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Abstract

In image processing, the `0 gradient regularization (`0-grad) is an inverse problem which penalizes the `0 norm
of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on
the alternating direction method of multipliers (ADMM). `0-grad however, reconstructs images poorly in cases
where the noise level is large, giving images with plain regions and abrupt changes between them, that look very
distorted. This happens because it prioritizes keeping the main edges but risks losing important details when the
images are too noisy. Furthermore, since ‖∇u‖0 is a non-continuous and non-convex regularizer, `0-grad can not
be directly solved by methods like the accelerated proximal gradient (APG).

This thesis presents a novel edge-preserving filtering model (Q`0-grad) that uses a relaxed form of the quadratic
envelope of the `0 norm of the gradient. This enables us to control the level of details that can be lost during de-
noising and deblurring. The Q`0-grad model can be seen as a mixture of the Total Variation and `0-grad models.
The results for the denoising and deblurring problems show that our model sharpens major edges while strongly
attenuating textures. When it was compared to the `0-grad model, it reconstructed images with flat, texture-free
regions that had smooth changes between them, even for scenarios where the input image was corrupted with
a large amount of noise. Furthermore the averages of the differences between the obtained metrics with Q`0-
grad and `0-grad were +0.96 dB SNR (signal to noise ratio), +0.96 dB PSNR (peak signal to noise ratio) and
+0.03 SSIM (structural similarity index measure). An early version of the model was presented in the paper
Fast gradient-based algorithm for a quadratic envelope relaxation of the `0 gradient regularization which was
published in the international and indexed conference proceedings of the XXIII Symposium on Image, Signal
Processing and Artificial Vision.

Keywords
Accelerated proximal gradient, `0 gradient minimization, quadratic envelope.
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Chapter 1

Introduction

In this chapter, we present a brief explanation of the `0 gradient regularization (`0-grad) and the problem it has
when working with very noisy images. This issue was the starting point for developing a new filtering model
based on `0-grad. Also, we show the main objective and the specific ones.

1.1 Motivation

The `0 gradient regularization image smoothing method [1] consists of minimizing the sum of the `0 norm of the
gradient and a quadratic data-fidelity term:

min
u

1
2
‖Au−b‖2

2 +λ‖∇u‖0. (1.1)

There exist several methods to solve this minimization problem with a good approximation: introducing auxiliary
variables to expand the original terms and use half-quadratic splitting [1], using coordinate descent with region
fusion [2, 3], or via the Alternating Direction Method of Multipliers algorithm (ADMM) [4, 5], which is currently
the state of the art solution.

`0-grad applications include edge enhancement and extraction, layer decomposition based manipulation for
detail magnification, non-photo realistic rendering like image abstraction and pencil sketching, and clip-art
restoration [1]. In medical imaging it can be used in X-ray computed tomography reconstruction [6].

However, `0-grad reconstructs images poorly in cases where the noise level is large, giving images with plain
regions and abrupt changes between them, that look very distorted compared to the original ones. The problem
happens because, given the nature of the `0 norm, `0-grad removes almost all the low-amplitude structures of
the original images, clearly prioritizing keeping the main edges but risking losing important details. An example
of this can be seen in Fig. 1.1 where a Fibonacci search was performed to find the λ in (1.1) that obtained the
best value for signal to noise ratio (SNR). Figure 1.1 also shows that, despite the described problem, `0-grad can
obtain fairly good values for SNR and structural similarity index measure (SSIM).

Due to the drawbacks summarized above, we propose using a quadratic envelope approximation of the `0
norm of the gradient as a regularizer term, instead of the actual `0 norm. By doing this we will be able to control
the level of detail that we can afford to lose during denoising or deblurring, thus developing a new edge-preserving
filtering model. Furthermore, unlike `0-grad, this filtering model can be solved using the accelerated proximal
gradient (APG) method [7], which solves non-smooth convex optimization problems presented as the sum of two
convex functions.
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(a) Original greyscale image (b) Noisy greyscale image with σ = 0.5:
SNR=-5.69, SSIM=0.12

(c) Reconstructed greyscale image using
`0-grad: SNR=7.38, SSIM=0.58

Figure 1.1: Reconstruction of a noisy greyscale image with Gaussian additive noise of σ = 0.5 using `0-grad.

1.2 Main Objective

To develop a novel edge-preserving filtering model based on the quadratic envelope approximation of the `0
gradient regularization.

1.3 Specific Objectives

• To compute the quadratic envelope of the `0 norm of the gradient.

• To develop an APG-based algorithm for the quadratic envelope approximation of the `0 gradient regular-
ization.

• To develop and to implement a program in Python for an edge-preserving filtering model based on the
quadratic envelope approximation of the `0 gradient regularization using the APG-based algorithm.

• To determine the performance of the novel edge-preserving filtering model, comparing it with `0-grad and
Total Variation (`2-TV) for denoising and deblurring problems.

• To compare the APG-based algorithm performance with an ADMM-based algorithm.
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Chapter 2

Background

In this chapter, we present the definitions of entrywise matrix norms and gradient of a digital image and the
general forms of ADMM and APG. Furthermore, the `0 gradient minimization and Total Variation models are
explained, as well as some of the methods that have been used to solve them. Finally, we describe how to obtain
the quadratic envelope of a function and how to perform a Fibonacci search to maximize the value of a function.

2.1 Entrywise matrix norm

It is defined in [8] as a type of norm that treats an m×n matrix as a column vector of size mn and use one of the
familiar vector norms. Let a = [a11, · · · ,am1,a12, · · · ,am2, · · · ,a1n, · · · ,amn]

T = vec(A) be an mn× 1 elongated
vector of the m×n matrix A. If we use the lp-norm definition of the elongated vector a then we obtain the lp-norm
of the matrix A as follows:

‖A‖p
def
= ‖a‖p = ‖vec(A)‖p =

(
m

∑
i=1

n

∑
j=1
|ai j|p

)1/p

. (2.1)

The Frobenius norm is a special case when p = 2 as defined in [9]:

‖A‖F = ‖A‖2 =
√

Tr(AT A) =

√
m

∑
i=1

n

∑
j=1

a2
i j, A ∈ Rm×n. (2.2)

2.2 Gradient of a digital image

The gradient of a digital image f at location (x,y) is defined in [10] as the vector :

∇ f (x,y) =

[
∂ f
∂x (x,y)
∂ f
∂y (x,y)

]
, (2.3)

in this research we used the discrete approximation:

∇ f (m,n) =
[

f (m+1,n)− f (m,n)
f (m,n+1)− f (m,n)

]
. (2.4)

2.3 `0 gradient minimization

For [11] the `0 norm is a very simple and intuitive measure of sparsity of a vector v, counting the number
of nonzero entries in v. The term `0 norm is misleading, as this function does not satisfy all the axiomatic
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requirements of a norm. They denote the `0 norm as:

‖v‖0 = lim
p→0
‖v‖p

p = lim
p→0

m

∑
k=1
|vk|p = #{i : vi 6= 0}. (2.5)

The `0 gradient minimization was introduced in [1] as an image editing method effective for sharpening major
edges while eliminating a manageable degree of low-amplitude structures. This method is formulated as follows:

min
u

1
2
‖Au−b‖2

2 +λ‖∇u‖0, (2.6)

where A represents a blurring operator, b is the observed noisy data, u is the expected data and λ > 0 is a weight
controlling the significance of the `0 norm of the gradient which is defined as:

‖∇u‖0 = ‖T (Dxu)+T (Dyu)‖0, (2.7)

where Dx and Dy represent the discrete operator that approximates the derivatives in the x and y directions respec-
tively, and T (M) is the matrix of the absolute values of each element of M.

2.4 ADMM

The Alternating Direction Method of Multipliers algorithm, known as ADMM was introduced in [12], the fol-
lowing explanation can be found in [13]. ADMM can solve convex optimization problems of the form:

min
x,z

( f (x)+g(z)) subject to Ax+Bz = c, (2.8)

with x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×n and c ∈ Rp. The functions f and g are usually assumed to
be convex and f : Rn→ R, g : Rm→ R . Thus, the augmented Lagrangian will be

Lρ(x,y,z) = f (x)+g(z)+yT (Ax+Bz− c)+
ρ

2
‖Ax+Bz− c‖2

2 (2.9)

where y ∈ Rp is the dual variable or Lagrange multiplier.

ADMM consists of the following iterations:

xk+1 = argmin
x

Lρ(x,zk,yk) (2.10)

zk+1 = argmin
z

Lρ(xk+1,z,yk) (2.11)

yk+1 = yk +ρ(Axk+1 +Bzk+1− c), (2.12)

where ρ > 0 is called the penalty parameter. The algorithm consists of two minimization steps of x and z respec-
tively, and a dual variable (y) update.

ADMM can be written in a different form by combining the linear and quadratic terms in the augmented
Lagrangian and scaling the dual variable. Defining the residual r = Ax+Bz− c, we have

yT r+
ρ

2
‖r‖2

2 =
ρ

2

∥∥∥∥r+
1
ρ

y
∥∥∥∥2

2
− 1

2ρ
‖y‖2

2, (2.13)

if u = 1
ρ

y, then:

yT r+
ρ

2
‖r‖2

2 =
ρ

2
‖r+u‖2

2−
ρ

2
‖u‖2

2. (2.14)

Using the scaled dual variable u, ADMM can be expressed as:

xk+1 = argmin
x

(
f (x)+

ρ

2
‖Ax+Bzk− c+uk‖2

2

)
(2.15)

zk+1 = argmin
z

(
g(z)+

ρ

2
‖Axk+1 +Bz− c+uk‖2

2

)
(2.16)

uk+1 = uk +Axk+1 +Bzk+1− c. (2.17)
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The vector Axk+1 can be replaced with

βAxk+1− (1−β)(Bzk− c), (2.18)

where β ∈ [0,2] is a relaxation parameter [13], then (2.16) and (2.17) become:

zk+1 = argmin
z

(
g(z)+

ρ

2
‖βAxk+1− (1−β)Bzk +Bz−βc+uk‖2

2

)
(2.19)

uk+1 = uk +βAxk+1− (1−β)Bzk +Bzk+1−βc. (2.20)

The method starts with randomly selected values for z0 and u0, which are usually 0.

2.5 APG

The accelerated proximal gradient (APG) method, as explained in [7], is used to solve the following optimization
problem:

min
x

( f (x)+g(x)) , (2.21)

where f : Rn→ R and g : Rn→ R∪{+∞} are closed proper convex and the gradient of f is L-Lipschitz contin-
uous. Its step is:

xk = proxαk,g(yk−αk∇ f (yk)) (2.22)

where αk > 0 is a step size, prox is the proximal function, which is defined as:

proxα,g(z) = argmin
x

{
g(x)+

1
2α
‖x− z‖2

2

}
, (2.23)

and yk is obtained as follows
yk+1 = xk +ωk(xk−xk−1), (2.24)

and ωk =
( k−1

k+2

)
is an extrapolation parameter.

This method can converge with rate O(1/k2) when a fixed step size αk ∈ (0,1/L] is used; with L being the
Lipschitz constant of ∇ f . The step-size αk can be either a constant or computed for every iteration, which could
be via exact or inexact line search, the Cauchy method, the Barzilai-Borwein method or other alternatives. The
APG method initializes with x0 = y1 = 0.

2.6 TV-based deblurring model

It was stated in [14] that the proper norm for images is the total variation (TV) norm and not the `2 norm. TV
norms are essentially `1 norms of derivatives. For the discrete TV norm, two popular choices are given in [15],
with u ∈ Rm×n: the isotropic TV norm defined by

TVI(u) =
∥∥∥∥[√(Dxui j)2 +(Dyui j)2

]∥∥∥∥
1
, (2.25)

and the `1-based, anisotropic TV norm defined by

TV`1(u) = ‖Dxu‖1 +‖Dyu‖1 . (2.26)

Usually, for (2.25) or (2.26) reflexive boundary conditions are assumed

um+1, j−um, j = 0, ∀ j and ui,n+1−ui,n = 0, ∀i. (2.27)
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The TV-based deblurring model was introduced in [16] as a regularization approach capable of handling
properly edges and removing noise in a given image. The discrete penalized version of the TV-based deblurring
model consists of solving an unconstrained convex minimization problem of the form:

min
u

1
2
‖Au−b‖2

2 +λTV(u), (2.28)

where, similar to section 2.3, A represents a blurring operator, b is the observed noisy data, u is the expected
data and λ > 0 is a parameter that controls the significance of the TV-norm of u, using its isotropic (direction
independent) or anisotropic (direction dependent) formula.

2.7 Fast-gradient based algorithm for constrained Total Variation (TV)
denoising

This algorithm was originally described in [17] based on the unconstrained solution given in [15]. The original
problem for constrained Total Variation (TV) denoising can be written as:

min
u∈C

1
2
‖u−b‖2

2 +λTV(u) (2.29)

with C being a closed convex subset of Rm×n, and TV(u) being either the isotropic TV norm (2.25) or the
anisotropic TV norm (2.26). Using the facts that:√

x2 + y2 = max
p,q

(p · x+q · y) s.t. p2 +q2 ≤ 1, (2.30)

|x|+ |y|= max
p,q

(p · x+q · y) s.t. |p| ≤ 1∧|q| ≤ 1, (2.31)

then (2.29) can be recast as:

min
(p,q)∈P

1
2
‖b−λL(p,q)‖2

2−
1
2
‖PC (b−λL(p,q))− (b−λL(p,q))‖2

2 (2.32)

where L(p,q) = DT
x p+DT

y q, PC represents the orthogonal projection on the set C , and P is the set defined by
(2.30) or (2.31) depending on the type of TV norm in (2.29).

In order to solve (2.32), APG is applied with its step being:

(pk,qk) = PP

[
(rk,sk)+

1
8λ

LT (PC (b−λL(pk,qk)))

]
, (2.33)

and the orthogonal projection on P for TVI(u) is:

PP (p,q) = (r,s) =


ri, j =

pi, j

max{1,
√

p2
i, j+q2

i, j}

si, j =
qi, j

max{1,
√

p2
i, j+q2

i, j}

, (2.34)

or for TV`1(u) is:

PP (p,q) = (r,s) =

{
ri, j =

pi, j
max{1,|pi, j |}

si, j =
qi, j

max{1,|qi, j |}
, (2.35)

with this, the optimal (p,q) for (2.32) can be found, and the optimal solution of (2.29) is u = PC (b−λL(p,q)).
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2.8 ADMM-based solution for the `0 gradient minimization problem

To solve the `0 gradient minimization problem via ADMM, we rewrite (2.6) as:

min
u

1
2
‖Au−b‖2

2 +λ‖v‖0 s.t v =

[
Dx
Dy

]
u (2.36)

with v =

[
v1
v2

]
, w =

[
w1
w2

]
and using the scaled form of ADMM given in [13]. The steps of each iteration are:

uk+1 = argmin
u

1
2
‖Au−b‖2

2 +
ρ

2

∥∥∥∥[ Dx
Dy

]
u−

[
v1
v2

]
k
+

[
w1
w2

]
k

∥∥∥∥2

2
(2.37)

vk+1 = argmin
v

λ‖v‖0 +
ρ

2

∥∥∥∥β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
+

[
w1
w2

]
k

∥∥∥∥2

2
(2.38)

wk+1 = wk +β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
k+1

. (2.39)

For (2.37) we find the gradient and equal that to zero, obtaining:

AT Au−AT b+ρ
(
DT

x Dx +DT
y Dy

)
u+ρDT

x (w1−v1)k +ρDT
y (w2−v2)k = 0. (2.40)

The equation in (2.40) can be solved in the spatial or frequency domain; from a computational perspective, the
latter is usually preferred. For (2.38) we use the proximal of λ‖.‖0:

proxλ‖.‖0

([
z1
z2

])
= argmin

v

(
λ

∥∥∥∥[ v1
v2

]∥∥∥∥
0
+

1
2

∥∥∥∥[ v1
v2

]
−
[

z1
z2

]∥∥∥∥2

2

)
=



[
z1i, j
z2i, j

] ∥∥∥∥[ z1i, j
z2i, j

]∥∥∥∥2

2
≥ 2λ

0
∥∥∥∥[ z1i, j

z2i, j

]∥∥∥∥2

2
< 2λ

.

