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académico de Maǵıster en F́ısica que presenta:

Rodrigo Miguel Rivadeneira Vizcardo

Asesor:

Desiderio Augusto Vásquez Rodŕıguez
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Abstract

Reaction fronts of chemical activity propagate with velocities that depend on
the angle of inclination of the container. Buoyancy forces due to changes in
chemical composition across the front will affect the velocity and shape of the
front. If an external Poiseuille flow is imposed, the conditions of propagation
would also change depending on the strength of this flow. Fronts in vertical
tubes can change from flat to nonaxisymmetric, and then to axisymmetric
as the density gradient is increased. Imposing a Poiseuille flow or tilting the
tube changes how this sequence takes place. In this paper, we study the
combined effects of convection and forced Poiseuille flow in inclined tubes,
solving numerically the reaction-diffusion equations coupled to the Navier-
Stokes equations.

Keywords: Nonlinear reaction front, Chemical autocatalysis, Chemical
waves, Convection, Advective flows
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Chapter 1

Introduction

The interaction of molecular diffusion and an autocatalytic reaction leads to
the propagation of fronts of chemical activity [1]. If the propagation takes
place in a fluid, fluid motion can alter the speed and shape of the reaction
front [2]. Changes in chemical composition across the front may lead to
density gradients, which may generate convective flow driven by buoyancy
in a gravity field [3, 4, 5]. The concentration gradients can also generate
Marangoni flows due to changes in surface tension [6, 7, 8]. Experiments
in microgravity studied the effects of fluid flow in chemical reaction fronts
due to Marangoni convection [9]. Theoretical work has analyzed the effects
of fluid flows in reactions fronts due to compositional changes [10, 11, 12,
13, 14, 15, 16]. In other cases, the fronts propagate in an external fluid
velocity field that affects their propagation. Such is the case of fronts in the
Belousov-Zhabotinskii reaction propagating in a vortex chain flow [17, 18],
or fronts in the iodate-arsenous acid (IAA) reaction propagating in disorder
flows [19, 20, 21].

Experiments in the chlorite-thiosulfate reaction inside cylindrical tubes
showed that the speed of propagation depends on the angle of inclination,
with the speed becoming a maximum at an angle away from the vertical
direction [22]. Similar results were found for fronts in the IAA reaction in
Hele-Shaw cells [23]. The speed and shape of autocatalytic reaction fronts
are modified by imposing a Poiseuille flow [24, 25, 26, 27]. Fronts in the IAA
reaction propagating upward in vertical cylindrical tubes showed different
speeds and shapes due to convection. As the diameter of the tube is increased,
the shape of the fronts change from flat to nonaxisymmetric. Increasing
the diameter further results in fronts with an axisymmetric shape [3, 28,
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29, 30]. In this work, we will study the combined effects of an imposed
Poiseuille flow and gravity driven flow in inclined two-dimensional narrow
domains. We will analyze how the advective fluid flow alters the transition
between fronts of different symmetry. A previous work showed how the
transition to nonaxisymmetric fronts is affected by a Poiseuille flow [31] for
vertical propagation. Here we consider an angle of inclination and larger
fluid parameters to analyze a second transition in the symmetry of the front.
These transitions take place at different parameter values (such as density
gradient) if the tube is horizontal, or inclined at a certain angle.
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Chapter 2

Equations of motion

The variables describing the system correspond to chemical concentrations of
the reacted and unreacted fluids together with the velocity field. We use the
Navier-Stokes equations in the Boussinesq approximation to describe fluid
motion, therefore the fluid velocity evolves as

∂V⃗

∂t
+ (V⃗ · ∇)V⃗ =

1

ρ0
∇P + ν∇2V⃗ +

ρ

ρ0
g⃗. (2.1)

Here P is the pressure, ρ is the mass density of the fluid, ρ0 is the mass
density of the unreacted fluid, ν is the kinematic viscosity, and g⃗ is the accel-
eration of gravity. In the Boussinesq approximation, the change of density
only modifies the large gravity term, while the continuity equation takes the
incompressible form

∇ · V⃗ = 0. (2.2)

A single variable a describes the chemical concentration of the fluid, with
a = a0 representing the concentration of the unreacted fluid. As the front
propagates, a cubic autocatalytic reaction depletes this concentration, with
a = 0 becoming the concentration of the reacted fluid. The advection-
reaction-diffusion equation

∂a

∂t
+ V⃗ · ∇a = D∇2a− kca(a0 − a)2 (2.3)

describes the evolution of the front, where kc being a rate coefficient, and D
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is the coefficient of molecular diffusivity. This equation was applied to fronts
observed in experiments in the IAA reaction.

