,286.13		$V \rightarrow$		0.15	6						
S25	BZ-S25	BZ-S26	61.18	2,966.18	68,621.35	2.93	0.51	22.74	0.90	71.65	1837.35	5.04	175.26	0.11	2.69	56.40
				9,438.86	203,724.99	1.1			0.15							
S26	BZ-S28	BZ-S27	22.36	1,524.58	1,524.58	1.35	0.39	23.12	0.90	70.75	28.73	5.99	5.99	0.11	0.11	34.83
				599.81	599.81				0.15							
S27	BZ-S27	BZ-S26	12.75	2,407.33	3,931.91	2.37	0.22	23.34	0.90	70.25	71.86	5.04	11.04	0.11	0.22	48.27
				358.45	958.26				0.15							
S28	BZ-S26	BZ-S32	84.50	1,880.84	74,434.10	2.40	0.70	24.05	0.90	68.70	1880.97	0.00	186.30	0.11	3.01	-28.13
				5,812.28	210,495.53				0.15							
S29	BZ-S30	BZ-S29	15.25	2,337.28	2,337.28	1.35	0.23	5.00	0.90	223.11	130.37	5.55	5.55	0.11	0.11	136.03
				0.00	0.00				0.15							
S30	BZ-S29	BZ-S32	12.59	2,395.57	4,732.85	2.35	0.16	5.00	0.90	223.11	263.99	0.00	5.55	0.11	0.22	133.73
				0.00	0.00				0.15							
S31	BZ-S32	BZ-S32'	50.08	0.00	79,166.95	0.00	0.39	24.05	0.90	68.70	1969.24	4.86	196.72	0.11	3.34	-170.76
				2,436.34	212,931.87				0.15							
S32	BZ-S32'	BZ-S33	36.28	3,375.06	82,542.01	3.51	0.29	24.73	0.90	67.28	1999.76	7.52	204.24	0.11	3.44	38.15
				5,194.72	218,126.59				0.15							

	Bu	zón		Área tri	butaria	Tien	npo de conce	ntración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infilt bu	rado por cada zón	
TRAMO	ENTRADA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
	Livinalizit	STELDT	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
S33	BZ-S31	BZ-S33'	14.22	3,026.45	3,026.45	2.92	0.18	5.00	0.90	223.11	168.81	6.04	6.04	0.11	0.11	174.96
				0.00	0.00				0.15							
S34	BZ-S33'	BZ-S33	13.96	2,491.12	5,517.57	2.04	0.17	5.00	0.90	223.11	307.76	7.52	7.52	0.11	0.22	140.55
				0.00	0.00				0.15							
S35	BZ-S33	BZ-S35	86.06	2,804.49	90,864.07	2.85	0.68	25.41	0.90	65.93	2111.66	7.41	219.18	0.11	3.77	-188.34
				5,436.97	223,563.56				0.15							
S36	BZ-E01	BZ-E02	75.42	16,121.52	16,121.52	5.95	0.76	6.71	0.90	178.99	721.39	9.13	9.13	0.11	0.11	730.63
				0.00	0.00				0.15							
S 37	BZ-E02	BZ-S34	86.96	0.00	16,121.52	0.00	0.88	7.58	0.90	163.25	657.94	7.16	16.29	0.11	0.22	-56.18
				0.00	0.00				0.15							
S38	BZ-S34	BZ-S35	41.78	1,554.53	17,676.05	1.98	0.42	8.00	0.90	156.76	692.74	7.41	23.70	0.11	0.32	42.32
				0.00	0.00				0.15							
S39	BZ-S35	BZ-S36	72.10	2,778.30	111,318.42	1.80	0.51	25.91	0.90	64.95	2420.64	6.31	249.19	0.11	4.20	-377.35
				2,949.78	226,513.34				0.15							
S40	BZ-S36	BZ-S37	98.10	2,353.07	113,671.49	2.63	0.63	26.55	0.90	63.79	2431.91	8.06	257.25	0.11	4.30	19.44
				6,420.67	232,934.01				0.15							
S41	BZ-S37	BZ-S38	89.10	2,994.31	116,665.80	2.94	0.57	27.12	0.90	62.78	2464.95	7.33	264.58	0.11	4.41	40.47
				9,449.98	242,383.99				0.15							
S42	BZ-S38	BZ-S39	35.10	2,723.80	119,389.60	2.81	0.23	27.35	0.90	62.39	2514.48	2.94	267.52	0.11	4.52	52.57
				8,593.28	250,977.27				0.15							
S43	BZ-S39	BZ-S40	34.10	1,098.24	120,487.84	3.79	0.22	27.57	0.90	62.01	2525.43	2.86	270.38	0.11	4.63	13.92
				3,469.66	254,446.93				0.15							
S44	BZ-S40	BZ-S41	35.10	1,068.18	121,556.02	3.73	0.23	27.79	0.90	61.64	2535.14	2.94	273.31	0.11	4.73	12.75

