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Resumen 
 

 

Utilizando datos trimestrales del producto de los países del G7 y América Latina, 

comparamos empíricamente los estimados de ciclos económicos obtenidos usando 

diez métodos de descomposición tendencia-ciclo del producto. Los resultados indi- 

can los siguiente: (i) la descomposición de Beveridge y Nelson (1981) y los modelos 

UCUR de Grant y Chan (2017a) estiman ciclos volátiles que no permiten identificar 

los periodos de recesión; (ii) los filtros estadísticos (HP, BK, CF, KMW) identifican las 

recesiones y expansiones de mejor manera; (iii) los mejores procedimientos son los 

de Perron y Wada (2009, 2016), Perron, Shintani y Yabu (2017) y Hamilton (2018), 

los cuales presentan ciclos con mayor persistencia y profundidad que permiten una 

adecuada identificación de los períodos recesivos; (iv) los mejores modelos atribuyen 

un rol más importante a los choques que afectan al componente cíclico; (v) existe una 

similitud en la persistencia y profundidad de los ciclos económicos de Brasil, Chile, 

México y los países del G7 comparados con los hallados para Argentina y Perú; y (vi) 

el modelo de tendencia determinística con quiebres, a pesar de su simplicidad, se 

aproxima en varios periodos a las estimaciones de los mejores métodos. 

Palabras Claves: Comparación de modelos Bayesianos, Descomposición Tendencia- 

Ciclo, Modelos UC, Filtros, América Latina, G7. 

Clasificacion JEL: C11, C52, E32, N16. 



Abstract 
 

 

Using quarterly output data from the G7 and Latin American countries, we empir- 

ically compare estimates of business cycles obtained using ten trend-cycle output 

decomposition methods. The results indicate the following: (i) the Beveridge and Nel- 

son (1981) decomposition and the Grant and Chan (2017a) UCUR models estimate 

volatile cycles that do not allow recession periods to be identified; (ii) statistical filters 

(HP, BK, CF, KMW) better identify recessions and expansions; (iii) the best procedures 

are those of Perron and Wada (2009, 2016), Perron, Shintani and Yabu (2017) and 

Hamilton (2018), which present cycles with greater persistence and depth that allow 

adequate identification of recessive periods; (iv) the best models attribute a more im- 

portant role to the shocks that affect the cyclical component; (v) there is a similarity 

in the persistence and depth of the economic cycles of Brazil, Chile, Mexico and the 

G7 countries compared to those found for Argentina and Peru; and (vi) the determin- 

istic trend model with breaks, despite its simplicity, is similar in several periods to the 

estimates of the best methods. 

Key Words: Trend-Cycle output Decomposition, Unobserved Component Models, 

Filters, Latin America, G7. 

JEL Classification: C11, C52, E32, N16. 
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1 Introduction 

 
The measurement or estimation of the business cycle (also called the output gap) is of 

significant importance for the academic context and for policy makers. Its estimation is 

useful, for example, to predict inflation, the evaluation of the business cycle and also to 

determine monetary and fiscal policy. The size and persistence of the output gap provide 

an indicator of inflationary pressures and is frequently used in the estimation of monetary 

reaction functions. On the other hand, the trend component provides information on the 

growth patterns of the economy. Despite the existence of a wide variety of methods to 

decompose the output into its trend (permanent) and cyclical (transitory) components, the 

debate on which is the most appropriate decomposition is far from over. 

Since the work of Burns and Mitchell (1946), different methods have been proposed to 

decompose the output, starting with the decomposition of Beveridge and Nelson (1981) 

based on an unrestricted ARIMA model and the unobserved component (UC) models, 

highlighting the contributions from Harvey (1985), Watson (1986) and Clark (1987). Like- 

wise, there are statistical filters such as the Hodrick and Prescott (1997) filter, the Baxter 

and King (1999) and Christiano and Fitzgerald (2003) band-pass type filters. Following 

Stock and Watson (1988), Morley et al. (2003) identify the correlation between com- 

ponent innovations as the source of the differences between the estimates obtained by 

the decomposition of Beveridge and Nelson (1981) and the basic UC model. On the 

other hand, there are UC models with a mixture of Normals proposed by Wada and Per- 

ron (2006) and Perron and Wada (2009, 2016) that allow introducing asymmetries in the 

cyclical component and nonlinearities in the trend component. One of the few studies that 

has compared different UC models (with/without correlation between innovations) is Grant 

and Chan (2017a) using Bayesian techniques. None of the mentioned methods is without 

problems or disadvantages, one of the most criticized being the frequently used Hodrick 

and Prescott (1997) filter; see Harvey and Jaeger (1993), Cogley and Nason (1995a,b), 

among others. In this line, Hamilton (2018) has recently proposed a filter that aims to 

solve the disadvantages of the HP filter. Another recent method that allows obtaining 

flexible nonlinear deterministic trends using Fourier expansions is proposed by Perron et 
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al. (2017, 2020). Although this method has been used to model trends in global temper- 

ature series and unemployment rates, it is plausible to decompose the output obtaining 

the cycle as a residual. 

The objective of this document is the updating and empirical comparison of ten univari- 

ate output decomposition techniques applied to two groups of different countries: the G7 

(Canada, France, Germany, Italy, Japan, UK and US) and five Latin American countries- 

LA (Argentina, Brazil, Chile, Mexico and Peru). Is the behavior of the trend and cyclical 

components similar in both groups of countries? If there are differences, are they linked 

to domestic and/or international events and which are these? How important are these 

differences? What are the techniques that allow for a better identification of the periods of 

recession in both groups of countries according to the periods published by official busi- 

ness cycle research institutions? Are the innovations of the trend more or less important 

than the innovations of the business cycle? Are there some characteristics of industri- 

alized countries versus developing countries? These are the main questions we answer 

in this document. On the other hand, there is a wide literature on empirical applications 

of trend-cycle output decomposition methods. However, few works make a comparison 

between several of these methods as well as for a large sample of countries. Likewise, 

the literature has proposed new and recent methodological alternatives to decompose 

the output. To our knowledge, these procedures have not yet been applied empirically or 

compared with approaches already established in the literature and for a large sample of 

countries. This document contributes to this discussion using ten methods and a group 

of heterogeneous countries (G7 and LA). 

The main results can be summarized as follows:  (i) the Beveridge and Nelson (1981) 

decomposition and the Grant and Chan (2017a) UCUR models estimate volatile cycles 

that do not allow recession periods to be identified; (ii) statistical filters (HP, BK, CF, KMW) 

better identify recessions and expansions; (iii) the best procedures are those of Perron 

and Wada (2009, 2016), Perron et al. (2017) and Hamilton (2018), which present cycles 

with greater persistence and depth that allow for an adequate identification of recessive 

periods; (iv) the best models attribute a more important role to the shocks that affect the 

cyclical component; (v) there is a similarity in the persistence and depth of the economic 
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cycles of Brazil, Chile, Mexico and the G7 countries compared to those found for Argentina 

and Peru; and (vi) the deterministic trend model with breaks, despite its simplicity, is 

similar in several periods to the estimates of the best methods. 

The rest of the paper is structured as follows. Section 2 reviews the literature. Section 

3 presents the ten trend-cycle decomposition methods. Section 4 presents and discusses 

the results of the estimations. Finally, Section 5 presents the conclusions. 
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2 Literature Review 

 
The first approach to the analysis of business cycles dates back to Mitchell (1927) and 

Burns and Mitchell (1946), who defined business cycles as fluctuations in economic ac- 

tivity that last between 1.5 and 8 years. Burns and Mitchell (1946) compile a group of time 

series for the US and construct cyclical indicators to analyze changes in economic activity. 

This methodology was adopted by the National Bureau of Economic Research (NBER) 

to classify periods of expansion and recession. However,  this approach lacks a metric  

or model to measure the business cycle and has delays in identifying recession periods. 

Regarding the first aspect, Fellner (1956) estimates the economic cycle as the residual 

between the output and its trend modeled in a deterministic way; see also, Zarnowitz and 

Boschan (1975), who find long expansive cycles and short recessive cycles, being among 

the first to suggest the presence of asymmetries in the fluctuations. 

Unlike Fellner (1956), Beveridge and Nelson (1981), hereinafter BN decomposition, 

consider the existence of a stochastic trend, which is supported by the findings of Nelson 

and Plosser (1982). Using an ARIMA(p,1,q) model and imposing a negative correlation 

between trend and cyclical component innovations, Beveridge and Nelson (1981) find that 

fluctuations in output are dominated by trend component innovations which is equivalent 

to say that the real shocks are the determinants of the variations in the output; see Proietti 

(2006), who supports the idea that supply shocks are predominant. Likewise, the authors 

find that the expansions and contractions of the cycle have the same duration implying 

symmetrical fluctuations, which differs with the NBER chronology and the Zarnowitz and 

Boschan (1975) identification. 

On the other hand, there are the models of unobserved components, hereinafter UC 

models, by Harvey (1985), Watson (1986) and Clark (1987), who adopt the null correlation 

assumption between the disturbances of the cycle and the trend. Watson (1986) finds that 

innovations in the cyclical component are more important in explaining output fluctuations, 

which indicates that transitory (demand) shocks are relevant. For his part, Clark (1987) 

finds that fluctuations in the US output depend in equal proportion on both innovations; 

see also Morley and Piger (2012). 
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The opposition of the results found by the BN decomposition and the UC model is ob- 

served in Stock and Watson (1988), who state that there is no empirical evidence of the 

similarity of results between both models and that this suggests that the correlation be- 

tween the innovations determines the relative importance of the shocks on output fluctu- 

ations. The formalization and proof of this argument, as well as the reconciliation of these 

apparently different results, appears in Morley et al. (2003), who find that the ARIMA and 

UC models are theoretically equivalent since they have the same autocovariance struc- 

ture. To reconcile both approaches, the authors propose a UC model that relaxes the 

existence of correlation between innovations, which is estimated together with the rest of 

the parameters. Thus, this model allows to generate results identical to those obtained 

using the BN decomposition, that is, short cycles, predominance of trend innovations and 

lack of agreement with the NBER chronology. 

Another group of methods to decompose the output are the so-called statistical fil- 

ters. Among these, the most used is the filter proposed by Hodrick and Prescott (1997), 

hereinafter the HP filter, which allows obtaining symmetric cycles and a smoothed trend. 

