PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

ANÁLISIS DINÁMICO DE ESTABILIDAD DE UN DEPÓSITO DE RELAVES

Tesis para obtener el título profesional de Ingeniero Civil

AUTOR:

Miguel Andrés Jesús Chávez Pérez

ASESOR:

Juan Pablo Zamora Beyk

Lima, noviembre, 2022

Declaración jurada de autenticidad

Yo, Juan Pablo Zamora Beyk, docente de la Facultad de Ciencias e ingeniería de la Pontificia Universidad Católica del Perú, asesor de la tesis titulado ANÁLISIS DINÁMICO DE ESTABILIDAD DE UN DEPÓSITO DE RELAVES, del autor Miguel Andrés Jesús Chávez Pérez, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 12 %. Así lo consigna el reporte de similitud emitido por el software Turnitin el 20/11/2022.
- He revisado con detalle dicho reporte y confirmo que cada una de las coincidencias detectadas no constituyen plagio alguno.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima, 02 de diciembre del 2022

Apellidos y nombres del asesor: Zamora Beyk, Juan Pablo	ERA.
DNI: 42867511	347/
ORCID: 0000-0002-0849-6958	Firma

RESUMEN

El Perú es considerado un país altamente sísmico puesto que se localiza cerca de la superficie de fricción de las placas de Nazca y Sudamericana. Por este motivo, y sumado a la aparición de nuevas tecnologías y herramientas disponibles, los análisis dinámicos han venido cobrando un valor significativo en lo que compete a la ingeniería geotécnica-sísmica. La presente investigación busca evaluar dinámicamente la estabilidad de un depósito de relaves a través del método de elementos finitos, con el fin de determinar la magnitud del riesgo que representaría la potencial falla del dique que contiene los relaves. Dicho ejercicio se realizó mediante la modelación y análisis de la sección crítica de la estructura, haciendo uso del software geotécnico GeoStudio 2018® (específicamente, sus módulos SEEP/W, SIGMA/W, QUAKE/W y SLOPE/W.), y sometiéndola a solicitaciones dinámicas provocadas por eventos sísmicos, en forma de registros de aceleraciones. Después de ejecutado esto, se prosiguió con la determinación de las resistencias post-sísmicas, factores de seguridad y las deformaciones y desplazamientos permanentes de la estructura, obteniendo como resultado que la presa desarrolla una potencial movilidad cíclica a causa de los desplazamientos que experimenta, mas no significa un riesgo de falla total. Luego, se realizó una evaluación e interpretación de los resultados obtenidos, con el objetivo de adquirir un mayor entendimiento del comportamiento de la presa post-sismo y determinar su condición final de estabilidad. Finalmente, se propone una solución para poder estabilizar el sistema, la cual consta de perfilar la cimentación ubicada aguas abajo de la presa, consiguiéndose factores de seguridad que cumplen con los mínimos valores recomendados y asegurando la estabilidad de la presa a corto y largo plazo.

Nota: Por temas de confidencialidad sobre la información proporcionada por la empresa minera para el desarrollo del trabajo, se denominará con otros nombres a la empresa dueña del proyecto y a las consultoras que realizaron los estudios para este.

Palabras Clave: Factor de seguridad, Elementos Finitos, Depósito de Relaves, Presa, Inestabilidad, Análisis Dinámico, Sismo, Licuación.

AGRADECIMIENTOS

El único modo de hacer un gran trabajo es amar lo que haces.

Steve Jobs

Agradezco en primer lugar a mis padres, Sara y Miguel, los cuales me brindaron la oportunidad de estudiar esta maravillosa carrera en la prestigiosa Pontificia Universidad Católica del Perú, además de apoyarme en todo momento y darme la mano en las ocasiones más complicadas.

Agradezco a mis hermanos, Arturo y Carolina, ya que sin su apoyo y compañía no hubiese podido realizar este trabajo.

Agradezco a Dios por haberme dado la oportunidad de desarrollar mi carrera universitaria sin complicaciones, contando con su bendición en todo momento.

Del mismo modo agradezco a mi asesor, el Ingeniero Juan Pablo Zamora, por haberme apoyado en todo momento para solventar mis dudas y ayudarme con el desarrollo de este trabajo.

Finalmente, agradezco a mi enamorada Arihana, por su inmenso apoyo y cariño durante todo el proceso y a mis amigos de la universidad, por haber hecho que la experiencia universitaria sea inolvidable y enriquecedora.

ÍNDICE

CAP	ÍTULO	1. INTRODUCCIÓN	1
1.1 1.2	Antece	cación de la investigaciónedentes	3
1.3	3	VOS:	
1.4 1.5	-	esises	
CAP		2. ACERCAMIENTO TEÓRICO	
2.1		en sistemas de almacenamiento de relaves	
2.1	2.1.1	Factores que influyen en la estabilidad del sistema	
	2.1.2	Mecanismos de falla	8
2.2	Anális	is de estabilidad de taludes	11
	2.2.1	Análisis por elementos finitos	
	2.2.2	Análisis dinámico por elementos finitos	13
	2.2.3	Comportamiento dinámico e interacción con el terreno	14
2.3	Model	os constitutivos de los materiales	16
2.4		etros de los materiales	
	2.4.1	Parámetros dinámicos	
2.5	Conce ₃ 2.5.1	ptos teóricos sobre licuación y estado crítico en suelos	27 27
	2.5.2	Evaluación del potencial de licuación utilizada en QUAKE/W	
	2.5.3	Esfuerzo cíclico equivalente	
	2.5.4	Función de exceso de presión de poros (ru)	
CAP	ÍTULO		
3.1		de la investigación	35
	3.1.1	Procedimiento general	
	3.1.2	Método	
	3.1.3	Tipo de investigación	
	3.1.4	Nivel de investigación	
3.2		limiento seguido para el desarrollo del análisis	
	3.2.1	Enfoque general del procedimiento	
	3.2.2	Desarrollo del procedimiento	39
CAP	ÍTULO	4. DESCRIPCIÓN DEL CASO DE ESTUDIO	50
4.1	Genera	alidades del proyecto	50
	4.1.1	Descripción general del sistema de almacenamiento de relaves	50
4.2	-	gía	
	4.2.1	Geología regional	
	4.2.2	Geología local	
4.3		gaciones geotécnicas realizadas	
4.4	4.4.1	pción de los componentes del depósito de relaves	
	4.4.2	Materiales seleccionados de la presa	
	4.4.3	Relaves	63

	4.4.4	Macizo Rocoso	65
4.5	Sismic	idad	65
	4.5.1	Tectonismo de los Andes	65
	4.5.2	Sismo-Tectónica Regional	66
	4.5.3	Estudio de peligro sísmico	67
CAP	ÍTULO	5. ANÁLISIS DINÁMICO DE LA PRESA	70
5.1	Consid	leraciones para el análisis	70
	5.1.1	Criterios utilizados	70
	5.1.2	Parámetros utilizados para cada tipo de análisis	75
5.2	Anális 5.2.1	is Estático Inicial	
	5.2.2	Condiciones In-Situ con SIGMA/W	
	5.2.3	Análisis de estabilidad antes del sismo con SLOPE/W	
5.3	Anális 5.3.1	is del Potencial de Licuación en la fundación	
	5.3.2	Análisis del Potencial de Licuación en la fundación mediante la teoría de estado crítico	87
5.4	Anális 5.4.1	is DinámicoAnálisis sísmico con QUAKE/W	
	5.4.2	Análisis de estabilidad post-sismo con SLOPE/W	95
	5.4.3	Redistribución de esfuerzos con SIGMA/W	
5.5	Anális 5.5.1	is y Discusión de ResultadosSin considerar sistema de estabilización	99 99
	5.5.2	Considerando sistema de estabilización	104
CAP	ÍTULO	6. CONCLUSIONES Y RECOMENDACIONES	111
DIDI	IOCD	A FÍ A	117

LISTA DE TABLAS

Tabla 2.1 Resumen de las metodologías para análisis estático más utilizadas.	12
Tabla 2.2 Cambios en las propiedades del suelo (elástico o inelástico) de acuerdo a la deformación cortante y el n	nodelo
a adoptar	
Tabla 2.3 Fórmulas empíricas para la obtención del módulo de corte G y Gmax propuestas por varios autores	21
Tabla 2.4 Estimación del Módulo de Elasticidad y Módulo de Poisson a partir del tipo de suelo	26
Tabla 2.5 Adaptación de los rangos de velocidad de ondas de corte Vs según el tipo de suelo	26
Tabla 2.6 Rangos de velocidad de ondas de presión Vp según el tipo de suelo.	26
Tabla 3.1 Periodos de retorno según cargas sísmicas de diseño recomendadas.	40
Tabla 4.1. Resumen de características de la presa y los relaves para el depósito.	51
Tabla 4.2. Resultados de la prueba Proctor Estándar	
Tabla 4.3. Resultados de ensayos triaxiales en el material de cimentación.	57
Tabla 4.4. Tonelaje disponible para la construcción de la presa	60
Tabla 4.5. Parámetros resistentes para los materiales componentes de la presa.	61
Tabla 4.6 Resumen de parámetros considerados de relave	63
Tabla 4.7 Clasificación de distintos tipos de relaves.	63
Tabla 4.8 Sismos de diseño recomendados para el análisis.	69
Tabla 5.1 Factores de seguridad mínimos según la norma CDA	71
Tabla 5.2 Factores de seguridad mínimos según la norma ANCOLD.	
Tabla 5.3 Categoría de daño según desplazamiento de cresta.	
Tabla 5.4 Parámetros utilizados para el análisis de infiltraciones.	75
Tabla 5.5 Parámetros utilizados para el análisis de estabilidad antes y después del sismo	76
Tabla 5.6 Parámetros utilizados para el análisis in-situ y de redistribución de esfuerzos post-sismo	76
Tabla 5.7 Parámetros utilizados para el análisis dinámico.	
Tabla 5.8 Factores de corrección de CRR en función de la magnitud del sismo	85
Tabla 5.9 Resumen de resultados análisis dinámico	
Tabla 5.10 Resumen de resultados antes y después de la estabilización.	110

LISTA DE FIGURAS

Figura 1.1. Configuración general del depósito de relaves	3
Figura 2.1. Mecanismo de falla tipo flujo por falla de la cimentación	
Figura 2.2: Esquematización de falla por pérdida de borde libre	
Figura 2.3. Falla por agrietamiento (izquierda) y falla por asentamiento (derecha).	
Figura 2.4. Falla por inestabilidad del talud a nivel local (izquierda) y falla por inestabilidad con superl	
de falla circular que pasa por el pie del talud (derecha).	
Figura 2.5. Espectros obtenidos para diferentes tipos de suelo con base en 104 acelerogramas agrupa	
donde Sa/ar : factor de amplificación estructural.	
Figura 2.6. Representación de la ecuación de resistencia cortante de Coulomb	
Figura 2.7. Envolvente de falla para material ensayado en condiciones drenadas (arriba) y no drena	
(abajo).	
Figura 2.8. Curva histerética obtenida a partir de ensayos basados en la relación esfuerzo-deformación	
Figura 2.9. Ejemplo de relación de reducción del módulo de corte en función del esfuerzo cortante cíc	
aplicado	
Figura 2.10. Ejemplo de función de amortiguamiento de acuerdo al esfuerzo cortante aplicado	
Figura 2.11. Comportamiento dilatante, contractivo y de licuación limitada en suelos	
Figura 2.12. Cuasi estado crítico evidenciado en una muestra de relaves de aluminio.	
Figura 2.13. Comportamiento de un suelo tipo arena suelta en un ensayo triaxial bajo solicitaciones drenadas.	
Figura 2.14. Concepto de superficie de colapso para la muestra de suelo arenoso suelto ensayado	
Figura 2.14. Concepto de superficie de colapso para la muestra de suelo arenoso suelto ensayado Figura 2.15. Estados de esfuerzos donde el suelo se considera licuado y disparador de licuación dinán	
en un diagrama qvsp'estados de estucizos donde el sucio se considera ficuado y disparador de ficuación difian	
Figura 2.16. Número de ciclos de esfuerzo equivalente para sismos de diferente magnitud	
Figura 2.17. Transformación de registro sísmico a solicitación cíclica equivalente	
Figura 2.18. Ejemplo de función de ratio de presión de poros vs. ratio N/NL	
Figura 2.19. Ejemplo de función número de ciclo	
Figura 3.1. Triángulo de Burland enfocado hacia análisis geotécnicos.	
Figura 3.2. Proceso adaptado recomendado para análisis dinámicos de estabilidad en depósitos de rela	
Eigung 2.2 Diagnoma de fluiga galum aggregatio de manag mans la giagnaión del amélicia	
Figura 3.3. Diagrama de flujos sobre secuencia de pasos para la ejecución del análisis	
Figura 3.4. Esquema general del análisis dinámico.	
Figura 3.5. Diagrama de flujos, consideraciones para evaluación de la respuesta sísmica. (Resaltado	
negrita).	
Figura 3.6. Pasos seguidos para la ejecución del análisis in-situ con SEEP/W.	
Figura 3.7. Pasos seguidos para la ejecución del análisis in-situ con SIGMA/W	
Figura 3.8. Pasos seguidos para realización del análisis sísmico en QUAKE/W	
Figura 3.9. Distintos tipos de elementos para definir la geometría de una estructura en GeoStudio 20	
Figura 3.10. Elementos que conforman el modelo de una estructura.).	44
Figura 3.11. Tipos de malla de acuerdo a la geometría de la estructura. Malla estructurada (a) y malla	
superficies redondeadas (b)	
Figura 3.12. Modelamiento de los 3 tipos de condiciones de frontera. Fronteras elementales o	
desplazamiento nulo (a), fronteras locales o de viscosidad (b) y fronteras del tipo consistentes (c)	
Figura 3.13. Ejemplo de talud modelado y condiciones de frontera tipo restricción de desplazamientos.	
Figura 3.14. Representación gráfica de un talud antes y después del movimiento sísmico	
Figura 3.15. Historia aceleración Vs Tiempo en la base del talud	
Figura 4.1. Arreglo final del depósito de relaves.	51
Figura 4.2. Resultados de Gs en las calicatas del área de cimentación	55

Figura 4.3. Perfiles unidimensionales de MASW ubicada en el área de cimentación	58
Figura 4.4. Módulo cortante en arenas	59
Figura 4.5. Amortiguamiento de arenas	59
Figura 4.6. Diagrama de Leps para caracterización del ángulo de rozamiento según el tipo de roca,	función
línea roja	62
Figura 4.7. Propiedades índices para el tipo de relave asumido	64
Figura 4.8. Granulometría para distintos tipos de relave.	64
Figura 4.9. Velocidad de Ondas de Corte (Vs) características del macizo rocoso	
Figura 4.10. Registro de aceleraciones del sismo del 3 de octubre de 1974. Dirección E-W	69
Figura 5.1. Vista en planta sección crítica y ensayos utilizados (línea azul: eje sección crítica)	
Figura 5.2. Perfil estratigráfico del suelo de fundación.	
Figura 5.3. Registro sísmico utilizado para el análisis.	
Figura 5.4. Definición de condiciones de frontera y propiedades de materiales para análisis de infil	
Figura 5.5. Resultados de carga de agua sobre el sistema.	
Figura 5.6. Resultados de la presión de poros sobre el sistema.	
Figura 5.7. Definición de las condiciones de frontera para análisis In-Situ	
Figura 5.8. Esfuerzos totales en el sistema antes de aplicar el sismo.	79
Figura 5.9. Falla local del dique antes del sismo.	80
Figura 5.10. Falla global del dique antes del sismo.	
Figura 5.11. Falla de la cimentación antes del sismo	81
Figura 5.12 Relación de resistencia cíclica del suelo en función de su contenido de finos y N ₆₀	
Figura 5.13. Número de golpes N ₆₀ Vs. profundidad para las perforaciones BH-TSF-01 (izquierda)	
TSF-05 (derecha).	
Figura 5.14. Porcentaje de finos Vs. profundidad (línea amarilla discontinua) para las perforacion	
TSF-01 (izquierda) y BH-TSF-05 (derecha)	
Figura 5.15. Análisis de potencial de licuación en el perfil BH-TSF-01	
Figura 5.16. Análisis de potencial de licuación en el perfil BH-TSF-05	
Figura 5.17. Resultados de número de golpes corregidos y densidad relativa vs. profundidad	
perforación BH-TSF-01.	
Figura 5.18. Comportamiento del material de cimentación en un ensayo triaxial CU	
Figura 5.19. Estimación de los parámetros de estado crítico para ser ingresados al programa	
Figura 5.20. Condiciones análisis dinámico en Quake/W.	
Figura 5.21. Exceso de presión de poros en la cimentación, tiempo 0.2 seg.	
Figura 5.22. Exceso de presión de poros en la cimentación, tiempo 50 seg.	
Figura 5.23. Porción de la cimentación que ha licuado a los 0.2 seg.	
Figura 5.24. Porción de la cimentación que ha licuado a los 50 seg.	
Figura 5.25. Aceleración registrada en la base de la roca.	
Figura 5.26. Aceleración registrada en la base de la cimentación (contacto suelo-roca)	
Figura 5.27. Aceleración registrada en la base de la presa.	
Figura 5.28. Aceleración registrada en la cresta.	
Figura 5.29. Aceleración espectral vs. periodo en la roca.	
Figura 5.30. Análisis de estabilidad post-sismo para falla en la cimentación	
Figura 5.31. Análisis de estabilidad post-sismo para falla global.	
Figura 5.32. Análisis de estabilidad post-sismo para falla local.	
Figura 5.33. Desplazamientos en el eje x después del sismo.	
Figura 5.34. Desplazamientos en el eje y después del sismo.	
Figura 5.35. Desplazamientos totales después del sismo.	
Figura 5.36. Desplazamiento vertical y horizontal de la cresta, después del sismo	
Figura 5.37. Desplazamiento vertical y horizontal del pie de la cimentación, después del sismo	
Figura 5.38. Registro de aceleración en la base de la roca.	102

Figura 5.39. Amplificación evidenciada desde la roca hacia la cimentación.	102
Figura 5.40. Decremento de señal evidenciada desde la cimentación hacia base de la presa	103
Figura 5.41. Amplificación de señal evidenciada desde la base de la presa hacia la cresta	
Figura 5.42. Arreglo general del sistema con la alternativa de estabilización.	104
Figura 5.43. Resultado análisis de flujo con la alternativa de estabilización	104
Figura 5.44. Resultado análisis In-Situ con la alternativa de estabilización.	105
Figura 5.45. Resultado análisis dinámico con la alternativa de estabilización, exceso presión de por	
Figura 5.46. Resultado análisis dinámico con la alternativa de estabilización, porción de cime	entación
licuada	106
Figura 5.47. Factor de seguridad, falla global con alternativa de estabilización	106
Figura 5.48. Factor de seguridad, falla local con alternativa de estabilización	
Figura 5.49. Factor de seguridad, falla en la cimentación con alternativa de estabilización	107
Figura 5.50. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos total	les108
Figura 5.51. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos horiz	zontales.
	108
Figura 5.52. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos ve	rticales.
	109
Figura 5.53. Desplazamiento horizontal y vertical de la cresta con alternativa de estabilización	109
Figura 5.54. Desplazamiento horizontal y vertical en el pie de la cimentación, con alterna	
estabilización	

ANEXOS

Anexo A Registros Sísmicos

Anexo B Curvas Ingresadas a GeoStudio

Anexo C Ensayos Realizados

Anexo D Planos

CAPÍTULO 1. Introducción

La actividad minera en el Perú es considerada una de las más importantes, ya que genera múltiples beneficios para la sociedad, es una importante fuente de trabajo, impulsa el desarrollo de las poblaciones aledañas influenciadas por el proyecto, genera ingresos a las regiones gracias al canon minero, etc.

Se conoce como relaves al material desecho producto del proceso de extracción del mineral de interés para cualquier proyecto minero. Estos pueden contener componentes altamente tóxicos y contaminantes como, por ejemplo, cianuro, mercurio y metales pesados; por este motivo, se los deposita en grandes áreas de manera progresiva (por capas) para evitar que estos sean desechados al ambiente sin ningún control. El método más común de contención de este material es a través de la construcción de una presa, la cual cumple la función de embalsar el contenido para almacenarlo y así completar el sistema denominado depósito de relaves.

La ocurrencia de falla de estas estructuras tiene como causales la intervención de parámetros internos y externos, como el tipo de material de la estructura, geología, capacidad portante del suelo de fundación, precipitación, infiltraciones, potencial de licuación de la fundación y sismicidad de la zona, entre otros. Su interacción podría generar desastres de gran magnitud que repercutirían negativamente en la sociedad y el medio ambiente.

Para sitios que presentan una sismicidad considerable, la evaluación geotécnica para evaluar una potencial falla debido a la ocurrencia de sismos se torna relevante. Por este motivo, se seleccionó como objeto de estudio un depósito de relaves ubicado en una ciudad peruana que se caracteriza por presentar un índice de sismicidad considerable. Sobre este, se realizó un análisis dinámico por el método de elementos finitos, con el fin de poder determinar sus deformaciones y desplazamientos para luego establecer el desempeño de la estructura mencionada en términos de riesgo.

1.1 Justificación de la investigación

Los depósitos de relaves son considerados como estructuras de gran magnitud y muy importantes, ya que durante todo su ciclo de vida influyen notoriamente, entre otros factores, sobre el tema social, ambiental y económico dentro de su entorno. El depósito de relaves objeto de estudio ha sido clasificado como

"Extrema" de acuerdo a su consecuencia de falla según la CDA (2014). Esto significa que su potencial falla conllevaría un alto riesgo y consecuencias fatales sobre los factores mencionados anteriormente.

Los análisis estático y pseudo-estático por equilibrio límite son comúnmente utilizados dentro de la ingeniería geotécnica debido a su simplicidad y a que nos brindan resultados confiables a cerca del comportamiento de la estructura frente a solicitaciones estáticas y dinámicas; esto último bajo ciertas condiciones como la ejecución de una correcta caracterización de los de los materiales (campañas geotécnicas, ensayos de laboratorio e in-situ) y en sitios donde el factor de sismicidad no es el condicionante más importante.

El depósito de relaves ha sido sometido ante un análisis estático y pseudo-estático con el fin de determinar su estabilidad. Como resultado de estos análisis, se obtuvieron factores de seguridad aceptables para la condición estática; sin embargo, para la condición sísmica (análisis pseudo-estático), los factores de seguridad resultantes son menores a 1.0, lo cual significa, a grandes rasgos, que el depósito no es estable. Según lo indicado por la normativa ANCOLD (2012), el uso de los análisis pseudo-estáticos con el fin de evaluar el comportamiento de una estructura de esta magnitud y consecuencia de falla ante solicitaciones sísmicas no es recomendable.

La justificación de la investigación radica en el hecho de que, para el caso particular de la estructura objeto de estudio, existen factores de riesgo que exigen que el depósito sea evaluado bajo un método más sofisticado. Algunos de estos factores son (i) la alta sismicidad del emplazamiento donde se planea la construcción de la estructura, (ii) el potencial de licuación del suelo de fundación y (iii) que la estructura ha sido clasificada como consecuencia de falla Extrema según lo descrito anteriormente.

Tomando como base lo anterior, se ha buscado determinar el desempeño del depósito de relaves ante un evento sísmico de gran magnitud a través de un análisis dinámico por el método de elementos finitos, y tomando en consideración las relaciones esfuerzo-deformación de los materiales, condiciones de presiones de poro debido al nivel de saturación y potencial reducción de la resistencia de los materiales debido a los esfuerzos provocados por los efectos sísmicos, factores que no son considerados en los métodos simplificados mencionados en los párrafos anteriores.

Con los resultados obtenidos, se pudo obtener el performance de la estructura en términos de riesgo, a través de la evaluación de los factores de seguridad, deformaciones y desplazamientos obtenidos después del análisis y con los cuales se pudieron determinar las potenciales fallas del depósito, como pérdida de borde libre por deformaciones verticales, rotura de filtros/revestimiento, fallas a través del dique o la fundación, entre otros, para finalmente poder proponer medidas de estabilización según lo obtenido.

1.2 Antecedentes

El objeto de estudio es un depósito de relaves de aproximadamente 120 metros de altura y con un tiempo de operación estimado de 18 años. Este almacenará relaves espesados con un contenido de sólidos de 51% y contará con una playa de 100 m aproximadamente, medidos desde la cara aguas arriba del dique. Será construido a base de material de enrocado en una sola etapa, tendrá un ancho de cresta de 20 m, un talud con pendiente aguas arriba de 2.0H:1.0V y aguas abajo de 2.5H:1.0V. El revestimiento planificado consta de una geomembrana LLDPE de 1.5 mm para el vaso y 2.0 mm para el talud aguas arriba de la presa, debajo de la cual se colocará un material de transición para evitar problemas de rotura o punzonamiento por contacto con el material de enrocado. Cabe mencionar que no se han considerado materiales tipo filtro o drenaje dentro del cuerpo del dique. A continuación, se muestra una sección típica donde se aprecian los detalles de la estructura (Ver figura 1.1).

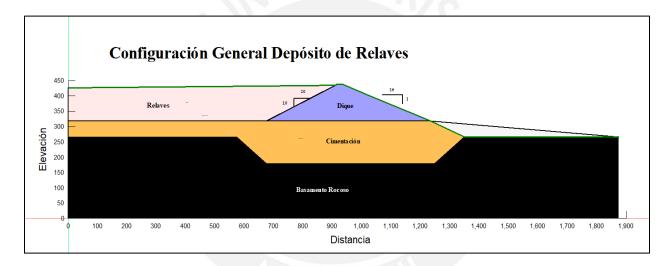


Figura 1.1. Configuración general del depósito de relaves. (Elaboración propia).

Debido a la gran envergadura e influencia de este proyecto, la empresa minera dueña del depósito encargó a distintas empresas consultoras la realización de estudios especializados de este. Por temas de confidencialidad de la información brindada para la investigación, se denominará a la empresa dueña del proyecto como "Empresa Minera" y a las consultoras que realizaron los distintos estudios sobre el sistema como "Consultora A" y "Consultora B".

A continuación, se resumen los estudios realizados sobre el área de análisis, los cuales sirvieron como base para la investigación.

"Estudio de Factibilidad del Depósito de Relaves".

La empresa consultora "Consultora A" se encargó de realizar el estudio a nivel de factibilidad del depósito de relaves. En este estudio se especifican las consideraciones para el diseño, se recopilan y muestran los resultados de ensayos in-situ y de laboratorio realizados en el emplazamiento, se presentan los parámetros ingenieriles de todos los materiales que componen cada uno de los elementos, se muestran los parámetros resultantes del estudio de peligro sísmico y finalmente se realiza un análisis de infiltración y estabilidad estático y pseudo-estático al depósito. Se concluye, con base en los resultados obtenidos, que la presa es estable estáticamente, ya que se obtienen factores de seguridad mayores a 1.5; sin embargo, pseudo-estáticamente, se obtuvo un factor de seguridad de 0.90 en la sección crítica analizada, lo cual, teóricamente, significaría una potencial inestabilidad de la presa.

De este estudio, se utilizaron los parámetros mecánicos y físicos obtenidos a través del análisis de los ensayos previamente mencionados, con el objetivo de caracterizar de manera correcta los materiales componentes de la presa; además, se utilizaron los resultados del estudio de peligro sísmico mencionado en cuanto a aceleraciones de diseño para poder realizar el análisis dinámico.

"Estudio de Peligro Sísmico".

La empresa consultora "Consultora B" realizó el estudio de peligro sísmico correspondiente al depósito de relaves del proyecto, utilizando el método probabilístico y aplicando la metodología desarrollada por Cornell (1968), cuyo resultado fue una curva de peligro sísmico que caracteriza a la zona de estudio, donde se relacionan las aceleraciones máximas y sus probabilidades de excedencia correspondientes; así mismo, se desarrolló un análisis determinístico con base en el catálogo histórico e instrumentación disponibles para esa fecha, obteniéndose el sismo extremo o máximo creíble para cada zona sismogénica. Como conclusión, en este estudio se determinó la aceleración pico del suelo para periodos de retorno de 100, 250, 500 y 1000 años, como 0.13g, 0.19g, 0.22g y 0.26g respectivamente, donde "g" representa la aceleración de gravedad.

De este estudio se extrajeron los sismos de diseño recomendados para el análisis dinámico de la presente investigación, los cuales presentan características de profundidad del hipocentro, intensidad y probabilidad de excedencia semejantes a las del área de estudio analizada.

1.3 Objetivos:

El objetivo general es analizar dinámicamente el depósito de relaves para determinar su condición final de estabilidad, utilizando modelos de elementos finitos.

Objetivos específicos:

- Revisar bibliografía relacionada con análisis sísmicos de estructuras geotécnicas
- Obtener los parámetros hidráulicos, elásticos, mecánicos y dinámicos de los materiales que componen los elementos de la presa
- Evaluar la influencia de los parámetros mecánicos y sísmicos de los materiales componentes para la estabilidad de la presa
- Caracterizar la sección crítica a analizar con base en los resultados de las investigaciones y ensayos realizados
- Determinar los excesos de presión de poros, la resistencia, las deformaciones permanentes y las potenciales zonas de licuación en la presa y cimentación después del sismo
- Obtener el factor de seguridad final post-sismo para la sección analizada
- Definir la condición final de estabilidad de la presa
- Proponer una alternativa de estabilización en caso la presa se catalogue como inestable

1.4 Hipótesis

- El desplazamiento final de la cresta del dique provocará una falla por desbordamiento en la estructura.
- Las condiciones iniciales de presión de poros y esfuerzos internos condicionan el comportamiento de la presa frente al sismo.
- Las deformaciones permanentes en la presa provocarán la falla de esta.
- El sismo generará una reducción considerable de la resistencia de la presa y la fundación de esta.
- Los esfuerzos cíclicos provocados por el sismo generarán que la cimentación de la presa licúe.
- El factor de seguridad final post-sismo de la estructura será mayor que los mínimos requeridos por las normativas internacionales.

1.5 Alcance

El objetivo principal de la investigación es caracterizar y analizar el depósito de relaves para determinar su condición final de estabilidad post-sismo a través de un análisis dinámico. Para lograr dicho objetivo, se realizaron procesos intermedios, como un análisis de infiltraciones y análisis de esfuerzos in-situ previos a la aplicación del sismo en la estructura, con el fin de obtener las condiciones de presión de poros y esfuerzos iniciales, respectivamente. Mencionado esto, la tesis se limita a los siguientes alcances:

- Explicar el procedimiento y metodología utilizados para realizar un análisis dinámico por elementos finitos a depósitos de relaves.
- Exponer únicamente los conceptos teóricos correspondientes a la forma de realizar un análisis dinámico, los cuales abarcan lo relacionado al comportamiento resistente y dinámico de los materiales, no incluye el comportamiento hidráulico (infiltraciones).
- Describir a detalle únicamente los parámetros sísmicos de los materiales, los cuales se utilizan en la aplicación QUAKE/W. No se pretende explicar a detalle los parámetros relacionados a las aplicaciones SEEP/W, SIGMA/W y SLOPE/W, los cuales corresponden al análisis de infiltraciones, esfuerzos iniciales y estabilidad respectivamente.
- Elaborar el modelado de las secciones con base en los resultados de las campañas geotécnicas realizadas sobre en el emplazamiento y asumiendo y correlacionando algunos parámetros según sea necesario, con base en bibliografía afín al tema.
- Establecer una condición final de estabilidad con base en el factor de seguridad obtenido según algunos criterios de la norma CDA (2014) y ANCOLD (2012).
- Determinar el potencial mecanismo de falla de la presa después del sismo con base en los parámetros, asunciones y correlaciones consideradas.
- Los resultados obtenidos en esta investigación están sujetos a las consideraciones y limitaciones tomadas para el modelado y análisis. Este trabajo no pretende reemplazar cualquier estudio realizado en el emplazamiento ni afirmar tajantemente que la presa fallaría en caso las conclusiones del análisis muestren eso, ya que se realizó con fines aplicativos y de investigación. Esta tesis podría servir como punto de partida para futuras investigaciones si así se requiriese.
- Se formularán las conclusiones más relevantes con base en lo obtenido y se expondrán algunas recomendaciones finales.

CAPÍTULO 2. Acercamiento teórico

El presente capítulo busca exponer y explicar los conceptos teóricos en los que se basa un análisis dinámico para estructuras geotécnicas, en este caso, una presa de enrocado cimentada sobre suelo arenoso-arcilloso. En primera instancia, se da una explicación general a cerca de los tipos de falla y factores externos e internos que influencian la ocurrencia de este evento. Seguidamente, se explican algunos de los métodos existentes para evaluar la estabilidad de taludes, de los cuales el utilizado para analizar la presa fue el análisis dinámico por elementos finitos. Finalmente, se presentan y describen los modelos constitutivos utilizados para caracterizar a los materiales componentes del sistema en relación a sus capacidades resistentes y comportamiento ante solicitaciones dinámicas.

2.1 Fallas en sistemas de almacenamiento de relaves

Se define como falla de una presa al evento en el cual la estructura no puede contener el material al cual está embalsando (Murillo, 2012). Según ICOLD (2017), existen diferentes mecanismos de falla en presas de tierra o enrocado, los cuales se listan a continuación: (1) Inestabilidad debido a falla en la fundación, (2) inestabilidad debido a la falla del dique, (3) desbordamiento (*overtopping*), (4) erosión, (5) *piping* (erosión interna), (6) falla por rotura de tuberías y (7) efectos ambientales.

Es importante además conocer algunos de los factores más influyentes que afectan la estabilidad de las estructuras. A continuación, se describen aquellos que se consideraron para el análisis realizado.

2.1.1 Factores que influyen en la estabilidad del sistema

Exceso de presión de poros: En condiciones saturadas del terreno, la presión de poros juega un papel muy importante ya que es uno de los principales causantes de la inestabilidad por falla de la fundación, debido a que cuando esta aumenta (producto de cargas externas a las que se somete o el movimiento provocado por los sismos), se reduce la resistencia al esfuerzo cortante del material en cuestión (licuación). La incidencia de este factor está en función del tipo de material que conforma el elemento geotécnico, ya que, a menor permeabilidad de este, sus efectos se tornan negativos; por esto, fue necesario realizar una caracterización óptima del terreno y de las condiciones de presión de poros en el área de estudio.

- Tipo de suelo y materiales de construcción: Este factor se refiere a los tipos de material del que está compuesto cada elemento, ya que el comportamiento de estos, ante un sismo, se rige de acuerdo a las características de los primeros. Al analizar una estructura uniforme y de un solo material, este se torna relativamente fácil y simplificado; sin embargo, en la mayoría de los casos la composición es compleja, por lo tanto, el comportamiento geotécnico también lo es. Algunas fallas en presas se generan por aspectos geológicos no diferenciados durante el levantamiento y exploración en campo, que, al no ser considerados, generan un aumento en la incertidumbre del factor de seguridad obtenido (Castañón Garay, 2011). Por este motivo, es importante una correcta caracterización de los materiales.
- Configuración geométrica: Se refiere a la geometría y condiciones actuales de la estructura a analizar. Influyen aquí la pendiente de los taludes aguas arriba y aguas abajo, altitud de ladera y orientación de esta, factores que contribuyen a la inestabilidad de los materiales y el desarrollo de procesos de falla.
- Comportamiento dilatante o contractivo de los materiales: Dentro de las teorías de estado crítico y potencial de licuación, el primer paso para analizar un tipo de falla de este tipo es a través de la definición del comportamiento de dicho suelo, siendo los suelos contractivos los más susceptibles a presentar licuación, ya sea estática o dinámica. Este aspecto se explicará con mayor detalle en las subsecciones siguientes.
- Eventos naturales extraordinarios: Este aspecto se enfoca en que, para algunos casos, las fallas en este tipo de presas ocurren por no considerar eventos naturales extremos no habituales que, a pesar de su poca probabilidad de ocurrencia, representan un potencial riesgo y atenta contra la seguridad. Estos eventos pueden ser máximas avenidas por una precipitación no esperada o un sismo extremo no considerado.

2.1.2 Mecanismos de falla

Existen diferentes mecanismos por los cuales una presa de relaves puede fallar. En algunos casos esta falla puede considerarse relativa, ya que a pesar de que se obtengan factores de seguridad menores a los mínimos permitidos por las normas previamente citadas, esto no significaría que el sistema colapse. Previamente, se mencionaron siete tipos de mecanismos de falla; sin embargo, se describen a continuación únicamente aquellos que estarían asociados a los eventos sísmicos.

Falla de la fundación

Para el caso de estudio, este mecanismo de falla está asociado al fenómeno de licuación, el cual se define como la ocurrencia de pérdida de resistencia ante esfuerzos cortantes por un periodo corto de tiempo. Este evento se produce generalmente en suelos arenosos, sueltos y contractivos; sin embargo, la ocurrencia de fallas por este tipo en presas de todo el mundo evidencia que, bajo ciertas condiciones, otros tipos de suelo pueden representar un riesgo. De este, se desprenden dos mecanismos de licuación en suelos: (1) Licuación estática y (2) licuación dinámica o cíclica. El primero se genera frecuentemente cuando se tienen suelos de baja permeabilidad, los cuales, al aplicarles solicitaciones externas de carga como por ejemplo recrecimientos frecuentes de la presa, hacen que no se permita el drenaje del agua, haciendo que la presión de poros no se disipe y por ende se pierda la resistencia efectiva teniendo como consecuencia la falla del suelo. Este tipo de falla no será analizado debido a que la presa en estudio se construirá en una sola fase y el tiempo en que se analiza el sistema asume que las presiones de poro se han disipado totalmente. El segundo mecanismo de falla por licuación se genera debido a los esfuerzos cortantes cíclicos provocados por el sismo. Esta solicitación podría provocar un exceso en la presión de poros del suelo de fundación, haciendo que se produzca una pérdida de resistencia cortante en este (resistencia residual post-licuación). Este evento podría provocar dos tipos de falla en el sistema:

• Falla de licuación por flujo: Se da cuando la resistencia residual post-licuación de la cimentación es menor que la resistencia necesaria para el equilibrio estático. Este tipo de falla es de naturaleza súbita y catastrófica, está asociada a factores de seguridad menores a 1 y se reflejaría en el análisis a través de una potencial falla global de la estructura, lo que significaría que la superficie de falla pase por el material de cimentación (Ver figura 2.1).

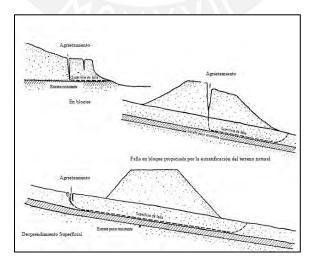


Figura 2.1. Mecanismo de falla tipo flujo por falla de la cimentación. (De Matteis, 2003).

• Movilidad cíclica: En este caso, la resistencia residual post-licuación es mayor a la resistencia necesaria para el equilibrio estático; sin embargo, el exceso de presión de poros genera una pérdida en la rigidez del material de fundación (*strain softening*), que a su vez provocaría un desplazamiento vertical (asentamiento). El asentamiento de la fundación conlleva a un posible riesgo de falla por rebose del relave (overtopping) (ver figura 2.2) si el desplazamiento vertical es mayor que el borde libre considerado; además podría generar también grietas en la presa (ver figura 2.3) o, en el peor de los casos, la rotura presa. Este tipo de falla está asociado a factores de seguridad que están dentro del rango 1.0 a 1.2.

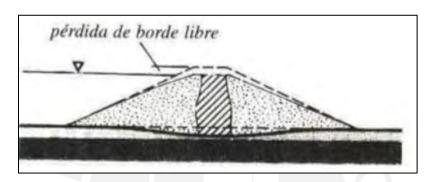


Figura 2.2: Esquematización de falla por pérdida de borde libre (Novak, et al., 2001)

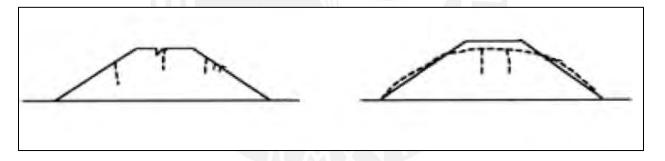


Figura 2.3. Falla por agrietamiento (izquierda) y falla por asentamiento (derecha). (U.S. Army Corps of Engineers, 2004).

• Falla del dique

Desplazamientos horizontales considerables en la cresta: Las fuerzas del sismo provocan que cualquier elemento se desplace en múltiples direcciones. La condición final de desplazamiento post-sismo rige la condición de estabilidad, en este caso, de la presa estudiada, ya que, si la magnitud de este es lo suficientemente grande, podría generar un rompimiento de la estructura. El desplazamiento máximo en la cresta al final del movimiento fue uno de los indicadores para definir la magnitud de la falla según el criterio propuesto por Makdisi & Seed (1977), el cual será presentado posteriormente.

• Inestabilidad de talud: Finalmente, el fenómeno de ablandamiento (softening) se podría generar también en la presa, esto de acuerdo al tipo de material del que está construido. Al igual que para el material de cimentación, la falla podría provocarse de manera local si después del sismo las fuerzas resistentes de esfuerzo cortantes de la presa son menores que las necesarias para asegurar la estabilidad estática. Este mecanismo se vería reflejado con valores de factor de seguridad menores a 1, asociados a una falla local del talud, tanto aguas arriba como aguas abajo (Ver figura 2.4).

Figura 2.4. Falla por inestabilidad del talud a nivel local (izquierda) y falla por inestabilidad con superficie de falla circular que pasa por el pie del talud (derecha). (US Army Corps of Engineers, 2004).

2.2 Análisis de estabilidad de taludes

Según De Matteis (2003), se entiende por talud a cualquier superficie inclinada respecto de la horizontal que hayan que adoptar permanentemente las estructuras de tierra. Dentro de la ingeniería geotécnica se analiza la estabilidad de estas estructuras a través de diferentes métodos, siendo uno de los más usados el análisis estático por equilibrio límite debido a su simpleza y practicidad. Este método se basa en la teoría de las dovelas, la cual divide a la estructura en rebanadas y se asumen condiciones de equilibrio estático entre cada una de las porciones.

Distintas teorías se han venido desarrollando para este tipo de análisis, las cuales presentan consideraciones y asunciones diferentes. A continuación, se presenta un resumen de algunas de estas y sus respectivas características. (Ver tabla 2.1).

Tabla 2.1. Resumen de las metodologías para análisis estático más utilizadas. (Raygada, 2011).

Metodología de Análisis	Descripción			
Fellenius (1927)	No se considera las fuerzas entre dovelas			
Bishop Simplificado (1955)	La resultante de las fuerzas entre dovelas es horizontal			
Bishop Shiiphiicado (1933)	Considera equilibrio de fuerzas verticales.			
	La resultante de las fuerzas entre dovelas es horizontal			
Janbu Simplificado (1968)	y se utiliza un factor de corrección para incluir los efectos			
	de las fuerzas tangeniales existentes.			
Janbu Generalizado (1968)	Se define una línea arbitraria para localizar las fuerzas normales entre dovelas. Busca el equilibrio de fuerzas y no de momentos.			
	Se debe cumplir equilibrio de fuerzas y momentos. La			
Morgensten-Price (1965)	dirección de las fuerzas entre dovelas se rige por una			
	función que se calcula previamente.			
	Se busca la aceleración horizontal requerida para que la			
Sarma (1973)	masa del suelo alcance el equilibrio. No presenta problemas			
	de convergencia.			

Raygada (2011) afirma en su investigación que todos los métodos de equilibrio límite presentan las siguientes características en común:

- La obtención del factor de seguridad está estrechamente ligada con los parámetros de resistencia del suelo o roca analizados, los cuales se caracterizan por tener un alto grado de incertidumbre debido a la no homogeneidad del terreno.
- Con el fin de complementar y satisfacer las ecuaciones de equilibrio, se introducen hipótesis y asunciones, ya que en este tipo de metodología el número de incógnitas es mayor al número de ecuaciones obtenidas del equilibrio elástico, lo cual genera otra fuente de incertidumbre.
- Se asume que la masa del suelo presenta un comportamiento mecánico rígido perfectamente plástico y no se toman en cuenta las relaciones de esfuerzo-deformación que se generan debido a la aplicación de solicitaciones externas o por el propio peso de la estructura.

A partir de las características mencionadas anteriormente, podríamos considerar a los análisis de estabilidad por equilibrio límite como poco confiables y no aplicables para estructuras de gran escala, como el depósito de relaves analizado en esta investigación. Para este tipo de casos es que se vienen aplicando cada vez más los análisis de estabilidad basados en la teoría de elementos finitos.

2.2.1 Análisis por elementos finitos

Respondiendo a la limitante que se genera por las asunciones y simplificaciones asumidas en los métodos de análisis por equilibrio límite para este tipo de estructuras, y el hecho de que estos no tienen en cuenta las deformaciones y reducción de resistencia de los materiales provocados por el sismo, es que surge la metodología de análisis por elementos finitos. Para Urrutia (2008), un análisis por elementos finitos permite dividir al problema en subdominios, los cuales a su vez se componen de puntos llamados nodos. Esta discretización detallada para la modelación del problema nos permite conocer de manera más específica lo que sucede dentro de la estructura analizada, ya que dentro de cada dominio se aplican ecuaciones de equilibrio, compatibilidad y relaciones constitutivas. Según Tardeo & Zanabria (2016), se deben cumplir las siguientes condiciones en un análisis por elementos finitos:

- El equilibrio de esfuerzos se debe satisfacer en cada nodo del dominio según la teoría de elasticidad para describir la relación de esfuerzos-deformaciones.
- Se deben cumplir las condiciones de esfuerzos de frontera.

Posterior cumplimiento de las condiciones expuestas y la resolución de las formulaciones previamente mencionadas, se obtiene el comportamiento post-sismo de cada elemento en términos de resistencia, deformaciones, condición de presión de poros y relaciones de esfuerzo-desplazamiento. De esta manera, dicha metodología resuelve la problemática planteada al utilizar métodos de equilibrio límite con dovelas, la cual no permitía conocer un comportamiento real del desempeño de las estructuras ante solicitaciones dinámicas.

2.2.2 Análisis dinámico por elementos finitos

Con el fin de satisfacer las limitaciones características de los análisis por equilibrio límite para sismos es que se crea la metodología de análisis dinámico. Esta metodología busca introducir la relación esfuerzo-deformación en el análisis de estabilidad de las estructuras con el fin de satisfacer la compatibilidad en los desplazamientos generados por el sismo para, de esta forma, obtener distribuciones de esfuerzos confiables que permitan conocer un comportamiento parecido a la realidad de, en este caso, la presa de relaves analizada. Este tipo de análisis está ligado a la teoría de elementos finitos previamente descrita. Los esfuerzos post-sismos generados en cada elemento o nodo son integrados para obtener la deformación permanente total de la estructura (Tardeo & Zanabria, 2016). Estos resultados se plasman a través de registros de tiempo historia de los esfuerzos y deformaciones generados a lo largo de la duración del sismo, con los cuales podemos analizar el comportamiento, entender de una mejor manera este y así definir una condición de estabilidad o riesgo de falla.

Existen tres aspectos fundamentales para poder realizar un análisis dinámico óptimo: (1) Correcta discretización de los elementos componentes del sistema, (2) buena caracterización de los materiales y (3) condiciones de frontera. El primer aspecto se refiere a la importancia de representar los elementos del sistema, en este caso la presa, volumen de relaves y topografía de la fundación, en términos de geometría y dimensiones para que el software utilizado pueda generar la malla de elementos finitos. El segundo se refiere a que, para obtener resultados confiables en el análisis, es importante caracterizar correctamente a los materiales, los cuales son tipo de relaves, material del dique y tipo de suelo de la fundación, a través de la asignación de sus parámetros resistentes, hidráulicos, elásticos y dinámicos. Finalmente, el tercer aspecto se refiere a las fronteras o límites que se le da al programa para que este tenga una referencia y punto de partida a la hora de ejecutar el análisis.

Previamente justificada la importancia de realizar un análisis dinámico haciendo uso del método de elementos finitos, se procede a explicar todas las consideraciones, parámetros y aspectos teóricos relacionados a esta clase de análisis.

2.2.3 Comportamiento dinámico e interacción con el terreno

Las estructuras, ya sea geotécnicas, de concreto o metálicas, cuando se ven sometidas a solicitaciones estáticas y dinámicas se comportan como cuerpos deformables (Macazana, 2006). El análisis dinámico para este tipo de estructuras se enfoca principalmente en determinar los esfuerzos, aceleraciones y deformaciones permanentes post-sismo. Una buena forma de representar este comportamiento es a través de la ecuación fundamental de la dinámica de estructuras (Ver ecuación 2.1), la cual se basa en el principio de que se considera al terreno como una masa que se apoya sobre un resorte, la cual se caracteriza por tener una rigidez determinada.

$$[m_e] \{\ddot{q}\} + [c_e] \{\dot{q}\} + [k_e] \{q\} = \{Q(t)\}$$
 (2.1)

Donde:

 m_e = Masa del elemento

 c_e = Amortiguamiento

 k_e =Rigidez del elemento

Q(t) = Movimiento en la base provocada por el sismo

 $\{\ddot{q}\}, \{\dot{q}\}, \{q\}$ = Aceleración, velocidad y desplazamiento de la estructura respectivamente

De la ecuación anterior, se concluye que el comportamiento dinámico de la estructura está en función de su masa, amortiguamiento y rigidez, las cuales a su vez se relacionan con los efectos dinámicos que el sismo genera sobre esta (aceleración, velocidad y desplazamiento, respectivamente). La superposición de todos estos efectos describiría el efecto del movimiento sísmico, el cual se representa a través del movimiento generado en la base para la presa de relaves.

Por otro lado, se sabe que las solicitaciones provocadas por un sismo (cíclicas) generan que el suelo se vea afectado principalmente por el efecto del esfuerzo y deformación cortante, debido a que se generan cambios de los esfuerzos desviadores e isotrópicos. Ishihara (1996) propuso una relación entre el tipo de comportamiento esperado en el terreno y las deformaciones a las que este estaría sometido, producto del sismo (Ver Tabla 2.2).

Tabla 2.2. Cambios en las propiedades del suelo (elástico o inelástico) de acuerdo a la deformación cortante y el modelo a adoptar. (Ishihara, 1996).

	10-6	10-5	40-4	10-3	10-7	10-1
Deformación Cortante			10 ⁻⁴		10-2	
	Deformaciones pequeñas	Deformaci	ones medianas	Deformaciones	Grandes Deformaci	ones asociadas a Falla
Elástica						
			_			
Elasto-plástica						
						-
Falla						
1 4114						

Del cuadro anterior se concluye que el suelo, sometido a las solicitaciones dinámicas provocadas por un sismo, se podría comportar como un material elástico para deformaciones cortantes relativamente pequeñas, pasando a un estado elasto-plástico hasta llegar a la rotura para deformaciones cortantes considerables. Con la ayuda de estas relaciones, se puede estimar aproximadamente el tipo de comportamiento que presentaría la estructura estudiada.

Finalmente, se sabe que el viaje que realizan las ondas sísmicas desde el hipocentro del sismo hasta la superficie del terreno en estudio provoca que el movimiento de este se vea influenciado fuertemente por el tipo de suelo que estas atraviesan. Estos cambios radican básicamente en el valor máximo del movimiento y el contenido de frecuencias del sismo (Muñoz, 2011). Existe una estrecha relación de amplificación y cambio en el contenido de frecuencias con el tipo de suelo. Generalmente, los suelos del tipo roca (tipo de terreno rígido) presentan periodos cortos y conforme aumenta el ablandamiento del suelo, el periodo de

este va aumentando. Este cambio en los periodos por tipo de suelo provoca una amplificación en la señal como se muestra en el siguiente gráfico. (Ver figura 2.5)

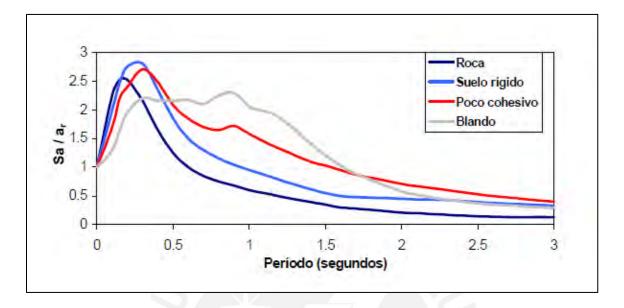


Figura 2.5. Espectros obtenidos para diferentes tipos de suelo con base en 104 acelerogramas agrupados, donde Sa/a_r : factor de amplificación estructural. (Seed & Idriss, 1970).

Del gráfico mostrado se concluye que la amplificación que se ocasiona depende del tipo de suelo y el periodo de este. Para rocas, la amplificación corresponde a periodos de 0 a 0.5 segundos aproximadamente y para suelos blandos se extiende hasta 1.5 segundos. (Muñoz, 2011).

2.3 Modelos constitutivos de los materiales

Se conoce que el suelo no es un material homogéneo, este presenta mucha variabilidad y anisotropía haciendo que sea difícil caracterizar a estos de forma realista. Existen diferentes modelos constitutivos que permiten determinar de una forma aproximada el comportamiento del suelo ante diferentes condiciones. A continuación, se presentan los modelos adoptados para la investigación enfocados al análisis dinámico.

Modelos de resistencia de los materiales

Mohr-Coulomb:

El principal parámetro de resistencia contra el deslizamiento que presenta el suelo es la resistencia al esfuerzo cortante. Una forma de describir el comportamiento de esta es a través del criterio de falla de Mohr-Coulomb. (Ver ecuación 2.2).

$$\tau = c + \sigma_n tan\emptyset \tag{2.2}$$

Donde:

 τ = Resistencia al esfuerzo cortante

c = Cohesión del material

 σ_n = Esfuerzo normal en el plano de corte

Ø = Ángulo de fricción interno phi

Esta relación se representa a través del siguiente gráfico.

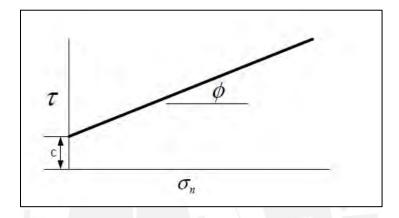


Figura 2.6. Representación de la ecuación de resistencia cortante de Coulomb. (Geo-Slope, 2017).

El criterio de resistencia de Mohr-Coulomb fue el elegido para caracterizar el comportamiento de los materiales que componen el material de cimentación y los relaves. Este se aplica principalmente para materiales en que la resistencia a la compresión es mucho mayor que a la tracción, como es el caso de los suelos. La teoría se basa en la asunción de que un material falla debido una combinación crítica de esfuerzo normal y esfuerzo cortante (Das, 2015).

La envolvente de falla (representación gráfica de la ecuación de Coulomb) se obtiene a través de la ejecución de ensayos triaxiales al tipo de suelo que se quiere analizar y representa los valores de esfuerzo a los que el suelo fallará por este criterio a diferentes cargas aplicadas, ya sea en condiciones drenadas o no drenadas. (Ver figura 2.7).

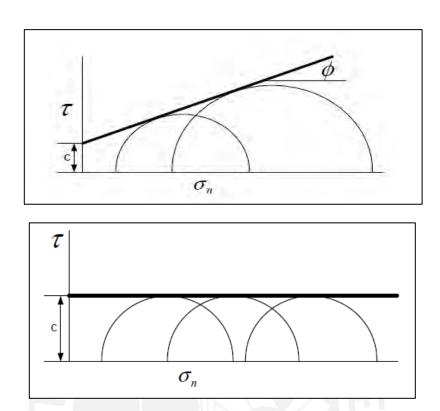


Figura 2.7. Envolvente de falla para material ensayado en condiciones drenadas (arriba) y no drenadas (abajo). (Geo-Slope, 2017).

En la práctica, haciendo uso de los softwares de GeoStudio 2018, es recomendable utilizar los parámetros efectivos de cohesión y ángulo de fricción; además, cuando se desea realizar un análisis partiendo de los resultados obtenidos del análisis dinámico realizado en QUAKE/W, se recomienda utilizar este modelo de resistencia para considerar la resistencia reducida del suelo debido a licuación, aplicando un estado estacionario de resistencia de los suelos (Geo-Slope, 2017).

Hoek-Brown

Hoek y Brown (1980) presentaron un método empírico para estimar la resistencia al corte del macizo rocoso. Este método establece la relación entre tensiones principales mayor y menor al tiempo de la falla a través de la siguiente ecuación.

$$\sigma_1 = \sigma_3 + \sqrt{m * \sigma_{ci} * \sigma_3 + s\sigma_{ci}^2}$$
 (2.3)

Donde:

 σ_1 = Tensión principal mayor en la falla

 σ_3 = Tensión principal menor en la falla (presión de confinamiento)

m,s = Constantes del material para macizo rocoso, que varían con la litología/alteración

 σ_{ci} = Resistencia a la compresión simple de la roca intacta.

Este criterio general puede ser aplicado a muestras intactas de roca; sin embargo, la construcción de la presa representaría el caso de rocas fracturadas, por lo que se requiere un método para enlazar m y s para muestras de roca intacta a parámetros correspondientes de macizo rocoso. La relación final que se utiliza para este caso es la siguiente.

$$\sigma_1 = \sigma_3 + \sigma_{ci} (m_b * \frac{\sigma_3}{\sigma_{ci}} + s)^a$$
 (2.4)

Donde:

 σ_1 = Tensión principal mayor.

 σ_3 = Tensión principal menor.

 σ_{ci} = Resistencia a la compresión simple de la roca intacta.

 m_h = Valor de m para el macizo rocoso.

s = Valor de s para el macizo rocoso (asumir 0 para RMR <25).

a = Constante para la masa de roca (0.5 para RMR>25; 0.65*GSI/100 para RMR<25).

GSI = Valor índice de resistencia geológica de diseño.

RMR = Clasificación del macizo rocoso (Rock mass rating).

Modelo lineal equivalente

Para la definición del modelo constitutivo, existen dos tipos de relaciones esfuerzo-deformación, los cuales son: (1) Modelo lineal-elástico y (2) modelo lineal-equivalente. A pesar de que el modelo lineal-elástico es comúnmente usado para la mayoría de los análisis estáticos, este no representa de manera real lo que sucede en la estructura, ya que para este se asume una relación directa entre el Módulo de Young (E), la deformación y el esfuerzo; además de que considera a los materiales como elásticos y homogéneos, algo que no sucede en la realidad. Este modelo podría ser aplicado, por ejemplo, a materiales en los que se espera una deformación muy pequeña, como podría ser el caso de un macizo rocoso.

Se consideró el modelo lineal-equivalente para el análisis, ya que se sabe que la rigidez del suelo varía de acuerdo con las deformaciones obtenidas. Al adoptar este tipo de comportamiento, QUAKE/W toma en cuenta las variaciones en la relación esfuerzo-deformación entre los intervalos de tiempo (*time steps*) en los que se analiza la estructura durante el sismo y calcula la variación del exceso de presión de poros al final de este (Urrutia, 2008). Se sabe que lo óptimo sería utilizar un modelo no lineal de los materiales, ya que este considera la variación en la presión de poros en cada *time step* y se asemeja más a lo que en realidad sucede con los materiales; sin embargo, este tipo de análisis resulta ser muy complicado y ampliamente complejo de aplicar, debido a la alta demanda de ensayos y datos de entrada que requiere, por lo que se decidió no adoptarlo.