(2.41)

2.9 Quadratic envelope

The quadratic envelope (Qγ) is defined in [18] for any [0,∞]-valued lower semi-continuous functional f with γ> 0
by:

Qγ( f )(x) = sup
y

[
inf
w

(
f (w)+

γ

2
‖w−y‖2

2

)
− γ

2
‖x−y‖2

2

]
, (2.42)

where γ is the parameter that controls the maximum negative curvature of Qγ( f ).

The indicator function (|x|0), defined by:

|x|0 =
{

1 if x 6= 0
0 if x = 0 ∀x ∈ R, (2.43)

has a quadratic envelope which was first determined in [19], and it can easily be obtained using (2.42). Since
x ∈ R, we can write:

Qγ(λ|x|0) = sup
y

[
inf
w

(
λ|w|0 +

γ

2
(w− y)2

)
− γ

2
(x− y)2

]
,

to calculate Qγ(λ|x|0), first we find the infimum with respect to w, then the supremum with respect to y, and using

I[condition] =

{
1 if condition is true
0 if condition is false

we have:
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1. infw
(
λ|w|0 + γ

2 (w− y)2
)

w∗ =

0 |y| ≤
√

2λ

γ

y |y|>
√

2λ

γ

→ inf
w

=


γ

2 y2 |y| ≤
√

2λ

γ

λ |y|>
√

2λ

γ

inf
w

= I[
|y|>

√
2λ
γ

](λ− γ

2
y2
)
+

γ

2
y2

2. supy

(
I[
|y|>

√
2λ
γ

] (λ− γ

2 y2
)
+ γ

2 y2− γ

2 (x− y)2
)

sup
y

(
I[
|y|>

√
2λ
γ

](λ− γ

2
y2
)
− γ

2
x2 + γxy

)
here we have two options:

• |y|>
√

2λ

γ

sup
y

(
λ− γ

2
(x− y)2

)
y∗ = x→ sup

y
= λ

• |y| ≤
√

2λ

γ

sup
y

(
− γ

2
x2 + γxy

)

y∗ = sign(x)

√
2λ

γ
→ sup

y
=
√

2λγ|x|− γ

2
x2

with this, the quadratic envelope of λ|x|0 is defined by:

Qγ(λ|x|0) =


√

2λγ|x|− γ

2 x2 |x| ≤
√

2λ

γ

λ |x|>
√

2λ

γ

. (2.44)

Finally, using (2.44), if f (x) = λ‖x‖0 and x ∈ RN then due to separability:

Qγ(λ‖x‖0) = Qγ(λ|x1|0)+Qγ(λ|x2|0)+ · · ·+Qγ(λ|xN |0) (2.45)

2.10 Fibonacci Search

Fibonacci search, which was introduced in [20], is a technique that can be used to find an approximation of the
maximum of an unimodal function. Denoting the i-th number in the Fibonacci sequence as Fi, where F0 = 1, we
have the following algorithm for a function f (x):

10



Algorithm 1 Fibonacci search

Require: a, b, n
Bx ∈ [a,b]
Bn−2 is the number of function evaluations.
L = b−a
k = 2
repeat

L∗k =
(

Fn−k+1
Fn+1

)
L

y = a+L∗k
z = b−L∗k
if f (y)< f (z) then

a = y
x = z

if f (y)> f (z) then
b = z
x = y

if f (y) = f (z) then
a = y
b = z
x = z

k = k+1
until k = n
return x

11



Chapter 3

Methodology

Here we compute the quadratic envelope of λ‖∇u‖0 and propose a quadratic envelope approximation of the `0
gradient regularization. We extend on what has been published in [21] by giving an exact solution to Qγ (λ‖∇u‖0)
and adding an ADMM-based solution to the obtained minimization problem.

3.1 Quadratic envelope of λ‖∇u‖0

Let z =
[

z1
z2

]
, ‖z‖0 = ||z1|+ |z2||0 with z1,z2 ∈R (see (2.7) and the definition of the indicator function given in

(2.43)), then we seek to find:

Qγ(λ‖z‖0) = sup
y

(
inf
w

(
λ‖w‖0 +

γ

2
‖w−y‖2

2

)
− γ

2
‖z−y‖2

2

)
.

Similar to what we did for Qγ (λ|x|0), we first find the infimum with respect to w and then the supremum with
respect to y:

1. infw
(
λ‖w‖0 +

γ

2‖w−y‖2
2
)

w∗ =

{
0 ‖y‖2

2 ≤
2λ

γ

y ‖y‖2
2 >

2λ

γ

→ inf
w

(
λ‖w‖0 +

γ

2
‖w−y‖2

2

)
=

{
γ

2‖y‖
2
2 ‖y‖2

2 ≤
2λ

γ

λ ‖y‖2
2 >

2λ

γ

inf
w

(
λ‖w‖0 +

γ

2
‖w−y‖2

2

)
= I[‖y‖22> 2λ

γ

](λ− γ

2
‖y‖2

2

)
+

γ

2
‖y‖2

2

2. supy

(
I[‖y‖22> 2λ

γ

] (λ− γ

2‖y‖
2
2
)
+ γ

2‖y‖
2
2−

γ

2‖z−y‖2
2

)
sup

y

(
I[‖y‖22> 2λ

γ

](λ− γ

2
‖y‖2

2

)
− γ

2
‖z‖2

2 + γ〈z,y〉
)
,

here we have two options:

• ‖y‖2
2 >

2λ

γ

sup
y

(
λ− γ

2
‖z−y‖2

2

)
y∗ = z→ sup

y

(
λ− γ

2
‖z−y‖2

2

)
= λ.
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• ‖y‖2
2 ≤

2λ

γ

sup
y

(
− γ

2
‖z‖2

2 + γ〈z,y〉
)
,

for this supremum we can find an approximate solution [21] and an exact solution using Karush–Kuhn–Tucker
(KKT) conditions.

Case I: An approximate solution

Clearly the solution is of the form yn = sign(zn) ·cn; if we consider that |z1| ≈ |z2|, then c1 = c2 =
√

λ

γ

and thus, the supremum is given by:

sup
y

(
− γ

2
‖z‖2

2 + γ〈z,y〉
)
=
√

λγ‖z‖1−
γ

2
‖z‖2

2,

with this we obtain:

Qγ (λ‖z‖0) =

{√
λγ‖z‖1− γ

2‖z‖
2
2 ‖z‖2

2 ≤
2λ

γ

λ ‖z‖2
2 >

2λ

γ

.

If we consider
[

z1
z2

]
=

[
Dxu
Dyu

]
= ∇u, then:

Qγ (λ‖∇u‖0) =

{√
λγ‖∇u‖1− γ

2‖∇u‖2
2 ‖∇u‖2

2 ≤
2λ

γ

λ ‖∇u‖2
2 >

2λ

γ

. (3.1)

Case II: An exact solution
The supremum is with respect to y, so we can evaluate only for 〈z,y〉. We know that:

sup
y
(〈z,y〉) =− inf

y
(−〈z,y〉) (3.2)

We will evaluate for the infimum:
y∗ = argmin

y
(−〈z,y〉)

Using the Lagrangian with the condition 2λ

γ
− y2

1− y2
2 ≥ 0, we obtain:

L(y,β) =−〈z,y〉−β

(
2λ

γ
− y2

1− y2
2

)
(3.3)

Considering the KKT conditions:
∇yL(y∗,β∗) = 0 (3.4)

β
∗
(

2λ

γ
− (y∗1)

2− (y∗2)
2
)
= 0 (3.5)

Using (3.4), [
−z1
−z2

]
+β
∗
[

2y∗1
2y∗2

]
= 0 (3.6)

from this we find β∗

β
∗ =

z1

2y∗1
=

z2

2y∗2
then we can relate y∗1 and y∗2 by:

z1

2y∗1
=

z2

2y∗2
z1

y∗1
=

z2

y∗2
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z1

z2
y∗2 = y∗1 (3.7)

Evaluating (3.5) and using the relation in (3.7)

β
∗

(
2λ

γ
−
(

z1

z2
y∗2

)2

− (y∗2)
2

)
= 0

(y∗2)
2 =

2λ

γ

1

1+
(

z1
z2

)2 =
2λ

γ

z2
2

‖z‖2
2

using (3.6), and the fact that β≥ 0, we know that y∗2 and z2 have the same sign, then:

y∗2 =

√
2λ

γ

z2

‖z‖2
(3.8)

and similarly for y∗1

y∗1 =

√
2λ

γ

z1

‖z‖2
(3.9)

Replacing (3.8) and (3.9) in (3.2):

sup
y
(〈z,y〉) =

√
2λ

γ

z2
1 + z2

2
‖z‖2

sup
y
(〈z,y〉) =

√
2λ

γ
‖z‖2 (3.10)

with (3.10), we obtain the supremum of the original function:

sup
y

(
− γ

2
‖z‖2

2 + γ〈z,y〉
)
=
√

2λγ‖z‖2−
γ

2
‖z‖2

2

then, the quadratic envelope is:

Qγ (λ‖z‖0) =

{√
2λγ‖z‖2− γ

2‖z‖
2
2 ‖z‖2

2 ≤
2λ

γ

λ ‖z‖2
2 >

2λ

γ

.

Similar to the previous case, if
[

z1
z2

]
=

[
Dxu
Dyu

]
= ∇u, then:

Qγ (λ‖∇u‖0) =

{√
2λγ‖∇u‖2− γ

2‖∇u‖2
2 ‖∇u‖2

2 ≤
2λ

γ

λ ‖∇u‖2
2 >

2λ

γ

(3.11)

Finally, due to separability, with u ∈ Rm×n, mn = N, and using either (3.1) or (3.11), the quadratic envelope
of the `0 norm of the gradient can be obtained by:

Qγ(λ‖∇u‖0) = Qγ(λ‖∇u1‖0)+Qγ(λ‖∇u2‖0)+ · · ·+Qγ(λ‖∇uN‖0). (3.12)

3.2 Quadratic envelope approximation of the `0 gradient regularization

We use the quadratic envelope obtained in section 3.1 as the `0 norm of the gradient in (2.6), with this we can
rewrite the original problem as:

min
u

1
2
‖Au−b‖2

2 +Qγ(λ‖∇u‖0). (3.13)
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If (Dxui j)
2 +(Dyui j)

2 ≤ 2λ

γ
holds true for every component of

[
Dxu
Dyu

]
, then using the approximate solution,

(3.13) becomes the following minimization problem (see (2.26)):

min
u

1
2
‖Au−b‖2

2 +
√

γλTV`1(u)−
γ

2
‖∇u‖2

2, (3.14)

similarly for the exact solution (see (2.25)):

min
u

1
2
‖Au−b‖2

2 +
√

2γλTVI(u)−
γ

2
‖∇u‖2

2. (3.15)

To determine (3.14) and (3.15) we have only considered the case when (Dxui j)
2 +(Dyui j)

2 ≤ 2λ

γ
, but since

the quadratic envelope is defined for all values, we would need to include both conditions, representing them as a
matrix we would have:

M = (mi j) =

{
1 (Dxui j)

2 +(Dyui j)
2 ≤ 2λ

γ

0 (Dxui j)
2 +(Dyui j)

2 > 2λ

γ

, (3.16)

however due to the nature of γ in (3.16), we can always find a value for which M is exactly an all-ones matrix.
Moreover, if an element in M is zero, it is not clear how the resulting minimization problem should be solved
because a direct implementation would lead to ui, j = (A−1b)i j, but at the same time the condition ((Dxui j)

2 +

(Dyui j)
2 > 2λ

γ
) must be satisfied, unfortunately this depends on the values of the adjacent pixels and can not be

carried out in a local fashion.

Given the above consideration, we propose (3.14) or (3.15) as a quadratic envelope approximation of the `0
gradient regularization which can be solved by APG and ADMM.

1. APG-based solution
For (3.14), let f (u) = 1

2‖Au−b‖2
2−

γ

2‖∇u‖2
2 and g(u) =

√
γλTV`1(u), then:

∇ f (u) = AT Au−AT b− γ∇
T (∇u), (3.17)

with this we have the following step of APG:

uk = argmin
u

1
2αk
‖u− (vk−αk∇ f (vk))‖2

2 +
√

γλTV`1(u), (3.18)

and for (3.15), ∇ f (u) is the same as (3.17), g(u) =
√

2γλTVI(u) and the step of APG will be:

uk = argmin
u

1
2αk
‖u− (vk−αk∇ f (vk))‖2

2 +
√

2γλTVI(u), (3.19)

both of them can be solved using the method described in Section 2.7.

2. ADMM-based solution

For the exact solution of Qγ (λ‖∇u‖0), with v=
[

v1
v2

]
, w=

[
w1
w2

]
and using the scaled form of ADMM,

the method iterates the following three steps:

uk+1 = argmin
u

1
2
‖Au−b‖2

2−
γ

2
‖∇u‖2

2 +
ρ

2

∥∥∥∥[ Dx
Dy

]
u−

[
v1
v2

]
k
+

[
w1
w2

]
k

∥∥∥∥2

2
(3.20)

vk+1 = argmin
v

√
2λγ‖v‖1 +

ρ

2

∥∥∥∥β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
+

[
w1
w2

]
k

∥∥∥∥2

2
(3.21)

wk+1 = wk +β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
k+1

. (3.22)
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To solve (3.20), we simply equate its gradient to zero:

AT Au−AT b+(ρ− γ)∇T
∇u+ρ∇

T (wk−vk) = 0, (3.23)

which can be solved in the spatial or frequency domain. For (3.21) we use the proximal function of the `1
norm associated with the isotropic TV-norm (see (2.25)):

proxλ‖.‖1

([
z1
z2

])
= argmin

v

(
λ

∥∥∥∥[ v1
v2

]∥∥∥∥
1
+

1
2

∥∥∥∥[ v1
v2

]
−
[

z1
z2

]∥∥∥∥2

2

)

proxλ‖.‖1

([
z1
z2

])
=



[
z1i, j
z2i, j

]
∥∥∥∥∥
[

z1i, j
z2i, j

]∥∥∥∥∥
2

(∥∥∥∥[ z1i, j
z2i, j

]∥∥∥∥
2
−λ

) ∥∥∥∥[ z1i, j
z2i, j

]∥∥∥∥2

2
≥ λ

0
∥∥∥∥[ z1i, j

z2i, j

]∥∥∥∥2

2
< λ

. (3.24)
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Chapter 4

Results

We developed a new edge-preserving filtering model, which we called Q`0-grad, using the quadratic envelope
approximation of the `0 gradient regularization, this model is formulated as:

min
u

1
2
‖Au−b‖2

2 +
√

2γλTVI(u)−
γ

2
‖∇u‖2

2. (4.1)

In order to evaluate the performance of the filtering model for denoising and deblurring of images, we compared
it with `0-grad (4.2) and `2-TV (4.3):

min
u

1
2
‖Au−b‖2

2 +λ‖∇u‖0, (4.2)

min
u

1
2
‖Au−b‖2

2 +λTVI(u). (4.3)

Only for denoising we also compared against BM3D [22], since it is currently one of the state of the art methods
for noise reduction in images.