We will solve the equations in a narrow two-dimensional domain resem-
bling a flat tube. The line that runs through the middle of the tube, parallel
to its length, will correspond to the z-axis in Cartesian coordinates, with the
x-axis perpendicular to it. In an inclined tube, the z-axis makes an angle θ
with the vertical direction. The angle θ = 0 corresponds to a vertical tube,
therefore in this system of coordinates the acceleration of gravity is written
as g⃗ = g sin θx̂ − g cos θẑ, where x̂ and ẑ are unit vectors pointing in the
direction of the corresponding axes.

The continuity equation allows us to write the fluid equations in terms of
a stream function ψ that provides the components of the velocity V⃗ :

Vx =
∂ψ

∂z
, Vz = −∂ψ

∂x
. (2.4)

Taking the curl of the Navier-Stokes equation Eq. (2.1) we arrive to

∂ω

∂t
=
∂(ψ, ω)

∂(x, z)
+ ν∇2ω +

g cos θ

ρ0

∂ρ

∂x
+
g sin θ

ρ0

∂ρ

∂z
, (2.5)

where we defined the vorticity ω as

ω = ∇2ψ . (2.6)

For two functions f1 and f2 we defined

∂(f1, f2)

∂(x, z)
=
∂f1
∂x

∂f2
∂z

− ∂f1
∂z

∂f2
∂x

. (2.7)

We write the equations of motion in dimensionless form using tch =
(kca

2
0)

−1 as unit of time, L = (Dtch)
1/2 as unit of length, D as unit of the

stream function, D/L2 as unit of the vorticity, the dimensionless concentra-
tion c = a/a0,

∂ω

∂t
=
∂(ψ, ω)

∂(x, z)
+ Sc∇2ω +RaSc

(
cos θ

∂c

∂x
+ sin θ

∂c

∂z

)
(2.8)

and

∂c

∂t
=
∂(ψ, c)

∂(x, z)
+∇2c− c(1− c)2 . (2.9)
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We defined a dimensionless Rayleigh number

Ra =
gδL3

νD
(2.10)

and a dimensionless Schmidt number

Sc =
ν

D
. (2.11)

The parameter δ represents the fractional density difference between the
unreacted fluid and the reacted fluid. We assumed that the density varies
linearly with the concentration c. For fronts in the IAA reaction, the Schmidt
number is large, we will use Eq. (2.8) in the limit of infinite Schmidt number
[16]

∇2ω +Ra

(
cos θ

∂c

∂x
+ sin θ

∂c

∂z

)
= 0 . (2.12)

We study the effects of a Poiseuille flow imposed on a reaction front
combined with gravity driven convection. To this end we write the fluid
velocity as V⃗ = V⃗p + V⃗ ′. Here the Poiseuille flow corresponds to V⃗p(x, z) =
6V̄ x(a − x)/a2ẑ, with V̄ being the average speed. We can use a stream
function representing the Poiseuille flow velocity, and another representing
the remaining flow V⃗ ′, then substitute the total stream function into Eq.
(2.12), which is linear. This results in an identical equation, applied only

to the flow V⃗ ′ [31]. With these changes, we solve Eq. (2.12) to obtain the
portion of the flow driven by gravity and then adding the Poiseuille flow to
find the total flow in Eq. (2.8).
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Chapter 3

Numerical Methods

The time evolution of the system is defined by the advection-reaction-diffusion
[Eq. (2.9)], coupled to the Stokes equation [Eq. (2.10)]. We use a finite dif-
ference method on a Nx × Nz rectangular mesh to approximate the spatial
derivatives of all variables, while finite differences in time provide the values
after a time step ∆t following a simple Euler method. The discrete set of
variables chij corresponds to the value of the concentration c at the mesh point
at xi, zj for the discrete time th. We obtain the values at the boundaries from
the no flow boundary conditions for c. Using the Euler method on Eq. (2.9),
we obtain evolution for the concentrations at the time th+1 from the known
values of the variables at time th.