	Buz	zón		Área tri	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infilt buz	rado por cada zón	
TRAMO		SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
IKAWO	LNIKADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				3,373.74	257,820.67				0.15							
S45	BZ-S41	BZ-S42	32.10	1,098.69	122,654.71	3.79	0.21	28.00	0.90	61.29	2546.82	2.70	276.01	0.11	4.84	14.48
				3,478.24	261,298.91				0.15							
S46	BZ-S42	BZ-S43	31.10	1,007.95	123,662.66	3.61	0.20	28.20	0.90	60.97	2556.68	2.62	278.62	0.11	4.95	12.59
				3,178.00	264,476.91		11		0.15	S						
S47	BZ-S43	BZ-S44	32.10	978.12	124,640.78	3.54	0.21	28.40	0.90	60.63	2565.34	2.70	281.32	0.11	5.06	11.46
				3,085.89	267,562.80	2	$7 \rightarrow$		0.15	ic						
S48	BZ-S44	BZ-S45	32.10	1,008.06	125,648.84	3.61	0.21	28.61	0.90	60.31	2574.66	2.70	284.02	0.11	5.16	12.12
				3,194.54	270,757.34	1.1			0.15							
S49	BZ-S45	BZ-S46	31.10	1,008.05	126,656.89	3.61	0.20	28.81	0.90	59.99	2584.33	2.62	286.63	0.11	5.27	12.40
				3,194.51	273,951.85				0.15							
S50	BZ-S46	BZ-S47	32.10	978.02	127,634.91	3.54	0.21	29.02	0.90	59.67	2592.74	2.69	289.33	0.11	5.38	11.21
				3,070.68	277,022.53				0.15							
S51	BZ-S47	BZ-S48	32.10	1,007.85	128,642.76	3.60	0.21	29.22	0.90	59.35	2601.84	2.70	292.02	0.11	5.49	11.90
				3,194.40	280,216.93				0.15							
S52	BZ-S48	BZ-S49	31.10	1,007.93	129,650.69	3.61	0.20	29.42	0.90	59.05	2611.29	2.62	294.64	0.11	5.59	12.17
				3,194.26	283,411.19				0.15							
S53	BZ-S49	BZ-S50	32.10	978.10	130,628.79	3.54	0.21	29.63	0.90	58.74	2619.80	2.70	297.33	0.11	5.70	11.32
				3,194.11	286,605.30				0.15							
S54	BZ-S50	BZ-S51	32.10	1,008.04	131,636.83	3.61	0.21	29.84	0.90	58.44	2628.36	2.70	300.03	0.11	5.81	11.37
				3,060.83	289,666.13				0.15							
855	BZ-S51	BZ-S52	31.10	1,007.75	132,644.58	3.61	0.20	30.04	0.90	58.14	2637.60	2.62	302.64	0.11	5.92	11.96
				3,193.77	292,859.90				0.15							

	Bu	ızón		Área tri	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: ⁷ Franja	Caudal infilt buz	rado por cada zón	
TRAMO	FNTR A DA	SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
	LIVINIDA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
S56	BZ-S52	BZ-S53	32.10	977.82	133,622.40	3.54	0.21	30.24	0.90	57.85	2645.64	2.70	305.34	0.11	6.02	10.85
				3,083.95	295,943.85				0.15							
S57	BZ-S53	BZ-S54	32.10	1,007.75	134,630.15	3.61	0.21	30.45	0.90	57.55	2654.30	2.70	308.04	0.11	6.13	11.47
				3,184.55	299,128.40		-		0.15							
S58	BZ-S54	BZ-S55	31.10	1,007.47	135,637.62	3.61	0.20	30.65	0.90	57.27	2663.31	2.62	310.66	0.11	6.24	11.73
				3,184.51	302,312.91				0.15							
S59	BZ-S55	BZ-S56	32.10	977.57	136,615.19	3.54	0.21	30.86	0.90	56.98	2671.18	2.70	313.35	0.11	6.35	10.67
				3,084.87	305,397.78				0.15	2						
S60	BZ-S56	BZ-S57	32.10	1,007.58	137,622.77	3.61	0.21	31.06	0.90	56.70	2679.65	2.70	316.05	0.11	6.46	11.29
				3,188.85	308,586.63		~		0.15							
S61	BZ-S57	BZ-S58	31.10	1,005.53	138,628.30	3.61	0.20	31.27	0.90	56.42	2688.45	2.62	318.68	0.11	6.56	11.52
				3,184.52	311,771.15				0.15							
S62	BZ-S58	BZ-S59	32.10	975.51	139,603.81	3.55	0.21	31.47	0.90	56.15	2696.14	2.70	321.38	0.11	6.67	10.50
				3,098.86	314,870.01				0.15							
S63	BZ-S59	BZ-S60	38.10	1,005.57	140,609.38	3.61	0.25	31.72	0.90	55.82	2701.94	3.17	324.56	0.11	6.78	9.08
				3,189.92	318,059.93				0.15							
S64	BZ-S60	BZ-S61	59.10	1,187.13	141,796.51	3.98	0.38	32.10	0.90	55.32	2715.89	5.63	330.19	0.11	6.89	19.69
				9,365.02	327,424.95				0.15							
S65	BZ-S61	BZ-S62	68.10	2,106.62	143,903.13	2.51	0.44	32.54	0.90	54.76	2732.34	5.79	335.98	0.11	6.99	22.35
				6,618.37	334,043.32				0.15							
S66	BZ-S62	BZ-S63	170.10	2,165.11	146,068.24	2.54	1.09	33.63	0.90	53.42	2709.74	8.01	343.99	0.11	7.10	-14.49
				6,953.61	340,996.93				0.15							
S67	BZ-S63	BZ-S64	98.10	2,995.95	149,064.19	4.20	0.63	34.26	0.90	52.68	2732.58	8.01	352.00	0.11	7.21	30.96