However, research has found that its use to identify the cyclical component of most time 

series cannot be justified on the basis of optimal filtering arguments due to four problems 

detailed by Guay and St-Amant (2005) based on King and Rebelo (1993): (i) does not 

admit correlation between the cyclical and trend components; (ii) the output is an I(2) pro- 

cess when the output is generally assumed to be I(0) or I(1); (iii) the cyclical component 

is a white noise, which is unlikely in macroeconomic time series; and (iv) the smoothing 

parameter is appropriate1. Another criticized aspect is the problem of the valuescalcu- 

lated for the end of the sample; see Orphanides and van Norden (2002), Cayen and van 

Norden (2005) and Mise et al. (2007). This aspect implies a problem to make estimates in 

real time, which is problematic if we are at the peak of a cycle. Some solutions have been 

to use predictions to generate additional data at the end of the sample or the proposal of 

St-Amant and van Norden (1997), who use a variant of the HP filter to smooth the trend 

in the last periods of the sample.  Based on simulations, Guay and St-Amant (2005) find 

1Grant and Chan (2017b) also argue that the HP filter is equivalent to having an uncorrelated cyclical 

component, the correlation of component innovations is zero, and the smoothing parameter corresponds to 

the ratio between variances of both components. 
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evidence in favor of these questions and point out that the performance of the HP filter de- 

pends on the persistence of the economic cycle (given by the sum of the autoregressive 

coefficients) as well as on the variance ratio of the innovations of the two components. An 

important aspect is that most macroeconomic series are integrated or strongly persistent 

series so that they are characterized as non-stationary processes. For authors such as 

Harvey and Jaeger (1993) and Cogley and Nason (1995a,b), the HP filter tends to amplify 

the cycles in the cyclical frequencies; that is, it can generate cyclic frequency-type peri- 

odicities even if none exist in the data2. The authors conclude that the HP filter amplifies 

cyclic frequencies and produces spurious dynamics and its performance will depend on 

whether we want to obtain the cyclic frequencies of yt or ∆yt . Likewise, it is indicated  

that the spectrum of the cyclical component of the HP filter has a peak in the frequency 

(cyclical) equivalent to 30 quarters, which is absent from the original series. For additional 

criticism, see Hamilton (2018). 

Baxter and King (1999) propose another filter, hereinafter the BK filter, which is of 

the band-pass type. The main objective of the BK filter is to properly extract a specific 

range of frequencies without altering the properties of the extracted component. If the 

spectra of the cyclic component identified by the BK filter are compared with that of an 

ideal band-pass filter, the conclusion depends on whether one is interested in recovering 

the component of the cyclic frequencies for  yt  or for ∆yt .  In the latter case,  as noted  

by Harvey and Jaeger (1993) and Cogley and Nason (1995a) for the HP filter, the BK 

filter greatly amplifies the cyclic frequencies and creates spurious cycles. For example, 

the filter amplifies by a factor of 10 the variance of cycles with a periodicity of about 20 

quarters (frequency π/10) which is absent in the spectrum of an ideal filter. Murray (2003) 

argues that the band-pass filter leaves some of the trend shock in the estimated cycle. 

Guay and St-Amant (2005) show that, when the peak of the spectral density function of the 

series is found at cyclic frequencies, the HP and BK filters provide a good approximation 

to the cyclic component. However, if the peak is located near zero frequency such that 
 

2Harvey and Jaeger (1993) and Cogley and Nason (1995a) calculate the squared gain of the cyclic 
component of the HP filter for (1   L)yt . In this case, the squared gain is (1   L)3H(L) given that (1    L)4yt = 

(1 L)3H(L)(1 L)yt . Thus, the squared gain is HP(ω) 2 1 exp( iω) −2, where ω denotes the respective 
frequency. 
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the variance weight is concentrated at low frequencies, the two filters cannot identify the 

cyclic component adequately. This case is known as a time series with the typical Granger 

shape; see Guay and St-Amant (2005). An alternative way of looking at this aspect is 

when the sum of the autoregressive coefficients is very close to unity. In this case, the 

filter performance is poor. If the sum of the two parameters is far from unity (the energy of 

the series is concentrated in the cyclic frequencies) the filters perform well. Another filter 

is the one proposed by Christiano and Fitzgerald (2003), hereinafter the CF filter. Like the 

BK filter, this filter is of the band-pass type with the same objectives as the BK filter3. 

Recently, Kamber et al. (2018), hereinafter the KMW filter, propose a simple modifica- 

tion to the BN decomposition in order to extract more consistent cycles with the stylized 

facts and the official NBER chronology for the US. Kamber et al. (2018) find that using 

the BN decomposition based on an AR(1) model, it is evident that the output gap has a 

small amplitude or lack of persistence, and the movements do not coincide at all with the 

reference of cycles of expansions and recessions in the US determined by the NBER. On 

the other hand, if the output gap calculated by the Congressional Budget Office (CBO)  

is observed, it can be found that this gap is much more persistent (greater amplitude) 

and its movements are strongly procyclical in terms of the reference cycle of the NBER; 

see CBO (1995). An important reason for these differences is that the estimation of the 

autoregressive coefficient for the AR(1) model used in the BN decomposition implies a 

high signal-to-noise ratio, while the opposite happens in the case of the CBO (1995) esti- 

mation. When applying the KMW filter to US output using a low signal-to-noise ratio, the 

resulting gap is persistent (large amplitude) and its movements match well with the NBER 

reference cycle. 

Two missing and important features in the above methods are asymmetries and non- 

linearities. Regarding the asymmetries, Neftçi (1984) shows that the behavior of the 

unemployment rate is characterized by abrupt jumps and sudden and slow decreases. 

Additional evidence that recessions are steeper than expansions can be found in Delong 

and Summers (1986), Falk (1986), Sichel (1991, 1993) and Diebold et al. (1993)4. Wada 
 

3Other butterworth type filters are proposed by Harvey and Trimbur (2003). 
4The aspect of asymmetries dates back to Friedman (1964, 1993), who proposed the so-called plucking 

model which is formalized in Kim and Nelson (1999); see also Goodwin and Sweeney (1993).  Empirical 
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and Perron (2006) and Perron and Wada (2009, 2016) propose an approach that over- 

comes the identification problems of the UC and ARIMA models. These authors consider 

a non-linear UC model, which allows mixtures of Normal distributions in innovations (here- 

inafter UCMN model), asymmetries in the cyclical component and structural changes in 

the trend. The latter may  reflect abrupt or sudden changes in the trend of the output.  

For example, it is possible to admit changes in the level that could be caused by shocks 

of large scale but with low probability of occurrence, while most of the dynamics of the 

trend is driven by shocks of smaller magnitude. This assumes the existence of high and 

low variance regimes where each of which is associated with a Normal distribution with 

a probability of occurrence. It is important to mention that, unlike Hamilton (1989), the 

transitions between regimes are not determined by a Markov process. Perron and Wada 

(2009) show the importance of taking into account the existence of structural changes in 

the trend function because, when a structural break is used in 1973Q1, the BN decom- 

position and the UC model produce similar trends and cycles, and the trend is a broken 

or segmented deterministic function. In other words, not specifying a break produces ar- 

tificial results. When a break in the output growth rate is allowed, asymmetric cycles are 

found, persistent and in accordance with the NBER chronology. Likewise, the innovations 

of the cyclical component are more important to explain the fluctuations of the output. 

A comparison from the Bayesian point of view of correlated UC models (hereinafter 

UCUR model) using Markov Chain Monte Carlo (MCMC) methods is made by Grant and 

Chan (2017a); see also Luo and Starz (2014) and Morley and Piger (2012). Like Perron 

and Wada (2009, 2016), Grant and Chan (2017a) allow for one or two breaks in the trend. 

Thus, for the US, Grant and Chan (2017a) select a UC model with a break in 2007 where 

trend innovations are more important to explain output fluctuations5 which is opposite to 

Perron and Wada (2009, 2016). 

Recently, Perron et al. (2017), hereinafter PSY (2017), propose a method that esti- 

mates the nonlinear trend component in a flexible way approximated by Fourier expan- 
 

evidence on the plucking model can be found in Sichel (1993) for the US, Diebold and Rudebusch (1990) 

for the US, UK and France, Kim and Nelson (1999) and Mills and Wang (2002) for the G7 countries; see 

also Rodríguez (2010) for Peru. 
5Grant and Chan (2017b) also reconcile the small and large gaps found in the UC models of Morley et al. 

(2003) and the HP filter, respectively. To do this, they model the trend as a second-order Markov process. 
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sions. The authors apply this method to a set of three global temperature series, while 

Perron et al. (2020) apply this approximation to the G7 unemployment series, sustaining 

that the trend obtained is robust to the possibility of mean reversion (ie, process I(0)) as 

well as compatible with the hysteresis hypothesis in the unemployment rate. (ie, process 

I(1)). Although this procedure has not been used previously to decompose output, we 

adopt this approach to estimate the trend component and obtain the cyclical component 

per residual. 

Based on the various criticisms of the HP filter, Hamilton (2018) proposes an alter- 

native approach that overcomes the disadvantages of the HP filter by estimating a one- 

variable regression at date t  on the four most recent values to date t − h,  with h = 8  for 

quarterly series, so as to include shocks whose effects last substantially more than two 

years, but which are still transitory. According to the author, this procedure preserves 

the underlying dynamic relationships and consistently estimates the population charac- 

teristics in such a way that the  use of linear projections is advisable instead of the use  

of the HP filter. Jönsson (2020) argues that the Hamilton (2018) method performs better 

than the HP filter in terms of real-time estimates. However, Schüler (2021) and Don-  

ayre (2021) consider that, when addressing the deficiencies of the HP filter, the Hamilton 

(2018) method has other disadvantages, such as: absence of asymmetries in the cycles 

and alteration of the variations in the extracted frequencies which generate amplified busi- 

ness cycles. Using simulations, Donayre (2021) discusses the ability to properly identify 

asymmetries in business cycle fluctuations. When considering different linear and asym- 

metric process specifications consistent with previous estimates, the results reveal that 

the Hamilton (2018) approach cannot preserve true asymmetric behavior or reproduce 

features of business cycles. This flaw is aggravated in processes that exhibit a high de- 

gree of persistence, a slight asymmetric effect, or in small samples. These findings are 

robust to the complexity of the autoregressive dynamics and the type of nonlinearity. In 

addition, the analysis reveals that the Hamilton (2018) approach generates spurious ex- 

pansionary periods when they do not exist in the data generating process that distort the 

results of the linearity tests and produce characteristics of the economic cycles that are 

in disagreement with those of the output of the US. Likewise, Schüller (2021) maintains 
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that Hamilton (2018) avoids spurious cycles and problems at the end of the sample, but 

the cost is the introduction of fluctuations, altering the variances and inducing a change 

in the phases of the economic cycle. 