ch+1
i,j = chi,j +∆t

[
(ψh

i+1,j − ψh
i−1,j)(c

h
i,j+1 − chi,j−1)

4∆x∆z

−
(chi+1,j − chi−1,j)(ψ

h
i,j+1 − ψh

i,j−1)

4∆x∆z
+
chi+1,j − 2chi,j + chi−1,j

(∆x)2

+
chi,j+1 − 2chi,j + chi,j−1

(∆z)2
−chi,j(1− chi,j)

2 − V p
z

chi,j+1 − chi,j−1

2∆z

]
. (3.1)

Once we obtain the values of the concentration at the time step th+1,
we proceed to solve for the vorticity and stream function at that time step.
Replacing the vorticity from Eq. (2.5) into Eq. (2.8), we arrive into a double-
Poisson equation for the stream function.
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∇2∇2ψ = −Ra

(
cos θ

∂c

∂x
+ sin θ

∂c

∂z

)
≡ F (x, z) . (3.2)

This equation indicates that the stream function is fully determined at
one instant by the values of the concentration c, leading to the function F
through its derivatives. The function F is zero away from the front since the
concentration c is constant in that region. Therefore we can introduce in Eq.
(3.2) a couple of Fourier sine series along the z direction:

ψ(x, z) =
∑
n

ψn(x) sin(knz) (3.3)

F (x, z) =
∑
n

Fn(x) sin(knz) , (3.4)

Making the coefficients of each sine function equal to each other in both
sides of the equation, we find a set of Nz independent ordinary differential
equations for each index n

d4ψn

dx4
− 2k2n

d2ψn

dx2
+ k4n = Fn(x) . (3.5)

To solve this set of equations, we first need to compute the functions Fn(x)
using an orthogonal projection of F (x, z) over the corresponding sine func-
tions. Since the values of the concentration c are given on a rectangular
mesh, we can only obtain Fn at the coordinates xi. The orthogonal pro-
jection over the sine functions is carried out using a discrete fast Fourier
algorithm with function F(xi, zj) using the points on the mesh [37]. Given
that there is Nz discrete points in the z direction, we will have n=1,2,....Nz

different coefficients Fn.
Each equation in Eqs. (3.5) has the form

d4ϕ

dx4
− 2k2

d2ϕ

dx2
+ k4 = F̃ (x) . (3.6)

In this equation, we apply finite difference approximations for the derivatives
using the mesh points in the x direction. This results in a set of Nx − 4
independent finite difference equation on the index m
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ϕm−2 − 4ϕm−1 + 6ϕm − 4ϕm+1 + ϕm+2

(∆x)4

− 2k2
ϕm−1 − 2ϕm + ϕm+1

(∆x)2
+ k4ϕm = F̃m ,

with m = 3, ...Nx − 2. (3.7)

The boundary conditions at the walls provide the values of ϕ near the
boundaries. Since the stream function vanishes at the walls we have ϕ1 =
ϕNx = 0. The normal derivative of the stream function vanishes which allow
us to determine further conditions. Using a Taylor expansion up to order
(∆x)2 in the left wall, we have

ϕ2 = ϕ1 +
dϕ1

dx
(∆x) +

1

2

d2ϕ1

dx2
(∆x)2 + o(∆x3) . (3.8)

This is simplified given that the stream function and its derivative vanish
at the wall, corresponding to ϕ = dϕ/dx = 0. The second derivative at wall
can be replaced with the second derivative at next point to the right (i=2)
while keeping the same order of the approximation. After using the finite
difference expression for this second derivative, we arrive to the condition
ϕ2=ϕ3/4. Each equation from the set Eq. (3.7) involves the four nearest
neighbors to a location m. Consequently, each equation can be written as

γϕm−2 − βϕm−1 + αϕm − βϕm+1 + γϕm+2 = F̃ (3.9)

with

α =
6

(∆x)4
+

4k2

(∆x)2
+ k4 (3.10)

β =
4

(∆x)4
+

2k2

(∆x)2
(3.11)

γ =
1

(∆x)4
. (3.12)

The previous linear system of equations can be written in terms of the cor-
responding coefficients using a pentadiagonal matrix
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b1 c1 f1 0 0 .
a2 b2 c2 f2 0 .
e3 a3 b3 c3 f3 .
0 e4 a4 . . . .
0 0 . . . . .

ei ai bi ci fi
. . . . .

eN−1 aN−1 bN−1 cN−1

eN aN bN


·



g1
g2
g3
.
.
.
.

gN−1

gN


=



d1
d2
d3
.
.
.
.

dN−1

dN


(3.13)

with

b1 = bN = α− β

4

a2 = cN−1 =
γ

4
− β .