	Bu	zón		Área tr	ibutaria	Tien	npo de conce	entración				Caudal i Pista y	nfiltrado: Franja	Caudal infilt	rado por cada zón	
ΤΡΑΜΟ		SALIDA	Longitud	Parcial	Acumulado	Extremo superior	En sección	Valor final	Coeficiente de escorrentia	intensidad	Caudal Escorrentía	Parcial	Acumulado	Parcial	Acumulado	Caudal Parcial
	ENIKADA	SALIDA	m	m2	m2	min	min	tc min	С	i mm/h	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s	Q L/s
				9,534.43	350,531.36				0.15							
S68	BZ-S64	BZ-S65	98.10	2,996.36	152,060.55	4.20	0.63	34.89	0.90	51.96	2754.86	8.01	360.01	0.11	7.32	30.40
				9,484.54	360,015.90				0.15							
S69	BZ-S65	BZ-S66	98.30	2,996.76	155,057.31	4.20	0.63	35.53	0.90	51.27	2776.66	8.05	368.06	0.11	7.42	29.95
				9,487.13	369,503.03				0.15							
S70	BZ-S66	BZ-S67	95.60	2,992.44	158,049.75	3.67	0.62	36.14	0.90	50.61	2798.88	7.85	375.92	0.11	7.53	30.19
				9,435.62	378,938.65	1	/ ->		0.15	5						
S71	BZ-S67	BZ-S68	56.17	2,918.78	160,968.53	3.19	0.33	36.48	0.90	50.26	2835.58	0.00	375.92	0.11	7.64	36.81
				9,221.25	388,159.90	1.1			0.15							

	Bu	zón								Cota del o (N.Ref. C.F. Pr	lrenaje imer Buzón)		Cota de Fon	ido de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
N01	BZ-N01	BZ-N02	98.14	212.53	0.20%	493.97	650	1.33	441.91	0.000	-0.196	0.19628	3824.508	3824.262	3826.120	3826.044	1.612
N02	BZ-N02	BZ-N03	84.14	372.10	0.20%	609.41	700	1.40	538.47	-0.196	-0.365	0.168	3824.262	3824.043	3826.044	3826.000	1.782
N03	BZ-N03	BZ-N04	31.15	506.22	0.20%	683.98	750	1.47	647.23	-0.365	-0.427	0.062	3824.043	3823.931	3826.000	3825.966	1.957
N04	BZ-N04	BZ-N05	66.12	634.50	0.20%	744.43	800	1.53	768.78	-0.427	-0.559	0.132	3823.931	3823.699	3825.966	3826.023	2.035
N05	BZ-N05	BZ-N06	99.19	721.80	0.20%	781.30	900	1.65	1052.47	-0.559	-0.757	0.198	3823.699	3823.501	3826.023	3826.108	2.324
N06	BZ-N06	BZ-N07	98.15	673.44	0.20%	761.25	900	1.65	1052.47	-0.757	-0.954	0.196	3823.501	3823.304	3826.108	3826.056	2.607
N07	BZ-N07	BZ-N08	105.25	753.84	0.20%	794.13	900	1.65	1052.47	-0.954	-1.164	0.211	3823.304	3823.094	3826.056	3826.000	2.752
N08	BZ-N08	BZ-N09	98.15	835.42	0.20%	825.33	900	1.65	1052.47	-1.164	-1.361	0.196	3823.094	3822.747	3826.000	3825.928	2.906
N09	BZ-N09	BZ-N10	98.15	906.55	0.20%	851.01	1050	1.83	1587.58	-1.361	-1.557	0.196	3822.747	3822.551	3825.928	3825.857	3.181
N10	BZ-N10	BZ-N11	98.15	971.90	0.20%	873.52	1050	1.83	1587.58	-1.557	-1.753	0.196	3822.551	3822.355	3825.857	3825.785	3.306
N11	BZ-N11	BZ-N12	98.18	1032.42	0.20%	893.53	1050	1.83	1587.58	-1.753	-1.950	0.196	3822.355	3822.158	3825.785	3825.713	3.430
N12	BZ-N12	BZ-N13	98.17	1088.84	0.20%	911.54	1050	1.83	1587.58	-1.950	-2.146	0.196	3822.158	3821.962	3825.713	3825.642	3.555
N13	BZ-N13	BZ-N14	98.10	1146.51	0.25%	891.27	1050	2.05	1774.97	-2.146	-2.391	0.245	3821.962	3821.717	3825.642	3825.570	3.680
N14	BZ-N14	BZ-N15	98.10	1196.34	0.20%	944.30	1050	1.83	1587.58	-2.391	-2.587	0.196	3821.717	3821.521	3825.570	3825.500	3.853
N15	BZ-N15	BZ-N16	98.10	1243.62	0.20%	958.12	1050	1.83	1587.58	-2.587	-2.784	0.196	3821.521	3821.324	3825.500	3825.430	3.979