The programs were written in Python on a Jupyter environment, which can be found in [23], and were run in
a Lenovo Ideapad 110 Laptop with Intel core i7-6498DU @ 2.5 GHz processor, 8 GB of RAM and Ubuntu 18.04
operating system. We used four 512×512 test images: Lena, Barbara, Mandrill and Peppers, both in greyscale
and in color. The results for the denoising and deblurring problems with these images were organized as follows:

• Section 4.1: denoising.

• Section 4.2: deblurring with an average filter.

• Section 4.3: deblurring with a Gaussian filter.

For deblurring we applied a 5×5 average filter and a 9×9 Gaussian filter, and for the three different problems we
added Gaussian additive noise with 0 mean and different values of standard deviation σ = {0.05,0.1,0.25,0.5}.
The peak signal to noise ratio (PSNR), SNR and SSIM [24] metrics of the obtained noisy images are shown in
Tables A.1 and A.2.

The values of λ in (4.1), (4.2) and (4.3) used in every case were found by performing a Fibonacci search (see
section 2.10) with SNR as the function to be evaluated. For Q`0-grad we chose to keep γ = 0.01 fixed, with this
value we obtained fairly good metrics on some preview tests and it was easier to have just one parameter to be
optimized. For APG implementations we used a Cauchy lagged stepsize and for ADMM we chose ρ = 20 and
β = 1.5, this last value was chosen because according to [13] it can improve convergence.

In section 4.4, we compared the performance of the APG-based and ADMM-based algorithms for Q`0-grad.
Finally in section 4.5 we showed how, changing the value of γ while keeping a fixed λ, influences the restoration
quality of the reconstructed images for denoising and deblurring with our proposed method.
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4.1 Results for denoising

For Q`0-grad we used APG with 20 outer and 20 inner iterations; these inner iterations were done because of
the Total Variation denoising problem that it is obtained (3.19); on the other hand, for `0-grad and `2-TV we
used ADMM with 40 iterations. Then, to find the optimal λ that maximized the SNR metric for each method,
we performed a Fibonacci search with eight function evaluations and the bounds given in Table A.3. For BM3D
we had a direct implementation that only required the value of standard deviation of the additive Gaussian noise
as an input. We used the four methods to reconstruct the greyscale and color images that were corrupted with
additive Gaussian noise and evaluated their PSNR, SNR and SSIM metrics, and computation time; we did these
simulations 10 times and obtained their respective averages and standard deviations (tables A.4 to A.7).

The graphs, in figures 4.1 to 4.8, of the averages of each metric and time with respect to the value of standard
deviation of the noise (σ), show that the Q`0-grad performance for PSNR, SNR and SSIM was between `0-grad
and `2-TV, being closer to the latter and better than `0-grad with an average improvement of +1.56 dB PSNR,
+1.56 dB SNR and +0.06 SSIM. In the greyscale simulations (Fig. 4.1 to 4.4) sometimes Q`0-grad and `2-TV
overlapped each other as it happened with the metrics for Lena in Fig. 4.1 and in the color simulations (Fig. 4.5
to 4.8) they were a little more separated. We can also see that BM3D had almost always the best performance
for every metric, but there were cases like the obtained values of SSIM for greyscale Peppers (Fig. 4.4) where
Q`0-grad and `2-TV surpass it for σ = 0.5. Computation time remained constant regardless of the value of σ,
nonetheless the color images took more time to be processed than the greyscale ones. APG for Q`0-grad was
the slowest for all the simulations, however we clarify that during the simulations for the greyscale cases with
σ = 0.1, there were some background processes in the computer used which influenced on the obtained time.

Figure 4.1: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising greyscale Lena using the 4 methods.
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Figure 4.2: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising greyscale Barbara using the 4 methods.

Figure 4.3: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising greyscale Mandrill using the 4 methods.
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Figure 4.4: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising greyscale Peppers using the 4 methods.

Figure 4.5: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising color Lena using the 4 methods.

20



Figure 4.6: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising color Barbara using the 4 methods.

Figure 4.7: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising color Mandrill using the 4 methods.
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Figure 4.8: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for denoising color Peppers using the 4 methods.

The images presented in figures 4.9, 4.10 and 4.11 are some examples of what was obtained during the
simulations. We can see that for σ = 0.05 and σ = 0.1 the processed images look fairly similar, because there
was not that much noise to be reduced; with σ = 0.25 and σ = 0.5 the difference between methods became
more visible. `0-grad returned images with plain regions and abrupt changes reducing some of the details of the
originals. `2-TV and Q`0-grad worked very similar preserving the edges, reducing the noise and some texture but
keeping the overall structure and detail. BM3D gave images that, looking closer, were a little distorted because
it works by block matching but they looked more like the original images than the ones obtained with the other
methods.
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(a) σ = 0.05 (b) `2-TV (c) `0-grad (d) Q`0-grad (e) BM3D

(f) σ = 0.1 (g) `2-TV (h) `0-grad (i) Q`0-grad (j) BM3D

(k) σ = 0.25 (l) `2-TV (m) `0-grad (n) Q`0-grad (o) BM3D
Figure 4.9: Reconstructed images with `2-TV, `0-grad, Q`0-grad and BM3D from a noisy image with different σ for additive Gaussian noise.
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(a) σ = 0.5 (b) `2-TV (c) `0-grad (d) Q`0-grad (e) BM3D

(f) σ = 0.05 (g) `2-TV (h) `0-grad (i) Q`0-grad (j) BM3D

(k) σ = 0.1 (l) `2-TV (m) `0-grad (n) Q`0-grad (o) BM3D
Figure 4.10: Reconstructed images with `2-TV, `0-grad, Q`0-grad and BM3D from a noisy image with different σ for additive Gaussian noise.
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(a) σ = 0.25 (b) `2-TV (c) `0-grad (d) Q`0-grad (e) BM3D

(f) σ = 0.5 (g) `2-TV (h) `0-grad (i) Q`0-grad (j) BM3D
Figure 4.11: Reconstructed images with `2-TV, `0-grad, Q`0-grad and BM3D from a noisy image with different σ for additive Gaussian noise.
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4.2 Results for deblurring with a 5×5 average filter

In this section, the images were filtered with a 5×5 average filter and then corrupted with additive Gaussian noise
with different standard deviations (σ = {0.05,0.1,0.25,0.5}). Similar to the denoising section, we used the same
number of iterations for APG and ADMM respectively, and obtained the optimal λ by a Fibonacci search, but
with different bounds, which are presented in Table A.8. We reconstructed the images 10 times with each of the 3
different methods: Q`0-grad, `0-grad and `2-TV, and obtained the averages and standard deviations of the PSNR,
SNR, SSIM metrics and computation time (tables A.9 to A.13).

In the graphs of the averages of the metrics and computation time with respect to σ, in figures 4.12 to 4.19,
we can see that for σ < 0.1, in general no method was better than the others, because every one of them had at
least some cases where its performance was the best one. In the greyscale cases for σ≥ 0.1, `2-TV and Q`0-grad
achieved nearly equal metrics, with their lines in the graphs sometimes overlapping, they were the most separated
in the results for Peppers (Fig. 4.15), `0-grad most of the times got the worst metrics, the exceptions being for
σ = 0.1 in Mandrill (Fig. 4.14) and Peppers (Fig. 4.15). For the color results with σ≥ 0.1, `2-TV was definitely
the best one, followed by Q`0-grad and then `0-grad, with some exceptions for σ = 0.1: Q`0-grad performed the
best for PSNR and SNR of Lena (Fig. 4.16) and `0-grad obtained the highest SSIM of Mandrill (Fig. 4.18). When
compared to `0-grad, our model obtained an average improvement of +0.55 dB PSNR, +0.55 dB SNR and +0.01
SSIM. Computation time remained almost constant no matter the value of σ for the three methods and APG for
Q`0-grad was still the slowest during the simulations. Also, since Q`0-grad had the same number of inner and
outer iterations for deblurring with an average filter and for denoising, they both had the same computation time,
8 seconds for greyscale and 28 seconds for color approximately.

Figure 4.12: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Lena with a 5×5 average filter using the 3 methods
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Figure 4.13: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Barbara with a 5×5 average filter using the 3 methods.

Figure 4.14: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Mandrill with a 5×5 average filter using the 3 methods.
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Figure 4.15: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Peppers with a 5×5 average filter using the 3 methods.

Figure 4.16: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Lena with a 5×5 average filter using the 3 methods.
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Figure 4.17: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Barbara with a 5×5 average filter using the 3 methods.

Figure 4.18: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Mandrill with a 5×5 average filter using the 3 methods.
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Figure 4.19: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Peppers with a 5×5 average filter using the 3 methods.

Figures 4.20, 4.21 and 4.22 show that for σ ≤ 0.1 there was almost no difference between the three recon-
structed images, all the methods kept the edges and reduced the noise. For σ = 0.25 the obtained images with
Q`0-grad and `2-TV were almost similar, but with σ = 0.5 the reconstructed image with Q`0-grad had smoother
changes between regions. Meanwhile, `0-grad with σ = 0.25 and σ = 0.5 reduced the noise significantly but
distorted the image because it gave priority to having plain regions.

(a) σ = 0.0 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.05 (f) `2-TV (g) `0-grad (h) Q`0-grad
Figure 4.20: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and filtered with an average 5×5 filter.
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(a) σ = 0.1 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.25 (f) `2-TV (g) `0-grad (h) Q`0-grad

(i) σ = 0.5 (j) `2-TV (k) `0-grad (l) Q`0-grad

(m) σ = 0.0 (n) `2-TV (o) `0-grad (p) Q`0-grad
Figure 4.21: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and filtered with an average 5×5 filter.
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(a) σ = 0.05 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.1 (f) `2-TV (g) `0-grad (h) Q`0-grad

(i) σ = 0.25 (j) `2-TV (k) `0-grad (l) Q`0-grad

(m) σ = 0.5 (n) `2-TV (o) `0-grad (p) Q`0-grad
Figure 4.22: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and filtered with an average 5×5 filter.
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4.3 Results for deblurring with a 9×9 Gaussian filter

Here, we kept using 20 ADMM iterations for `2-TV and `0-grad, however, unlike denoising and deblurring
with an average filter, for APG we used 20 outer and 30 inner iterations. The increase on the number of inner
iterations was done because the Gaussian filter was more aggressive than the average filter. We also performed a
Fibonacci search similar to the previous two sections with the bounds for λ given in Table A.14. We performed
10 simulations, using the 3 methods on the test images filtered with a 9× 9 Gaussian filter and corrupted with
additive Gaussian noise, and calculated the averages and standard deviations of the PSNR, SNR, SSIM metrics
and computation time (tables A.15 to A.19).

The following graphs (Fig. 4.23 to 4.30) were made with the averages of the metrics and computation time.
Q`0-grad obtained the best PSNR and SNR for σ≤ 0.1 with the exceptions of greyscale Peppers (Fig. 4.26) and
color Barbara (Fig. 4.28), where `2-TV was superior by a small margin for σ = 0.1. For SSIM with σ ≤ 0.1,
even though Q`0-grad performed fairly good for all the images, being the best sometimes, for example both
greyscale and color cases of Lena (Fig. 4.23 and 4.27), other times it started as the worst but then it improved its
performance like in color Mandrill (Fig. 4.29). For bigger σ values, the methods behaved like in denoising and
deblurring with an average filter, this means that the performance of Q`0-grad was between `0-grad and `2-TV,
being better than `0-grad. For the greyscale cases Q`0-grad was closer to `2-TV, even overlapping each other
for the Mandrill image (Fig. 4.25). Moreover, the averages of the differences between the obtained metrics with
Q`0-grad and `0-grad were +0.75 dB PSNR, +0.75 dB SNR and +0.02 SSIM. Computation time stayed almost
constant during the simulations, like in the other previous two cases. Also, since our method now had 30 inner
iterations, it reached more than 40 seconds for color images.

Figure 4.23: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Lena with a Gaussian filter using the 3 methods.
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Figure 4.24: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Barbara with a Gaussian filter using the 3 methods.

Figure 4.25: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Mandrill with a Gaussian filter using the 3 methods.
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Figure 4.26: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring greyscale Peppers with a Gaussian filter using the 3 methods.

Figure 4.27: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Lena with a Gaussian filter using the 3 methods.
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Figure 4.28: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Barbara with a Gaussian filter using the 3 methods.

Figure 4.29: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Mandrill with a Gaussian filter using the 3 methods.
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Figure 4.30: Averages of PSNR, SNR, SSIM and computation time according to σ for additive Gaussian noise,
after 10 experiments, for deblurring color Peppers with a Gaussian filter using the 3 methods.

In figures 4.31, 4.32 and 4.33, we observe that for σ = 0, σ = 0.05 and σ = 0.1 the reconstructed images with
Q`0-grad had better sharpness and kept the edges well-defined. For σ = 0.25 and σ = 0.5, `0-grad gave distorted
images with plain regions but preserving some of the edges. Meanwhile, the reconstructed images with `2-TV
and Q`0-grad were very similar, however the changes between adjacent regions with Q`0-grad were smoother
than the ones obtained with `2-TV.

(a) σ = 0.0 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.05 (f) `2-TV (g) `0-grad (h) Q`0-grad
Figure 4.31: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and a Gaussian 9×9 filter.
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(a) σ = 0.1 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.25 (f) `2-TV (g) `0-grad (h) Q`0-grad

(i) σ = 0.5 (j) `2-TV (k) `0-grad (l) Q`0-grad

(m) σ = 0.0 (n) `2-TV (o) `0-grad (p) Q`0-grad
Figure 4.32: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and a Gaussian 9×9 filter.
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(a) σ = 0.05 (b) `2-TV (c) `0-grad (d) Q`0-grad

(e) σ = 0.1 (f) `2-TV (g) `0-grad (h) Q`0-grad

(i) σ = 0.25 (j) `2-TV (k) `0-grad (l) Q`0-grad

(m) σ = 0.5 (n) `2-TV (o) `0-grad (p) Q`0-grad
Figure 4.33: Reconstructed images with `2-TV, `0-grad and Q`0-grad from a noisy image with different σ for
additive Gaussian noise and a Gaussian 9×9 filter.
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4.4 Comparison between APG and ADMM algorithms for Q`0-grad

We compared the performance of both algorithms analyzing the SNR, PSNR and SSIM metrics, the evolution of
the cost function

(
f (u) = 1

2‖Au−b‖2
2 +
√

2γλTVI(u)− γ

2‖∇u‖2
2

)
and computation time. For ADMM we used

ρ = 20 and β = 1.5 and for APG a Cauchy lagged stepsize, and for both of them we used the values of λ found by
the Fibonacci searches performed for the previous sections, with γ = 0.01. The pseudo-codes of both algorithms
are given in section D of the Annexes.

4.4.1 Greyscale comparison

1. Denoising
For denoising we chose the greyscale Barbara image with Gaussian additive noise of σ = 0.25, we then ran
40 iterations of ADMM and 20 outer, with 20 inner, iterations of APG. The graphs presented in Fig.4.34
show that even though the evolutions of the cost function were very different, their values at the end were
similar. We can see that in terms of iterations, APG needed less to arrive to a steady minimum, however
ADMM was much faster when it came to time, performing all of its iterations even before APG stabilized.