The remaining constants for all other indices are

bi = α ,

ai = ci = −β ,
ei = fi = γ . (3.14)

In the system of equations in matrix form defined by Eq. (3.13), the un-
knowns correspond to gi = ϕi+2, and the equations are equal to di = F̃i+2.
The system can be solved using a modified Thomas algorithm, which provides
the results after two forward and backward sweeps [32].
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Chapter 4

Results

4.1 Vertical tube

We set a propagating front in a two-dimensional vertical tube using an initial
concentration of unreacted fluid (c = 1) in the upper half of the tube, a
concentration of reacted fluid (c = 0) in the lower half, adding small random
perturbations near the interface. The evolution results in a moving interface
separating fluids of different densities. For tubes of small width, the front
becomes flat without convection even if the less dense fluid is underneath.
This solution corresponds to the analytical solution of the one-dimensional
reaction-diffusion equation [34] showing a dimensionless speed equal to 1/

√
2.

The analytical result assumes an infinite domain where the front can travel.
Since our computational domain is finite, we shift the front backward after
it travels a short distance, adding unreacted fluid far away from the front.
In this manner, we can study the front propagation indefinitely. Increasing
the Rayleigh number results in a transition to convection as the flat front
looses stability to buoyancy [36]. Near the transition to convection the front
takes a steady non-axisymmetric shape that propagates with a constant speed
higher than the flat front speed [35]. The shape of the front is determined
by a single convective roll propagating with the front as shown in Fig. 4.1a.
Increasing the Rayleigh number further , we found a new axisymmetric state
that consists of two convective rolls as shown in Fig. 4.1b. In this case, fluid
rises through the center of the tube and falls along the walls determining the
shape of the front. We will study the effects of an external Poiseuille flow
imposed on these states.
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(b)

Figure 4.1: Chemical concentrations in reaction fronts with convection. The
arrows indicate the direction of fluid motion. In the nonaxisymmetric front
(a) the fluid rises in one side of the tube and falls in the opposite side. For
the axisymmetric front (b) the fluid rises near the center and falls along both
sides.

We calculate the speed of the front as a function of Rayleigh number
for different values of the average speed of a Poiseuille flow V̄ . Near the
transition to convection (without Poiseuille flow) the front speed increases as
we increase the Rayleigh number, as shown in Fig. 4.2. The front velocity
keeps increasing with larger Rayleigh numbers until it reaches a maximum.
The shape of the front remains non-axisymmetric until it reaches an Ra
value where the speed decreases abruptly. At this point, the front takes an
axisymmetric shape. The type of convection also determines the front speed,
since near the transition we can have higher speeds for non-axisymmetric
fronts, even if the Rayleigh numbers are smaller. In the case of axisymmetric
fronts, larger values of the Rayleigh number lead to higher front velocities.

The addition of an advective Poiseuille flow modifies the shape and the
speed of convective reaction fronts. We first consider a supportive flow mov-
ing in the same direction as the front without Poiseuille flow. In our case
we set this front to propagate in the positive z direction, with the average
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Figure 4.2: The dimensionless front speed as a function of the Rayleigh
number for different values of the Poiseuille flow. The + signs correspond to
V̄=0.0, the squares correspond to V̄=0.1, the triangles correspond to V̄=0.2
and the rhombuses correspond to V̄=0.3.

velocity of the Poiseuille flow positive. Flat fronts in narrow tubes acquire
a slight axisymmetric shape caused by the parabolic profile of the Poiseuille
flow. In these cases, gravity driven convection sets in due to a horizontal
density gradient. The advective Poiseuille flow plus convection enhances the
speed as shown in Fig. 4.2. Near Ra=0, the fronts with a Pouiseuille flow
increase slightly their speed as a function of the Rayleigh number, whereas
without the flow all flat fronts have the same constant speed. If the flow
is not too strong, we still observe a transition to a nonaxisymmetric front,
however it takes place at higher values of the Rayleigh number. This speed
reaches a maximum and decreases while the front remains nonaxisymmetric.
The subsequent transition to axisymmetric fronts now occurs at a smaller
value of Ra, thus narrowing the range where nonaxisymmetric fronts can
appear.