	Buz	zón								Cota del o (N.Ref. C.F. Pr	lrenaje imer Buzón)		Cota de Fon	do de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
N16	BZ-N16	BZ-N17	98.10	1288.44	0.20%	970.93	1050	1.83	1587.58	-2.784	-2.980	0.196	3821.324	3821.128	3825.430	3825.355	4.106
N17	BZ-N17	BZ-N18	98.10	1331.17	0.20%	982.88	1050	1.83	1587.58	-2.980	-3.176	0.196	3821.128	3820.932	3825.355	3825.283	4.227
N18	BZ-N18	BZ-N19	98.10	1375.57	0.20%	995.05	1200	2.00	2266.63	-3.176	-3.372	0.196	3820.932	3820.736	3825.283	3825.211	4.351
N19	BZ-N19	BZ-N20	98.10	1418.19	0.20%	1006.50	1200	2.00	2266.63	-3.372	-3.568	0.196	3820.736	3820.540	3825.211	3825.140	4.475
N20	BZ-N20	BZ-N21	98.10	1459.19	0.20%	1017.32	1200	2.00	2266.63	-3.568	-3.765	0.196	3820.540	3820.343	3825.140	3825.068	4.600
N21	BZ-N21	BZ-N22	98.10	1498.73	0.20%	1027.57	1200	2.00	2266.63	-3.765	-3.961	0.196	3820.343	3820.147	3825.068	3825.000	4.725
N22	BZ-N22	BZ-N23	98.10	1536.94	0.20%	1037.31	1200	2.00	2266.63	-3.961	-4.157	0.196	3820.147	3819.951	3825.000	3824.907	4.853
N23	BZ-N23	BZ-N24	98.10	1573.94	0.20%	1046.61	1200	2.00	2266.63	-4.157	-4.353	0.196	3819.951	3819.755	3824.907	3824.792	4.956
N24	BZ-N24	BZ-N25	98.10	1609.96	0.20%	1055.53	1200	2.00	2266.63	-4.353	-4.549	0.196	3819.755	3819.559	3824.792	3824.678	5.037
N25	BZ-N25	BZ-N26	98.10	1644.92	0.20%	1064.06	1200	2.00	2266.63	-4.549	-4.745	0.196	3819.559	3819.363	3824.678	3824.564	5.119
N26	BZ-N26	BZ-N27	98.10	1678.90	0.20%	1072.25	1200	2.00	2266.63	-4.745	-4.942	0.196	3819.363	3819.166	3824.564	3824.450	5.201
N27	BZ-N27	BZ-N28	98.10	1711.98	0.20%	1080.13	1200	2.00	2266.63	-4.942	-5.138	0.196	3819.166	3818.970	3824.450	3824.336	5.284
N28	BZ-N28	BZ-N29	89.10	1746.54	0.20%	1088.25	1200	2.00	2266.63	-5.138	-5.316	0.178	3818.970	3818.792	3824.336	3824.232	5.366
N29	BZ-N29	BZ-N30	35.10	1789.23	0.20%	1098.15	1200	2.00	2266.63	-5.316	-5.386	0.070	3818.792	3818.722	3824.232	3824.228	5.440
N30	BZ-N30	BZ-N31	34.10	1801.13	0.20%	1100.89	1200	2.00	2266.63	-5.386	-5.454	0.068	3818.722	3818.654	3824.228	3824.225	5.506

	Bu	zón								Cota del ((N.Ref. C.F. Pr	drenaje rimer Buzón)		Cota de Fon	do de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
N31	BZ-N31	BZ-N32	35.10	1812.10	0.20%	1103.40	1200	2.00	2266.63	-5.454	-5.525	0.070	3818.654	3818.583	3824.225	3824.221	5.571
N32	BZ-N32	BZ-N33	32.10	1824.34	0.20%	1106.18	1200	2.00	2266.63	-5.525	-5.589	0.064	3818.583	3818.519	3824.221	3824.218	5.638
N33	BZ-N33	BZ-N34	31.10	1835.05	0.20%	1108.62	1200	2.00	2266.63	-5.589	-5.651	0.062	3818.519	3818.457	3824.218	3824.214	5.699
N34	BZ-N34	BZ-N35	32.10	1844.87	0.20%	1110.84	1200	2.00	2266.63	-5.651	-5.715	0.064	3818.457	3818.393	3824.214	3824.211	5.757
N35	BZ-N35	BZ-N36	32.10	1855.19	0.20%	1113.16	1200	2.00	2266.63	-5.715	-5.779	0.064	3818.393	3818.329	3824.211	3824.208	5.818
N36	BZ-N36	BZ-N37	31.10	1865.97	0.20%	1115.58	1250	2.06	2527.31	-5.779	-5.842	0.062	3818.329	3818.266	3824.208	3824.204	5.879
N37	BZ-N37	BZ-N38	32.10	1875.85	0.20%	1117.80	1250	2.06	2527.31	-5.842	-5.906	0.064	3818.266	3818.202	3824.204	3824.201	5.938
N38	BZ-N38	BZ-N39	32.10	1887.90	0.30%	1038.46	1200	2.45	2776.05	-5.906	-6.002	0.096	3818.202	3818.106	3824.201	3824.198	5.999
N39	BZ-N39	BZ-N40	31.10	1900.07	0.30%	1040.96	1200	2.45	2776.05	-6.002	-6.095	0.093	3818.106	3818.013	3824.198	3824.194	6.092
N40	BZ-N40	BZ-N41	32.10	1911.54	0.30%	1043.31	1200	2.45	2776.05	-6.095	-6.192	0.096	3818.013	3817.916	3824.194	3824.191	6.181
N41	BZ-N41	BZ-N42	32.10	1923.21	0.30%	1045.70	1200	2.45	2776.05	-6.192	-6.288	0.096	3817.916	3817.820	3824.191	3824.188	6.275
N42	BZ-N42	BZ-N43	31.10	1935.14	0.30%	1048.13	1200	2.45	2776.05	-6.288	-6.381	0.093	3817.820	3817.727	3824.188	3824.184	6.368
N43	BZ-N43	BZ-N44	32.10	1946.27	0.30%	1050.38	1200	2.45	2776.05	-6.381	-6.478	0.096	3817.727	3817.630	3824.184	3824.181	6.457
N44	BZ-N44	BZ-N45	32.10	1957.85	0.30%	1052.72	1200	2.45	2776.05	-6.478	-6.574	0.096	3817.630	3817.534	3824.181	3824.178	6.551
N45	BZ-N45	BZ-N46	31.10	1969.55	0.30%	1055.08	1200	2.45	2776.05	-6.574	-6.667	0.093	3817.534	3817.441	3824.178	3824.174	6.644