2.4 Parámetros de los materiales

Parte importante de un análisis geotécnico es la correcta caracterización de los materiales que componen la estructura. Para la investigación se consideraron las siguientes propiedades con base en la recopilación de información realizada: (1) Parámetros hidráulicos, (2) parámetros elásticos, (3) parámetros mecánicos de resistencia y finalmente los (4) parámetros dinámicos. A continuación, se describirán a detalle lo relacionado a los parámetros dinámicos.

2.4.1 Parámetros dinámicos

En un análisis dinámico no solo influyen los parámetros de resistencia del terreno, como se explicó anteriormente, también entran a tallar los parámetros dinámicos de este. Para nuestro análisis consideramos los siguientes: Módulo de corte del material (G), módulo de elasticidad (E), amortiguamiento (ξ), velocidad de las ondas (Vs y Vp) y la relación de Poisson (v). Se obtuvieron estos parámetros a través de ensayos geofísicos realizados en la zona de estudio, como ensayos de Refracción Sísmica y MASW (Ver Anexo C), referencias de ensayos bajo condiciones de carga cíclica y correlaciones propuestas por autores diversos. A continuación, se muestra una descripción de cada uno de estos parámetros y las correlaciones o consideraciones utilizadas para obtenerlos.

• Módulo de corte (G y Gmax)

Se define al módulo de corte como la relación existente entre el esfuerzo y deformación ante esfuerzos cortantes, en este caso, provocados por un sismo. Al igual que el amortiguamiento, este valor se obtiene mediante ensayos bajo condiciones de carga cíclicas aplicados al suelo, utilizando un método lineal-equivalente. Se obtienen de estos ensayos curvas histeréticas de esfuerzo-deformación del suelo, con las

cuales se obtiene el módulo de rigidez como el módulo secante establecido en los puntos extremos del lazo histerético (Ver figura 2.8).

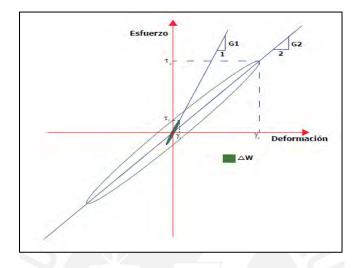


Figura 2.8. Curva histerética obtenida a partir de ensayos basados en la relación esfuerzo-deformación. (Macazana, 2006).

Otra forma de obtener este parámetro es a través de correlaciones que se establecieron en estudios pasados. A continuación, se presenta un cuadro resumen donde se muestran algunas de estas fórmulas empíricas propuestas por diferentes investigadores, las cuales funcionan tanto para suelos cohesivos y no cohesivos.

Tabla 2.3. Fórmulas empíricas para la obtención del módulo de corte G y Gmax propuestas por varios autores. (Kramer, 1996).

Relación	Referencia	Comentario	
$G=1000K_2(\sigma'_m)^{0.5}$	Seed & Idriss (1970)	G en psf	
Gmax= $14760 \frac{(2.973-e)^2}{1+e} (OCR)^{a} (\sigma_m)^{0.5}$	Hardin & Drnevich (1972	Gmax en psf. (a): Parámetro que depende de PI	
Gmax= $8400 \frac{(2.17-e)^2}{1+e} (\sigma'_m)^{0.5}$	Yoshimi et al (1977)	Gmax en psf	
Gmax= $20000(N_1)_{60}^{0.333}(\sigma'_m)^{0.5}$	Ohta y Hoto (1976), Seed et al (1986)	Gmax en psf	
$Gmax = \frac{\gamma}{g} V_s^2$	-	Gmax depende de la unidad de γ y g	

Al igual que para el amortiguamiento, QUAKE/W adopta y propone formulaciones para obtener los valores de G y Gmax en función del tipo de suelo, esfuerzos efectivos y otros parámetros característicos. A continuación, se muestra un resumen de las formulaciones empíricas sugeridas por el manual del software para obtener este valor de acuerdo al tipo de suelo.

• Suelo granular

Para suelos granulares, el valor de Gmax está definido por la siguiente formulación empírica:

$$Gmax = 22K\sqrt{P_a\sigma'_m}$$
 (2.5)

Donde:

Pa = Presión atmosférica.

 σ'_m = Promedio de esfuerzos efectivos.

K = De acuerdo al tipo de suelo, puede ser:

- Arena suelta = 30
- Arena medianamente densa = 50
- Arena densa = 70
- Grava suelta = 80
- Grava medianamente densa = 130
- Grava densa = 180

• Suelo cohesivo

Se obtiene el valor de Gmáx a través de la siguiente fórmula

$$Gmax = 625(\frac{1}{(0.3+0.7e^2)}(OCR)^k \sqrt{P_a\sigma'_m}$$
 (2.6)

Donde:

e = Relación de vacíos

OCR = Relación de sobre consolidación (Over consolidation ratio)

k = Exponente que está en función del índice de plasticidad del material, a través de la siguiente relación:

$$k = \frac{PI^{0.72}}{50} \tag{2.7}$$

Finalmente, se sabe que los suelos sometidos a condiciones dinámicas tienden a ablandarse como respuesta al esfuerzo cortante cíclico al que están sujetos por efectos del sismo. Esta relación de ablandamiento se aprecia en la Figura 2.9, donde la relación de G/Gmáx va decreciendo conforme se aumenta el valor del esfuerzo cortante. Por este motivo, se define una función de reducción para el módulo de corte para obtener un modelo equivalente lineal en función de este parámetro. Se muestran las formulaciones empíricas propuestas para aplicar en QUAKE/W.

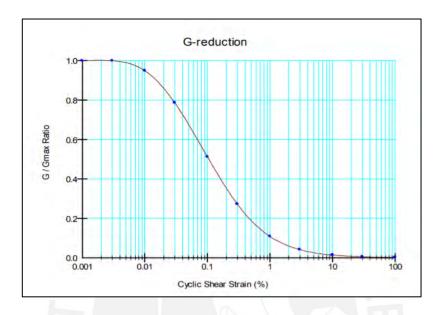


Figura 2.9. Ejemplo de relación de reducción del módulo de corte en función del esfuerzo cortante cíclico aplicado. (Geo-Slope, 2017).

$$\frac{G}{Gmax} = K(\gamma, PI)(\sigma'_m)^{m(\gamma, PI) - m_0}$$
(2.8)

$$K(\gamma, PI) = 0.5 \left\{ 1 + tanh \left[ln \left(\frac{0.000102 + n(PI)}{\gamma} \right)^{0.492} \right] \right\}$$
 (2.9)

$$m(\gamma, PI) - m_o = 0.272 \left\{ 1 - tanh \left[ln \left(\frac{0.000556}{\gamma} \right)^{0.4} \right] \right\} exp(-0.0145PI^{1.3})$$
 (2.10)

Donde:

 σ'_m = Promedio de esfuerzos efectivos.

γ = Deformación por esfuerzo cortante cíclico

PI = Índice de plasticidad del material.

$$n(PI) = 0.00$$
 para $PI = 0$

$$n(PI) = 3.37 \times 10^{-6} \text{PI}^{1.404}$$
 para $0 < \text{PI} < 15$

$$n(PI) = 7x10^{-7}PI^{1.976}$$
 para 15 < PI < 70
 $n(PI) = 2.70x10^{-5}PI^{1.115}$ para PI > 70

Amortiguamiento (ξ)

El amortiguamiento es una característica propia del terreno, se lo define como la capacidad que tiene este para disipar la energía cinética. Para QUAKE/W, se debe introducir este parámetro a través de un valor inicial de amortiguamiento y una función de reducción, que se basa en lo expuesto por Ishibashi y Zhang (1993) y lo que propone el manual del software (Geo-Slope, 2017). La función de reducción mencionada se muestra a continuación.

$$\xi = 0.333 * \frac{1 + exp(-0.0145PI^{1.3})}{2} * \left[0.586 * \left(\frac{G}{Gmax} \right)^2 - 1.547 * \frac{G}{Gmax} + 1 \right]$$
 (2.11)

Donde:

 ξ = Función de reducción de amortiguamiento

PI = Índice de plasticidad del material

G = Módulo de corte del material

A través de esta fórmula, se obtiene una gráfica que está en función del amortiguamiento y esfuerzo cortante cíclico aplicado en el talud debido al sismo. (Ver figura 2.10).

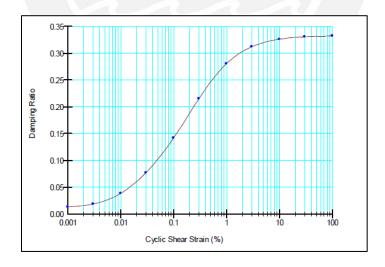


Figura 2.10. Ejemplo de función de amortiguamiento de acuerdo al esfuerzo cortante aplicado. (Geo-Slope, 2017).

Para nuestro caso de estudio utilizaremos un valor inicial de 5%, según lo recomienda Bojorque (2016), que es el valor comúnmente utilizado para suelos.

Módulo de Young (E), coeficiente de Poisson (v), velocidad de las ondas de corte (Vs) y ondas de presión (Vp)

La correcta obtención de estos parámetros es de suma importancia, ya que rigen el comportamiento del suelo ante un sismo y están estrechamente relacionados con los otros parámetros del suelo. Una forma de obtención de las ondas de corte (Vs) y las ondas de compresión (Vp) es a través de la correlación expuesta por Bojorque (2016), la cual está en función del módulo de elasticidad del material y el coeficiente de poisson (Ver fórmulas 2.12 y 2.13). Finalmente, se pueden estimar valores dentro de rangos característicos según el tipo de suelo, tanto para valores de Vs, Vp, E y v (Ver tablas 2.4, 2.5 y 2.6).

Para la obtención de estos parámetros se utilizaron los valores resultantes de los ensayos geofísicos aplicados a la cimentación y lecho rocoso (MASW y Refracción sísmica) y las correlaciones y rangos propuestos mencionados anteriormente.

$$\mathbf{Vs} = \sqrt{\frac{E}{2p(1+\nu)}} \tag{2.12}$$

$$Vp = \sqrt{\frac{E(1-v)}{p(1+v)(1-2v)}}$$
 (2.13)

Donde:

Vs = Ondas de corte

Vp = Ondas de presión

E = Módulo de elasticidad

ρ= Densidad del material

v = Módulo de Poisson

Tabla 2.4. Estimación del Módulo de Elasticidad y Módulo de Poisson a partir del tipo de suelo. (Das, 2015).

Tipo de suelo	Módulo de elasticidad, Es (MN/ m²)	Coeficiente de Poisson, v
Arena suelta	10-25	0.20-0.40
Arena semi-densa	15-30	0.25-0.40
Arena densa	35-55	0.30-0.45
Arena limosa	10-20	0.20-0.40
Arena y grava	70-170	0.15-0.35
Arena blanda	4-20	-
Arcilla media	20-40	0.20-0.50
Arcilla dura	40-100	-

Tabla 2.5. Adaptación de los rangos de velocidad de ondas de corte Vs según el tipo de suelo. (IBC, 2012).

Time de Conde	Namel and Carolin	Propiedades promedio en los 30 m		
Tipo de Sueio	Nombre de Suelo	Vs (m/s)	Número de Golpes N	
A	Roca muy dura	Vs > 1500	N/A	
В	Roca	760 < Vs < 1500	N/A	
С	Suelo muy denso o roca blanda	360 < Vs < 760	N > 50	
D	Suelo Rígido	180 < Vs < 360	15 < N < 50	
E	Suelo Blando	Vs < 180	N < 15	

Tabla 2.6. Rangos de velocidad de ondas de presión Vp según el tipo de suelo. (ASTM D5777, 2018).

Tipo de Suelo	Vp (m/s)
Suelo intemperizado	240-610
Grava o arena seca	460-915
Arena saturada	1220-1830
Arcilla saturada	910-2750
Agua	1430-1665
Agua de mar	1460-1525
Arenisca	1830-3960
Esquisto, arcilla esquistosa	2750-4270
Tiza	1830-3960
Caliza	2134-6100
Granito	4575-5800
Roca metamórfica	3050-7000

2.5 Conceptos teóricos sobre licuación y estado crítico en suelos

Parte importante de los enfoques de este trabajo es evaluar el potencial de licuación del suelo de cimentación de la presa. Existen diferentes metodologías para realizar esta tarea tan importante y esencial para un análisis dinámico; sin embargo, QUAKE/W considera una secuencia de pasos específicos para evaluar este fenómeno en suelos, la cual se describe a continuación.

2.5.1 Comportamiento contractivo o dilatante del suelo

El primer paso para desarrollar dicho procedimiento es clasificar el suelo según este sea dilatante o contractivo, condición que depende del estado de esfuerzos y el grado de consolidación del material, para luego poder determinar el comportamiento esperado que tendrá este ante solicitaciones de carga externa. Una forma de evaluar esto es a través de ensayos triaxiales monotónicos consolidados no drenados (CU), ensayos triaxiales cíclicos con base en los resultados obtenidos de ensayos de piezocono (CPTu); sin embargo, debido a que sobre el material de cimentación solo se han elaborado ensayos del primer tipo, se describe a continuación la forma de evaluación haciendo uso de estos.

Como se mencionó anteriormente, en la mayoría de los casos los suelos potencialmente licuables son los que se denominan como contractivos. El comportamiento de estos genera un exceso de presión de poros positiva, haciendo que, bajo solicitaciones de carga relativamente grandes, este tipo de suelo presente una pérdida de resistencia hasta llegar al colapso. Este tipo de comportamiento se aprecia en la figura 2.11, donde se aprecia que para la curva llamada "liquefaction" en las gráficas de la izquierda, se genera un pico para luego perder resistencia hasta llegar a un estado de resistencia llamado "crítico" (fenómeno llamado de ablandamiento o *strain-softening*) conforme se aumentan las deformaciones (ε_a) (gráfico superior izquierdo); de igual forma se aprecia un aumento positivo de presión de poros (Δu) en la gráfica inferior izquierda.

A diferencia de este tipo de suelos, los clasificados como dilatantes, por su propia característica de expandirse conforme aumenta el esfuerzo, generan un exceso de presión de poros negativa, lo que hace que gane resistencia (fenómeno conocido como de ganancia de rigidez o *strain-hardening*) conforme se incrementen las solicitaciones a las que está sometido (Ver figura 2.11). Sin embargo, existe un estado intermedio de comportamiento en suelos, este estado se conoce como quasi-estado crítico, licuación limitada o *limited liquefaction*, y es propio de suelos que presentan comportamientos contractivos al inicio de ser sometidos a esfuerzos para luego pasar a un estado dilatante. Esto se evidencia en las tres gráficas presentadas líneas abajo según lo explicado previamente y en la figura 2.12, donde se aprecian los resultados de un ensayo triaxial monotónico a un suelo con licuación limitada, donde se ve que al aumentar el esfuerzo

desviador (q) para diferentes presiones de confinamiento (p') el suelo contrae en primera instancia para luego dilatar.

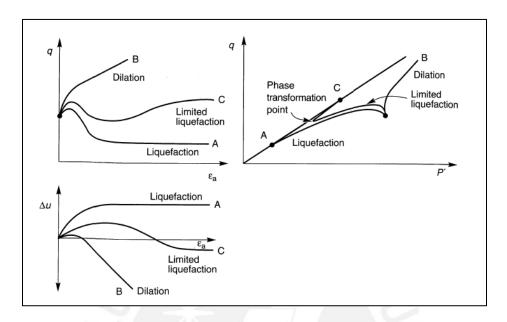


Figura 2.11. Comportamiento dilatante, contractivo y de licuación limitada en suelos. (Kramer, 1996).

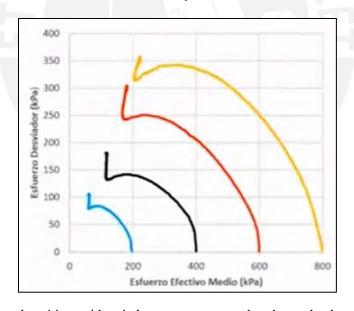


Figura 2.12. Cuasi estado crítico evidenciado en una muestra de relaves de aluminio. (Román, 2020).

2.5.2 Evaluación del potencial de licuación utilizada en QUAKE/W

El módulo de GeoStudio 2018, QUAKE/W, se basa en los conceptos de estado crítico para evaluar el potencial de licuación en suelos. Como fue mencionado previamente, los suelos más susceptibles a licuar son las arenas sueltas a medianamente densas. Al ensayar este tipo de suelos en una prueba triaxial bajo

solicitaciones monotónicas, estos presentan un comportamiento según se aprecia en la figura 2.13, donde en el punto A (muestra consolidada isotrópicamente), el esfuerzo efectivo bajo condiciones no drenadas aumenta hasta llegar a un punto llamado de colapso (*Colapse point*), a partir del cual el suelo comienza a perder resistencia debido al aumento de las presiones de poros y llega a tener una resistencia residual o de estado estacionario (*Steady-state strength*).

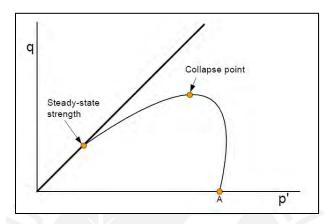


Figura 2.13. Comportamiento de un suelo tipo arena suelta en un ensayo triaxial bajo solicitaciones no drenadas. (Geo-Slope, 2017).

A partir de realizar el mismo procedimiento sobre distintas muestras con el mismo índice de vacíos inicial, pero bajo diferentes presiones de confinamiento, se puede trazar una línea que intercepte los puntos de colapso de los diferentes especímenes ensayados para obtener la denominada superficie de colapso (Sladen, D'Hollander and Krahn, 1985). Esta estimación se aprecia en la figura 2.14.

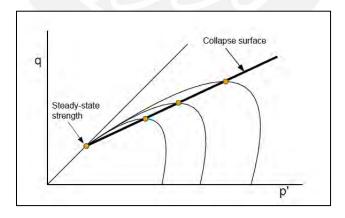


Figura 2.14. Concepto de superficie de colapso para la muestra de suelo arenoso suelto ensayado. (Geo-Slope, 2017).

Las teorías relacionadas con este concepto sugieren que si el tipo de suelo presenta un estado de esfuerzos que cae sobre la superficie de colapso, este se considera como un suelo que ha licuado (Ver figura 2.14).

Con base en esto, se define al estado de inicio de licuación sísmica (*cyclic trigger*) como el fenómeno que produce el sismo sobre el suelo para hacer que este pase desde un estado de no licuación (punto B) hasta llegar a la superficie de colapso. Esto se aprecia en la figura 2.15, donde las solicitaciones cíclicas provocadas por el sismo se representan por la línea ondulada que hace que el suelo vaya desde el punto B hasta llegar a la superficie de colapso.

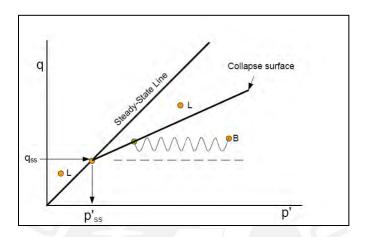


Figura 2.15. Estados de esfuerzos donde el suelo se considera licuado y disparador de licuación dinámica en un diagrama qvsp'. (Geo-Slope, 2017).

2.5.3 Esfuerzo cíclico equivalente

Debido a la variabilidad que representa la generación de esfuerzos cíclicos provocados por un sismo sobre el suelo, se adopta una manera simplificada de representar este fenómeno para realizar el análisis dinámico. Se toma como base lo propuesto por Seed, Mori y Chan (1975), el cual propone estandarizar el esfuerzo cortante máximo provocado por el sismo a un valor del 65% (Ver fórmula 2.14) y con un número equivalente de ciclos que producirían exceso de presión de poros con base en la magnitud de un sismo (Ver fígura 2.16).

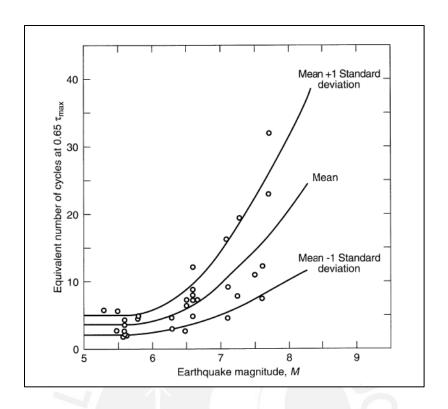


Figura 2.16. Número de ciclos de esfuerzo equivalente para sismos de diferente magnitud. (Seed et al., 1975).

$$\tau_{ciclico} = 0.65\tau_{m\acute{a}x} \tag{2.14}$$

Una vez definidos estos dos parámetros, se establece una equivalencia entre el registro sísmico ingresado y el esfuerzo cíclico aplicado. En otras palabras, el software somete al conjunto a un registro sísmico con aceleraciones pico equivalente y un determinado número de veces igual al N_{eq} (Ver figura 2.17).

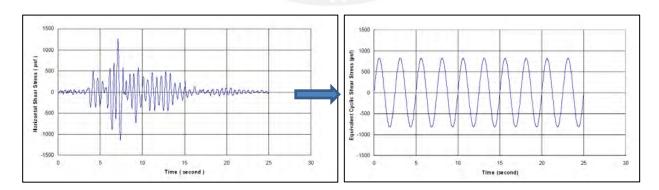


Figura 2.17. Transformación de registro sísmico a solicitación cíclica equivalente. (Geo-Slope, 2017).

2.5.4 Función de exceso de presión de poros (r_u)

Uno de los mecanismos por los cuales ocurre licuación en suelos es debido al exceso de presión de poros que se genera. Una forma de cuantificar este exceso es a través de la definición de una relación que está en función del ratio N/N_L . El valor de N, explicado en la sección anterior, se especifica para cada tipo de sismo en análisis, y el valor de N_L se obtiene de la función de número cíclico. Una vez obtenido el ratio de estos dos valores, se obtiene un valor de r_u con el cual se calcula el exceso de presión de poros haciendo uso de la siguiente fórmula.

$$\mathbf{u} = r_u \cdot \sigma_{3(est\'atico)} \tag{2.15}$$

Donde:

 $\sigma_{3(estático)}$ = Esfuerzo de confinamiento efectivo en el punto de análisis.

La función previamente descrita se relaciona a partir de la siguiente ecuación:

$$r_u = 0.5 + \frac{1}{\pi} sen^{-1} \left[2(\frac{N}{N_L})^{1/\alpha} - 1 \right]$$
 (2.16)

Donde:

 $\alpha = (1+2k_o)/3$ (Finn, Pickering y Bransby, 1971).

$$k_o = \frac{v}{1-v}$$
, v es el módulo de Poisson.

Finalmente, se define la función número de ciclo con base en lo expuesto por Seed y Lee (1965), los cuales en su estudio ensayaron cíclicamente muestras de suelo de la arena del Río de Sacramento a diferentes índices de vacío. Con base en esto y especificando el tipo de suelo, QUAKE/W grafica funciones típicas que son usadas para obtener el parámetro de N_L . A continuación, se muestran ejemplos de funciones de exceso de presión de poros (Ver figura 2.18) y función número de ciclo (Ver figura 2.19) como ejemplo.

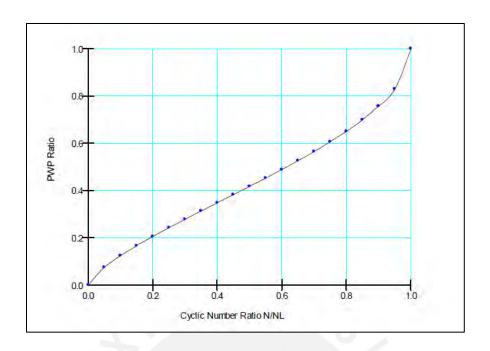


Figura 2.18. Ejemplo de función de ratio de presión de poros vs. ratio N/N_L . (Geo-Slope, 2017).

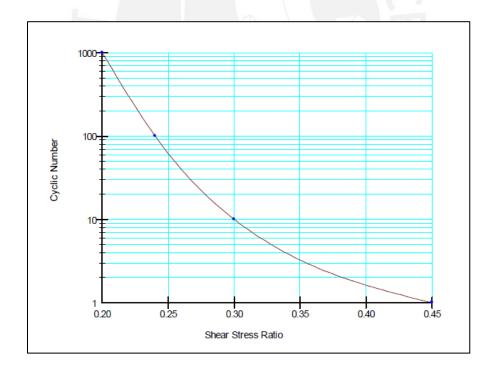


Figura 2.19. Ejemplo de función número de ciclo. (Geo-Slope, 2017).

CAPÍTULO 3. Metodología de investigación

En este capítulo se explica la metodología utilizada para lograr los objetivos planteados, lo cual incluye los enfoques, método y niveles de la investigación; a la par que se detalla el procedimiento seguido para desarrollar el análisis dinámico de la presa. Se adoptó lo propuesto por Burtland (1987), quien recomienda fundamentar cualquier análisis geotécnico enfocándose en el correcto desarrollo de tres aspectos principales. (Ver figura 3.1).

El primer paso fue poder elaborar una correcta caracterización del depósito de relaves y sus componentes para poder garantizar la obtención de resultados óptimos que serán evaluados al final del trabajo. Con ayuda de la información bibliográfica recopilada y los estudios revisados, se cumplió este objetivo y se inició el análisis siguiendo una serie de pasos que serán explicados en esta sección. Cabe mencionar que se ejecutaron dos tipos de análisis: Análisis estático inicial (el cual abarca el análisis de infiltraciones y análisis in-situ) y análisis dinámico (el cual incluye el análisis aplicando los sismos de diseño en forma de registros y un análisis final para determinar el factor de seguridad post-sismo y las deformaciones permanentes) siguiendo el procedimiento recomendado por la normativa ANCOLD (2012); ambos análisis fueron realizados según las recomendaciones de distintos autores, los cuales exponen la importancia de obtener las condiciones iniciales de cualquier estructura geotécnica (que se logra gracias al análisis estático inicial) para poder proceder a un análisis dinámico. Finalmente, a través de los resultados y condiciones finales obtenidas, se definieron el performance y los estados de estabilidad finales de la estructura (factores de seguridad, deformaciones y desplazamientos inducidos) para luego poder determinar el potencial mecanismo de falla de esta, plantear una medida de estabilización según sea necesario y definir las conclusiones más relevantes junto con la exposición de algunas recomendaciones.

3.1 Diseño de la investigación

3.1.1 Procedimiento general

Según Burland (1987), para realizar un correcto análisis de una estructura en geotecnia, nos tenemos que basar en los siguientes tres puntos: (1) Perfil del suelo, (2) comportamiento del suelo y (3) correcto modelamiento de la estructura. (Ver figura 3.1)

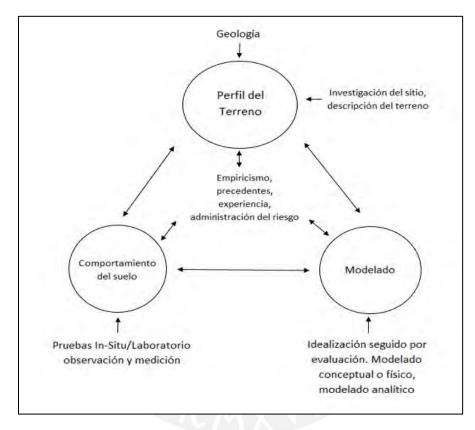


Figura 3.1. Triángulo de Burland enfocado hacia análisis geotécnicos. (Burland, 1987).

El concepto principal que se extrae del gráfico anterior es la importancia de formar correlaciones entre cada uno de los componentes del triángulo para poder lograr una buena caracterización de la estructura y, por ende, unos resultados fiables post-análisis. Cada uno de estos es parte fundamental para el proceso, como obtener los ensayos y datos adecuados (tanto in-situ como de laboratorio), con el fin de conocer el comportamiento del terreno, realizar las exploraciones necesarias y caracterizar de la mejor manera el terreno para obtener el perfil estratigráfico de este, para finalmente poder proceder con el modelado y evaluación, tanto conceptual, física y analítica.

Con base en esto, el procedimiento seguido para ejecutar el análisis haciendo uso del software se basó en los siguientes pasos, representados a través del diagrama de flujo inferior (ver figura 3.3), los cuales también se reflejan en la figura 3.4 donde se muestra en el esquema general los análisis precedentes y subsecuentes al análisis dinámico final. Cabe mencionar que, dentro de la etapa de análisis dinámico de la estructura, se adaptó el proceso recomendado por ANCOLD (2012) aplicado al caso particular del depósito en estudio para poder desarrollar un análisis dinámico de estabilidad, el cual se ve reflejado en la figura 3.2.

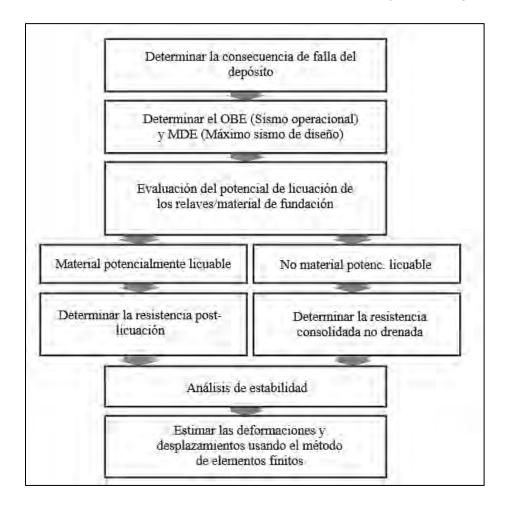


Figura 3.2. Proceso adaptado recomendado para análisis dinámicos de estabilidad en depósitos de relave. (ANCOLD, 2012).

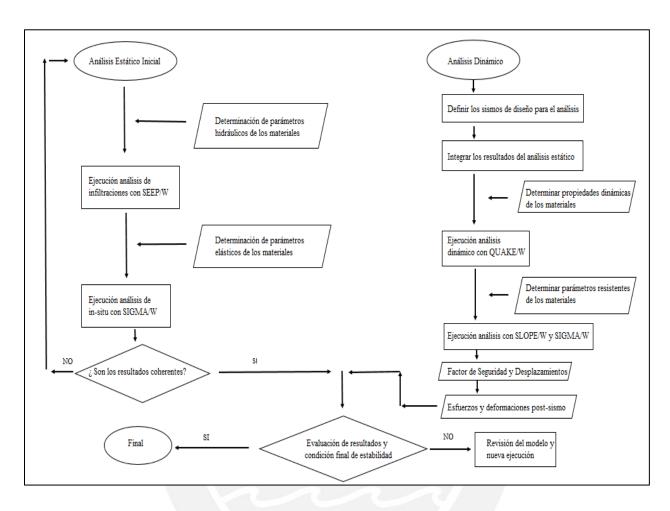


Figura 3.3. Diagrama de flujos sobre secuencia de pasos para la ejecución del análisis. (Elaboración propia).

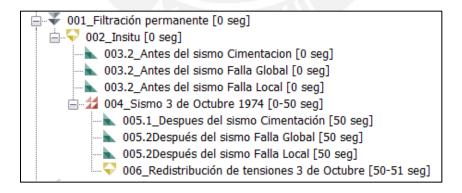


Figura 3.4. Esquema general del análisis dinámico.

Como se explicó previamente, se realizarán dos tipos de análisis para poder obtener la condición final de estabilidad de la presa. Este procedimiento se explicará a detalle en la sección 3.2.

3.1.2 Método

Se optó por aplicar el método científico para elaborar el análisis, el cual se desarrolla a través del planteamiento del problema y la elaboración de hipótesis para luego, mediante la ejecución de procedimientos racionales y sistemáticos, en este caso el análisis dinámico del sistema, se busca dar solución al problema planteado, verificando la validez de las hipótesis planteadas y elaborar las conclusiones más relevantes.

3.1.3 Tipo de investigación

Se define como una investigación aplicada, ya que se hará uso de metodologías de estabilidad y procedimientos de cálculos desde el punto de vista sísmico-dinámico. Además, sus alcances se consideran prácticos y son sustentados basándose en las normativas vigentes, manuales y softwares a utilizar. El resultado de estos procedimientos se refleja a través de un sustento empírico y cuantitativo, el cual nos permitirá llegar a las conclusiones más relevantes.

3.1.4 Nivel de investigación

Investigación de nivel explicativo, ya que la motivación principal del estudio es responder a la problemática expuesta a través del planteamiento de hipótesis predictivas que luego serán validadas según los resultados del experimento, en este caso, el análisis dinámico aplicado al depósito de relves.

3.2 Procedimiento seguido para el desarrollo del análisis

En el presente acápite se explicará la metodología seguida para el correcto desarrollo del análisis dinámico del depósito. En él, se explicarán la secuencia de pasos seguidos (Ver figura 3.3 y 3.4) y algunos conceptos teóricos influyentes en cada proceso. Cabe resaltar que dicha explicación se enfocará en lo correspondiente a los parámetros y procedimientos necesarios para la aplicación de QUAKE/W.

3.2.1 Enfoque general del procedimiento

Existen diferentes formas de analizar la respuesta sísmica de estructuras. Como se explicó en el capítulo anterior, el suelo no se puede considerar como un material homogéneo y regular; sin embargo, es común representarlo como un material que se comporta de forma lineal ante solicitaciones externas, como cargas o sismos. Lo óptimo y lo que se acerca más a la realidad sería representarlo como un material no lineal; no obstante, al utilizar esta consideración los análisis se volverían tediosos y muy complejos de realizar. Para

esta investigación se consideró aceptable adoptar el procedimiento de análisis catalogando a los materiales bajo el enfoque lineal equivalente, aproximación cuya validez y confiabilidad ha sido demostrada mediante la aplicación del método de elementos finitos (Ver figura 3.5).

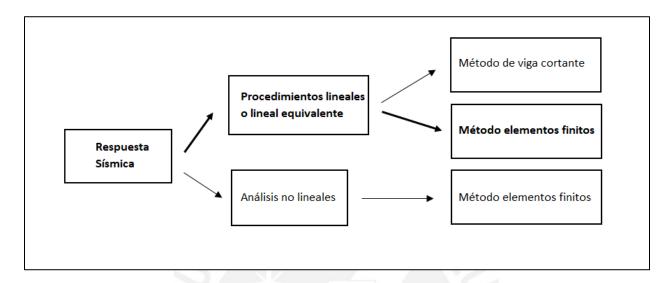


Figura 3.5. Diagrama de flujos, consideraciones para evaluación de la respuesta sísmica. (Resaltado con negrita).

3.2.2 Desarrollo del procedimiento

Kramer (1996) indica que las estructuras geotécnicas se ven sometidas a las siguientes acciones cuando son sometidas a un evento sísmico: (1) Cambios en los parámetros geotécnicos, (2) amplificación de la señal sísmica por efectos del terreno y (3) fuerzas de inercia inducidas por las masas propias. Debido a la alta complejidad y diferentes factores que afectan la respuesta sísmica de la presa, GeoStudio 2018 ofrece una amplia gama de softwares especializados que permiten al usuario poder desarrollar un correcto análisis geotécnico a cualquier tipo de estructuras según sean sus necesidades y posibilidades. Para el análisis dinámico del depósito de relaves se utilizaron las siguientes extensiones de GeoStudio 2018.

- **SEEP/W:** Para cálculos de redes de flujo e infiltración; se utilizó esta extensión como parte del análisis estático inicial con el objetivo de calcular las condiciones iniciales de presión de poros y nivel freático a lo largo de la presa y la fundación.
- SIGMA/W: Para cálculos de tensiones y deformaciones; se utilizó esta extensión como parte del análisis estático inicial con el objetivo de conocer las condiciones de esfuerzos internos a los que está sometida la estructura, posterior análisis con SEEP/W, a través de un análisis in-situ. También

se utilizó esta extensión para hacer un análisis de redistribución de esfuerzos con el fin de conocer los desplazamientos inducidos por el sismo.

- QUAKE/W: Para cálculos de los efectos sísmicos en estructuras geotécnicas; se utilizó esta extensión como parte del análisis dinámico con el objetivo de analizar la respuesta del sistema ante el sismo de diseño utilizado. De aquí se obtendrán los resultados relacionados a condiciones post-sísmicas, como exceso de presión de poros y material licuado, y se podrán elaborar las conclusiones finales a cerca de la condición final de la presa.
- SLOPE/W: Para cálculo de estabilidad de taludes; se utilizó esta extensión como parte del análisis de estabilidad con el objetivo de analizar la condición inicial y final de estabilidad de la presa y obtener un factor de seguridad que nos permita clasificarla como estable o no, según los criterios de las normativas CDA (2014) y ANCOLD (2012) además de poder definir un potencial mecanismo de falla a través del dique o el suelo de fundación.

A continuación, se detallarán los pasos seguidos según lo recomendado por ANCOLD (2012). Posteriormente, se explicará a detalle el procedimiento y algunos aspectos considerados para el análisis correspondiente a la aplicación de la extensión QUAKE/W.

Procedimiento para análisis dinámico de estabilidad al depósito de relaves según ANCOLD (2012)

Siguiendo el diagrama de flujo mostrado en la figura 3.2, el primer paso fue determinar la consecuencia de falla del depósito de relaves escogido. Esta evaluación fue hecha por la empresa minera, en la cual se catalogó a la presa como "Extrema". Tomando como base lo mencionado, el siguiente paso fue determinar el OBE (sismo operacional) y MDE (máximo sismo de diseño), los cuales se asocian a periodos de retorno de 1/1000 años y 1/10000 años según se aprecia en la tabla 3.1. Estos fueron determinados en el estudio de peligro sísmico realizados por la Consultora B y se mencionan más adelante.

Tabla 3.1. Periodos de retorno según cargas sísmicas de diseño recomendadas. (ANCOLD, 2012).

Catanania da assessorada	Fase de ope		
Categoría de consecuencia de falla de la presa	OBE	MDE	Post Cierre
Baja	1:50	1:100	MCE
Significante	1:100	1:1000	MCE
Alta/Extrema	1:1000	1:10000	MCE

Continuando con el procedimiento, se determinó el potencial de licuación de la fundación y posteriormente la resistencia post-licuación de este material, ya que este elemento, en conjunto con los relaves, presenta las características de materiales susceptibles a este fenómeno; sin embargo, solo el primero representa un riesgo de falla para el sistema en caso de licuar ante las solicitaciones del sismo. Existen distintos métodos para determinar el potencial de licuación, los cuales también son recomendados en ANCOLD (2012) y se desarrollan en el inciso 5.3

Finalmente, una vez definido si el material de fundación licúa o no, se prosiguió con el análisis de estabilidad por el método de elementos finitos y se determinaron las deformaciones y desplazamientos generados sobre la presa provocados por el sismo. A continuación, se describen los pasos de dicho análisis, el cual fue realizado con el conjunto de softwares de GeoStudio 2018.

Análisis estático inicial

El primer paso para comenzar con el análisis dinámico con GeoStudio 2018 es realizar el análisis estático inicial a través del análisis de infiltraciones (SEEP/W) y el análisis in-situ (SIGMA/W). La secuencia de pasos utilizada para este primer análisis fue la siguiente.

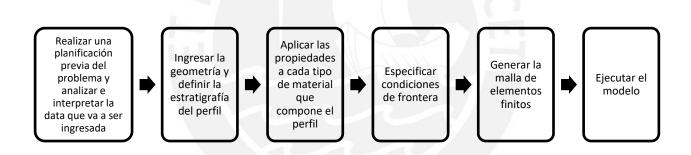


Figura 3.6. Pasos seguidos para la ejecución del análisis de infiltraciones con SEEP/W.

Figura 3.7. Pasos seguidos para la ejecución del análisis in-situ con SIGMA/W.

• Análisis dinámico con QUAKE/W

Se requiere como paso previo para iniciar con el análisis dinámico de la presa determinar el potencial de licuación del suelo de fundación. Este análisis se detalla en el capítulo 5. Una vez realizada esta evaluación y el análisis estático inicial, se procedió con el análisis e interpretación de los parámetros dinámicos que van a ser utilizados para caracterizar los materiales y se integran los resultados de esfuerzos iniciales y presión de poros obtenidos previamente gracias a la función ofrecida por GeoStudio 2018. Posteriormente, se incluye el efecto del sismo a través del ingreso de registros a QUAKE/W. El procedimiento seguido se detalla en la siguiente figura.

Figura 3.8. Pasos seguidos para realización del análisis sísmico en QUAKE/W.

QUAKE/W se encarga de calcular las distribuciones de esfuerzos resultantes y las condiciones finales de presión de poros en cada *time step* producto de las deformaciones generadas por el esfuerzo cíclico que genera el sismo. Partiendo de estos resultados, se realiza, finalmente la integración con la extensión SLOPE/W y SIGMA/W para obtener los factores de seguridad finales en la sección de la presa y los desplazamientos y deformaciones inducidas por el sismo. Para este último procedimiento se ingresaron las propiedades resistentes y elásticas de los materiales con las cuales se calcularon las condiciones finales de estabilidad. A continuación, se explican a detalle cada uno de los procedimientos previamente mencionados relacionados al análisis con QUAKE/W

i. Importación del registro sísmico y condiciones de análisis

El primer paso fue realizar la importación del registro sísmico, el cual se ingresó en forma de un espectro de Aceleraciones vs. Tiempo (hoja de cálculo). Este parámetro se puede modificar a conveniencia para un análisis en particular, como escalar el registro sísmico. Debido a la importante variabilidad de los esfuerzos horizontales generados por el sismo, se procede a ingresar algunos parámetros que ayudaran a obtener resultados correctos y cercanos a la realidad.

• Coeficiente de esfuerzo de corte equivalente: Relación existente entre el esfuerzo de corte cíclico equivalente y el valor pico de un registro irregular de esfuerzos. Este sirve para calcular la presión

de poros en un análisis dinámico como se explicó previamente, y para este estudio se ingresó un valor de 0.65.

- Número equivalente de ciclos (N): Parámetro utilizado para transformar el registro irregular de esfuerzos. Usando la Figura 2.16, se ingresó un valor de veinte (20) para magnitud Mw de 8.1.
- Límite de esfuerzos para licuación: Límite de esfuerzos utilizados para estimaciones de licuación.
 Este valor se calculó haciendo uso de la teoría de estado crítico y con base en el análisis triaxial
 CU realizado sobre el suelo de cimentación. Se estimó un valor igual a 32.4 kPa; sin embargo, se debe ingresar la mitad de este valor a la interfaz de QUAKE/W.

Inmediatamente después, se definió un valor de 0.02 segundos para los *time steps*, parámetro que se define como el intervalo utilizado para captar las características del movimiento y se escaló el registro sísmico al valor de la mitad del máximo sismo creíble (MCE), estos conceptos serán explicados en el capítulo cinco.

ii. Obtener, analizar y definir parámetros dinámicos a los materiales

Este es uno de los pasos fundamentales para el análisis ya que de él depende que los materiales sean correctamente representados y su comportamiento sea el adecuado al momento de ejecutar el modelo. La obtención de estos se realiza a través de investigaciones geotécnicas en el área de estudio, como ensayos de laboratorio e in-situ y también con la aplicación de correlaciones. Debido a la complejidad de este aspecto, este pasó fue explicado con mayor detalle en el capítulo dos.

iii. Geometría de la sección

Uno de los aspectos fundamentales para realizar un análisis óptimo es la correcta caracterización geométrica de la estructura geotécnica. La forma en que se realiza este proceso para GeoStudio 2018 es a través de la construcción de las secciones de análisis con base en los siguientes elementos mostrados en la figura 3.9.

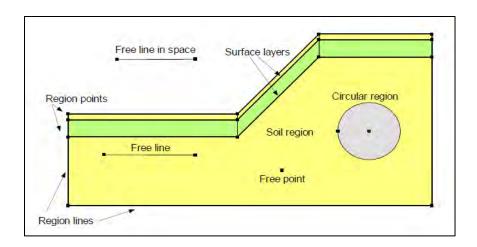


Figura 3.9. Distintos tipos de elementos para definir la geometría de una estructura en GeoStudio 2018. (Geo-Slope, 2017).

Una vez definida la geometría de las secciones de análisis a nivel general, el método de elementos finitos en conjunto con el *software* utilizado discretiza los perfiles mediante la generación de la malla de elementos finitos para poder tener un mejor entendimiento y resultados específicos, como se explicó previamente. La malla de elementos finitos de los elementos constitutivos utilizados está compuesta por regiones, nodos y elementos. (Ver figura 3.10).

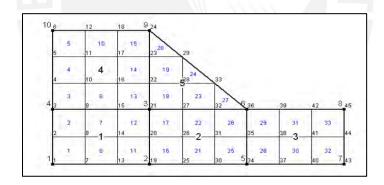


Figura 3.10. Elementos que conforman el modelo de una estructura. (Urrutia, 2008).

- Las regiones son usadas con el objetivo diferenciar los tipos de materiales que componen la estructura y definir la geometría de este. Estas regiones se representan por subdivisiones dentro del perfil del terreno; en la figura 3.10 se muestran 5.
- Los puntos también cumplen el objetivo de definir la geometría del modelo, además de asegurar la continuidad de las regiones y permitir la unión de estas. En la figura 3.10 los puntos están numerados del 1 al 10 (esquinas).

- De igual forma, los nodos son importantes para definir el sistema de coordenadas a usar y definir la distribución de incógnitas del elemento, ya que para QUAKE/W el primer campo de variables es el desplazamiento nodal. En la figura 3.10 los nodos están numerados del 1 al 45.
- Finalmente, los elementos se catalogan como las pequeñas partes en las que se divide el modelo, las cuales definen el comportamiento de este ante las solicitaciones ingresadas.

Actualmente, la construcción de la malla se realiza de forma automática; sin embargo, el software GeoStudio permite elegir entre algunas opciones. Estas opciones dependen del tipo de geometría que presente la estructura, ya sea curveada, con ángulos pronunciados, circular, etc. A continuación, se muestran algunos ejemplos de los tipos de malla generados por el programa, donde se aprecia la influencia de la geometría en la generación de esta. (Ver figura 3.11).

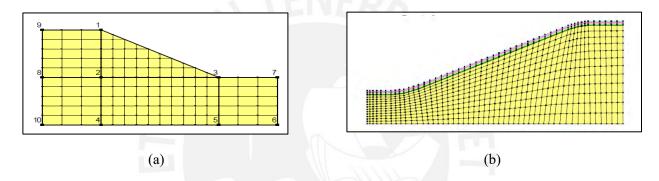


Figura 3.11. Tipos de malla de acuerdo a la geometría de la estructura. Malla estructurada (a) y malla con superficies redondeadas (b). (Geo-Slope, 2017).

Se consideró necesario definir los nodos de los cuales se van a obtener las historias de movimientos. Se podría obtener la historia de movimientos de todos los nodos, pero esto generaría que el análisis se convierta en sumamente complejo y pesado, perdiendo tiempo en el momento de ejecutar el modelo en el *software*. Los nodos seleccionados para el análisis fueron los ubicados en la cresta del dique, la base de la cimentación y la parte inferior de la roca, además de puntos estratégicos para conocer los desplazamientos al final del análisis. Por último, se debe tener especial consideración en el tamaño de los elementos que componen la malla de elementos finitos.; debido a la extensión considerablemente grande en la sección del modelo y la simplicidad de la geometría, se consideró un valor de malla de 30 metros.

iv. Condiciones de frontera

El principal valor de las condiciones de frontera radica en que representan un punto de partida para el análisis que se va a realizar sobre la estructura. Estas se deben especificar para cada tipo de análisis; por ejemplo, condiciones de carga de agua y superficies de filtración para el análisis de infiltración, restricciones de movimiento para el análisis in-situ, entre otros. Por este motivo, resulta ampliamente

importante la correcta definición de estas, ya que así se logra idealizar el modelo de forma correcta y sin complicaciones, como problemas de convergencia o incongruencias en general. Kramer (1996) indica que existen tres tipos de condiciones de frontera (Ver figura 3.12) que se pueden usar para un análisis dinámico en geotecnia, las cuales se describen a continuación.

- Fronteras elementales: El principio fundamental de este tipo de frontera es el de desplazamiento o esfuerzo nulo. Las fronteras fundamentales son usadas para modelar el efecto de que se genera de encerrar la energía que se produce debido al efecto del sismo para así obtener las condiciones finales de esfuerzos del talud. Sin embargo, es de igual forma importante definir una distancia adecuada de colocación de la frontera, debido a que, si se colocan demasiado cerca o lejos, no se obtendría una correcta idealización.
- Fronteras locales: Se refiere al tipo de fronteras viscosas, utilizadas mayormente para modelar las condiciones de absorción de energía (amortiguamiento).
- Fronteras consistentes: Este tipo de fronteras nos permite modelar las condiciones de absorción para cualquier tipo de ondas (ondas de cuerpo o de superficie) para cualquier ángulo de inclinación del talud.

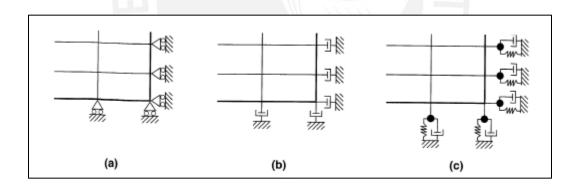


Figura 3.12. Modelamiento de los 3 tipos de condiciones de frontera. Fronteras elementales o de desplazamiento nulo (a), fronteras locales o de viscosidad (b) y fronteras del tipo consistentes (c). (Kramer, 1996).

Para GeoStudio 2018, algunos de los tipos de condiciones de frontera que nos permite definir son: de desplazamiento y de fuerzas (Urrutia 2008). Para un análisis dinámico, las condiciones de fronteras requeridas son las de desplazamiento nodal, ya que un análisis en dos dimensiones demanda asumir un desplazamiento nulo del suelo o base del sistema, y permitiendo un libre desplazamiento horizontal. Como se mencionó, es necesario definir una distancia de los límites laterales lo suficientemente espaciados para evitar errores en los resultados del modelo. Entonces, se definieron las condiciones de frontera de acuerdo

a las consideraciones realizadas para el modelo. Para efectos de la investigación, se utilizó un tipo de fronteras con desplazamiento nulo, restringiendo el movimiento vertical en los extremos laterales del modelo y el movimiento horizontal y vertical para la base del talud. Se presenta un ejemplo de la utilización de estas condiciones aplicado a un talud (Ver figura 3.13).

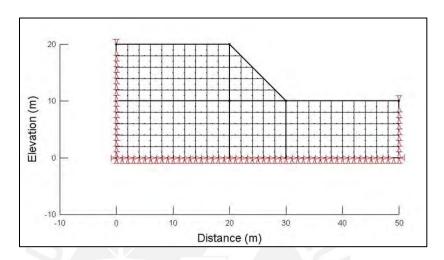


Figura 3.13. Ejemplo de talud modelado y condiciones de frontera tipo restricción de desplazamientos. (Urrutia, 2008).

v. Ejecución del modelo

El paso final del análisis, una vez completados todos los procedimientos anteriores, es ejecutar el modelo en QUAKE/W. Una vez realizado esto, se prosiguió con los siguientes pasos.

• Análisis de gráficos de respuesta

Se evalúan los resultados obtenidos a través de los gráficos de respuesta, verificando que los resultados obtenidos sean coherentes y cumplan con las hipótesis planteadas. Luego de una verificación del modelo (función que ofrece QUAKE/W), se obtienen los resultados del análisis dinámico en forma de historias de desplazamientos nodales, presión de poros al final del movimiento, espectros de aceleración Vs tiempo (Ver figura 3.15), suelo licuado, entre otros. Existen además otras formas de visualizar los resultados, tales como animaciones o representaciones del estado final de la estructura (Ver figura 3.14).

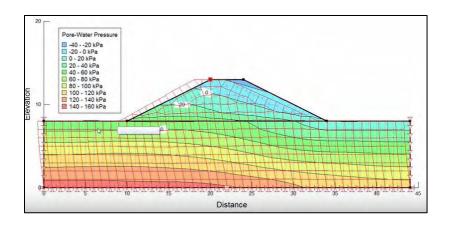


Figura 3.14. Representación gráfica de un talud antes y después del movimiento sísmico. (Geo-Slope, 2017).

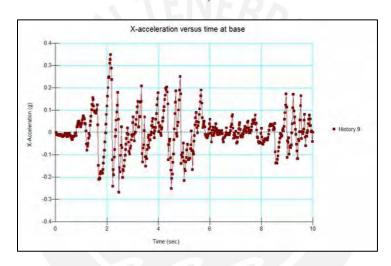


Figura 3.15. Historia aceleración Vs Tiempo en la base del talud. (Geo-Slope, 2017).

Posibles correcciones del modelo

En caso se obtengan resultados no coherentes según lo esperado, se plantea una reformulación del problema, verificando que todos los pasos seguidos para el modelado, ejecución y análisis hayan sido correctos, corrigiendo posibles errores que se hayan cometido.

Obtención de los factores de seguridad y condiciones finales de la presa

El paso final del análisis es la obtención de los factores de seguridad y deformaciones finales a través de la utilización de SLOPE/W y SIGMA/W respectivamente. Como se explicó, todos los softwares de GeoStudio 2018 permiten realizar una sinergia entre los resultados de uno y otro módulo. Haciendo uso de esa función, se incorporó lo obtenido en QUAKE/W a SLOPE/W y SIGMA/W con el fin de ejecutar el análisis final y

obtener los factores de seguridad, superficies de falla y deformaciones permanentes para así determinar la condición final de estabilidad de la presa y su tipo de falla, en caso exista.

• Elaboración de las conclusiones más relevantes y recomendaciones post-análisis

Con los factores de seguridad y las condiciones finales del talud obtenidas (deformaciones permanentes, desplazamientos, condiciones de presión de poros y esfuerzo) se elaboraron las conclusiones más relevantes del estudio, verificando la veracidad o no de las hipótesis planteadas y finalmente se propusieron algunas recomendaciones para los inconvenientes que se encontraron durante el análisis.

CAPÍTULO 4. Descripción del caso de estudio

Para poder abordar el análisis de manera óptima es necesario conocer adecuadamente todas las características y propiedades ingenieriles del área de estudio. El presente capítulo describe de manera general todas las características del emplazamiento, las cuales fueron utilizadas para modelar y analizar la sección crítica. El desarrollo del apartado se divide en una presentación general de la geología regional y local del área de estudio. Para la elaboración de esto se tomó como base el trabajo "Estudio de Factibilidad del Depósito de Relaves" realizado por la empresa "Consultora A". Seguidamente, se hace una descripción de los componentes del depósito en base a las investigaciones geotécnicas realizadas. La última parte del capítulo presenta lo relacionado a la sismicidad de la zona; aquí se describe el tectonismo característico del emplazamiento, se resume el estudio de peligro sísmico realizado por "Consultora B" y finalmente se muestran los criterios para la selección de las aceleraciones y los sismos de diseño utilizados.

4.1 Generalidades del proyecto

La empresa minera dueña del proyecto es considerada una de las más importantes en Sudamérica. El proyecto consta de tajos abiertos, botaderos de desmonte de mina, pilas de lixiviación, instalaciones de chancado, molienda y procesamiento, depósitos de relaves, canteras de material de construcción e infraestructura minera.

Uno de los componentes del proyecto es el depósito de relaves en cuestión; tiene aproximadamente 2.5 Km de largo (dirección norte-sur) y 2.5 Km de ancho (este-oeste), con una altura aproximada de 120 metros.

4.1.1 Descripción general del sistema de almacenamiento de relaves

La minera planea iniciar la construcción de la presa con el propósito de que esta tenga un tiempo de operación de 18 años. En esta se plantea almacenar un volumen aproximado de 85.01 Mt de relave, proveniente de la planta de procesos, el cual se compone de 51% de sólidos y tiene una densidad seca promedio de 1.6 ton/m³. La construcción del dique se planifica realizar en 2 etapas (la segunda etapa se desestimó para este trabajo debido a que consta de un recrecimiento del dique muy pequeño), de las cuales, en la última etapa, la cota final de la cresta será de 4146 m.s.n.m. El nivel final de relaves planeado será de 4143.8 m.s.n.m. dejando un borde libre de 2m. El ancho de la cresta será de 20 m y los taludes planeados

serán de 2.0H:1.0V aguas arriba y de 2.5H:1.0V aguas abajo. Según la CDA (2014), su clasificación de acuerdo a la consecuencia de falla es de "Extrema". Finalmente, la construcción de la presa se realizará con material seleccionado de otros tajos mineros pertenecientes al proyecto. A continuación, se presenta un cuadro resumen con todas las características previamente mencionadas.

Tabla 4.1. Resumen de características de la presa y los relaves para el depósito. (Empresa Minera, 2015).

Ítem	Datos	
Material mixto total (relave + lodo)	85.01 Mt	
Contenido de sólidos del material mezclado (relave)	51%	
Tecnología de procesamiento	Relaves Espesados	
Gravedad específica del relave	2.82	
Densidad seca promedio final del relave	1.6 t/m³	
Vida operacional de la presa	18 años	
Tipo de presa	Relleno homogéneo	
Clasificación según consecuencia de falla (CDA, 2014)	Extrema	
Elevación final de cresta	4146 m.s.n.m	
Elevación final de relaves	4143.8 m.s.n.m	
Ancho final de la cresta	20 m	
Fuente de material para relleno de la presa	Material de tajos	
Inclinación talud aguas arriba	2.0H:1.0V	
Inclinación talud aguas abajo	2.5H:1.0V	

Se muestra en la figura 4.1 el arreglo final del depósito de relaves al término de la operación.

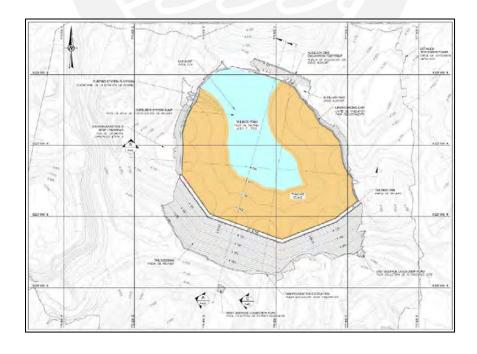


Figura 4.1. Arreglo final del depósito de relaves. (Consultora A, 2018).

4.2 Geología

4.2.1 Geología regional

El proyecto minero se ubica al lado este de la Cordillera Occidental de Los Andes y presenta un relieve suave y ondulado. La geología del basamento en el área de estudio comprende tobas volcánicas y brechas del Terciario Superior. Con frecuencia, el basamento rocoso se encuentra cubierto por depósitos cuaternarios, principalmente depósitos antrópicos (rellenos hechos por el hombre) relacionados con labores mineras. Otros depósitos de suelos incluyen depósitos aluviales y fluviales, depósitos de morrena y depósitos fluvioglaciales y lacustres.

4.2.2 Geología local

i. Unidades de suelo

- Depósito antropogénico 2 (Q-an2), consta de un material heterogéneo, principalmente grava limosa arenosa de baja plasticidad o sin plasticidad, que se utiliza en la conformación de caminos de acceso y plataformas para las estructuras y otros servicios de la mina; cantos rodados y bloques escasos compactados también se encuentran. Debajo de este material, como parte de la misma unidad, yace un material de desmonte de mina que alcanza hasta 120 m de espesor, formado por un depósito heterogéneo. Esta unidad predomina en el sector sur del proyecto.
- Depósito antropogénico 1 (Q-an1), consiste en mineral no chancado, clasificado como grava predominante con arena y limo. Desde el punto de vista visual, este material se clasifica como GP y GP-GM (SUCS), sin plasticidad o con baja plasticidad, suelto a compacto, no homogéneo, ligeramente húmedo a seco, y de color beige claro con matices grises. En algunos sectores hay cantos rodados angulares a lo largo de todo el depósito.
- Depósito coluvial (Q-co), ubicado en la base de los taludes de los afloramientos rocosos, compuestos de grava limosa arenosa. Desde el punto de vista visual, estos depósitos se clasifican como materiales gravosos limosos GM de baja plasticidad o sin plasticidad, sueltos a compactos, de color beige a beige claro. En las zonas en que están cubiertos con vegetación, los suelos coluviales presentan una cobertura de suelo orgánico de 10 a 20 cm de espesor.

ii. Unidades de roca

Toba 1 (Tim-vp1), esta unidad se presenta como afloramientos de toba, tanto en el sector oeste como en el este del área de estudio. Consta de toba masiva, de partículas finas, de color gris

blanquecino, moderada a ligeramente meteorizada, con una resistencia intermedia a alta cuando está silicificada (R3-R4, de acuerdo al ISRM) que es más débil cuando se encuentra argilizada (R1-R2). No se observó un patrón de distribución definido de la alteración en el macizo rocoso. El macizo se encuentra moderadamente meteorizado y fracturado en la superficie. Predominan las discontinuidades con orientaciones NE-SO y NO-SE y los buzamientos de 60° a 90°.