Regarding the empirical applications, these are extensive for some of the methods 

mentioned, so in the following lines we only consider some of them. For the case of the 

United Kingdom, Hindrayanto et al. (2018) use a set of UC models to reject the null hy- 

pothesis of no correlation between trend and cycle innovations. A similar result is found 

by Melolinna and Tóth (2019) who, using Bayesian techniques, find the existence of a 

negative correlation between the innovations approaching the results of the BN decom- 

position. For Canada, Kichian (1999) uses a UC model with a break in trend in 1976Q2, 

while Wakerly et al. (2004), based on Stock and Watson (1988), find that in three of the 

five Canadian regions there is a predominance of the shocks of the trend component in 

the short and long term fluctuations of the output. For Germany, Flaig (2002) uses UC 

models with three breaks in the trend (1973, 1982, and 1992). For their part, Doz et al. 

(1995) find that the UC model obtains a reasonable estimate of the cyclical fluctuations 

for France, compared to the BN decomposition, which is the opposite of what Garnier 

and Jean-Baptiste (2016) found. Kamber et al. (2018) apply their filter to the US output 

and manage to obtain persistent and broad cycles, consistent with the NBER chronology. 

See also Alqaralleh (2019), who uses the UCUR for G7 countries but using industrial 

production. 

For Germany, Brandner and Neusser (1992) use the HP filter and find that the evo- 

lution of the business cycle follows a pattern similar to that of the US. Marczak and 

Beissinger (2012) use the HP and BK filters to model the comovement of the business 

cycle with wages. For the case of France, Benati (2001) uses these filters to show that 

cross-correlations between the cyclical components of output, inflation, and unemploy- 

ment can lead to distorted stylized facts. For the case of Italy, Busseti and Caivano 

(2013) obtain identical cycles using the HP filter and the UC model. For their part, Bul- 

ligan et al. (2019) use the UC model and determine that economic and financial cycles 

present persistence; see also Zizza (2006). For the case of Japan, Iiboshi (2011) uses 

the approach of Morley et al.  (2003) and Perron and Wada (2009) to decompose the 
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output and the unemployment rate, finding that the results depend on the variance ratio 

of the trend and cycle innovations, as well as the correlation between both innovations; 

see Guay and St-Amant (2005). For the UK, see Blackburn and Ravn (1992). In several 

cases, the results suggest that the output is mainly driven by permanent shocks; however, 

during recessions and recoveries, transitory shocks are dominant. This supports the use 

of models that emphasize demand shocks as opposed to models that prioritize supply 

shocks. 

For Argentina, Rabanal and Baronio (2010) find a high correlation between the cycles 

estimated by the HP and BK filters, which does not happen with the cycle estimated by 

the BN decomposition. Similar results are found by Trajtenberg (2004) and Krysa and 

Lanteri (2018). In the case of Brazil, Araujo et al. (2008) use the HP filter and find that the 

business cycle shows more persistence after the second world war. For their part, Tiecher 

et al. (2010) use the HP filter and the UC model to show that there is mean reversion by 

finding changes in the sign of the output gap in 30% of the sample. Recently, Sabioni et al. 

(2017) use the HP filter with different smoothing parameters to obtain asymmetric cycles. 

For the case of Chile, Gallego and Johnson (2001) carry out a comparison of methods 

concluding that the best estimate is provided by the HP filter since the cycle is within the 

confidence intervals for a longer period of time. On the opposite side are Chumacero 

and Gallego (2002), who evaluate alternative methods and find that the HP filter is not 

very robust and unstable at the end of the sample. For the case of Mexico, Faal (2005) 

uses UC models and finds that the disturbances in the trend are at least twice as large in 

the unrestricted model as in the restricted model, which implies that a greater proportion 

of the variance of the output it is explained by the innovations of the trend component. 

For their part, Catalán and Romero (2018) use the HP filter that reports six cycles, the 

largest being 38 quarters (1985Q1-1994Q3), while the BK filter reports seven cycles,  

the largest of which comprises 29 quarters ( 2000Q3-2007Q4). Recently, Galindo et al. 

(2019) find that the HP filter and the BN decomposition estimate expansionary cycles, 

while the production function estimates recessive cycles. For the case of Peru, Terrones 

and Calderón (1993) and Jiménez (1997) use the HP filter and obtain a maximum drop in 

the cycle of -8% in 1983 and -11% in 1993, respectively; see also Dancourt and Jiménez 
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(2009), Jiménez (2011, 2016). However, Cabredo and Valdivia (1999) conclude that this 

filter is unreliable because it obtains large differences between the observed and potential 

output. Seminario et al. (2007) use the HP and BK filters to conclude that the higher the 

smoothing parameter used in the HP filter, the output gap shows larger fluctuations, with 

similar results using the BK filter. For their part, Castillo et al. (2006) use the BK filter to 

determine three complete business cycles: (i) from 1980 to 1986, which is the shortest 

and has a depth of 13.5%; (ii) from 1986 to 1994, which is the most volatile with a depth 

of 20%; and (iii) from 1994 to 2003, which shows a depth of 5.5% and is the least volatile. 

Following the methodology of Perron and Wada (2009), Guillén and Rodríguez (2014) 

estimate seven UCMN univariate models with different configurations, and find that the 

best model is the UC model that includes a mixture of Normals in the disturbances of  

the cycle and the trend. In addition, they find that the cycles show a greater amplitude 

until before the 1990s, while after the 2000s the cycles show less amplitude and a lower 

probability of being in a high volatility regime. For their part, Florián and Martínez (2019) 

use the UC model to identify four complete cycles between 1980 and 2018 (1981Q3- 

1987Q3, 1987Q4-1997Q1, 1997Q2-2008Q2 and 2008Q3-2013Q3), with the first period 

being the one with the highest volatility. 

In summary, although abundant empirical applications associated with UC models, BN 

decomposition and HP, BK and CF filters can be noted, it is clear that other procedures 

have been applied in few cases for individual countries or developed countries. A com- 

parison of a large set of procedures and for a large sample of countries is missing. This 

document fills that gap6. 
 

6Given the extension of the topic, we decided to focus on a select set of univariate methods. A review, 

estimation and comparison of multivariate methods is beyond the scope of this research and is the subject 

of future research. Some references using multivariate methods are Kuttner (1994), Apel and Jansson 

(1999), Gerlach and Smets (1999), Kichian (1999), Roberts (2001), Basistha (2007) and Basistha and 

Nelson (2007). Some methods from the point of view of central banks are Laubach and Williams (2003), 

Pichette et al. (2015), Blagrave et al. (2015), Holston et al. (2017) and Castillo and Florián Hoyle (2019). 
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3 Methodologies 

 
This Section describes the ten different methods or univariate procedures used in the 

empirical part. To establish notation, we use the following basic UC model proposed by 

Watson (1986). In this model, the output series (yt ) is composed of two components: 

trend (τt ) and cycle (ct ). Watson (1986) considers a UC-ARIMA model as follows: 

 
yt = τt + ct , (1) 

τt = µ + τt−1 + ηt , (2) 

φ (L)ct = θ (L)εt , (3) 
 

where φ (L) = 1 − φ1L − ... − φpLp, θ (L) = 1 + θ1L + ... + θqL
q, ηt ∼ iid(0, σ 2 ), εt ∼ iid(0, σ 2). In 

this way, the trend component is a random walk with drift and the cyclical component is an 

ARMA(p,q) process with zero mean. In this specification, however, the model parameters 

are not identified without imposing additional restrictions.  Common constraints are: (i) 

the roots of φ (z) = 0 are outside the unit circle; (ii) θ (L) = 1; and (iii) cov(εt , ηt ) = 0. The 

restriction in (iii) establishes that the shocks to τt and ct are not correlated, which is an 

over-identification restriction in certain models; see Morley et al. (2003)7. 

 
3.1 BN Decomposition 

The BN decomposition decomposes an integrated series of order 1 (I(1)) into two com- 

ponents:  τt  and ct .  The former is modeled as a drifting random walk,  while the latter   

is specified as a stationary process with zero mean. In other words, the BN decom- 

position assumes that yt is an ARIMA(p,1,q) process or that ∆yt is an ARMA(p,q) pro- 

cess, that is, φ (L)∆yt = θ (L)εt .  This means that ∆yt  admits a Wold representation, that 

is,  ∆yt = µ + ψ(L)εt  where  ψ(L) = ∑∞ ψkL
k  with ψ0 = 1.   In this case,  the trend  τt  is 

a random walk without drift:  τt = τt−1 + ψ(L)εt = τ0 + ψ(1) ∑t ε j.  Also,  we have that 
ψ L) = ψ(1) + (1 − L)ψ(L) where ψ(1) = ∑∞ ψk, ψ(L) = ∑∞ ψ jL

j and ψj = −∑∞ ψk 
( k=0 k=0    k= j+1 

7For example, in the random walk plus noise model, it can be verified that constraint (iii) is necessary to 

achieve identification. 
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h→∞ 

j=1 
  

 − 

ε j + εt − ε0 where εt = ψ(L)εt . 

h → ∞, adjusted for average growth is limh→∞ yt+h|t − µh = y0 + µt + ψ(1) ∑t 

( ) = − . + . ( ) = − . + . ( ) = ( ) ( ) = 

Thus, yt is composed of a deterministic trend (y0 + µt), a stochastic trend (ψ(1) ∑t ε j) 

j=1 

 

where it is required  that ∑∞ k|ψk| < ∞ which implies that ∑∞ ψk| < ∞ all of which is 

equivalent to requiring the 1-sumability condition, a condition that is satisfied by any sta- 

tionary ARMA(p,q) process.   Using these definitions,  we have  that:  ∆yt = µ  + [ψ(1) + 
1 L)ψ(L)]εt , that is, yt = y0 + µt + [ψ(1) + (1 − L)ψ(L)] ∑t ε j. By iterative process 

(  − j=1 

j=1 

and a cyclical component (εt − ε0). Now, the series yt with h periods ahead is yt+h = 

y0 + µ(t + h) + ψ(1) ∑t+h ε j + εt+h. Consequently, the prediction of yt+h with information 
 at time t is yt+h|t 

= y0 + µ(t + h) + ψ(1) ∑t ε + εt+h|t 

. Finally, the limit prediction when 

 

 lim ε = 0 because ε is a stationary process with zero mean. In terms of notation 
h→∞   t+h|t t+h 

and using µ = E(∆yt ), we have: 

 
τt = lim E(yt+h|t − hE[∆yt ]), (4) 

t 

τt =  y0 + µt + ψ(1) ∑ ε j, (5) 
j=1 

 

and the cyclical component is modeled as the difference between the series yt and its 

trend level: ct = yt − τt .8 

The BN decomposition forces the existence of a perfect (negative) correlation between 

the two components while the UC model does the opposite. In this way, in no case are the 

decompositions unique, since they depend on the correlation between the disturbances. 