	Bu	zón								Cota del (N.Ref. C.F. F	l drenaje Primer Buzón)		Cota de Fon	ido de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
N46	BZ-N46	BZ-N47	32.10	1980.47	0.30%	1057.27	1200	2.45	2776.05	-6.667	-6.764	0.096	3817.441	3817.344	3824.174	3824.171	6.733
N47	BZ-N47	BZ-N48	32.10	1991.85	0.30%	1059.54	1200	2.45	2776.05	-6.764	-6.860	0.096	3817.344	3817.248	3824.171	3824.168	6.827
N48	BZ-N48	BZ-N49	31.10	2003.37	0.30%	1061.83	1200	2.45	2776.05	-6.860	-6.953	0.093	3817.248	3817.155	3824.168	3824.164	6.920
N49	BZ-N49	BZ-N50	32.10	2014.14	0.30%	1063.97	1200	2.45	2776.05	-6.953	-7.049	0.096	3817.155	3817.059	3824.164	3824.161	7.009
N50	BZ-N50	BZ-N51	38.10	2024.21	0.30%	1065.96	1200	2.45	2776.05	-7.049	-7.164	0.114	3817.059	3816.944	3824.161	3824.157	7.102
N51	BZ-N51	BZ-N52	59.10	2063.92	0.30%	1073.76	1200	2.45	2776.05	-7.164	-7.341	0.177	3816.944	3816.767	3824.157	3824.273	7.213
N52	BZ-N52	BZ-N53	68.10	2086.30	0.30%	1078.11	1200	2.45	2776.05	-7.341	-7.545	0.204	3816.767	3816.563	3824.273	3824.406	7.506
N53	BZ-N53	BZ-N54	170.10	2085.02	0.30%	1077.86	1200	2.45	2776.05	-7.545	-8.056	0.510	3816.563	3816.052	3824.406	3824.490	7.843
N54	BZ-N54	BZ-N55	98.10	2115.68	0.30%	1083.78	1200	2.45	2776.05	-8.056	-8.350	0.294	3816.052	3815.758	3824.490	3824.436	8.438
N55	BZ-N55	BZ-N56	98.10	2145.80	0.30%	1089.54	1200	2.45	2776.05	-8.350	-8.644	0.294	3815.758	3815.464	3824.436	3824.382	8.678
N56	BZ-N56	BZ-N57	77.75	2180.59	0.30%	1096.13	1200	2.45	2776.05	-8.644	-8.877	0.233	3815.464	3815.231	3824.382	3824.451	8.918
N57	BZ-N57	BZ-N58	66.68	2214.02	0.30%	1102.40	1200	2.45	2776.05	-8.877	-9.078	0.200	3815.231	3815.030	3824.451	3824.642	9.220
N58	BZ-N58	BZ-N59	48.10	2247.18	0.30%	1108.56	1200	2.45	2776.05	-9.078	-9.222	0.144	3815.030	3814.886	3824.642	3824.605	9.612
N59	BZ-N59	BZ-N60	55.50	2271.64	0.30%	1113.07	1200	2.45	2776.05	-9.222	-9.388	0.166	3814.886	3814.720	3824.605	3824.635	9.719

	Bu	ızón								Cota del d (N.Ref. C.F. Pri	lrenaje imer Buzón)		Cota de Fon	ido de Buzón	Cota de S	Superficie	Profundidad de Excavación
	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
IKAWO	LITIKADA	SALIDA	m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
S01	BZ-S01	BZ-S02	38.60	166.35	0.20%	450.61	650	1.33	441.91	0.000	-0.077	0.0772	3825.057	3824.730	3826.969	3826.947	1.912
S02	BZ-S02	BZ-S03	44.08	445.74	0.20%	652.11	750	1.47	647.23	-0.077	-0.165	0.088	3824.730	3824.642	3826.947	3826.145	2.217
S03	BZ-S03	BZ-S04	73.21	507.33	0.20%	684.54	750	1.47	647.23	-0.165	-0.312	0.146	3824.642	3824.495	3826.145	3826.044	1.503
S04	BZ-S04	BZ-S05	84.13	600.54	0.20%	729.23	800	1.53	768.78	-0.312	-0.480	0.168	3824.495	3824.327	3826.044	3826.000	1.549
S05	BZ-S05	BZ-S06	31.22	762.39	0.20%	797.50	900	1.65	1052.47	-0.480	-0.542	0.062	3824.327	3824.265	3826.000	3825.966	1.673
S06	BZ-S06	BZ-S07	66.26	911.03	0.20%	852.59	900	1.65	1052.47	-0.542	-0.675	0.133	3824.265	3824.132	3825.966	3826.023	1.701
S07	BZ-S07	BZ-S08	99.00	1023.77	0.20%	890.72	1050	1.83	1587.58	-0.675	-0.873	0.198	3824.132	3823.934	3826.023	3826.108	1.891
S08	BZ-S08	BZ-S09	98.28	955.83	0.20%	868.07	1050	1.83	1587.58	-0.873	-1.070	0.197	3823.934	3823.737	3826.108	3826.056	2.174
S09	BZ-S09	BZ-S10	105.14	1050.51	0.20%	899.37	1050	1.83	1587.58	-1.070	-1.280	0.210	3823.737	3823.527	3826.056	3826.000	2.319
S10	BZ-S10	BZ-S11	98.16	1148.74	0.20%	930.03	1050	1.83	1587.58	-1.280	-1.476	0.196	3823.527	3823.331	3826.000	3825.928	2.473
S11	BZ-S11	BZ-S12	98.14	1228.18	0.20%	953.64	1050	1.83	1587.58	-1.476	-1.672	0.196	3823.331	3823.135	3825.928	3825.857	2.597
S12	BZ-S12	BZ-S13	98.18	1300.97	0.20%	974.46	1050	1.83	1587.58	-1.672	-1.869	0.196	3823.135	3822.938	3825.857	3825.785	2.722
S13	BZ-S13	BZ-S14	98.18	1375.13	0.25%	954.16	1050	2.05	1774.97	-1.869	-2.114	0.245	3822.938	3822.693	3825.785	3825.713	2.847
S14	BZ-S14	BZ-S15	97.67	1443.42	0.20%	1013.18	1200	2.00	2266.63	-2.114	-2.310	0.195	3822.693	3822.497	3825.713	3825.642	3.020
S15	BZ-S15	BZ-S16	97.73	1507.47	0.20%	1029.81	1200	2.00	2266.63	-2.310	-2.505	0.195	3822.497	3822.302	3825.642	3825.570	3.145