4.3 Investigaciones geotécnicas realizadas

Con el objetivo de caracterizar cada uno de los materiales componentes del sistema se realizaron ensayos de laboratorio e in-situ en el área de estudio. Estos sirven como base para obtener los parámetros, tanto hidráulicos, elásticos, resistentes y dinámicos de cada material, los cuales fueron utilizados en esta investigación para el modelado en GeoStudio 2018 de la sección crítica. Se presenta a continuación la lista resumen de todas las investigaciones realizadas. Cabe mencionar que los resultados de los ensayos utilizados se presentan en el Anexo C.

- 42 calicatas en el área de la cimentación de la presa.
- 3 pruebas de densidad in-situ.
- 3 análisis granulométricos a gran escala.
- 75 pruebas de permeabilidad, de las cuales 3 fueron del tipo Lugeon y 72 del tipo Lefranc, ambas a carga constante y carga variable dependiendo del tipo de terreno.
- 3289 m de estudios de refracción sísmica y 42 ensayos MASW.
- 12 perforaciones, 6 de ellas utilizando técnicas rotatorias con ensayos LPT y de permeabilidad tipo Lefranc, 6 de ellas tipo sónicas para obtener recuperación total del testigo y en los que se realizaron ensayos de permeabilidad.
- Ejecución de ensayos de laboratorio estándar en muestras alteradas provenientes de calicatas y perforaciones sónicas geotécnicas.
- Ejecución de ensayos de laboratorio en muestras remodeladas, las cuales consisten en ensayos triaxiales drenados (CD) y consolidados no drenados (CU), así como de ensayos de compresibilidad a gran escala.

4.4 Descripción de los componentes del depósito de relaves

Como se explicó líneas arriba, el depósito tiene planeado un tiempo de operación de 18 años y se utilizará para almacenar los relaves producidos por la planta de procesos. Para el modelo en GeoStudio 2018 se

consideraron 4 elementos principales, los cuales en conjunto componen el sistema de almacenamiento. Se describe a continuación cada uno de ellos.

4.4.1 Cimentación de la presa

Material asociado principalmente con la unidad de suelo Q-an2 (depósito antropogénico). En el margen izquierdo de la presa también se aprecia existencia de Q-co en una extensión pequeña. De acuerdo con la evaluación geológica, el material de cimentación consta principalmente de desmonte de mina (material antrópico), compacto y heterogéneo. En el área del eje de la presa, este material alcanza una profundidad máxima de 120m a 140m y se sobrepone al basamento. A continuación, se describen las características físicas de los materiales que conforman la cimentación de la presa, con base en las investigaciones geotécnicas:

Calicatas

Según las gradaciones de las quince (15) calicatas ejecutadas en el área de la cimentación, desde la superficie del suelo existente hasta una profundidad de 5m, los resultados son uniformes, clasificándose el material principalmente como GW, GC, GP-GM y GC-GM (SUCS). El contenido de finos de este material gravoso fluctúa entre 4% y 19%, además, está conformado por partículas angulares a subangulares, con una matriz de limo y arena. En dos de las calicatas, ubicadas en el área central y margen izquierda de la presa, se identificó una arena limosa (SM con contenido de finos que pasa la malla #200, entre 24% y 31%). Además, una arcilla de baja plasticidad (CL, contenido de finos 72%); de acuerdo con la evaluación geológica, esta última calicata se ubica en el depósito coluvial. Esta distribución aleatoria de materiales es consistente con la de un depósito heterogéneo formado por desmonte de mina.

Perforaciones

Con fines de exploración y caracterización de la cimentación de la presa y el depósito, se realizaron las siguientes perforaciones: Cuatro (4) perforaciones geotécnicas (BH-TSF-01, BH-TSF-02, BH-TSF-04, BH-TSF-05) y una (1) perforación sónica (SBH-TSF-05). Las correspondientes a la sección critica analizada son la perforación BH-TSF-01 y BH-TSF-05 cuyos resultados, en cuanto a gradaciones, contenido de humedad, índice de plasticidad y % de finos se muestran en el Anexo C. Con base en los resultados generales, la variación de la gradación permite observar el predominio del material granular compuesto de grava y arenas limosas para una profundidad entre 38 m y 100 m. El contenido de finos que pasa la malla #200 es muy variable (0-70 %), identificándose la presencia de capas conformadas por arcillas de baja y alta plasticidad (CL y CH) en las perforaciones BH-TSF-01 y BH-TSF-04. En la perforación BH-TSF-05,

ubicada en el depósito de relaves, se identifica una arcilla de baja plasticidad (CL) entre los 22 m y los 38 m.

Los resultados del contenido de humedad en las perforaciones BH-TSF-01 y BH-TSF-02 (área de cimentación) y BH-TSF-04 y BH-TSF-05 (área del depósito) evidencian que el contenido de humedad de las muestras, ejecutado hasta una profundidad máxima de 95m, se encuentra, en todos los casos, por debajo del límite de plasticidad (con valores que fluctúan entre 15 % y 25 %). Estos resultados indican que el material de cimentación no se encuentra dentro de este rango de plasticidad. Para estas mismas investigaciones, el valor de índice de plasticidad (IP) fluctúa entre 2 % y 28 %, lo cual corresponde a un grado de plasticidad de bajo a intermedio para las muestras analizadas; esto solo se aplica a la fracción de finos, si se considera el material grueso, actuando como un material granular.

Con respecto a la gravedad específica (Gs) correspondiente a las partículas gruesas, estas presentan valores promedio que fluctúan entre 2.40 y 2.66. Por otro lado, las partículas finas alcanzan un valor promedio máximo de 2.75. Comparando los valores de Gs de las perforaciones con las calicatas (Ver Figura 4.2), se observa que estas presentan resultados similares; estos valores son típicos del desmonte de mina.

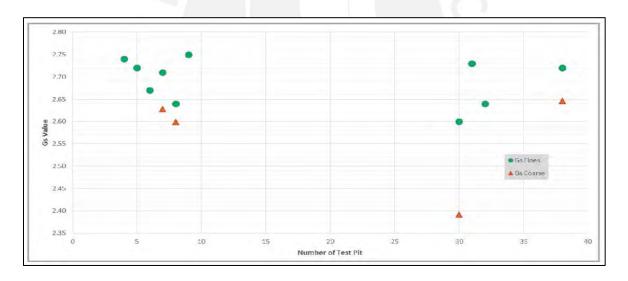


Figura 4.2. Resultados de Gs en las calicatas del área de cimentación. (Consultora A, 2018).

• Ensayos de penetración LPT

Se realizaron ensayos LPT (Large Penetration Test) para obtener los parámetros de resistencia a la penetración del material de cimentación mediante correlaciones con el número de golpes de los N_{spt} corregido. Con este ensayo se pudo evaluar los siguientes aspectos:

- Conocimiento de la densidad relativa referencial del suelo, a través de la respuesta del depósito antropogénico del área de estudio a la resistencia a la penetración (N_{spt}) debido a la energía proporcionada por la caída del martillo.
- Identificación visual del material en la profundidad presente en las áreas evaluadas.
- Caracterización física de los materiales obtenidos en los ensayos de LPT.
- Estimación de los parámetros de resistencia al corte. Las metodologías empleadas en esta evaluación son referenciales, debido a que no se aplican directamente al desmonte de mina.

Consultora A utilizó correlaciones sobre los valores de LPT in-situ para convertirlos en número de golpes de SPT y luego ser corregidos (N1₆₀). Con base en estos valores se determinaron algunos parámetros geotécnicos. La formulación de Mayne et al (2001) se utilizó para la correlación entre el número de golpes y el ángulo de fricción efectivo. Esta correlación, propuesta para arenas, se utilizó para la cimentación como un valor de referencia.

$$\emptyset' = (15.4(N1_{60})) * 0.5 + 20 \tag{4.1}$$

En general, para las perforaciones BH-TSF-01 a BH-TSF-05 efectuadas en la cimentación y el área del depósito de relaves, el valor corregido de $N1_{60}$ es mayor que 10 y tiene un valor máximo de 50. La correlación efectuada con el ángulo de fricción muestra valores que fluctúan entre 35° a 40°.

• Pruebas de laboratorio especiales

Los ensayos de laboratorio especiales se llevaron a cabo para evaluar los parámetros de resistencia y compresibilidad de los materiales del área de cimentación. Los resultados de los ensayos Proctor Estándar obtenidos con las muestras de la perforación BH-TSF-01 se presentan en la tabla 4.2. Basándose en estos resultados, se estimó la densidad y la humedad de las muestras para llevar a cabo los ensayos triaxiales y de compresibilidad.

Tabla 4.2. Resultados de la prueba Proctor Estándar. (Consultora A, 2018).

Perforación	Profundidad (m)	SUCS	Máximo Peso Unitario Seco (t/m³)	Contenido Óptimo de Humedad (%)
BH-TSF-01	5.15-12.45	SC	2	9
BH-18F-01	21.4-35.5	SC	1.9	13

La tabla 4.3 presenta los resultados de las pruebas triaxiales CU y CD efectuada para el material de cimentación, donde se muestran un ángulo de fricción total y efectivo. Los ensayos triaxiales se llevaron a cabo en una muestra reconstruida y reflejan valores de referencia del ángulo de fricción efectivo entre 30° y 35°.

Tabla 4.3. Resultados de ensayos triaxiales en el material de cimentación. (Consultora A, 2018).

Perforación	Profundidad (m)	SUCS	Triaxial	C efectivo (kPa)	φ efectivo (°)
BH-TSF-01	5.15-12.45	SC	CD	27	35
	21.4-35.5	SC	CU	38	30

Debido a que se considera una condición no drenada del material cuando se lo somete a solicitaciones sísmicas, se tomarán los resultados del ensayo triaxial consolidado no drenado (CU) para caracterizar al suelo de cimentación en el análisis.

• Geofísica

Para la estimación de los parámetros geofísicos se ejecutaron pruebas MASW con una profundidad de exploración de 30 m para el área de la cimentación (Ver Figura 4.3). Con base en los resultados, se aprecia una tendencia incremental de las ondas S en función de la profundidad. En los primeros 5m de profundidad existe mucha variación entre los 5m y 30m, se observa una tendencia en un grupo de resultados cuyo promedio muestra velocidades de la onda S de 200 m/s a 370 m/s. En los resultados, se observa que MASW-TSF-03, ubicada cerca al margen izquierdo, presenta las velocidades más bajas, llegando a un máximo de 230 m/s a una profundidad de 30m. Por otro lado, MASW-TSF-13, ubicada cerca de la poza de agua ácida y adyacente a la perforación BH-TSF-01, presenta las velocidades más altas alcanzando 450 m/s a 30m de profundidad.

A partir de los ensayos de MASW, se determinó la velocidad promedio de la onda de corte hasta 30m de profundidad (Vs_{30}). Estos resultados fluctúan entre 240 m/s y 345 m/s. Para estos valores, la clase de sitio corresponde a S2 (suelo intermedio) según la E-030 (Diseño Sismorresistente, Reglamento Nacional de Edificaciones, 2016) y la clase de sitio D (perfil de suelo rígido) de acuerdo con IBC (International Building Code, 2012).

A partir de los ensayos de Refracción Sísmica efectuados, el área central y margen izquierdo (LS-14, LS-15, LS-16, LS-17, LS-18, LS-19, LS-20, LS-21 y LS-22) muestra velocidades de la onda P que fluctúan entre 580 m/s y 1500 m/s entre los 25 m y 60 m de profundidad. Las velocidades máximas se producen en el margen izquierdo que corresponde al afloramiento de roca. Las líneas transversales trazadas en esta zona (L-TSF-05 y L-TSF-05A) mostraron velocidades máximas de 900 m/s. Para el margen derecho del área de cimentación, las velocidades de la onda P mostraron valores máximos de entre 700 m/s a 840 m/s, a una profundidad promedio de 25 m.

En conclusión, los resultados de los ensayos geofísicos MASW (Vs) y Refracción Sísmica (Vp) muestran valores asociados con un depósito no compactado de desmonte de mina como era de esperarse.

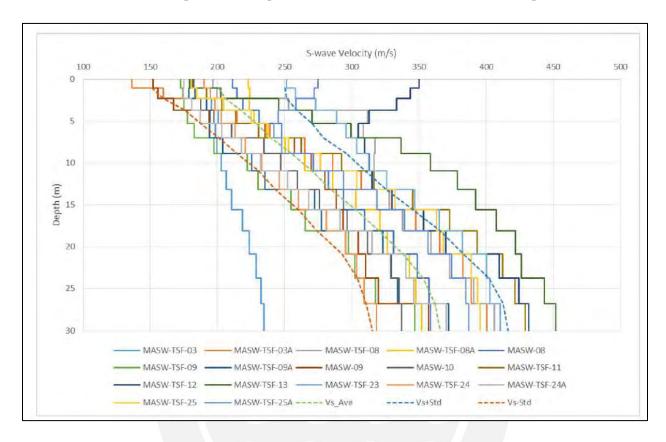


Figura 4.3. Perfiles unidimensionales de MASW ubicada en el área de cimentación. (Consultora A, 2018).

• Curvas reducción módulo de corte y amortiguamiento

Debido a que no se realizaron ensayos dinámicos sobre el material de fundación, como por ejemplo columna resonante, triaxial cíclico, entre otros, se optó por adoptar las curvas presentadas en el trabajo de Seed & Idriss (1970) para caracterizar la reducción del módulo de corte y del amortiguamiento de este material (Ver figuras 4.4 y 4.5). En este trabajo, se ensayaron distintos suelos tipo arena bajo condiciones dinámicas, para los cuales se obtuvieron curvas que se asemejarían al tipo de suelo objeto de estudio. Para el presente trabajo de investigación, se adoptaron los valores medios para caracterizar la fundación (Ver Anexo B).

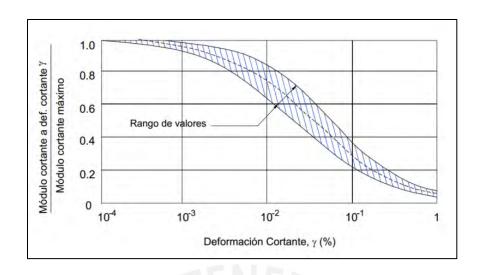


Figura 4.4. Módulo cortante en arenas (Seed & Idriss, 1970).

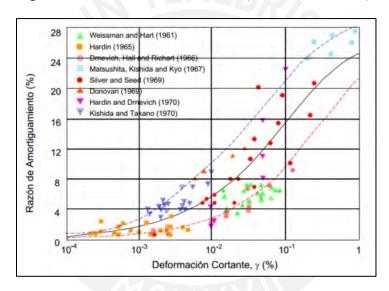


Figura 4.5. Amortiguamiento de arenas (Seed & Idriss, 1970).

4.4.2 Materiales seleccionados de la presa

Los materiales de construcción de la presa consistirán en material seleccionado proveniente de los tajos cercanos a la ubicación de esta. Muchos factores afectan a los parámetros de la resistencia al corte del material seleccionado de los tajos, tales como: (1) La calidad de la roca, (2) contenido de humedad, (3) tamaños y formas de las partículas, (4) la distribución de tamaños de las partículas, (5) compactación y (6) esfuerzos de confinamiento. El impacto de los factores varía; sin embargo, se considera uno de los más importantes al efecto de los esfuerzos de confinamiento en el valor del ángulo de fricción interna.

Según la evaluación de canteras y posibles tipos de materiales que compondrán la presa, se consideró finalmente el siguiente tonelaje y tipo de material para el análisis (Tabla 4.4).

Tabla 4.4. Tonelaje disponible para la construcción de la presa. (Empresa Minera, 2015).

Tajo	Sílice Masiva (Mt)	Sílice Alunita 1 (Mt)
1	0.21	-
2	1.15	0.01
3	56.75	1.19
Total	58.1	1.12

A continuación, se describe cada uno de los materiales previamente mostrados y, posteriormente, la caracterización del ángulo de fricción.

• Sílice Masiva (SM, SV)

Esta alteración incluye la Sílice Masiva y la Sílice Vuggy. Este tipo de alteraciones predomina en la zona este y sur del proyecto y se la clasifica como una roca entre resistente a muy resistente (ISMR R4 a R5). Este tipo de alteración tiene una alta resistencia al corte del macizo rocoso.

• Sílice Alunita 1 (SA1)

Presenta una resistencia media (R3 a R4), no puede ser quebrada por la mano y su fracturamiento es de bajo a medio. En este tipo de alteración el comportamiento se ve influenciado por la presencia de estructuras. La tabla 4.5 muestra los parámetros resistentes obtenidos con base en estudios previos en el emplazamiento.

Tabla 4.5. Parámetros resistentes para los materiales componentes de la presa. (Empresa Minera, 2015).

Parámetros	Silice Alunita SA	S.Masiva Vuggy SM-SV				
Criterio de Hoek y Brown	Criterio de Hoek y Brown					
GSI	55.00	49.00				
mi	8.00	18.00				
UCS (Mpa)	51.00	97.00				
Peso unitario (kN/m ³)	24.64	23.56				
Resistencia del Macizo Rocos	so No disturbado)				
Factor Disturbancia (D)	-	-				
mb	1.31	2.94				
s	0.00	0.00				
a	0.509	0.506				
Resistencia del Macizo Rocoso Disturbado						
Factor Disturbancia (D)	0.70	0.70				
mb	0.39	1.01				
s	0.00	0.00				
a	0.509	0.506				

A través de una prueba de gradación de muestras de estos materiales, se muestra su variación con respecto a la profundidad y los valores de Gs. Se identificaron materiales sin cohesión con un porcentaje de finos entre 5% y 16%, asociados con una alteración de la roca más resistente. La gravedad específica de las partículas gruesas fluctúa entre 2.4 y 2.6. Los resultados de los ensayos realizados sobre estas muestras se presentan en el Anexo C.

• Ángulo de fricción

Según lo mencionado con anterioridad, el efecto de la presión de confinamiento es importante para definir el ángulo de fricción interno de este tipo de materiales. Cerca de la superficie de los espaldones de la presa, el ángulo de fricción aparente es relativamente alto, mientras que, al incrementarse el esfuerzo de confinamiento o la profundidad, disminuye. Para la presa, que tendrá una altura aproximada de 120 m en su etapa final, puede esperarse encontrar valores relativamente altos de las presiones de confinamiento y ángulos de fricción variables.

Para la elección de este parámetro se referenció la caracterización del material seleccionado para la presa con base en Leps T.M (1970). Leps, en su trabajo, realiza una compilación de datos publicados a partir de pruebas triaxiales a gran escala efectuadas en gravas y rellenos de roca hasta el año 1970. Se estima que el material seleccionado de los tajos estará sujeto a esfuerzos de confinamiento de aproximadamente 2440

kPa. Por este motivo, se consideró razonable considerar a la roca como una de calidad intermedia a baja (UCS) con un valor mínimo de 50 Mpa. Según el diagrama de Leps (1970), se escogió la siguiente función para el ángulo de rozamiento interno del dique (Ver figura 4.6).

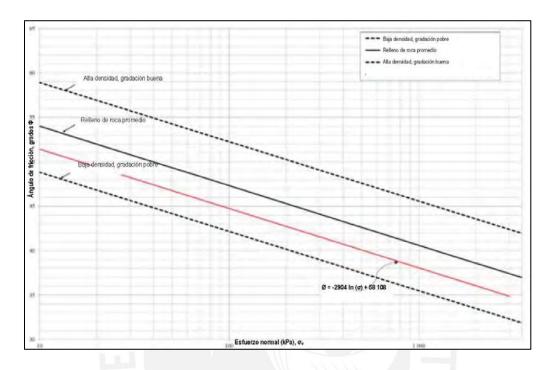


Figura 4.6. Diagrama de Leps para caracterización del ángulo de rozamiento según el tipo de roca, función línea roja. (Leps, 1970).

Considerando la presión de confinamiento aproximada y la ecuación de la curva característica que se relaciona al material de los tajos para la presa, se estima un ángulo de rozamiento característico para la presa de 35.4 °.

• Curvas reducción módulo de corte y amortiguamiento

De forma similar al material de fundación, se adoptaron las curvas expuestas en el trabajo de Tapia Et. Al (2019) para caracterizar el comportamiento de estos dos parámetros (módulo de corte y amortiguamiento) ante solicitaciones dinámicas. Estas curvas fueron obtenidas a través del ensayo cíclico para materiales del tipo enrocado, los cuales se pueden asemejar al material con el que va a ser construida la presa (Ver Anexo B).

4.4.3 Relayes

Los relaves que serán depositados cumplen con las características mostradas en la Tabla 4.6. Cabe mencionar que no se han realizado ensayos in-situ ni de laboratorio para este material.

Tabla 4.6 Resumen de parámetros considerados de relave. (Consultora A, 2018).

Parámetro	Datos
Material mixto total (relave + lodo)	85.01 Mt
Contenido de sólido de material mezclado	51%
Gravedad específica promedio	2.82
Densidad seca promedio	1.6 t/m^3
Vida Operacional	18
Peso Unitario	20 kN/m^3
Ángulo de rozamiento	20°
Cohesión	0

Debido a la ausencia de ensayos realizados sobre este material, se decidió caracterizar al material según algunas clasificaciones propuestas por ICOLD (2017) y una inspección presencial manual en el sitio por parte de terceros. Con base en esto, se recomienda modelar este material como un material tipo arena suelta, de grano fino, no cohesivo y sin plasticidad; con base en esta asunción, ICOLD (2017) clasificaría a este tipo de relave como CT (Arena Limosa, no plástica). Tomando como fuente lo mencionado, se pueden asumir sus propiedades físicas haciendo uso de los siguientes gráficos (Ver figura 4.7 y 4.8).

Tabla 4.7 Clasificación de distintos tipos de relaves. (ICOLD, 2017).

Tipo de relave	Símbolo	Descripción
Relave grueso	СТ	Arena limosa, no plástica
Relave de piedra dura	HRT	Limo arenoso, no plástico a baja plasticidad
Relave roca alterada	ART	Limo arenoso, con rastro de partículas arcillosas, baja plasticidad
Relave fino	FT	Limo, rastro de partículas de arcilla, baja a moderada plasticidad
Relave ultra fino	UFT	Arcilla limosa, alta plasticidad, densidad y conductividad hidráulica baja

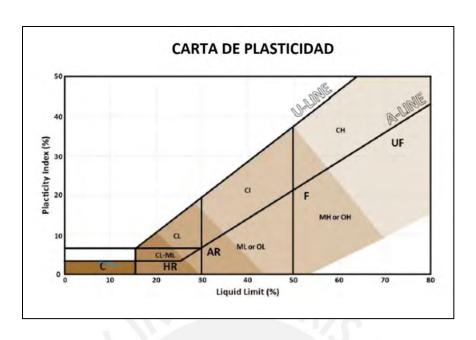


Figura 4.7. Propiedades índices para el tipo de relave asumido. (ICOLD, 2017).

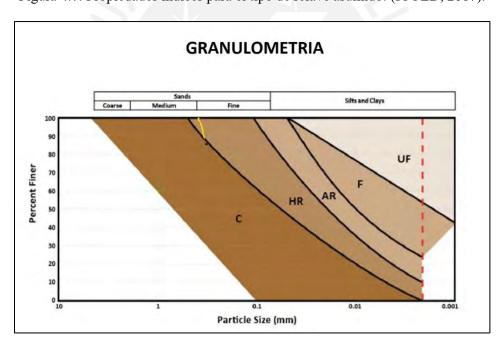


Figura 4.8. Granulometría para distintos tipos de relave. (ICOLD, 2017).

• Curvas reducción módulo de corte y amortiguamiento

Finalmente, y de forma similar a los componentes anteriores, se tomaron las curvas expuestas en el trabajo de Rojas Et. Al (2019) para distintos tipos de relaves como la base para caracterizar el comportamiento de este material ante las solicitaciones sísmicas (Ver Anexo B).

4.4.4 Macizo Rocoso

Según las evaluaciones geológicas hechas sobre el área de estudio, se determinó que existe un afloramiento de macizo rocoso correspondiente a una toba volcánica, fracturada y con una alteración incipiente a unos 140 metros por debajo del material de cimentación en la zona de la presa, y a unos 50 metros por debajo del material de cimentación en la zona de depósito de relaves aproximadamente. No se realizaron ensayos de laboratorio sobre este material debido a su considerable profundidad; sin embargo, se realizaron ensayos geofísicos y permeabilidad in-situ, de los cuales muestran velocidades de onda S que fluctúan entre 350 m/s en suelo superficial y entre 635 m/s y 810 m/s a 30 m de profundidad (Ver figura 4.9). Con base en estos resultados, se denomina a este material como un suelo tipo S1 (roca o suelo muy rígido) según el RNE (E-030) y un tipo de sitio C (Suelo muy denso y roca blanda) de acuerdo al IBC (2012).

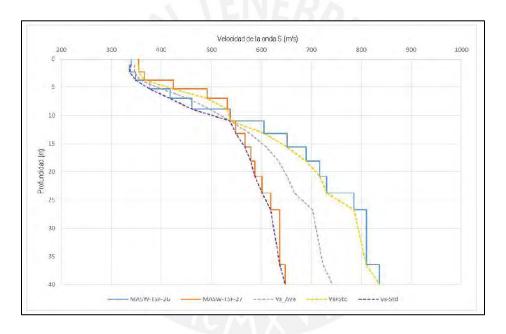


Figura 4.9. Velocidad de Ondas de Corte (Vs) características del macizo rocoso. (Consultora A, 2018).

4.5 Sismicidad

4.5.1 Tectonismo de los Andes

Se conoce que la ubicación geográfica del Perú lo localiza en la llamada zona del "Cinturón Circumpacífico", zona en la que han ocurrido más del 80% de los sismos en todo el mundo. Según Alva y Castillo (1993) los reajustes que se dan en la corteza terrestre, como consecuencia de la coacción y la morfología alcanzada por el Aparato Andino, y la interacción de la placa de Nazca y Sudamericana, son la principal fuente de la actividad sísmica en el Perú.

La Placa Sudamericana se origina desde la cadena meso-oceánica del Atlántico, con un avance de 2 a 3 cm por año hacia el noroeste, encontrándose con la placa de Nazca en su extremo occidental. De manera análoga, la Placa de Nazca se origina desde la cadena meso-oceánica del Pacífico Oriental, avanzando en dirección Este con una velocidad de entre 5 cm a 10 cm anuales, subyaciendo debajo de la Placa Sudamericana a una velocidad de convergencia de 7 cm a 12 cm anuales (Berrocal, Deza, & Shikiya, 1975). El mecanismo de movimiento de estas dos placas se desarrolla gracias a los movimientos del manto plástico caliente de la tierra (movimientos de convección) y a los efectos rotacionales de la Tierra.

A lo largo del flanco oriental de los andes se ubica el sistema de fallas sub-andino, el cual presenta una deformación de la corteza caracterizado por fallas inversas, cuyo rumbo predominante es el de Norte a Nor-Oeste, buzando con bajo ángulo ya sea al Sur-Oeste o al Nor-Este. Otro rasgo importante de esta unidad es que está compuesta por deposiciones volcánicas antiguas hacia el Norte y relativamente modernas y antiguas hacia el Sur (Deza y Carbonell, 1978).

4.5.2 Sismo-Tectónica Regional

El territorio peruano se caracteriza por ser altamente sísmico; sin embargo, existe variabilidad entre los tipos de sismos que ocurren ahí. Se describen algunas de las características más relevantes a cerca de esto. (Ver mapa de hipocentros en el Anexo D).

- A lo largo de toda la costa peruana (porción oceánica) la actividad sísmica se constituye por sismos del tipo superficiales (menores a 60km de profundidad), cuya concentración se ubica en las zonas centro y sur.
- Todos los sismos ubicados en la porción oceánica corresponden a la zona de subducción.
- La concentración de sismos con magnitud mayor a 6 Mw se ubica al centro sur de la franja oceánica, particularmente lo que corresponde a las regiones de Lima, Ica y Arequipa.
- Existen nidos sísmicos superficiales en Tumbes y al norte de Moyobamba, cerca de Loreto
- En el área de estudio, existen sismos superficiales e intermedios, apreciándose un incremento en la zona sub andina. Estos sismos se caracterizan por tener un rango de magnitud de entre 4 a 6 Mw.

Debido a la poca uniformidad entre los tipos de sismos analizados cercanos a la zona de estudio, es necesario tener en cuenta las variaciones que existen en las características de atenuación de los sismos de subducción y superficiales ya que, en general, estos últimos se atenúan con mayor rapidez. Por este motivo, un criterio a considerar para la elección de los sismos de diseño es la cercanía de los sismos continentales superficiales al área de estudio.

Con base en el "Estudio sobre Observaciones acerca de Neotectónica del Perú" (Sébrier, et, 1982) se ha detectado un sistema de posibles fallas ubicado en la cercanía del proyecto, el cual se describe a continuación.

Sistema de fallas de la Cordillera Blanca

Considerado como el mayor sistema de fallas activas del Perú, este se ubica entre las localidades de Chiquián y Corongo (Ancash) y bordea el occidente de la cordillera con un rumbo de entre N155°E y N125°E, y buzamiento de entre 45° a 60° SW. Está compuesto de un tramo de 100 km al norte de Huaraz, de estructura continua y un tramo en el sector meridional de 77 Km con una traza dispuesta en echelon. Se considera activo a este sistema de fallas, con un periodo de retorno promedio de entre 2350 +/- 450 años y con potencial de generar sismos de gran magnitud (entre 6.75 a 7.4 Ms) (Schwartz D, 1983).

Falla de Quiches

En el margen occidental del Río Marañón, al NNE de Huaraz entre los pueblos de Quiches y Chingalpo, se ubica esta falla cuya dirección se orienta hacia el NNW. Está formada por varios tramos con buzamientos tanto al W como al E, con una longitud de aproximadamente 20 Km. Se conoce que fue reactivada durante un sismo en 1946, habiéndose producido escarpes verticales sobre ella de hasta 3.5m.

• Falla de Chaquilbamba

Ubicada en la Cordillera Occidental al norte del Perú, entre los límites de Cajamarca y La Libertad, está falla de 1.5Km de longitud presenta una dirección NNW-SSE y buzamiento al SW. Se le atribuye un desplazamiento máximo vertical de 8 a 10 m y sus últimos movimientos son asociados a dos sismos producidos en la región en 1937.

Fallas de Rioja-Moyobamba

Serie de accidentes provenientes de la tectónica terciaria, presentan carácter activo especialmente en los tramos de la Falla Rioja y de las fallas al Norte y Sur de Moyobamba. La reactivación de estas estructuras se da constantemente debido a la intensa actividad sísmica que presenta la zona.

4.5.3 Estudio de peligro sísmico

Alva y Castillo (1993) definen al peligro sísmico como "la probabilidad que en un lugar determinado ocurra un movimiento sísmico de una intensidad igual o mayor que un valor fijado" (p. 6). La importancia de hacer este tipo de estudio radica en poder determinar los sismos de diseño que se utilizarían para el análisis

sísmico de un proyecto. Para efectos del análisis, se tomó como referencia el estudio de peligro sísmico para la presa, con el fin de elegir las aceleraciones máximas de diseño y la extracción de los sismos de diseño utilizados. Se presenta a continuación los parámetros extraídos y utilizados.

i. Aceleraciones máximas de diseño

Al ser considerada una estructura con potencial de riesgo "Extremo" en caso de falla, la CDA (2014) recomienda utilizar los siguientes parámetros para analizar sísmicamente la presa, los cuales se basan en los resultados obtenidos en el estudio de peligro sísmico realizado por la Consultora B (2006).

- Talud aguas arriba, se recomienda escalar los registros sísmicos a la aceleración correspondiente al OBE (Sismo base de operación), el cual tiene un valor PGA de 0.35g asociado a un periodo de retorno de 1000 años. Para este caso se consideraría un nivel de relaves de 4083 m.s.n.m.
- El caso de talud aguas abajo es el caso más crítico de análisis, ya que en caso se produzca la falla para este talud, el daño sería catastrófico; por este motivo, CDA (2014) recomienda trabajar con el MCE (Evento sísmico extremo) que tiene un valor PGA de 0.92g, para condiciones de cierre de la presa (relaves a cota 4143.8 m.s.n.m.) y asociado a un periodo de retorno de 10000 años.

ii. Sismos utilizados para el análisis

La motivación principal de este estudio es analizar el efecto que producen los sismos sobre la presa estudiada. Se concluye que parte fundamental para obtener los resultados esperados y entender de una manera óptima el comportamiento de la presa en un análisis dinámico es la elección de los sismos de diseño; esta elección se basa en los siguientes principios.

- Magnitud del sismo.
- Profundidad.
- Probabilidad de excedencia.

Por otro lado, la representación de los sismos se da mediante historias de desplazamiento o aceleración, los cuales se obtienen a través del uso de aparatos como sismógrafos o acelerómetros. La forma de ingresar los sismos en el módulo QUAKE/W es a través de registros (aceleración vs tiempo); por ese motivo, en el estudio de peligro sísmico realizado se sugiere usar los registros de los siguientes tres eventos sísmicos con base en los siguientes criterios:

• Según el estudio de peligro sísmico (enfoque determinístico) se recomienda utilizar sismos que se encuentren en el orden de magnitud de 8.0 Ms.

- Según la profundidad, sismos que se encuentren catalogados en el rango de superficiales a intermedios.
- Según la probabilidad de excedencia, sismos que se encuentren entre 0.18 a 0.30 g.

Se muestran los sismos recomendados por el estudio de peligro sísmico para el emplazamiento, los cuales cumplen con los criterios descritos con anterioridad. (Ver tabla 4.8).

Tabla 4.8 Sismos de diseño recomendados para el sitio. (Consultora B, 2006).

Sismo	Fecha	Mag	nitud	Locali	ización	Profundida	Ac. Máxima	Dirección
3151110	геспа	mb	Mw	Latitud	Longitud	d (Km)	(g)	Direction
Lima, Perú	17 de Octubre de 1966	6.4	8.1	10.83°	78.65°	37.3	0.27	N-S
Chimbote, Perú	31 de Mayo de 1970	6.4	7.9	9.27°	78.84°	71.1	0.11	E-W
Lima, Perú	3 de Octubre de 1974	6.2	8.1	12.28°	77.54°	21.2	0.20	E-W

Con el fin de realizar el análisis por el lado más crítico y conservador, se decidió utilizar el tercer sismo de la tabla (dirección E-W) escalado al PGA de 0.46g (mitad del PGA máximo de 0.92) como el de diseño, ya que es el que más se asemeja a las características del emplazamiento (ver inciso 5.1) y generaría los efectos más desfavorables sobre la estructura. Esto se describe en secciones posteriores. Se muestra a continuación una imagen del registro de aceleraciones vs. tiempo del registro seleccionado (ver figura 4.10).

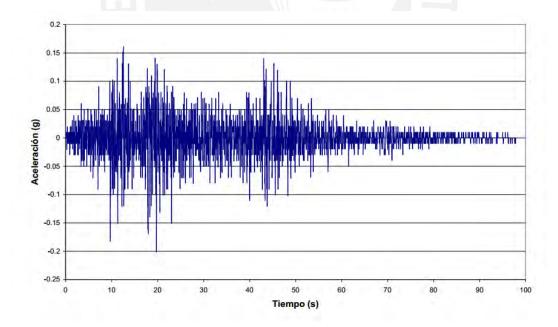


Figura 4.10. Registro de aceleraciones del sismo del 3 de octubre de 1974. Dirección E-W. (Consultora B, 2006).

CAPÍTULO 5. Análisis Dinámico de la presa

En este capítulo se describen todas las consideraciones utilizadas para realizar el análisis, las cuales se basan en conceptos de análisis tipo drenado o no drenado, factores de seguridad mínimos sugeridos, la sección crítica, estratigrafía, los ensayos utilizados para caracterizar el perfil, análisis de potencial de licuación, el sismo y aceleración de diseño utilizados. Seguidamente, se desarrollan cada uno de los análisis ejecutados en los diferentes módulos. Seguidamente, se procede a realizar un análisis de resultados, donde se concluye que la presa no es estable después del sismo ya que la fundación licúa y pierde resistencia; por este motivo, y según lo indicado en el primer capítulo, se propone una alternativa de estabilización, la cual consiste en la colocación de un contrafuerte en el pie del talud, para la cual se realizó un nuevo análisis dinámico y cuyos resultados resultaron ser favorables según se explicará más adelante.

5.1 Consideraciones para el análisis

El objetivo principal del trabajo de investigación es aplicar la metodología utilizada para realizar un análisis dinámico a través de elementos finitos al depósito de relaves. Para tal motivo, se consideraron los siguientes criterios y asunciones con base en los datos obtenidos de los estudios tomados como base, correlaciones obtenidas de bibliografía relacionada y criterios propios.

5.1.1 Criterios utilizados

Tipo de análisis realizado

Es común realizar diferentes tipos de análisis a una presa de relaves, los cuales pueden dividirse de acuerdo con la variabilidad en el tiempo del análisis (etapa de arranque, operativa, fin de la operación, etc.) y a las condiciones de drenaje de los materiales: análisis bajo condiciones drenadas (*drained analysis*) y bajo condiciones no drenadas (un*drained analysis*). Para esta tesis se consideraron los siguientes tipos de análisis:

 Análisis ejecutado para la etapa final de operación (después de los 18 años de operación), donde se asume que la presa ha llegado a su altura final (4146 m.s.n.m.) y la cota de relaves ha llegado a su

- máxima (4143.8 m.s.n.m.). También se asume un valor de playa de aproximadamente 100 m desde la cara aguas arriba de la presa, según valores típicos en este tipo de estructuras.
- Con respecto a las condiciones de drenaje del material, se realizó un análisis tipo drenado debido a que se espera que después de 18 años de operación de la presa, se consideran únicamente las presiones de poro provenientes de las filtraciones desde los relaves y se asume que las presiones generadas por la construcción de la presa ya se han disipado. Este tipo de análisis nos permite prescindir de un análisis de licuación estática (debido a que este fenómeno se da generalmente cuando se aplican de manera seguida recrecimientos de presa sin dejar disipar las presiones de poro en los suelos) y se sugiere utilizar los parámetros drenados de los materiales; sin embargo, debido a que las solicitaciones sísmicas provocan una condición no drenada sobre el suelo de cimentación, se utilizaron los parámetros obtenidos del ensayo triaxial consolidado no drenado (CU) para caracterizar este material.

Factores de seguridad mínimos y desplazamientos de la cresta

Se tomaron como base los criterios expuestos por las normativas CDA (2014) y ANCOLD (2012), las cuales se muestran a continuación (Ver tabla 5.1 y 5.2).

Tabla 5.1 Factores de seguridad mínimos según la norma CDA. (CDA, 2014).

Condición de carga	Factor de seguridad mínimo	Talud
Durante o al final de construcción	> 1.3 dependiendo del riesgo durante la construcción	Típicamente Aguas Abajo
Estado a largo plazo	1.5	Aguas Abajo
Pseudo-Estático	1.0	-
Post-Sismo	1.2	-

Tabla 5.2 Factores de seguridad mínimos según la norma ANCOLD. (ANCOLD, 2012).

Condición de carga	Factor de seguridad mínimo	Resistencia a utilizar
Largo plazo drenada	1.5	Efectiva (ESA)
Corto plazo no drenado (posible licuación estática)	1.5	Consolidada no drenada (USA)
Corto plazo no drenado (no posible licuación estática)	1.3	Consolidada no drenada (USA)
Post-Sismo	1.0-1.2	Resistencia post-sismo

Respecto a los máximos desplazamientos generados en la cresta de la presa después del sismo, se tomó como base lo expuesto por Makdisi y Seed (1977), los cuales categorizan la magnitud del daño según el desplazamiento máximo experimentado por un talud (Ver tabla 5.3).

Tabla 5.3 Categoría de daño según desplazamiento de cresta. (Makdisi y Seed, 1977).

Categoría de daño	Deformación (m)	Descripción
1	< 0.3	Deformación de cresta mínima. No ocurren mayores fallas en talud.
2	0.3-1.0	Ligeras fallas superficiales. Probabilidad de extensión de 1 a 2 m debajo del terreno. Daños mayores improbables.
3	1.0-3.0	Fallas profundas, hasta 5.0 m de profundidad.
4	> 3.0	Fallas profundas, hasta 10.0 m de profundidad.

Como segundo criterio, se decidió adoptar lo expuesto por la normativa ANCOLD (2012) en términos de deformaciones aceptables. En ella, se define al criterio para evaluar el estado límite de servicio o deformaciones admisibles por sismo como aquel que se basa en la relación con el impacto potencial en la capacidad de servicio de la presa; en otras palabras, la pérdida de borde libre debido al desplazamiento inducido por el sismo. En resumen, se indica que las deformaciones no deben reducir los bordes libres a niveles inaceptables, lo que se traduciría para nuestro objeto de estudio en no tener un desplazamiento vertical mayor a 2 m después del sismo.

Geometría de la sección crítica y ensayos utilizados

Se decidió analizar la sección máxima de la presa (crítica) la cual se aprecia en la figura 1.1 y 5.1. Es recomendable simplificar la geometría para cualquier análisis por elementos finitos con el objetivo de optimizar los resultados, reducir los tiempos de cálculo y evitar incongruencias en el análisis debido a la

mala generación de mallas. La geometría ingresada al *software* corresponde al modelo de la presa en su altura máxima (120 m) con un borde libre de 2 m, una pendiente de relaves de 1 % (valor típico), una playa de aproximadamente 100 m y una profundidad de roca a 120 metros desde la base de la presa aproximadamente. No se consideraron las capas de filtros en el modelo, ya que la única función de estos es evitar el paso de partículas finas a la presa y prevenir el fenómeno de *pipping*. Finalmente, se utilizaron los ensayos que se aprecian en la figura 5.1 para caracterizar el modelo, los cuales constan de dos perforaciones diamantina (BH-TSF-01 y BH-TSF-05), dos perfiles MASW (MASW-TSF-11 y MASW-TSF-13) y una calicata (TP-TSF-38). Sobre estos logueos se ejecutaron los ensayos y pruebas de laboratorio previamente descritos y cuyos resultados se muestran en el Anexo C.

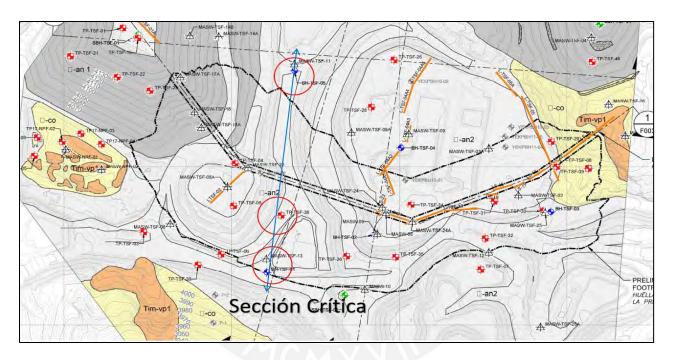


Figura 5.1. Vista en planta sección crítica y ensayos utilizados (línea azul: eje sección crítica). (Consultora A, 2018).

Estratigrafía del suelo de fundación

Con el fin de poder caracterizar la sección crítica para realizar el análisis (ver figura 5.1), se generó un perfil estratigráfico del suelo de fundación. Las investigaciones tomadas como fuente para esta caracterización fueron las perforaciones BH-TSF-01, BH-TSF-05 y la calicata TP-TSF-38 (ver Anexo C). A continuación, se muestra el perfil mencionado:

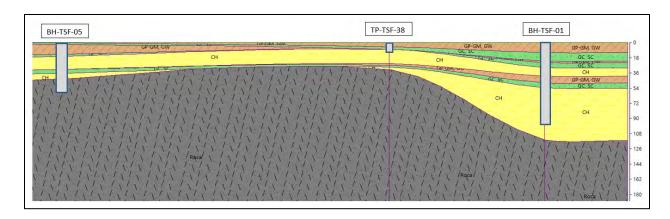


Figura 5.2. Perfil estratigráfico del suelo de fundación (Elaboración propia).

Se aprecia que para la zona donde se va a fundar la presa, existe un estrato de aproximadamente 30 m de suelo granular compuestogravas GP-GM, GW y GC y arenas SC según la clasificación SUCS; posteriormente encontramos un estrato de arcilla de alta plasticidad CH según SUCS, interceptado por nuevamente un estrato de suelos granulares, para finalmente encontrar el contacto con roca a aproximadamente 120 m de profundidad.

Es importante mencionar que el perfil generado es aproximado, ya que solo se logró alcanzar el contacto con roca en la perforación BH-TSF-05 y la información brindada por la calicata es limitada, debido a que esta solo alcanza los 5m de profundidad; sin embargo, esto, en conjunto con la integración de los ensayos geofísicos al perfil (Consultora A, 2018), nos da una estimación más que suficiente para realizar el análisis.

Sismo y aceleraciones de diseño

Se consideró factible escalar los sismos de diseño a las aceleraciones máximas recomendadas en el estudio de peligro sísmico, para esto, se decidió utilizar el sismo ocurrido el 3 de octubre de 1974 (Anexo A) como el elegido para el análisis, debido a que este se caracteriza por ser un sismo largo con varias pulsaciones máximas, el cual representaría el mayor riesgo para licuación y daños a la presa (Román, 2020). Además, con el objetivo de simplificar y reducir el tiempo en que el *software* ejecuta el modelo, se reduce el tiempo total del sismo a solo el tramo con mayores incidencias de aceleraciones como se muestra en la figura 5.3.

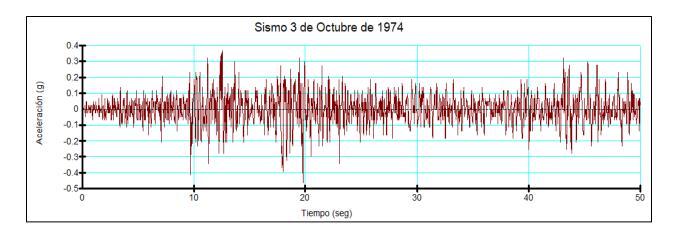


Figura 5.3. Registro sísmico utilizado para el análisis.

Se observa, del registro sísmico anterior, que este fue escalado a una aceleración máxima de 0.46g, la cual correspondería a la mitad del máximo sismo creíble (MCE) según lo recomendado por el estudio de peligro sísmico.

5.1.2 Parámetros utilizados para cada tipo de análisis

Se presentan a continuación tablas resumen donde se muestran los parámetros utilizados para cada fase del análisis, los modelos y condiciones adoptadas. Cabe mencionar que en los siguientes cuadros se define como "Cimentación Licuada" al suelo de fundación con parámetros resistentes reducidos debido a la aplicación del sismo (resistencia post-sismo). Esta nueva resistencia se aplica en aquellas zonas donde el programa ha determinado que va a existir licuación según lo explicado en la sección 2.5.2.

• Análisis de infiltraciones con SEEP/W

Tabla 5.4. Parámetros utilizados para el análisis de infiltraciones.

		SEEP/W					
		Parámetros Hidráulicos					
Descripción del material	Tipo de Suelo	w Permeabilidad k		Modelo	Vol. WC Function	Función K	
		%	m/s				
Relaves	Arena Limosa (SM)	21	2.20E-05	Saturado Solamente	-	-	
Basamento Rocoso	Toba (Roca Ígnea)	18	3.00E-07	Saturado Solamente	-	-	
Presa	Sílice Masiva (SM)	14.7	1.00E-05	Saturado/Insaturado	"Presa"	"Presa"	
Cimentación Licuada	Arena Arcillosa (SC)	-	-	-	-	-	
Cimentación	Arena Arcillosa (SC)	13.9	3.70E-05	Saturado/Insaturado	"Cimentación"	"Cimentación"	

• Análisis de estabilidad con SLOPE/W

Tabla 5.5. Parámetros utilizados para el análisis de estabilidad antes y después del sismo.

		SLOPE/W					
		Parámetros de Resistencia					
Descripción del material	Tipo de Suelo	Peso Unitario (γ)	Cohesión (c)	Ángulo fricción (Ø)	Modelo Constitutivo		
		kN/m3	kPa	grados (°)			
Relaves	Arena Limosa (SM)	20	1	20	Mohr Coulomb		
Basamento Rocoso	Toba (Roca Ígnea)	ı	1	-	Bedrock		
Presa	Sílice Masiva (SM)	21	-	-	Hoek y Brown		
Cimentación Licuefactada	Arena Arcillosa (SC)	20	16.2	-	Mohr-Coulomb resistencia residual		
Cimentación	Arena Arcillosa (SC)	20	38	30	Mohr Coulomb		
Geomembrana	Arcilla	20		20	Mohr Coulomb		

• Análisis in-situ y redistribución de esfuerzos con SIGMA/W

Tabla 5.6. Parámetros utilizados para el análisis in-situ y de redistribución de esfuerzos post-sismo.

		SIGMA/W								
		Parámetros de elasticidad								
Descripción del material	Módulo de Poisson	Ángulo dilatancia	Módulo Young,E	Cohesión (kPa)	Phi	Insitu Ko	Peso Unitario	Modelo		
	ν	grados (°)	kPa	kPa	(°)	13-	kN/m ³	-		
Relaves	0.3	0	15000	1	20	0.43	20	Elasto-Plástico (efectivo)		
Basamento Rocoso	0.25	0	78453200	1	-	0.33	21	Lineal Elástico (efecivo)		
Presa	0.3	0	7330000	1	35.4	0.5	21	Elasto-Plástico (efectivo)		
Cimentación Licuada	0.4	0	30000	38	30	0.667	20	Elasto-Plástico (efectivo)		
Cimentación	0.4	0	30000	38	30	0.667	20	Elasto-Plástico (efectivo)		

Nota: Para el análisis con SIGMA/W se consideró un modelo Elasto-Plástico con parámetros efectivos para todos los materiales.

• Análisis dinámico con QUAKE/W

Tabla 5.7. Parámetros utilizados para el análisis dinámico.

	QUAKE/W								
		Parámetros dinámicos							
Descripción del material	Veloc. Onda corte Vs	Módulo de rigidez al corte Gmax	miento Modelo		Función de reducción módulo de rigidez G y amortiguamiento	Función de relación de amortiguamiento			
	m/s	kPa	-	-	-	-			
Relaves	120	29357	ı	Lineal-Equivalente	Rojas et al (2019)	Rojas et al (2019)			
Basamento Rocoso	722.5	1117093.38	0.05	Elástico Lineal	-	-			
Presa	600	904,434.25	ı	Lineal-Equivalente	Tapia et al (2019)	Tapia et al (2019)			
Cimentación Licuada	-	-	-	=	=	-			
Cimentación	327.5	229528.375	-	Lineal-Equivalente	Seed e Idriss (1970)	Seed e Idriss (1970)			

Nota: Las funciones de reducción de módulo de rigidez G y relación de amortiguamiento se muestran en el Anexo B. Estos fueron tomados de estudios realizados sobre materiales similares.

5.2 Análisis Estático Inicial

5.2.1 Infiltraciones con SEEP/W

El objetivo del análisis de infiltraciones fue determinar las condiciones de presiones de poro y nivel piezométrico iniciales. Se definieron las condiciones de frontera (Figura 5.4) y las propiedades hidráulicas de los materiales (Ver tabla 5.4).

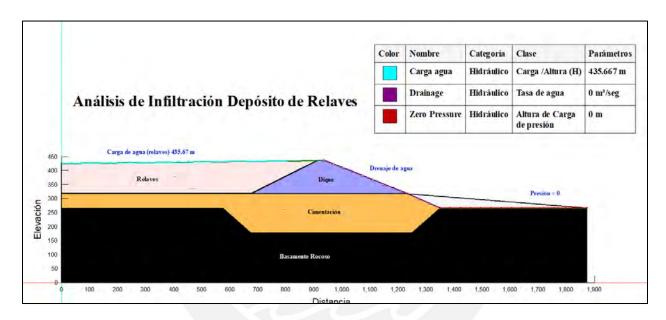


Figura 5.4. Definición de condiciones de frontera y propiedades de materiales para análisis de infiltración.

Una vez ejecutado el análisis, se obtienen las condiciones flujo de agua (Ver figura 5.5) y carga de altura (Ver figura 5.6) para el sistema. Se aprecia a partir de lo mostrado en la figura 5.5 que el flujo obtenido post análisis es coherente, ya que se desarrolla según lo esperado a través del cuerpo de la presa ya que esta no tiene un material drenante o algún sistema similar en el mismo. Además, es evidente que existe una concentración de flujo en la parte derecha del material de cimentación, zona central, lo cual nos daría un primer indicio de que se podría generar licuación en ese sector. Finalmente, con respecto a las presiones de poro, podría decirse de antemano que están tomando un papel importante, ya que la magnitud de estas es considerable y podría generar una reducción de las tensiones efectivas en el dique y fundación al estar totalmente saturados, según el análisis.

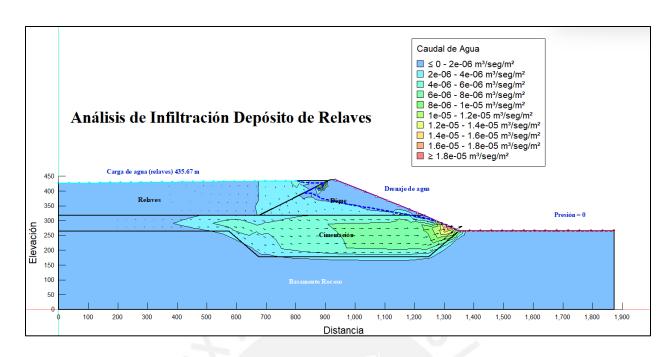


Figura 5.5. Resultados de carga de agua sobre el sistema.

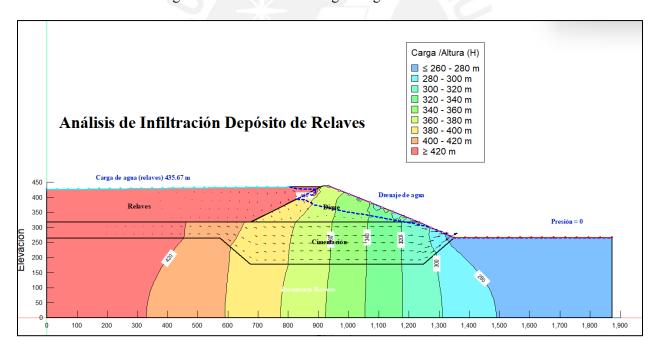


Figura 5.6. Resultados de la presión de poros sobre el sistema.

5.2.2 Condiciones In-Situ con SIGMA/W

La segunda parte del análisis estático inicial consta de realizar un análisis In-Situ haciendo uso de la extensión SIGMA/W. Para esto, se definieron las propiedades correspondientes de los materiales y se

definieron las condiciones de frontera como: Restricción de movimiento en los ejes XY en la base y restricción de movimiento en el eje X para los costados de la sección (Ver figura 5.7).

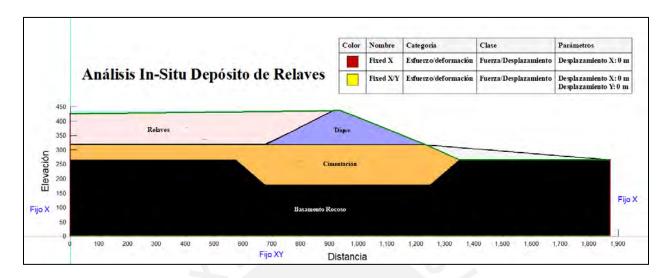


Figura 5.7. Definición de las condiciones de frontera para análisis In-Situ.

Se aprecia de la figura 5.8 los esfuerzos totales en el sistema, posterior análisis de infiltración. Estos sirven como punto de partida para el resto de procedimientos.

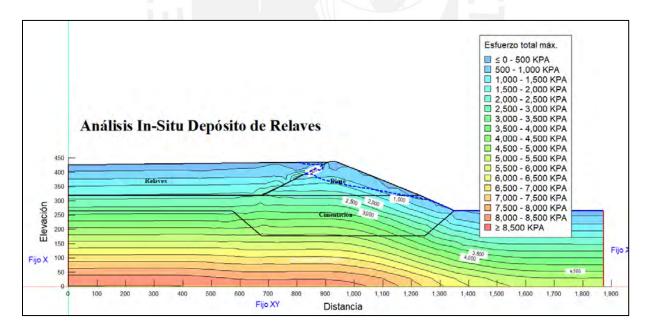


Figura 5.8. Esfuerzos totales en el sistema antes de aplicar el sismo.

5.2.3 Análisis de estabilidad antes del sismo con SLOPE/W

Con el objetivo de comparar la condición de estabilidad antes y después de aplicado el sismo, se realizó un análisis de estabilidad a la presa para falla local, global y en la cimentación (Ver figura 5.9, 5.10 y 5.11).

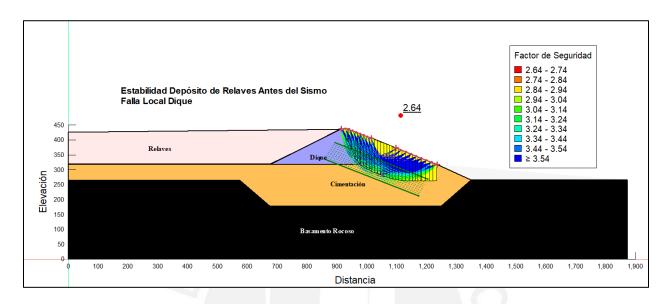


Figura 5.9. Falla local del dique antes del sismo.

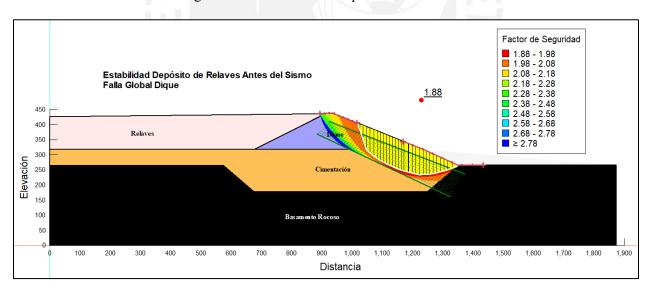


Figura 5.10. Falla global del dique antes del sismo.