This range disappears completely for a Poiseuille flow with V̄=0.2. In
this case there is no transition to a nonaxisymmetric front regardless of the
Rayleigh number. Nonaxisymmetric fronts with a supportive flow can occur
only for small V̄ on a narrower range of Rayleigh numbers.
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In the case of adverse Poiseuille flows in the opposite direction (V̄ <
0), we find that nonaxisymmetric fronts always take place for the velocities
studied (V̄ ≥ -0.5). For Rayleigh numbers near zero the front is almost flat,
but increasing V̄ in the negative direction results in nonaxisymmetric fronts
[Fig. 4.3]. In the case of V̄=-0.1, we find a transition from the near flat
front to a nonaxisymmetric front as we increase the Rayleigh number. In
contrast, for V̄=-0.2 and -0.3, the initial front is already nonaxisymmetric,
increasing its speed as we increase Ra. As the Rayleigh number is increased
further, a transition to an axisymmetric front takes place where the front
speed decreases abruptly [Fig. 4.3]. We find that the transition takes place
at larger Rayleigh numbers for stronger flows in the opposite direction. In
these cases, the net result of using an adverse axisymmetric Poiseuille flow
is to strengthen the nonaxisymmetric state.

The front speed changes with the average velocity of the Poiseuille flow,
however it does not always increases with supportive flows, nor decreases
with adverse flows. In the case of Rayleigh numbers close to the transition
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Figure 4.4: The front speed as a function of V̄ , the average velocity of the
Poiseuille flow. At V̄ =0 the front is nonaxisymmetric (Ra=0.6). A small
supportive speed (V̄ > 0) diminishes the front speed, while a small adverse
speed (V̄ < 0) increases the front speed. At larger values of the flow speed,
the change of velocity follows the direction of V̄ .

to axisymmetric fronts, we find that the change of speed is opposite to the
direction of the Poiseuille flow. In Fig. 4.4 we display the speed of the front
as a function of the average flow speed (V̄ ) keeping the Rayleigh number
constant (Ra=0.6). For V̄=0, the front is a convective axisymmetric front
traveling faster than convectionless flat fronts. As we introduce a supportive
flow, increasing V̄ leads to a decrease in the front velocity. Consequently, as
we push the front in the same direction, the front slows down. This behav-
ior takes place until V̄=0.028, where the front begins to increase its speed
monotonically. At that point, the front changes from non-axisymmetric to
axisymmetric. On the other hand, if we start to push against the initial front,
we observe that the front speed increases until it reaches a maximum value
near V̄=-0.11, it then decreases as the strength of the adverse flow increases.
This behavior takes place for Rayleigh numbers close to the transition be-
tween convective fronts.
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Figure 4.5: Representation of the chemical concentration (top) and stream
function (bottom) for Ra = 0.65 in a horizontal tube.

4.2 Horizontal tube

Fronts in horizontal tubes generate horizontal concentration gradients, con-
sequently convection will always be present as long as the Rayleigh number
is nonzero. In Fig. 4.5 we show a nonaxisymmetric reaction front due to
single convective roll. The shape remains steady as it travels along the tube
with constant speed. We notice that near the interface the less dense reacted
fluid is above the unreacted fluid due to buoyancy, as expected. This speed
is higher than the reaction-diffusion front due to convection. Increasing the
Rayleigh number increases the strength of the convective flow, resulting in
higher front speeds (Fig. 4.6). As we introduce a supportive Poiseuille flow,
the speed of the front increases, maintaining a nonaxisymetric shape (Fig.
4.6). For adverse Poiseuille flows, we still observe a nonaxisymmetric front,
but the speed of the front decreases. In vertical tubes near a symmetry
transition, we find situations where the speed increases for adverse Poiseuille
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flows. This transition does not take place in horizontal tubes, having the
speed of the front decreasing with adverse flows.