	Bu	zón								Cota del (N.Ref. C.F. P	drenaje rimer Buzón)		Cota de Fon	do de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	D ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
S16	BZ-S16	BZ-S17	98.22	1567.61	0.20%	1045.03	1200	2.00	2266.63	-2.505	-2.701	0.196	3822.302	3822.106	3825.570	3825.500	3.268
S17	BZ-S17	BZ-S18	98.20	1624.69	0.20%	1059.14	1200	2.00	2266.63	-2.701	-2.898	0.196	3822.106	3821.909	3825.500	3825.430	3.394
S18	BZ-S18	BZ-S19	98.28	1678.78	0.20%	1072.22	1200	2.00	2266.63	-2.898	-3.094	0.197	3821.909	3821.713	3825.430	3825.355	3.521
S19	BZ-S19	BZ-S20	98.22	1730.38	0.20%	1084.47	1200	2.00	2266.63	-3.094	-3.291	0.196	3821.713	3821.516	3825.355	3825.283	3.642
S20	BZ-S20	BZ-S21	98.22	1779.73	0.20%	1095.96	1200	2.00	2266.63	-3.291	-3.487	0.196	3821.516	3821.320	3825.283	3825.211	3.767
S21	BZ-S21	BZ-S22	97.71	1827.32	0.20%	1106.86	1200	2.00	2266.63	-3.487	-3.683	0.195	3821.320	3821.124	3825.211	3825.140	3.891
S22	BZ-S22	BZ-S23	98.22	1872.79	0.20%	1117.11	1200	2.00	2266.63	-3.683	-3.879	0.196	3821.124	3820.928	3825.140	3825.068	4.016
S23	BZ-S23	BZ-S24	98.20	1916.61	0.20%	1126.84	1200	2.00	2266.63	-3.879	-4.076	0.196	3820.928	3820.731	3825.068	3825.000	4.140
S24	BZ-S24	BZ-S25	98.20	1958.91	0.20%	1136.10	1200	2.00	2266.63	-4.076	-4.272	0.196	3820.731	3820.535	3825.000	3824.907	4.269
S25	BZ-S25	BZ-S26	61.18	2015.31	0.20%	1148.26	1200	2.00	2266.63	-4.272	-4.465	0.193	3820.535	3820.342	3824.907	3824.833	4.372
S26	BZ-S28	BZ-S27	22.36	34.83	0.20%	250.70	400	0.96	121.08	-4.720	-4.770	0.050	3823.280	3823.230	3824.745	3824.806	1.465
S27	BZ-S27	BZ-S26	12.75	83.11	0.20%	347.36	400	0.96	121.08	-4.770	-4.796	0.026	3823.230	3823.205	3824.806	3824.833	1.576
S28	BZ-S26	BZ-S32	84.50	2070.29	0.20%	1159.91	1200	2.00	2266.63	-4.465	-4.689	0.224	3820.342	3820.118	3824.833	3825.600	4.491
S29	BZ-S30	BZ-S29	15.25	136.03	0.20%	417.86	500	1.12	219.53	-4.850	-4.865	0.015	3823.150	3823.135	3825.650	3825.869	2.500
S30	BZ-S29	BZ-S32	12.59	269.76	0.20%	540.17	650	1.33	441.91	-4.865	-4.890	0.025	3823.135	3823.110	3825.869	3825.600	2.734