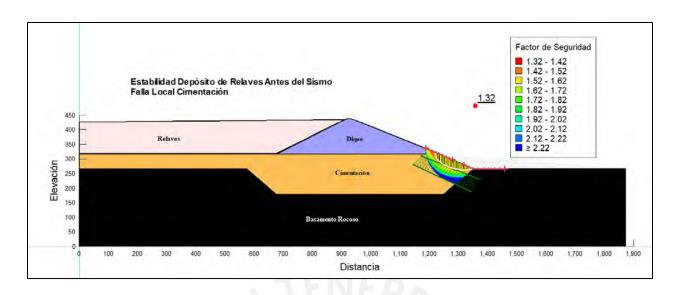


Figura 5.11. Falla de la cimentación antes del sismo.

De manera preliminar se aprecia que, debido a la geometría y características de la cimentación, esta es la parte más susceptible a fallar (figura 5.11), ya que presenta un factor de seguridad relativamente bajo; sin embargo, teóricamente no estaría fallando, ya que es mayor a 1.

5.3 Análisis del Potencial de Licuación en la fundación

Continuando con el proceso recomendado por ANCOLD (2012) para ejecutar un análisis dinámico (ver figura 3.2), se debe verificar el potencial de licuación del material de fundación, ya que de manera preliminar se había determinado que este es el elemento que presenta mayor susceptibilidad a sufrir este fenómeno.

En primera instancia se deben evaluar algunas características propias de suelos potencialmente licuables y la aplicación de estas sobre nuestro terreno. Dichas características se mencionan a continuación:

- Presencia de suelos jóvenes, sueltos, mal gradados, partículas redondeadas y reducido peso específico
- Elevado nivel freático
- Bajo contenido de arcillas

Si relacionamos estas tres características con el suelo de fundación del depósito, podríamos estimar de manera preliminar que este se catalogaría como susceptible a licuación en los primeros metros, ya que, según la estratigrafía (ver figura 5.2), se tienen suelos granulares, mal gradados, con bajo contenido de finos y saturados debido a las infiltraciones procedentes del vaso.

Siguiendo con el análisis, ANCOLD (2012) recomienda hacer esta evaluación mediante la aplicación del método CRR/CSR, el cual se basa en obtener un factor de seguridad que relaciona el parámetro CSR (solicitación sísmica) con el parámetro CRR (resistencia a la licuación). También se sugiere realizar esta evaluación haciendo uso de los conceptos de estado crítico, los cuales fueron explicados en el capítulo 2 de la tesis.

Se decidió hacer el análisis a través de la aplicación de los dos métodos mencionados anteriormente, tomando en cuenta que el primer procedimiento es considerado como un método empírico que nos daría una primera estimación del estrato, en caso exista, que sería potencialmente licuable.

5.3.1 Análisis del Potencial de Licuación en la fundación mediante el método CRR/CSR

El método CRR/CSR se basa en la obtención de un factor de seguridad, el cual relaciona, como se mencionó previamente, los parámetros CRR y CSR. La teoría dice que para factores de seguridad menores a 1.0, el suelo es potencialmente licuable. A continuación, se explica de manera general los conceptos y el procedimiento seguido.

i) Se define al factor de seguridad mediante la siguiente fórmula:

$$FS = \left(\frac{CRR}{CSR}\right)MSF \qquad (5.1)$$

Donde:

FS = Factor de seguridad

CRR = Relación de resistencia cíclica que presenta el suelo

CSR = Relación de esfuerzos cíclicos impuestos por el sismo

MSF = Factor de corrección debido a la magnitud del sismo

ii) Se calcula el parámetro CSR mediante la siguiente expresión:

$$CSR = 0.65 \frac{\sigma_{vo}}{\sigma_{vo}} * a_{max*} r_d \qquad (5.2)$$

Donde:

 σ_{vo} = Tensión vertical total antes del terremoto

 σ_{vo} = Tensión vertical efectiva antes del terremoto

 a_{max} = Aceleración horizontal máxima en la superficie

 r_d = Factor de reducción que depende de la gravedad:

$$r_d = 1 - 0.0167 * z$$
, para z< 9.15m (5.3)

$$r_d = 1.174 - 0.0267 * z$$
, para $9.15 \text{m} < z < 23 \text{m}$ (5.4) (Seed and Idriss, 1971)

iii) Se calcula el parámetro CRR según las relaciones desarrolladas por Seed et. Al. (1985), con las cuales podremos obtener la relación de resistencia cíclica que presenta el suelo en función de su contenido de finos y el valor de N₆₀.

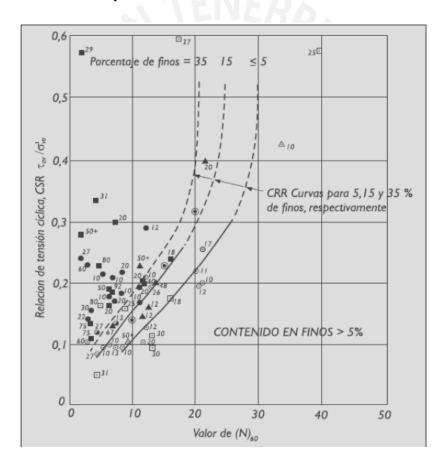


Figura 5.12 Relación de resistencia cíclica del suelo en función de su contenido de finos y N_{60} (Seed et. Al. ,1985).

Para ingresar a este último gráfico, se utilizaron los valores de N₆₀ corregidos y porcentaje de finos, según lo obtenido por la Consultora A para las perforaciones BH-TSF-01 Y BH-TSF-05 (ver figuras 5.13 y 5.14).

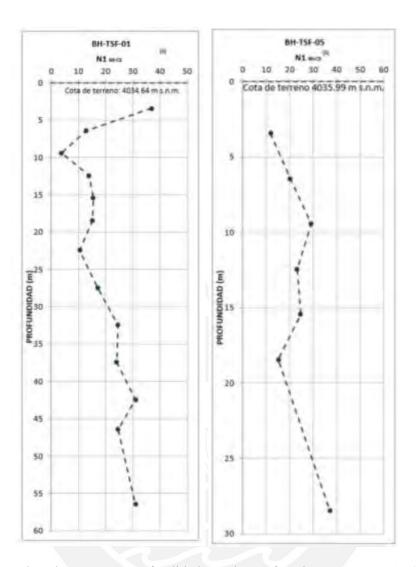


Figura 5.13. Número de golpes N_{60} Vs. profundidad para las perforaciones BH-TSF-01 (izquierda) y BH-TSF-05 (derecha). (Consultora A, 2018).

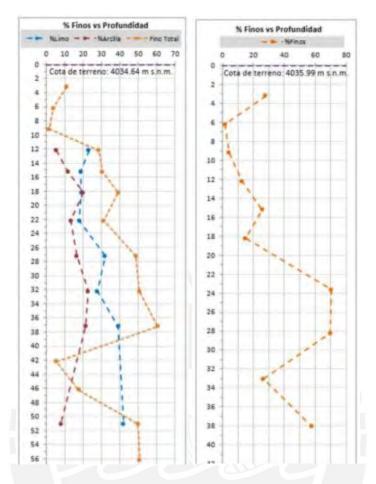


Figura 5.14. Porcentaje de finos Vs. profundidad (línea amarilla discontinua) para las perforaciones BH-TSF-01 (izquierda) y BH-TSF-05 (derecha). (Consultora A, 2018).

iv) Se calcula el factor de corrección de CRR en función de la magnitud del sismo haciendo uso de la siguiente tabla:

Tabla 5.8. Factor de corrección de CRR en función de la magnitud del sismo. (Youd & Idriss, 1997).

Magnitud M _w	Factor de corrección
5.5	2.20 a 2.80
6	1.76 a 2.10
6.5	1.44 a 1.60
7	1.19 a 1.25
7.5	1
8	0.84
8.5	0.72

- v) Finalmente, haciendo uso de una hoja de cálculo, se realizó el análisis de potencial de licuación para los perfiles. Se muestran a continuación las consideraciones finales tomadas para el análisis y gráficos resúmenes de FS vs. profundidad para cada caso:
- $a_{max} = 0.92g$ (PGA recomendado en el estudio de peligro sísmico)
- $M_w sismo = 8.1$
- MSF (ver tabla 5.8) = 0.82

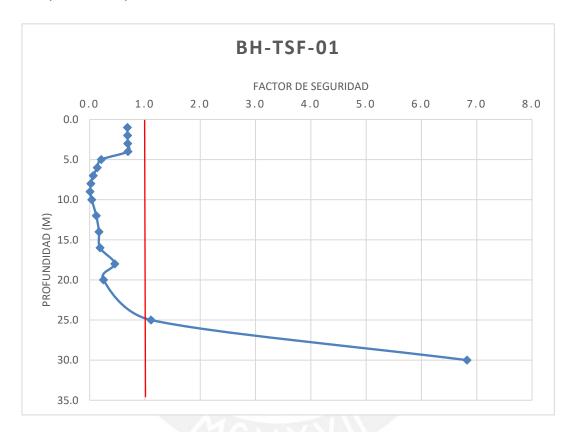


Figura 5.15. Análisis de potencial de licuación en el perfil BH-TSF-01

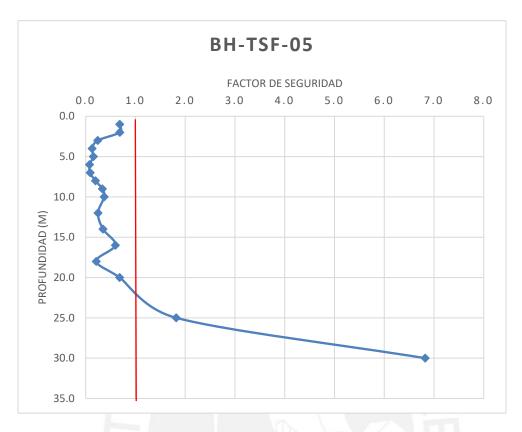


Figura 5.16. Análisis de potencial de licuación en el perfil BH-TSF-05

Según se aprecia en los perfiles de FS vs. profundidad obtenidos para los dos perfiles analizados, existe potencial de licuación para los primeros 20-25 m del suelo de fundación. Este resultado concuerda con lo estimado preliminarmente y nos adelanta que existe una probabilidad grande de que se obtengan resultados similares después del análisis dinámico con QUAKE/W.

5.3.2 Análisis del Potencial de Licuación en la fundación mediante la teoría de estado crítico

Se explicó en el capítulo 2 todo lo relacionado a las teorías de estado crítico y comportamiento contractivo o dilatante de un suelo. A partir de estos conceptos, se determinó que el suelo de cimentación tiene un potencial riesgo a sufrir de licuación cíclica. A continuación, se explican los criterios considerados.

• Ensayos in-situ

Al realizar un análisis a los resultados obtenidos en los ensayos in-situ para la perforación BH-TSF-01 (Ver Anexo C) se distingue un comportamiento característico de materiales sueltos, especialmente en los primeros 30 metros, según lo expuesto por Tokimatsu y Seed (1987). Esto se evidencia al observar los bajos valores de N_{60} y Densidad relativa (Dr %) vs. profundidad en la figura siguiente (Ver figura 5.17).

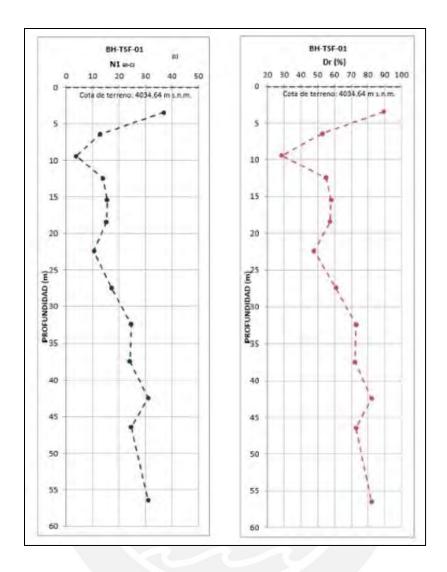


Figura 5.17. Resultados de número de golpes corregidos y densidad relativa vs. profundidad en la perforación BH-TSF-01 (Consultora A, 2018).

• Ensayo triaxial consolidado no drenado (CU)

El segundo criterio para evaluar el potencial de licuación del material de cimentación fue observar el comportamiento no drenado de este a través del ensayo triaxial CU realizado (Ver Anexo C). En este, se evidencia un comportamiento contractivo al inicio de aplicado el esfuerzo desviador para luego comportarse como material dilatante, especialmente a grandes esfuerzos de confinamiento, conforme este último va aumentando (Ver figura 5.18). Este es un claro indicador de un suelo con licuación limitada o cuasi estado crítico, pudiéndose catalogar como medianamente denso.

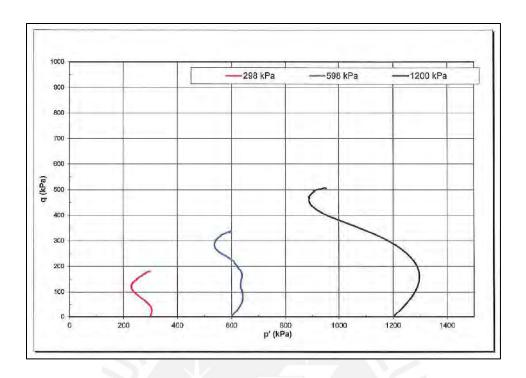


Figura 5.18. Comportamiento del material de cimentación en un ensayo triaxial CU. (Consultora A, 2018).

Con base en estos dos criterios se decidió clasificar al material de cimentación como potencialmente licuable. A pesar de que ante condiciones estáticas este suelo podría no representar un riesgo, ante solicitaciones dinámicas podría licuar, especialmente porque, como se observó en el análisis de infiltraciones, el agua proveniente de los relaves pasa a través de esta zona saturando el suelo y puede generar exceso de presión de poros.

Con el fin de poder modelar y evaluar lo previamente descrito, se estimaron los parámetros límites con base en el resultado del ensayo triaxial CU presentado líneas arriba, obteniéndose valores de q_{ss} igual a 32.4 kPa (El valor ingresado a QUAKE/W corresponde a la mitad de este valor según el manual, lo cual significaría un valor de C_{ss} igual a 16.2 kPa) y una pendiente de la línea superficie de colapso con ángulo igual a 26.6° (Ver figura 5.19). Estos valores se ingresaron al software para poder continuar con el análisis.

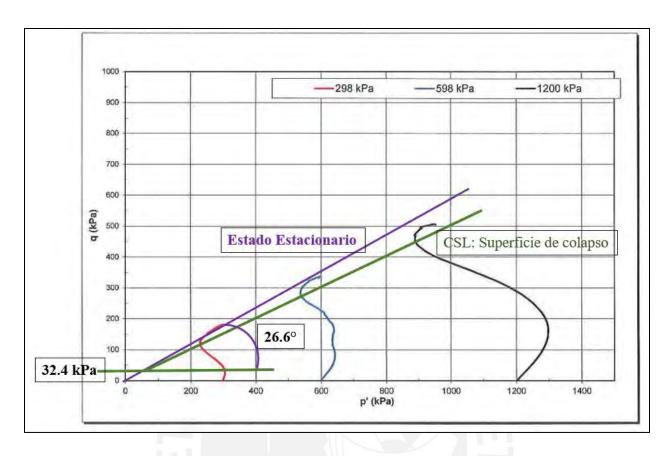


Figura 5.19. Estimación de los parámetros de estado crítico para ser ingresados al programa.

5.4 Análisis Dinámico

5.4.1 Análisis sísmico con QUAKE/W

Establecidos los criterios para evaluar el potencial de licuación, se ingresaron los parámetros correspondientes (Tabla 5.7), las curvas de reducción de G y amortiguamiento correspondientes a cada material (Ver Anexo B y tabla 5.7), un valor de N_{eq} igual a 20 según la gráfica 2.16 para una magnitud de sismo de 8.1 Mw, los correspondientes puntos de registro dispuestos estratégicamente en el sistema (cuadrados blancos en Figura 5.20) y las condiciones de frontera (Figura 5.20).

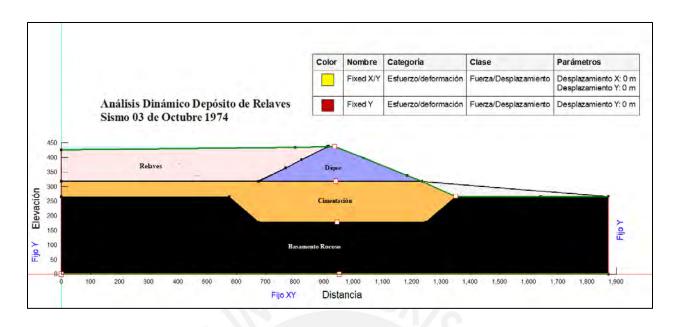


Figura 5.20. Condiciones análisis dinámico en Quake/W.

Una vez terminado el análisis, se obtuvieron los resultados en cuanto a exceso de presión de poros en la cimentación para el inicio y fin del sismo (0.2 seg y 50 seg respectivamente) (Ver figura 5.21 y 5.22), la zona de material de cimentación que licúa al inicio y final del sismo (0.2 seg y 50 seg respectivamente) (Ver figura 5.23 y 5.24), las aceleraciones registradas en los distintos puntos de control vs. el tiempo (Ver figura 5.25, 5.26, 5.27 y 5.28) y la respuesta espectral en la base de la roca (ver figura 5.29). Cabe mencionar que los desplazamientos obtenidos en QUAKE/W no son realistas, por ese motivo se realiza un análisis posterior en SIGMA/W.

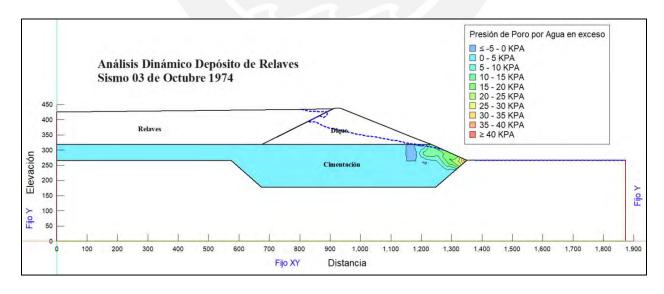


Figura 5.21. Exceso de presión de poros en la cimentación, tiempo 0.2 seg.

*Nota: Cabe resaltar que, según la escala de colores utilizada, se obtuvieron valores de exceso de presión de poros de hasta 40 kPa, los cuales entrarían dentro del rango de color celeste si se hubiese usado la escala mostrada en la figura 5.21

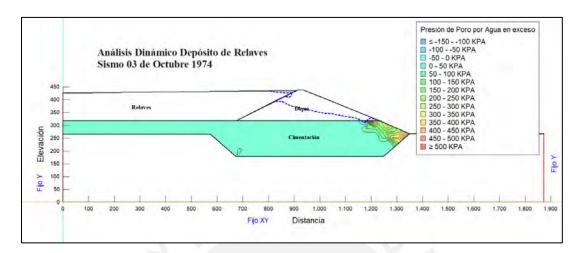


Figura 5.22. Exceso de presión de poros en la cimentación, tiempo 50 seg.

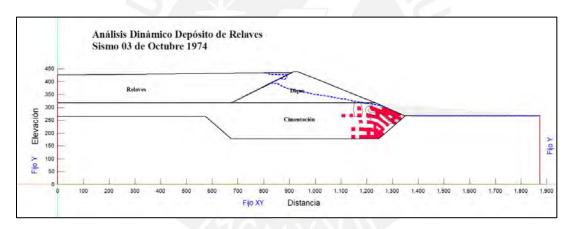


Figura 5.23. Porción de la cimentación que ha licuado a los 0.2 seg.

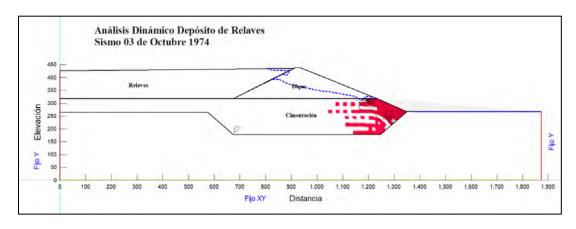


Figura 5.24. Porción de la cimentación que ha licuado a los 50 seg.

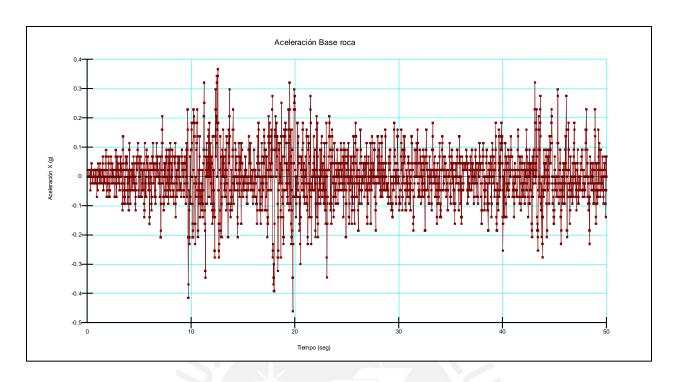


Figura 5.25. Aceleración registrada en la base de la roca.

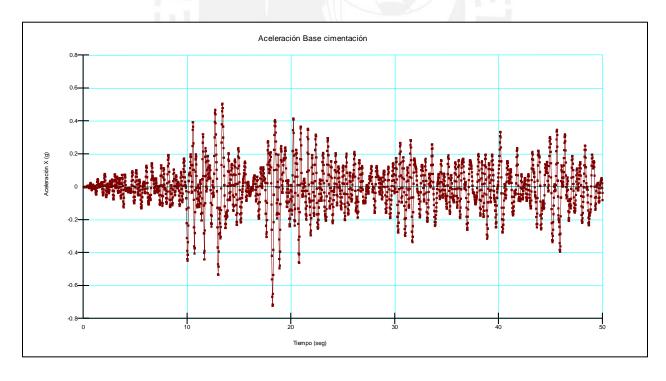


Figura 5.26. Aceleración registrada en la base de la cimentación (contacto suelo-roca).

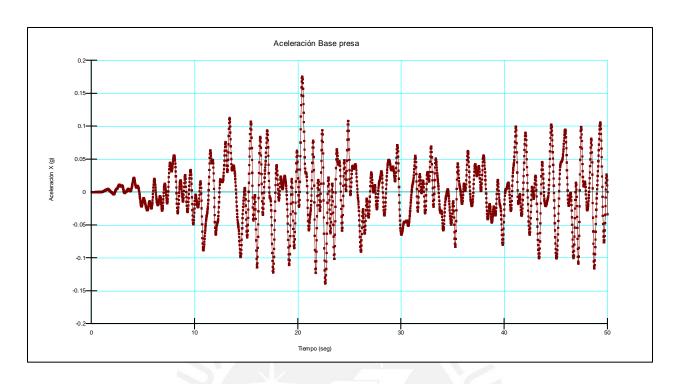


Figura 5.27. Aceleración registrada en la base de la presa.

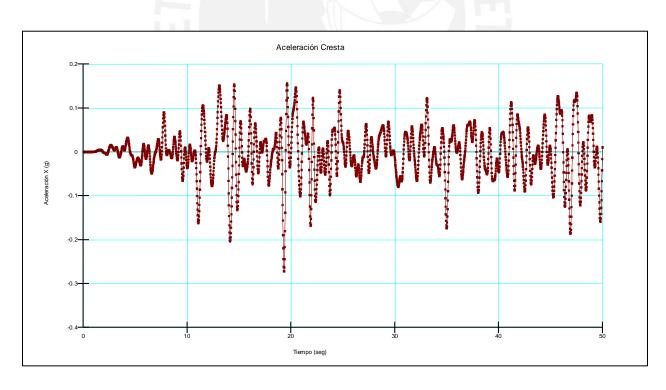


Figura 5.28. Aceleración registrada en la cresta.

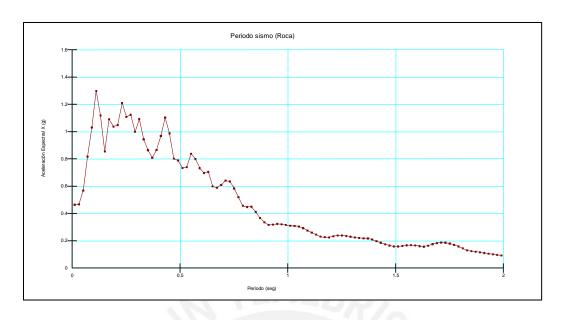


Figura 5.29. Aceleración espectral vs. periodo en la roca.

5.4.2 Análisis de estabilidad post-sismo con SLOPE/W

A continuación, se realizó un análisis de estabilidad post-sismo para falla en la cimentación, global y local (Figura 5.30, 5.31 y 5.32 respectivamente). Es importante mencionar que, a partir de este punto, se debe definir un material de cimentación licuado (color verde en las figuras mostradas a continuación), el cual, en las zonas donde el suelo haya licuado, utilizará la resistencia residual que se definió previamente, igual a 16.2 kPa.

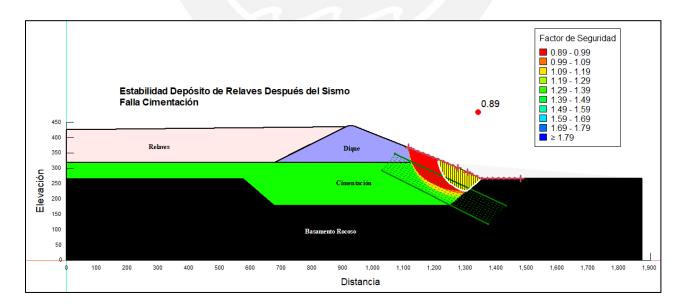


Figura 5.30. Análisis de estabilidad post-sismo para falla en la cimentación.

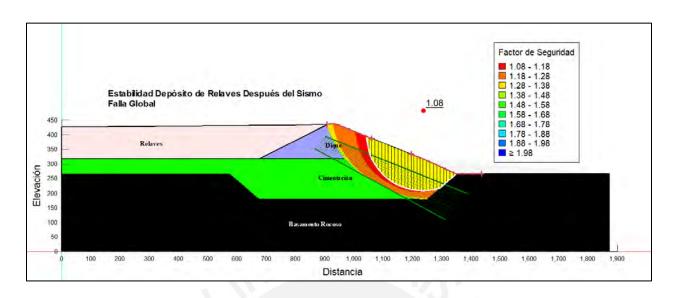


Figura 5.31. Análisis de estabilidad post-sismo para falla global.

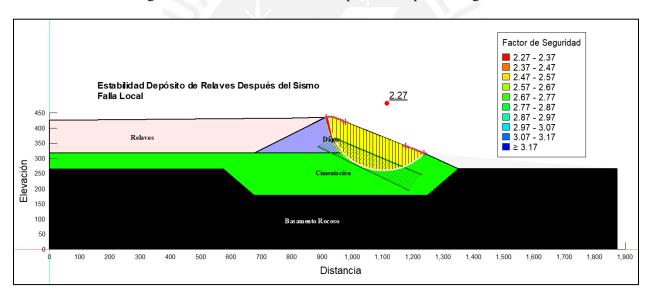


Figura 5.32. Análisis de estabilidad post-sismo para falla local.

5.4.3 Redistribución de esfuerzos con SIGMA/W

Finalmente, se realizó un análisis tipo redistribución de esfuerzos con SIGMA/W para determinar los desplazamientos y condiciones finales después del sismo. Se muestran a continuación los resultados obtenidos (Figuras 5.33 a la 5.37).

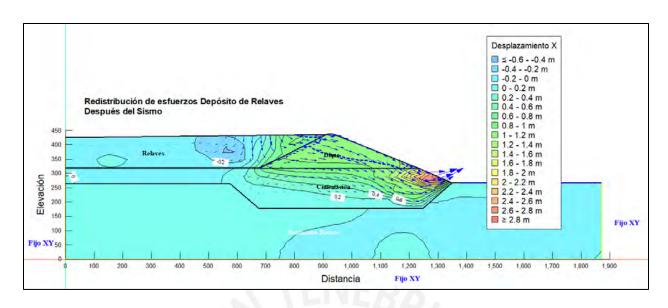


Figura 5.33. Desplazamientos en el eje x después del sismo.

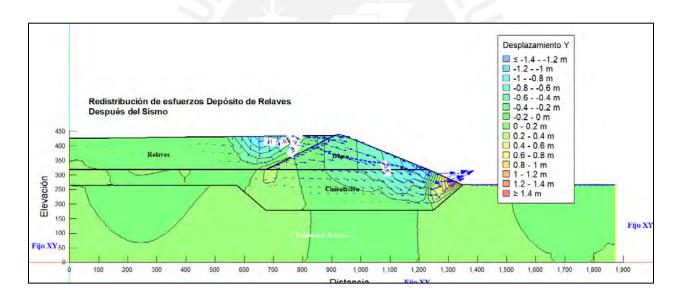


Figura 5.34. Desplazamientos en el eje y después del sismo.

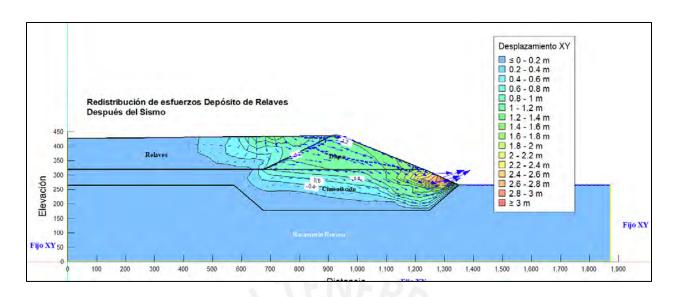


Figura 5.35. Desplazamientos totales después del sismo.

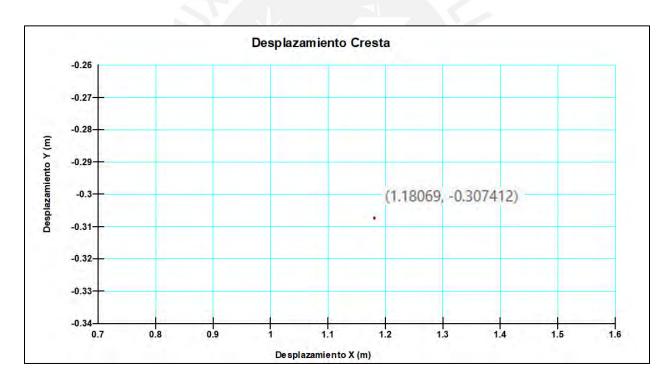


Figura 5.36. Desplazamiento vertical y horizontal de la cresta, después del sismo.

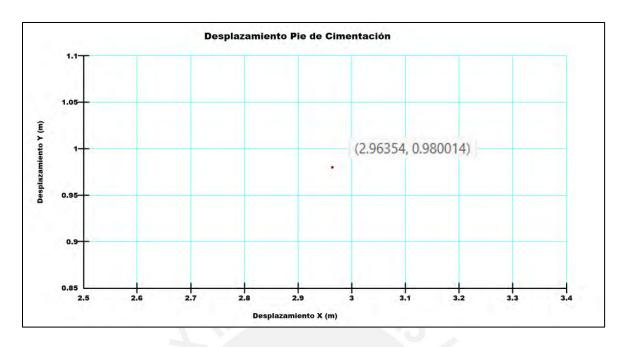


Figura 5.37. Desplazamiento vertical y horizontal del pie de la cimentación, después del sismo.

5.5 Análisis y Discusión de Resultados

5.5.1 Sin considerar sistema de estabilización

En primera instancia, se presenta un cuadro resumen el cual muestra los resultados obtenidos del análisis.

Tabla 5.9. Resumen resultados análisis dinámico.

	Antes del sismo	Despues del sismo
F.S Falla Global	1.88	1.08
F.S Falla Local	2.64	2.27
F.S Cimentación	1.32	0.89
Desplazamiento horizontal cresta (m)	-	1.18
Desplazamiento vertical cresta (m)	-	-0.31
Desplazamiento horizontal cimentación (m)		2.96
Desplazamiento vertical cimentación (m)		0.98

^{*}Nota: Valores negativos indican desplazamiento vertical hacia abajo, y valores positivos hacia arriba.

Con base en lo mostrado en la tabla anterior, se aprecia una considerable disminución en los factores de seguridad para ambos casos de falla, esto podría deberse a la pérdida de resistencia que experimentaron los materiales después del sismo (*strain softening*). A continuación, se detalla un análisis con base en los resultados obtenidos para cada componente.

Con respecto a los desplazamientos y deformaciones

Con respecto a los desplazamientos calculados con SIGMA/W, se podría clasificar a la categoría de daño experimentada en el dique como fallas profundas hasta de 5 metros (tipo 3) según los criterios expuestos por Makdisi y Seed (1977). Adicional a esto, se aprecia que se tendría un desplazamiento vertical máximo de la cresta de 0.31 metros hacia abajo, lo cual significaría una pérdida de altura de esa magnitud, pero no mayor a la del borde libre considerado (los relaves no se desbordarían); esto revalida el tipo de falla que se esperaría en el sistema (movilidad cíclica) con unos desplazamientos y daños considerables, mas no una falla total del sistema. Esto tampoco significaría daños muy considerables en los filtros o revestimientos que se consideren para la construcción del depósito. En resumen, se podría decir que el rendimiento de la presa en términos de deformaciones es aceptable, ya que a pesar que se presentan daños, no ocurriría una falla total del sistema; sin embargo, se recomendaría colocar una medida de estabilización como la propuesta en este trabajo.

Con respecto a la falla local y global de la presa

A pesar de que el material de la presa sufre una reducción en sus parámetros resistentes después del sismo, los factores de seguridad y desplazamientos obtenidos sugieren que podría considerarse inestable para una condición de falla global después del sismo según la CDA (2014), ya que presenta un factor de seguridad menor a 1.2, y se considera estable según la normativa ANCOLD (2012) al presentar un factor de seguridad mayor a 1. Como se explicó con anterioridad, un factor de seguridad menor a 1.2 no significa que la presa podría fallar del todo, sino que va a presentar una falla del tipo movilidad cíclica (Ver acápite 2.1.2), lo cual significaría desplazamientos considerables, pero sin una falla catastrófica. Esta consideración se aprecia más en los criterios expuestos por ANCOLD (2012), los cuales consideran un valor de factor de seguridad menor a 1 para catalogar a la presa como si fallara. Para una condición de estabilidad local, lo que significaría una falla cuya superficie de rotura pase únicamente por el dique, podría decirse que es inexistente, ya que según lo esperado este material es mucho más resistente al estar compuesto de roca y no verse afectado por efectos de licuación.

• Con respecto a la falla en la cimentación

Se hace evidente que la falla se producirá a través de la cimentación, ya que se calcularon desplazamientos considerablemente altos y evidenciándose que el material, especialmente en el pie del talud, sufre una reducción de parámetros resistentes ampliamente considerable, lo cual hace que se calcule un factor de seguridad muy bajo (0.89).

Finalmente, observando la tendencia de movimiento después del sismo para el sistema (Ver figura 5.33 - 5.35) se aprecia que la cimentación presenta un potencial riesgo de fallar catastrófica debido a que licúa en la zona especificada en la figura 5.24. Esto también se evidencia al observar la concentración en exceso de presión de poros en esa zona (Ver figura 5.22) y, como ya se mencionó, por el factor de seguridad obtenido. Por este motivo, se consideró factible analizar el sistema añadiendo una posible solución de estabilización, la cual consta de poder perfilar y reducir la pendiente desde 2.5H:1.0V (talud inicial) hasta una relación 7.0H:1.0V (Ver figura 5.42) en la zona de la cimentación, donde se presenta el mayor riesgo. Se optó por esta opción ya que resulta ser económica y factible al utilizarse el mismo material de la cimentación o alguno que se le parezca. A continuación, se presentan los resultados obtenidos.

Con respecto a la amplificación de señales

Tomando como base lo obtenido en las gráficas aceleración vs. tiempo obtenidos en los diferentes puntos de control definidos, se hace evidente que se reproduce el registro sísmico amplificado a 0.46g en la base de la roca (Figura 5.38) según lo esperado, para luego sufrir una amplificación hasta la base de la cimentación (Figura 5.39); posteriormente, la señal sufre un decremento al pasar por esta última, llegando con una menor intensidad a la base de la presa (Figura 3.40), para finalmente sufrir una pequeña amplificación hasta la cresta (Figura 5.41). Estos resultados comprueban lo expuesto en la subsección 2.2.3 (Figura 2.5).

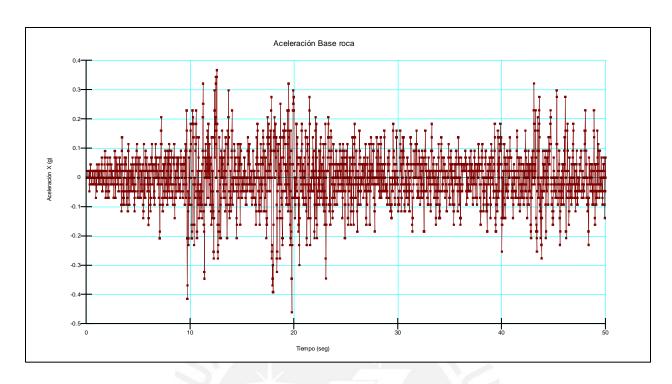


Figura 5.38. Registro de aceleración en la base de la roca.

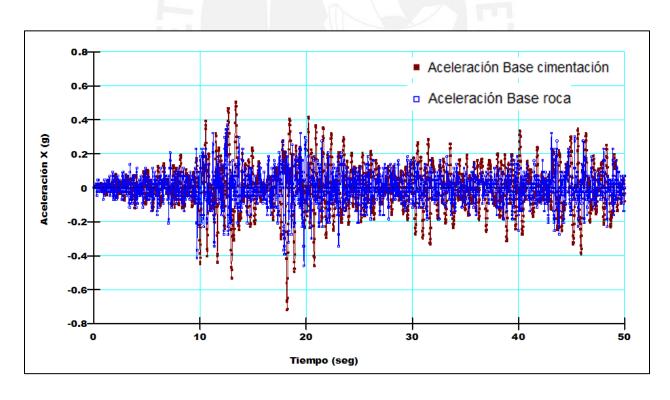


Figura 5.39. Amplificación evidenciada desde la roca hacia la cimentación.

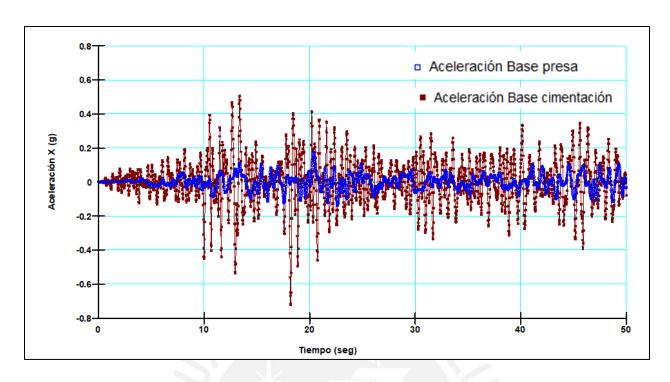


Figura 5.40. Decremento de señal evidenciada desde la cimentación hacia base de la presa.

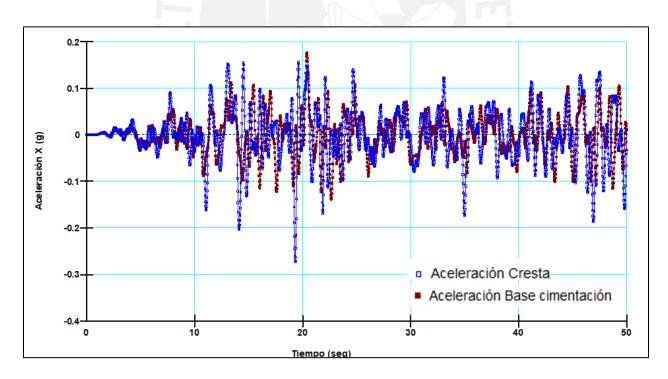


Figura 5.41. Amplificación de señal evidenciada desde la base de la presa hacia la cresta.

Finalmente, resulta coherente mencionar que el espectro de respuesta obtenido en roca para el modelo es similar a lo mostrado en la figura 2.5, donde se menciona que la amplificación para este material se da para

periodos de hasta 0.4 s aproximadamente (ver figura 5.29). Esto significa que la amplificación del sismo hacia la presa se dio de manera correcta en el modelo analizado, ya que el desarrollo fue según lo esperado.

5.5.2 Considerando sistema de estabilización

Se ejecutó la misma metodología descrita con anterioridad para realizar este análisis adicional. Después de haber realizado el análisis de infiltraciones con SEEP/W, el análisis in-situ con SIGMA/W y el análisis dinámico con QUAKE/W (mismo registro sísmico), se obtuvieron los siguientes resultados (Figuras 5.42-5.49).

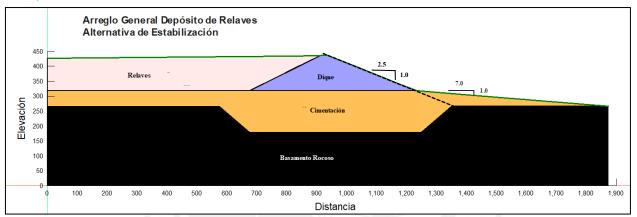


Figura 5.42. Arreglo general del sistema con la alternativa de estabilización.

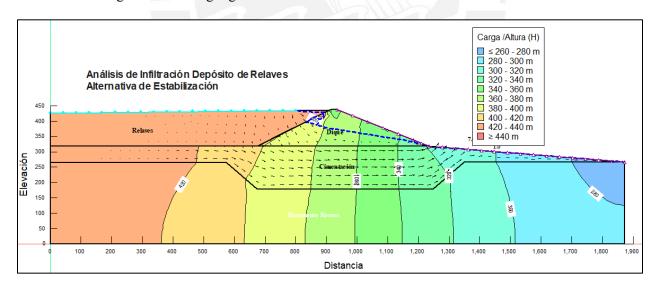


Figura 5.43. Resultado análisis de flujo con la alternativa de estabilización.

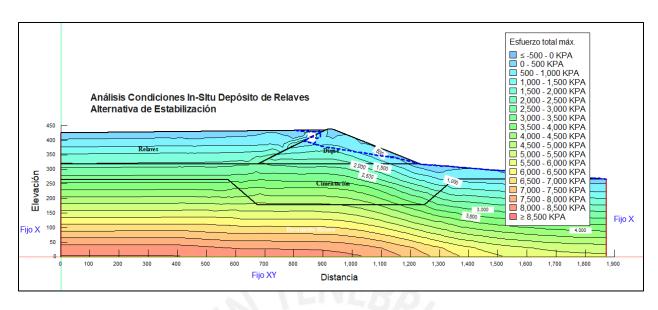


Figura 5.44. Resultado análisis In-Situ con la alternativa de estabilización.

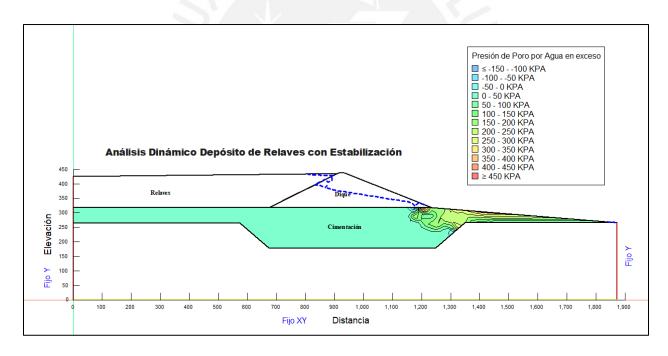


Figura 5.45. Resultado análisis dinámico con la alternativa de estabilización, exceso presión de poros.

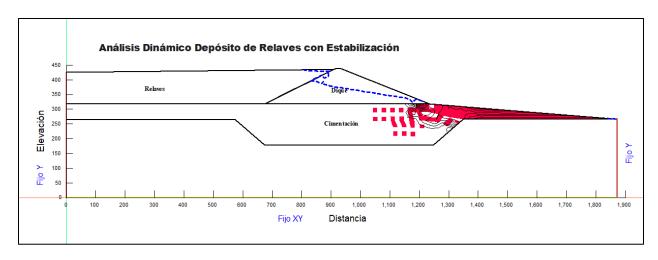


Figura 5.46. Resultado análisis dinámico con la alternativa de estabilización, porción de cimentación licuada.

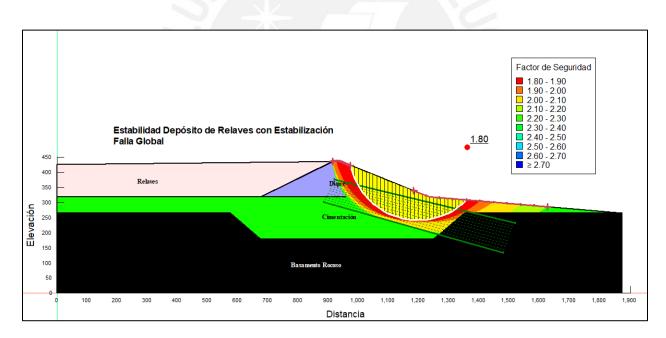


Figura 5.47. Factor de seguridad, falla global con alternativa de estabilización

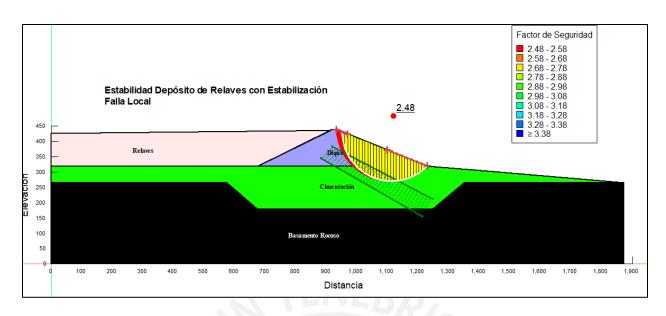


Figura 5.48. Factor de seguridad, falla local con alternativa de estabilización.

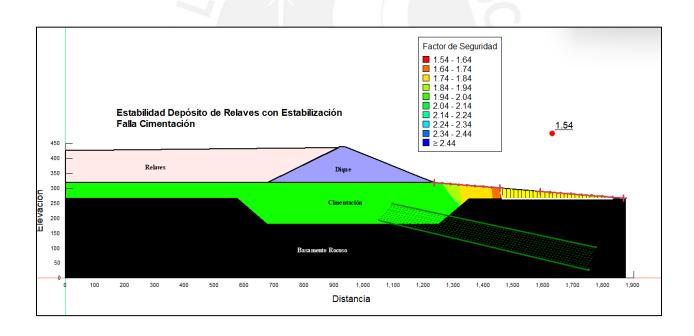


Figura 5.49. Factor de seguridad, falla en la cimentación con alternativa de estabilización.

Finalmente, se ejecutó el análisis de redistribución de esfuerzos con SIGMA/W para determinar los desplazamientos finales y la tendencia de movimiento después del sismo. Se muestran los resultados a continuación (Figura 5.50 - 5.54).

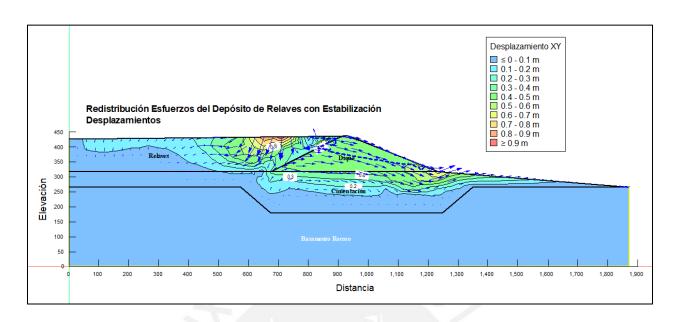


Figura 5.50. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos totales.

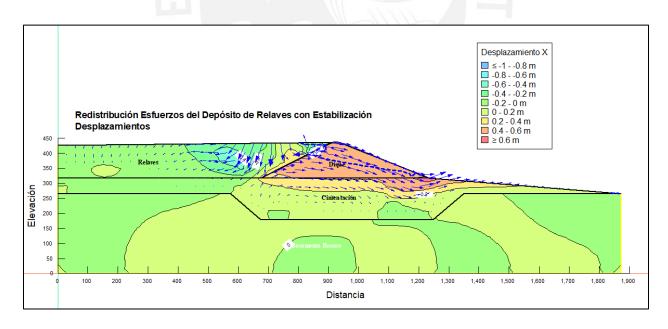


Figura 5.51. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos horizontales.

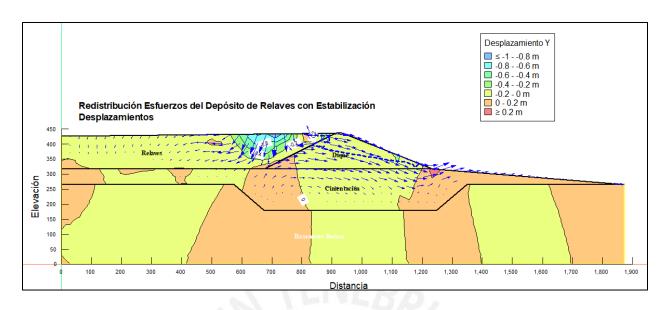


Figura 5.52. Redistribución de esfuerzos con la alternativa de estabilización, desplazamientos verticales.

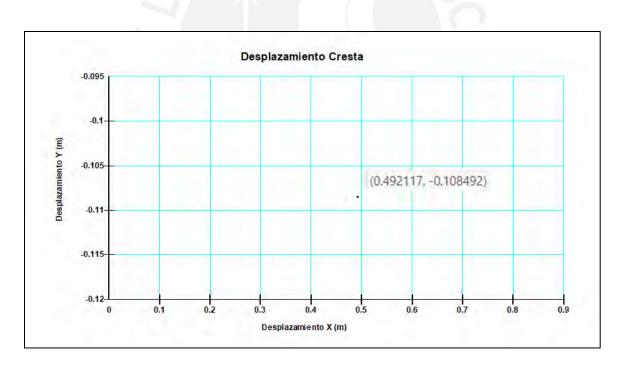


Figura 5.53. Desplazamiento horizontal y vertical de la cresta con alternativa de estabilización.

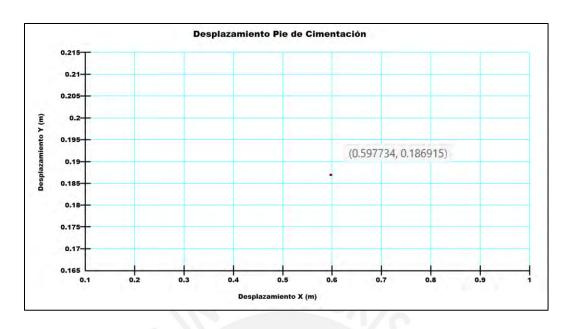


Figura 5.54. Desplazamiento horizontal y vertical en el pie de la cimentación, con alternativa de estabilización.

Analizando los resultados incluyendo esta alternativa, se evidencia un importante aumento en el factor de seguridad después del sismo para los 3 casos de falla, y una considerable reducción en los desplazamientos del dique y la cimentación. A continuación, se muestra un cuadro comparativo que resume los resultados sin estabilización e incluyendo esta.

Tabla 5.10. Resumen resultados antes y después de la estabilización.

	Antes de estab.	Despues de estab.
F.S Falla Global	1.08	1.8
F.S Falla Local	2.27	2.48
F.S Cimentación	0.89	1.54
Desplazamiento horizontal cresta (m)	1.18	0.49
Desplazamiento vertical cresta (m)	-0.31	-0.11
Desplazamiento horizontal cimentación (m)	2.96	0.6
Desplazamiento vertical cimentación (m)	0.98	0.18

^{*}Nota: Valores negativos indican desplazamiento vertical hacia abajo, y valores positivos hacia arriba.

CAPÍTULO 6. Conclusiones y Recomendaciones

De los resultados del análisis dinámico realizado al depósito de relaves se concluye lo siguiente:

- A pesar que los factores de seguridad obtenidos a partir de los análisis estático y pseudo-estático, son mayores que los mínimos establecidos por las normativas, no aseguran que el sistema sea estable, ya que estos están basados en métodos simplificados que no reproducen la pérdida de resistencia de los materiales debido a las cargas cíclicas del sismo, no consideran el incremento de presión de poros para los mismos efectos y no logran representar una distribución de esfuerzos realista, resultando ser poco precisos para este tipo de estructuras ubicadas en sitios altamente sísmicos.
- Resultó ser fundamental obtener los parámetros (hidráulicos, elásticos, mecánicos y dinámicos) y caracterizar, a partir de estos, los materiales y la sección crítica a ser analizada de manera correcta, con el fin de que los resultados sean lo más cercanos a la realidad posible. Esto se logró a partir de la revisión bibliográfica de estudios similares, papers y la extracción de información de todos los ensayos e investigaciones realizados en el emplazamiento.
- La potencial falla por flujo del depósito de relaves representaría un riesgo considerable debido a que se encuentra aguas arriba de una población cercana.
- El hecho de simplificar la geometría del sistema resultó ser favorable en términos de que se pudo aliviar la demanda de potencia para el cálculo al momento de ejecutar el modelo; además, esto favoreció el proceso de generación de la malla de elementos finitos, ya que, simplificando la geometría original, se evitaron problemas de nodos o ángulos muy agudos, lo cual causaría posibles problemas de convergencia. Por otro lado, esta simplificación también se traduciría en un aspecto negativo, debido a que no estaríamos representando la geometría real en el modelo, corriéndose así un riesgo de no obtener resultados lo más cercanos a la realidad.
- Es importante realizar un análisis estático inicial fiable y coherente, ya que de este parte el resto de resultados del análisis dinámico. Esto se evidenció especialmente en el exceso de presión de poros generado en la zona de la cimentación derecha, el cual es producto de las infiltraciones provenientes de los relaves y sin el cual no se podría determinar si la cimentación licúa o no.

- La confiabilidad de los resultados obtenidos se ve limitada, ya que este trabajo de tesis se enfoca principalmente en aplicar la metodología y consideraciones que se deben realizar para ejecutar un análisis dinámico a estructuras de este tipo y se ve condicionada a la limitada disponibilidad de ensayos, pruebas, bibliografía afin y asunciones realizadas.
- Se resuelve que existe una influencia considerable al momento de escoger el modelo que represente la resistencia del dique. Para este estudio se seleccionó el modelo de Hoek y Brown, el cual reproduce el comportamiento de los materiales tipo roca (con el cual se construyó el dique) de una mejor manera en contraste con el modelo de Mohr Coulomb, ya que utiliza algunos parámetros característicos de este tipo de material como son el RMR, tensiones principales, GSI, entre otros. Cabe mencionar que esto fue posible debido a que se disponen de ensayos realizados para la roca en cuestión.
- En términos de parámetros dinámicos, existe una clara limitante con respecto a la caracterización de los materiales, ya que no se han realizado ensayos específicos de este tipo y se tuvo que recurrir a adoptar curvas características de respuesta (módulo de corte y amortiguamiento) a partir de bibliografía, además de utilizar correlaciones según la data disponible para obtener algunos parámetros dinámicos.
- Se determina que la correcta definición de las condiciones de frontera resulta vital para el análisis, considerando que estos resultan como un punto de partida y evitan que, al ejecutar el modelo, se caiga en problemas de incongruencia o no convergencias del cálculo.
- Podríamos afirmar que el hecho de adoptar una distancia lo suficientemente larga entre el elemento de interés (la presa y el suelo de cimentación) y las fronteras del modelo nos permitió obtener un resultado coherente, porque, si no se hubiera realizado esto, se podría generar el efecto "ping pong" o de rebote de las ondas sísmicas, haciendo que obtengamos resultados no certeros.
- Tomando como base la conclusión anterior, resulta coherente afirmar que se cumplió lo relacionado con las amplificaciones de las señales sísmicas según el tipo de material que estas atraviesan. Según lo esperado, se evidenció un aumento en la intensidad de la señal cuando esta pasaba por materiales tipo roca y un decrecimiento cuando se atravesaba el material blando de la cimentación. Teóricamente, esto debía suceder, y se comprueba observando el espectro de aceleraciones del sismo, donde se aprecia que, para periodos del orden de 0-0.5 seg (típico de rocas), esto iba a suceder (Figura 2.5 y 5.29).
- Con relación al análisis de potencial de licuación realizado sobre el suelo de cimentación, se determina que este material se clasifica como potencialmente licuable para las solicitaciones sísmicas impuestas. Preliminarmente se pudo determinar esto, ya que puede clasificarse como una arena arcillosa medianamente densa, saturada, con un porcentaje de finos bajo. Tomando esto como

punto de partida, se ejecutó el análisis de potencial de licuación según la metodología CRR/CSR según lo recomendado por ANCOLD (2012), obteniéndose resultados que reflejaban el potencial riesgo a licuar que presentaba la fundación. Finalmente, se pudo determinar que se desarrollaron exceso de presiones de poro provenientes de las infiltraciones desde el relave y dicho material tiene un comportamiento contractivo a esfuerzos de confinamiento considerables según el análisis triaxial utilizado. (Figura 5.18, línea negra).

- Podría existir una posible fuente de error al momento de caracterizar la resistencia de la presa, ya
 que esta fue modelada con base en ensayos de laboratorio realizados sobre roca en condiciones no
 alteradas.
- Posterior análisis de los factores de seguridad obtenidos para el tipo de falla local, el cual significa una falla únicamente a través del dique, se aprecia que estos no varían mucho para todos los casos de análisis, concluyéndose que el principal riesgo se da por falla en la cimentación, debido a que en general un enrocado resulta ser mucho más resistente que un suelo suelto, además de que el primero no es susceptible a licuación después del sismo y se caracteriza por sufrir de otros mecanismos de falla, cuyos análisis escapan de los alcances de este trabajo.
- A manera de conclusión, se afirma que, tanto para falla global como local, el sistema resulta ser estable para la condición largo plazo, según las normas CDA (2014) y ANCOLD(2012); sin embargo, existe un potencial riesgo de falla a través del material de fundación, que haría que todo el sistema falle; por eso, fue necesario proponer un método de estabilización.
- En efecto, con respecto a los factores de seguridad obtenidos para la situación post-sismo, tendríamos que para una falla total del sistema (falla global a través de la cimentación), se experimentaría el fenómeno de movilidad cíclica, resultando en un potencial daño de la presa, mas no en el colapso total de esta según ANCOLD (2012); sin embargo, para la CDA (2014), si nos encontraríamos en un caso de falla total del sistema, ya que el factor de seguridad es menor al 1.2 recomendado.
- Para la situación de una falla local a través del dique no existiría peligro, debido a que el factor de seguridad obtenido es ampliamente superior al mínimo sugerido (1.2).
- El sismo considerado para el modelo genera una reducción en las propiedades resistentes de los materiales, especialmente en el material de cimentación como se esperaba preliminarmente, haciendo que este licúe en la zona derecha cerca al pie del talud aguas abajo. Este hecho resulta preocupante, ya que en esta zona se experimentan deformaciones considerables, resultando en un factor de seguridad muy bajo (0.89), el cual no cumple con el mínimo recomendado en ambas normas. Se concluye, según lo previsto, que este es el aspecto de mayor riesgo después del sismo.