Figure 4.34: Cost function with respect to the iteration number and computation time in seconds, for denoising
greyscale Barbara with Gaussian additive noise of σ = 0.25 using the APG and ADMM algorithms for Q`0-grad.

The resulting images and their respective metrics presented in Fig. 4.35 were very similar for the two
algorithms, showing that we could use any of them for comparisons with the other methods, since they
both clearly reduced the amount of noise and preserved the edges.

40



(a) Noisy greyscale image with σ= 0.25:
PSNR=11.30, SNR=-1.35, SSIM=0.25

(b) Reconstructed image using Q`0-grad
with APG: PSNR=21.96, SNR=9.32,
SSIM=0.55

(c) Reconstructed image using Q`0-grad
with ADMM: PSNR=21.99, SNR=9.35,
SSIM=0.56

Figure 4.35: Reconstruction of a noisy greyscale image with Gaussian additive noise of σ = 0.25 using Q`0-grad
with APG and ADMM.

2. Deblurring with an average filter
For this, we chose the greyscale Mandrill image filtered with a 5×5 average filter and Gaussian additive
noise of σ = 0.5, we then ran 40 iterations of ADMM and 20 outer, with 20 inner, iterations of APG. The
graphs presented in Fig.4.36 show that ADMM, unlike APG, first increased the value of the cost function
before decreasing it; however, it obtained a lower minimum than APG. Analyzing the computation time, it
can be seen that ADMM was still faster.

Figure 4.36: Cost function with respect to the iteration number and computation time in seconds, for deblurring
greyscale Mandrill with a 5×5 average filter and Gaussian additive noise of σ = 0.25 using the APG and ADMM
algorithms for Q`0-grad.

The similarity in the metrics in Fig. 4.37 for the reconstructed images with both algorithms show that we
could use any of the two for comparisons. The images also show how the noise was considerably lowered
and the edges were preserved, with APG giving a slightly smoother result than ADMM.
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(a) Noisy greyscale image with σ = 0.5:
PSNR=5.03, SNR=-9.70, SSIM=0.08

(b) Reconstructed image using Q`0-grad
with APG: PSNR=18.47, SNR=3.73,
SSIM=0.25

(c) Reconstructed image using Q`0-grad
with ADMM: PSNR=18.50, SNR=3.76,
SSIM=0.25

Figure 4.37: Reconstruction of a noisy greyscale image with Gaussian additive noise of σ = 0.5 and an average
5×5 filter using Q`0-grad with APG and ADMM.

3. Deblurring with a Gaussian filter
For deblurring with a Gaussian filter, we chose the greyscale Lena image filtered with a 9×9 Gausian filter
and Gaussian additive noise of σ = 0.5, we then ran 40 iterations of ADMM and 20 outer, with 30 inner,
iterations of APG. We increased the number of inner iterations for APG because the Gaussian filter was
more aggressive than the average one.

Figure 4.38: Cost function with respect to the iteration number and computation time in seconds, for deblurring
greyscale Lena with a 9×9 Gaussian filter and Gaussian additive noise of σ = 0.55 using the APG and ADMM
algorithms for Q`0-grad.

The graphs presented in Fig. 4.38 show that APG obtained a lower value of the cost function than ADMM.
Furthermore, the images and their metrics in Fig. 4.39 show that they both did a very good job in removing
the noise and preserving the main edges. ADMM reconstructed the image with slightly better PSNR and
SNR, and similar to the other two cases, it was clearly faster.
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(a) Noisy greyscale image with σ = 0.5:
PSNR=4.74, SNR=-8.53, SSIM=0.08

(b) Reconstructed image using Q`0-grad
with APG: PSNR=21.91, SNR=8.64,
SSIM=0.56

(c) Reconstructed image using Q`0-grad
with ADMM: PSNR=22.08, SNR=8.81,
SSIM=0.56

Figure 4.39: Reconstruction of a noisy greyscale image with Gaussian additive noise of σ = 0.5 and a Gaussian
9×9 filter using Q`0-grad with APG and ADMM.

4.4.2 Color Comparison

For the greyscale cases, we observed that there was not any significant difference in the results obtained when
using either ADMM or APG, except for the computation time; however, when working with color images, this
was not the case. For denoising and deblurring of color images, we used the same parameters and number of
iterations as the greyscale comparisons and the λ obtained via the Fibonacci searches, but with two different
values of γ.

1. Denoising
For this we used the color Lena image with Gaussian additive noise of σ = 0.25.

• γ = 0.01

(a) Noisy color image with σ = 0.25:
PSNR=11.94, SNR=-0.67, SSIM=0.20

(b) Reconstructed image using Q`0-grad
with APG: PSNR=26.26, SNR=13.64,
SSIM=0.67

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=25.27,
SNR=12.65, SSIM=0.55

Figure 4.40: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 using Q`0-grad with
APG and ADMM, with γ = 0.01.

The metrics given in Fig. 4.40 showed that APG clearly obtained better PSNR, SNR and SSIM than
ADMM; also, the reconstructed image obtained with ADMM did not have almost any plain regions
and the unwanted low-amplitude structures were still kept. By observing the evolution of the cost
functions in Fig. 4.41, we could see that this happened because when using ADMM the function
actually diverged, increasing its value instead of decreasing.
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Figure 4.41: Cost function with respect to the iteration number and computation time in seconds, for denoising
color Lena with Gaussian additive noise of σ = 0.25 using the APG and ADMM algorithms for Q`0-grad with
γ = 0.01

• γ = 0.04

(a) Noisy color image with σ = 0.25:
PSNR=11.94, SNR=-0.67, SSIM=0.20

(b) Reconstructed image using Q`0-grad
with APG: PSNR=24.63, SNR=12.02,
SSIM=0.64

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=26.12,
SNR=13.51, SSIM=0.69

Figure 4.42: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 using Q`0-grad with
APG and ADMM, with γ = 0.04.

We can see in Fig. 4.42 how both APG and ADMM reconstructed the image with sharp edges and
plain regions, furthermore, the low-amplitude structures were greatly reduced, and the obtained met-
rics with ADMM were the best ones. Fig. 4.43 show that, after changing γ to 0.04, ADMM did
manage to converge the cost function to a minimum, even to a lower value than the one obtained with
APG.
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Figure 4.43: Cost function with respect to the iteration number and computation time in seconds, for denoising
color Lena with Gaussian additive noise of σ = 0.25 using the APG and ADMM algorithms for Q`0-grad with
γ = 0.04.

2. Deblurring with an average filter
We used the Barbara image filtered with a 5×5 average filter and Gaussian additive noise of σ = 0.25.

• γ = 0.01

(a) Noisy color image with σ = 0.25:
PSNR=11.85, SNR=-1.84, SSIM=0.15

(b) Reconstructed image using Q`0-grad
with APG: PSNR=23.79, SNR=10.10,
SSIM=0.60

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=24.00,
SNR=10.31, SSIM=0.61

Figure 4.44: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 and an average 5×5
filter using Q`0-grad with APG and ADMM, with γ = 0.01.

Fig. 4.44 show that the difference between the reconstructed images obtained with ADMM and APG
was similar to the denoising case: ADMM obtained images with more low amplitude structures.
However, ADMM got better metrics, this happened because even though it kept unwanted noise, it
also kept some fine details of the original image. We can see in the cost function comparisons given
in Fig. 4.45, that both methods increased the function value but they converged quickly, nonetheless,
ADMM still reached a greater value.
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Figure 4.45: Cost function with respect to the iteration number and computation time in seconds, for deblurring
color Barbara with a 5× 5 average filter and Gaussian additive noise of σ = 0.25 using the APG and ADMM
algorithms for Q`0-grad with γ = 0.01.

• γ = 0.04

(a) Noisy color image with σ = 0.25:
PSNR=11.85, SNR=-1.84, SSIM=0.15

(b) Reconstructed image using Q`0-grad
with APG: PSNR=23.29, SNR=9.60,
SSIM=0.58

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=24.03,
SNR=10.34, SSIM=0.63

Figure 4.46: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 and an average 5×5
filter using Q`0-grad with APG and ADMM, with γ = 0.04.

In Fig. 4.46, we can see how, with γ = 0.04, ADMM improved its performance in reconstructing the
noisy image, eliminating more low amplitude structures than with γ = 0.01. Meanwhile, the image
obtained with APG became a little bit blurry but still had sharp edges. The graphs in Fig. 4.47 show
that ADMM reached a considerable lower value than APG, explaining its better metrics.
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Figure 4.47: Cost function with respect to the iteration number and computation time in seconds, for deblurring
color Barbara with a 5× 5 average filter and Gaussian additive noise of σ = 0.25 using the APG and ADMM
algorithms for Q`0-grad with γ = 0.04.

3. Deblurring with a Gaussian filter
We used the Peppers image filtered with a 9×9 Gaussian filter and Gaussian additive noise of σ = 0.25.

• γ = 0.01

(a) Noisy color image with σ = 0.25:
PSNR=11.19, SNR=0.11, SSIM=0.12

(b) Reconstructed image using Q`0-grad
with APG: PSNR=23.48, SNR=12.40,
SSIM=0.59

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=23.81,
SNR=12.72, SSIM=0.61

Figure 4.48: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 and a Gaussian 9×9
filter using Q`0-grad with APG and ADMM, with γ = 0.01.

In Fig. 4.48, the reconstructed image with APG obtained sharper edges and greatly reduced the
amount of low amplitude structures, but the one obtained with ADMM achieved better PSNR, SNR
and SSIM metrics; a similar behavior to the deblurring with an average filter case. However, we can
see in Fig. 4.49 that both methods clearly decreased until getting to a minimum; ADMM stabilized
faster than APG, but the latter obtained a lower value of cost function.
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Figure 4.49: Cost function with respect to the iteration number and computation time in seconds, for deblurring
color Peppers with a 9× 9 Gaussian filter and Gaussian additive noise of σ = 0.25 using the APG and ADMM
algorithms for Q`0-grad with γ = 0.01.

• γ = 0.04

(a) Noisy color image with σ = 0.25:
PSNR=11.19, SNR=0.11, SSIM=0.12

(b) Reconstructed image using Q`0-grad
with APG: PSNR=23.01, SNR=11.93,
SSIM=0.58

(c) Reconstructed image using Q`0-
grad with ADMM: PSNR=23.81,
SNR=12.73, SSIM=0.62

Figure 4.50: Reconstruction of a noisy color image with Gaussian additive noise of σ = 0.25 and a Gaussian 9×9
filter using Q`0-grad with APG and ADMM, with γ = 0.04.

The difference between the reconstructed images in Fig. 4.50 was not as significant as with γ = 0.01,
still they had the same behavior (APG better in removing low amplitude structures and ADMM better
in metrics). Observing the graphs in Fig. 4.51, there was clearly an improvement, since now, the
difference between the values of the cost functions of both methods was smaller than before.
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Figure 4.51: Cost function with respect to the iteration number and computation time in seconds, for deblurring
color Peppers with a 9× 9 Gaussian filter and Gaussian additive noise of σ = 0.25 using the APG and ADMM
algorithms for Q`0-grad with γ = 0.04.

In general, ADMM was much faster than APG for denoising and both cases of deblurring, however, when
working with color, ADMM could diverge depending on the value of γ. Nonetheless, when ADMM did work, it
achieved images very similar to the ones achieved with APG, even better, and in considerably lower time. From
this we can say that ADMM could be used to solve Q`0-grad with fairly good results, but APG was more robust
to changes in the γ parameter. Also, it should be mentioned that the reason why APG took more time to have a
value of the cost function was because it first had to run the initial 20 or 30 inner iterations.

4.5 Results for denoising and deblurring of one greyscale image with
Q`0-grad using different values of γ and a fixed λ

In the first three sections, we focused on the comparisons of our edge-preserving filtering model with other
methods and used a fixed γ = 0.01 obtaining similar results than the ones with `2-TV. However, we also wanted
to be able to control the level of detail that we could lose during both denoising and deblurring. For this, we
needed to change the special parameter γ, this is why in this section we analyzed how, changing γ while keeping
a fixed λ, influenced the output image and the metrics obtained.

We used one greyscale image for each of the three cases: denoising and deblurring with an average filter
and a Gaussian filter. Similar to the sections before, we corrupted the images with additive Gaussian noise with
different values of standard deviation σ = {0.05,0.1,0.25,0.5}. We reconstructed the images using the APG
implementation for Q`0-grad with γ = {0.005,0.0075,0.01,0.025,0.05}, but maintaining the other parameters
and the number of iterations; and then obtained their PSNR, SNR and SSIM metrics.

• Denoising: For this part we chose the greyscale Lena image. In Fig. 4.52 we can see the noisy image ob-
tained with σ = 0.1 and how changes of γ changed the appearance of the reconstructed image; increasing γ

sharpened the borders and reduced the noise considerably but the image lost some details, while decreasing
it, kept the small details of the image but the edges were not sharp and it also maintained a great amount of
noise. For the other values of σ the reconstructed images had a similar behavior, these images are presented
in figures A.1 to A.3.
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(a) σ = 0.1 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure 4.52: Reconstructed images from a noisy greyscale Lena with σ = 0.1 for additive Gaussian noise using
Q`0-grad and different values of γ.

We repeated the tests 10 times for each of the different values of σ and obtained the graphs in Fig. 4.53
with their respective metrics means. Having γ = 0.01 as the middle value, we can see that for PSNR and
SNR, whether γ increased or decreased, both of their values decreased; however, analyzing the SSIM for
σ = 0.5 lowering γ decreased greatly its performance, while increasing γ to 0.025 slightly improved it. For
the complete numeric values of the metrics, see Table A.20.

Figure 4.53: PSNR, SNR and SSIM according to σ for additive Gaussian noise, after 10 experiments, for denois-
ing greyscale Lena with Q`0-grad using 5 different values of γ.

• Deblurring with an average filter: We did the same as in the denoising section with the Barbara greyscale
image filtered with a 5×5 average filter. The case for σ = 0.1 is presented in Fig. 4.54.
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(a) σ = 0.1 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure 4.54: Reconstructed images from a noisy greyscale Barbara with σ = 0.1 for additive Gaussian noise and
an average 5×5 filter, using Q`0-grad and different values of γ.

The reconstructed images behaved similar to those of denoising. In this case, for γ = 0.05 the tablecloth
lines completely disappeared but the noise was practically gone, on the contrary for γ = 0.005 the lines
could be seen perfectly but the amount of noise in the image was still large. For the reconstructed images
of the other values of σ see Fig. A.4 to A.7. Analyzing the graphs in Fig. 4.55 we observe that for σ≤ 0.1,
using a smaller γ got the best metrics, γ = 0.005 even having the best SSIM for the first two values of σ,
however, as σ increased, the best performance was obtained with γ = 0.01, and both bigger and smaller γ

obtained lower metrics. For a full detailed list of the metric values see Table A.21.

Figure 4.55: PSNR, SNR and SSIM according to σ for additive Gaussian noise, after 10 experiments, for deblur-
ring greyscale Barbara with a 5×5 average filter using Q`0-grad and 5 different values of γ.

• Deblurring with a Gaussian filter: For this case we worked with the Peppers greyscale image filtered
with a 9×9 Gaussian filter, which was then corrupted with additive Gaussian noise.

51



(a) σ = 0.1 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure 4.56: Reconstructed images from a noisy greyscale Peppers with σ = 0.1 for additive Gaussian noise and
a Gaussian 9×9 filter, using Q`0-grad and different values of γ.