It is important to specify that any UC-ARIMA process with a specific correlation between 

perturbations is observationally equivalent to an ARMA(p,q) model for ∆yt with nonlinear 

constraints on the parameters. The ARMA(p,q) model restricted for ∆yt it is called the 

reduced form of the UC-ARIMA model.  This is exploited by Morley et al.  (2003) who 
 

8A simple calculation of the BN decomposition can be done in the following steps: (i) estimating the best 

ARMA(p,q) model for ∆yt ; (ii) estimating ψ(1) from the parameters estimated in (i); (iii) estimation of ∑t ε j 
using the residuals of the ARMA(p,q) model estimated in (i); and (iv) calculating the cycle such that c  = 

t 
y τ . As an example, we can cite the estimation of Morley et al. (2003) who specify an ARMA(2,2) model 

t t for the US output growth rate (∆y ). The fitted model for the period 1947Q1-1998Q2 is such that µ = 0.816, 
t 

−1 
φ L 1 1 342L 0 706L2, θ L 1 1 054L 0 519L2. From these values we obtain ψ 1 φ 1 θ 1 

  as c y τ . j=1 
 t = t − t 

ε j and the cyclical component is obtained 1.276. In this way, the trend component τt = y0 + 0.816t + 1.276 ∑ 

j=1 

j=1 

and applying the previous formulas, yt = y0 + µt + ψ(1) ∑t 

ε j given that 

t 
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allow for the correlation between disturbances to be estimated; see empirical results for 

the UCUR models (Section 4.1.3). 

 
3.2 Filters 

 
3.2.1 HP Filter 

 

The objective of the HP filter is to extract the component τt (for a given value of λ ), as the 

solution to the following problem: 

min 

f 
T 

y 

 
 

τ  2 λ 
T −1 

τ
 

 

 

τ τ τ 2

 

  (6) 

{τt }t=−1 ∑( t 
t=1 t ) + ∑ [( t=2 

t+1 − t ) − ( t − t−1)] , 

which has a unique solution. The parameter λ is arbitrary and reflects the penalty of incor- 

porating fluctuations in the trend component, with the value of 1600 defined for quarterly 

data. If λ = 0, the solution of the minimization problem in (6) is yt = τt , that is, the trend 

component is equal to the observed series. When λ → ∞, minimizing the sum of squares 

(6) happens when (τt+1 − τt ) = (τt − τt−1) implying that the change in τt is constant which 

results in a linear trend.  In intuitive terms, high values of λ force the change in trend 

(∆τt+1 − ∆τt ) to be as small as possible, which is what happens when the trend is linear. 

So increasing the value of λ implies smoothing τt . 

The HP filter is characterized as a high-pass filter in the sense that it must remove low 

frequencies or long-cycle components and allow high frequencies or short-term compo- 

nents to be obtained. If we compare the squared gain of the HP filter we find that it is 

zero at zero frequency and it is close to unity from about π/10 frequency onwards. In this 

sense, the HP filter seems to be a good approximation of a high-pass filter.  The value 

of λ  = 1600  implies a cycle of duration between 8-10 years (32-40  quarters).  However, 

the cyclical frequencies are generally grouped or concentrated in the interval from 6 to 32 

quarters, implying cycles of duration from 1.5 years to 8 years, i.e., fractions of π equal to 

0.05 (32 quarters, frequency π/16) up to 0.35 (6 quarters, frequency π/3); see Burns and 

Mitchell (1946) and Guay and St-Amant (2005). 

An advantage over the BN decomposition is that it is not necessary to find the appro- 

− 
T 
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priate ARMA(p,q) model for ∆yt since the HP filter uses the same approximation for any 

series under analysis. The parameter λ corresponds to the ratio between the variance  

of the cyclical and trend components. However, economic theory provides little or no in- 

formation on what this relationship should be. Since Hodrick and Prescott (1997) argue 

that this value is reasonable for US data, it may be arbitrary for output series from other 

countries as well as its use in other macroeconomic series. 

 

3.2.2 BK Filter 

The BK filter is a band-pass filter, that is, it removes low and high frequencies. This filter 

uses a finite approximation of the moving average type based on the definition of cycles 

postulated by Burn and Mitchell (1946), that is, it is designed to isolate the components 

between 6 and 32 quarters (frequencies between π/3 and π/16) removing all other fre- 

quencies. When this filter is applied to quarterly data it takes the form of a 24-quarter 

moving average filter: 

ct = 
12 

∑ 
h=−12 

ahyt−h = a(L)yt , (7) 

where the weights ah can be derived from the inverse Fourier transform; see Priestley 

(1981). Also, the filter uses the constraint that the sum of the moving average coefficients 

must be zero. 

When comparing the squared gain of an ideal filter with the BK filter, it can be seen 

that the latter performs well. The filter manages to pass through most components found 

between 6 and 32 quarters removing low and high frequencies. However, the BK filter 

does not correspond to an ideal band-pass filter because it is a finite approximation of 

an infinite moving average filter. In particular, it can be seen that there are low and high 

frequencies where there is a compression effect9. 
 

9Following Guay and St-Amant (2005), assume that yt = (1 L)−rεt where r determine the order of 
integration of yt and εt is a stationary process with zero mean.  Baxter and King (1999) show that their  
filter can be factored as a(L) = (1 L)2a∗(L) so that the filter can make a series containing up to two unit 

roots stationary. The spectrum of the cyclic component obtained by the BK filter is fc(ω) = BK(ω) 2 fy(ω), 

where BK(ω) 2 is the squared gain of the filter and fy(ω) is the spectrum of yt ; so that BK(ω) 2 = a(ω) 2 
where a(ω) denotes the Fourier transform of a(L) at the frequency of ω. So the pseudo-spectrum of yt is 

equal to fy(ω) = 1  exp(  iω) −2r fε (ω) = 2−2r (sin2(ω/2))−r fε (ω) for ω = 0 and where fε (ω) is the spectrum 

of εt which is well defined since it is stationary. If we assume that r = 1 and that εt is a white noise with 
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The first and last values of c are not reliably estimated and can therefore be excluded from 

 

3.2.3 CF Filter 

Christiano and Fitzgerald (2003) propose another band-pass filter of the moving average 

type, alternative to the BK filter. These filters differ in the objective function used to select 

the weights of the moving averages. There are two variants of the CF filter. The first is a 

fixed-length symmetric filter that uses a fixed lead/lag length. The symmetric form is time 

invariant in the sense that the weights of the moving averages depend on the specified 

frequency band and not on the data. In the BK filter notation, the difference is given in 

the polynomial a(L). The second variant is the most general filter, where the weights of 

the leads and lags can differ. Thus, the asymmetric filter varies over time and the weights 

depend on the data and change for each observation. 

The CF filter is designed to work with an infinite series of data that eliminates very short 

and very long term movements.  The filter is ct  = B(L)yt  with the ideal filter B(L) given by 

B(L) = ∑∞ B jL
j, where the particular values of Bj have the same shape as the weights 

of the best approximation of the ideal filter.  The recommended approximation is ct = 

B0yt + B1yt+1 + ... + BT −1−t yT −1 + B T −tyT + B1yt−1 + ... + Bt−2y2 + B t−1y1 for t = 3, 4, ........ , T − 2. 
t          

the formula. The coefficients are defined by Bj = sin( jb)−sin( ja) , j ≥ 1, B0 = b−a where a = 2π 

and b = 2π , PL and PU refer to the minimum and maximum number of specified cycle length 

periods that are normally π/16 and π/3, BT −t = −0.5B0 − ∑T −t−1 Bj for t = 3, 4, , T − 2 

and where B0 + B1 + ... + BT −1−t + BT −t + B1 + ... + Bt−2 + Bt−1 = 0. This expression allows 

us to obtain the value of B t−1 so that the sum of the filter weights equals zero. 

3.2.4 KMW Filter 

 
Procedure proposed by Kamber et al. (2018). Since the BN decomposition produces 

estimates of the output gap that are difficult to reconcile with already established beliefs 

or stylized facts about transitory movements in economic activity, the authors argue that 

the problem is the imposition of a high signal-to-noise ratio in terms of the variance of 
 

variance equal to 2π, the spectrum of εt is equal to 1 at all frequencies and the cyclic component obtained 

with the BK filter corresponds exactly to the squared gain of the BK filter:  |BK(ω)|2|1 − exp(−iω)|−2 = 

|BK(ω)|22−2(sin(ω/2))−1. 
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the trend shocks as a fraction of the variance of the forecast error. On the other hand, 

when a lower signal-to-noise ratio is imposed, the result is that the KMW filter produces a 

more intuitive estimate of the output gap that is highly persistent, and is typically wide in 

expansions and narrow in recessions. Notably, the approach is also reliable in the sense 

of being subject to smaller revisions. Likewise,  the approach is robust to the omission  

of multivariate information and can be accommodated to allow for structural breaks as 

proposed by Evans and Reichlin (1994) and Perron and Wada (2009). 