- El desplazamiento post-sismo horizontal y vertical de la cresta nos muestra que se espera un daño relativamente considerable, debido a que se experimentan asentamientos en la cimentación; sin embargo, se concluye que este daño no significaría el colapso total de la presa ya que el borde libre resulta ser suficiente para seguir conteniendo los relaves después del sismo y que estos no desborden.
- Un análisis dinámico por elementos finitos representa de una manera efectiva el comportamiento de un depósito de relaves frente a un sismo porque considera la reducción de resistencia de los materiales, la generación de exceso de presión de poros, la potencial licuación de suelos susceptibles a este fenómeno, determina de manera realista las deformaciones y desplazamientos y finalmente considera al sismo como un registro de aceleraciones vs. tiempo, como sucede en la realidad. Se concluye entonces que, para este caso de estudio y debido a la importancia de la estructura y la alta sismicidad de la zona en la que se ubica, no sería factible realizar únicamente un análisis estático o pseudo-estático, debido a que no incluyen ninguno de los factores mencionados con anterioridad.
- Según los resultados finales obtenidos, se optó por proponer un sistema de estabilización de la presa, el cual consta en colocar material similar al de la cimentación para poder perfilar esta con un talud final de 7.0H:1.0V y así poder estabilizar el sistema (Figura 5.42).
- Posterior análisis, incluyendo el método propuesto, se concluye que este ayudaría considerablemente a estabilizar la estructura, aumentando el factor de seguridad para todos los casos de tipos de falla; esto se ve reflejado en la siguiente tabla:

	Antes de estab.	Después de estab.
F.S Falla Global	1.08	1.8
F.S Falla Local	2.27	2.48
F.S Cimentación	0.89	1.54

- Las mejorías al considerar el sistema de estabilización propuesto se reflejan también al observar los desplazamientos permanentes post-sismo obtenidos con SIGMA/W, los cuales se ven ampliamente reducidos, con un máximo de 0.60 m en la dirección horizontal del punto crítico de la cimentación, y una deformación de la cresta del orden de 0.49 m, catalogándose el nuevo nivel de daño como tipo 2 (ligeras fallas superficiales, daños mayores improbables), según Makdisi y Seed (1977).
- De acuerdo con las deformaciones obtenidas (ver tabla líneas abajo) y lo sugerido por Ishihara (1996) en la tabla 2.2, los materiales se encontrarían entre el rango elástico (para las zonas con

menor deformación), rango elasto-plástico (zonas con deformaciones considerables) y el rango de falla para la zona de la cimentación que sufre las deformaciones más grandes.

	Antes de estab.	Después de estab.
Desplazamiento horizontal cresta (m)	1.18	0.49
Desplazamiento vertical cresta (m)	-0.31	-0.11
Desplazamiento horizontal cimentación (m)	2.96	0.6
Desplazamiento vertical cimentación (m)	0.98	0.18

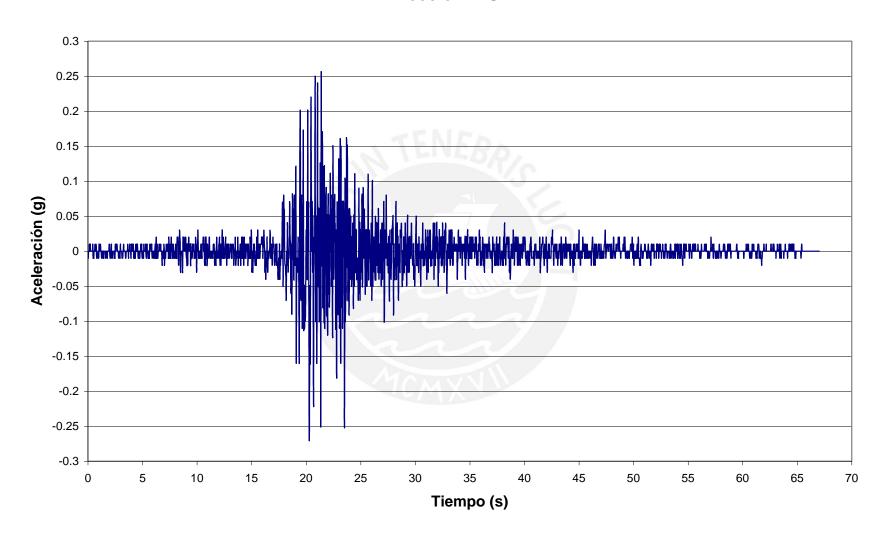
De manera análoga, se presentan las siguientes recomendaciones formuladas con base en las condiciones y resultados obtenidos.

- Es recomendable caracterizar el relave a partir de ensayos laboratorio y de campo, los cuales no han sido realizados ni considerados para el presente trabajo porque el material aún no ha sido depositado.
- Se sugiere instalar una red de piezómetros en puntos estratégicos de la presa y en la zona de cimentación para poder monitorear la fluctuación del nivel freático a lo largo del tiempo de operación de la presa y comprobar la veracidad del análisis de infiltración realizado.
- Se recomienda instalar un sistema de drenaje al pie del talud en la cara aguas abajo de la presa para poder disipar o drenar toda el agua que filtra desde los relaves y así evitar que la cimentación se sature.
- Con el fin de controlar los umbrales de desplazamientos, especialmente en la cresta del talud, se sugiere instalar sensores que nos permitan monitorear estos en tiempo real.
- Se sabe que los sismos generan solicitaciones de esfuerzo cíclico sobre el sistema, por lo cual un ensayo triaxial monotónico no representaría de manera realista el comportamiento del suelo. Por este motivo, se recomienda realizar ensayos triaxiales cíclicos o a grandes presiones de confinamiento sobre el suelo de cimentación.
- Se recomienda realizar más ensayos triaxiales del tipo consolidado no drenado (CU) a diferentes profundidades y ubicaciones para el suelo de cimentación con el fin de caracterizar de una mejor manera la resistencia de este material a través de los parámetros de cohesión y ángulo de rozamiento

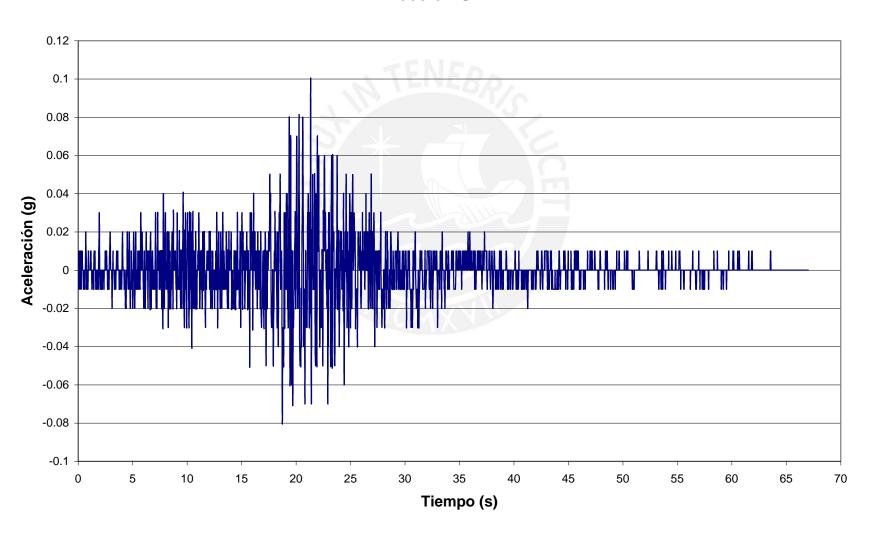
efectivos, además de conocer su verdadero comportamiento, ya sea contractivo o dilatante. En adición, sería recomendable realizar estos ensayos a grandes presiones de confinamiento, del orden de los 2000 kPa, lo cual se acercaría más a la condición in-situ de esfuerzos a los que se ve sometido el suelo de cimentación posterior construcción de la presa.

- Con respecto al análisis del potencial de licuación del suelo de cimentación, se recomendaría realizar ensayos que nos permitan conocer a mayor detalle el comportamiento no drenado de este material, como el dilatómetro plano de Marchetti (DMT) o el piezocono (CPTu).
- En caso se requiera profundizar en esta investigación, se recomienda utilizar otros modelos para caracterizar el suelo, los cuales incluyan plasticidad con endurecimiento y se acerquen más a la realidad.

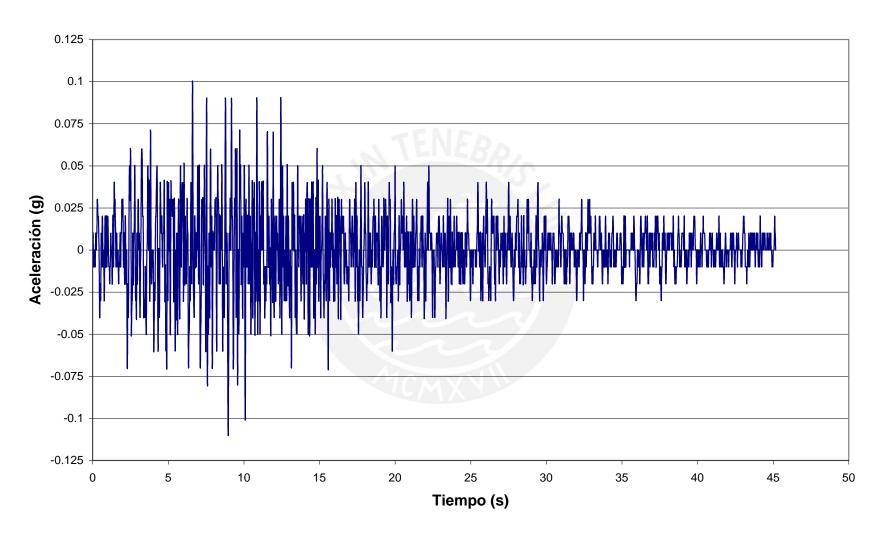
Bibliografía

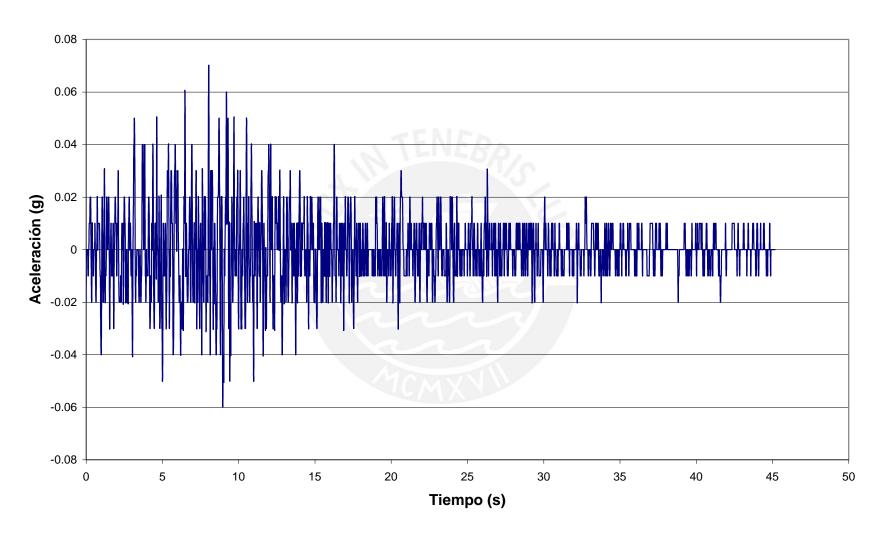

- Alva, J., & Castillo, J. (1993). *Peligro Sísmico en el Perú*. Lima, Perú: VII Congreso Nacional de Mecánica de Suelos e Ingeniería de Cimentaciones.
- ANCOLD. (2012). *Guidelines on Tailings Dams*. Australia: Planing, Design, Construction, Operationd and Clousure.
- ASTM D5777-18. (2018). Standard Guide for Using the Seismic Refraction Method for Subsurface Investigation. American Society of Testing Materials.
- Berrocal, J., Deza, E., & Shikiya, J. (1975). Estudio de Sismicidad para el Proyecto de Derivación del Río Mantaro a Lima. Informe del Instituto Geofísico del Perú a ELECTROPERU S.A.
- Bojorque, J. (2016). Análisis Dinámico de Estabilidad de Taludes por Medio de Elementos Finitos. *Maskana*, 167-180.
- Burland, J. (1987). *The teaching of soil mechanics: a personal view.* Dublin: Conference: 9th European Conference on Soil Mechanics and Foundation Engineering.
- Canadian Dam Association. (2014). Aplication of Dam Safety Guidelines to Mining Dams. Technical Bouletin.
- Castañón Garay, P. (2011). Cáulculo de Factor de Erosión de la lluvia. Ciudad de México: Universidad Nacional Autónoma de México.
- Cornell, A. (1968). Enginnering Seismic Risk Analysis. Bulletin of the Seismological Society of America.
- Das, B. (2015). Fundamientos de ingeniería Geotécnica. México: Cengage Learning Editores.
- De Matteis, Á. (2003). Estabilidad de taludes. Rosario: Facultad de Ciencias Exactas, Ingeniería y Agrimensura.
- Deza, E., & Carbonell, C. (1978). Regionalización Sismotectónica Preliminar del Perú. Lima, Perú: V Congreso Peruano de Geología.
- Finn, W., Pickering, D., & Bransby, P. (1971). Sand Liquefaction in triaxial and simple shear tests. Journal of the Soil Mechanics and Foundations Division.
- Geo-Slope International Ltd. (2017). Dynamic Earthquake Modeling with GeoStudio. Calgary, Canada.
- Hoek, E., & Brown, E. (1980). Empirical Strength Criterion for Rock Masses. J. Geotech. Engng. Div., ASCE 106 (GT9).
- IBC. (2012). International Building Code. Illinois: International Code Council Inc.
- International Comission of Large Dams (ICOLD). (2017). *Tailings Dam Design- Technology Update (ICOLD Bulletin)*. Praga, República Checa: 85th Anual Meeting.

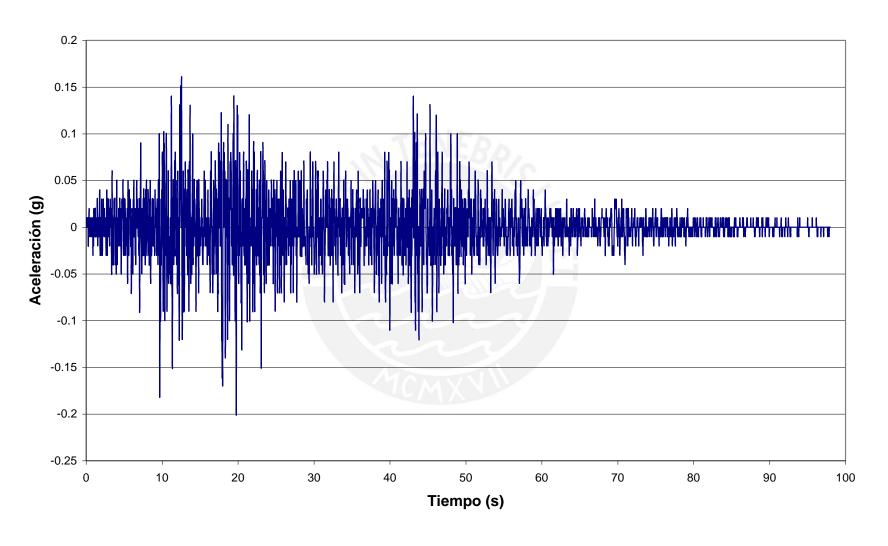
- Ishibashi, I., & Zhang, X. (1993). Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay. Japanese Society of Soil Mechanics and Foundation Engineering Vol. 33, No. 1. pp. 182-191.
- Ishihara, K. (1996). Soil Behaviour in Earthquake Geotechnics. Tokyo: Oxford Science Publications.
- Kramer, S. (1996). Geotechnical Earthquake Engineering. Washington: PEARSON Education.
- Leps, T. (1970). *Review of Shearing Strength of Rockfill*. Journal of Soil Mechanics and Foundations. Div. ASCE, Vol 96, No. SM4, Proc. Paper 7394.
- Macazana, R. (2006). Análisis Dinámico de los Acantilados de la Ciudad de Lima. (*Tesis de Post-grado*). Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima.
- Makdisi, F., & Seed, H. (1977). A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments. Washington D.C: National Science Fundation.
- Mayne, P., Barry, C., & DeJong, J. (2001). *Manual of Subsurface Investigations*. Washington DC: National Highway Institute.
- Ministerio de Vivienda Construcción y Saneamiento. (2016). Norma Técnica E.030 Diseño Sismoresistente. Lima, Perú.
- Muñoz, A. (2011). Ingeniería Sismoresistente. Lima: Pontificia Universidad Católica del Perú.
- Murillo, R. (2012). Presas de Tierra y sus Fallas. CONAGUA, México, D.F., México: Sociedad Mexicana de Ingeniería Geotécnica.
- Novak, P., Moffat, A., Nalluri, C. (2001). Estructuras Hidráulicas, segunda edición. McGraw-Hill Interamericana S.A. Bogotá, Colombia.
- Raygada, L. F. (2011). Análisis de estabilidad y deformaciones en el acantilado de la Costa Verde. (*Tesis de Pre-grado*). Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima, Perú.
- Rojas, Regalado, Ayala, & Parra. (2019). On the Dynamic Properties of Tailings. Santiago de Chile, Chile.
- Román, B. (Julio de 2020). Evaluación del Comportamiento Monotónico y Cíclico No Drenado de Relaves. Lima, Perú: GEOGROUP FIC-UNI.
- Schwartz D, P. (1983). Evaluation of Seismic Geology Along the Cordillera Blanca Fault Zone, Peru. Informe preparado para HIDROSERVICE por Woodward-Clide Consultants.
- Sébrier, M., Huaman, D., Macharé, J., Bonnot, D., Cabrera, J., & Blanc, J. (1982). *Observaciones Acerca de la Neotectónica del Perú*. Lima, Perú: Instituto Geofísico del Perú.
- Seed, H., & Lee, K. (1965). *Studies of Liquefaction of Sands Under Cyclic Loading Conditions*. Berkley: Report TE-65-65, Department of Civil Engineering, University of California.
- Seed, H., & Idriss, M. (1970). *A simplified procedure for evaluating soil liquefaction potential*. California: Earthquake Engineering Research Center.
- Seed, H., & Idriss, M. (1971). Simplified procedure for evaluating soil liquefaction potencial. Journal of the Soil Mechanics and Foundations Division, ASCE (1249-1273).

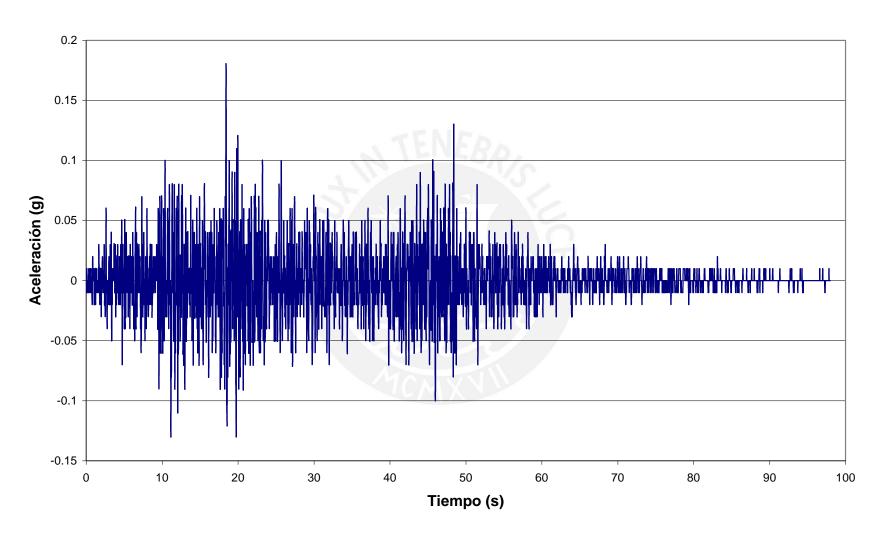

- Seed, H., Mori, K., & Chan, C. (1975). *Influence of Seismic History On The Liquefaction Characteristics of Sands*. Berkley: Report EERC 75-25, Earthquake Enginnering Research Center. 21 pp. University of California.
- Seed, H., Tokimatsu, K., Harder, L., Chung, R. (1985). *Influence of SPT procedures in soil liquefaction resistance evaluations*. Journal of Geotechnical Engineering. Vol. 111, Issue 12. ASCE
- Sladen, J., D'Hollander, R., & Krahn, J. (1985). *The Liquefaction of Sands, a collapse surface approach*. Canadian Geotechnical Journal. Vol 22, pp. 564-578.
- Tapia, Ayala, & Parra. (2019). Normalized Shear Modulus Reaction and Damping Ratio Curves of Mine Waste and Leach Ore. Vancouver, Canada: Taillings and Mine Waste.
- Tardeo, C., & Zanabria, E. (2016). Análisis Dinámico de Estabilidad de Taludes por Elementos Finitos en la Zona de Huayllapampa del Distrito de Cuenca-Huancavelica (Tesis de Pre-grado). Lircay, Perú: Universidad Nacional de Huancavelica, Facultad de Ingeniería de Minas Civil Ambiental.
- Tokimatsu, K., & Seed, H. (1987). *Evaluation of Settlements in Sand due to Earthquake Shaking*. Journal of Geotehnical Engineering, ASCE, Vol. 113, No. 8, pp. 861-878.
- Urrutia, P. (2008). Análisis Dinámico de Estabilidad por Elementos Finitos de Taludes de la Costa Verde en el Distrito de Miraflores. (*Tesis de Pre-grado*). Facultad de Ciencias e Ingeniería, Pontificia Universidad Católica del Perú, Lima.
- US Army Corps of Engineers. (2004). General Design and Construction Considerations for Earth and Rock-Fill Dams. Washington DC, US: Department of the Army.
- Youd, T., Idriss, M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. Buffalo, NY: National Center for earthquake engineering research, State University of New York at Buffalo.

ANEXO A REGISTROS SÍSMICOS

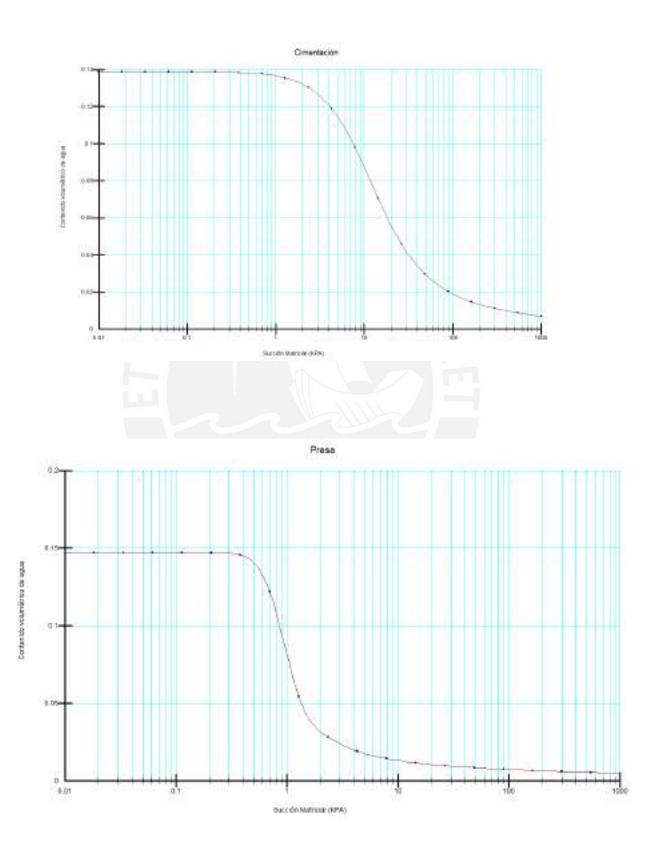

Registro de Aceleraciones del Sismo del 17 de Octubre de 1966 Dirección N-S

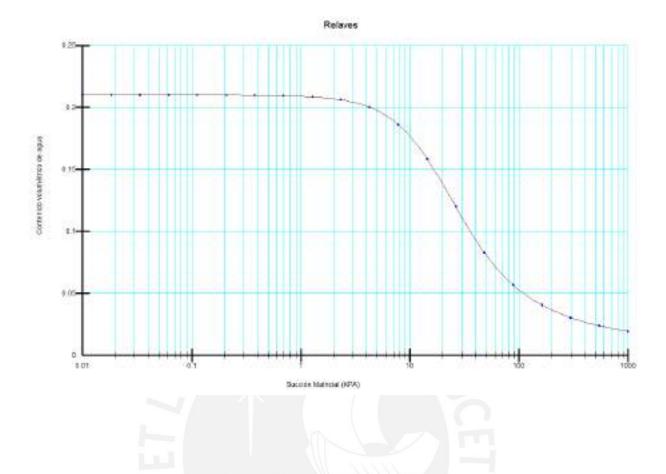

Registro de Aceleraciones del Sismo del 17 de Octubre de 1966 Dirección U-D

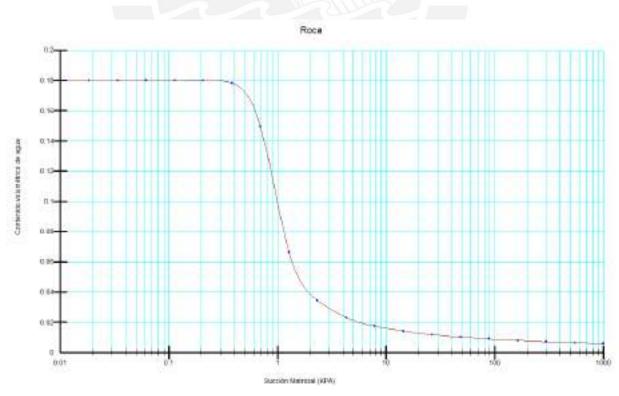

Registro de Aceleraciones del Sismo del 31 de Mayo de 1970 Dirección E-W


Registro de Aceleraciones del Sismo del 31 de Mayo de 1970 Dirección U-D

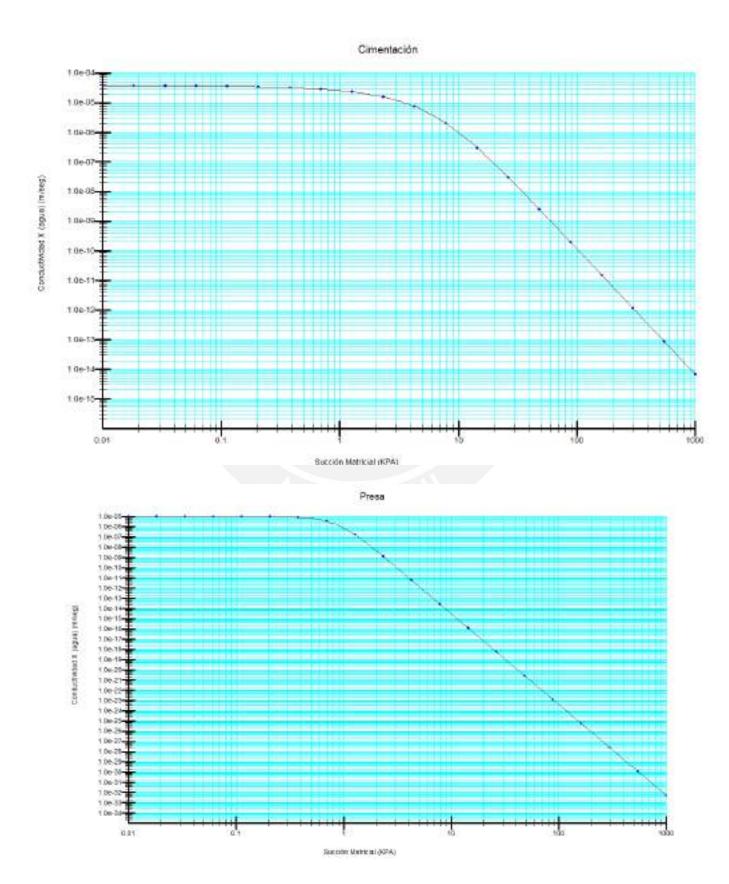
Registro de Aceleraciones del Sismo del 3 de Octubre de 1974 Dirección E-W

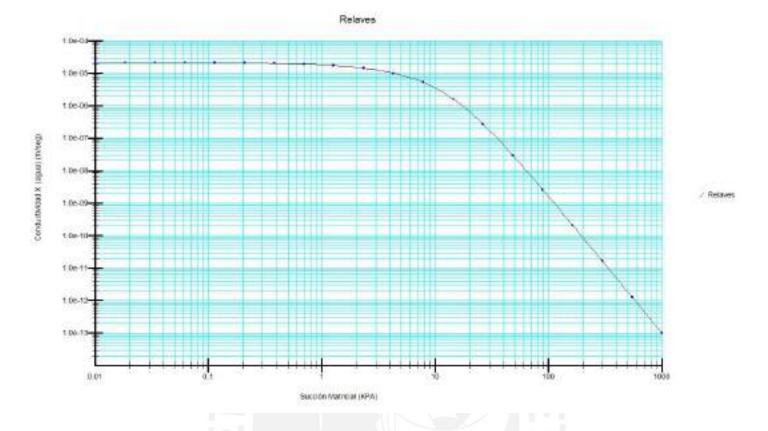


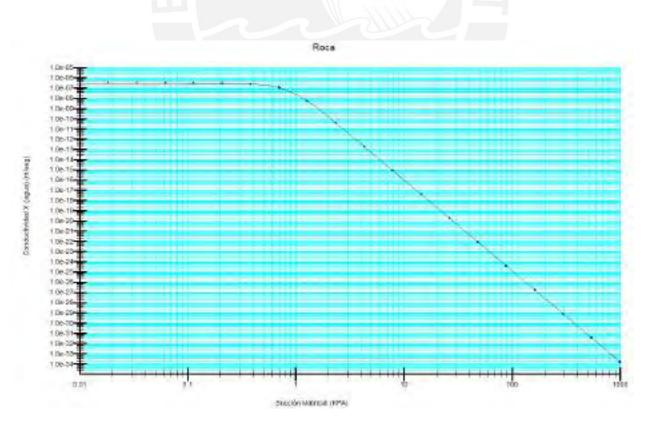

Registro de Aceleraciones del Sismo del 3 de Octubre de 1974 Dirección U-D

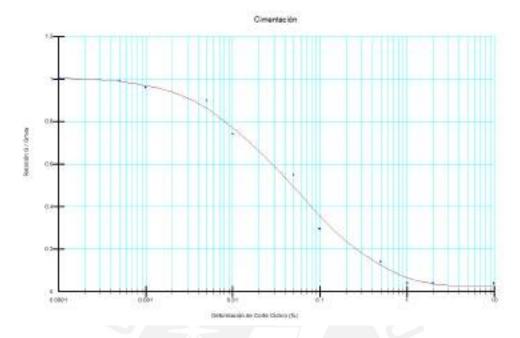


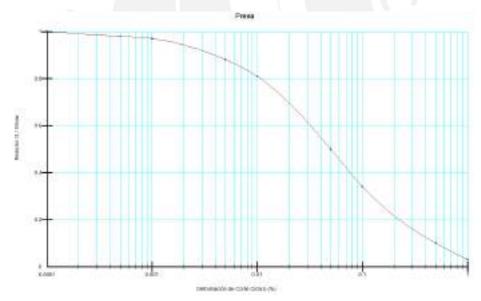
ANEXO B CURVAS INGRESADAS A GEOSTUDIO

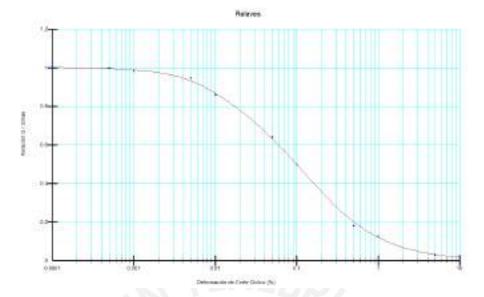

1. Contenido Volumétrico de Agua



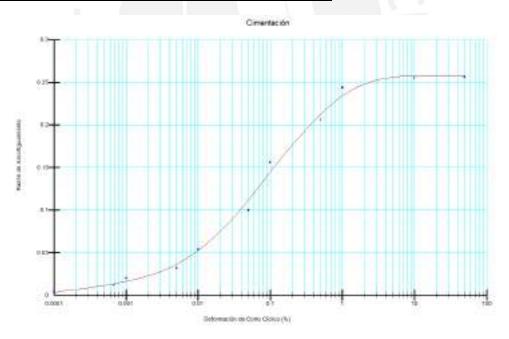



2. Conductividad Hidráulica

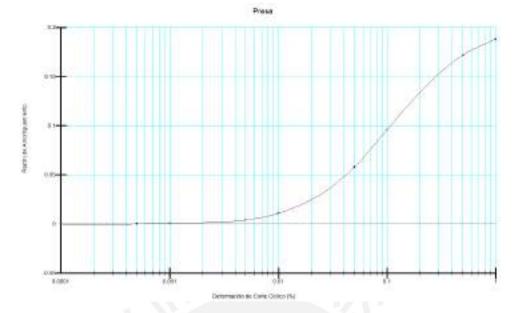



3. Reducción módulo de corte

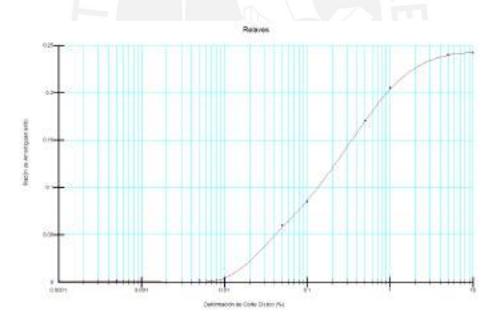
SEED & IDRISS (1970)



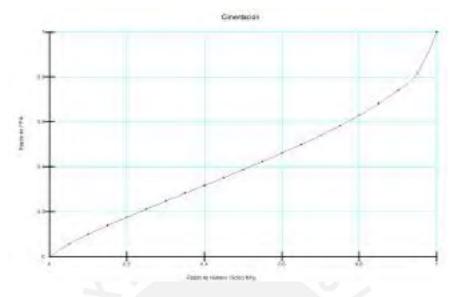
TAPIA Et. Al (2019)



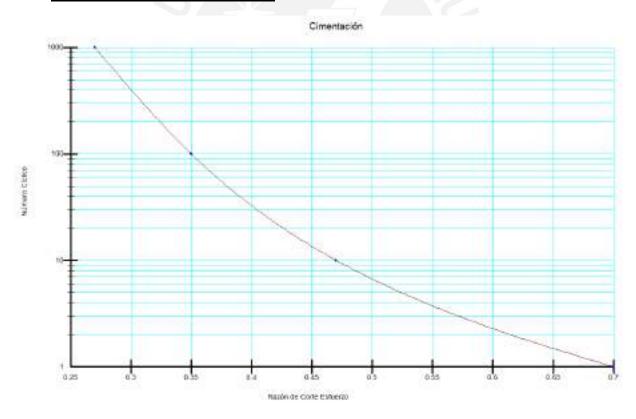
ROJAS Et. Al (2019)


4. Reducción módulo de amortiguamiento

SEED & IDRISS (1970)



TAPIA Et. Al (2019)



ROJAS Et. Al (2019)

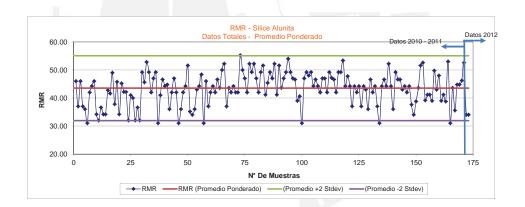
4. Función de presión de poros

5. <u>Función Número de ciclos</u>

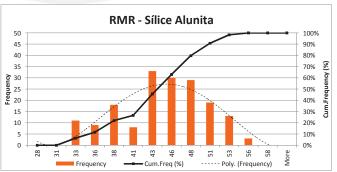
ANEXO C ENSAYOS REALIZADOS

Material para relleno de la presa

SÍLICE ALUNITA


Taladro	N°	Profur	ndidad	Cantidad de	RMR	L*RMR	(Xi-X)^2
Talauro	N	De	Hasta	Ensayos	KIVIK	LKIVIK	(AI-A) 2
TOMYBH	1	223.40	225.00	1.60	34.00	54.40	0.00
12-01	2	225.00	226.60	1.60	34.00	54.40	0.00
	,						

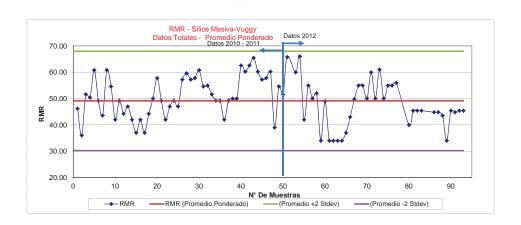
Resumen los Datos 2012


RMR (prom) =	34.00	0.00
	Var =	0.00
	Stdev =	0.00
	COV =	0.00

Resumen los Datos 2010 - 2012*)

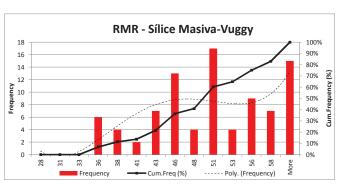
DIAD ()	10.50	F=0= 40
RMR (prom) =	43.52	5797.19
	Var =	33.51
	Stdev =	5.79
	COV =	0.13

SÍLICE MASIVA - VUGGY


Taladro	N°	Profur	ndidad	Cantidad de	RMR	L*RMR	(V: V)42
Taladro	N-	De	Hasta	Ensayos	RIVIR	L"RIVIR	(Xi-X)^2
	1	197.80	199.40	1.60	65.80	105.28	378.70
ľ	2	199.40	201.00	1.60	70.20	112.32	569.31
ľ	3	201.00	202.00	1.00	60.00	60.00	186.60
ľ	4	202.00	203.60	1.60	66.00	105.60	386.53
	5	203.60	205.20	1.60	42.00	67.20	18.83
Ī	6	205.20	206.70	1.50	55.00	82.50	75.00
Ī	7	206.70	208.20	1.50	50.00	75.00	13.40
	8	208.20	209.80	1.60	52.00	83.20	32.04
	9	209.80	211.20	1.40	34.00	47.60	152.27
	10	211.20	211.70	0.50	49.00	24.50	7.08
ľ	11	211.70	212.60	0.90	34.00	30.60	152.27
	12	212.60	213.80	1.20	34.00	40.80	152.27
томувн	13	213.80	215.40	1.60	34.00	54.40	152.27
	14	215.40	216.20	0.80	34.00	27.20	152.27
12-01	15	216.20	217.20	1.00	37.00	37.00	87.23
	16	217.20	218.70	1.50	43.00	64.50	11.15
	17	218.70	220.30	1.60	49.80	79.68	11.97
	18	226.60	228.00	1.40	55.00	77.00	75.00
	19	228.00	229.40	1.40	55.00	77.00	75.00
	20	229.40	229.80	0.40	50.00	20.00	13.40
	21	229.80	230.60	0.80	60.00	48.00	186.60
	22	230.60	231.40	0.80	50.00	40.00	13.40
	23	231.40	232.40	1.00	61.00	61.00	214.92
	24	232.40	233.00	0.60	50.00	30.00	13.40
	25	233.00	234.60	1.60	55.00	88.00	75.00
ſ	26	234.60	236.50	1.90	55.00	104.50	75.00
	27	236.50	237.60	1.10	56.00	61.60	93.32
	28	47.00	48.70	1.70	28.00	47.60	336.34
	29	48.70	50.30	1.60	28.00	44.80	336.34
	30	50.30	51.90	1.60	40.00	64.00	40.19
	31	51.90	52.30	0.40	45.40	18.16	0.88
	32	52.30	52.90	0.60	45.40	27.24	0.88
	33	52.90	54.00	1.10	45.40	49.94	0.88
L	34	54.00	55.60	1.60	28.00	44.80	336.34
TOMYBH	35	55.60	57.20	1.60	28.00	44.80	336.34
12-02	36	57.20	58.80	1.60	44.80	71.68	2.37
L	37	58.80	60.40	1.60	44.80	71.68	2.37
	38	60.40	61.40	1.00	43.60	43.60	7.51
	39	61.40	62.00	0.60	34.00	20.40	152.27
	40	62.00	63.60	1.60	45.40	72.64	0.88
	41	63.60	65.20	1.60	44.80	71.68	2.37
[42	65.20	66.20	1.00	45.40	45.40	0.88
- 1	43	66.20	67.05	0.85	45.40	38.59	0.88

Resumen los Datos 2012

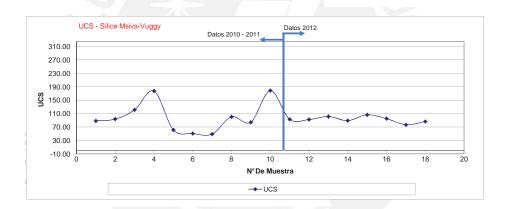
Resumen los Dat	OS 2012	
RMR (prom) =	46.34	4932.00
	Var =	114.70
	Stdev =	10.71
	COV =	0.23


Resumen los Datos 2010 - 2012

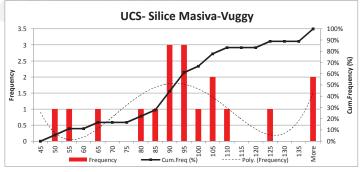
Resumen los Date	Resumen los Datos 2010 - 2012								
RMR (prom) =	49.98	6044.07							
	Var =	68.68							
	Stdev =	8.29							
i i	001/	0.47							

RMR - SÍLICE MASIVA-VUGGY

Promedio	49.6
Mediana	49.5
Mínimo	34.0
Máximo	66.0
Desviación estándar	8.3
Contar	88.0
Contar	88.0

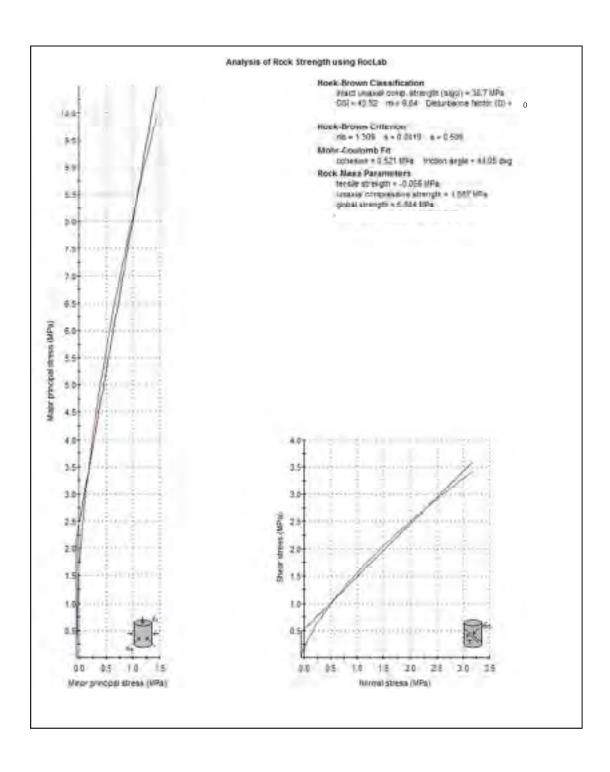

SILICE MASIVA - VUGGY

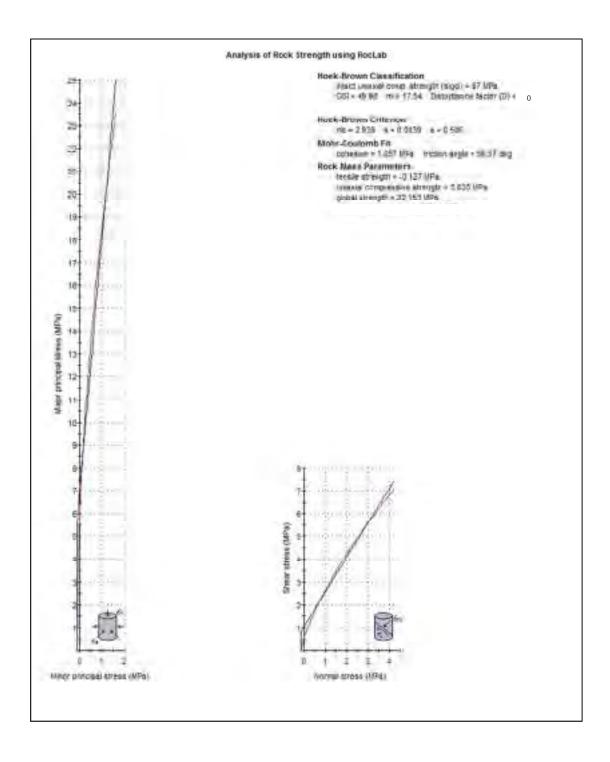
Taladro	Ν°	Profu	ndidad	Cantidad de	Is(50)	UCS (Mpa)	L*UCS	(Xi-X)^2
Talauro	N	De	Hasta	Ensayos	15(50)	ocs (wpa)	L 003	(AI-A)**2
	1	200.11	200.34	1.00	3.87	92.98	92.98	0.15
TOMYBH 12-01	2	200.11	200.34	1.00	3.84	92.26	92.26	0.12
	3	228.76	228.89	1.00	4.23	101.46	101.46	78.54
	4	228.76	228.89	1.00	3.72	89.28	89.28	11.01
ТОМҮВН	5	56.25	56.45	1.00	4.44	106.56	106.56	194.94
	6	56.25	56.45	1.00	3.96	95.04	95.04	5.96
12-02	7	62.80	63.00	1.00	3.20	76.80	76.80	249.57
	8	62.80	63.00	1.00	3.60	86.40	86.40	38.41
ŀ						<u> </u>		
ŀ								
ŀ						+		
ŀ						1		


Resumen los Datos 2012

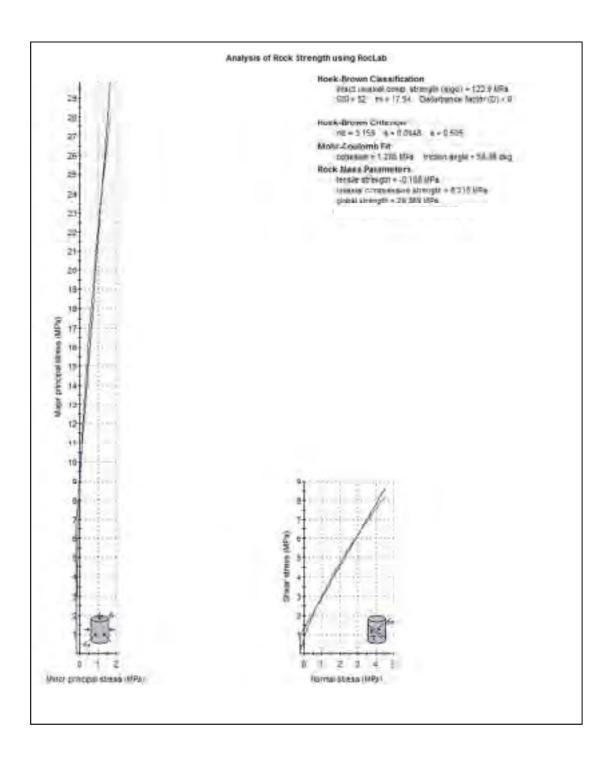
UCS(prom) =	92.60	578.70
	Var =	72.34
	Stdev =	8.51
	COV =	0.09

JCS (prom) =	97.04	20498.45
	Var =	1138.80
	Stdev =	33.75
	COV =	0.35

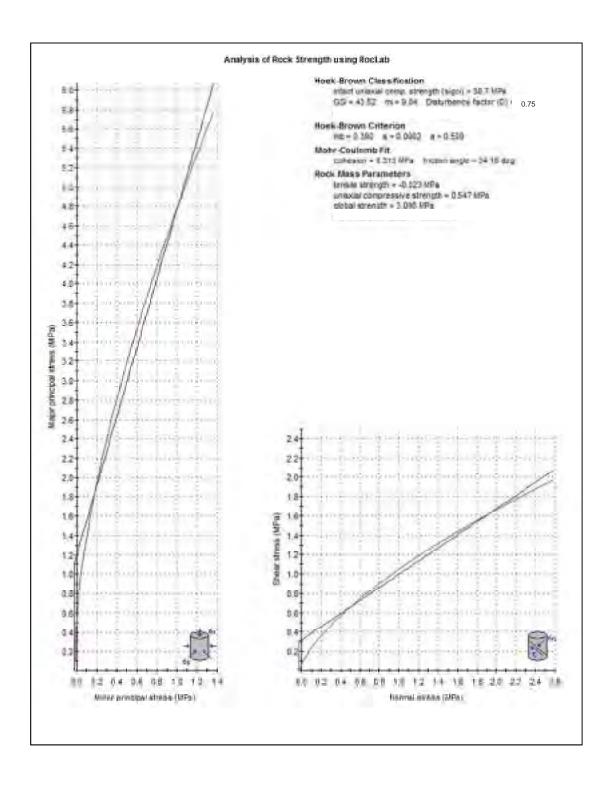



D.1. Resistencia del Macizo Rocoso No Disturbado

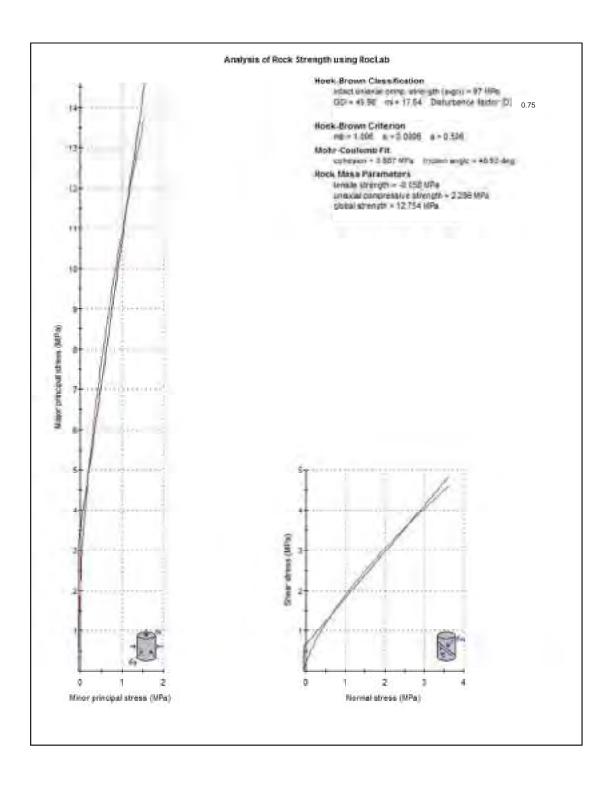
Silice Alunita


D.1. Resistencia del Macizo Rocoso No Disturbado

Silice Masiva-Vuggy


D.1. Resistencia del Macizo Rocoso No Disturbado

Silice Masiva


D.1. Resistencia del Macizo Rocoso Disturbado

Silice Alunita

D.1. Resistencia del Macizo Rocoso Disturbado

Silice Masiva-Vuggy

D.1. Resistencia del Macizo Rocoso Disturbado

Silice Masiva

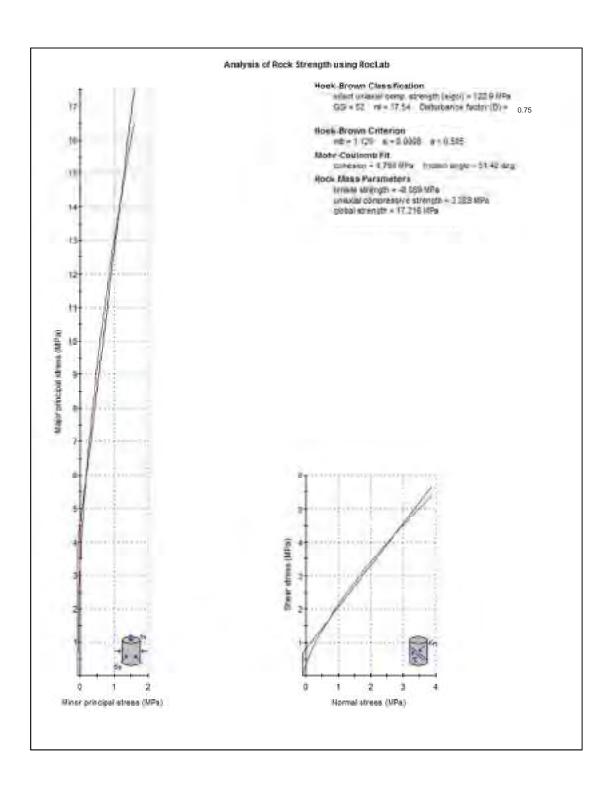


Tabla 6.3 Resumen de cusayo de ABA - Material Seleccionado de los Tajos -

Perforación	Alteración		C/T-1-II	Prop. s	araki:	-	PN	NW.	may.	AGP Potencial	
		Paste pH	S(Total)	S(SO ₄)	S(5 ²)	PA	PR	NNP	RPN	RPN	
			1%	% S	% S		kg CaCO _y t			-	
QUE-224	Arcilla 3	3.98	3.68	0.09	2 59	112	-18	123.2	0	PAG	
QUE-221	Silice Alunta 1	5,34	2.73	0.6	2.13	66.6	1-2	-68.6	0	PAG	
QUE 220	Silice Masiva	5.2	7.19	1.84	5.35	167	4	:171.2	ō	PAG	

Note S (Total) = Total de Sulfuro; S (S-) = Sulfuro púntico, todos reportados como "S en peso PA = Potencial de acido; PN = Potencial de Seutralización. Todos los reportes como toris kg. Cacada L

NNP (PN-PA)** Potencial de neutralización de red., RPN (PN/PA)** Releción de potencial de neutralización. AGP: Potencial de generación de ácido, PAG. Potencialmente acido generado

Tabla 6.4

Resumen de Ensayos Estandar de Laboratorio - Material Seleccionado de los Tajos

Ub/cación-	entrany			Profund	idad (m)			Amilias Granulemetrico			Luniles de Atterberg				20	.40
	Calicatas / Perforaciones	Atteración	Muestra	Dosde	Hasta	sucs	Descripción	Grava (%):	Aruna (%)	Fines (%)	11.	LP (%).	(%)	(%)	Gs Finou	Grunyo
TOT	QUE-220	Silipe Massva	7-36	330.55	333.1	GM	Grava imosa con arena	50.30	33.36	16.40	NP	NP	NP.	0.10		2.433
TSF- Material	QUE-221	Silice Abrita 1	14-2	184.7	167.5	GVI-SM	Grava bien grada con limo y arena	60.30	04.60	5.10	NP	NP.	NP	4,40		2,847
Selection	CUE-221	Silice Abnita 1	M-3	259.E	282年	GP-GM	Grava mal grada con limb y arena.	47.40	41.00	11.60	NP	NP.	NP.	0.10		2,832
aco de los	OUE-224	Arolle 3	M4	67.9	/0.55	Min	Lime can grava	75.60	14.50	89.90	58.00	32.08	26	2.30	2.54	
Tajes	QUE-22#	Aretin 1	V-5	182.9	195.7	CL	Analis arenosa con grava	15.00	24.50	50.50	38:00	19.00	18	1.60	2.74	

NETSON

along university three in care or carrier or sander

Li Vere and

CHAMPS SHEET

Promise Makedin

- Inem more a

mydrassouli i i i i i

Tabla 6.5

Resumen de ensayo de propiedades físicas - Material Seleccionado de los Tajos

4	(100 0)	Pi	ofundid	ad (m)	Brisayo Los	Solides (Sulfaro de		Propiedades Písicas	
Muestra	Alteration	Desde	Hosta	Promedio	Angeles Abresión (%)	Magnesio) (%) Perdidas corregidas	Gravelled Establish	Peresided (%)	Absorbion de rigue (%)
		T. Ho		46.1	480		1,77	75.9	14.7
	100	3400	36 75	35.4	47.8	45.1	1.48	39.7	27,2
-				***	1 600	1 - 23 - 1	1.98	24,3	12,2
QUE-22N	Andills 3	59.4	62:35	60.9	76.9	57 8	178	318	17.9
		171.95	1747	173.3	57.5	72.0	2.15	21.1	9.8
_		176.66	178.45	177	39,4	26.0	-	No.	
		Accept.	Vr cofte	1	Seq	7,5901	4.	7 6	75
	day Town	248.65	2514	250 025	49	39.7	245	8.6	27
QUE-221	Since Alumita		-		_		2.29	12.9	3.2
	D 00	266.15	271	269.575	47.9	27.5	2.23	n n	4.9
		-	70-71-7	To Section 2017	1.77	76.2			-
		284.5	287.35	285.825	48.2	42.8		190	1000
			20.0	78.9	40	75.2	2.05	17.4	5,6
		75	78.8	70.8	40	35.3	2.22	14.6	6.6
QUE-220	Silice Masva	89.8	92,5	91.15	47.1	45,6	2.28	12.1	5.3
		266.7	A 64 6	460.00	46.0	16.0	1.89	20.9	11.3
		308,7	508.8	207.45	50.1	:25,B	2.23	11.9	53

Cimentación

Tabla 1 Corrección del Número de Golpes de Ensayo de Penetración - Sondaje BH-TSF-01

Sondaje : BH-TSF-01 N_H-N_H- 1.29 Beveción de superficie de suelo: 4034 m s. n. m.
Profundided del Nivel de Agua (estimado) in N_H-N_C- 0.60 Donarded de Agua : 1.0 train :
Presión atmosférica: 10.3 train :

	Tra	umo					15-		ESFUE	RZOS			FACTORI	ES DE COR	RECCIÓN				1		170	
W.	De	A	Profundided (m)	R _a	Non	Ne	Densided (UVIN ²)	Esfuerza Tocal c. (Inim ²)	Esfuerzo total Acum o; (In/m²)	Presión de poros u (trate ²)	Estuerzo efectivo e', (m/m²)	c,	C,	G	C _{ri}	C,	Res	(N _s) _{sa}	(h) Dr (%)	(2) Kames	Grass (MFs)	(3) 4 PR (7)
-1-	@(m	3.45	5.4%	-	39	17	170	9.87	187	0.00	5.87	+24	+107	-006	0.30	100	an	-07	88.49	68.69	116	43.6
2	0.00	9.45	0.45	-	+1	1.5	179	5 37	11.22	9.00	11.22	190	1.00	1.00	- 095 -	100	76	- 17	52.76	46.65	108	36.0
3	3.00	9.45	845		3 -	5.	178	598	VIII.583	0.00	(0.5)	0.46	1.00	1.10	€97	100		. 4.	29.48	32.09	91	25.6
+	19.00	12.45	6346	-	(0.	31	170	9.38	2192	9.00	2) 42	0.66	1.00	3.60	100	1/90	- 71	TE	54.98	47.98	157	24.0
5	1500	15:85	1525	-	21.	22	1.70	5,90	27/00	0.00	- 27 20	0.57	1,00	1.00		100	37.	HE	57.98	49.70	181	85.0
b -	18:00	19.45	(841)	-	33	30	170	591	17.64	9.00	30 64	(60)	1.00	7.00	10X	1/00	900	100	57.37	49.42	197	88.5
7.	22.00	22.95	2246		101	31	170	7.08	29 (5)	0.00	3976	17:50	1,00	1.m	1.02	1,00	21	11	47.78	43.67	192	317
5	37.66	22.46	2746		38	:54	1784	878	43.45	0.00	4845	0.60	1.00	1.00	+00	1.00	54	i#	60,79	51.48	250	38.2
9	52.00	32.46	5246	-	.59	>40.1	TAI	0.70	57.11	0.000	57.31	hao	1.00	1.00	1.00	100	40.	1.5	72.98	58.79	310	29,4
-ini	EFRE	37 41	ITEC		37.	-	170	6.70	拉金	800	65.91	0.60	1707	1.00	1.00	1.00	98	94	72.23	58.34	330	89.2
-11	##IND	42:07	MAR		1.40	197	7.00	9.70	28/72	n.mi.	- 11LT2	0.60	1.00	- Y (II)	1.00	1.00	48.	39.	82.09	64.26	397	-44-9
13	46 ne	4695	4676		38	-40	793	16.00	8.172	9.00	all th	8.53	1.00	7.00	1100	100	90	657	72.98	58.79	371	20 =
11	51.00	51.00	SLT0	-	10.2	R.	170	831	00.63	0.00	90.10		T	100			12	R-	120	× 1	-	
14	10 00	58.45	10.00		48	172	170	613	94.78	0.00	199018	6.00	1.00.	1.70	1.00	1200	- 45	31	82.09	64.26	447	41 E

Notes

- No.: Numers de pagers del metaye LPT) Largo Penetros Vir Test, mestos en samo).
- No. Grammo de garpet del entaya CF (como Peda), medido en cempo.
- N_e . Himself its garpen det enpara SPT (Standar Pensantion Test), met als in current discondenius also
- R Faction
- Nei Numero de volção deletisario SPT, corregido con ensidar
- 18) la l'Aumero de griboso del mesero GPT, corregigio consuderando el equerzo de controlmente
- (1) Simplify (SM)
- IZT Winda films (1977)
- (31-Maymen) at (2001)

- 😞 Factor de vorres o for grand gran pression et en iva de protectargo (1997) de los 2000 (y. Ventrovo) o Fermino des (2010).
- Exister de actreción parte sencitar de energia de martio
- G. Finlande considération por demetro de l'Attreva
- Ca. Egyber da consciudo por longitud da riu barra.
- Fector de consción para mayones car o consesidamento.
- No. (45). Kidnew/Chm (2010) Existration for ensure its provident in your constitutions on earlier con years.