	Buz	rón								Cota del (N.Ref. C.F. P	drenaje rimer Buzón)		Cota de Fon	do de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	m m	m	m	m	m	m
S31	BZ-S32	BZ-S32'	50.08	2169.29	0.20%	1180.41	1300	2.11	2805.95	-4.689	-4.789	0.100	3820.118	3820.018	3825.600	3825.600	5.482
S32	BZ-S32'	BZ-S33	36.28	2207.44	0.20%	1188.15	1300	2.11	2805.95	-4.789	-4.918	0.129	3820.018	3819.889	3825.600	3825.600	5.582
S33	BZ-S31	BZ-S33'	14.22	174.96	0.20%	459.21	650	1.33	441.91	0.000	-0.028	0.028	3819.889	3819.861	3825.600	3825.600	5.711
S34	BZ-S33'	BZ-S33	13.96	315.50	0.20%	572.85	650	1.33	441.91	-0.028	-0.056	0.028	3819.861	3819.833	3825.600	3825.600	5.739
S35	BZ-S33	BZ-S35	86.06	2334.60	0.20%	1213.37	1300	2.11	2805.95	-4.918	-5.499	0.581	3819.889	3819.308	3825.600	3824.530	5.711
S36	BZ-E01	BZ-E02	75.42	730.63	0.20%	784.87	900	1.65	1052.47	-5.242	-5.416	0.174	3822.758	3822.584	3825.265	3825.418	2.507
S37	BZ-E02	BZ-S34	86.96	674.45	0.20%	761.67	900	1.65	1052.47	-5.416	-5.590	0.174	3822.584	3822.410	3825.418	3825.080	2.834
S38	BZ-S34	BZ-S35	41.78	716.77	0.20%	779.26	900	1.65	1052.47	-5.590	-5.673	0.084	3822.410	3822.327	3825.080	3824.530	2.670
S39	BZ-S35	BZ-S36	72.10	2674.03	0.25%	1224.42	1300	2.36	3137.15	-5.072	-5.252	0.180	3819.308	3819.128	3824.530	3824.480	5.222
S40	BZ-S36	BZ-S37	98.10	2693.47	0.30%	1186.49	1300	2.59	3436.58	-5.252	-5.547	0.294	3819.128	3818.834	3824.480	3824.336	5.352
S41	BZ-S37	BZ-S38	89.10	2733.94	0.30%	1193.14	1300	2.59	3436.58	-5.547	-5.814	0.267	3818.834	3818.566	3824.336	3824.232	5.502
S42	BZ-S38	BZ-S39	35.10	2786.51	0.30%	1201.69	1300	2.59	3436.58	-5.814	-5.919	0.105	3818.566	3818.461	3824.232	3824.228	5.666
S43	BZ-S39	BZ-S40	34.10	2800.44	0.30%	1203.94	1300	2.59	3436.58	-5.919	-6.021	0.102	3818.461	3818.359	3824.228	3824.225	5.767
S44	BZ-S40	BZ-S41	35.10	2813.19	0.30%	1206.00	1300	2.59	3436.58	-6.021	-6.127	0.105	3818.359	3818.253	3824.225	3824.221	5.866
S45	BZ-S41	BZ-S42	32.10	2827.67	0.30%	1208.32	1300	2.59	3436.58	-6.127	-6.223	0.096	3818.253	3818.157	3824.221	3824.218	5.968

	Bu	zón								Cota del (N.Ref. C.F. Pr	drenaje rimer Buzón)		Cota de Fon	do de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMC	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	S %	D mm	Dd mm	v m/s	Q L/s	m	m	niveles m	m	m	m	m	m
S46	BZ-S42	BZ-S43	31.10	2840.25	0.30%	1210.33	1300	2.59	3436.58	-6.223	-6.316	0.093	3818.157	3818.064	3824.218	3824.214	6.061
S47	BZ-S43	BZ-S44	32.10	2851.72	0.30%	1212.16	1300	2.59	3436.58	-6.316	-6.413	0.096	3818.064	3817.968	3824.214	3824.211	6.150
S48	BZ-S44	BZ-S45	32.10	2863.84	0.30%	1214.09	1300	2.59	3436.58	-6.413	-6.509	0.096	3817.968	3817.871	3824.211	3824.208	6.243
S49	BZ-S45	BZ-S46	31.10	2876.24	0.30%	1216.06	1300	2.59	3436.58	-6.509	-6.602	0.093	3817.871	3817.778	3824.208	3824.204	6.337
S50	BZ-S46	BZ-S47	32.10	2887.45	0.30%	1217.84	1300	2.59	3436.58	-6.602	-6.699	0.096	3817.778	3817.682	3824.204	3824.201	6.426
S51	BZ-S47	BZ-S48	32.10	2899.35	0.30%	1219.72	1300	2.59	3436.58	-6.699	-6.795	0.096	3817.682	3817.585	3824.201	3824.198	6.519
S52	BZ-S48	BZ-S49	31.10	2911.52	0.30%	1221.63	1300	2.59	3436.58	-6.795	-6.888	0.093	3817.585	3817.492	3824.198	3824.194	6.613
S53	BZ-S49	BZ-S50	32.10	2922.83	0.30%	1223.41	1300	2.59	3436.58	-6.888	-6.984	0.096	3817.492	3817.396	3824.194	3824.191	6.702
S54	BZ-S50	BZ-S51	32.10	2934.20	0.30%	1225.19	1300	2.59	3436.58	-6.984	-7.081	0.096	3817.396	3817.299	3824.191	3824.188	6.795
S55	BZ-S51	BZ-S52	31.10	2946.16	0.30%	1227.06	1300	2.59	3436.58	-7.081	-7.174	0.093	3817.299	3817.206	3824.188	3824.184	6.889
S56	BZ-S52	BZ-S53	32.10	2957.01	0.30%	1228.76	1300	2.59	3436.58	-7.174	-7.270	0.096	3817.206	3817.110	3824.184	3824.181	6.978
S57	BZ-S53	BZ-S54	32.10	2968.48	0.30%	1230.54	1300	2.59	3436.58	-7.270	-7.367	0.096	3817.110	3817.014	3824.181	3824.178	7.071
S58	BZ-S54	BZ-S55	31.10	2980.21	0.30%	1232.36	1300	2.59	3436.58	-7.367	-7.460	0.093	3817.014	3816.920	3824.178	3824.174	7.164
S59	BZ-S55	BZ-S56	32.10	2990.88	0.30%	1234.02	1300	2.59	3436.58	-7.460	-7.556	0.096	3816.920	3816.824	3824.174	3824.171	7.254
S60	BZ-S56	BZ-S57	32.10	3002.17	0.30%	1235.76	1300	2.59	3436.58	-7.556	-7.652	0.096	3816.824	3816.728	3824.171	3824.168	7.347