In Fig. 4.56 we show the reconstructed images for σ = 0.1, here, a bigger γ gave sharper edges with plainer
regions, while a smaller one returned edges which were not quite well defined but the image was more
similar to the original. This is emphasized by the fact that the graphs in Fig. 4.57 show that γ = 0.05
obtained the worst metrics while γ = 0.005 achieved one of the best performances, there we can also see
that for σ = 0.5, SSIM behaved differently than PSNR and SNR because γ = 0.05 had the lowest value
followed close by γ = 0.5. The specific values that formed these graphs are presented in Table A.22 and
the reconstructed images for σ = {0.0,0.05,0.25,0.5} are given in Fig A.8 to A.11.

Figure 4.57: PSNR, SNR and SSIM according to σ for additive Gaussian noise, after 10 experiments, for deblur-
ring greyscale Peppers with a 9×9 Gaussian filter using Q`0-grad and 5 different values of γ (Table A.22).

After analyzing all the reconstructed images for the three cases, we can say that when we increased the value
of γ the noise was significantly reduced, the borders were preserved but the image lost some details, when we
decreased it, the borders were still preserved and the image kept the details of the original but it also maintained a
considerable amount of noise. Furthermore, the parameter γ indeed controlled how close the quadratic envelope
was to the real `0 norm of the gradient, meaning that for greater values of γ the results would be closer to the ones
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obtained with the `0-grad model, giving images with texture-free regions and sharp edges, but they could become
blurry if the amount of noise was large.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

We began this work by computing the quadratic envelope of the `0 norm of the gradient, however the obtained
function had two different definitions depending on the actual value of the gradient (see Section 3.1), making
it unsuitable to be used in a minimization problem similar to `2-TV or `0-grad. Due to this fact, we instead
chose to use a relaxed form of such envelope, by doing this we developed a novel edge-preserving filtering model
(Q`0-grad).

To solve the resulting optimization problem of the Q`0-grad model, we developed an APG-based algorithm,
as well as an ADMM-based algorithm (see Section 3.2) and implemented them using Python; they achieved
similar results when compared with each other, but ADMM was considerably faster and APG was more robust
to changes in the γ parameter which controlled how close the initial quadratic envelope was to the `0 norm of
the gradient. We used APG to make the comparisons with `2-TV and `0-grad for denoising and deblurring. The
results showed that the Q`0-grad model sharpened major edges while strongly attenuating textures; furthermore,
when compared to the `0-grad model, it reconstructed images with better qualitative characteristics (flat, texture-
free regions, with smooth changes between adjacent regions, even in the large noise scenario) and better metrics,
obtaining an improvement on average of +0.96 dB SNR , +0.96 dB PSNR and +0.03 SSIM.

In the presented results, our method and `2-TV had very similar metrics, but the main difference between
Q`0-grad and existing models was the introduction of the parameter γ; concluding that: increasing its value
would reduce a great amount of noise and some details, giving images that are similar to the ones obtained with
the `0-grad method, but that look smoother and have no abrupt changes between adjacent regions; decreasing its
value would make the results be closer to `2-TV, because the quadratic envelope would be closer to the TV-norm,
with images that do not lose too much detail but still keep some noise.

An early version of the model was presented in the paper Fast gradient-based algorithm for a quadratic
envelope relaxation of the `0 gradient regularization [21], which had an approximate solution to the quadratic
envelope of the `0 norm of the gradient and an APG-based solution to the minimization problem of the Q`0-grad
model.

5.2 Recommendations

• The value of γ should be optimized according to the desired application. If it is required to greatly reduce
the noise, even if it means losing some details, then its value should be higher, but if keeping the details is
more important than reducing the noise, γ should be lower.

• One of the applications of `0-grad is X-ray computed tomography reconstruction; and since our method and
`0-grad share some similar characteristics, further investigations could be made comparing the performance
of the Q`0-grad model with other state of the art X-ray CT image reconstruction methods.
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Table A.1: Averages and standard deviations of PSNR, SNR and SSIM of the noisy greyscale images without processing according to the filter used (identity, Gaussian
and average) and the standard deviation (σ) of the Gaussian additive noise, after 10 experiments.

IDENTITY GAUSSIAN AVERAGE
σ PSNR SNR SSIM PSNR SNR SSIM PSNR SNR SSIM

Lena - - - 25.03 11.76 0.73 28.4 15.12 0.84

0.0 Barbara - - - 21.96 9.32 0.59 22.66 10.02 0.67

Mandrill - - - 19.33 4.59 0.34 20.37 5.63 0.51

Peppers - - - 25.5 12.43 0.79 28.68 15.61 0.89

Lena 24.77±0.018 11.50±0.018 0.55±0.004 21.90±0.007 8.62±0.007 0.34±0.002 23.21±0.008 9.94±0.008 0.42±0.003

0.05 Barbara 25.27±0.010 12.64±0.010 0.67±0.002 20.30±0.007 7.65±0.007 0.32±0.002 20.76±0.007 8.12±0.007 0.38±0.002

Mandrill 25.15±0.011 10.41±0.011 0.80±0.001 18.32±0.006 3.58±0.006 0.20±0.001 19.12±0.008 4.39±0.008 0.33±0.002

Peppers 25.60±0.012 12.53±0.012 0.56±0.005 22.54±0.012 9.47±0.012 0.39±0.003 23.87±0.013 10.80±0.013 0.46±0.004

Lena 18.75±0.011 5.48±0.011 0.35±0.003 17.84±0.009 4.57±0.009 0.21±0.004 18.31±0.015 5.04±0.015 0.26±0.003

0.1 Barbara 19.25±0.008 6.61±0.008 0.47±0.002 17.39±0.010 4.75±0.010 0.21±0.003 17.62±0.010 4.98±0.011 0.25±0.003

Mandrill 19.14±0.005 4.40±0.005 0.61±0.001 16.22±0.010 1.49±0.010 0.13±0.002 16.70±0.009 1.96±0.009 0.22±0.001

Peppers 19.58±0.010 6.51±0.010 0.35±0.005 18.60±0.011 5.52±0.011 0.24±0.005 19.07±0.009 6.00±0.009 0.29±0.003

Lena 10.80±0.013 -2.47±0.013 0.19±0.003 10.63±0.014 -2.64±0.014 0.11±0.006 10.73±.0012 -2.55±0.012 0.14±0.004

0.25 Barbara 11.30±0.011 -1.35±0.011 0.25±0.003 10.94±0.015 -1.70±0.015 0.11±0.002 10.98±0.014 -1.66±0.014 0.13±0.003

Mandrill 11.19±0.12 -3.55±0.012 0.32±0.001 10.56±0.014 -4.17±0.014 0.08±0.003 10.70±0.012 -4.05±0.012 0.12±0.003

Peppers 11.62±0.013 -1.45±0.013 0.19±0.004 11.45±0.013 -1.63±0.013 0.13±0.004 11.54±0.016 -1.54±0.016 0.15±0.004

Lena 4.78±0.014 -8.50±0.014 0.11±0.003 4.74±0.010 -8.53±0.010 0.08±0.004 4.76±0.010 -8.51±0.010 0.09±0.003

0.5 Barbara 5.28±0.014 -7.36±0.014 0.15±0.003 5.19±0.010 -7.45±0.010 0.08±0.002 5.19±0.013 -7.45±0.013 0.09±0.002

Mandrill 5.16±0.009 -9.58±0.009 0.19±0.003 5.00±0.007 -9.74±0.007 0.06±0.002 5.03±0.018 -9.70±0.018 0.08±0.003

Peppers 5.61±0.015 -7.46±0.015 0.12±0.005 5.55±0.008 -7.52±0.008 0.09±0.007 5.58±0.006 -7.49±0.006 0.010±0.003
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Table A.2: Averages and standard deviations of PSNR, SNR and SSIM of the noisy color images without processing according to the filter used (identity, Gaussian and
average) and the standard deviation (σ) of the Gaussian additive noise, after 10 experiments.

IDENTITY GAUSSIAN AVERAGE
σ PSNR SNR SSIM PSNR SNR SSIM PSNR SNR SSIM

Lena - - - 26.22 13.6 0.71 29.17 16.55 0.81

0.0 Barbara - - - 24.22 10.53 0.63 26.1 12.41 0.74

Mandrill - - - 19.7 6.56 0.34 20.74 7.6 0.48

Peppers - - - 24.6 13.53 0.67 27.23 16.15 0.76

Lena 25.92±0.006 13.30±0.006 0.60±0.003 23.06±0.004 10.44±0.004 0.38±0.003 24.25±0.007 11.62±0.007 0.45±0.002

0.05 Barbara 25.99±0.006 12.30±0.006 0.66±0.003 22.00±0.005 8.31±0.005 0.36±0.002 23.03±0.006 9.34±0.006 0.44±0.002

Mandrill 26.02±0.007 12.88±0.007 0.81±0.001 18.79±0.003 5.65±0.003 0.22±0.001 19.61±0.004 6.47±0.004 0.33±0.001

Peppers 25.38±0.006 14.30±0.006 0.58±0.002 21.96±0.006 10.88±0.006 0.37±0.003 23.20±0.008 12.12±0.008 0.42±0.004

Lena 19.90±0.007 7.28±0.007 0.39±0.003 18.98±0.006 6.37±0.006 0.24±0.002 19.41±0.006 6.80±0.006 0.28±0.005

0.1 Barbara 19.97±0.006 6.28±0.006 0.45±0.004 18.58±0.007 4.89±0.007 0.23±0.004 19.02±0.005 5.33±0.005 0.28±0.004

Mandrill 20.00±0.009 6.86±0.009 0.62±0.004 16.83±0.007 3.70±0.007 0.15±0.0001 17.35±0.005 4.21±0.005 0.23±0.001

Peppers 19.36±0.007 8.28±0.007 0.37±0.004 18.23±0.007 7.15±0.007 0.23±0.003 18.71±0.008 7.62±0.008 0.26±0.003

Lena 11.94±0.007 -0.67±0.007 0.20±0.006 11.78±0.007 -0.83±0.007 0.013±0.003 11.86±0.006 -0.76±0.006 0.15±0.003

0.25 Barbara 12.01±0.006 -1.68±0.006 0.23±0.003 11.75±0.004 -1.94±0.004 0.12±0.005 11.84±0.009 -1.85±0.009 0.15±0.002

Mandrill 12.05±0.004 -1.09±0.004 0.34±0.001 11.35±0.008 -1.78±0.008 0.09±0.002 11.50±0.005 -1.65±0.005 0.13±0.002

Peppers 11.40±0.010 0.32±0.010 0.19±0.002 11.20±0.004 0.12±0.004 0.12±0.003 11.30±0.005 0.21±0.005 0.14±0.002

Lena 5.92±0.006 -6.70±0.006 0.13±0.005 5.88±0.007 -6.75±0.007 0.09±0.005 5.89±0.006 -6.72±0.006 0.10±0.003

0.5 Barbara 5.99±0.006 -7.70±0.006 0.15±0.003 5.92±0.008 -7.77±0.008 0.09±0.004 5.95±0.006 -7.74±0.006 0.10±0.004

Mandrill 6.02±0.008 -7.12±0.008 0.20±0.002 5.84±0.005 -7.30±0.005 0.07±0.002 5.89±0.006 -7.26±0.006 0.08±0.001

Peppers 5.39±0.009 -5.69±0.010 0.12±0.003 5.33±0.006 -5.75±0.006 0.08±0.003 5.36±0.008 -5.72±0.008 0.10±0.003
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A Tables for denoising

Table A.3: Bounds of λ used in the Fibonacci searches (Section 2.10 Fibonacci search) for finding the optimal
value that maximizes the SNR metric for the denoising tests, according to the standard deviation (σ) of the
additive Gaussian noise and method.

Greyscale Color

Lower Upper Lower Upper
σ Method bound bound bound bound

`2-TV 0.007 0.04 0.008 0.1

0.05 `0-grad 0.0003 0.004 0.003 0.05

Q`0-grad 0.01 0.1 0.01 0.1

`2-TV 0.01 0.15 0.03 0.25

0.1 `0-grad 0.002 0.015 0.01 0.15

Q`0-grad 0.08 0.5 0.1 1.0

`2-TV 0.15 0.3 0.2 0.6

0.25 `0-grad 0.03 0.15 0.1 1.0

Q`0-grad 1.5 3.5 2.0 6.0

`2-TV 0.4 0.6 0.6 1.0

0.5 `0-grad 0.2 0.4 1.0 2.0

Q`0-grad 14.0 16.0 12.0 16.0
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Table A.4: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad, `2-TV and BM3D) for denoising with σ = 0.05 of standard deviation for additive
Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 31.85±0.009 18.58±0.009 0.85±0.001 1.62±0.420

Lena `0-grad 30.56±0.019 17.29±0.019 0.80±0.001 1.41±0.052

Q`0-grad 31.77±.009 18.45±0.009 0.85±0.002 8.56±0.307

G BM3D 33.70±0.021 20.43±0.021 0.88±0.004 7.46±0.169

R `2-TV 28.02±0.016 15.38±0.016 0.80±0.001 1.45±0.028

E Barbara `0-grad 27.72±0.018 15.08±0.018 0.78±0.001 1.39±0.029

Y Q`0-grad 28.85±0.015 16.21±0.015 0.83±0.001 8.36±0.183

S BM3D 33.02±0.016 20.38±0.016 0.92±0.001 7.41±0.097

C `2-TV 26.97±0.013 12.23±0.013 0.84±0.000 1.44±0.023

A Mandrill `0-grad 26.92±0.012 12.18±0.012 0.84±0.000 1.36±0.026

L Q`0-grad 27.41±0.014 12.67±0.014 0.85±0.002 8.31±0.147

E BM3D 28.25±0.0007 13.51±0.007 0.87±0.002 6.95±0.014

`2-TV 33.15±0.026 20.08±0.026 0.89±0.001 1.45±0.017

Peppers `0-grad 31.79±0.019 18.71±0.019 0.81±0.001 1.38±0.021

Q`0-grad 33.37±0.026 20.29±0.026 0.90±0.001 8.45±0.156

BM3D 35.29±0.021 22.21±0.021 0.92±0.000 7.40±0.024

`2-TV 32.70±0.006 20.09±0.006 0.85±0.000 6.03±0.191

Lena `0-grad 31.27±0.10 18.64±0.010 0.80±0.001 5.91±0.077

Q`0-grad 32.38±0.007 19.77±0.007 0.84±0.000 27.91±0.347

BM3D 33.77±0.010 21.16±0.010 0.86±0.000 11.95±0.037

`2-TV 30.61±0.008 16.92±0.008 0.86±0.000 5.95±0.028

C Barbara `0-grad 29.72±0.011 16.03±0.011 0.82±0.001 5.88±0.038

O Q`0-grad 30.47±0.009 16.78±0.009 0.85±0.000 27.60±0.188

L BM3D 37.67±0.011 20.98±0.011 0.94±0.000 11.91±0.030

O `2-TV 27.59±0.000 14.45±0.005 0.85±0.000 5.94±0.026

R Mandrill `0-grad 27.57±0.006 14.43±0.006 0.85±0.000 5.85±0.035

Q`0-grad 28.04±0.005 14.90±0.005 0.87±0.000 27.13±0.084

BM3D 28.70±0.007 15.57±0.007 0.89±0.000 11.36±0.246

`2-TV 31.34±0.011 20.26±0.011 0.81±0.001 5.91±0.018

Peppers `0-grad 30.12±0.010 19.04±0.010 0.76±0.000 5.84±0.023

Q`0-grad 31.52±0.010 20.45±0.010 0.80±0.001 27.78±0.136

BM3D 32.32±0.011 21.24±0.011 0.88±0.001 11.96±0.030
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Table A.5: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad, `2-TV and BM3D) for denoising with σ = 0.1 of standard deviation for additive
Gaussian noise, after 10 experiments.