Tabla 5 Corrección del Número de Golpes de Ensayo de Penetración - Sondaje BH-TSF-05

Sondaje ;	BH-TSF-00	Norther	1.29	Eleveción de superficie de suelo:	4036	masi
Profundidad del Nivel de Agua (estimado)	- m	NamaNor:	0.50	Denkidad de Agua	1.0	tn/m
				Presion atmosferica:	10.5	Indin'

	Tre	mo			11111				ESPUE	RZOS			FACTOR	ES DE COR	RECCIÓN				1	1		
11-	De	À	Profundidad (%)	Ner	Not	N.	Densided (trains)	Esfuerzo Total e. (trafer)	Esfuerzo total Acurii. e, (tr/m²)	Presión de poros u (In/m²)	Esfuerzo efectivo e/ _v (trvm²)	¢,	4	4	c,	c,	Nes	(No)ex	01 (%)	K2mex	Gmax (MPs)	\$ ed (L)
1	2.00	46	5/8ts	10	6.	19	(7)	697	5%7	0.20	687	1.34	1.00	7.100.1	581	-116		-19.	-30:9W	4550	-a-	22%
4	100	545	£45	100	0.0	2	(ith)	-34	3132	0.101	71.42	10.00	120	3.10	0.05	13877	31	100	100 15	54.67	188	37.8
- 5	9.00	300	945		327	NF.	(76)	18	1618	9.07	16.5%	3.78	-980	100	0.80	1.00	- 97	- 28	7949	62.09	175	912
#	1200	1245	1240		27	125	-170	0.00	25.343	0.00	2198	(1) 1/6	190	1 00	4,00	160	35	23	783.97	57.5E	/189	199
25	15.00	tana	10-45	100	312	42	7700	538	27.20	0.00	27/29	0.27	1.000	1 (n	Lan	1902	-0.	- 25	72-17	50 (0.	30	393
6	18.00	19/45	18.45	100	13	101	17.0	= 58	8214	0.00	37.64	0.60	1.00	1.00	1.00	1000	80	16	97.30	40.45	197	36.8
7	2550	3975	2375	F - 11	-	B-	170	927	41.0t	0.00	91.97	-			F		0	9		100		
(8)	3600	39.45	23.40	10	10	24:	43.0	4.25	.50.10	0.01	99.10	0.50	100	1.00	1.00	100	74	ikt	(B)(9)	89,011	340	459
- 10	88.00	32 ft	24.11	-	-	- 6	170	818	68.88	010	58.53	-		-		500	8	- 0	0	2		
(10)	8800	10.00	38.11	140	1-	- #	7700	0.7H	-07.50-	940	H7 DR	- 0					8	R	1 m	100		

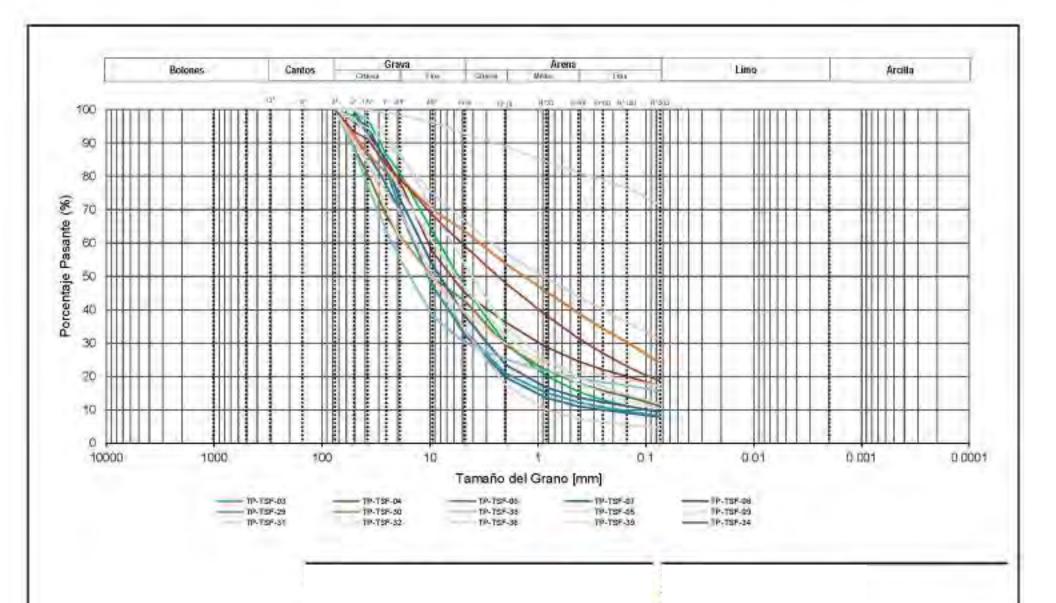
Motive

Num Número do cultivo do entresayo LRT (Large Forebotin) Test Freedos en carron.

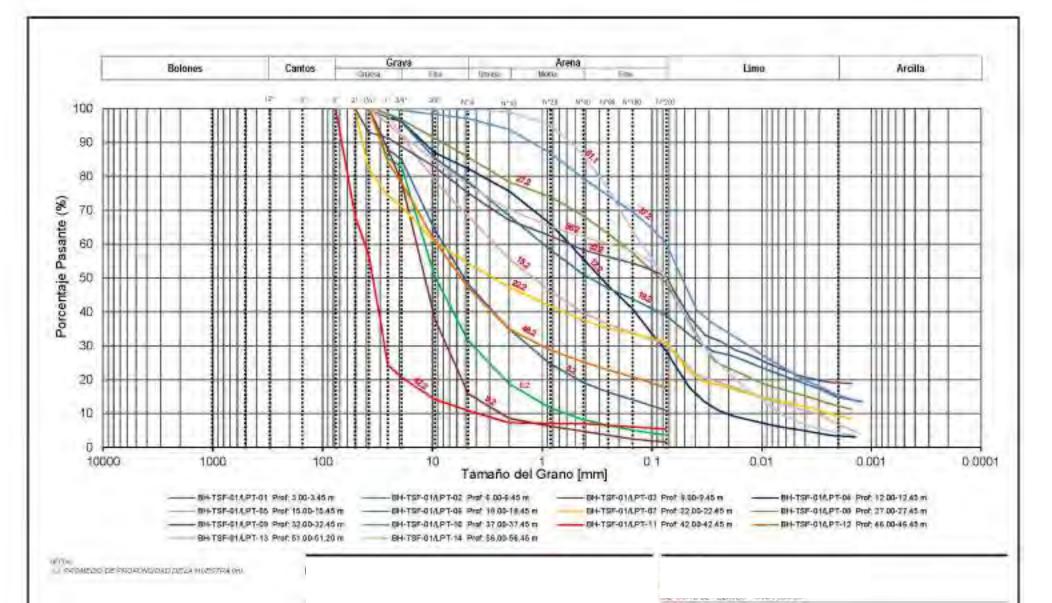
No. 1 Name of galaxy of ansayo CP (cons Porto melida en tempo

N_e - Moreon & Inhos de presso SET (Stanter Enniosing Led), method on parport from annexactor

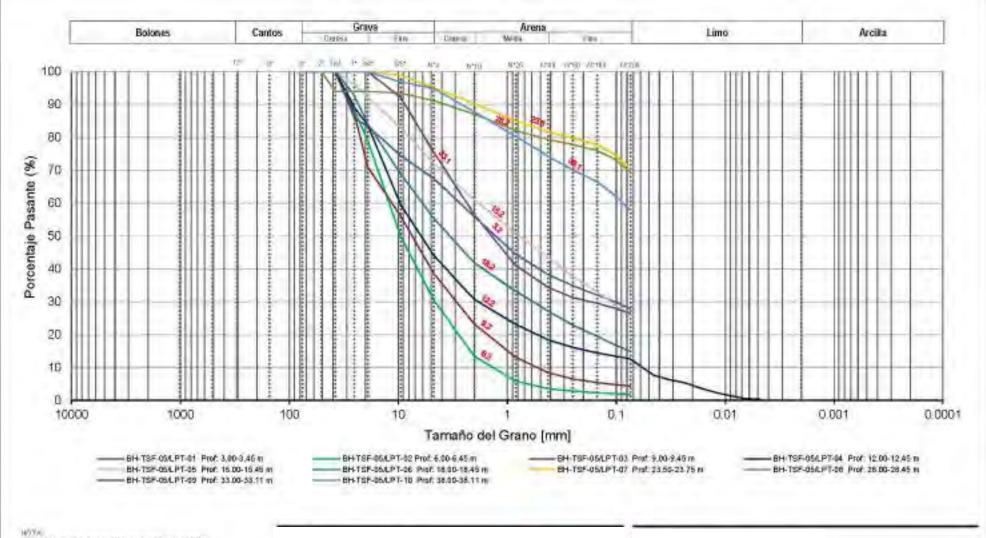
F Trivillazi


Namen ili golpid dia oragia SPT comgistopai inergia

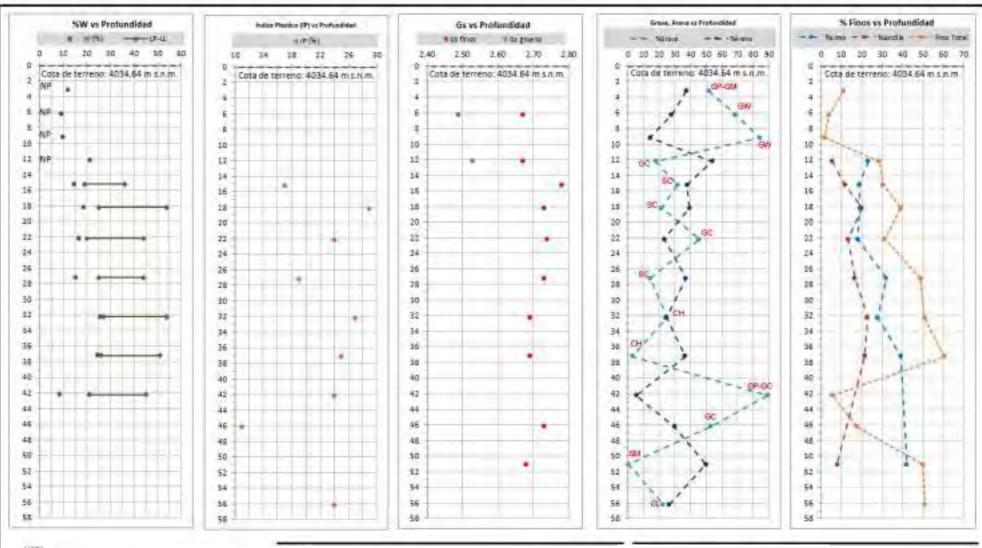
(N/g) (N) (III) de giges de ensaya SFT, come de porsiderando e estánizo de commendo.


- (1) Swirptor (1986)
- (J) Seed History (1970)
- (S) Mashwell 61(2000)

- Eq. : Factor do convenido para una prassión el cobrada sobrenda de Monta (100 m.) (2001). White of 4. Ferrer Mez (2010).
- Factor de introduto suit la materiale de especial de especial de
- Ci. Facilit de conscion poi d'arretto de la suberia
- Feder ile conscript per jobijitad de la liume
- Ca. Further on connection parameters con a ammunity marks

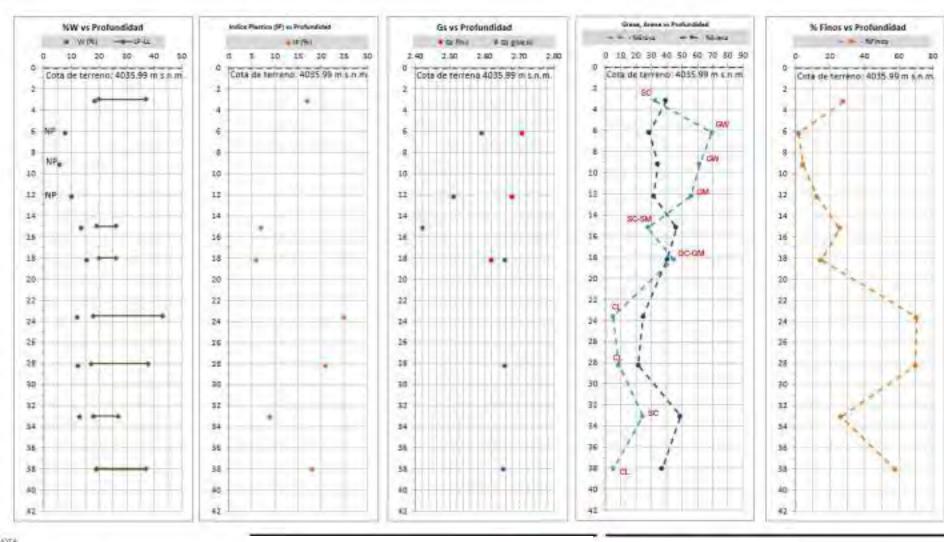

That have indianated an (201) Explained a entert of principaling associated explains an inni-

EVALUACIÓN GEOTÉCNICA DEL TSF ANÁLISIS GRANULOMÉTRICO CALICATAS (DAM FOUNDATION)



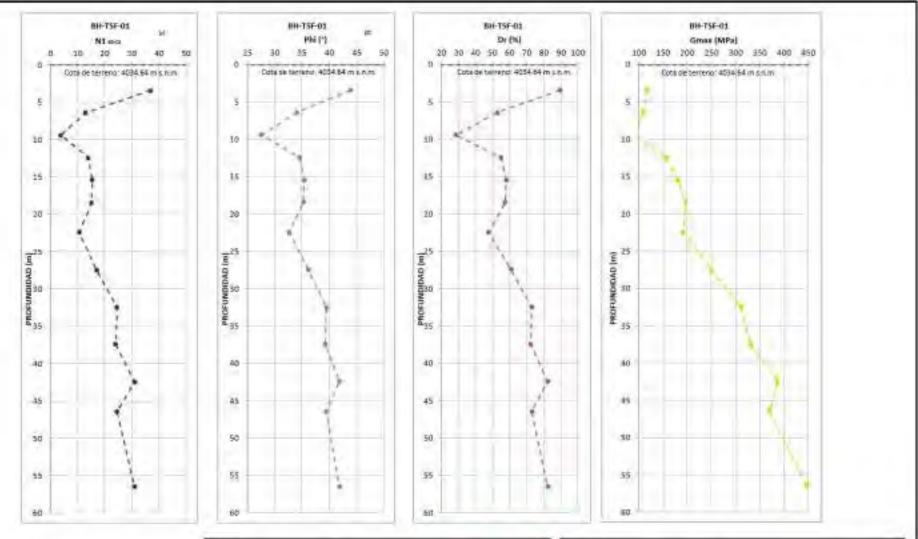
EVALUACIÓN GEOTÉCNICA DEL TSF ANÁLISIS GRANULOMÉTRICO PERFORACION (BH-TSF-01)

ОКТОМЕДНО ДЕ РИОИСМОНИКО ДЕТА МИЕЗТРА ОНІ.


EVALUACIÓN GEOTÉCNICA DEL TSF ANÁLISIS GRANULOMÉTRICO PERFORACION (BH-TSF-05)

NOTA NE NO PRESENTA DE GRAVEDAD ESPECÍFICA

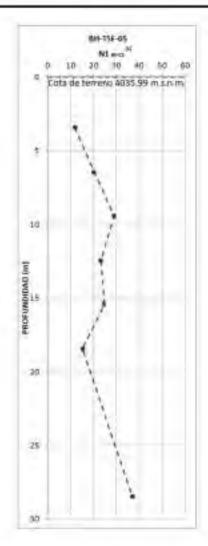
> EVALUACIÓN GEOTÉCNICA DEL TSF VARIACIÓN INDICE-PROFUNDIDAD PERFORACIÓN (BH-TSF-01)

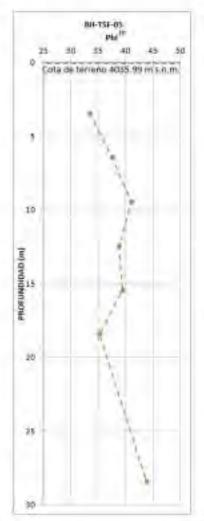

> > 11

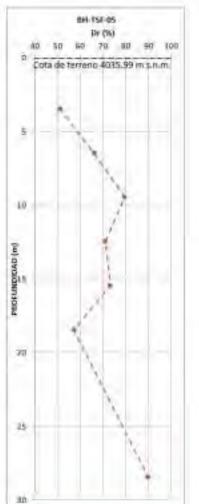
NOTA NA NO PRESENTA DE GRAVECHO ESPECIFICA

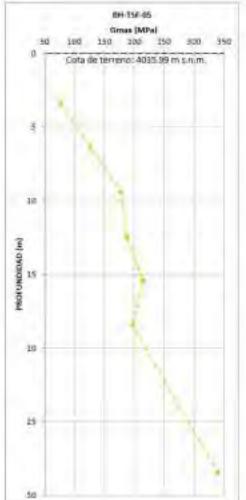
> EVALUACIÓN GEOTÉCNICA DEL TSF VARIACIÓN INDICE-PROFUNDIDAD PERFORACIÓN (BH-TSF-05)

> > 14

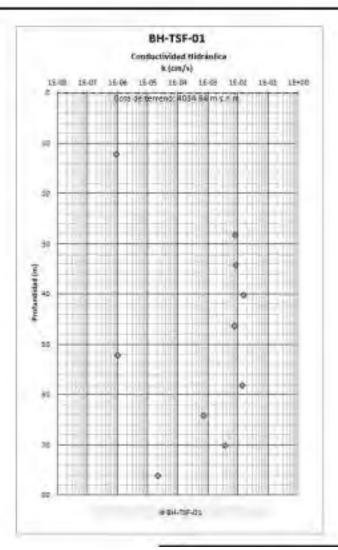


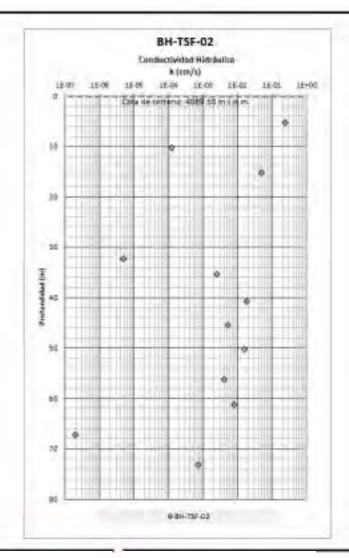

NOTES:
THE INTERIOR IN DEBOLPES CONSIDERANDO CONFIDENCENTO
CONTRA EN DEFINOS


(3) CORRELACION ENTRE (NT) MIGH EL MADICO DE MICOCN MANTIE ET AL13001)

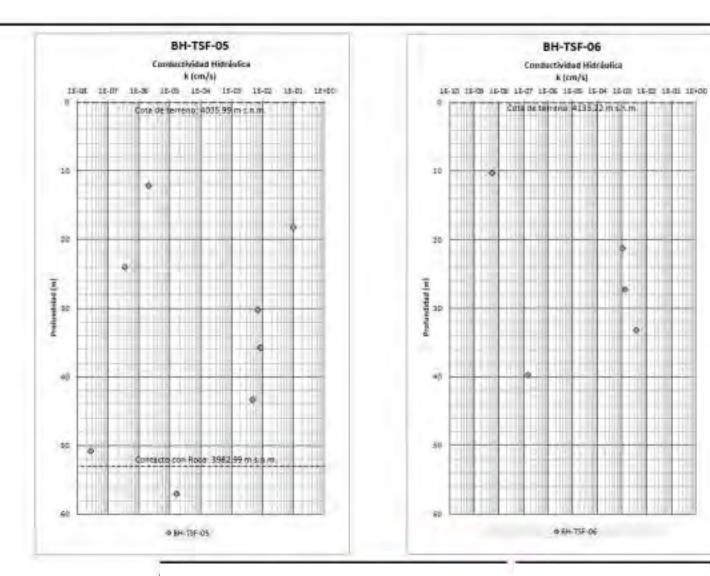

EVALUACIÓN GEOTÉCNICA DEL TSF VARIACIÓN DE CORRECCIÓN DE N° DE GOLPES CON PROFUNDIDAD PERFORACIÓN (BH-TSF-01)

16





NOTES: 11 INTRACE N° DE BOLPES CONCIDERANDO COMPINAMIENTO Y CONTEMEDO DE FINOS


(3) CORRELATION BETWEEN (VI) INCOME THE PRICTION ANGLE MAYIFE ET ALCION)

EVALUACIÓN GEOTÉCNICA DEL TSF VARIACIÓN DE CORRECCIÓN DE N° DE GOLPES CON PROFUNDIDAD PERFORACIÓN (BH-TSF-05)

EVALUACIÓN GEOTÉCNICA DEL TSF CONDUCTIVIDAD HIDRÁULICA PERFORACIÓN (BH-TSF-01/BH-TSF-02)

EVALUACIÓN GEOTÉCNICA DEL TSF CONDUCTIVIDAD HIDRÁULICA PERFORACIÓN (BH-TSF-05/BH-TSF-06)

Table 5.2

Resumen de Franços de Permeabilidad In Situ en Perforaciones -

on I	Perforación	8495	18 throughter	Fecha de	Train	o (m)	Tipo de	Permabilidad
Mo.		Código	Ubiceción	Ejscuelán	Desde	Hasta	Ensayn	(intrés)
11:11				27/08/2017	6.00	6.45	1,400-01	Muy Permeable
2 .				27/08/2017	12.00	12.45	LF00-02	8.80E-07
5				28/08/2017	18.00	18.45	LFCC-03	Muy Permeable
961				26/08/2017	22.00	22.45	LFCC-04	Muy Permeable
5				26/08/2017	28,00	28,50	LFCC-05	8,0ZE-03
9				28/08/2017	34.00	34,50	LFDC-06	8.34E-03
7			San Control	29/08/2017	40.00	40.50	LF00.07	1,59E-02
ā	BH-TSF-01		Cimentación de Presa	29/08/2017	46.00	46.45	LFCC 08	7,69E-03
9			Presa	30/08/2017	52.00	52,50	LF02/09	9,95E-07
10				30/08/2017	58.00	58.50	LFCV-10	1.38E-02
17				31/08/2017	64.00	64,50	LFOC-11	7,01E-04
12				01/09/2017	70.00	70.50	LFCC-12	3.54E-03
13				01/09/2017	76.00	76,50	LFCC-15	7,22E-05
14.				02/09/2017	82.00	82.50	1F00-14	3.88E-07
15.			1	03/09/2017	88.00	88,50	LFCC-15	Muy Permeable
16				18/07/2017	5,00	5.45	LFCC-01	2,40E-01
17				19/07/2017	10.00	10.50	LFCC-02	1.236-04
18				19/07/2017	15,00	15.45	LF00-03	4.98E-02
18				19/07/2017	18.00	18.45	1F00-04	Muy Permeable
20				20/07/2017	21 00	21.75	LF00-05	Muy Permeable
21				20/07/2017	25.00	25.90	LFCC/06	May Permeable
22			Sec. 1987.	20/07/2017	32.00	32.50	LECV-07	4.83E-06
23	BH-TSF-02		Ornaniación de Presa	21/07/2017	35,00	35.80	LFCC-08	2,45E-03
24			P1854	21/07/2017	40.50	46.95	LF00-09	1,855-02
25				22/07/2017	45 00	45.80	LFCC-40	5.20E-03
785				22/11/2017	150.40	50.55	1F.CC-41	1.515-02
27				23/07/2817	56,00	56,45	LF00-12	4.02E-03
28				24/07/2017	61,00	81.45	LFCC-13	7.83E-03
29				26/07/2017	57.00	B7.50	LFCV-14	1.92E-07
30			1	28/07/2017	73,00	73,45	LFCC-15	7.06E-04
33				30/09/2017	21.00	21.50	LF.CC-01	6.83E-04
32				30/09/2017	26 00	30.40	T/h-01	5,51E-05
33				02/10/2017	30.00	3/1.40	LF00402	7.30E-05
34			The second second	02/10/2017	39.00	39.70	LFCC-03	1.01E-03
35	BH-TSF-03		Cimentacion de	03/10/2017	45.00	45,80	LFCC-04	2.78E-06
38	2		Prised	04/10/2017	51.00	51.50	LFCC-05	1.27E-04
37				04/10/2017	52.00	52.00	LF00-06	6.0SE-07
38				04/10/2017	52.00	83.00	1,POC-07	6.275-04
39				04/10/2017	62.50	67.90	LU-02	4.24E-06

Table 5.2 Resumen de Ensayos de Permeabilidad In Situ en Perforaciones - TSF

on.	Perforación	18 th at the	Fecha de	Train	(0 (/11)	Tipo de	Permabilidad
No.		Ubicación	Ejscuelán	Desde	Hasta	Ensayo	(cm/s)
40			12/08/2017	8.00	6,45	LFCC/01	8.89E-02
41			13/08/2017	12.00	12 45	LFCC-02	2,47E-02
42			13/08/2017	18,00	18,45	LFCC-03	Muy Permeable
43			13/08/2017	23.50	24.00	LFIOG-04	2.38E-02
-44			14/08/2017	29.00	29,45	LFOC-05	Muy Permeable
45			14/08/2017	35,00	35,45	LFQC-06	Muy Permeable
46			15/08/2017	40.00	40.45	LFCC-07	4.19E-02
47			15/08/2017	45,00	45.45	LFCV-06	4.57E408
48	- A.A.	45.1000	15/08/2017	45.80	53.00	LFCV-08	1.07E-06
45	BH-TSF-M	Depósito de relaves	16/08/2017	55.00	55,45	LFCV-10	5,70E-07
-90	* Laboration	Totaves	17/08/2017	60.00	60.45	LFCC-f1	2:01 E-02
51			17/08/2017	65,00	B5 60	LFCV-12	1.27E-07
52			18/08/2017	71.00	71,50	LFQC-13	5.87E-04
53			18/08/2017	75.00	75.60	LFCV-14	2.54E-06
51			19/08/2017	80,00	80,50	LF00-15	1,01E-02
35			19/08/2017	85.00	85.45	LF00-16	6.82E-03
55			20/08/2017	80.00	50.70	LF00-17	3,00E-83
57			21/08/2017	25.00	95.40	LF00.18	Muy Permeable
58			21/08/2017	99.50	100,00	LFCV-19	1.09E-07
5B			22/08/2017	6.00	6.45	LF00-01	Muy permeable
60			23/08/2017	12.00	12.45	LFCV-02	2.06E-06
61			23/08/2017	18,00	18.45	LFCC-03	1,00E-01
62		6.000.00	24/08/2017	23,50	24,60	LFCV-04	3,41E-07
63	BH-TSF-05	Depósito de totaves	24/08/2017	30,00	20,50	LFCC-05	7.24E-03
64	-000	Total Co.	24/08/2017	25.50	36.00	LF.OC-96	8.31 E-03
65			25/08/2017	43.00	43.50	LFCC-07	4.66E-03
66			25/08/2017	50,50	51.00	LFCV-06	2.71E-08
67			26/08/2017	54.00	80.00	LU-01	1.63E-05
68			12/07/2017	5.00	5.50	LFOC-01	Muly permeable
HP-			13/07/2017	6.20	6:65	LF00-03	Muy Permeable
70			13/07/2017	10.00	10.50	LFCV/02	5.22E-09
71	BH-TSF-05	Norte	13/07/2017	15.50	15.95	LF00-04	Muy Permeable
72	200000		14/07/2017	21.00	21.50	LF00-05	1,18E-03
73			16/02/2017	27.00	27.45	LF.OC-06	1,34E-03
74			17/07/2017	32.00	33 45	LFCC-07	3.83E-03
75	4		18/07/2017	19 50	40,00	LFCV-08	1.54E-07

Tabla 5.3 Resumen de Ensayos LPT - TSF

	Perforación	Ubicacion	Emissyo W:	Trien	o (m)	N.	aue II	test	
		Libicación	minaso w:	Danie	Heate	Sal	Nw	Na	Hrom
			(FFT)	-7,00	D-400	18	- 11	.71	785
10.			LPT-0;	10,00	0.43	J.E.	- 5	31.	1.40
1			LFT-U	IT 90	945	241	-11-	-1-	1
9			LPT-09	12.03	12.61	12	0.	T	4.00
1			LPT-05	46.01	19.45	. 1	9	-32.1	27
1.			LPT-88	119.07	19.45	. 1	- 12	P4.	
2		Company & Chang	LIPT-07	2281	22.41	1.1	3	1.	100
h.,		Economic de Phron	NELTON:	27.01	E126	40	44	45	260
,			FLL GA	32.01	324E	15	- 10	-20	- 35
0			LPT30	BTBL	31.45	100	-32	-25	- ET
I.			Palati	42.01	328t	TD.	21	-30	983
			LPT to	1639	46.48	121	111	29	. 29
2			LPT-TI	6101	3001	51	·R		- 60
			LPT-G	58.00	58 d E	17.	(1)	29	48
			LPT-01-	1.00	-3.46	16	- 13	177	40
			LPT (E)	4.00	54B	-	8	100	16
1			LECUS.	4.00	9.40	18	41	13	118
-			LPT-SW	7091	19.11	R			19
н			1375-25	1303	1212	-87			10
\exists			AFT-00	1501	1995	18	- 11	1	16:
Н			LP7-07	1801	1046	16	- 11	10	74
-			LIPY OU	2101	2144	80	40	70	39
Н			APT-OJ	22/01	20-4t	16	- 12	20	949
_					_	Pr.	12	+1	_
			LIPTO TO	20.03	201E		-	-	- IA
6			LPT 1h	32.01	32.44	10	23	-90	
l-			LPTH2	3501	3647	160	41	- 25	17.
54	B-1-155-752	Discountified Phase	APT-33	4051	-40.0 L	1.	-8	1	- 8
11	9.75	1 2	Thirtie	4201	92,91	25	PF.	27	40
		the second secon	The State of	40 (11	\$8.01	77	11	131	20
0			LPT-R	4601	4541	16	η	-18	- 35
7			LFT-IT	100.13	E03.F	111	- 17	17	- 89
В			LPT	1201	2385	fid-	40	TIM.	22
			APPEN	58.01	2695	10	-11	11	1 (4)
1			LETTON	Eagu	20192	33	.59	-16	9.1
5			LETTER	- D101	E0.45	-49	11	. 13	. 6
			LPT-Z	B4311	BAAS	12	- (1)	18.1	1. 30
2			LPCI	FERR	3114	R			- 6
			LPTSIE	100)	mai-	26	33	. 6	197
			LPT28	13/01	13.3E	12	1.11	.13	
0			LETON	1601	70.24	30	F		G
\perp			TEAT	1809	TRAF	TT	13	14	- 32
_		1 100	UPT-00	2) 01	2117	8			R
	BH ISTIGE	Commission de Prison	PEA-01	2/41	26.01	40	R.		
_	1 2 2 1		LPTGA	38.03	3840	20	40	18	R
_			LPEUL	45.91	4631	20	- 49		170
-		1	-UFT-01	- 000	3,45	15	μ.	14	- 29
			LFT-00	0.00	6.46	17.	: 9	1.5	17
7			Faltitiff	9.00	SHE	11	7	0.00	45
1			LEDGE	4204	1230	14.	7	-0.	
			LPT-05	1530	1595	TIT	11	17	- 70
1		All the second	LPT-08	18/83	12/01	11	79	11	12
	BH:78F-34	Theographic colorest	LFT:07	2101	PLAS	1.	17.	17	- 34
п			FEL18	2601	35/41	1	. 9	1.0	22
-			LPT-08	2961	5931	10	-11	37	39
2			197-0	330	arat-	21	27	77	1.42
			LECTI	3601	3541	30	37	20	77
H			-UPC-12	28/11	3946	31	-10		40:
			April American	10.41	-0.745	111	- 44	100	467

Tabla 5.3 Resumen de Ensayos LPT - TSF

	Perforacion	Grand	140000000	and the same of	Triang	o (m)	N.	alue If	Gentl.	
N		Codige	Ubecscom	Emeayo N:	Detde	Heats	Nag	No	Nat	Mrone
11				LETTIN	4801	4341	17	-11	-1/6	27
5				- Entire	4681	1648	411	41	12	66
5	BHITSE 14	1	D06900934 (04988)	LPT-B	409T	40.46	.58	773	29	40.
P		1		LPT iv	5201	5274E	13	41	35	38
8				LPT-18	65.01	9641	89	- 31	. 8	- 10-
0-				LFT48	1991	5831	- 11	-11	.39	07
D-				LFT-00	thin:	20041	27	29	1.00	27
11				LPT/21	8791	2182.0	10	两	10	R
5				LPTSS	RSAL	3524	26	E-	1	民
8			10	LPT-23	- BB.51	39.01	09	- II	6	- 62
1				FLL(5)	11/01	12/12/	30	長		E
5				LPT-25	CIRC	1948	57	却	98	12
8		1		LPTOS	7501	1531	59	· fer		8
a.	DH 15-14.	1	Dimento de estaveo	LETEUR	1803	78:15	15	81	-90	19
7		1		LPTOS	- Li0.01	BIYTH	13	R		
2		1		1.51-23	ETH	2311	471			- 19
D.				LPT-35	to an	10-41	10	33	23	- 11/
T.				LPT-31	880)	1887	327	·fr		160
6.				DET-GE	F0.01	30.71	-50	· R		1 7
8				LEFER	B3.01	1946	10	41.	50.	G
4.				APT-34	15/11	Spar	30	-11	T)	71
8				LPT-86	E0.03	59.72	23	33	13	H.
				TING.	9380	3.46	1.04	.6.	-4	- 0
1				DETSU	37 DM	Drift.	14	- 11	- 2	10
1				LPT-II	2.18)	346	200	- 33	Ltr	90
		1		Thirtitie	11000	1204	3.0	. 11		10.00
	DH-TOST DI	1	famous lemmes.	LET-35	11683	15.45	15		16.	- 8
	1111-112	1	and the second	LPT-E	timi	16-61	13	44	1	. 25
7		1		This day	72.51	23.74	40	· Pi	10.15	B
				LPTes	10.62	20.95		-01	44	13.
				LETUS -	2801	3311	8			6
0.		V	100	UPDR6	3801	38.11	R.			F
\Box				1हाजा	3.100	11.45	19.	8-		11
4				TELL-OF	4.30	6.25	.7.	-11	12	20
				LP(102)	Inhi	1012	37			Pt.
		1		FLEAT.	1381	1974	43	F:		R
			2	LET-UE	4530	169t	10	.11	130	31
4	EH-190-02		(Anta	LETSIN	20.03	20/21	21	41.		12
				- EPTOT	2804	29,41	22	11	70	- 35
ч				Entries	2100	□07.44	39	-0	107	09
				(E-13)))	20.01	201432	(0)	-N	231	30
D.				Delate	= 40	3391	75	41	19	40
1.				LEFE	20.00	20/1	15	u.	19	201

there delected to the second Management

APT Leter Ferrytamany Tests

V VIVI

Table 6.3 Resumen de los Lasagus Estindar - TAF

	(Marie)			Best	tries			deste	-	-	limi	in (4)	mer (Q	U	1
Acas	Nevier & Stans	Disside	there	tunity.	ник	2450	Description .	Siere O)	African year	Floor VN:	11	100	*	iù	Rei	13
_	instant.	(319/2)	-01	100	3.60.	139	Crisis buth graduals top lastest	79.1	.00.1	25	1947	140	HP		288	25
	TREATME	(Bigs)	144	1.00	210	126.	Good in grating process.	30.4	21	31	100	-hp	AP:		207	-35
	THEFT	These Payment about	161	LOD	3,00	TENT CAN	- BH PW (Becomb LA) PW Y MARK	12.6	.472	. 91	197	.RP.	hF	.78	1	
	1010501	ジョン・ファイル Application (Application)	182	1.00	3.89	90	1-1500年60/000 東京市場	552	277	181	40	- 20	207	102	279	
	79.189420	Section	MY	100	600	0,	Cram-pells breakers and di	ELA.	216	5.1	28	100	7.47		135	\vdash
	TO LEGICAL	Contribution for France	141	100	380	TEACH.	Salay miligration (in the youter)	93	245	41.2	36	NP.	#P	tim	762	20
	TOTAL DE	Cineta Aguni acres Cineta rain to Februa	181	100	200	GPOM.	Great the species of the years.	107	29 F	100	-4E	31 31	145	큐	꾦	5
	TP (3-0)	Calminate extens	192	150	360	O.	error or the protest contract of the	1-3	211	716	100	10	100	100	100	-
-	TRES	Note.	141	705	1.87	Whole I	Transmit potentia in the carbo.	150	367	1111	747	ЧН	CHE	54.	260	21
	TUTTENTO	Rots:	47	100.	510	1124	Strop little gradety	513	1007	52	HP.	HP	HE.	31	200	28
	TRUME	Home	147	100	5100	50000	Gasta files gradada partieno y artira-	54,0	30.7	5.5	hB	hE.	AP.	ta		
	THEFT	50 CB-	PATE .	EOD;	2.01	IR-GV	Count for this conservation of tradestration which is	221	.454	23	72	RP.	THE	101	150	
	18-19-20-	790FB**	141	100	4.00	- Ebc 1	Company (Consci	1.75%	790	41.	I fife	HR.	HE	.44	0.69	2
	TR. P. Sp. 14.	born.	ns1	1.00	810	ment.	Description of the	2 /4A.	JB/-	125	THE.	HE	THE.	50.	100	. 2
	TRIPPE .	Note:	145	110	250.	28/08	So je Bild gradety sim knog titmo.	1903	297	52	HE.	HP.	MP.	4.1	289	
	mrgr.W	No.Co-	141	1.00	5.00	20	SHEET WELLS IN THE RE-	2.4	201	34	hil	All	-hE	-32	-	
	TO LIKE VE	Notice:	18.1	1100.	300	725-094	my district addition from your little of selection	127	34.	11,5	ne.	HP.	MP.	EF.	715	1.5
	100 (De 20	Sup. F	- 61	Y00	1000	W-ent.	OHIEROSON CON CONTRACTOR	1 66.7	29.4	72	HF.	HP.	HF.	95	.270	H
	TRENZE	Signif	761	100	100	nFos.	Transfer grands con order inco-	571	501	11	25	111	U.L	O.F.	-	-
- 5	1012670	9917	961	T00	300	201	Contribut grains to terrorat	717	234	31	HP.	AE.	HE.	42	-	-
	TETEZ	Total	461	TOD	300	ISEGN.	Contact of the property of the property	177	311	72	ND ND	RP	NF.	4.0	-	+
	10-13-32	Stage F	(4)	400	620	SE-TIM	- commence and a second comments of the commen	23.0	308	53	THE	96	HE	94	240	+
- 1	79.159-25	Charles in Charles	-81	100	680	Inches !	Decre pringed decor (mg press)	100	254	82	BF	H.F.	NF.	47.	-760	+
	TRIPS.	CHEMINITARY	947	THE	7.50	534	Disking freeze com gramin.	17.5	371	Wes	HE.	90	HE.	7.4	242	13
- 17	TWITSY SE	Creaming to Prince	-161	1.00	100	- 594	Note a mission of opera-	307	37	342	hl	Att	-hp	154	200	13
	1018-11	Contraction to Priva	18.1	DD	3,00	090	Conjustice gradient to deep.	TATE.	.390	37	DR.	HP	HP.	57	775	t
	TREE35-03	Called not delicate	191	150	450	17* OM .	ment announcement of Alban the Alban	SIE	35.0	10.4	dF.	.80	IF	41	764	t
	TR15134	Smarp on all True	761	7.50	-445	164	Own Prosect and	1.4%	.4011	150	185	JAP.	HF.	71	2M:	1.0
	TH 125-36	Colorest to Print	90	TID	500	394	Arce & Product poly Gentley	3.00	354	17.25	HP.	相抗	HE:	791	1.00	г
	78151E	y merunan kehina	144	140	210	90	Steenden	244	9.1	36	28	.0	4.1-	1.2	200	1.2
	TETTER	These Agrana, Abdull	48-1	100	=10	IE-GV	HIS PROPERTY AND THE PARTY	16.6	41.7	11.0.	197	MP	hF.	Fil		
	1213140	1	Mr.	100	3.80	GOIGNE	Charles Books and all Annual Control of the Control	1957	177.7	-52	TIF	465	HE.	73	289	
	78.555.44	1 :		1.00	400	(W)	Colorbin Ending Impages	134	.271	-25	H.F.	HE	HT.	22	100	1
- 5	drift-st.	1 :	351	DD	. 10.00	1.39	Considering producting they control	50.4	281	45	HE.	147	MF.	20	260	-
	Cardo	+ :	84.0 Mar.	1900	7750	GP GM	derivativation cline jama.	35.4	200	710	nE	AE.	-hE	EIL.	270	-
	TETRETT!	+ +		Section 1	1/1101	_	Applications are allowed		_	_	, RPC	.642	RP.	_	216	+
=	TR-TO-DA		Disc.			ober	Circus equipments can stalle y seems	24	365	31	25	49.	9.9	Dif	=20	ь
	140		MYS			- (24	State broads or while	17.1	200	5.2	HP	RP	ME	H	740	
			(0.1-d)	100	3.45	30-60	Commercial agraphy (actions y design)	40.0	31.2	- U	36	460	THE	485	-	-
			Listati	1000	7),45 17,45	766	Cours him guideta continues	192.1	200	31	JAP-	HP.	HE.	401	200	-
			LITO	100	TE 40	129Y	Cove three protects Associate to a grant of the co	1-172	347	7.6	NP.	HF.	HP.	214	16	-
			EPI-O	70.00	100	2	Afry avilled the life of	912	Da	201	1	10	100	142	155	٠
			1.510	4800	10.6	201	William Property (States 201)	73.k	200	191	1541	30	23	Tas	270	+
			Certar	42/80	12.6	80	Oto-configurations	11.5	NU	11.5	- 44	30	128.1	tal:	214	+
			LITT-OR	DO	次度	50	Sentagrelous	14.1	20.3.	62.5	44	25	110	155	273	t
	40 12 Hz	THE COURSE	LITTED -	276	2.6	- OH-	Drawer of the early and	1.362	21%	18015	24.	21-	371	253	THE	F
			149-0	77.00	34	CHI	Activate the	2.0	ST.	1000	53.1	12	124	74E	212	г
			7744	<200 T	我在	040c	Continue processing with	30	54	52	.983	35	10.41	100		
			Lettt	.e.w.	4.6	Be i	The endough was	38,7	201	255	- 28	16.	ATC.	(132)	271	
			sut th.	\$1.00	31.37	- 61	Antas Irresta	0.5	29.0	42.2	40	Br.	HP.	251	.26%	-
			LPT-14	50.00	55.45	IL.	optio entra urigina	221	200	400	45	122	24	10.5	100	-
			1916	5430 6430	\$250.	8	To an artificial poly area.	146	27	P1.1	30	73	21	24	271	13
			10.15	115.56	RISE:	5	effiny action constant monorables resignes	40.4	301	215	30	77	701	Mb*	2,00	+ª
			703-01	-	2.45	94	North Allerton and Brown	34	7,81	38	NR.	BR.	WP.	35	-	+
			The state of	100	0.45	3530.	Final transplaced control grant	1412	4:81	5.03	DF.	BP	ne.	El	200	+
			151-01	-	171	TRICK!	Series wholes probabilities on territy at some	10/5	37.00	-2.90	HE	RE	HE	7.1		13
			UR 06	19	(0.45	1000	Constitutional programme	150	2001	141	THE	NP.	DF.	35	210	
			lefat.	- 31	11.6	Desire.	Dani ma production for purpos	2.3	line	3.80	1700		300	59	40	
			LUT-OF	াৰ :	-31K	.(UNEQAA.	Set a being option by constraint or an artist of providing	現内	3140	10	Sin.		HF.	5.3	276	
			- Jiffar	-20-	10.6	CH	Guia limação lima	:071	22	27(5)	35	86	III.	E4	278	Li
			103-0	22	130/60	264	Aperty separation galling	2511	25-80	5210	inp.	NO.	HE	140		Г
			Tel-ar	- 70	T.E.	DM.	AND REPORT OF BUILD	17.11	95/11	3631	TE	MF	TIP.		252	12
			181-75	#56	-26	DOWN	Tura - a philateon inc.	0.3	27,33	3.10	-gir	1987	App.	4.5	1	1
	The Party	Action to the second	107-74	-43	All.E.	- Bra-	South Frei gedada to 6 mm s.	83	19,63	3.51	WE	HP.	MP.	121		•
	00 UEU	Commercial and the state of	Tales	- 40	2.0	32500	One the present a time y deals.	143	53	10	nr.	HP	TIP.	111.5°	235	+
			10040	101	36	CERCUI.	Stand of a gradual cary from process	20.45	30.0	025	HF.	RC	HE.	_	100	+
			181-0	68	11.6	GHOM:	The extract appropriate contemp process. The extract graphes are being a series.	9.5	(T) (2)	1.00	ne.	AP.	DF.	100	351	+
			10T-75	50	146	(Shothan	Romanian political fed y area.	68	400	3.0	38.	HR	BE.	77.1	-	+
			- Bit-	10	58	distact.	Austrian politicas ira) gras.	47,01 47,15	4.0	10.03	95	- NF	- OT	10.0	2.53	1
			109-21	Er.	107-4C	P34	Alternation granular conference or other	170	GA.30	1370	100	NO.	HD	EU	100	1
			1/4.5	64	THE	GC	Construction and	107.71	30.01	2131	12,01		100	82		+
			125.25	86	6.0	NV.	New Margadete	36.5	144	Di	ně	160	oF.	at:		+
			11(7-2)	71.	TRA	80 0	Committed no-over states	450	346	10		14.00		19.5		F
			Life	-31-	12.8	5	man make origina	32.6	201	227	36-00	_	1030	124	-	
			1/4/2	-75	178.25	10	Print will as the altera	11/2	313	111		11700		162	_	400

Table 6.3 Response de los Enseque Estindar

	Salami	Time San		Beet	tron			dean		-	Simil		mer (V		124
Ž:m»	Division a local	Distriction	there	tuniy	Hima	SHE	Description	Si men	Of money year.	Place This	11 100	100	*	iù	Re	
		1	19(4)	1.3	3.48	- 04	New environments grave	100	230	SE	WE	1677	WE-	166		
111			10102	2	1045	5465AB	Control of the Contro	COS	37/61	100	MF.	THE	TIP	70	208	-35
			18740	. 11.	181	79608	Surgedistance are a	0.3	17,85	100	nA.	hE:	HE	.84	1	-
			11/1/11	12	UE	84	Local Production Service.	183	23.83	2911	HP.	RP.	nF.	1/2	165	2.60
			LPT-05	-8-	II.e	CENTRAL Y	- Grading galatic manin-	69.03	530	1.62	ar.	HE	HE	291	福	239
			(FLO)	20	71E	GH	THE RESIDENCE OF THE PARTY OF T	192	17 E)	28.00	WE	BP.	THE	133		-
			167.00	26	36	Sir .	Bern Jeronnya ann	/250	25.00	-500	145	fill.	40	314	-	3780
			LIFT-US	22"	19.45	84.	Dated mid. relations in the property commercial	SHILL	50.61	7.60	19,00		100	706		
			- 101-40	35	72.8	5859	Stanton graphs on the rivers	45.53	47.80	150	BT	160	DF.	193	265	- 3
			The state of	- 1	198	- 0-	SAM BARRATAN AND A	33	37.70	7010	-	7110	14.35	. RED.	-	-
			181/0	40	35	250	Service and processing services	190	1250	(A175)	5300	20.00	27 (0)	101	218	3.9
			127.14	41	祖系	10-04	Diseased party were	F19E	D/0	200	36.01			ne	121	
			- IFLE	- 26	- 44	-6-	Dreited to copper	50.00	37.40	TOE	7+10		5.82	34.	-	
			TEE-PE	-40.	-46-0	cace.	Here yet great on your bones y seems	1246	3280	TOE	2 400	gurrous and	100	107		
			1/11-10	- 52	10.00	2	Parameter name.	3.3	32(0)	(4130)	49(0)	1000	2(30)	122	-	-
	mma	Francis (Byth)	理念	167	50	00	Distriction of the con-	18(1)	3270	3230		16.00	17/0	11.2		
			W1-5	53	13.16	80	Characteristics at a	17.6	30.40	228)	28,00		45(0)	107	-	-
			177-27 177-21	107	8.8	35/584 55-	Specific and manager and code	507	245	219	72.00		700	HI.	-	-
			107.5	60	122.14	-2W	Committee agreement of the agreement of	272	205	7.8	39	-	THE	110	-	-
			187.24	89A	68.6	- DC	Perella consumo	1011	190	139	31.00		-6-62	128		
			197.51	TI.	71.02	80	Chested passes.	165	10.5	0.0	WE.	-7/P	RE.	ET		
			100	71	ne.	.50	ing milita propose	3.0	237	127	39.00	15(0)	21.60	17.7	100	
			IFF.E	- 75	-75.7	GAC46	Grown being gradual statility of yourse.	4005	47.80	1.45	ar.	HE	HE	12.7		
			1/12/	- 73	23.60	(A)	Command service on the	1.20	256	163	4230		(6.0)	15.9	-	-
			184-29	10	-8117	10.3	Burry law godele - Profe and too	184	31.1	- U	A1.00	2000	ALE:	39. TEA	-	-
			101/20	100	一周点	-63	Deliand methods in ma	-514	08.9	13.0	25.00	_	TOUR	10.5		
			42.1	10	- 08.3	- 00	Securitaria per	407	255	135.7	37.07		2000K	170	-	
			109-52	400	1907	59.01	Control of Spatial Carbon Carbon	162.0	35	100	1:00		(2)31	25	100	
			16633	10.	311.6	50	ProCustoriar para.	301	29.9	131	4400		27.85	187		
			1127-34	- (1)	95.1	80	Chelled and control	1.00	247.	135	-	16.00	_	105	-	
			FILIAN:	40'd	3.5	-54	240 millio (275)	1.33	-6	135	ar	HF.	gr.	HE	-	-
			LPT(0)	- 1	348	- 20	One of the control of the latest	99	至例	1.61	1F00	1000 NR	THE	18	20	73
100	100000		18743	- 3	0.45	SW	Commercial Control of the Control of	the	\$1.35	1.10	aE.	HE.	July .	6.9	211	100
	-		APT-04	377	11.6	cut.	Checked page a least	99	51.60	1780	SR.	HF.	NP.	77.1	168	- 23
-71	WHEE	CHINA WAR FINA	urta	75	11,6	35-584	Les ses mission yes	7.73	8.0	350	表现	19.00	100	115		-23
- 1	1000	30000	1216	- 10	- It 45 .	DC-GM-	Larry group and branch artists	4473	40.45	300	25.00		100	-FIZ	1107	.20
			Tate:	73.5	201b	0.	Sola writing	1.196	24.80	7/4	4300		25.00	130	-	-
			Ditter.	28	3117	RFOM:	Act Add at Name A	7451	PRI	39.60	27.00	IEM IEM	2140	125	-	-31
			- LITTIT	2	-38.0	GAL	Roll down	SIL	20	2031	打切	1500	200	84		73
- 14			EPHO:	300	245	Det 1	The policy in man	164	411	-000	1960	ᢚ	700	2.1	-	-
			LP1(d)	¥20	915	0.400	Contract of Godge-Sent Contract of Sentence of	16.4	3:	92.1	140	-44F-	nF.	-32		
			LETCH	1000	3030	100	View malapacieta	7.00.0	2.8	- 24	7-		100	108		
			127404	1500	TILIP	TNOH.	entered interest in the Printer.	27	121	1715	ar.	W.	nir:	TIT	12	
	29172540	pier.	LPTO	3700	15.90	LW.	Garden grades de anti-	307	705	72	SD	ME	RP	77	-	-
	CHE STATE	910	1796	2900	3.4	re-mit	Character desirations per l'indep	767	288	17.7	1261	DE:	100	84	-	
			19745	27.00	76	Griden .	Conservated drawning promite	117	211	93	BR.	HE.	IIR.	702		
			Lister	3000	200	100	Anny (or, property (or, days)	46.0	501	3.1	96	-Ar	ne.	411	100	
			- Limit	- E5(II)- T	- JF (E)	- GAL V	G-Stiller Entline on Min-	1/13	24.4	37.	316	海区	nP.	-33		
1.5			19941	=2 dt	7.6	190	TRAYERA: gratter revised.	201	447	. 14		. HP:	-		-	
		1	141	3000	-3000	000	Cooking at the between	領す	201	3.5		110	116	63	150	. 23
			14.1	70.00	2100	19900	Drains malepackille. Drainshwittendede out and 8 il send.	196	24.1	94	39	HF.	HP.	41	283	123
			160	- min	4000	18500	Standard Control	187	-00	34	910	hV	HP-	1	-	-
	- N	0.0	167	200	4/00	C23-	- Tried with Streets	31	13	91	SE	SP	RF:	100	766	12
	approximation.	Sep 9	190	3000	4000	-69-	Desire elegendes	18.1	.07	0.02	119	100	100	137		1.2
	5.70	100	.4.2	240	4000	08.	Quest malignosités	#I.	1.84	0.1	NP.	HE.	IIR:	177	299	-2
			361	30.00	40.00	OP-	illnet trill though.	130	Di	. 10	AP.	AP	HP.	37		
			345	2000	mou	GH 1	Committee of the commit	150	-03	IT.	96	BE	HP.	44	1 65	
			190	1000	4000	30.7	Charles grataly revised.	38.2	391	21	/IP	, NP	HE	45	100	
1.0	-		10.1	10.00	2000	04	Comment graphs a graphs Comment from the largest	427	701	140	-70	が	41F:	48	100	12
			14	70.00	2107	BACK.	Dated them, typically implicitly of temp	31.0	31.0	77	ne.	ne.	rin.	1.59	210	22
			162	- 1000	40.00	CAL	Granton & Grant Chronics	124	210	25	ali	HE	HP	-03		-
	DIVERSE OF	State 9	167	-2700	4700	1997	General grants by heart	.793	.27	- 2F	तर	SE	:#E		30	27
	and only	0480	593	1000	9000	1990	Discourse gratility hydronic	1.354	294	-14	TIFE.	100	100	1.		
			14.3	-10000	-60.00	SWEW	Describe problem in the years.	367	30	37	NR.	HE.	TRE:	55	.87	-25
			184	TUID	10.00	39A-381	Charle Street Symbols Street Street Street	1.500	79.0	32.		Hr.	THE.			

Table 6.2 Resumen de Ensayos Especiales -

Calicona	Citie			Probes	Mod (e)	SUCS	Dendyclin	Audio	b Granda	n disher.	w	1430		olded (m2)		ciar edui	Dese	Triancul ellidate do (CII)	Erney		Comalir do (CD)	ada Ro	Carosilalo	1000	Del	1011
	lanara.	Musetra	think cuclon.	2000	1000	2012	verapore	Guera	Arms	Fine	164	GE	400	1	MDS	OC#	10		Extent	a hatal	Colonia	coluctive	Course Street	7.5	Cargo	Calageo
				Dends	flacta			Phi	.00	(90			Blia	Min	(HKM)	190	INPM:	n	c-90%	46	£096	#15	Carpa (RPA)	8	MPH	thi
TRISPES V TRISPES	-	Mx1		+.		8500	Character gradely can walke	57.4	34.3	0.5	12.4	270	7.8	18	-	-	277	30.	- + :		-		7.	-	-	
TP-135- 17,22,44,47	95	Mo.3	1 1	21	-	bW.	Crave bian gradedy con aren a	74.9	212	35	0.7	2.00	-	,	-		2		-		1-1	\$33	0.15	5.422	-3-	-
***********		M1,2		8.16	(2.86		1000000	26.9	:03	20.2	60	271	-	-	33.	(8.8.)	W.	×.	7		1	+1	20012	0.512		-
\$6-75F-01		MESTS	Ginestación de Prese	21.4	30.0	200	Anny Arelina	182	40.1	413	60	2/2	-	-	10	127	- 1	- 3	64	10	20	30	2015	188	-	
500 J - 500 s		Cap+59-82		24	- 8.	90	Aveta Arollous ceri prer s	25.4	38.7	95.9	29	2.81	-		-	-	-	- 1	-			-			100	0.0
CAPAR		Mit	-	50.0	tro .	TM	Anna Innia	754	58.1	210	0.5	2.86	13	13	-	-	Sacre	7.00	****		11 - 1				-	
CAP405		Met	1.1	211	99.0	GR-GM	grand maligraded a ton liver	65.4	21.5	10.7	0.1	220	14			- 4	19	- 41	200		-	477	14. 1			
CAPIT		Mx2	'	37.1	1.00.1	194	Grava Imera	47.5	36.5	90.2	DIE.	2.68	-	-		-	716	-40	- H-1			+ 1			.~	17.3

(*) Laurentayas de administra de ferreira cado sejo ASTIB-402, D-2010, D-5407, D-654-14, D4254 y 07101-11.

(for the stad Especifica de politica

W: CONSIDER SOMETHING

a compade

4 - Angels dell'Access below to

C : Doleado Direiro

4" Jargels permission when a Charles

(1) Corporation [1] : Corpolitation

C. PROCEED NAME OF YORK

Tabla 7.1

Definicion de la clase de seño de acuerdo con el perfil de onda S (IBC, 2012).