More generally, to understand the BN decomposition for an AR(p) model, it is useful to 

define the following signal-to-noise ratio for a time series in terms of the variance of trend 

shocks as a fraction of the overall variance of the prediction error: δ = σ 2  /σ 2.  Given a 
∆τ ε 

Wold representation for {∆yt }, δ = ψ(1)2 which is the long-term multiplier corresponding 

to the sum of the coefficients of the Wold representation that captures the permanent 

effect of a forecast error in the long-term horizon and is related to the BN trend as fol- 

lows: ∆τBN = ψ(1)εt . For an AR(p) model, this long-run multiplier has the simple form 

ψ(1) = φ (1)−1 and, based on a maximum likelihood estimate for a US AR(1) model, the 

signal-to-noise ratio appears to be quite high with δ = 2.22. That is, trend shocks in the 

BN decomposition are much more volatile than quarter-to-quarter forecast errors in log 

real output, leading to an estimated output gap with small amplitude and counterintuitive 

sign. Therefore,  many of the counterintuitive results of a BN decomposition based on  

an AR(1) model are transferred to a higher order, i.e., AR(p) models. The idea that the 

signal-to-noise ratio (δ ) is mechanically linked to φ (1) for an AR(p) model is important 

because it implies that we can impose a low signal-to-noise ratio by fixing the sum of the 

autoregressive coefficients when estimating an AR(p) model. 

The KMW filter is easy to implement compared to related methods. Also, real-time 

estimates are subject to smaller revisions and appear to be more accurate in the sense of 

performing better on out-of-sample forecasts of output growth than real-time estimates 

from other methods. This makes it possible to address an important criticism of Or- 

phanides and van Norden (2002) in the sense that popular methods for estimating the 

output gap are not reliable in real terms. 
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3.3 UCMN Models 

 
Perron and Wada (2009) consider that the differences found between the BN decomposi- 

tion, the HP filter and the UC models (cycles with little similarity with respect to the NBER 

chronology, movements in the trend dominate movements in the cycle and some correla- 

tion between the components) are artificial consequences caused by the absence of the 

modeling of a break in the slope of the trend.  When this structural change is allowed,  

all methods estimate the same cycle with a trend that is non-stochastic except for a few 

periods around 1973 (the break date). 

Wada and Perron (2006) propose a UC model with the following specification: 
 

 

yt = τt + ct + ωt , (8) 

τt = τt−1 + βt + ηt , (9) 

βt = βt−1 + υt , (10) 

φ (L)ct = εt , (11) 
 

where yt is the logarithm of the real GDP, τt is the trend component, ct is the cyclical 

component, βt is the component that allows changes in the slope of the trend and ωt , ηt , 

υt , εt are the error terms or innovations. The model (8)-(11) it is called the UC model with 

mixture of Normals (UCMN). In general, an AR(2) model with zero mean is used for the 

component ct in (11). The model is non-linear due to the behavior of the innovations. If 

these innovations are represented by ut , then they have the following distribution: 

 
ut = λt γ1t + (1 − λt )γ2t , (12) 

 
where γit ∼ i.i.d. N (0, σ 2) and λt ∼ i.i.d. Bernouilli(α). So, the disturbance in t behaves 

like a N (0, σ 2) with probability α and as a N (0, σ 2) with probability (1 − α). This specifi- 

cation allows capturing nonlinearities in the output in the event that α  take a value close 

to 1 and that σ 2 > σ 2. In this case there would be, most of the time, “normal periods” or 
2 1 

low variance, while periods of large disturbances that alter the level of the series will be 

characterized as “atypical periods”. In general, αi denotes the probability that the innova- 
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tion ηt , υt , εt belong to the low variance regime (σ 2) while (1 − αi) is the probability that 

this innovation is in the high variance regime (σ 2). 

The characterization of “normal periods” and “atypical periods” has different implica- 

tions for the various error terms present in the model. First, the measurement errors ωt 

take small values or close to zero in "normal periods" and take values of greater mag- 

nitude in atypical cases. Second, the errors ηt generate a stochastic trend in “normal 

periods” or, conversely, if σ 2 = 0, a deterministic trend with occasional changes in level. 

Third, the innovation υt allows little or no change in slope in “normal periods” with large 

changes in outliers. Lastly, the error εt can have different variations depending on whether 

the economy is in an expansive or recessive period. Each of these scenarios is not in- 

dependent of the other and can be combined indistinctly, thus affecting the evolution of 

economic cycles. 

The vector ut  in (12) does not have a Normal distribution.   However,  it is possible   

to assign a Normal distribution with possible states in the state-space representation. 

The variance-covariance matrix of ut takes M possible states that are generated as a 

result of the combination of the values taken by the random variables Bernoulli. For 

example, in the case that a model with a single mixture of Normals is estimated, there are 

only two possible states linked to the periods of low and high variance associated with 

combinations of low and high variance for each innovation, while in the case that estimate 

a model with two mixtures of Normals, there will be four possible states and in the case 

that a model with three mixtures of Normals is estimated, there will be eight possible 

states.  Therefore,  we have  2m  possible states,  where m  is the number of disturbances 

with mixture of Normals. 

In the Section 4.1.2, a variety of models with all possible combinations of mixtures of 

Normals are estimated. As an example, the model denoted as UC-C is a model with a 

mixture in the cyclical component (εt ). The matrix Q of variances and covariances for this 
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model is specified as follows10: 

 σ 2 

 
 
 
0 0 0 

 
  

  σ 2
 

 
 
 
0 0 0 

 
  

 

Q =  
ε1  ε2 

 
, 

 
0 0 0 0 

0 0 0 σ 2 
  

0 0 0 0 

0 0 0 σ 2 
 

 
where each state or regime occurs with probabilities α and (1 − α). More details regarding 

the state-space representation and other cases for the matrix Q can be found in Wada and 

Perron (2006) and Guillén and Rodríguez (2014). 

The estimation stages are: (i) use of the Kalman filter to obtain the best estimator of 

the state vector and its respective variance-covariance matrix; (ii) use of the filter of Hamil- 

ton (1989) to infer the probabilities associated with the vector of states and its variance- 

covariance matrix; (iii) collapse process. Since there is a dimensionality problem (4t es- 

timates), Perron and Wada (2009) use the collapsing algorithm following Harrison and 

Stevens (1976). Then there is the problem called label switching which consists in the 

fact that it is not possible to differentiate between two states (i, i∗) without making a nor- 

malization which depends on each series under analysis; see Hamilton et al. (2007). Full 

details can be found in Wada and Perron (2006) and Perron and Wada (2009, 2016). 

 

3.4 UCUR Models 

 
Grant and Chan (2017a) carry out a Bayesian comparison of the trend-cycle decomposi- 

tion models proposed by Clark (1987) and Morley et al. (2003), based on the following 

specification: 

 

yt =  τt + ct , (13) 

τt = µ + τt−1 + ηt , (14) 

ct = φ1ct + · · · + φpct−p + εt , (15) 

10The representation can be generalized to the other cases; see Guillén and Rodríguez (2014). 

0 0 2 0 0 2 

0 σ 

0 σ 
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where yt is the logarithm of the real GDP, τt  is the trend component,  ct  is the cycle and  

µ is the drift that can be interpreted as the average growth rate of the output. The non- 

stationary trend component τt is modeled as a random walk with drift, while the cyclic 

component ct is modeled as a zero-mean AR(p) process. Furthermore, in this model the 

initial condition τ0 can be modeled as a parameter to be estimated, while for simplicity it is 

assumed c1−p = · · · = c0 = 0. The model (13)-(15) is denoted as UCUR model. Likewise, 

following Morley et al. (2003) is established p = 2 so that ct = φ1ct−1 + φ2ct−2 + εt in (15) 

and it is assumed that the distributions ηt and εt are jointly Normal: 
 

 ηt   

   

 

 
2 ρση σε 

 
 

 

 
εt

  ∼ N 
  

ρση σε σ 2 , (16) 
 

where it is observed that the model allows a correlation ρ nonzero between disturbances 

ηt and εt , therefore, it encompasses Clark’s (1987) model, as a special case when ρ = 0, 

which is denoted as the UC0 model. 

Grant and Chan (2017a) also consider a specification in which a change in trend is 

modeled, allowing the existence of breaks in the UCUR model. In this way the equation 

(14) can be rewritten as τt = µ11(t < t0) + µ21(t ≥ t0) + τt−1 + ηt , where 1(·) determines 

that the stochastic trend τt has a growth rate of µ1 before the date of the break t0 and 

a growth rate of µ2 after t0.  The model is denoted by  UCUR−t0  while when we have  

two breaks, the model is denoted by UCUR−(t0, t1). On the other hand, the authors 

consider a set of models with a deterministic trend following the findings of Wada and 

Perron (2006) and Perron and Wada (2009, 2016); however, the estimate of the variance 

of trend innovation σ 2  is estimated to be zero, which is outside the parameter range 

because the variance should be positive. To avoid this problem, the following specification 

is considered: τt = µ11(t < t0) + µ21(t ≥ t0) + τt−1, which is denoted as model DT−t0 and 

as DT model when considering the model without a break. 

For estimation, the authors use the Markov Chain Monte Carlo (MCMC) procedure for 

the posterior distribution of the UCUR model. The other UC models can be estimated in a 

0, 
σ  
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similar way and technical details can be found in Appendix A of Grant and Chan (2017a). 

Markov sampling is used to obtain the posterior distributions based on sparse matrix 

algorithms developed in Chan and Jeliazkov (2009) and Chan (2013) which are more 

efficient than those based on the Kalman filter; see McCausland et al. (2011). In this 

way, the posteriors can be obtained sequentially from the sampling of the following densi- 

ties: (i) p(τ|y, φ, σ 2 , σ 2, ρ,µ1, τ0); (ii) p(φ |y, τ, σ 2 , σ 2, ρ,µ1, τ0); (iii) p(σ 2|y, τ, φ, σ 2 , ρ,µ1, τ0); 

(iv) p(σ 2 |y, τ, φ, σ 2, ρ,µ1, τ0); (v) p(ρ|y, τ, φ, σ 2 , σ 2, µ1, τ0); and (vi) p(τ0|y, τ, φ, σ 2 , σ 2, µ1, ρ). 

The estimation of the models UCUR−t0 and UCUR−(t0, t1) follows a similar procedure, 

which are detailed in Appendix A of Grant and Chan (2017a); see also Section 1.2 of 

Grant and Chan (2017a). 