Image PSNR SNR SSIM Time

`2-TV 28.79±0.020 15.52±0.020 0.77±0.004 1.45±0.021

Lena `0-grad 26.80±0.019 13.52±0.019 0.70±0.001 1.36±0.023

Q`0-grad 28.71±0.015 15.44±0.015 0.77±0.006 8.68±0.342

G BM3D 30.75±0.026 17.47±0.026 0.82±0.005 7.42±0.015

R `2-TV 24.79±0.021 12.15±0.021 0.68±0.002 1.45±0.022

E Barbara `0-grad 23.52±0.022 10.88±0.022 0.64±0.002 1.39±0.011

Y Q`0-grad 24.95±0.017 12.31±0.017 0.70±0.001 8.67±0.275

S BM3D 29.84±0.051 17.20±0.051 0.87±0.003 7.42±0.037

C `2-TV 23.49±0.015 8.75±0.015 0.70±0.002 1.42±0.027

A Mandrill `0-grad 22.64±0.016 7.90±0.016 0.67±0.001 1.37±0.018

L Q`0-grad 23.49±0.012 8.76±0.012 0.69±0.002 8.69±0.245

E BM3D 24.57±0.015 9.84±0.015 0.74±0.003 7.24±0.033

`2-TV 30.01±0.026 16.94±0.026 0.84±0.002 1.46±0.022

Peppers `0-grad 27.95±0.030 14.88±0.030 0.77±0.001 1.35±0.025

Q`0-grad 30.08±0.035 17.01±0.035 0.84±0.002 8.84±0.129

BM3D 32.25±0.036 19.18±0.036 0.88±0.001 7.50±0.181

`2-TV 30.09±0.012 17.48±0.012 0.79±0.001 5.96±0.101

Lena `0-grad 27.87±0.019 15.25±0.019 0.71±0.002 5.87±0.058

Q`0-grad 29.59±0.010 16.97±0.010 0.77±0.001 27.77±0.071

BM3D 31.25±0.012 18.63±0.012 0.81±0.000 11.99±0.037

`2-TV 27.74±0.015 14.05±0.015 0.77±0.001 5.93±0.038

C Barbara `0-grad 26.05±0.011 12.36±0.011 0.70±0.001 5.86±0.044

O Q`0-grad 27.23±0.014 13.54±0.014 0.75±0.001 27.77±0.162

L BM3D 31.20±0.030 17.51±0.030 0.88±0.001 11.94±0.043

O `2-TV 24.26±0.010 11.12±0.010 0.73±0.001 5.90±0.021

R Mandrill `0-grad 23.49±0.006 10.35±0.006 0.69±0.001 5.83±0.019

Q`0-grad 24.07±0.010 10.90±0.010 0.72±0.001 27.49±0.156

BM3D 25.00±0.010 11.87±0.010 0.75±0.001 11.69±0.039

`2-TV 29.01±0.012 17.93±0.012 0.75±0.001 5.95±0.104

Peppers `0-grad 26.92±0.016 15.84±0.016 0.67±0.001 5.82±0.025

Q`0-grad 28.92±0.015 17.84±0.014 0.74±0.001 27.75±0.076

BM3D 30.21±0.014 19.13±0.014 0.77±0.001 12.02±0.033
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Table A.6: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad, `2-TV and BM3D) for denoising with σ = 0.25 of standard deviation for additive
Gaussian noise, after 10 experiments.

Image PSNR SNR SSIM Time

`2-TV 25.17±0.033 11.89±0.033 0.66±0.003 1.48±0.027

Lena `0-grad 22.72±0.046 9.45±0.046 0.59±0.002 1.36±0.023

Q`0-grad 25.15±0.031 11.87±0.031 0.66±0.002 8.39±0.159

G BM3D 26.53±0.030 13.25±0.030 0.72±0.002 7.53±0.076

R `2-TV 21.97±0.011 9.33±0.011 0.56±0.002 1.48±0.029

E Barbara `0-grad 20.53±0.026 7.89±0.026 0.48±0.002 1.36±0.021

Y Q`0-grad 21.95±0.010 9.31±0.010 0.56±0.002 8.42±0.152

S BM3D 25.01±0.030 12.37±0.030 0.71±0.003 7.56±0.070

C `2-TV 20.11±0.014 5.37±0.014 0.44±0.002 1.45±0.025

A Mandrill `0-grad 18.77±0.020 4.03±0.020 0.31±0.002 1.35±0.020

L Q`0-grad 20.07±0.014 5.33±0.014 0.43±0.002 8.47±0.166

E BM3D 20.73±0.024 5.99±0.024 0.48±0.004 7.61±0.075

`2-TV 26013±0.044 13.06±0.044 0.74±0.002 1.46±0.020

Peppers `0-grad 23.50±0.051 10.42±0.051 0.66±0.002 1.35±0.024

Q`0-grad 26.13±0.042 13.06±0.042 0.75±0.002 8.41±0.177

BM3D 27.75±0.054 14.69±0.054 0.78±0.001 7.54±0.032

`2-TV 26.85±0.020 14.24±0.020 0.70±0.001 5.91±0.030

Lena `0-grad 24.30±0.027 11.68±0.027 0.61±0.001 5.82±0.024

Q`0-grad 26.25±0.022 13.63±0.022 0.67±0.001 27.52±0.113

BM3D 27.52±0.022 14.90±0.022 0.72±0.001 12.05±0.028

`2-TV 24.83±0.015 11.14±0.015 0.66±0.001 5.91±0.018

C Barbara `0-grad 22.80±0.027 9.10±0.027 0.56±0.001 5.83±0.027

O Q`0-grad 24.28±0.013 10.59±0.013 0.62±0.001 27.57±0.047

L BM3D 26.20±0.038 12.51±0.038 0.72±0.002 12.08±0.213

O `2-TV 20.93±0.011 7.08±0.011 0.49±0.001 5.95±0.042

R Mandrill `0-grad 19.57±0.012 6.43±0.012 0.37±0.002 5.86±0.023

Q`0-grad 20.58±0.009 7.44±0.009 0.45±0.001 27.83±0.168

BM3D 21.02±0.018 7.89±0.018 0.46±0.002 12.08±0.025

`2-TV 25.72±0.025 14.65±0.025 0.66±0.001 5.95±0.028

Peppers `0-grad 23.06±0.041 11.98±0.041 0.57±0.001 5.84±0.037

Q`0-grad 25.41±0.022 14.33±0.022 0.64±0.001 27.39±0.059

BM3D 26.67±0.033 15.59±0.033 0.68±0.001 12.13±0.279
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Table A.7: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad, `2-TV and BM3D) for denoising with σ = 0.5 of standard deviation for additive
Gaussian noise, after 10 experiments.

Image PSNR SNR SSIM Time

`2-TV 22.72±0.044 9.44±0.044 0.59±0.002 1.48±0.023

Lena `0-grad 20.05±0.075 6.78±0.075 0.52±0.004 1.37±0.014

Q`0-grad 22.68±0.041 9.41±0.041 0.59±0.002 8.37±0.113

G BM3D 23.12±0.038 9.85±0.038 0.59±0.003 7.65±0.239

R `2-TV 20.51±0.032 7.87±0.032 0.47±0.002 1.47±0.017

E Barbara `0-grad 18.57±0.066 5.93±0.066 0.40±0.004 1.36±0.020

Y Q`0-grad 20.52±0.031 7.88±0.031 0.48±0.002 8.42±0.116

S BM3D 21.38±0.055 8.74±0.054 0.53±0.005 7.55±0.011

C `2-TV 18.77±0.012 4.00±0.012 0.28±0.001 1.48±0.018

A Mandrill `0-grad 17.54±0.029 2.80±0.029 0.21±0.002 1.35±0.022

L Q`0-grad 18.73±0.013 3.99±0.013 0.27±0.001 8.26±0.089

E BM3D 18.95±0.028 4.21±0.028 0.31±0.003 7.71±0.263

`2-TV 23.38±0.026 10.31±0.026 0.66±0.002 1.46±0.024

Peppers `0-grad 20.45±0.062 7.38±0.062 0.58±0.003 1.35±0.023

Q`0-grad 23.39±0.028 10.32±0.028 0.67±0.003 8.33±0.168

BM3D 23.85±0.100 10.78±0.100 0.64±0.004 7.56±0.027

`2-TV 24.56±0.046 11.95±0.046 0.63±0.002 5.94±0.030

Lena `0-grad 22.20±0.040 9.58±0.040 0.56±0.002 5.85±0.088

Q`0-grad 23.91±0.044 11.29±0.044 0.60±0.002 27.24±0.075

BM3D 24.60±0.048 11.98±0.048 0.62±0.002 12.01±0.035

`2-TV 22.92±0.028 9.23±0.028 0.57±0.001 5.95±0.027

C Barbara `0-grad 20.67±0.043 6.98±0.043 0.48±0.002 5.83±0.023

O Q`0-grad 22.38±0.023 8.69±0.023 0.54±0.001 27.34±0.172

L BM3D 23.21±0.053 9.52±0.053 0.58±0.003 12.04±0.019

O `2-TV 19.42±0.006 6.28±0.006 0.33±0.001 5.93±0.024

R Mandrill `0-grad 18.17±0.016 5.03±0.016 0.24±0.001 5.84±0.061

Q`0-grad 19.20±0.007 6.06±0.007 0.31±0.001 27.38±0.102

BM3D 19.28±0.012 6.15±0.012 0.31±0.001 12.10±0.029

`2-TV 23.32±0.024 12.24±0.024 0.59±0.002 5.92±0.023

Peppers `0-grad 20.56±0.030 9.48±0.029 0.50±0.002 5.83±0.037

Q`0-grad 22.91±0.023 11.84±0.023 0.57±0.002 27.34±0.161

BM3D 23.35±0.040 12.27±0.040 0.59±0.002 12.07±0.018
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B Tables for deblurring with a 5×5 average filter

Table A.8: Bounds of λ used in the Fibonacci searches (Section 2.10 Fibonacci search) for finding the optimal
value that maximizes the SNR metric for the deblurring with a 5×5 average filter tests, according to the standard
deviation (σ) of the additive Gaussian noise and method.

Greyscale Color

Lower Upper Lower Upper
σ Method bound bound bound bound

`2-TV 0.0005 0.05 0.0 0.03

0.0 `0-grad 0.00005 0.005 0.0 0.005

Q`0-grad 0.005 0.05 0.0 0.05

`2-TV 0.0005 0.05 0.001 0.1

0.05 `0-grad 0.0001 0.0015 0.0001 0.05

Q`0-grad 0.005 0.08 0.005 0.1

`2-TV 0.01 0.1 0.01 0.2

0.1 `0-grad 0.0007 0.01 0.003 0.1

Q`0-grad 0.01 0.15 0.01 0.5

`2-TV 0.05 0.25 0.1 0.5

0.25 `0-grad 0.01 0.1 0.05 0.4

Q`0-grad 0.5 1.5 0.3 3.0

`2-TV 0.2 0.6 0.2 1.0

0.5 `0-grad 0.05 0.15 0.3 1.0

Q`0-grad 3.5 6.5 2.5 10.0
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Table A.9: PSNR, SNR, SSIM and averages and standard deviations of computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 5×5 average filter, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 27.72 14.45 0.81 1.47±0.025

G Lena `0-grad 27.67 14.39 0.81 1.41±0.008

R Q`0-grad 28.54 15.27 0.79 8.47±0.202

E `2-TV 22.90 10.26 0.69 1.52±0.043

Y Barbara `0-grad 22.88 10.25 0.69 1.46±0.038

S Q`0-grad 23.08 10.44 0.67 8.74±0.240

C `2-TV 20.71 5.97 0.56 1.48±0.008

A Mandrill `0-grad 20.70 5.96 0.56 1.41±0.005

L Q`0-grad 20.54 5.80 0.49 8.51±0.082

E `2-TV 30.08 17.01 0.89 1.47±0.003

Peppers `0-grad 29.93 16.80 0.89 1.41±0.004

Q`0-grad 29.00 15.93 0.86 8.42±0.092

`2-TV 28.37 15.75 0.80 6.16±0.070

Lena `0-grad 28.37 15.75 0.80 6.07±0.056

Q`0-grad 29.15 16.54 0.77 28.22±0.175

C `2-TV 26.21 12.52 0.77 6.11±0.023

O Barbara `0-grad 26.21 12.52 0.77 6.02±0.042

L Q`0-grad 26.15 12.46 0.71 28.02±0.089

O `2-TV 21.16 8.02 0.56 6.18±0.067

R Mandrill `0-grad 21.16 8.02 0.56 6.06±0.019

Q`0-grad 21.04 7.91 0.54 28.27±0.053

`2-TV 27.48 16.40 0.76 6.14±0.020

Peppers `0-grad 27.39 16.31 0.77 6.04±0.023

Q`0-grad 27.76 16.68 0.78 28.09±0.095
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Table A.10: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 5× 5 average filter and σ = 0.05 of standard
deviation for additive Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 27.16±0.013 13.89±0.013 0.77±0.001 1.50±0.026

G Lena `0-grad 26.83±0.018 13.55±0.018 0.75±0.004 1.44±0.017

R Q`0-grad 27.76±0.028 14.48±0.028 0.77±0.003 8.53±0.113

E `2-TV 22.65±0.005 10.01±0.005 0.65±0.001 1.49±0.006

Y Barbara `0-grad 22.56±0.006 9.92±0.006 0.64±0.002 1.43±0.005

S Q`0-grad 22.83±0.006 10.19±0.006 0.64±0.003 8.51±0.086

C `2-TV 20.46±0.007 5.72±0.007 0.51±0.003 1.49±0.007

A Mandrill `0-grad 20.45±0.006 5.71±0.006 0.52±0.003 1.42±0.005

L Q`0-grad 20.34±0.008 5.60±0.008 0.46±0.001 8.54±0.089

E `2-TV 29.44±0.017 16.37±0.017 0.86±0.001 1.49±0.005

Peppers `0-grad 28.91±0.014 15.83±0.014 0.83±0.001 1.44±0.056

Q`0-grad 28.27±0.017 15.19±0.017 0.83±0.001 8.43±0.018

`2-TV 27.93±0.003 15.31±0.003 0.76±0.000 6.17±0.015

Lena `0-grad 27.57±0.003 14.96±0.003 0.74±0.000 6.09±0.008

Q`0-grad 28.55±0.008 15.94±0.008 0.75±0.000 28.23±0.105

C `2-TV 25.75±0.005 12.06±0.005 0.72±0.000 6.17±0.012

O Barbara `0-grad 25.57±0.005 11.87±0.005 0.71±0.000 6.09±0.014

L Q`0-grad 25.72±0.004 12.03±0.004 0.70±0.004 28.31±0.110

O `2-TV 20.92±0.002 7.78±0.002 0.52±0.001 6.16±0.018

R Mandrill `0-grad 20.91±0.002 7.78±0.002 0.52±0.001 6.08±0.018

Q`0-grad 20.82±0.005 7.69±0.004 0.50±0.001 28.44±0.095

`2-TV 27.21±0.005 16.13±0.005 0.73±0.000 6.18±0.054

Peppers `0-grad 26.68±0.006 15.60006±0. 0.71±0.000 6.11±0.035

Q`0-grad 27.12±0.010 16.04±0.010 0.72±0.000 28.21±0.070
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Table A.11: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 5× 5 average filter and σ = 0.1 of standard
deviation for additive Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 26.40±0.022 13.12±0.022 0.72±0.001 1.50±0.006