	No. of the last of	Propie	dades promedio en las primeros	30 m
Ciase de Sitio	Nombre del partil de suelo	Velocidad de coda de corte del socio V _S (m/s)	Resistencia e in Penetración Estàndar N	Resistencia al conte no drenada del suelo S _v (kPa)
A	Roca dura	V ₅ ≥ 7.500	N/A:	NIA
8	Rosa	750 < V ₃ < 1 500	N/A	NIA
¢	Suelo muy denso y roca. debil	360 ÷ V₂ < 750	N > 50	S _J ≥ 400
D	Perfi rigido del suelo	180 < V ₁ < 360	50 kN 215	100 ≥ \$, ≥ 50
- 8	Fierfi flexible del suelo	V _{el} < 180	N = 15	50 = 50
9	~	Cualquier perfil con mas de 3m de 1. Indice de Plasticidad PI > 20 2. Ecrizanido de humedad w 2. 40 3. Resistencia al come no drenado	The second second	iderlelicas.
E		Suelce vulnerables a posibles l' archaerapides y altamente ser Timba y/o urchae altamente cay espesor del suelo).	os que tengan una omás de las significados por casados pajo casados significados si	es bales como sueltos illouablés, nile cementados all'amente organica donda H

Nota:

^{1 -} IBC (mornational Building Code, 2012)

Tabla 7.2 Valores de prueba Vs 30 MASW - TSF

Jam	8	Mojewejon	Mate (m)	Norte (re)	Tipo de orida	V-90	Chas de artic	Nombre del perfil del austo-
	M689901	4	770 101,26	9.228063/00	Ontu8	365	_ D	Sudorgó
	INSWATE		1787(03/0	152010126	Rinta S	(6)	. D	State 19704
	- MMISANGS		778,888,37	9 227 995 11	Distant	300	, - Y	Suple (igrad)
	MASWOL.		710 519,97	9.227 940,79	Onda5	150	D	Suelo rigreto
	MASYVIE.		776/530,97	G 220 025 US	Ordail	36	D.	Saile figiki
	WASW06		77657732	9.178.212.69	Untols	99	D-	SIMILITIES
	MASVAGY	1	236137,00	4 CT0 395 PH	Onta5	395	TI.	Spelurigasia
	SV4000	Christiano y de Franç	778 482 91	9/228/663/7D	QniaS	338	D	Stally hybri
	MASWV69	Cimentauri de Prese	778 434,26	9 225 197 20	Ditte -	360	D	Sixty repos
	MASWITTE	Constain #Prese	778'807-22	9,000,611,51	Onles	585	_ B	Suito 1978
	MUSWITHJI	// Hischenkerto	777 134,00	9.127198.00	drdas	885	E	Summupdings Into English
	MASWATST-21	Atummento	T21 112/43	0.2271/90,01	unias	5,00		Summitteen (nower
	MASWITTEDS	Extractación de Fresz	778.854,09	9 day 900 (5)	UMps	1.00	D	3000 (lydd
	MASW/TSF-02A	Cimeléspers de Prese	716 767/30	9 227 059:00	(7n))) S.	287	D.	Stole dgas.
	NUSWTSF24	Creatistics at Press	778,440,26	14/226/971/50	Gretu's	354	D	Sulverine
	MASUATIFAN	Cambrito de ratimas	T7 (r 528.119	9.227 104/59	=titte=	011	D-	SM#(193.0)
	MASYM ISPAIGA	Deposto de relaves	756 200,23	TOWN TEERS	Cinda 5	254	17	Seeko riyoko
	(M9899/1/06-14		176,750,39	0.227 1/3,72	Ondas	W11	-,43;	DO UN STALES
	MASWITSF-01		175764/04	9.227.709,25	Gridás.	102	D	Guille (fig 6)
51-	MARW FIRE 26	L	775 8411,14	422/07/81	Unio S.	281	_ E	Suite () jede
	MINSONTSE-IND	Cicipcodo do renerva	139,207,63	0.027 687 33	Critis	390		THE REPORT OF THE PARTY OF THE
	MASWATST-RE	Christiacuri le Presa	17581428	9/22/04/8 (1	Dates	527	D.	Settingon
	MASSY (SF-05%	Christidaeur de Press	1/5/997/75	9,228 WS T1	onda3	187	D	State of the
	WASWETSEL1	Deputation de referens	779 197,20	9.227.924.98	Otdas	307	-:12:	Suelo rigido.
	NUSSUTEFILE	Demotrace: 0xForm	778 104/12	0.328 705:38	Great St.	349	12	Sulprigite
	MISSWITSE: HA		T75361/98	9.02744138	Ontos	110	D	Susto rigido
	MASWEST-15	I	775 699,44	1.0000000000000000000000000000000000000	Gnda5:	30	D	Solvingion
	NOSWITSF-16		75758,42	9227 61024	Ondes	36	D.	Suito (Igios
	MASAMESE-19A		775 900,76	\$ 227 123.90	Onto S	5/27	D.	Euch rigido
	MASWATSFIELD	Cimantado do Prese	775 (49.15	# 128 V9 / \$5	Umiù≥	491	D.	Said (1974)
	MASW/YSS-14B		715/878/20	0.02744400	5,000.5	760	17.	Sunt Origida.
	MASWEST-ITA	1	775 M(7,21	11-721-70A00	(Intes)	10751	Ti Ti	Bright White
	MISWT3F-18		7/5 800,04	9.3271/3.69	Sagne	165	- L -	Euclio rigi do
	NUSWITSF-04		777.072,14	902740880	Onlas	284	p-	Suplanyida
	MASSACTSF-01		77659553	9 228907130	ØrdaS	276	i bx	Built (tack
	MASWAT8F-10		776.687.73	9.227.021.27	DMIES	100	- 13-	Su#0 (91.00
	AMANATST-TI	Cimentarium de Prese	716 755 94	4 176 T 1 1	Onda.5	351	IX.	Seek 03:30
	MIRSW/185-24A	Constitución de Fresia	T16 E3V (42	0.376875391	omas	257	TX.	Euclu rgy do
	WASWLAE-SE	Simmillackin do Fresa.	770.595,00	9.225 655/00	98463	397	D	Suite (19 de
	AMOUNTSFIRM	Dross Agoni da	776931301	0.0294550	United	240	- D -	Santungulo

Tabla 7.3 Ubicación de líneas de refracción sismica y MASW - TSF

					-	Coorden	adas UTM	
Gog do grance	Zena	Unkaden	tipo de omta	Longitud	Das	rdn	Har	riti.
Sagar Cruesco	CONT.	Giocardan.	Open service	044	Hecto. (m)	Esta (m)	Nurte (m)	Esto
			Liveau de pube	mides Sammon				
kS-08		pink.	Vp	48	9228043,88	T78544,93	9028001.60	776519,5
LS-09			Vp	94	8229046.85	776872,18	9228110.10	716517,
LSAID		UE 5	Vp	84	9228172,00	776635,00	9228211.00	776611.6
LS-11		T 7	Vp.	84	9228234.00	776617,00	10228217 03	770535,0
LS-12			Vp	84	9226236,00	778179,00	1/228250.00	776081,
LS-13		E	Vp	84	8228204,00	776066,00	9228178,00	776163,
L3-14		Cimentación de prese	- Vp	216	9227159,32	777141:28	9227039.30	778990
LS-15		Cimentación de press	Vp.	56	8227022.28	776977.22	10/2766270	776951,
LS-16		Cimentación de presa	Vp.	60	9226992,42	776938.10	9226867,90	776984.
LS-17		Cimenteción de presa	- Np	38	9226060,72	775673,08	9216931,50	778842
LS-18		Cimentación de presa	Vp.	80	9276941 RZ	778938,25	9226925 to	778770
LS/18		Cimientación de presa	Vp.	36	9226812.41	776785,40	9226910.93	776759.
LS-20		Comentación de piesa	Vþ.	120	9226861.13	776629,28	9226917,90	776518;
15-21		Cimentación de pensa	Vp.	120	9276929.43	77/8545 18	000ell62:50	776430
LS-22		Cimentación de presa	Vp .	- 60	9236843.66	7/6440,06	9226900:20	778460
D18F-02		Comentación de piesa	- Ap	100	9225884,28	775637.16	9226955-40	776000.
I-TSF-02A		Cimentación de presa	Vp.	54	9276951.00	776002.98	9226969 10	7760.40
L 1SF-03	TSF	Depósito de releves	Vb .	1/00	9227702.34	978173,37	9227693.50	176271.
L1SF-014		Depósito de refeves:	Vp	100	9227668 92	776314,92	9227623,00	775401
1-TSF-068			Vp	100	9276053 20	776173.97	9229052.50	776273
L-137-00C		1 1	Vp.	100	9228009.64	776286,88	9227865-00	178385
LISE GEA		IF 5	Vp	100	922802670	T35092.21	9228923.20	775124
L-TSE-000		1 1	Vp -	100	9227985 GS	776385.11	9227954:90	779477
L-TSF-BGE		11 1	Vp .	100	922/864.87	7/6477.18	9227920.70	776570.
L-TSF-07		T	VP.	100	9227631.37	776701,09	9227770 80	776780,
L-TSF-05		Cimemación de presa	Vp.	797	9226554.66	77697#.R5	9227223-90	779884
L-TSH-05A		Deposito de referes.	Vp .	100	9227223.28	7/6601.05	9227299.90	178700.
L-TSF-04A1		Cimentación de presa	Vþ	100	9226911 10	775485,12	9227006.70	776453
L-TSF-0442		Deposito de reseven	Vþ	77	9226972.29	77844212	9227056.00	778502
L-18F-01			Vp.	100	9227402,47	775713/86	a227858.20	775696,
L-TSF-C1A		T	Vþ	100	9227381.03	776785,62	9227463 50	775710,
L-TSF-04A5		Depósito de relaves.	Vp	54	9227078,78	778623.15	9227131.40	779534
DYSF-GIA4		Depósito de relaves.	Vp.	100	9227170.30	776513,09	9227284.30	776542.
L 18F-04A5		Depósito de relaves	Vp	100	9227263.06	775643,26	9227344,90	776596.
L-TSF-12		Cimentación de presa	Vþ	100	922686T.48	778723,67	9226860,30	776932,

Tabla 7.3 Ubicación de líneas de refracción sismica y MASW -

				January 1	Coordenadas UTM Dosdo Hasta				
Cogrido protessis	Zena	Unicacjóm	Tipo de costa	Longitud	Home.	Esta	Norte	Esti	
					(m)	(PH)	[10]	(ref	
- 50			IL MAS	SW					
MASW401		-	Vs.	Centro	92280	163,90	7781	81,36	
MASWWQ2		1	Vs	Centro	92290	61,26	7762	64.70	
MASW403		T i	VE.	Centro	92278	90,11	7763	84,27	
MASW-04			Vs.	Centro	82279	40,79	7789	19,87	
MASW-05		J .	Vs	Centro	92280	123,15	7766	30.97	
MASWOB		1 .	Vie	Cwritte	92292	23,84	7766	77,32	
MASW-07			Vs.	Centro	92292	146,96	7791	97,58	
MASW 08		Cimentagión de presa	Vs	Centro	92288	153,7b	7764	60.41	
MASW-00		Commissión de prese	-Va	Cunito	92207	97.20	7764	34.26	
MASW10		Cimentación de prora-	NA.	Centre	92288	31,51	7783	97,22	
MASW TSF 25		Afforemento	Var	Centro	92271	98.00	7771	24.00	
MASW-TSF-27		Aforemento	Vis	Cupito	82270	199,99	7771	73,43	
MASSWITSF-03		Cimerhidien de prora	Mg.	Centro	92269	00,52	7788	54.90	
MASWITSF 03A		Cimentanión de prosa	Ve	Centro	92270	59,00	7787	87.00	
MASW-TSF-24		Cirrientus àyı du presu	Va	Cuttro	92268	71,50	7764	49.26	
MASSV-TSF-09		Depósis de releves	Ve	Centra	92271	04,64	7765	28.30	
MASW ISF 08A		Deposto de relevos	Ve	Centro	92271	08,57	7783	57 23	
MASSW-TSF-14			3/h	Centro	82274	73.72	7767	86.30	
MASOV-TSF-01	TSF		VE.	Centra	92277	09,25	7757	98.04	
MASKUTSF-20			Ve.	Centro	92276	17,07	7756	93.17	
MASW-TSF-01A		Deposito de relayes	V4.	Centre	92270	87,45	7182	51,63	
MASW-TSF-08		Cimenteción de presa	Ø€.	Centro	92268	11,811	7758	17.23	
MASW/TSF-08A		Cimentación de presa	Ve-	Centro	92266	05.7T	7759	67.75	
MASW-TSF-11		Deposto de relaves	Vs.	Centre	92275	34,96	7761	67.28	
MASW-TSF-13		Cimellesión de crese	96	Certito	92267	08,39	7761	03.67	
MASWITSF-14A			VE	Centro	92274	111,98	7759	61.98	
MASNUTSF-10			Vs	Centre	92276	11,61	7756	88,44	
MASW-TSF-16			Vic	Cerdro	92276	119,24	7757	58.42	
MASW-TSF-TBA			Vs.	Gentro	92271	23,96	7756	09,76	
MARW-TAF 23		Camenteción de prese	Vs	Centro	92258	197,26	7780	48,15	
MASW-TSF-14B			950	Gentro	92274	14,59	7756	75.76	
MASW-TSF-17A		1	Vs	Centro	92272	183,82	7758	47.21	
MASW TSF-18		1 1	Vs	Centre	9227	75;49	7756	89.94	
MASW-TSF-04		1 1	99	Centro	92274	88,80	7770	72:14	
MASW-TSF-07		1	Ve	Centro	92280	71,30	7765	95,53	
MASW-TSF-10		1	Vs	Centre	92279	(21,57	7788	37.73	
MASW-TSF-12		Cimentesión de presu	Vs	Centro	92267	29.81	7797	65,94	
MASWEST 244		-Cimentinator de preza	Ve.	Centro	92268	25,91	7765	39,03	
MASW TSF 28		Cimentodón de gresa	Vs	Centre	92269	65,00	7789	95,00	
MASW-TSF-25A		Prese Aguas Abajo	Us	Centro	92264	90,68	7769	00,00	

Johns

Among transport

TP-TSF-38

DESCRIPCION DE CALICATAS

Calicata

FECHA: 04-jul-17

PROYECTO:

PROYECTO No. :

UBICACIÓN :

Norte :

Este :

Elevación (msnm):

Dimensión (mom)

3.0 x 3.0 x 5.0

Ingeniero / Técnico :

Equipo:

Entavadora CAT 320 D

Condiciones del agua:

No se observa nivel de agua.

Condición de Superficie: Sobre plataforma, adyacente a via.

Información Adicional:

Muestra No.	DESCRIPCIÓN DEL MATERIAL	COLOR	CONSISTENCIA 'O DENSIDAD ²	PLASTICIDAD (np. b. m. a)		YO IN SITU O BORATORIO ³
		o swoo,		PLAS (np.	CONT. AGUA	OTROS ENSAYOS
	O DO - 1,20 m. Grava limosa (SM) con limos, sinco a ligeramente humdeo (5 % aprovin adamente), con presencia de gravas subangulares, TM=3*. Gravas=50% Arenas=20% Pinos=30% Presencia de bolonería con partirulas angulosas de TM=12*. 18. Bolonería = 5%.	Beige:	Compacto	Np a traja		
	1.20 - 2.40 m. Lente de grava árollosa (GC), con humedad media (20 9. aproximadamente), color gris, firme.	Ġris	me	Media a alla		
84-01	2:40 - 5:00 m. Grava archiosa (GC), seco a ligeramente húmedo (8 % aproximadamente), las gradas lienen porticulas angulares y materogeness, TM=3", Gravas=70% Archaso14% Fines=10%. Procencia de bolonería con particulas angulosas de TM=12" y Bloques de TM=25", % Bolonería = 15% % %Bloques = 10%.	Beige	Compacto	Ata	6.2	Gs Pinos = 2,72 Bs gruesos = 2,648

The analysis of the property of a contract of the contract of

LABORATORIO DE MECANICA DE SUELOS

Manual de Aseguramiento de Calidad de Procedimientos de Ensayo.

Registre de Caridad del Laboratorio

ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU). (ASTM D4787-00)

Proyecto : Solicitania :

Utilicación : Fecha 128 11 2017 Nº Solicitus : LGGA-17-00117 Nº Informe

1 F2184

Nº Proyecto

* 1094151552

Sondaje Mesestra BHITSF-DH M-SW-BM-7M-B

Prof. (m)

1.21.00 - 35.50

Clasificación SUCS:

SC

Observaciones: Muestra remoideada al 94% de la MDS corregida 1,742 g/cm3 y 6.0% de hanieded, por el lameño menor de 3,4 del Proctor Ensender (MDS corregida 1,853 g/cm3, DCH corregido 15,1%). Enseyo realizado de acuerdo a indicacionam del ciente. Los parámetros de sessata cas contante reportados podrám ser reinterpretados por un profesional compotento en quotacnia. Los parámetros finamente adoptados en los diseños groterondos sema de responsabilidad del diseñacio.

ESPECIMEN 1

Parametro III 250

				7.577.7
FTAPA	DIF	COL	MECH	IDACIÓN.
PERSON 42	-	3000	ASSESSED BY	THE RESERVED

Presión de Celdia 842 kPa Estuerdo Efentivo Inicial (Ps) 286 kPa					Contrapresión: 544 #Pa					
150	Altare (cm)	Diámetru (tzn)	Area (cm²)	(%)	Denisded Seca	Refeción de Vacios	Saturación (%)	C Especifica Promedio		
NICIAL	20.32	10.16	81.07	9.0	1.742	0.582	29.1	2.790		
LIDIAL	19.86	9.92	77.31	16.7	1.889	0.458	90.0			

Note: La élixit y démetro hipoles son medidos, totas las demás pliniers cons con calculadas

ETAPA DE CORTE

tarán de Deta	rmadidn (%/mir	W:	0.111		Esfuerzo Frincipal en la Falta (kPa)				
etormación A	ciel en la Falia	(%):	12.0		Ø,	(7)*	O.	07	
riterios de Fa			Estueza Dosy, Maximo		640	448	29H	107	
lota: Se aprica	ran correction	ве раглетел	ene		V				
Deforeración	Fel Desk.	P. Perus	ti,	U,	1),	4	d,b.	Ottlemitud	
1566	(KPa)	(kFa).	(RPb)	(kPa)	(Ha)	(aPp)		[G/m]	
0.00	1.87	0,00	290,11	296,90	289,06	0.83	0.00	1001	
10.05	1926	4.12	290090	:337.27	300/63	6.64	0.02	1.05	
0.10	36.22	30.01	287.00	370.22	309,61	15.61	0.05	1.82	
(1.260	90/57	44.91	269/20	343.86	208.53	45.33	4/15	1.98	
0.37	122.85	70.08	222.98	345.03	263.59	B1.48	0.22	1.55	
0.51	158.51	118.04	981.A7	340,99	281,27	79.76	0.31	1:86	
10,74	182.00	142.19	155.85	337.93	246.53	91.00	0.37	2.17	
1.00	15866	169,62	139.40	330 39	238,44	107.95	10.42	7.44	
1.23	210.70	109.94	[28,17	338.50	233,52	105,36	0.45	3.69	
1.94	223.13	170.37	110.75	341.80	230.51	911.57	0.48	2.85	
1/34	220.55	183,31	114,01	344.35	229,00	114.77	0.00	3.00	
2,05	236,07	187.66	110.26	348.33	729:78	11601	0.57	3.10	
2.66	249.06	194.95	100,16	353.02	228,00	124,93	0.55	3.42	
3.01	259.81	197.70	100.35	380.19	230.27	129,62	0.56	3.50	
2.49	.268.95	199,01	D0 (D	266,40	232.56	133.45	0.07	8.68	
4.00	275.30	199,84	18 (10	373.40	235,60	197.00	88,0	3,80	
4.51	282.75	200.14	07/07	380.76	259,36	141,50	0.8%	3.89	
9.07	289 H2	199.90	48.22	387,84	247,03	164.81	0.80	939	
18-1-5	302.4F	199.46	58,66	409.12	249.60	191,53	0.87	4.07	
8.07	310.35	198.52	189.60	409,90	254.77	155,18	0.63	A.12	
T.04	318,55	10716	101,04	419.50	200,31	189.27	0.61	4.10	
6.07	329.85	153.67	104,45	931/33	787.69	103.64	0.61	at tol	
₹.96	333.00	154.13	103,98	435.94	270.48	(86.50)	0.85	# 20	
178-014	34331	(90.89	407.18	450.44	278.78	(71.66	D.02	4.30	
14.04	.050.55	188.18	FEET 592	459.48	284,20	175.28	Diffe	4.22	
10.14	355.80	184,35	113.70	459.30.	94.1.85	177.80	0.01	4.13	
17/83	359.17	186.64	112.48	47034	757.00	179.58	0.61	8 19	
20.23	385.86	168.07	114.24	d76.19	205.21	(95.97	0.81	0.17	

LABORATORIO DE MECÁNICA DE SUELOS

Marcal de Aseguramiento de Calidad de Procedimientos de Ensayo

Registro de Calidad del Laboratorio

Rev. A

ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU) (ASTM D4767-00)

Proyecto Selicitanse Ubicación

Fecha : 28 (1,20) / N° Solemu | (30A-17-00) ()

Mª Informe

12104

M' Proyecta Sondajn

1694151662 BH-TSF-01

Muestra Prof. (m) M-5/M-8/M-7/M-8 21.40 - 35.50

Classificación SUCS:

200

UL-36

Esfuerzo Principal en la Palla (kPa)

LP: 19

D 10

Observaciones. Muestra remoldesca al 34% de la MDS corregion 1,742 g/cm3 y 6.0% de trumectad, por el timaño manor de 3/4" (sel Prodov Estandar IMDS corregion 1,953 g/cm3, OCH corregion 13.1%). Emayo realizado de acuerdo a indicaciones del cleate. Los parámetros de asistencia cortante reportantes podifan ser reinterpretados por un profesional competente en gastecnia. Los parámetros finalmentes direintentes acuerdos en los diseños gentáciones se án de responsabilidad de diseñado;

ESPECIMEN 2

Parametro 6: 0.99

Razon de Deformación (%Iran):

ETABA	PVE:	COL	Magain.	IDACIÓN	
EINER	-	COL	WOULL	ILLEVAL INCH	

Presion de C		1008 iiPa		Comrepresión: 411 kPa					
ESTUDIZO ETA	etryo fricial (es)	598 (Pa							
	Aitura (cm)	Diametro (cay)	Area (cm²)	hunedad (%)	Densided Serai (g/tm²).	Resource de Vacios	Saturación	G. Especifica Promedio	
INICIAL	20.32	10,18	81.07	6.0	1.742	0.561	20.1	2.720	
FINAL	19.68	9.62	75.76	16.1	1,925	0.413	09.6		

Note: La ationa y diámetro mutales son medidos, vulhs las genás dimensiones son calculadas

H +11

ETAPA DE CORTE

Deformación A	xial en la Falla	(%)	12.0		U ₁	o/	σ,	σ,
Interios de Fel	l/c		Esfecto Dece	Masone	1263	217	680	251
Vota: Se aplica	mn correccion	iss por mambo	ina	-				
Determación	Ett. Utte/	P. Poece	n,	67	p'	9.	200	Othoudait
(%)	(\$29)	(kPW)	(kPa)	(kPzi)	0.P10	(KPA)		(e:3/t/)
0,00	2.95	9.00	507.67	850.52	559.74	-6.29	C10	102
0.05	56.06	A.BE	599.01	B48.95	620.63	28.02	(0.00)	3.534
25.107	00.14	12,78	584.79	E89/93	834.38	140/27	0.08	1.17
28.00	177.20	44.24	568.82	220.68	841.95	38.62	0.14	1.32
8.95	233.19	80,02	517,48	256.87	834.00	03.893	0.10	1:45
0.49	304,61	112:62	484.75	HE 985	837.05	152.30	0.28	163
0.75	374.00	155.60	441.8T	817.88	629.86	187.99	0.30	1.85
17,04	423.90	190.62	400.00	H84.54	0.137.885	20105	0.30	2.08
1.25	451.69	225-98	377.58	825:47	790.42	225 B#	0.38	25.22
7,585	483,50	3002,94	234.63	018:12	589,40	241.77	0.42	2.40
1.70	493.34	261, la	315.30	813.73	96w.56	240.17	Date	8.58
2.07	517,43	303.44	294.17	B) 1.58	552.85	258 70	(34)	276
2,49	533,09	1323.06	273.97	H12300	543.34	269.35	0.50	2.97
3,00	505.34	337.97	239.60	817.94	520.77	27B 17	0.69	3.01
3,52	574,29	385.23	251,34	3325/63	530,46	207 5	0.63	3.00
4.04	568,30	351,82	248.74	834-06	539.01	294.15	2.54	5.00
4,00	599.91	354.86	242.71	B42.03	542.37	999.66	0.66	2.67
4.07	500,54	356,84	210.72	849.27	845.00	204.27	0.56	9.75
5.00	622.46	387.36	240.27	882.69	351,45	311.24	0.66	9.09
4.90	635.18	395,75	240.81	876,00	0.00,41	917.00	0.57	3.64
0.02	644.26	367.68	239.89	884.16	562,62	372.13	10.57	3.60
18.00	161.57	365.00	242.46	894 (3	588.26	325 78	0.87	3.62
101588	887.79	361,52	246.05	503.83	674394	328.69	10.67	8.67
12.79	807 (0	345.23	252.33	919.52	RED IG3	323 69	0.57	3.04
13.56	673.40	347, 23	255 34	625 KI	501,08	335.75	10.57	3.83
(6.03)	674,91	339.00	258,57	632.88	505.73	357.76	0.57	3.61
78:5W	975.54	497.07	289.40	D36 19	509.26	337.77	0.56	3.59
DIST	602.40	337,10	250.39	922.87	080 (60	331,24	0.06	3,54

LABORATORIO DE MECÂNICA DE SUELOS

Manuel de Aseguramiento de Calidad de Procedimientos de Ensayo

Registro de Cálidad del Laboratorio

Zou. W.

ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU) (ASTM 04767-00)

Proyecto Solicitante

Ubloación : Facha | 28 ft 2017 Nº Solicitus : LGGA-17-00117. Nº Informe

F2164 - 1694181552

Nº Proyecto Sondaje

1694181862 BH-TBE-01 M-5/M-6/M-7/M-8

Muestra Prof. (m) M-5/M-6/M-7/M-: 21,48 - 35,50

Classificación SUCS:

62

1537 kPa 1200 i Pa

Diametru

(cni)

10.18 9.75 LL=30

UP: 48

25. 40

Observaciones: Muestre remoideada al 94% de la MDS corregida: 1.742 gion3 y 6.0% de númedad, por el tamaño menor de 3/4" del Proctor Estander (MDS corregida 1.653 gion3, OCH corregida 13.1%). Energyo realizada de acuerdo a indicatorne del piente. Los parámetros de mesascos e estante reportados podrían per reinterpretadas por un profesional competens en geófecido. Los parámetros finamiente adoptados en los diseños geofecinos aeren de responsabilidad del diseñador.

ESPECIMEN 3

Parliment B 0.98

Presión de Ceign Esfuerdo Efectivo Inicial (eg)

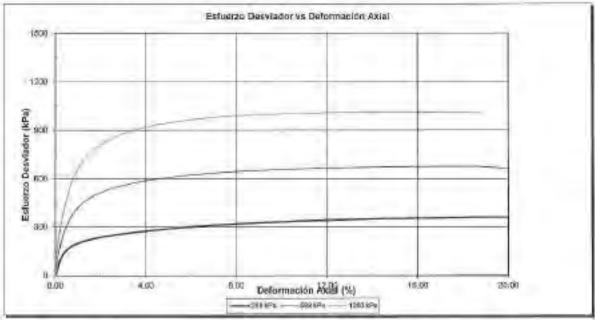
NICIAL

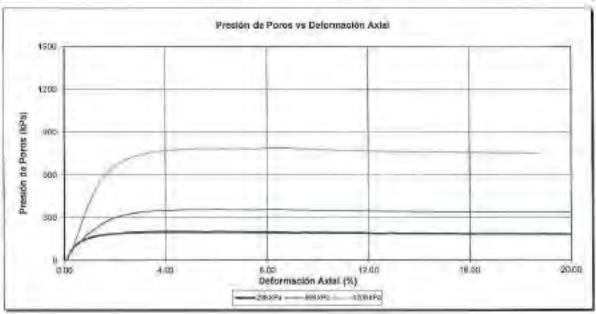
FINAL

Abura

(on)

20.32 19,54

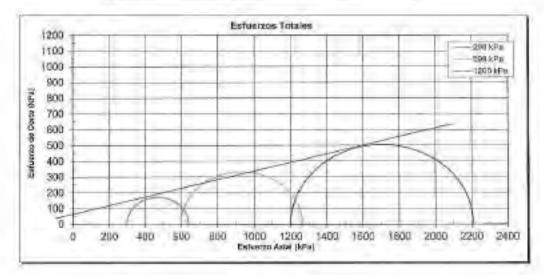

ETAPA DE CONSOLIDACION											
		Contrapresión: 3	37 KPs								
Area (cm²)	Humedad (%)	Densidad Secal (g/om²)	reservor de Vectos	Saluración (%)	G Especifica Promedio						
81.07	6.0	1.742	0.582	24.1	2.720						
74.58	16.0	1.969	0.382	36.6							

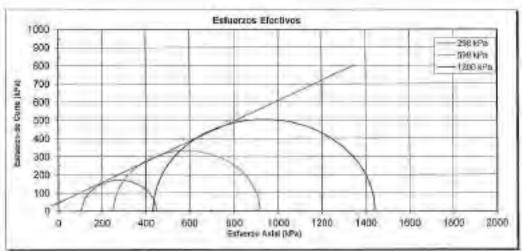

Nota: La altura y drámetro iniciates son medidos, ordas ses demas dimensiones son calculadas;

				ETAPA DE	CORTE			
Razon de Deto	revación (SiAmir	1).	010		Est. kerzo Priocina	en la Palla (kPa	i)	/
Detormation A	stal en la Falla	(%)	12.0		σ,	o/	O ₂	OV.
Criterios du Fel	ta	-	Estimenzo-Desvi	Médino	2209	1442	1200	452
Note: Se epilica	ron porrepoiens	es por membre	ine.	7				
Deformación	Est. Desv.	P. Horas	0,1	10.7	0	4	0/9	Delhuidat
(%)	(894)	(SPN)	(49%)	HEM.	18996	(kPa)		(6)/45/
0.00	335	9.00	1200.00	1903.84	1901.71	7/82	0.00	1.00
0.05	113:10	5.20	1194.89	730E.08	1251.48	58.80	80,0	1,765
0.10	180,000	14,46	118E-64	1565.70	1275.67	60.00	0.07	1.16
0.21	279.17	43,87.	1118.81	1495.68	1295.93	139.50	11 m	684
0.34	359.32	.04:34	1118.95	1475.27	1296.01	179.00	214	0.82
u.au	4703.07	189.45	1030.64	1500.71	1285.68	235.04	0.19	1.46
U.76	588:10	801.52	803.57	/48E.66	1192.81	204 65	0.26	1.02
1,700	600.84	#10E32	781.70	1448.00	0.730.78	939.42	0,30	1.00
1.25	718.52	501.22	693.67	184539	1957.13	356.26	6.35	2,03
1,57	763.82	364,25	615,63	(079.85	997.74	361.91	85.98	2.24
1777	787.16	625,98	594.51	1561.60	988.10	380.58	10.41	5.37
2.09	817:11	671.07	529,02	1346.14	987.58	406.58	0.44	2.54
2.0)	460.00	712.10	407.33	1338.63	913.23	425.00	0.47	2.74
0.03	679.29	T42.00	937.48	28MT 42	886.70	439.65	73.4611	2.82
0.00	\$02,42	700,00	439.50	1541.91	990.71	401,21	0,01	5.05
4.07	622.13	772.63	427.10	1349.29	568.23	461:00	0.63	9,16
4.00	905.76	777.14	H22 94	1358.70	890.82	467.58	0,64	3.21
6,01	945.83	793.29	416.B2	1362.65	889.74	472.62	0.52	3.27
0.00	985.45	185.89	414-20	1978.05	886.93	482.72	0.68	3.37
7/04	100.46	70.5,84	#14.35	1504.71	304.46	490.20	0.54	9.07
6.08	000.23	780.46	¥10.63	1400.86	905.75	405,11	0.55	3.41
9.12	1005,22	786.77	418.91	1409.63	915,42	698.11	0.66	3.41
10.18	1002.33	277.91	422.18	1424.51	923.34	501.16	0.54	3.37
40.04	1004.80	172.01	65T B7	1 kmg 70	900.29	8024	6.64	8.35
12.37	1010,40	766.27	433.62	3444.32	909.02	105.20	0.86	3,38
14 08	1012.01	760.75	44b039	1451:52	04E 32	506.01	0.64	8.30
10.10	1001,07	796.85	643.24	1455.21	349,22	505 00	0.00	3.28
18.70	WX9,42	707.11	647.99	1457.40	802.09	504.71	0.00	3,25

LABORATORIO DE MECANICA DE SUELOS Manuar de Aseguramiento de Calidad de Procedimientos de Ensayo Frey, 4 Registro de Calidad del Laboratorio ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU) (ASTM D4767-00) 1 F2184 1 1884151552 Proyecto Solicitante Nº Informe Nº Proyecto BH-TSF-01 M-5/M-6/M-7/M-6 Ubicación Sondaje 28.11.2017 Fecha ; 28.11.2017 Nº Solicatud : LGGA-17-00117 Muestra 21.40 - 35.50 Prof. (m)

Clasificación SUCS: SC III: 85 LP: 19 IP: 19
Observaciones: Muestra remoideada al 64% de la MDS corregida: 1.742 giorn3 y 6.0% de humedad, por el tamaño menor de 3/4º del Proctor Estandar (MDS corregida 1,863 giorn3, OCH corregido 13.1%), Ensayo realizado de acuerdo a indicaciones del cliente. Los parámetros de resistencia corrante reportados podrían ser reinterpretados por un profesional competente en geotecnia.
Los parámetros finamentos adoptados en los diseños geotácnicos serán de responsabilidad del diseñador.

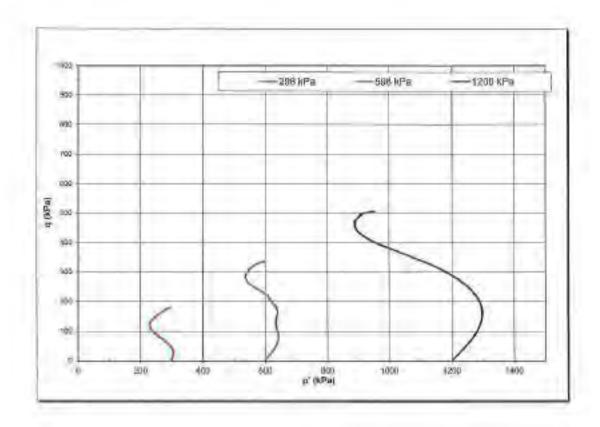

LABORATORIO DE MECÂNICA DE SUELOS. Manual de Aseguramiento de Calidad de Procedimientos de Ensayo Huy, 4 Registro de Calidad del Laboratorio ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU) (ASTM D4767-00) Proyecto Nº Informe F2164 1894181552 BH-TSF-01 Solicitante : Nº Proyecto Uhicación : Bondale Fecha ; 28.11.2017 Nº Solicitur : 1/3GA-17-00117 :28.11.2017 M-DAM-BAM-YMM Muestra 1 21 40 - 35 50 Prof. (m)


Clasificación SUCS: SC LL: 35 LP, 16 IP- 18

Observaciones. Muestra rereddesda al 94% de la VIOS corregica: 1,742 grand y 8.0% de humeded, por al tamaño manor de 345 del Proctor Estanciar (VIOS corregica: 1,653 grand, OCN corregido 13.1%). Ensayo realizado de acuerdo a indicaciones del cier de Los parámetros da resistencia contante reportados podrías sar reinterpristados por un profesional competitante un geotradas. Los parametros finalmente adoptados en los diseños geotécnicos serán de resconsatricidad del diversión.

CIRCULOS DE ESFUERZOS DE MOHR

MAINIMANA.	PARAMETROS	S DE RESISTENCIA
ESFEERZO -	COHESIÓN (kPa)	ANG. DE FRICCION (*
TOTAL	64	15
EFECTIVO	38	30


Empysdo Port Y.M.

Revisado y Aprobedo Pari J.C.

LABORATORIO DE MECÁNICA DE SUELOS Maruilli de Aseguramiento de Calidad de Procedimientos de Ensayo Registro de Calidad del Laboratorio ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU): (ASTIR D4767-00) Proyecto : Solicitante : 60 ToTornia F2184 Nº Proyecto 1694161552 Ubicación ; Facha 128 11.2017 Nº Solicitic : LGGA-17-00117 Bondaje BH-TSF-BT M 6M-BM-7M-E Muestra 21.40 - 35.50 Prof. (m)

Casificeusón SUCS; 8C LL 35 LP: 19 IP: 18
Observaciones: Muestra remoldestra al 94% de la MDS corregida: 1,742 g/dm3 y 9.0% de humedad, por el tamaño menor de 3,4° del Proctor Estandar (MDS corregida 1,853 g/cm3, OCH corregida 13,1%), Ensayo realizado de acuterdo a indicaciones del ciente. Los parámetros de resistencia contante reportados podrían sar reinterprolados por un profesional competante an gazdecida.
Los carámetros fundamente adoptados en los diseños geotécnicos serán de responsabilidad del diseñador.

Diagrama p' q

Rev. 4 N° de Informe N° de Proyecto ENSAYO DE COMPRESION TRIAXIAL CONSOLIDADO NO DRENADO (CU) LABORATORIO DE MECANICA DE SUELOS (ASTM D4767-00) Manual de Aseguramiento de Calidad de Procedimientos de Ensayo Registro de Calidad del Laboratorio Proyecto

PANEL FOTOGRAFICO

Esfuerzo Efectivo inicial **ESPECIMEN 2** 598 KPa

Esfuerzo Efectivo Inicial

298 KPs

ESPECIMEN 1

1LGGA-17-00117 :28.11.2017

Nº Solicitud

Fecha

Solicitante Ubicación

Esfuerzo Efectivo Inicial **ESPECIMEN 3** 1200 kPa

: M-5/M-6/M-7/M-8

: 1694151552 : BH-TSF-01 :21.40 - 35.50

Profundidad (m)

Sondaje Muestra

10JA 1 DE 10 DATUM WGS-84

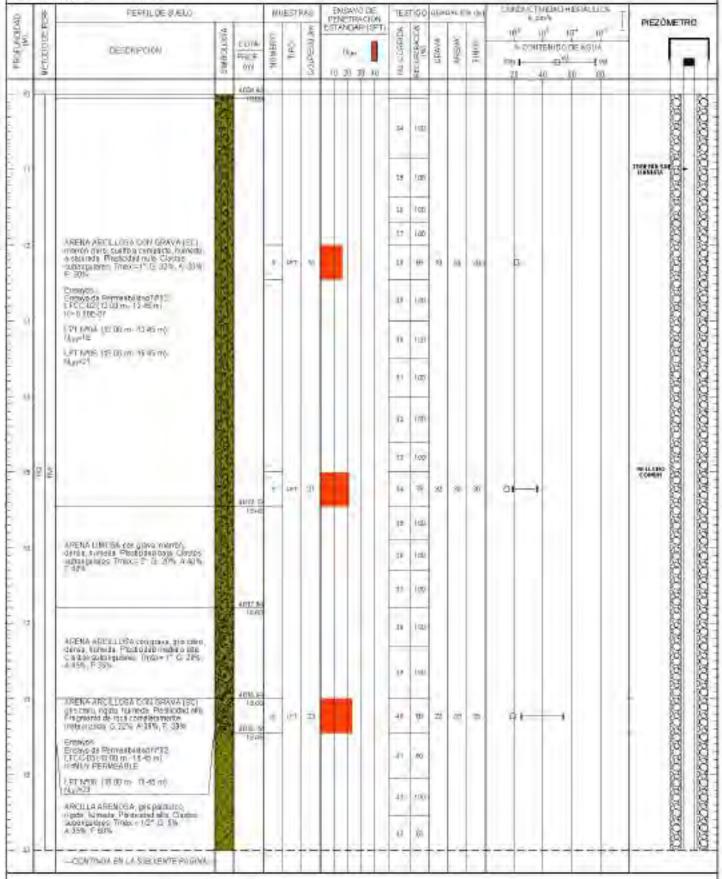
PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMSJTH 1

FECHA DE FERFORACIÓN: Del 27 el de Acosto el 01 de Setembre, 2017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-3001

ı	ž.	PERFILOE WALLO			80.	EST	-	0.53	NETR	ACTON.	TES	TIGO	Q.Ess	dac iii	n ded	200	A STANDARDHERACHES	PIEZÓMETRI
	WETGEROOF.	DESCRIPCION	SWBOLISTA	E LUTA Drie & Ord	MOMBROS	1000	SOLD SHARM		(figer	F-(SFT)	ACIONAL STORES	SEC LINES BACKER	CDWW	WESW	31400	10 ¹ 100 1	ознавноске калу	
1	T			400a k				H	İ		i.	100				Ħ		100
l			h								2	1/2			П			8.02.0
1		GRAW WAL GRADADA THITTED FORMIN									i	100			П			THE PARTY OF THE P
l		Shown nam, saeth, secan himach Parlined talo Casto harmachin Three ST (\$50%, & 40%, E-10%)									я	100			П			2000
l											5	(100)						
				All the last							ū.	1100						G
Ì			400	970	(ù+	09				7	60	10.	10	13/	23		2000
l									ī		90	(40)	J					
1		SPANA MALI SPAZICIA CON LINO V APENA GIPTONIA DINTO CON LINO V									1	lim						222
		Nameda Clastor subsequiera Trancat LOT G 528, A 378, E 118 Erroryon	F								0	166						90,00
	2.5	Ecoso de Pormaté do 0/11 LFC - LF (LGLm - LAS m) 10 M/LV FERVICA DLE LPT NO (LGLm - LAS m)									12	(op						CONTRACTOR OF THE PERSON NAMED IN COLUMN 1
١		(PERMIT BILLIA BASA)									11	(00)						5050
١					9	ei ei	9		۱		G	20	- 002	900	÷	0		28.83
l							ſ				ń	(00)						2030
ı				Unitr's:								int						2000
l		DRAYS MAL OFFICIAL FILL STATE CONTROL								Н	Đ	110						100
l	١.		ļ,	4000.00				Ш			18	000						ESCEN
		APENA MAL CRACIADA con little y grave gradi scrediasts, suats highests factuated tops C backs subsequence Tree not G. 416, A 479, 636.									0	100						
		SRAVA BEN GRUDADA (DW), waroo oloos carre hunda Phinticial Injury Chizocalda (international Timbo Chizocalda (in Injury)	1028	4(0) H	á	lei	1				37	800	ia	11	1	0		
		± 14%, ₹ 2% Ensekte ±₹717/02 (200 yr. (1 ≤5)))					ĺ	•			11	(0)						03.750


HOUR 2 DE 10 DATUM WGS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -901

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 27 el de Agosto el 07 de Setembre, 2017 CONTRATISTA DE PERFORACION: EQUIPO DE PERFORACIÓN: CS-3001

10JA 3 DE 10 DATUM WOS-84

PROYECTO:

UBICACION INCLINACIÓN: -901

AZIMUTH 1

FECHA DE PERFORACION. Del 27 el de Agosto el 01 de Setembre, 7017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-3001

1	6	PERFIL DE Ø JELO	-		BU	IEST)	-	UE	NETR	ACTON FRISPTI	- 10	rigo	Q.Eave	DAC E	0.00	200		to A	HEGA	LILLS	PIEZÓMETR
	9éticinos	DESCRIPCION	Alaci, Chies	EUTA PRES (m)	WINEFFO	DRO	COPERISM		(ija	70.10	ADDROS MA	PET LINE BACION	CDMM	WESW	31400	ing	998 1-	40 40	ALL OTHERS	TON 80	Ţ,
,				imax				Ĭ	Ĭ												
1			J.	70.00				П			43	60.									200000
ı	П	ARGULAUMO APENDSA (MINO).	b	2008				Ш			m	2									1 1
ı	Ш	Olate Number Producted mode a set. Carpo autorgana Timp -2" & 12's a rath 4 50s.	3	1				Ш			4	10.	П		ш						1
d		acam, + son		4000,74 2090				Ш			H				ш						THE PARTY SHEET
1	П	ARCILLA: praction, open, investo						Ш			12	100			ш						3
ı		consideration and the constant of the constant						Ш		Ш	Н				ш						月
ı		U.F. = 100.F.						Ш		Ш	-iv	80			ш						
2	Н	SHAVA ARTILLUSA CUN ARENA IGCI	H	1017 s				_	ı	ш											- 12
ı	П	gat, agute hamede Pretindat merian.			i	List	40		Ш		4.2	64	36	10	3)	53	_	ï			何
ı	Н	40, A ZW. F 3PS	H.	2740					۱		Н		Ø								1 2
ı	Н	Cresso de Permesti (spini 1944 LTCC 44(2) (0) m - 22 (em)	E					П			-48	100									g
4	П	LPT MUST 132,00 m 33,49 mil	Ē	1				Ш		111											1 1
1		Myett	M					Ш			44	100.									TO WAR WANTED WAS AND WAS
ı	Н	AFEMA LIMOSA con grove perso.	Ы					П			u	lai									
ı		AFEMA LIMICEA de grava porto: glas de dego, marte nativeda Particidad baja Castas el Engularo i Francia 1 (21. S. 15%, 74.45%, 7.40%) Prosensi-taria	Ñ	1				Ш													18
1		PIONETE SEE	U	4				Ш			Li.	202	-								
ı	L		N	40107.30 3040				Ш													1 3
ı	П	UNICOS grava transministratigo,	W.	- 210				Ш			47.	140.									18
J,	100	bands Funds Fleshing page Caston suborgalage: It angulates. Three: 11 6 itals: A fund F-00%	1					Ш													WILLIAM ST
ľ			#	25 10				Ш		ш	0.	100									COMMIN SO
ı	П		П					Ш		Ш											100
ı		ARCILLA congress presonants	И					Ш			1/4	-80									100
1		otening in post timeda Fitandell ota Clestos centrapiares, Time: 1/2:	U					Ш		Ш					ш						12
1		Callot restore por prevencio de- Osfre (Suelo residual himilio nito e e premiada memo materio reta)	П					Ш			10	00									1
ı	П	gurantistamente materioriada) G. 205. A 150. K. 166.	n					Н	Н	ш		-			Н						1
ı			И					Ш			ti	m			ш						1 1
4	Н	ARENA ARELLIGATELT, MACRON	4	4600 M				ш	4									ш			1
ı	П	Fragrento de roce compotavento. Fragrento de roce compotavento. Introncomo G. Lato, A. 37%, F. 481.			2	(in	75	п	ı		-57	-10	74	39	-	11	1=	1			1 1
ı	Н	Eropyo		1002 m					7									η,			12
ı		LET PAGE ITT NO m - 13.45 m/s 14 = 20 ASCILLA, pre-class, ripida, harrieda	M					Ш		Ш	n	H	1		П			ш			100
9	П	Plasticidad with Engineenia de raco completamente methoricada G. U.N. a.	H					П			Н									1	5
		015, F 100%									9	m	1								23
		Employed Promish should PEE (FEE/201/04/01 mo 28/01/41)	1	4000 o																	
		(H-842E-18									0	(5)	4								6
2		OSCIELA CONTRAVA DI COMMO NEGLIO	3	1																	SON THE RESERVE THE WAS GOALEST
		APCITA congress pre-cause rigida namedy a savesty, the goods fors. Cleader suffrequence force of 107 in 21th, A 10th, J. 70th											1								62
		20 Sty control many									0	m									83
		Carle of the		1																	13
٩F	-	—CONTINUE EN LA SIBILENTE PLIGNA.		-	-	-		F	+	11	-	-	-	-	- 1			-9	-	++	1 1 1 1

HOUR & DE 10 DATUM WGS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 27 el de Agosto el 01 de Setembre, 2017 CONTRATISTA DE PERFORACIÓN: BOLIPO DE PERFORACIÓN: CS-3001

	1	PERFIL DE UVELO			80	EST	BAR	DE	NETR	ACTON.	TES	TIGO	(Line)	dyc.III	99	239		MDVD	HERALLI	1	PREZÔMETRO
0.00	WETGEODOE R	DESCRIPCION	SWBOLDSIA.	EUTA TREE (m)	MOMBRON	DRO	COLDERN Sm		(igu	GP (SPT	Managaran.	PET LINE BACTON	CERMA	WESW	71400	ine 7	1-000 1-	1	TO B	nd.	
60				1001 k					T	П											-
		ADCILLA con green, gris decurs, rigida hydraed a characta, Planticidad atm Chatas subargulared, Types, -1 VZ G 71 S., A 10S. F. 20S.		4000 8							ü	las									CERCIC
		ARCILLA URCI ARENDSA del protos unto reporte de protos media media partida (Posticidad media Caraci- latinga pres Tipos 41° IS 15% A 25% 1895		3000							ū.	(1)									THE STATE OF
2			E.	1000 kg						Ц	101	100									2020
			4		*	LÉT.	90			ı	0	19	領	36	40		a	-			200
ű,											í	100									ANDERES AND
		ARCILLA URAVOSA DOR ARENA (SH)									10.	100									0.08.00
3		Process was named presumon Processed and Chairs designed Trans-117 & Silk X 25% F 57%	7					П		Ш		1							li		100
ı		Emigot Ermestreen il Ermede Permestreen il LFC- (nr. 44 0) m. 34 0) m (<8 19 E 18						Ш		Н		OM							1.7		100
	2 2	LET MADE FOR TO W. ST. 45 M.	ě								e.	(4)									COMMITTED TO
1		LET WILL DETIL TO THE TO AN INC.	Ġ					Ш			H										25
I			â							Ш	71	100									
4			Š								T.	(de									200
١											31	(m)									99
1				0000 W	į,	(in	ø		Ì		В	iac	2	Эę-	10.		0-	-			200
ı			è	(I7≪				П	T	Т	14	Inti									2000
0			1								31	140									Z S
		Lind ACENOSO, provide groups, term o ripide harmas - Clarks indianauticos Frince 127 d. 185, AZIA, F. Tim.									79	im									202
13		Escayo. Sintayo da Permeatari (1974) LECC 47/40 (01 m - 40/90 (1) H-1 595-42	1								11	100									88
											-	100									ora a a a a a a a a a a a a a a
		Land to the control of									1"	(100)									13

HOUR S DE 10 DATUM WOS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 27 el de Agosto el 01 de Setembre, 7017 CONTRATISTA DE PERFORACIÓN: BOLIPO DE PERFORACIÓN: CS-3001

	100		PERFIL DE UVELO			80	IEST	BAR	DEN	ETR	ACTON	TES	TIGO	GEN	disc.	ii dag	1.80		SO/P	HERM	LIDS	PREZÔMETR
100				90		6	1	S.	tista	MCA	R ISPT	4	100	5	6			65	ipt .	ig+	10	HEZUME IN
2	WHITTING		DESCRIPCION	SWBOLDSÍA	FUTA	MUMBER	989	(ASPEN)	7	Non		ACIGNO.	SERVICE (V)	CPMM	WESH	31400		5-578	SEMIDO		104	11 1
П	1			8	omi	吳	-	Sop		70.7	n. 10	N S	SELLE	2	3	100	in	11	DV		100	1.1
-	-	+		-	2000 %			120	Ť	1	1	-	4					-	40	10	200	
8)		1		EM	40.00							-01	100								11	13
Ш	П	П							ш		ш	39	100									題
Ш	Ш	ŀ			1990 T				Ш												1	CEORGE
Ш	Ш	1	And the second second						Ш			11	(iii)									13
6	П	П	ARCILLA MACSA ses siesa, remoire ross, egito, numedo Priscogal mena si						Ш													THE PER SHE
П	Ш		-th Code utarquine Trou-1" G	8					Ш			100										1
П	Ш	П		葛					Ш			W.	100									周
Ш	Ш	H	ARCILLA processo muse opposit	B	200.9 81%				Ш			H	\vdash									18
Ш	Н	П	ARCILLA process ingue intredi- cionacided disc Engineers du roca quiralescription electroda, 5, 5 % A		7000				-	+	-	6	190)								-	3
7.	П	ľ	ORANA W SCIENTIFIC GRADADA CON AGCILLA JOS SCI ON A CONTRACTO DELSA,	1	420	N.	1	-							1/				l.,			13
	Ш	-	Time C G 895 A 56 A 68 CNr	1	382 6	23	List?		Н		ш	0.	40	10	9	0.	E)	1	+1			13
П	Ш	1	minión pararesencia de ChiFe. Eminión	m	474				П	Т												ig.
Ш	Ш		LPT 1/41 PC 00 m 62/84 m)	18								3A	100									8
49	П		di-d	W								1										
П	П		ARCILLA Posts Horseds Plantage		1				Ш			D.	000									1 1
Ш	Ш		ARCOLIA Figure formeros Personnel eras Occasio cum españoles (Tente e T. C. 198, A-10% P. BINS Os 43-40-8 AH 10 in pression er trans-	М					Ш		ш	in	ien									18
Ш	Ш		Off 43:40 a 94 to be presented there. Off rests the real challends, the grant for. Off record of 2 to 2	l i					Ш			-										10
d	П		Cultimonity 5 List Arrists the.	W					Ш			0	22									13
I	П	1							Ш		Ш											18
П	Ш			n					Ш		ш		10									13
	Ш			M	900 A				Ш		ш	"										[3
Ш		Л		1	4475				Ш													
45	Ď.	2	ASEKA LIMICSA LOLGIAVE (UTS II fimilifi)	B					Ш			19	10									COMM SQ
	Ш	1	rojegi slatti, hovasti Diettio outompatines, Tintx - 1", 5, 15%, 4, 70%	5,					Ш		ш											100
П	Ш		CLER	K)					Ш													13
Ш	Ш	П		13								10	100									18
-Āŭ	П	ŀ	GRAW APPOLLUSA CON APENA (CC)	45	396.94 40.00								\vdash								T	詞
Ш	Ш	-	merch strength group denit recognidate Castro-utanguloses a angione Trace-11/2" G 525 A309	F		18	uni	46	П		•	11	-00-	ży	là	16-	-04	1				33
П	Ш	1	F.185 Emayoù	Œ.	35cm				-	-		H	H	-							А.,	1
Ш	Ш	١	Emoyo de Primestil ésphilit LFCC-BB (49 DB m - 45 45 74)	Wi						Ш		6	1500									18
a	Ш	ľ	1742 BBG 43 LPT RP12 JAE DT W. 45 46 W.																			13
	Ш		TAIR II	11								0	m									1 1
П	Ш	1	LANCEGRAPOSTO con stereo parde	W					Ш		ш	_										13
П	Ш	П	meda Elestos subsequiares, Trebs = 2	М					Ш			64	100									(8
ч	Ш		3 40% A 15%, F 55% Dir 41 55a 45 55 tr. 56 proteits (in frame)		2000.75				Ш			-	-									100
a	Н		de cares de Times = 5"	11	1				Ш													83
ч	Ш	1		M					Ш			"	*									83
Ш	Ш								Ш		ш											53
Ш	Ш	1		N					Ш			10	1)m									100
47	Ш	1		Ш					Ш			12										9
П	Ш	П	UNICOGRAPOS Dicert uning James III	M					Ш			0	100									侵
Ш			Santpline Trescet 12 25% a 15%									-										150k h a h la a k la a a la la al
			4.0	V								11	100									83
П	И			ll b								1										13

HOUR 6 DE 10 DATUM WOS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMBUTH 1

FECHA DE PERFORACIÓN: Del 27 el de Agosto el 07 de Setembre, 2017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-2001

		MAG	EST)	-	F		ACTON			(Line)	DAC E	9.00	DUBLIC	to b	HEN-SKILL	II.	REZÔMETR
CUIA Track		номения	DRO	W BEST SH	1081	Non	RHSP1	ACHORDA,	SENCION (N)	CENNA	WEST	31400		ENIDO	DE NST		
omi		ž		2000	n	30.0	11.10	197	SECTO	3	*	14	71	40.		20.	
1000 %																	
40.00	00				Ш		Ш	11	100								13
					Ш				100								[6]
					Ш			100) mb								1 2
7000 81			Ш		Ш		Ш	101) (E)								THE PER SHELL
5) 00 300-03 31 70		11	un	D	Ш		Ш	182	75'	0	102	80.	Θ.				13
3155		1			Ш			100	ton.								
		1			Ш			90	100								
					Ш			108	100			.0					B
					Ш				1/-								100
390: be	b				П			100	100								18
132,903	74				Ш		Ш	(17)	tor								1 2
					П			(10)	100			П					1 19
					Ш			700	(00)								22
					Ш			110	lag:								
	ı				Ш			-	-								1 8
300134	25				Ш			111	(co.								83
339734	23				Ш		Ш	710	0.00								CONTRIBO PE
					П		Ш	107	Han								203
	П				Ш												
	IJ.	4					Ш	110	100								1 1
	ı	ы.	uri			Ť		112	ian	20	39	40	-				100
768	2				H	+	-			T				1		ы	1
					П		П	133	100			Ш					19
								160	100								G
																	8
								1+1	100								9
								110	100								100
								710	100								80
								-									250
								125	im								9
								-									19
								(2)	100								100
								1									302 / 2 / 3 / 3 / 2 / 2 / 2 / 2 / 2 / 2 /
3059-34	34		Ш					122) (EE)								
	5554	2019-204	20,34	2014 24	X10/24	2014 24	200,54	200-124	122	122- Nax	(22-) ass	(22) (22	(25-) as	1225 Table	1225 Face	122F 1000	(2F) mx

HOUR 7 DE 10 DATUM WGS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 27 el de Agusto el 01 de Setembre, 2017 CONTRATISTA DE PERFORACIÓN: BOLIPO DE PERFORACIÓN: CS-3001

	1	PERFIL DE UVELO			100	EST		DENE	SANO	TON:	TES	TIGO	Q.Ess	19E.E	ii da	1	334		E)-p	LIME	SHALL	L.S.	PIEZÓMET	TRIC
100	WESTERNOON R	DESCRIPCION	SWBOLDSIA.	E LUTA PRECE (VII)	MONERON	DRO	COLDENS Sm	tste	KIPR No.	I SPT	MUSCHARA	Ser Legislación	CENNA	WESW	31400		101	-		1000	1	A ONE		-
1	T			2508 A				Н	П	Ŧ						H	1	i		1	F		13	
ı											129	100											SERVICE	
V				П							(2)4	100											THE PARTY SHEET	
1			j		M 10	0					18	1,000	ы	97	20	Q	-						150	
		TRAVALARCILLOSA COU ARENATO:									1/0	100												
7		mento dare scato remano Plasticari medio Chabe Satornalans, Triali di 1945to, AZPA (FORM	M	н							121	(0)												
ı			i								1500	1100											l ig	
4			'n							L													322	
ı											(29	1121											THE STATE OF THE S	
a				200 a							120	(0)								V				
I										Ш	:10	ian											1 23	
		AFENO AFCELOSA CON BRAVA (EC) pacción y pa harisdo Porambal del Fregnerás de si re conglomenaria ristatricada. O 31% A 31%, F 30%.									(22)	let.											200	
9	100	On 56.2 a St. 45 or sa prescription mans de Control.	Ŕ								198	1183											COMM SS	
		Erowed Permate and Price (Erowed) Pr	2							П	tisk	100											1 200	
à		13,000								Ш	120	100	It	66	00	n		0					1000	
1			1	120				Ш	Н	Ш	110) as					1						1 2	
											10	100											1 19	
7		ARENA ARCILLOSA congrava, marcin								Ш	140	(2)											200	
ı		ARENA ARCILLOSA congress, march englisero, copnecto humedo Clastos cultergalareo, Treor 221/21 G 30%, e 40%, F-90%									(10)	(40)											2002	
2											180	100												
				Sec. 5							140	100											222	
,		IREMU PROLLUGA CON GRAVA (SCI. y scorru rigido, humeto. Premional Ma - regimento de loca completamente.	3		9-9	ú					100	(4)	24	30	ŵ								20	
		Employed Color A 10% F 28% Employed Ferrest Start (* 1) ECC. 12 (10 0) pp. 14 (0) pp.	1								ton	(m)				D	1	-1					2020	
		C3CC42((0.00 m=70.00 m)	à																				203	
d	-	—CONTINUA EN LA SIBILEMTE PAGNA.	Mis.			-			++	+-	144	1em	-	-/-	-	-	-			4		-	B	1