For comparison purposes, assume we want to compare a set of possibly non-nested 

models {M1, ..., MK}.  Each model Mk is formally defined by two components:  a likelihood 

function p(y|θk, Mk) which depends on the vector of parameters specific to the model (θk) 

and a prior density (p(θk|Mk)). The marginal likelihood function under the model Mk is 

defined as p(y|Mk) = p(y|θk, Mk)p(θk|Mk)dθk. Thus, given two models Mi and Mj, if the 

marginal likelihood of the model Mi is greater than that associated with the model Mj 

-that is, the observed data are more likely to be generated by  the model Mi compared 

to model Mj- then this is seen as evidence in favor of the model Mi.  The weight of the 

evidence can be evaluated using the posterior odds ratio between two models which can 

be written as: P(Mi|y) = P(Mi) × p(y|Mi) where P(Mi)
 is the prior odds ratio and the marginal 

P(Mj |y) P(Mj ) p(y|Mj ) P(Mj ) 

likelihood ratio p(y|Mi)
 

p(y|Mj ) 
is called the Bayes factor (BF) in favor of the model Mi against Mj. 

If both models are equally likely a priori, that is, the prior odds ratio is equal to unity, then 

the posterior odds ratio between the two models is equal to the BF. So, for example, if 

BFi j = 50, this implies that the model Mi  is 50 times more likely than the model Mj given 

the data information. For a more detailed discussion of BF, see Koop (2003). 

To calculate the marginal likelihood, the importance sampling method is used. Grant 

and Chan (2017a) use an improved version of the classical cross-entropy method that 

was originally developed by Rubinstein (1997, 1999); see also Rubinstein and Kroese 

(2004). Chan and Kroese (2012) showed that importance sampling density can be op- 

timally obtained in a single stage of MCMC methods; see Chan and Eisenstat (2015). 
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The importance sampling density is the posterior density p(θ |y, Mk). This density cannot 

be used in practice but it provides a good reference point to obtain a plausible density. 

The idea is to locate a density that is close to the ideal density. In operational terms, the 

density is found within a convenient family of distributions such that the Kullback-Leibler 

divergence -the cross-entropy distance from the ideal density- is minimized. Once the 

optimum density is obtained, let g(.), this is used to construct the importance sampling 
p(y|θ (r))p(θ (r)) 

estimator:  p (y) = 1 ∑R , where the dependency of M   has been removed to 

save notation and θ (1), . . . , θ (R) are the draws of the sampling density g(θ ). More com- 

plete details can be found in Appendix B of Grant and Chan (2017) as well as in Chan 

and Eisenstat (2015). 

 

3.5 PSY (2017) Method 

PSY (2017) propose a method to identify and estimate the presence of approximate flex- 

ible nonlinear trends via Fourier expansions. For this, they propose a statistic whose null 

hypothesis is the non-existence of nonlinearities versus the opposite, this statistic being 

robust to the presence of I(0)/I(1) components in the noise function. The statistic is of the 

Wald type and generalizes the proposal of Perron and Yabu (2009a,b) who evaluate the 

presence of a single structural break in the trend of the series. Instead of evaluating the 

presence of one, two or more breaks, a generalization is to allow the existence of a non- 

linear trend which is approximated by Fourier expansions. Although this technique has 

been applied to model trends in temperature series, we apply this technique to approxi- 

mate the trend component of the output, while the cycle is obtained by residual. Perron 

et al. (2020) apply this technique to extract trends in the unemployment rate in G7 coun- 

tries, obtaining results compatible with the idea that the unemployment rate converges to 

a long-term unemployment rate (consistent with an I(0) process) and compatible with the 

idea of hysteresis (consistent with an I(1) process). 

The general model implies the possibility of more than one frequency in the Fourier 
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expansion and a general serial correlation structure in the noise component11: 
 

pd n n 

yt = ∑ βit
i + ∑ γ1 j sin(2πkjt/T )+ ∑ γ2 j cos(2πkjt/T )+ ut , (17) 

i=0 
∞ 

j=1 j=1 

ut = ∑ aiut 1 + et , (18) 
i=0 

 

for t = 1, 2, ..., T , et is a martingale difference sequence with respect to the information set 

Ft (et−s, s > 0), that is, E(et |Ft−1) = 0 with E(e2) = σ 2, E(e4) > ∞, u0 = Op(1) and where 

the frequencies k j are non-negative integers for j = 1, . . . , n and n is the total number of 

frequencies used in the Fourier expansion. The usual cases use pd = 0 (without trend) 

and pd = 1 (linear trend). The set of frequencies k j can be a suitable subset of all integers 

between 1 and the maximum frequency kn, such that kn does not need to match the n-th 

frequency. Two possible structures are assumed for the noise component: (i) for the case 

I(0), we have ut = C(L)et , where C(L) = ∑∞ ciL
i, ∑∞

 i|ci| < ∞, 0 < |C(1)| < ∞; (ii) for the 

case I(1), we have ∆ut = D(L)et , where D(L) = ∑∞ diL
i, ∑∞ i|di| < ∞, 0 < |D(i)| < ∞. These 

conditions ensure that a functional central limit theorem can be applied to the partial sums 

of ut in the case I(0) and the partial sums of ∆ut in the case I(1). 

The objective is to statistically evaluate the null hypothesis of the absence of non- 

linear components and if this hypothesis is rejected, to estimate said trend. To better 

understand,  assume for  simplicity that there is only one frequency (n = 1) in (17) with  

ut = αut−1 + et , i.e., the basic model. In this way we have H0 : γ1 = γ2 = 0 against the alter- 

native of the presence of a nonlinear component approximated by the Fourier expansion, 

i.e., H1 : γ1 ̸= 0 and/or γ2 ̸= 0. If the coefficient α of the AR(1) process were known, the 

quasi-differentiation transformation 1 − αL could be applied to the equation (17) and the 

statistical test would then be equivalent to using a standard Wald test based on the OLS 

estimate from the quasi-differentiated regression. Because the coefficient α is unknown, 

the authors use the robust FGLS procedure proposed by Perron and Yabu (2009a). 

11The basic model is yt = ∑pd βiti + γ1 sin(2πkt/T )+ γ2 cos(2πkt/T )+ ut , ut = αut−1 + et , where it is assumed 

that  1 < α ⩽ 1, so that both the stationary process, I(0) with  α  < 1, as the integrated process, I(1) with  

α = 1, are considered. In this case, the only frequency k in the Fourier expansion series it is assumed to be 

a fixed and known variable. The goal is to prove the absence of nonlinear components, i.e., H0 : γ1 = γ2 = 0, 
against the alternative of the presence of a nonlinear component approximated by the Fourier expansion, 
i.e., H1 : γ1 ̸= 0 and/or γ2 ̸= 0. 
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1 α2 1/2γ cos(2πkt/T ) + (1 − α2)1/2u1. This estimator differs from the Cochrane-Orcutt 

FGLS estimator only in how the initial observation is transformed. Thus, the null limit distri- 

 

Perron and Yabu’s (2009a) approach consists of two steps that aim to obtain a Wald 

statistic based on a FGLS regression such that the limiting distribution is χ2 standard (or 

Normal) both in the case I(0) as in the I(1). The first step is to obtain an estimate of α 

which is 
√

T consistent in the case I(0) and “super efficient” (αS) in the case I(1). The sec- 

ond step consists of calculating the Wald statistic based on the FGLS estimator using an 

estimate of α with the mentioned properties. To easily illustrate and see the implications of 

this procedure, we first consider the model with a single regressor yt = γ sin(2πkt/T )+ ut , 
with  u = αu + e .  So,  the OLS estimator of α  is α =T u u /T u2 . Applying the 

t t−1 t t=2 t t−1 t=2 t−1 

Cochrane and Orcutt (1949) transformation, the FGLS estimate is obtained by applying 

an OLS regression to the equation yt − αyt−1 = γ{sin(2πkt/T ) − α sin(2πk(t − 1)/T )}+ ut − 

αut−1 for t = 2, ..., T with y1 = γsin(2πk/T ) + u1. This corresponds to the FGLS estimator 

assuming that u0 = 0. When |α| < 1, the FGLS estimator of γ is asymptotically efficient 

and tγ ⇒ N (0, 1) under the null hypothesis of γ = 0. However, the limiting distribution is 

different when α = 1 and has the form of a unit root statistic as in Said and Dickey (1984); 

see details in Appendix of PSY (2017).   So,  in the case that α = 1,  in order to obtain   

a standard Normal limit distribution, Perron and Yabu  (2009a) suggest replacing α  by  a 

“super efficient” estimator (αS) which converges to unity at a rate greater than T defined 

by αS = α if Tδ |α − 1| > d and 1 otherwise, for δ ∈ (0, 1) and d > 0. Therefore, when α 

is in the neighborhood T −δ  of 1,  αS  takes the value of 1  and so then tγ  ⇒ N (0, 1).  We 

now consider the procedure with the model yt = γ cos(2πkt/T ) + ut , with ut = αut−1 + et . 

Although the difference between the sine and cosine functions seems smaller, the same 

FGLS estimator combined with the estimator αS using the Cochrane-Orcutt transforma- 

tion, which results in yt − αSyt−1 = γ [cos(2πkt/T ) − αS cos(2πkt(t − 1)/T )] + ut − αSut−1 and 

y1 = γ cos(2πkt/T )+ u1 will not produce the same limit distribution. On the contrary, when 

α = 1, tγ ⇒ σ −1u1 = σ −1(u0 + e1) so that the limit distribution of the statistic tγ is dom- 

inated by  the initial condition and the first value of the disturbance.  This problem can  

be remedied using the FGLS estimator proposed by Prais and Winsten (1954), which is 

obtained using the above Cochrane-Orcutt transformation together with (1 − α2)1/2y1 = 

(  −  S ) S 
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defined as yt = (1 − αSL)yt for t = 2..., T and y1 = (1 − α2L)1/2y1. Defining s2 = T −1 ∑T e2, 

 S 

the statistic is Wγ  = Ψ  ′R′[s2R(X ′X )−R]−1RΨ  ⇒ χ2 

th 

(2) for I(0)/I(1) processes. 