	Bu	zón								Cota del (N.Ref. C.F. F	drenaje Primer Buzón)		Cota de Fon	ido de Buzón	Cota de S	Superficie	Profundidad de Excavación
TRAMO	ENTRADA	SALIDA	Longitud	Total Caudal	Pendiente de la alcantarilla	Diámetro (Flujo lleno)	Diámetro Diseño	Velocidad de diseño (Flujo lleno)	Capacidad de diseño (Flujo lleno)	Aguas arriba	Aguas abajo	Diferencia	Aguas arriba	Aguas abajo	Aguas arriba	Aguas abajo	Aguas arriba
			m	Q L/s	%	mm	mm	v m/s	Q L/s	m	m	m	m	m	m	m	m
S61	BZ-S57	BZ-S58	31.10	3013.69	0.30%	1237.54	1300	2.59	3436.58	-7.652	-7.746	0.093	3816.728	3816.634	3824.168	3824.164	7.440
S62	BZ-S58	BZ-S59	32.10	3024.19	0.30%	1239.15	1300	2.59	3436.58	-7.746	-7.842	0.096	3816.634	3816.538	3824.164	3824.161	7.530
863	BZ-859	BZ-S60	38.10	3033.27	0.30%	1240.55	1300	2.59	3436.58	-7.842	-7.956	0.114	3816.538	3816.424	3824.161	3824.157	7.623
S64	BZ-S60	BZ-S61	59.10	3052.97	0.30%	1243.56	1300	2.59	3436.58	-7.956	-8.134	0.177	3816.424	3816.246	3824.157	3824.273	7.733
865	BZ-S61	BZ-S62	68.10	3075.32	0.30%	1246.97	1300	2.59	3436.58	-8.134	-8.338	0.204	3816.246	3816.042	3824.273	3824.273	8.027
S66	BZ-S62	BZ-S63	170.10	3060.83	0.30%	1244.76	1300	2.59	3436.58	-8.338	-8.848	0.510	3816.042	3815.532	3824.273	3824.490	8.231
S67	BZ-S63	BZ-S64	98.10	3091.79	0.30%	1249.47	1300	2.59	3436.58	-8.848	-9.143	0.294	3815.532	3815.238	3824.490	3824.436	8.958
S68	BZ-S64	BZ-S65	98.10	3122.19	0.30%	1254.06	1300	2.59	3436.58	-9.143	-9.437	0.294	3815.238	3814.943	3824.436	3824.382	9.198
S69	BZ-S65	BZ-S66	98.30	3152.14	0.30%	1258.56	1300	2.59	3436.58	-9.437	-9.732	0.295	3814.943	3814.648	3824.382	3824.310	9.439
S70	BZ-S66	BZ-S67	95.60	3182.33	0.30%	1263.06	1300	2.59	3436.58	-9.732	-10.019	0.287	3814.648	3814.362	3824.310	3824.200	9.662
S71	BZ-S67	BZ-S68	56.17	3219.14	0.35%	1232.38	1300	2.80	3711.93	-10.019	-10.215	0.197	3814.362	3814.165	3824.200	3824.200	9.838

Anexo G: Planos iniciales para el diseño

CONTINUA EN PLANO "EX-02"

ALINEAMIENTO Ξ EJE DE LA PISTA DE ATERRIZAJI ENO PROYECTADO

LEYENDA

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

CONTINUA EN PLANO "EX-03"

LEYENDA

PERFIL DEL EJE DE LA PISTA DE ATERRIZAJE 8 289 000 N -3+350 TERRENO PROYECTADO (LIMITE ZONA PAVIMENTADA) 000 118

3008 97E

377 000 E

-3+250

-3+300

-3+450

-3+500

CONTINUA EN PLANO "EX-04"

	ESCALA: INDICADA	AÑO: 2022	A.F.R.M.
	DEL AEROPUERTO 2 - PARTE 4/4	ITA Y PERFIL - LADO AIRE	PLANO: NUEVA GEO
	MEDINA	AXEL FABRIZIO RIVERA I	ELABORADO POR:
	RENAJE PLUVIAL ERTO	SEÑO DE SISTEMA DE DI DO AIRE DE UN AEROPU	PROPUESTA DE DI: PARA EL LAI
LAMINA:			PROYECTO:

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

CONTINUA EN PLANO "EX-05"

CONTINUA EN PLANO "EX-02"

CONTINUA EN PLANO "EX-02"

LEYENDA

TRAMO I PERFIL LONGITUDINAL ESC H: 1/1,000 Y ESS V: 1/100

DIBUJO: PLANO: ELABORADO POR: PROPUESTA DE DISEÑO DE SISTEMA DE DRENAJE PLUVIAL PARA EL LADO AIRE DE UN AEROPUERTO ADD POR: AXEL FABRIZIO RIVERA MEDINA NUEVA GEOMETRÍA DEL LADO AIRE DEL AEROPUERTO PLANTA Y PERFIL - PLATAFORMA DE ESTACIONAMIENTO A.F.R.M.

AÑO: 2022
ESCALA: INDICADA EX-09

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

TRAMO II PERFIL LONGITUDINAL ESC H: 1/1,000 Y ESC V: 1/100

_					
0+080	3825.831				
0+100	<u>3825.721</u>				
0+120	3825.527				
0+140	<u>3825.405</u>				
0+160	3825.308				
0+180	<u>3825.186</u>				
0+200	<u>3825.173</u>		/		
	3824.770				