10JA 8 DE 10 DATUM WGS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH:

FECHA DE FERFORACIÓN: Del 27 el de Acodo el 01 de Setembre, 2017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-3001

	th.	PERFIL DE Ø JELO			10.	EST	-	DEM	SANG DE TRACION CAR ISP		TIGO	ükse	ave (iii	0.00		1	MEND.	HERALIDS	PIEZO	METR	ic
Total	WETGEROOF.	DESCRIPCION	SWEDLISTA	EUIA TREE (m)	WOMERSON	980	COLDENS		(m.)	debos	Service BACICA	CENNA	MFSW.	31400	ine		TEMPO TEMPO	TO SO.			•
0				2063 %				Ť	III		-										İ
	П		d	potes	W-19	и				144	los	8	38	10						B	A COMPANY OF THE PARTY OF THE P
ı	Н		1	1960 T						135				ш				1		S	
	Ш		13	1						1180	100			П					2009 003 52		-
ï	Ш		B							1419	(m)			П					manage.	H	
ı	Ш	Desired Court Specifical Actions	M							(48	100			П					1.73	D G	ł
	Ш	ARCILLA LINC AFENDEA, minor h minor data rigida. Piscoadra media a ata Chesis da kumba s. Amerikana. Prins = Up. 0, 108. dr.238. P.708.	Ŋ		Н				Ш	140	1002			Н					COMM	200	
2	Ш	(Suplo recidual table) and elektromodymicote a may dilest rake a	К							150	Ivgi									8	
ı	Ш	e lus risdantes ne meconcado. Necescia de GoSe y Py disenticada)	Г							181	100								THE LLEPTO COMMITTEE COMMI	202	
	Ш		1							1752	000									200	
	Ш		1							in	Ton									200	
ı	Н		3	3967 Tu						-	-									120	
0	Ш		13							124	100									Ĭ	ľ
1	Ш	ARCILIA ARCNOSA, rigita, tamenta y calutron Chalgo angulario TrinoV G-5% A10% Pd5%	H	1						100	(10)									ı	
ı	Ш	W-7-0-0/08/2-02-4	K							-	-									ı	
9	11.0		S	1800 S						196				П						ı	
T	П		Н							HITE	100								#Main	ı	
ı	Ш									150										ı	
	Ш									100						Ŧ				ı	
L	Ш		d							161	100					L				ı	
ı	Ш	A. Charles and a second	13							160	140			П		7				ı	
2	Ш	ARCILLA ARPHIOSA, Juda, estumba Polificand, meta a abb. C. 8200 usgatarez (1986-41) G. Polifica E-894, Propercio de Ingrafificado	18							ito	100								100	726.73	
ı	Ш	modern y transport materious organisms	l	1																Sterrich	
ı	Ш	Encoyin de Promissi depart (1) LFCL 12 /5 (0) m - 74 (0) m (1) IC 7 272 (0)	Ĭ							186	(cp)								TOCKING TRANSPORT	(SE	
9		Ercoyo de Permeabilitación 18. LECC 146 (ERI m. n. 200 m)								165	130									STATE OF	
		IC03847	Í	1						1535	1,00								MANAGE	Tak:	
			1							191	100								- 4		
7			1																	20.72	
			Ħ							158	190									Series Par	
			H							Inn	100									100	

ESCALA VERTICAL 3PF - Broyana Perentian Entrata (1994)

197 - Escapine Renelle de Recela

1 :: 50

LOQUEADO FICHRIS REVISADO: CA

10JA 9 DE 10 DATUM WGS-84

PROYECTO:

LIBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 27 el de Agosto el 01 de Setembre, 7017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-3001

1	È	PERFIL DE BUELO			. M	UEST	_	171	ENERY	SACTON	1 22	-		DACE.	in chall	500	1,20%	BLI HES	SALLION	DIE	ZÖMETI	Ric
1	WETGODDE.	DESCRIPCION	SWEDLICK	CUTA Frank (m)	MOMENTO	DRO	TO DESIGNATION		(100		MUSCISSIPA	SEC LINES BACICAN	CDMM	WESW	31400	10 ¹ 1011- 21	10 ¹ 2241754 40	income income	101 101 101 80		T	-
L				395) W					П												-	
l	П		Ó	METER			Н	П		Ш	170	100			П							
ı	П	ARCILLA ARENDSA, Hoda, Albuman	P	1				П		Ш		-			ш						(3)(3)	
ı	П	Postcaled meta siabilities of the Cardon angulared Track of T. D. S. A.10% F. S. P. Postcale de fragmentale de medica y basis per mais most pagasara.	4	1			П	П			197	100			ш					11	8	
ı	П		K				П	П			l d		1		ш					1700		
ı	П	Entatyo de Remaidal daden 15 LFD, St. 20 Julium - (4-50 m) 	Ġ.					П			179	13.63			ш						100	
	П	Engayo de Promestás agrana LECC - 14 (61 70 m. et 70 m) 152 2 3 6 17						П		П	175	100			ш							
l	П	1003 BB/17	1	1		Н	Н	Н		Ш	100	-	1		Н						1	
ı	П		ě	BG X				Ш		Ш	XIII	1(0)			- 0						en le representation en la representation en la representation en la representation en la representation en la	
l				117.00				Ш		Ш	19	terr										
l	П							П		Ш	100	100										
l	П		1					П			171	100	1		ш							
ı	П		ij,					П		Ш	-											
ı	П		0					П			1.16	100	1		Н							
l	П	г МОсол (сма. этики (сипкос. n	7					П			THE	100										
ı	П	I Mi Occas (case), amore a from con. In wise ever point refrest, bitmeto (The amore) trapi.	1	1				П													3	
ı	П	5 20% (graed her a middr, sylvang dawn Firek et 1, 8-10% (green graeso), F. (1)% (mo)	8					П			100	((2)			ш							
ı	Н	On UF 2012 Build to 14 committee to bread dis Confoc.	b.					П		Ш	(2)	1/m	1								25.15	
9	ě		ň					П			140	-								erun	57/5/25	
ı	П							П		Ш	155	(00)			ш							
ı	П		X	1				П			H											
l	П		ÿ					П			7.00				ш							
ı	П		ď					П			100	10			ш						A CONTRACTOR CONTRACTOR	
ı	Н		Ь	410	1		Н	П		Ш	Н				ш							
l	П							П		Ш	114	1										
١	П		Ť					П			1	-10									1000	
l	П		Á					П		Ш	Н				Ш							Ħ
l	П	and a constant of	ř.	ı				П			150	-83	h		ш							
ı	П	GRAVA UMOFA con green streeting transfers, no consisting vega decreas,	H	1				П			15	100									3	Ħ
ı	П	frameda Pfeirsteid (ias Dr. 10%) k 30%, E 10% Prevenen de holetweik	ä					П		Ш												
		Sreay, de Pome etilisare 1E LECLIS (El 00 m-de 60 m) CNUV PERMERBLE	3								1592	200									CHANGE CHANGE	
	П	KINUV PERMSABLE	F																			
	$\ $		K																		1	
			U								189	Tren									(2)(2)(2)	
			**					П														
			47	56413							1300	Jun									13	
		—CONTINUA EN LA SIBILENTE PAGNA.			F	-	T	Г		H		1	-									

HOUR TO DE 10 DATUM WIGS-84

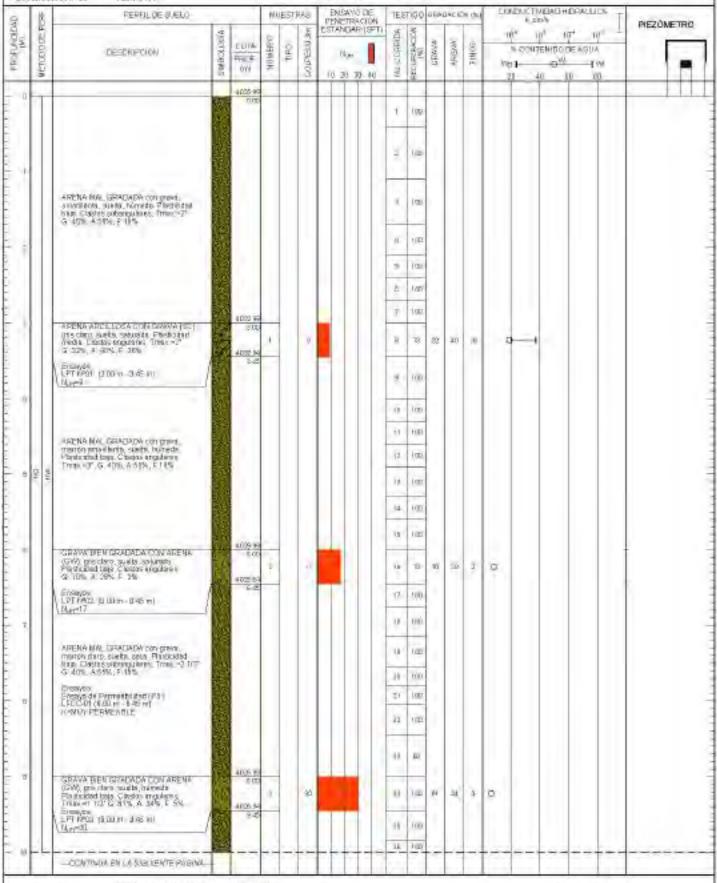
PROYECTO:

UBICACION INCLINACIÓN: -901

AZIMUTH 1

FECHA DE PERFORACION. Del 27 el de Agosto el 01 de Setembre, 7017 CONTRATISTA DE PERFORACION: EQUIPO DE PERFORACIÓN: CS-3001

9	热	PERFIL DE UVELO			80.	EST	NAS.	PENE	WAS DE TRACTON DARFLORT	TES	rigo		dyc#	9,00	DUDA	THENDHERALLICS	PIEZÓMETRIO
PEOPLA DATE	WESTERNISCE FICES	DESCRIPCION	SNECLUCIA	EUTA PRES MI	NOMBREO	080	COLDENIA Sm	16		Marchalle,	SECUSEACIÓN INCIDENTAL	SERVA	WESW	31400	in 1	HITCHIDODE WOUNA	
0			100	394 Kg					П	169							67.6
										(36)	100			П			
01										107	ian						
۱		Show interest parts report	h							1	(40)						
6	200	Shirt interror sittle report entertalmen Danie salergeben Imp-D G 555, \$485, E56								Bei	Lagr						
510			V							196	100						
				Solty po						150	.0						WILEMAN STATE
**		En.) a Portonner	1	93.60													
*																	
40																	
ė																	
-																	
Jan																	
Jan.																	

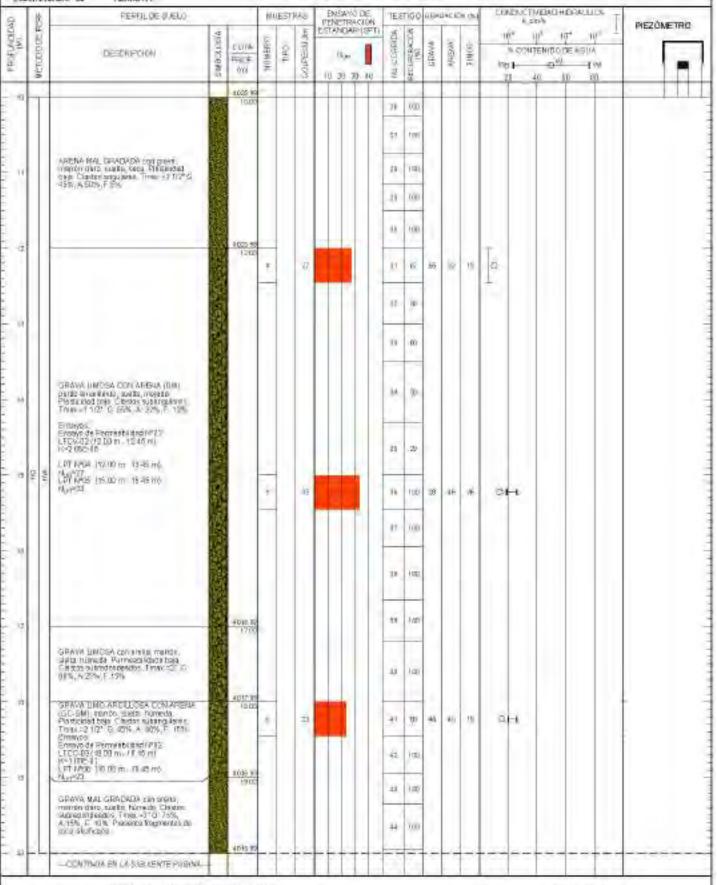

PROYECTO:

UBICACIÓN: INCLINACIÓN: -901

AZIMUTH:

FECHA DE PERFORACION: Del 22 el 26 de Agosto, 2017 CONTRATISTA DE PERFORACION: EQUIPO DE PERFORACIÓN: CS-3001

HOUR I DE F DATUM WOS-84


HOLA 2 DE 6 DATUM WASS84

PROYECTO:

LIBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE FERFORACIÓN: Del 22 el 26 de Agosto, 2017 CONTRATISTA DE PERFORACIÓN: BOLIPO DE PERFORACIÓN: CS-3001

HOUR I DE 9 DATUM WOS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH.

FECHA DE FERFORACIONI. Del 22 el 26 de Agosto, 2017 CONTRATISTA DE PERFORACIÓN: EDUPO DE PERFORACIÓN: CS-3001

	Ė.	PERFILOR WALLO			10.0	EST	_	DENCT	RACION	4 0	-	ana	04010	N chi		402	OHBOALUDS.	PIEZÓMETRO
	8		SWECK,DISTA	proper.	8		U.3m	tstano	AR ST	香	10	9	8		10.4	101	10" 10"	1
ŀ	WETCHOOD	DESCRIPCION	900	PRICE	WHERE	544	COLDEN	(4)		Science	Service BA	CENNA	MASSAN.	311100		MIERIT	ODE WATER	
L	5		20	omi	7		8	10.38	70:10	(MI	SEC	-	7		heat-	40.	10 80	
Į				42115 10														
ı	П			20.00						32	inc							1 200
ı	Ш		13	1						7								
ı	Ш		1							44	(m)			Ш				
l	Ш		12							-				Ш				
1	Ш		М							-47	100			Ш				
l	Ш		D							Ľ.	15			Ш				
ı	Ш		n	1						17				Ш				
ı	Ш		15							-41	100							
1	П	APCILLA ARENDA ATLL: gradual rigide, liuriada Pludicidad alta Frigineria de los la propietariament metaolicada (L. 6% A. 35%, F. 70%)	п						110									
ı	Ш		11							"	100							
ı	Ш	De 2240 à 25 10 le Progression de / 8/4 elicitaire, pris dans Fracturé da	1						111									
ı	Ш	Tie r240 g 25 füllig Fragmento de / 8/6 nichtente, pro data Fractica da Trans of 16/2 Processo de divido en liva itactico que la matria.	П							Ш								
ı	Ш	Promoter	18							M	1000							
1	Ш	Crowing de Permential and Feral LPCV 04 (23 50 to - 24 fill m) LV 0 415-07	10	1						П				ш				
ı	Ш	LPTT007 (2150 m 3175 m)	14						ш	_	μ.							
ı	Ш		H	1	. 1		b.		Ш	11	(0)	4	35	10	25.9	-14		
ı	Ш		V	1						12	100							
١	Ш		13.						Ш	т	\vdash			i				
ı	Ш		13							m	on.							
ı	Ш		И															
I.			10															
ľ	160		11							4	(00)							
ı	Ш		10	10(0.20														
ı	П		U	7540						17	(55)							
ı	Ш		12	1						-								
۱	Ш									9	100							
ı	Ш		12						ш		Т							
I	Ш	ARCILLA ARCNOSA (CL), process.	13							10	100							
ı	Ш	rigids, humada: Pristigand stra Pristranto de loca completariente	ы	1														
1	Ш	meticoncepts in the A 11% F 70% Encayers	1/2						111	n	(00)							
ı	Ш	LPT 19'08: (15:00'm 11:45'm) Nu =P	3															
ı	Ш									10	Ice							
ı	Ш		4	1					110	ii.	Test.							
ı	Ш		1							-	1.00							
ı	Ш		16		ir.		10			0	Ive	9	27	16	DI	4		
			10	1000 50 1876								-		1				
		Law Law Law Law Law Law Law Law Law Law	1							12	(ve)							
		ARCHLA procesio /rado humada. Plasticidad eta Fragreento de ruci-	1							-								
1		congenerar meteorizata & 0% & 0% F 10% Transpare CoFe								-11	1165							
		Entragen Entragenda Permastelland (PTS)								-	-							
		Epsyods Perrestiles (PTE LFCC-15 (M MLm-3L-0Lm) N-714C-11								ki.	190							
		4.5505								17	igo							
L	-		-		-	-			+	-	-	-		+0				

HOUR & DE 6 DATUM WOS-84

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH 1

FECHA DE PERFORACIONI. Del 22 el 26 de Agosto, 2017 CONTRATISTA DE PERFORACION: BOLIPO DE PERFORACION: CS-3001

PERFIL DE UVELO	1974	EST		PENETRACION		-	ngo	GEN	04C IC	N Chil	COMMICT	PIEZÓMETRIO					
	SWEDLISTA	E COURT	8		187	CSTANC	AR SPT	ACHERICA .	N.	5	8			-	-	117 -	
DESCRIPCION	900	FUTA THE B	WOMER	th.	COLDEN	(4)	.	答	AGN.	CENNA	MASSAM	311100		ENIDO			
	20	omi	×		200	10. 30	70:10	Na.	H	3	1	~	he 1-			80.	
		Lone to				H											
VIA received mode because		10,00						- 63	100								
ASCILA arisidate mada frameda Pladicidad de Enginerale da nos partosecorreda referencida di dila A dila E 1925. Terres de CaFe.								10	100								
words Fernesblaten (#25) C45 (3) (8) m-31 (9) m								12	im			ш					
30-12	188	-										Ш					
		37 30						10	Type:			Ш					
	100							10				Ш					
								11	1000			Ш					
NA ARCILLOFA CON SRAVA (SC) CHIS. Rg dis. Dirz. Plostuted eth	1							33	100								
come rigide over Ploststand etc. tos subtrepulsors: Tires = 1/2° (il. , A. 49% F. 30%	9							-	-								
115.A 496.T 705 Drieyts								73	100								
res mom m. m. m.	15							fz.	100								
	4		7		ě.			n	199	25	40	70.	21-1				
					П			74	inc								
	뵿	4000-08						10	1								
III & appoint dutte inference in		43.71						-	let-								
ILLA gracisia rigida hijimata a rum Pisak riski ata Cisaba regulario: Trasc = 1,7° G 55, A Fil. S.								75	(00)								
S.		ung s						Ty	(ex								
		day						12	Lim								
	И						19	100									
	AU.							-									
	18							19	1180								
AROLLA territorie, gro nere, rigita neco Restrolled ads Coster subretadores Trace-P. O 10s. A 10s. F. TS. (Subtresidad total, più des Albritorie) a systemician sete.	18							-11	1000						7		
	133							i	tee								
% (Suid residual total, principal	12							H							3	4	
POLITICAL PLANT DIRECT								10	(m)								
ayou ayouta Danmant and FARE					Ш		ш										
C-06 (35.50 m - 38.00 m) 318-85	18							6	im								
								-	-								
	1							in	(40)								
	1																
	3							12	1180								
TEXAPENDEX ICES procesos.	1 3	1507 10 1507 10	-11		p.			U	Habi	E	29	-10					
B. Numeda Pressation like mento de loca completa nome rocasale G. 5%, A. 37%, F. 53%	100	39 11			111			10.	m								
1907 1907 1910 - DB 00 m . H 13 mp	†							-	-								
R	10								in.								
ILLA, gris claro, rigido, fizinede licided alte: Flagmento de roca								1	1								
F 10th Price to Py dicerning a								0	1000								
royds. royd da Permasti dadi/FIT							-	-									
GD7(4) 00 m. 41,40 m) 665-17								11) and								
	182			-				-6	-	-		-					
NOTE OF THE PROPERTY OF THE PR	0. DB 00 mr. 18 13 mg. A. gradiano, Agelo, hizmedir ed alta Fragmerico de loca arrente historicate 6.0 m. A. offis Pressura Py diserrenda (a. Permanti doci PTT 7.03 m. 41,35 m).	0. DS 00 mr. 18 13 mp f. grodeno, rigido, hizmedir od alta Fragmerico de ricid arreste instructus 6. 0 m. in alta Pressura Py aberericada (a Permestal abdital 1 7.03 m. 41,35 m) 17.03 EN CA SUB LEMTE PURINA.	0. DB 00 m. H 13 m) A. prodess, rigids, harvete od also Fragmeriza de loci arreste nelsociade 5. 0%. A offs Pressere Py absenceds (a Permestilacidi/P11 7.43 70 m. 41, 90 m) 120 Thick EN LA SIGLIENTE PUSINA	0. DB 07 m. 48 13 mp A. procisio Aprila, humada do alta Fragmanta de loca arresta entrolação E. 0%. A DES Pressero Py plantenada (a) Permenti dadi PTT 7.63.00 m. 41, 45 m) 17.70 m. 41, 45 m)	0. D8 00 m., 18 13 mp A. grocileto, Agelo, harvede ed alta Flagmento de local atrieste netrocircota E. O. 19 s. A. alfa Pressero Py diserringto f. S. Permenti dadi (F11 F/43 00 m., 41, 40 m)	0. DB 07 m. 48 13 mp. A. procision rigids, humade od alta Fragmarka de local arreste netrostrades 6. 0%, in alta Pressens Py placements (as Permentillassi PTT 7.43.00 m. 41, 40 m) -17.	0. DB 00 m. RF 13 mg A. procision rigids, humade od also Flagmante de locia stratta nelsociada S. 0%. A. Bifu Pricorno Py discrimado (a Permenti discribir 11 7.63.00 m. 41, 45 m) 17.63.00 m. 41, 45 m)	0. DB 00 m., 18 1.3 mp. A. grocklyto, rights, harvede do alto ir Fagninitz de local arterte netrotroste 6. 05 m. A. Biffs Pressure Py disenvingth (de Permentilland/PTIT (dd 30 m., 41, 45 m) (12)	0. DB 00 m., 18 13 mg A procleto, rigido, humede ed alto Flagmente de local atreste nelsocioles (5 0% A Bifu Prisona Py diserrinada (4 Primarbi docide 11 7.63.00 m., 41, 47 m) 12 Think EN LA SIB LENTE PUBINA.	0. DB 00 m., NE 1.3 mg A procision, rights, harved a do also Friagmanto da ricci arriente neutorizada a 0 m., A DNs Prissona Py disenvincitis (A 100 To 03.00 m., 41,40 m) As 100 Think EN LA STEILENTE Prisona.	0. DB 00 m. 48 13 mg A procless, rights, harved e do also Flagmente de locia strette nestoriode 6 0 % A DN Price en Py discrimado (A 100) To 43 00 m. 41 (40 m) To 43 00 m. 41 (40 m)	0. D8 00 m., 18 13 mp. 4. grocklyte, represente de local attraction de local attraction actions and attraction actions attraction action attraction action	0. DB 00 m. 18 13 mg A procleto, rigids, hamede od alto Fagninate de locia strette nestrolade is 0% A alto Princerio Py discrimado de Permenti discritifat 7.63.00 m. 41,40 m) 43 100	0. DB 00 m. 48 13 mg 6. procisio rigida, hamede 60 alta Flagmente de locia stresse entrolizada 6 0 m. 4 20% Presente Py placemente 61 100 62 Permenté abdié*11 7653 00 m. 41, 45 m) 63 100 64 Permenté abdié*11 653 00 m. 41, 45 m)	0. DB 00 m. 48 13 mp A procision rigids, harved e do also Flagmente de locia strette nestroliste 5 (9 s. A. Bits Presente Py discremente (a. 100) To 53 00 m. 41 (40 m) To 53 00 m. 41 (40 m) To 54 00 m. 41 (40 m)	0. D8 00 m., 18 1.3 m) 6. grocitino, rigido, framente 60 alto e Fragmanto de locia arriente necionado e O. M., A Bifisi Pressono Py discovenção 64 100 65 Permentilidad (PTT 7/43.00 m., 41,40 m) 65 Permentilidad (PTT 7/43.00 m., 41,40 m) 65 Permentilidad (PTT 7/43.00 m., 41,40 m)	0. D8 00 m., 18 13 mp A procision, rigids, humade do also in Expression (10 m.) If Prince on Py discrements (a 100) To 20 m., 11 (20 m.) To 30 m., 11 (20 m.) Thurs EN LA SIGNEWYE PRIBANA

PROYECTO:

UBICACIÓN: INCLINACIÓN: -90°

AZIMUTH:

FECHA DE FERFORACIÓN: Del 22 el 26 de Agosio, 2017 CONTRATISTA DE PERFORACIÓN: EQUIPO DE PERFORACIÓN: CS-3001

HOUR SIDE 6 DATUM WOS-84

100	13	PERFIL DE VIJELO			MA	EST		DEN	arma.	CION	-	riso	GBA	04C IC	K ds.	LOW	1,20%		PAULIDA	PIEZÓMETRO
	OP. R		100	F2224	88	-	COUPESU Sm	ESTA	NOA	R (SPT)	ACHIBOD M	NO.	3	9	0	10.0	100	17	10	
1	WETCHOOL	DESCRIPCION	SWECKLOSIA	PRICE	MUMBERO	584	100	13	(4)		香	SECUREDA (%)	CENNA	MASSAM	311100		SMIEN		ESTIA -	1 1 -
1	ž.		-0.	600	7		8	10	38.7	0.10	100	SEC.	_	7		21	-40	30	80.	
0	-		1000	2000 N					H		45	100						-		
1	Ш							Ш			11	146				111	П			
1								Ш				1			Ш					
1			М					Ш			θ	(00)	1		Ш					
1								Ш			0	1181			Ш					
1								Ш			ř	-			Ш					
ı								Ш			0	100	Ш		Ш					
2	Н	ARCHIA gris data mada hilihedi						Ш		ПĈ	13	(CD)								
1	Ш	Please ideal with Frequency of errors completements meteoricade in Oh. A. 176. F 100% Presente Py deserveds	Ø					Ш			10	Inti								
ı	Ш	Section 1						Ш			7									
J	Ш	Drawn de Pennesbussife IT UEC DC (47 til m - 41 - 6 m) U-45 856 12						Ш			41	160								
"	Ш							Ш			- 64	HE							T	
1								Ш		Ш	0	(50)								
ı	Ш									Ш	100	(2)	j.							
d	Ш							Ш			10)	im								
1								Ш			100	ien								
ı	П							Ш			-	-								
	100		-	3500 H				Ш			11/3	(00) (00)								
	4			- 11				Ш		115	000	100								
ı	П							Ш			100	100								
1								Ш												
á	Ш							Ш			Unit	1000								
1								Ш			103	100								
ı		ARCILLA con sterni, gris cate, rigida. teco-Pierticologi affa Clarata salastigalaren, Trasce 172 (E. 5%).						Ш			100	140			Н					
	П	A 1574_F 00%						Ш		Ш	-									
								Ш			710	(00)								
ı								Ш												
ı								Ш			741	1000	Н							
0	Ш							Ш			710	100								
1				3640 St 4240				Ш			-	177								
		2200 C		4040							115	1781								
,		ARCILLA precista risida parecha a esturada Piccia asiriata Lacida sutra apparen Tresc n 1/21 O 5%;										-								
		A 10%, E 85%. E Novyes.									114)(0)								
		Estago de Permette dagre de LECV de do 10 m - 61 00 m Not 215 fb									110)air								
		Wat UP DE									116	100								
0	-	—CONTINUA EN LA SIBILIENTE PLIBINA	100			-			+-			-	-	-14					+-	

PROYECTO:

UBICACIÓN: INCLINACIÓN: -901

AZIMUTH 1

FECHA DE PERFORACION: Del 22 el 26 de Agosto, 2017 CONTRATISTA DE PERFORACIÓN: BOUIPO DE PERFORACIÓN: CS-3001 HOUR 6 DE 6 DATUM WOS-84

EURENCTIVEROHERACION ELERA ENSAND DE PENETRACION ESTANDAR (SPT) PERFIL DE GIALLO MUESTIAS TESTIGO GENDACION des PROFUNDEND PIEZÓMETRIO 100 MINISTRATA SWEDLISTA MOMERON CENNA 980 EUTA COLDEN IN CONTEMPO DE RISUA DESCRIPCION 1500 PER S Dill. hip 1-100 one (0. 30. 30. 10 1660 W 8 118 lati HT IND D ARGILIA prodess, open nametra a opumos Papris das also Chidar satisaga also Tresa - 15° G 4°C a 10°a, 6°80°C 140 100 149-1600 Crowned Perment Charleton FCV GB 20 50 m - 51 JG m Let 2 15-16 150 100 12 [2] (vit) 122 100 123 top CRITACE SUNS. From M 49 51 77 10 17 ji)

ESCALA VERTICAL SPT - BISVALOS PEREVILOS ESTANSE (ALLIN LITERA)

1 .: 50

REVISADO: CA

REGISTRO DE PERFORACIÓN:

BH-TSF-05

ROW 1 BE 1 DATHM WGS-84

PHOYECTO UBICACION: 1

INCLINACION: -90"

AZINUTH .

FECHA DE PERFORACION Del 22 el 28 de Agunto, 2019 CONTRATISTA DE PERFORACION EQUIPO DE PERFORACIÓN CS-3001

(M)	WETODO'DE PERST	DESCRIPCION	SWBOLDOM.	EDTA PROF	Ma, Composi	HEGUM	H BK	A BONG	P. Part	- 1	RECON	TRANSPORT	HOUSE	STATE OF THE PARTY	4-1-6	THE PROPERTY OF
	WETG	Sunt to 1 Street	20	(004	1	2299	1111	1 171		A	河州	DESCRIPTION TO LESSIPERE CAP Y TIME	20231	5 5 5 5 5	Ш	22
10	Ť	Cambio a Resa.		S42-00		m	m		Ħ	Ш	Ш	*COMPANY	mil		192	
54		MICRO-INTRUSIVO (VP-2), gris a blanquecho, moderada ente meleoricada, moderada mento fracturada, debil a moderada mento resistende.		5991 SS	- 5				9			EVITE SM e1 10- month A st			00 d 00 d	**************************************
40	ı			100		Ш	Н	Н	Ш				ш			
					(Ed	Ш	Ш		4				Ш		114	
	1					Ш	Ш	Щ	Ш		٠	arme o	ш		131	22 (S) (S)
Apt .							Ш	Ш	П		ľ	STATE OF STREET	Ш		93(7	222 (0 11
		MiCRO-INTRUSIVO (YP-2), gris rojza (Ox. Fe), moderada a intensamente			24	Ш	Ш	Ш					Ш		H	272 to 18
10"		mateorizada, moderadamente fracturada, resistencia debil a moderada Clastos subsriguiares y angulates sin					Ш	Ш	Ш				Ш		Ш	27 to
		matrix fina Ensa/os:			_		Ш	Ц	Щ				Ш			Mast w
		Ensays de Permestikand NP03 LLI-01 (54 00 m + 60 50 m) K=1 63 E-05				Ш	Ш	П					Ш			
			M		(pi	Ш	Ш	Ш	9				Ш			2/42/1
						Ш	Ш	Ш	Ш				Ш	Ш		277 FEB 420
pa.							Ш	r	Ħ			MARIN ON PERM	ħ	Ť	2 0	- Alexander
			M		126	Ш	Ш	П	7			O IN	Ш			э п
0)	1	Fin de Perforacion		1975 98 1016	4		щ		Н	Н	Н				₩	
		1 at any Latitudes and L							Ш						Ш	
+1-		1-1														
ŅΤ																
10.																
-		SPT - Dresign del President Casa SPT - Bresign Conce de Pocé LUCS - Resident au y la Conquesa	oglassi	HATTING:	1200	Ш	Ш	Ш	Ш	Ш	Ш		ШШ	Ш	Ш	

LICO - Reconstruct y in Congression chalons PLT - Compo et Cergo Pentini E - Michilo de Electrolisaies

BITYISADO: CA

Fotografia 1: Caje 1/32: Profundidad de 0.00 - 3,00 m. Perforación: BH-TSF-01

Fotografía 2: Caja 2/32. Profundidad de 3:00 - 5:90 m. Perforación: BH-TSF-01

Fotografía 3: Caja 3/32: Profundidad de 5.90 - 8.95 m. Perforación: BH-TSF-01

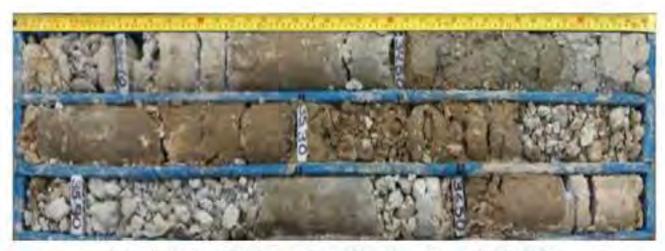
Fotografía 4: Caja 4/32: Profundidad de 8.95 - 12.00 m. Perforación: BH-TSF-01

Fotografia 5: Caja 5/32. Profundidad de 12:00 - 14:90 m. Perforación: BH-TSF-01

Fotografia 6: Caja 6/32. Profundidad de 14.90 - 17.75 m. Perforación: BH-TSF-01

Fotografía 7: Caja 7/32: Profundidad de 17.75 - 21 40 m. Perforación: BH-TSF-01

Fotografia 8: Caja 8/32. Profundidad de 21.40 - 24.60 m. Perforación: BH-TSF-01


Fotografia 9: Caja 9/32. Profundidad de 24.60 - 28.10 m. Perforación: BH-TSF-01

Fotografía 10: Caja 10/32: Profundidad de 28.10 - 31.00 m. Perforación: BH-TSF-01

Fotografia 11: Caja 11/32. Profundidad de 31.00 - 34.20 m. Perforación: BH-TSF-01

Fotografia 12: Caja 12/32: Profundidad de 34.20 - 36.80 m. Perforación: BH-TSF-01

Fotografía 13: Caja 13/32: Profundidad de 36.80 - 39.50 m Perforación: BH-TSF-01

Fotografia 14: Caja 14/32: Profundidad de 39.50 - 42.00 m. Perforación: BH-TSF-01

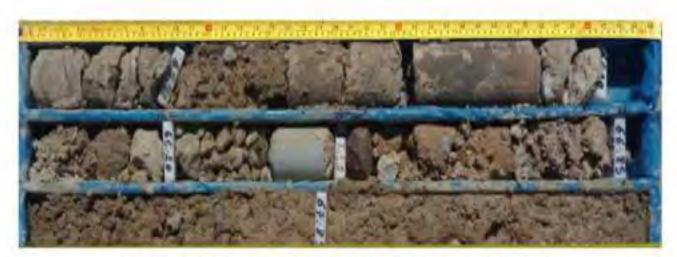
Fotografia 15: Caja 15/32: Profundidad de 42.00 - 45.55 m. Perforación: BH-TSF-01

Fotografia 16: Caja 16/32: Profundidad de 45.55 - 48.85 m. Perforación: BH-TSF-01

Fotografia 17: Caja 17/32: Profundidad de 48.55 - 51.80 m. Perforación: BH-TSF-01

Fotografia 18: Caja 18/32: Profundidad de 51.80 - 54.30 m. Perforación: BH-TSF-01

Fotografía 19: Caja 19/32: Profundidad de 54.30 - 56.85 m. Perforación: BH-TSF-01


Fotografia 20: Caja20 /32. Profundidad de 56.85 - 59.70 m. Perforación: BH-TSF-01

Fotografía 21: Caja 21/32: Profundidad de 59.70 - 62.50 m. Perforación: BH-TSF-01

Fotografía 22: Caja 22/32: Profundidad de 62.50 - 65.20 m Perforación: BH-TSF-01

Fotografia 23: Caja 23/32. Profundidad de 65/20 - 67.85 m. Perforación: BH-TSF-01

Fotografía 24: Caja 24/32: Profundidad de 67.85 - 70.75 m. Perforación: BH-TSF-01

Fotografía 25: Caja 25/32: Profundidad de 70.75 - 73.70 m Perforación: BH-TSF-01

Fotografia 26: Caja 26/32: Profundidad de 73.70 - 76.35 m. Perforación: BH-TSF-01

Fotografia 27. Caja 27/32: Profundidad de 76.35 - 79.05 m. Perforación: BH-TSF-01

Fotografía 28: Caja 28/32: Profundidad de 79.05 - 81.65 m Perforación: BH-TSF-01

Fotografia 29: Caja 29/32: Profundidad de 81.85: 84.00 m. Perforación: BH-TSF-01

Fotografía 30: Caja 30/32: Profundidad de 84.00 - 88,50 m. Perforación: BH-TSF-01

Fotografía 31: Caja 31/32: Profundidad de 88:50 - 91:50 m. Perforación: BH-TSF-01

Fotografía 32: Caja 32/32. Profundidad de 91.50 - 93.80 m. Perforación: BH-TSF-01

Fotografia 1: Caja 1/22: Profundidad de 0.00 - 2.70 m. Perforación: BH-TSF-05

Fotografia 2: Caja 2/22. Profundidad de 2.70 - 5.35 m. Perforación: BH-TSF-05

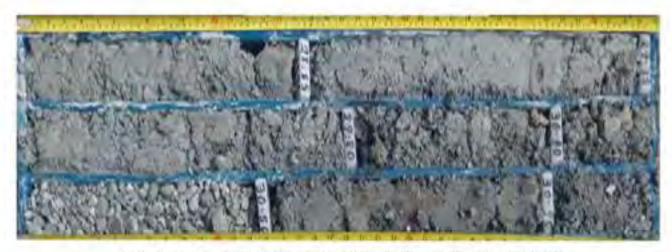
Fotografia 3: Caja3 /22: Profundidad de 5.35 - 7.80 m. Perforación: BH-TSF-05

Fotografía 4: Caja 4/22: Profundidad de 7.80 - 10.55 m. Perforación: BH-TSF-05

Fotografia 5: Caja 5/22: Profundidad de 10.55 - 13.25 m. Perforación: BH-TSF-05

Fotografia 6: Caja 6/22: Profundidad de 13.25 - 17.40 m. Perforación: BH-TSF-05

Fotografía 7: Caje 7/22: Profundidad de 17:40 - 20:35 m. Perforación: BH-TSF-05


Fotografia 8: Caja 8/22. Profundidad de 20.35 - 23.10 m. Perforación: BH-TSF-05

Fotografía 9: Caja 9/22. Profundidad de 23.10 - 25.90 m. Perforación: BH-TSF-05

Fotografía 10: Caja 10/22: Profundidad de 25.90 - 28.45 m. Perforación: BH-TSF-05

Fotografia 11: Caja 11/22: Profundidad de 28.45 - 31.00 m. Perforación: BH-TSF-05

Fotografía 12: Caja 12/22: Profundidad de 31.00 - 33.60 m. Perforación: BH-TSF-05

Fotografía 13: Caja 13/22: Profundidad de 33.60 - 36.20 m. Perforación: BH-TSF-05

Fotografia 14: Caja 14/22: Profundidad de 36.20 - 38.75 m. Perforación: BH-TSF-05

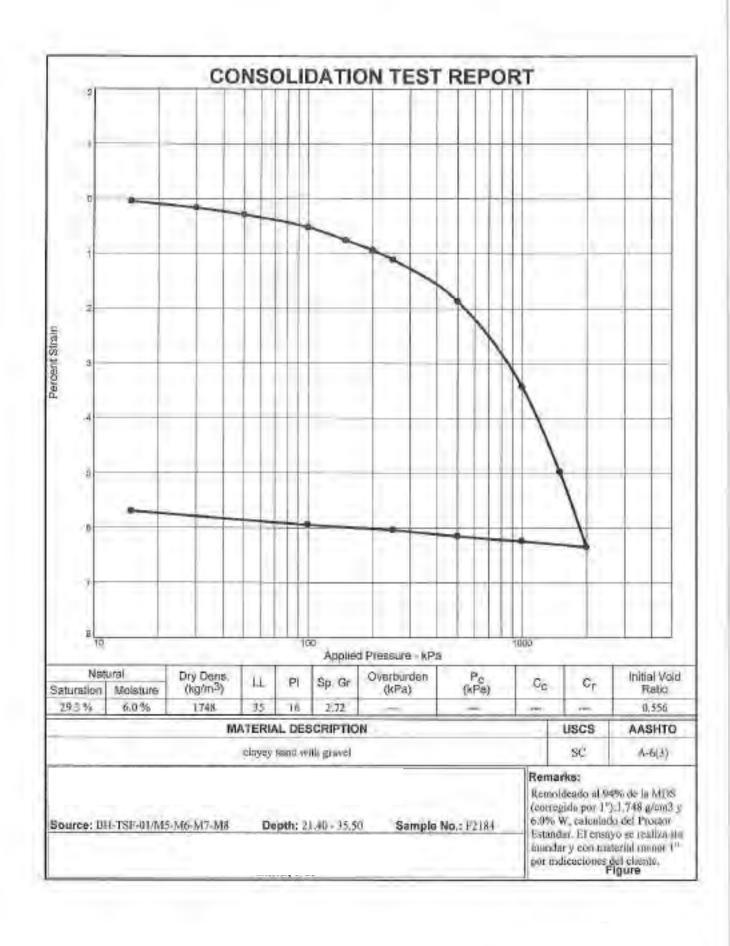
Fotografía 15: Caja 15/22: Profundidad de 38.75 -41.40 m. Perforación: BH-TSF-05

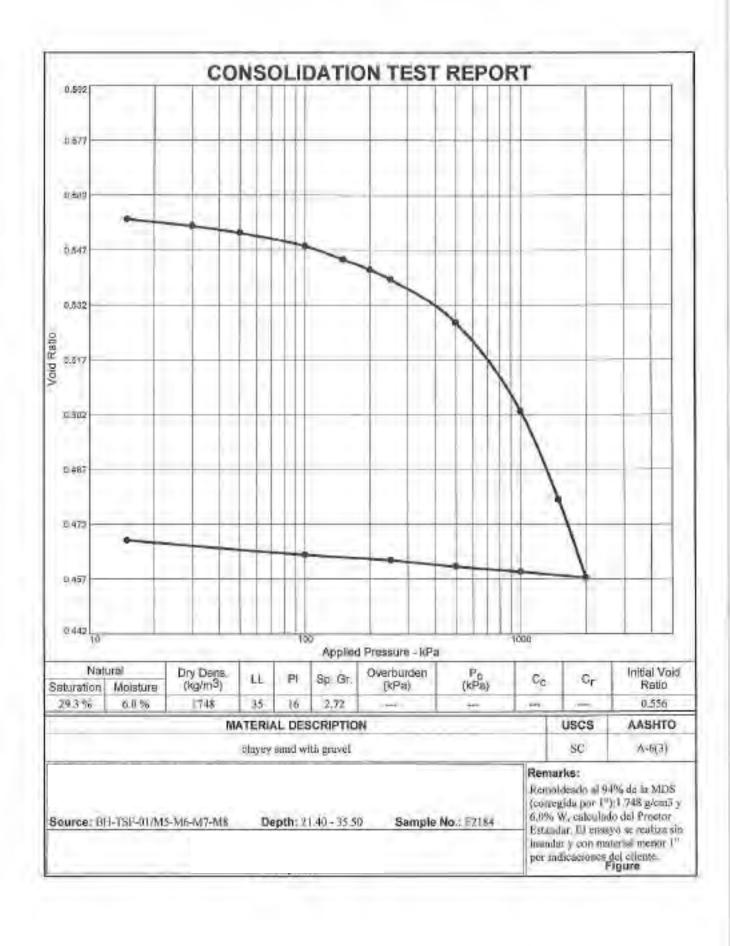
Fotografia 16: Caja 16/22: Profundidad de 41,40 - 43.70 m. Perforación: BH-TSF-05

Fotografia 17: Caja 17/22. Profundidad de 43.70 - 46.20 m. Perforación: BH-TSF-05.

Fotografía 18: Caja 18/22: Profundidad de 46.20 - 49.00 m. Perforación: BH-TSF-05

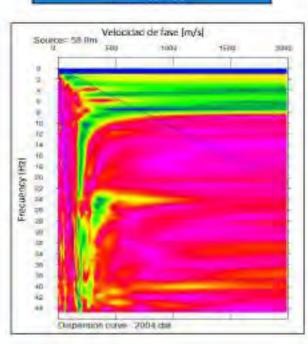
Fotografía 19: Caja 19/22: Profundidad de 49:00 - 51:80 m. Perforación: BH-TSF-05


Fotografia 20: Caja 20/22. Profundidad de 51.80 - 54.40 m. Perforación: BH-TSF-05.

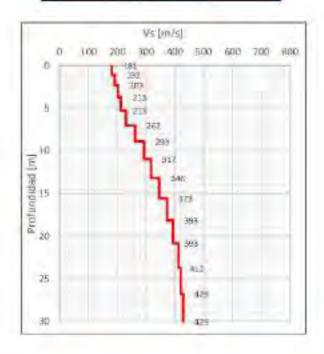


Fotografía 21: Caja 21/22: Profundidad de 54.40 - 57.30 m. Perforación. BH-TSF-05

Fotografía 22: Caja 22/22: Profundidad de 57.30 - 60.00 m. Perforación: BH-TSF-05



Estudios Geofísicos de Refracción Sismica y MASW


MASW-TSF-11

Ubicación:	Sistema de coordenadas.	UTM-WG584-178	Realizado:	8.C
Zona:	Coordenadas		Revisado	GC

Curvanieruspersión

Perfital inclinant sound

Committee West named

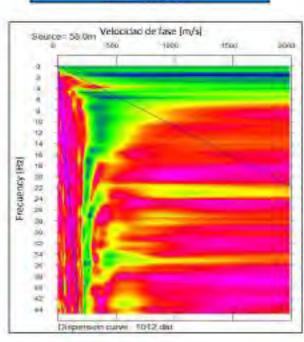
17 (m)	Vs [m/s]	d/Vs
1,1	181	0.00591
12	192	0.00645
1.4	203	0.00890
1.6	213	0.00734
1.7	231	0.00750
1.9	262	0.00722
21	293	0.00704
22	317	0.00703
2.4	346	0.00692
2.6	373	0.00685
27	393	0.00692
29	412	0,00699
3.0	421	0.00724
3.2	429	0.00749
Σ(d) 30.0	Σ(d/Vs)	0.09779

'd Espesor

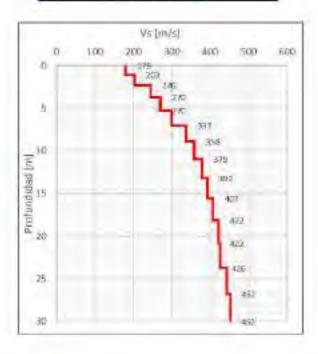
Casticación del Sito (ISC 2012)	
Tipo de Sueio	Nombre del Suelo
D.	Suelo Rigido

Classification del Sigo (E 0XX-2016)	
Clasificación	Perfit del Suelo
Suelos Intermedios	S2

*V530	007
[m/s]	307


*Vs30: Velocidad de ords de corte premedio pera los primeros 30es de profundidad

Estudios Geofísicos de Refracción Sismica y MASW


MASW-TSF-13

Ubicación:	Sistema de coordenadas.	UTM-WG584-178	Realizado:	8.C
Zona:	Coordenadas	The state of the s	Revisado:	GC

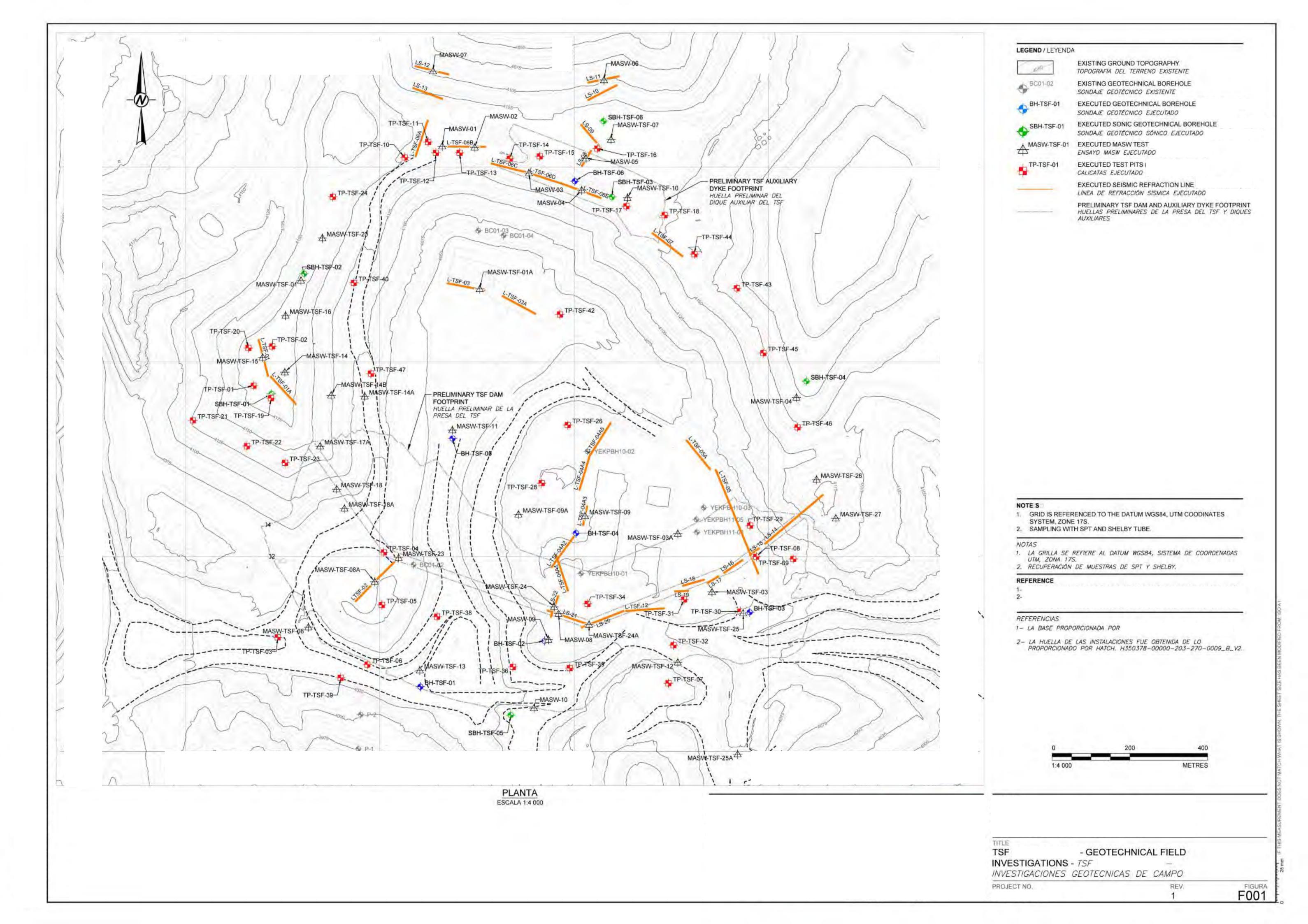
Curva de un persión

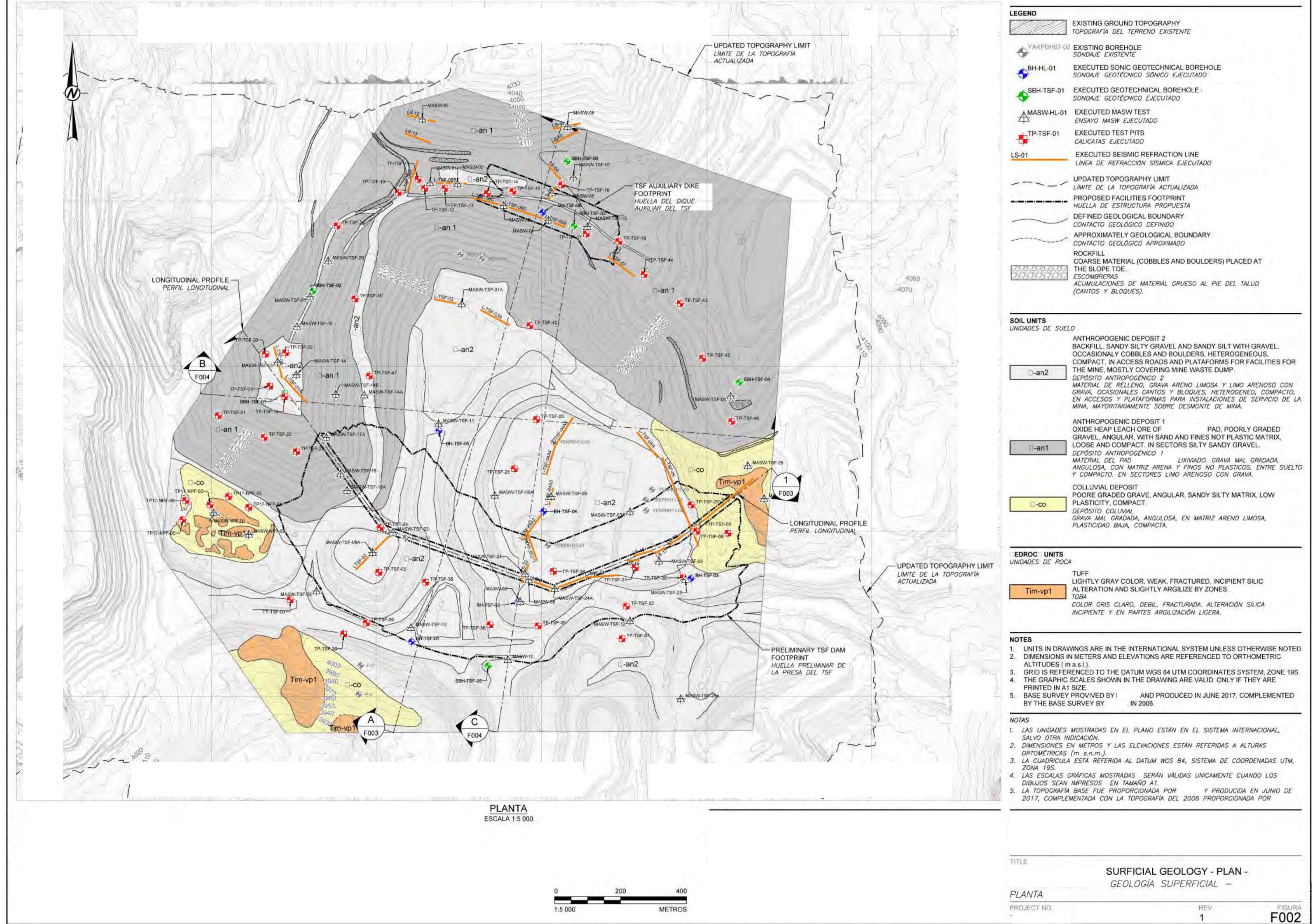
Perficultation and processing

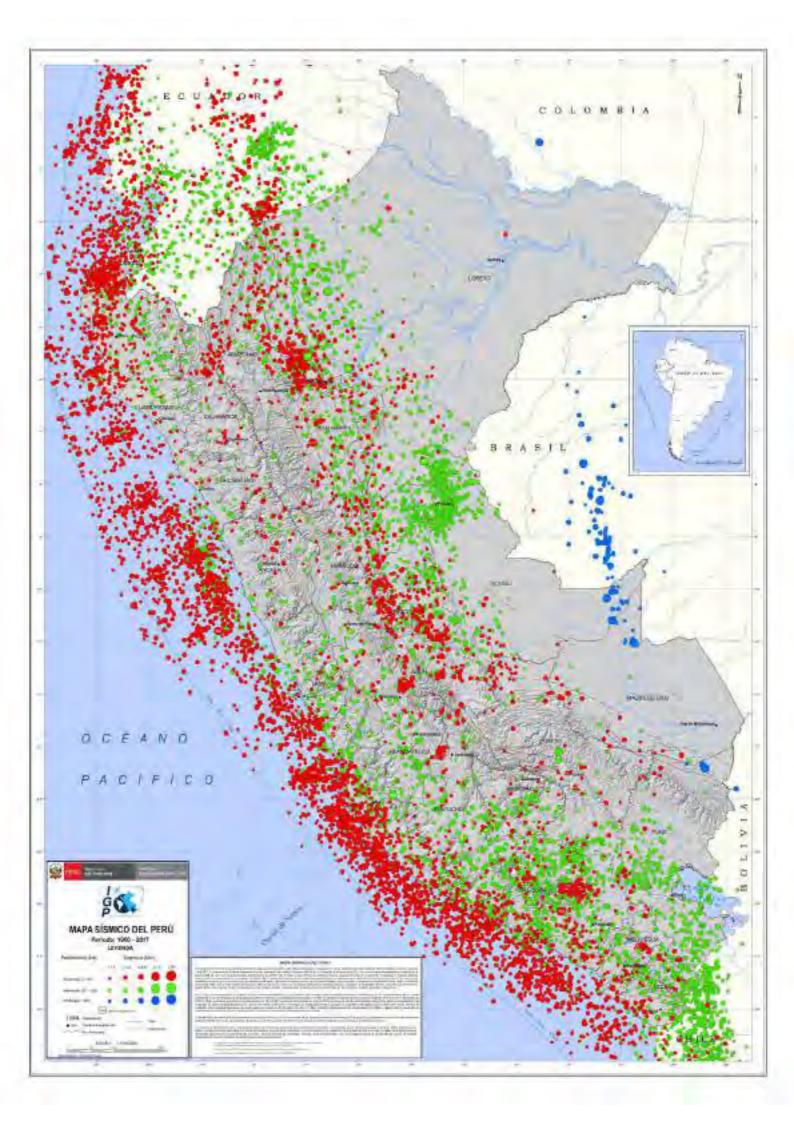
Comins-Renower

at (m)	Vs [m/s]	d/Vs
1,1	179	0.00599
12	203	0.00610
1.4	246	0.00571
1.6	270	0.00579
1.7	299	0.00578
1.9	337	0.00563
21	358	0.00575
22	379	0.00588
2.4	392	0.00610
2.6	407	0.00627
27	422	0.00645
29	426	0.00677
3.0	443.	0.00688
3.2	452	0.00711
Σ(d) 30.0	Σ(d/Vs)	0.08620

"d Espesor


Casificación del Sino (ISC, 2012)		
Tipo de Suelo	Nombre del Suelo	
D.	Suelo Rigido	


Classication del Siso (E 000-2016)	
Clasificación	Perfit del Suelo
Suelos Intermedios	S2


*V530	348
[m/s]	0.40

*Vs30: Velocidad de orda de corte premedio para los primeros 30m de profundidad