 

bution of the statistic to test γ = 0 based on this alternative FGLS estimator is tγ ⇒ N (0, 1) 

when α = 1. It can be shown that the use of the FGLS estimator of Prais and Winsten 

(1954) gives the same asymptotic distribution of the statistic tγ when the sine function is 

used as a regressor. Therefore, when it comes to tests related to the nonlinear trends 

generated by the Fourier expansions, it is necessary to use the FGLS estimator of Prais 

and Winsten (1954) and the limiting distribution of the statistic is then Standard Normal 

in the cases I(0) and I(1)12. See sections II and III and Appendices of PSY (2017) for 

further details. 

Returning to the case with two regressors, the Wald test is obtained as follows. Be 

yt = xt
′ Ψ+ ut . In this case xt = (zt

′ , ft
′)′ with zt = (1, t, ..., t pd )′, ft = (sin(2πkt/T ), cos(2πkt/T ))′, 

the parameters are Ψ = (β ′, γ′)′, β = (β0, β1, ..., βpd )
′ and γ = (γ1, γ2)′, H0 : RΨ = 0 where 

R = [0 : I2] is a matrix 2 × (pd + 3) of restrictions. Therefore, Ψ  = (X ′X )−(X ′y ) is the Prais- 

Winsten FGLS estimator where X is a matrix T × (pd + 3) of transformed data whose t 

row is given by xt
′ = (1 − αSL)xt

′ except for x1
′  = (1 − α2L)1/2x1

′ . The vector T × 1 y is similarly 

 
S t=1  t 

 

3.6 Hamilton (2018) Method 

Hamilton (2018) criticizes the HP filter for the following reasons: (i) the HP filter introduces 

spurious dynamic relationships that are not supported by the underlying data generating 

process; (ii) the values at the end of the sample are very different from those at the 

middle of the sample and there is spurious dynamics; (iii) a statistical formulation of the 

filter typically produces values of the smoothing parameter largely different from common 

practice. The alternative proposed by Hamilton (2018) is a one-variable regression at date 

t on the four most recent values at date t − h which would allow to obtain all the desired 

objectives of the users of the HP filter with none of its deficiencies. 

Thus, Hamilton (2018) suggests an alternative concept of what we can interpret as 
 

12This contrasts with the cases of a linear trend model considered in Perron and Yabu (2009a) and the 

break model considered in Perron and Yabu (2009b) since the asymptotic results for these models do not 

depend on the choice of the FGLS estimator. 
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the cyclical component of a possibly non-stationary series: how different is the value at 

date t + h of the values that we could have expected observing the behavior in date t? 

This concept of cyclical component has several attractive features. First, as noted by Den 

Haan (2000), the forecast error is stationary for a wide class of non-stationary processes. 

Second, the primary reason why we might fail to predict the value of most macroeco- 

nomic and financial variables over a horizon of h = 8 quarters ahead are cyclical factors 

such as whether a recession occurs in the next two years and the date or timing of an 

economic recovery. Computing this cyclical component concept does not require knowing 

the stationary/non-stationary nature in order to have a correct model to predict the series. 

Instead, a simple prediction can be made within a restricted class: the population linear 

projection yt+h on a constant and the four recent values of y on date t. This process exists 

and can be consistently estimated for a wide range of non-stationary processes. 

Assume that the difference dth of yt is stationary for some d. For example, d = 2 would 

mean that the growth rate is non-stationary but the change in the growth rate is stationary. 

Notice that the difference dth is also stationary for any series with a deterministic trend 

characterized by a polynomial of order dth. For such a process, we can write the value of 

the process yt+h as a linear function of initial conditions in the period t plus a stationary 

process. For example when d = 1, assuming ut = ∆yt we can write yt+h = yt + w(h) where 

the stationary component is given by w(h) = ut+1+· · ·+ut+h. For d = 2 and ut = ∆2yt we 

have yt+h = yt + h∆yt + w(h), where now w(h) = ut+h + 2ut+h−1+· · · +hut+1. 

Proposition 4 of   Hamilton (2018) states that if we estimate an OLS regression of 

yt+h over a constant and p = 4 latest values of y to the date t: yt+h = β0 + β1yt + β2yt−1 + 

β3yt−2 + β4yt−3 + ct+h, the residuals, ct+h = yt+h − β0 − β1yt − β2yt−1 − β3yt−2 − β4yt−3 provide 

a reasonable way to build the cyclical component of a large class of underlying processes. 

The series is stationary since the fourth differences of yt are stationary, a goal that the HP 

filter attempts to achieve but is generally not achieved. Thus, while the HP filter imposes 

four roots, the specified regression uses only the four differences if this is the characteristic 

of the data. The Hamilton (2018) procedure has other advantages over the HP filter. First, 

any evidence that ct+h predicts some other variable xt+h+ j represents a real skill of y to 
 

 predict x more than just an artifact of the way yt is detrended. Second, unlike the cyclic 
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component of the HP filter, the value of ct+h will be, by construction, difficult to predict 

from some variable in time t or before. If we find such predictability, this would mean 

something about the actual data-generating process, for example, that x causes (in the 

Granger sense) y. Third, the value of ct+h is free of models and assumptions about the 

data. Regardless of how the data was generated, the important thing is that (1 − L)dyt is 

covariance stationary for some d ≤ 4, then there is a population linear projection of yt+h 

on (1, yt , yt−1, yt−2, yt−3)′. This projection is a characteristic of the data-generating process 

that can be used to define what is considered the cyclical component of the process and 

can be consistently estimated from the data13. 

A related aspect is the choice of h.  For  any fixed value of h,  there is a sample size  

T for which the results of Proposition 4 of Hamilton (2018) will hold. If we are interested 

in economic cycles, a horizon of two years should be the standard or reference value. In 

summary, for quarterly data, Hamilton (2018) suggests p = 4 and h = 8. 

13According to Hamilton (2018), we might be tempted to use a richer model to predict yt+h, like using a 

vector of variables instead of just the four lags or even a nonlinear relationship. However, the author argues 

that such refinements are unnecessary for the purpose of extracting the stationary component and have 

the disadvantage that when more parameters are used it can cause results in small samples that will differ 

from the asymptotic predictions. 
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4 Empirical Results 

 
This Section is divided into two parts. The first part presents and discusses the results of 

the BN decomposition, the UCMN model by Perron and Wada (2009, 2016), the UCUR 

model by Grant and Chan (2017a), and the flexible nonlinear approximation via Fourier 

expansions by PSY (2017). The second part compares the business cycle estimates 

obtained from the 10 procedures presented in Section 3. 

In the case of the G7 countries, the sample covers the period 1960Q1-2019Q4, with 

the exception of Canada and France, for which the sample begins in 1961Q1 and 1970Q1, 

respectively. In all cases, the source of information is the OECD database. In the case  

of the LA countries, the availability of information is scarce, limited and varies according 

to the country. Thus, for the cases of Mexico and Peru the sample is 1980Q1-2019Q4, 

for Argentina it is 1993Q1-2019Q4, for Brazil it is 1996Q1-2019Q4 and for Chile it is 

1995Q1-2019Q4. In the cases of Argentina, Brazil and Peru, the source of information 

comes from the respective Central Banks, while for Chile and Mexico it comes from the 

OECD database. 

 
4.1 Methodologies Evaluation and Selection 

 
4.1.1 BN Decomposition 

For each country, eight ARIMA(p,1,q) models are estimated with p, q = 0, 1, 2. Table 1 

presents the results of the selected models using three criteria: greatest log-likelihood 

(LL), statistically significant coefficients and a business cycle behavior consistent with the 

stylized facts. The latter is discussed in further detail in Section 4.2 along with the rest of 

the methodologies. For most countries an ARIMA(p,1,0) model with p = 1, 2 is selected; 

these findings are consistent with the literature; see Nelson and Plosser (1982), Campbell 

and Mankiw (1987a,b, 1988) and Stock and Watson (1988). Exceptions are found for 

the UK and Germany, where the selected models also present a moving average (MA) 

component, that is, q = 1. 

According  to  Table  1,  the  estimates  of  the  autoregressive  parameters  (φ 1   and  φ 2) 
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are statistically significant. These results show different specifications between the two 

groups of countries, we find that for most of the G7 countries an AR(2) model is neces- 

sary, while in the case of all LA countries an AR(1) model is selected. The sum of the 

autoregressive coefficients oscillates between 0.40 and 0.75 for the G7 and between 0.22 

and 0.50 for LA. Values far from one imply a reduced persistence in the cycles and, con- 

sequently, a short duration. In other words, it is expected to observe high volatility and low 

depth in the cycles estimated under this procedure, especially for LA countries. Likewise, 

in no case are the characteristic roots complex, indicating the absence of pseudocyclic 

behavior. 

Low persistence or duration can also be inferred by calculating a long-run persistence 

measure, denoted by ψ(1)14. For all countries, the value of ψ(1) is greater than one, 

suggesting that a one percent shock to the trend component changes the long-run path of 

output by more than one percent. These results show that shocks to the trend component 

are more important than shocks to the cyclical component and that shocks to the trend 

component may have permanent effects on the output; see Nelson and Plosser (1982) 

and Campbell and Mankiw (1987a,b, 1988). 

The results of ψ(1) for the G7 countries are mostly consistent with the results of Camp- 

bell and Mankiw (1987a, 1988). We find that there are some differences in the calculated 

values for ψ(1) for both groups of countries. While for the G7 countries the average value 

is 1.694, in LA countries the average value is 1.576. Although this suggests similarities in 

the impacts of the shock on the trend component in both groups of countries, it is impor- 

tant to note that the average value of LA is being raised by the estimates for Argentina and 

Peru, which show ψ(1) = 1.999 and ψ(1) = 1.618, respectively.  For these two countries, 

it could be argued that given the magnitude of the recessions that both economies have 

experienced, specifically the crisis generated by the failure of the Convertibility plan in Ar- 

gentina15  and hyperinflation and the internal conflict in Peru16, the effect of the shocks of 
 

14Given that φ (L)ct = θ (L)εt and given the stationarity condition, we have that ct = φ (L)−1θ (L)εt = ψ(L)εt 

which corresponds to the MA(∞) representation of ct . Hence, ψ(1) = φ (1)−1θ (1). 
15This was a plan by the Argentine Currency Board that pegged the Argentine peso to the US dollar 

between 1991 and 2002 in an attempt to eliminate hyperinflation and stimulate economic growth. When the 

recession and the massive bank withdrawals started in 2000, the plan began to collapse what was given in 

2002. 
16The 1980s were characterized by the beginning and rise of terrorism that caused great destruction to 
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the trend component on the long-term output is greater than in the rest of the LA countries. 