G Lena `0-grad 25.53±0.025 12.26±0.025 0.68±0.002 1.43±0.007

R Q`0-grad 26.68±0.031 13.41±0.031 0.73±0.002 8.45±0.085

E `2-TV 22.32±0.007 9.68±0.007 0.61±0.002 1.50±0.037

Y Barbara `0-grad 22.01±0.005 9.37±0.005 0.58±0.001 1.43±0.024

S Q`0-grad 22.42±0.009 9.78±0.009 0.61±0.003 8.43±0.020

C `2-TV 19.98±0.007 5.25±0.007 0.44±0.002 1.48±0.008

A Mandrill `0-grad 19.82±0.009 5.09±0.009 0.44±0.002 1.43±0.006

L Q`0-grad 19.97±0.007 5.22±0.007 0.42±0.001 8.54±0.087

E `2-TV 28.41±0.023 15.33±0.023 0.82±0.001 1.51±0.037

Peppers `0-grad 27.39±0.026 14.32±0.026 0.77±0.002 1.43±0.004

Q`0-grad 27.29±0.018 14.21±0.018 0.80±0.001 8.38±0.025

`2-TV 27.39±0.010 14.77±0.010 0.73±0.001 6.17±0.025

Lena `0-grad 26.46±0.016 13.85±0.016 0.68±0.001 6.09±0.013

Q`0-grad 27.62±0.013 15.01±0.013 0.72±0.001 28.21±0.104

C `2-TV 25.28±0.006 11.59±0.006 0.69±0.001 6.16±0.015

O Barbara `0-grad 24.69±0.010 11.00±0.010 0.65±0.001 6.10±0.031

L Q`0-grad 25.10±0.006 11.41±0.006 0.67±0.001 28.22±0.130

O `2-TV 20.50±0.004 7.36±0.004 0.45±0.001 6.18±0.038

R Mandrill `0-grad 20.31±0.006 7.17±0.006 0.45±0.001 6.10±0.027

Q`0-grad 20.41±0.004 7.27±0.004 0.44±0.001 28.50±0.126

`2-TV 26.71±0.010 15.63±0.010 0.70±0.001 6.17±0.015

Peppers `0-grad 25.63±0.014 14.54±0.014 0.66±0.000 6.10±0.023

Q`0-grad 26.25±0.016 15.17±0.016 0.69±0.001 28.21±0.099
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Table A.12: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 5× 5 average filter and σ = 0.25 of standard
deviation for additive Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 24.45±0.041 11.18±0.041 0.64±0.004 1.53±0.065

G Lena `0-grad 23.09±0.055 9.82±0.055 0.59±0.002 1.45±0.061

R Q`0-grad 24.51±0.047 11.23±0.047 0.65±0.003 8.53±0.290

E `2-TV 21.48±0.013 8.84±0.013 0.54±0.004 1.50±0.010

Y Barbara `0-grad 20.76±0.022 8.12±0.022 0.50±0.002 1.43±0.014

S Q`0-grad 21.52±0.012 8.88±0.012 0.54±0.003 8.40±0.092

C `2-TV 19.14±0.011 4.40±0.011 0.32±0.002 1.50±0.007

A Mandrill `0-grad 18.64±0.016 3.91±0.016 0.28±0.001 1.43±0.008

L Q`0-grad 19.14±0.016 4.40±0.016 0.31±0.005 8.44±0.100

E `2-TV 25.88±0.034 12.81±0.034 0.74±0.003 1.51±0.015

Peppers `0-grad 24.34±0.030 11.27±0.030 0.68±0.002 1.43±0.027

Q`0-grad 25.23±0.045 12.16±0.045 0.74±0.004 8.42±0.159

`2-TV 25.93±0.018 13.31±0.018 0.67±0.002 6.17±0.041

Lena `0-grad 24.40±0.027 11.79±0.027 0.61±0.001 6.09±0.039

Q`0-grad 25.65±0.026 13.04±0.026 0.66±0.001 27.95±0.078

C `2-TV 24.15±0.013 10.46±0.013 0.63±0.001 6.25±0.129

O Barbara `0-grad 22.97±0.039 9.28±0.031 0.56±0.001 6.14±0.120

L Q`0-grad 23.79±0.009 10.10±0.009 0.60±0.001 28.25±0.566

O `2-TV 19.73±0.006 6.60±0.006 0.35±0.001 6.18±0.015

R Mandrill `0-grad 19.17±0.009 6.03±0.009 0.30±0.001 6.09±0.026

Q`0-grad 19.60±0.007 6.46±0.007 0.33±0.001 28.27±0.175

`2-TV 25.16±0.019 14.08±0.019 0.65±0.002 6.16±0.025

Peppers `0-grad 23.40±0.030 12.32±0.030 0.58±0.002 6.08±0.017

Q`0-grad 24.50±0.021 13.41±0.021 0.62±0.001 28.06±0.128
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Table A.13: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 5× 5 average filter and σ = 0.5 of standard
deviation for additive Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 22.55±0.046 9.28±0.046 0.58±0.006 1.50±0.008

G Lena `0-grad 20.98±0.063 7.71±0.063 0.54±0.003 1.42±0.011

R Q`0-grad 22.35±0.045 9.08±0.045 0.57±0.007 8.33±0.090

E `2-TV 20.36±0.035 7.72±0.035 0.47±0.006 1.52±0.038

Y Barbara `0-grad 19.22±0.045 6.58±0.045 0.43±0.004 1.42±0.007

S Q`0-grad 20.34±0.030 7.70±0.030 0.46±0.004 8.31±0.045

C `2-TV 18.50±0.025 3.76±0.025 0.25±0.002 1.50±0.010

A Mandrill `0-grad 17.80±0.034 3.07±0.034 0.22±0.002 1.42±0.008

L Q`0-grad 18.48±0.023 3.74±0.023 0.25±0.002 8.33±0.095

E `2-TV 23.42±0.080 10.34±0.080 0.67±0.004 1.50±0.008

Peppers `0-grad 21.48±0.113 8.40±0.113 0.61±0.004 1.43±0.046

Q`0-grad 23.06±0.077 9.99±0.077 0.65±0.003 8.29±0.036

`2-TV 24.30±0.030 11.69±0.030 0.62±0.001 6.18±0.011

Lena `0-grad 22.79±0.085 10.18±0.085 0.57±0.003 6.07±0.011

Q`0-grad 23.57±0.028 10.96±0.028 0.58±0.001 27.92±0.115

C `2-TV 22.78±0.033 9.09±0.033 0.57±0.002 6.18±0.017

O Barbara `0-grad 21.42±0.034 7.73±0.034 0.50±0.002 6.08±0.013

L Q`0-grad 22.23±0.025 8.54±0.025 0.52±0.001 27.93±0.0.79

O `2-TV 19.09±0.008 5.96±0.008 0.28±0.001 6.16±0.022

R Mandrill `0-grad 18.42±0.017 5.28±0.017 0.24±0.001 6.09±0.055

Q`0-grad 18.91±0.010 5.77±0.010 0.27±0.001 28.05±0.483

`2-TV 23.26±0.049 12.18±0.050 0.59±0.002 6.18±0.053

Peppers `0-grad 21.28±0.041 10.20±0.041 0.52±0.002 6.08±0.016

Q`0-grad 22.54±0.047 11.46±0.045 0.55±0.002 27.89±0.056

68



C Tables for deblurring with a 9×9 Gaussian filter

Table A.14: Bounds of λ used in the Fibonacci searches (Section 2.10 Fibonacci search) for finding the optimal
value that maximizes the SNR metric for the deblurring with a 9×9 Gaussian filter tests, according to the standard
deviation (σ) of the additive Gaussian noise and method.

Greyscale Color

Lower Upper Lower Upper
σ Method bound bound bound bound

`2-TV 0.005 0.05 0.0 0.1

0.0 `0-grad 0.0001 0.005 0.0 0.02

Q`0-grad 0.005 0.025 0.0 0.05

`2-TV 0.01 0.07 0.005 0.1

0.05 `0-grad 0.0005 0.005 0.0001 0.05

Q`0-grad 0.01 0.05 0.005 0.05

`2-TV 0.02 0.1 0.01 0.15

0.1 `0-grad 0.001 0.01 0.001 0.1

Q`0-grad 0.01 0.1 0.01 0.1

`2-TV 0.05 0.15 0.05 0.5

0.25 `0-grad 0.005 0.025 0.05 0.5

Q`0-grad 0.25 1.0 0.1 1.5

`2-TV 0.2 0.3 0.1 1.0

0.5 `0-grad 0.03 0.1 0.2 1.0

Q`0-grad 2.0 4.5 2.0 4.0
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Table A.15: PSNR, SNR, SSIM and averages and standard deviations of computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 9×9 Gaussian filter, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 25.15 11.88 0.69 1.48±0.028

G Lena `0-grad 24.78 11.51 0.67 1.42±0.047

R Q`0-grad 26.22 12.94 0.71 12.50±0.204

E `2-TV 21.89 9.25 0.58 1.48±0.005

Y Barbara `0-grad 21.67 9.03 0.57 1.40±0.005

S Q`0-grad 22.29 9.65 0.58 12.43±0.098

C `2-TV 19.3 4.56 0.37 1.50±0.038

A Mandrill `0-grad 19.28 4.54 0.38 1.42±0.033

L Q`0-grad 19.53 4.79 0.34 12.52±0.101

E `2-TV 26.25 13.17 0.79 1.47±0.005

Peppers `0-grad 25.71 12.64 0.77 1.40±0.006

Q`0-grad 26.88 13.81 0.79 12.39±0.094

`2-TV 26.13 13.51 0.68 6.31±0.093

Lena `0-grad 25.82 13.21 0.67 6.22±0.138

Q`0-grad 27.16 14.55 0.71 42.16±0.200

C `2-TV 24.47 10.78 0.66 6.24±0.025

O Barbara `0-grad 24.29 10.6 0.66 6.20±0.100

L Q`0-grad 24.91 11.26 0.64 42.06±0.125

O `2-TV 19.81 6.67 0.4 6.30±0.081

R Mandrill `0-grad 19.81 6.67 0.41 6.19±0.019

Q`0-grad 20.01 6.87 0.37 42.22±0.069

`2-TV 25.09 14.01 0.67 6.25±0.017

Peppers `0-grad 24.53 13.45 0.66 6.16±0.017

Q`0-grad 25.91 14.83 0.69 42.05±0.187
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Table A.16: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 9× 9 Gaussian filter and σ = 0.05 for additive
Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 25.05±0.011 11.78±0.011 0.68±0.001 1.50±0.010

G Lena `0-grad 24.57±0.019 11.29±0.019 0.66±0.002 1.44±0.041

R Q`0-grad 25.75±0.031 12.48±0.031 0.69±0.003 12.48±0.111

E `2-TV 21.84±0.006 9.20±0.006 0.57±0.001 1.50±0.011

Y Barbara `0-grad 21.55±0.012 8.91±0.012 0.56±0.001 1.43±0.012

S Q`0-grad 22.10±0.011 9.46±0.011 0.57±0.002 12.45±0.101

C `2-TV 19.23±0.003 4.49±0.003 0.35±0.001 1.50±0.010

A Mandrill `0-grad 19.16±0.005 4.42±0.005 0.35±0.002 1.43±0.007

L Q`0-grad 19.43±0.004 4.69±0.004 0.33±0.001 12.53±0.091

E `2-TV 26.12±0.015 13.05±0.015 0.79±0.002 1.50±0.009

Peppers `0-grad 25.48±0.018 12.40±0.018 0.76±0.001 1.43±0.008

Q`0-grad 26.40±0.030 13.33±0.030 0.77±0.003 12.45±0.093

`2-TV 26.07±0.007 13.46±0.007 0.68±0.000 6.31±0.017

Lena `0-grad 25.58±0.017 12.96±0.017 0.65±0.001 6.28±0.014

Q`0-grad 26.80±0.018 14.19±0.018 0.69±0.001 42.26±0.172

C `2-TV 24.41±0.005 10.72±0.005 0.65±0.002 6.31±0.014

O Barbara `0-grad 24.09±0.009 10.40±0.009 0.64±0.001 6.22±0.019

L Q`0-grad 24.64±0.004 10.95±0.004 0.63±0.003 42.27±0.217

O `2-TV 19.73±0.003 6.59±0.003 0.37±0.000 6.32±0.019

R Mandrill `0-grad 19.67±0.003 6.54±0.003 0.39±0.000 6.21±0.013

Q`0-grad 19.89±0.003 6.75±0.003 0.36±0.000 42.48±0.166

`2-TV 25.03±0.005 13.94±0.005 0.67±0.000 6.32±0.053

Peppers `0-grad 24.34±0.009 13.26±0.009 0.65±0.001 6.24±0.039

Q`0-grad 25.50±0.009 14.42±0.009 0.67±0.000 42.16±0.044
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Table A.17: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 9× 9 Gaussian filter and σ = 0.1 for additive
Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 24.80±0.020 11.52±0.020 0.67±0.001 1.50±0.007

G Lena `0-grad 24.11±0.037 10.83±0.037 0.63±0.002 1.43±0.010

R Q`0-grad 25.08±0.034 11.80±0.034 0.67±0.002 12.47±0.091

E `2-TV 21.72±0.009 9.08±0.010 0.56±0.003 1.50±0.009

Y Barbara `0-grad 21.33±0.020 8.69±0.020 0.53±0.002 1.43±0.005

S Q`0-grad 21.83±0.016 9.19±0.016 0.55±0.006 12.47±0.090

C `2-TV 19.12±0.005 4.38±0.005 0.32±0.002 1.50±0.013

A Mandrill `0-grad 18.93±0.011 4.19±0.011 0.30±0.002 1.43±0.010

L Q`0-grad 19.25±0.007 4.51±0.007 0.31±0.002 12.54±0.094

E `2-TV 25.80±0.024 12.72±0.024 0.77±0.002 1.50±0.009

Peppers `0-grad 25.01±0.024 11.94±0.024 0.72±0.001 1.43±0.008

Q`0-grad 25.70±0.039 12.63±0.039 0.75±0.002 12.44±0.088

`2-TV 25.91±0.011 13.30±0.011 0.67±0.000 6.33±0.044

Lena `0-grad 25.19±0.017 12.57±0.017 0.63±0.001 6.22±0.015

Q`0-grad 26.19±0.022 13.58±0.022 0.67±0.001 42.24±0.151

C `2-TV 24.25±0.007 10.56±0.007 0.64±0.001 6.30±0.022

O Barbara `0-grad 23.70±0.013 10.00±0.013 0.61±0.001 6.23±0.020

L Q`0-grad 24.22±0.008 10.53±0.008 0.61±0.004 42.24±0.193

O `2-TV 19.62±0.003 6.48±0.003 0.34±0.000 6.32±0.018

R Mandrill `0-grad 19.42±0.007 6.29±0.007 0.32±0.001 6.24±0.013

Q`0-grad 19.69±0.005 6.55±0.005 0.34±0.001 42.56±0.141

`2-TV 24.85±0.004 13.77±0.004 0.66±0.000 6.32±0.017

Peppers `0-grad 23.96±0.016 12.88±0.016 0.62±0.001 6.25±0.081

Q`0-grad 24.89±0.017 13.81±0.017 0.64±0.001 42.15±0.063
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Table A.18: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 9× 9 Gaussian filter and σ = 0.25 for additive
Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 23.64±0.047 10.37±0.047 0.62±0.003 1.50±0.007