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0  0.4  0.8  1.2

S
p
e
e

d

Ra

v=0.0  
v=0.1 
v=0.2 

v=-0.1 
v=-0.2 

Figure 4.6: The dimensionless front speed as a function of the Rayleigh num-
ber for different average velocities of the Poiseuille flow. The tube is com-
pletely horizontal. The crosses correspond to V̄=0.0, the squares correspond
to V̄=0.1, the triangles correspond to V̄=0.2, the rhombuses correspond to
V̄=-0.1 and the asterisks correspond to V̄=-0.2.

4.3 Inclined tube

The front shape and speed change as we tilt the tube away from the vertical
direction. We show in Fig. 4.7 the change of speed as a function of tilt
angle when the Rayleigh number is Ra=0.4. In this figure, we compare the
effect of the angle for fronts traveling under different Poiseuille flows. For
vertical tubes, these fronts are nonaxisymmetric fronts, with their velocity
varied in the same direction of the applied flow: a supportive flow increases
the speed, while an adverse flow reduces it. As we tilt the tube, the front
speed increases, reaching a maximum value of 43.2 degrees, before it starts
to decrease. This result is consistent with previous studies at different con-
ditions showing maximum speed for angles away from the vertical direction
[22]. This effect is related to the Boycott effect observed in sedimentation,
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Figure 4.7: The front speed as a function of the angle from the vertical
direction in the presence of Poiseuille flow. The front in the vertical direction
is nonaxisymmetric with Ra=0.4. Fronts are initiated from a flat chemical
interface with small random perturbations.

where the process takes place more rapidly in an inclined tube [33]. We still
find a similar behavior for fronts with a Poiseuille flow. The angle for max-
imum speed changes with the flow, for V̄=-0.1 it is 42.5 degrees, compared
to 44.5 degrees for V̄=0.2, showing the influence of supportive flow. As we
move from vertical to horizontal tubes, the change in front velocities is larger
for the same Poiseuille flow. In Fig. 4.7, we notice that the front speeds are
more spread apart in the horizontal than in the vertical direction, thus the
effect of the external flow is larger if the tube is horizontal. Gravity plays a
more important role in the vertical propagation since the velocities are closer
to each other for different external flows. For a higher Rayleigh number
(Ra=0.8), the shape of fronts in the vertical direction exhibit a maximum
away from the walls, a consequence of two convective rolls. The external
Poiseuille flow changes the velocities in the vertical direction, however as the
tube is tilted, the front velocities become closer for the different flows. In
Fig. 4.8, we observe that in each curve, the speed increases as we increase the
angle, but each curve presents an inflection point. The front speed reaches a
maximum, as in the previous case, and then decreases as the front becomes
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Figure 4.8: The front speed as a function of the angle from the vertical di-
rection in the presence of Poiseuille flow. The front in the vertical direction
is axisymmetric with Ra=0.8. Fronts are initiated from a flat chemical in-
terface with small random perturbations.

horizontal. The reason for the inflection point is because a front in vertical
tubes without an external flow is axisymmetric, while in an horizontal tube is
non-axisymmetric. In the previous case (Ra=0.4), the front was nonaxisym-
metric even in vertical tubes. The angle for maximum speed corresponds to
41.4 degrees for fronts without external flows. Fronts in a Poiseuille flow also
exhibit a maximum speed, but the angle changes slightly with the flow. It
corresponds to 41 degrees for an adverse flow with V̄=-0.1, and 42.2 degrees
for a supportive flow with V̄=0.2. As in the previous case, the maximum
speed takes place at larger angles for higher supportive flows.

In the case of Ra=0.4, we have a non-axisymmetric front propagating
upward in a vertical tube. In this case, there are two identical mirror-like
solutions, however as we tilt the tube, we find that these solutions separate
acquiring different speeds. Fig. 4.9 shows a region of bistability between
both solutions, one solution increases its speed with tilting angle, while the
other decreases. Eventually, the front with lower solution looses stability,
while the other remains stable. Applying a Poiseuille flow in these tubes
allows a larger region of bistability if the flow is adverse to the direction of
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propagation, while it reduces the region of bistability in the other front.
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Figure 4.9: The speed of the front as a function of tilt angle. The system
allows two mirror nonaxisymmetric states with the same velocity (Ra=0.4).
As the tube is tilted, they adquire different speeds for small angles. Larger
angles allow only one state.

We investigate the front speed as function of Rayleigh number for fixed
Poiseuille flows in inclined tubes. In Fig. 4.10 we show the speed for steady
fronts initiated from a flat interface with small random perturbations. With-
out an external flow (Fig. 4.10b), the front velocity increases as the Rayleigh
number increases, reaching a maximum near the transition from axisymmet-
ric to non-axisymmetric fronts. After the transition, the front increases its
velocity once again. The same behavior is observed for slightly inclined tubes,
but with higher speeds at each Rayleigh number. We also notice that the
previous transition between fronts is smoothed, since in tilted tubes all fronts
have a non-axisymmetric component. The local minimum near the transi-
tion gets shifted to the right. At larger Rayleigh numbers, the dependence
between the speed and the Rayleigh number is almost linear. Imposing a
Poiseuille flow changes the speed dependence with Ra according to whether
the flow is supportive or adverse to the front. The local minimum in each
curve takes place at a lower value of Ra for supportive flows, where the op-
posite is true in adverse flows. For values of Ra near zero, and values beyond
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the transition, the front speed is larger for the supportive flow. Near the
transition it is not always the case, due to the shift of the local minimum.

 0.7

 1.2

 1.7

 2.2

 0  0.4  0.8  1.2

S
p

e
e

d

Ra

0°
1°
2°
4°

(a) V̄ = 0.1

 0.6

 1

 1.4

 1.8

 2.2

 0  0.4  0.8  1.2

S
p

e
e

d

Ra

0°
1°
2°
4°

(b) V̄ = 0.0

 0.5

 1

 1.5

 2

 0  0.4  0.8  1.2

S
p

e
e

d

Ra

0°
1°
2°
4°

(c) V̄ = −0.1

Figure 4.10: The speed of the front as a function of the Rayleigh number for
different tilt positions of the two dimensional tube. The crosses correspond
to a vertical position of the tube, the squares correspond to a 1 degree tilt
from the vertical position, the triangles correspond to a 2 degree tilt from
the vertical position and the rhombuses correspond to a 4 degree tilt from
the vertical position.

21



Chapter 5

Conclusions

In this paper we studied the effects of fluid flow in the propagation of auto-
catalytic reaction fronts. We analyzed the effects of convective fluid motion
in a two-dimensional domain using a fast Fourier algorithm and a modified
Thomas method to solve a pentadiagonal matrix along the width of the do-
main. The fluid motion is caused by a change in density across the front,
with an imposed Poiseuille flow in a two dimensional tube. The convective
flow can take place in horizontal tubes and vertical tubes. Adding an exter-
nal Poiseuille flow will always result in a curved front, therefore convection
will be present due to the horizontal density gradients. Without an external
flow, the front changes from flat to nonaxisymmetric in a vertical tube, as the
Rayleigh number is increased. In either case the initial flat front is curved by
the flow, with the transition to a nonaxisymmetric front modified depending
on the direction of propagation of the flow. Supportive Poiseuille flows will
move the transition to higher Rayleigh numbers, while strong enough adverse
flows will make the transition disappear.

We also analyzed the effects in convective fronts as we tilt the tube. We
found that the speed of propagation becomes higher as we tilt the tube away
from the vertical direction, reaching a maximum at a certain angle, then
decreasing as the tube becomes horizontal. The angle for maximum speed
depends on the Rayleigh number and the strength of the Poiseuille flow. Tilt-
ing the angle also results in a region of bistability for nonaxisymmetric fronts.
In this case the fronts are higher on one side of the tube, then tilting towards
or away from the elevation will lead to different states. However, for larger
tilting angles only one state is present. The application of Poiseuille flow in
convective reaction fronts can be tested in experiments, however careful con-
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sideration has to be placed when comparing the two dimensional results with
experiments either cylindrical tubes or confined Hele-Shaw cells. Further cal-
culations in three dimension are necessary to provide a complete account of
these cases.
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