G Lena `0-grad 22.57±0.050 9.30±0.050 0.57±0.002 1.42±0.005

R Q`0-grad 23.57±0.041 10.29±0.041 0.62±0.005 12.37±0.086

E `2-TV 21.11±0.013 8.47±0.014 0.51±0.004 1.50±0.006

Y Barbara `0-grad 20.50±0.016 7.86±0.016 0.47±0.002 1.42±0.007

S Q`0-grad 21.07±0.017 8.43±0.017 0.50±0.003 12.38±0.085

C `2-TV 18.77±0.009 4.03±0.009 0.27±0.003 1.51±0.0.21

A Mandrill `0-grad 18.44±0.014 3.70±0.014 0.24±0.002 1.42±0.006

L Q`0-grad 18.78±0.004 4.04±0.004 0.27±0.003 12.40±0.062

E `2-TV 24.51±0.038 11.44±0.038 0.71±0.002 1.50±0.011

Peppers `0-grad 23.34±0.072 10.26±0.072 0.66±0.003 1.42±0.008

Q`0-grad 24.16±0.044 11.09±0.044 0.70±0.002 12.37±0.087

`2-TV 25.10±0.020 12.49±0.020 0.64±0.001 6.31±0.063

Lena `0-grad 23.90±0.040 11.28±0.040 0.59±0.001 6.24±0.064

Q`0-grad 24.79±0.025 12.17±0.012 0.63±0.001 41.94±0.037

C `2-TV 23.54±0.026 9.85±0.023 0.60±0.002 6.30±0.014

O Barbara `0-grad 22.53±0.027 8.84±0.027 0.54±0.002 6.22±0.017

L Q`0-grad 23.15±0.019 9.46±0.019 0.57±0.002 42.05±0.154

O `2-TV 19.29±0.006 6.16±0.006 0.30±0.001 6.31±0.014

R Mandrill `0-grad 18.88±0.013 5.74±0.013 0.27±0.002 6.23±0.022

Q`0-grad 19.20±0.007 6.06±0.007 0.28±0.001 42.15±0.172

`2-TV 23.97±0.019 12.89±0.019 0.62±0.001 6.31±0.021

Peppers `0-grad 22.61±0.025 11.53±0.025 0.55±0.002 6.22±0.015

Q`0-grad 23.51±0.023 12.43±0.023 0.59±0.001 41.98±0.150
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Table A.19: Averages and standard deviations of PSNR, SNR, SSIM and computation time in seconds, according
to method (Q`0-grad, `0-grad and `2-TV) for deblurring with a 9× 9 Gaussian filter and σ = 0.5 for additive
Gaussian noise, after 10 experiments.

Image Method PSNR SNR SSIM Time

`2-TV 22.16±0.052 8.88±0.052 0.57±0.008 1.51±0.010

G Lena `0-grad 20.93±0.062 7.65±0.062 0.54±0.004 1.42±0.011

R Q`0-grad 21.99±0.050 8.72±0.050 0.57±0.006 12.31±0.096

E `2-TV 20.13±0.028 7.50±0.028 0.46±0.004 1.51±0.028

Y Barbara `0-grad 19.20±0.048 6.56±0.048 0.42±0.002 1.43±0.039

S Q`0-grad 20.08±0.026 7.45±0.026 0.45±0.004 12.28±0.020

C `2-TV 18.33±0.013 3.60±0.013 0.24±0.002 1.50±0.011

A Mandrill `0-grad 17.81±0.035 3.07±0.035 0.21±0.001 1.42±0.006

L Q`0-grad 18.31±0.011 3.57±0.011 0.23±0.002 12.29±0.098

E `2-TV 22.71±0.048 9.64±0.048 0.65±0.006 1.50±0.007

Peppers `0-grad 21.18±0.062 8.12±0.063 0.59±0.003 1.42±0.004

Q`0-grad 22.44±0.048 9.37±0.048 0.64±0.005 12.31±0.086

`2-TV 23.84±0.043 11.22±0.043 0.61±0.002 6.31±0.015

Lena `0-grad 22.65±0.052 10.03±0.052 0.56±0.002 6.23±0.010

Q`0-grad 23.24±0.037 10.63±0.037 0.58±0.002 41.87±0.166

C `2-TV 22.42±0.030 8.73±0.030 0.55±0.002 6.32±0.018

O Barbara `0-grad 21.25±0.028 7.56±0.028 0.49±0.002 6.25±0.088

L Q`0-grad 21.87±0.029 8.18±0.029 0.51±0.001 41.80±0.046

O `2-TV 18.87±0.012 5.73±0.012 0.26±0.001 6.21±0.026

R Mandrill `0-grad 18.32±0.015 5.18±0.015 0.23±0.002 6.24±0.106

Q`0-grad 18.70±0.011 5.57±0.011 0.25±0.001 41.76±0.076

`2-TV 22.57±0.036 11.49±0.036 0.57±0.002 6.32±0.061

Peppers `0-grad 20.99±0.036 9.90±0.036 0.51±0.002 6.52±0.026

Q`0-grad 22.00±0.042 10.92±0.042 0.54±0.002 41.81±0.106
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D Pseudo-codes of the APG and ADMM algorithm for Q`0-grad

Before the pseudo-codes are given, the following should be taken into consideration:

• b is the observed image.

• H is the filter used, where H*b=Ab.

• n is the number of outer iterations in APG and normal iterations in ADMM.

• m is the number of inner iterations in APG.

• For ADMM v =

[
v1
v2

]
and w =

[
w1
w2

]
.

• For APG PP (p,q) = (r,s) =


ri, j =

pi, j

max{1,
√

p2
i, j+q2

i, j}

si, j =
qi, j

max{1,
√

p2
i, j+q2

i, j}

.

• If b ∈ S then v1, v2, w1, w2 ∈ S, where S could be a two dimension or a three dimension space depending
on if the image is greyscale or color.

Algorithm 2 ADMM

Require: H, b, λ, ρ, γ, β, n
k = 0
v0 = 0
w0 = 0
repeat

uk+1 = argminu
1
2‖Au−b‖2

2−
γ

2‖∇u‖2
2 +

ρ

2

∥∥∥∥[ Dx
Dy

]
u−

[
v1
v2

]
k
+

[
w1
w2

]
k

∥∥∥∥2

2

vk+1 = argminv
√

2γλ‖v‖1 +
ρ

2

∥∥∥∥β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
+

[
w1
w2

]
k

∥∥∥∥2

2

wk+1 = wk +β

[
Dx
Dy

]
uk+1 +(1−β)

[
v1
v2

]
k
−
[

v1
v2

]
k+1

k = k+1
until k = n
return un
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Algorithm 3 APG

Require: H, b, λ, γ, n
k = 0
l = 0
u0 = 0
v1 = 0
(p,q)0 = (0,0)
(r,s)1 = (0,0)
G1 =−AT b
α =

‖−AT b‖22
‖−AAT b‖22

D = ∇(αAT b)
repeat

if k > 0 then
G1 = AT Avk+1−AT b− γ∇T ∇vk+1
if k%2 = 0 then

α =
‖G1‖22

‖AG1‖22+‖∇G1‖22
D = ∇(vk+1−αG1)
(p,q)0 = (0,0)
(r,s)1 = (0,0)

repeat
G2 = α

√
2λγ∇∇T (r,s)l+1−D

(p,q)l+1 = (r,s)l+1− 1
8α

√
2λγ

G2

(p,q)l+1 = PP ((p,q)l+1)
wi =

l−1
l+2

l = l +1
(r,s)l+1 = (p,q)l +wi((p,q)l− (p,q)l−1)

until l = m
l = 0
uk+1 = vk+1−α(G1 +

√
2λγ∇T (r,s)m+1)

we =
k−1
k+2

k = k+1
vk+1 = uk +we(uk−uk−1)
until k = n
return un
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E Tables and reconstructed images with Q`0-grad using different values
of γ and a fixed λ

Table A.20: Averages and standard deviations of PSNR, SNR and SSIM according to standard deviation (σ) of
additive Gaussian noise and γ used in the Q`0-grad method for denoising greyscale Lena after 10 experiments.

σ γ PSNR SNR SSIM
0.05 29.83±0.016 16.56±0.016 0.82±0.002

0.025 30.95±0.015 17.68±0.015 0.85±0.001
0.05 0.01 31.76±0.016 18.48±0.016 0.85±0.003

0.0075 31.66±0.018 18.38±0.018 0.84±0.004
0.005 31.17±0.019 17.89±0.019 0.81±0.004
0.05 26.68±0.017 13.40±0.017 0.73±0.003

0.025 27.80±0.019 14.53±0.019 0.77±0.004
0.1 0.01 28.73±0.025 15.46±0.025 0.77±0.005

0.0075 28.58±0.025 15.30±0.025 0.75±0.003
0.005 27.77±0.028 14.50±0.028 0.70±0.002
0.05 23.01±0.035 9.74±0.035 0.64±0.002

0.025 24.14±0.034 10.87±0.034 0.66±0.004
0.25 0.01 25.14±0.038 11.87±0.038 0.66±0.002

0.0075 24.94±0.047 11.66±0.047 0.63±0.003
0.005 23.76±0.049 10.38±0.049 0.53±0.003
0.05 20.85±0.058 7.57±0.058 0.57±0.001

0.025 21.68±0.072 8.41±0.072 0.59±0.002
0.5 0.01 22.64±0.049 9.36±0.049 0.58±0.002

0.0075 22.28±0.026 9.01±0.026 0.54±0.002
0.005 20.43±0.020 7.15±0.020 0.39±0.002
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(a) σ = 0.05 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.1: Reconstructed images from a noisy greyscale Lena with σ = 0.05 for additive Gaussian noise using
Q`0-grad and different values of γ.

(a) σ = 0.25 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.2: Reconstructed images from a noisy greyscale Lena with σ = 0.25 for additive Gaussian noise using
Q`0-grad and different values of γ.
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(a) σ = 0.5 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.3: Reconstructed images from a noisy greyscale Lena with σ = 0.5 for additive Gaussian noise using
Q`0-grad and different values of γ.
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Table A.21: Averages and standard deviations of PSNR, SNR and SSIM according to standard deviation (σ) of
additive Gaussian noise and γ used in the Q`0-grad method for deblurring greyscale Barbara with a 5×5 average
filter after 10 experiments.

σ γ PSNR SNR SSIM
0.05 22.59 9.95 0.61

0.025 22.85 10.21 0.63
0.0 0.01 23.08 10.44 0.65

0.0075 23.10 10.46 0.65
0.005 23.08 10.44 0.66
0.05 22.46±0.006 9.82±0.006 0.60±0.004

0.025 22.68±0.006 10.04±0.006 0.62±0.003
0.05 0.01 22.82±0.006 10.19±0.006 0.63±0.002

0.0075 22.83±0.006 10.19±0.006 0.64±0.002
0.005 22.78±0.008 10.14±0.008 0.64±0.003
0.05 22.13±0.009 9.49±0.009 0.59±0.001

0.025 22.31±0.008 9.67±0.008 0.60±0.003
0.1 0.01 22.42±0.009 9.78±0.009 0.61±0.003

0.0075 22.43±0.009 9.79±0.009 0.61±0.002
0.005 22.40±0.009 9.76±0.009 0.60±0.002
0.05 21.05±0.017 8.41±0.017 0.51±0.001

0.025 21.36±0.014 8.72±0.014 0.53±0.002
0.25 0.01 21.53±0.014 8.89±0.014 0.54±0.003

0.0075 21.50±0.014 8.86±0.014 0.53±0.003
0.005 21.39±0.016 8.75±0.016 0.52±0.002
0.05 19.99±0.029 7.35±0.029 0.45±0.003

0.025 20.13±0.031 7.49±0.031 0.45±0.002
0.5 0.01 20.34±0.032 7.71±0.032 0.46±0.003

0.0075 20.31±0.033 7.67±0.033 0.46±0.003
0.005 20.11±0.035 7.47±0.035 0.44±0.003

80



(a) σ = 0.0 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.4: Reconstructed images from a noisy greyscale Barbara with σ = 0.0 for additive Gaussian noise and
an average 5×5 filter, using Q`0-grad and different values of γ.

(a) σ = 0.05 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.5: Reconstructed images from a noisy greyscale Barbara with σ = 0.05 for additive Gaussian noise and
an average 5×5 filter, using Q`0-grad and different values of γ.
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(a) σ = 0.25 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.6: Reconstructed images from a noisy greyscale Barbara with σ = 0.25 for additive Gaussian noise and
an average 5×5 filter, using Q`0-grad and different values of γ.

(a) σ = 0.5 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.7: Reconstructed images from a noisy greyscale Barbara with σ = 0.5 for additive Gaussian noise and
an average 5×5 filter, using Q`0-grad and different values of γ.
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Table A.22: Averages and standard deviations of PSNR, SNR and SSIM according to standard deviation (σ) of
additive Gaussian noise and γ used in the Q`0-grad method for deblurring greyscale Peppers with a 9×9 Gaussian
filter after 10 experiments.

σ γ PSNR SNR SSIM
0.05 26.21 13.14 0.77

0.025 26.55 13.48 0.78
0.0 0.01 26.88 13.81 0.79

0.0075 26.88 13.80 0.79
0.005 26.78 13.71 0.80
0.05 25.58±0.022 12.51±0.022 0.75±0.002

0.025 26.02±0.028 12.95±0.028 0.76±0.002
0.05 0.01 26.40±0.027 13.33±0.027 0.77±0.002

0.0075 26.43±0.029 13.36±0.029 0.77±0.002
0.005 26.36±0.033 13.29±0.033 0.78±0.002
0.05 24.92±0.033 11.84±0.033 0.73±0.001

0.025 25.34±0.026 12.27±0.026 0.74±0.002
0.1 0.01 25.69±0.025 12.62±0.025 0.75±0.003

0.0075 25.73±0.025 12.66±0.025 0.75±0.002
0.005 25.70±0.024 12.64±0.024 0.75±0.002
0.05 23.44±0.037 10.37±0.037 0.68±0.002

0.025 23.87±0.038 10.80±0.038 0.70±0.002
0.25 0.01 24.15±0.032 11.08±0.032 0.70±0.002

0.0075 24.16±0.032 11.08±0.032 0.69±0.002
0.005 24.08±0.036 11.01±0.036 0.69±0.002
0.05 21.59±0.035 8.52±0.035 0.62±0.003

0.025 22.10±0.053 9.02±0.053 0.63±0.004
0.5 0.01 22.45±0.070 9.37±0.070 0.64±0.003

0.0075 22.41±0.070 9.34±0.070 0.63±0.003
0.005 22.22±0.070 9.15±0.070 0.61±0.004
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(a) σ = 0.0 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.8: Reconstructed images from a noisy greyscale Peppers with σ = 0.0 for additive Gaussian noise and
a Gaussian 9×9 filter, using Q`0-grad and different values of γ.

(a) σ = 0.05 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.9: Reconstructed images from a noisy greyscale Peppers with σ = 0.05 for additive Gaussian noise and
a Gaussian 9×9 filter, using Q`0-grad and different values of γ.

84



(a) σ = 0.25 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.10: Reconstructed images from a noisy greyscale Peppers with σ = 0.25 for additive Gaussian noise
and a Gaussian 9×9 filter, using Q`0-grad and different values of γ.

(a) σ = 0.5 (b) γ = 0.05 (c) γ = 0.025

(d) γ = 0.01 (e) γ = 0.0075 (f) γ = 0.005
Figure A.11: Reconstructed images from a noisy greyscale Peppers with σ = 0.5 for additive Gaussian noise and
a Gaussian 9×9 filter, using Q`0-grad and different values of γ.
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