 

4.1.2 UCMN Models 

 
Seven UCMN models are estimated for each country with one, two and three mixtures of 

normals in each of the components: cycle, trend and slope. Thus, we define the following 

models: (i) UC-C: a model with a mixture of normals in the cyclical component (εt ); (ii) 

UC-N: a model with a mixture in the disturbances of the trend level (ηt ); (iii) UC-P: a 

model with a mixture in the disturbances of the trend slope (υt ); (iv) UC-CN: a model with 

mixtures in the disturbances of the cyclical component and the trend level (εt , ηt ); (v) UC- 

CP: a model with mixtures in the disturbances of the cyclical component and the trend 

slope (εt , υt ); (vi) UC-NP: a model with mixtures in the disturbances of the trend level and 

trend slope (ηt , vt ); and (vii) UC-CNP: a model with mixtures in the disturbances of the 

cyclical component, the trend level and the trend slope (εt , ηt , υt ). 

Furthermore, in order to increase the possibility of obtaining a global maximum in the 

likelihood function, each model is estimated 900 times with different starting values that 

are obtained from the normal distributions N (0, 1), N (0, 2) and N (0, 3). Additionally, 

the recursive method of the Kalman filter requires starting values for the state vector x0|0. 

Perron and Wada (2009, 2016) consider x0|0 = [τ0, 0, 0, β0], where the starting value of the 

trend, τ0, is the first observation of the GDP and the starting value of the slope, β0, is the 

first value of the output growth rate. However, since Peru shows an irregular behavior on 

the output at the beginning of the sample, Guillén and Rodríguez (2014) suggest that β0 

should be estimated as the simple average of the growth rate of the first four quarters of 

the output. We consider this suggestion for all LA countries. 

Table 2 shows the estimates of the best models for the G7 and LA countries, obtained 

using the three criteria already mentioned in 4.1.1. The selected models are: the UC-N 

model for Germany and Japan; the UC-CP model for the US, Italy and Brazil; the UC- 

NP model for Canada and Chile; and the UC-CN model for France, the UK, Argentina, 
 

the country, coupled with hyperinflation that began in 1989. The new government applied a stabilization 

program (monetary shock) in the mid-1990s to stop hyperinflation. Furthermore, in 1992 the capture of the 

terrorist leader took place, which implied a great blow for the defeat of terrorism. 
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is not significant for the cases of the UK (UC-CN model), France (UC-CN) and Mexico 

(UC-CN model), which translates into a smooth behavior of τ . For the UK and France 

 

Mexico and Peru. For the US and Italy, the selected models coincide with those chosen by 

Perron and Wada (2016), while for the case of Peru the model coincides with Guillén and 

Rodríguez (2014). In no case is a UCMN model with three mixtures selected (UC-CNP). 

Table 2 indicates that almost all countries, with the exception of the US, Italy and 
Brazil, present a mixture of normals in η .  Regarding the estimate σ  , we find that it 

t η1 
 

we find ση1 0.001, while for Mexico we find 

ση1 

0.000. Since ση1 takes values close to 

or equal to zero, a deterministic component τt is obtained with occasional changes in its 
 

 
(η ).  Likewise, the probability of occurrence of σ (α for Canada, Germany, Japan and 

t η1 1 

Chile, and α2  for the UK, France, Argentina, Mexico and Peru) is significant in all cases, 

with these probabilities being greater than 50%, which means that economies are most 

of the time in “normal” periods.  For example, for the UK and France (both under the UC- 

CN model) α2 = 91% and 80%, respectively, are obtained. Another case is that of Chile 

(UC-NP model) which presents α1 = 95%. 
 

 
 

dard deviation of the high volatility regime (ση2 ) is significant, as well as its probability 

of occurrence (α1 for Canada, Germany, Japan and Chile, and α2 for the UK, France, 

Argentina, Mexico and Peru). For example, for the case of Germany and Japan (both 

under the UC-N model) we obtain ση2 = 1.893 and 2.013 with probabilities (1 − α1) = 17% 

and 9%, respectively. Other examples are Argentina and Peru (both under the UC-CN 

model) which have ση2 = 2.238 and 5.733 with probabilities (1 − α2) = 5% and 11%, re- 

spectively.   Therefor

 

e, in these cases, σ η2   generates a stochas

 

tic trend meaning that 

these economies are in “atypical” periods and where shocks to the trend component are 

relevant compared to shocks to the cyclical component. However, the probability of oc- 

currence of this regime is relatively low. 

Table 2 indicates that for all the countries that have a mixture of normals in υt (US, 

Canada, Italy, Brazil and Chile) the standard deviations associated with a low variance 

regime (συ1 ) are small in magnitude, which would indicate that a relatively stable growth 

On the other hand, for all the countries that have a mixture of normals in ηt , the stan- 

level, which translates into the cycle shocks (εt ) being more important than trend shocks 
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rate is obtained in the long run. This is consistent with the findings of Perron and Wada 

(2009, 2016) and Guillén and Rodríguez (2014), who indicate that, in general, συ1 is small 
 

 
 

the probability (α2 for all cases) of συ1 is significant. Thus, for the US (UC-CP model), 

Canada (UC-NP model) and Italy (UC-CP model) we have that συ1 = 0.008, 0.050 and 

0.000 with probabilities α2 = 83%, 95% and 93%, respectively. On the other hand, for Brazil 

(UC-CP model) and Chile (UC-NP model) we have that συ1 is equal to 0.184 and 0.048 

with probabilities α2 = 82% and 80%, respectively. For its part, the standard deviation of υt 

associated with a high variance regime (συ2 ) is only significant for Chile (UC-NP model) 

which shows συ2 = 0.059 with probability of occurrence (1 − α2) = 20%. 

According to Table 2, most of the G7 and LA countries, with the exception of Canada, 
Germany, Japan and Chile, present a mixture of normals in ε . Thus, we obtain that σ 

t ε1 

is significant and small for all countries, which suggests the existence of asymmetries in 

the cycles, which is consistent with the findings of Neftçi (1984), Diebold et al. (1993) and 

Friedman (1993). Furthermore, the probabilities associated with 

σε1 

(α1 for all cases) are 

 

 
 

have σε1 equal to 0.143 and 0.243 with probabilities α1 equal to 67% and 97%, respectively. 
 

 
 

have values of σε1 equal to 0.614 and 0.558 with probabilities α1 of 86% and 89%, respec- 

tively. For its part, σε2 , as well as its probability of occurrence (1 − α1 for all cases), are 

also significant for all countries. For example, for Italy (UC-CP) we obtain σε2 = 1.988 with 

probability (1 − α1) = 9%, while for Mexico (UC-CN) we obtain σε2 = 5.211 with probability 

(1 − α1) = 2%. In general, it is observed that for all the countries σε2 > σε1 , which implies 

that the economies are most of the time in normal periods with alterations or exceptional 

disturbances of great magnitude that would have a strong impact on the product in the 

short term and at the series level. 

Table 2 also shows the estimates of the autoregressive coefficients (φ1 and φ2), which 

are statistically significant for all countries.  The sum of both coefficients ranges between 

0.86 and 0.98 for the G7 countries, the lowest value being for Japan and the highest for 

the UK. In the case of the LA countries, the sum of the coefficients is between 0.83 and 

Other examples are the cases of Argentina and Peru (both under the UC-CN model) that 

also significant. For example, for the US (UC-CP model) and France (UC-CN model) we 

for most of the time and only takes large values in “atypical” periods. Table 2 shows that 
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17Using the results of Guillén and Rodríguez (2014) for Peru where φ1 = 1.416 and φ2 = −0.519, the 

 

0.96, which are obtained in Peru and Argentina, respectively. The values obtained clearly 

contrast with the ones obtained in the BN decomposition. In the present case, the sum is 

higher and closer to unity, which indicates that the cycles obtained are characterized by 

high persistence (longer duration, lower volatility) and greater depth. 

Table 2 also shows the characteristic roots implied by the AR model estimated for 

each country. For the cases of Italy and Japan, complex roots are obtained that indicate 

an average duration of the cycles of 4.97 and 4.89 years, respectively. For the cases of 

Mexico and Peru we obtain an average duration of 8.14 and 3.98 years, respectively17. 

Argentina shows a duration of 13.9 years which seems overestimated. 

 
4.1.3 UCUR Models 

For each country, the following models were estimated: DT, DT−t0, UC0, UCUR, UCUR−t0 

and UCUR−(t0, t1). Each model is estimated using 110,000 posterior draws followed by 

a burning of 10,000 draws, while 50,000 draws are performed using the importance sam- 

pling to calculate the log of the marginal likelihood (logML). Additionally, for the estimation 

of each model it is necessary to calculate the mean priors of τ0,  µ0  and φ0.  The mean  

of the parameter τ0  is obtained from the natural logarithm of the first value of the GDP  

for each country multiplied by 100. The prior value of µ0 is obtained from the annualized 

quarterly growth rate of each country. Finally, to obtain the priors of φ0, the cycle of the 

GDP of each country is estimated through the BK filter. In the case of specifications with 

breaks, the DT−t0, UCUR−t0 and UCUR−(t0, t1) models were estimated with eight differ- 

ent break dates, which were obtained using two statistics. The first is Perron and Yabu 

(2009a,b) structural change statistic which is robust to disturbances that are I(0)/I(1). 

The second is the endogenous two-break LM-type unit root statistic proposed by Lee and 

Strazicich (2003). 
Table 3 shows the posterior means of the parameters φ1, φ2, σ 2, σ 2 and ρ, the value of 

ε η 

the logML, the characteristic roots associated with the autoregressive polynomial corre- 

sponding to the cycle component as well as the average duration of the respective cycles, 
 

 
average duration of the cycles is of 8.45 years. Our sample includes an ad

 

ditional 9 years

 

(36 quarters). 
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for the cases in which complex roots are obtained. For the model selection process, the 

BF is used. For each country, the columns of Table 3 indicate, respectively, the following: 

the best DT−t0 model, the UC0 model as a reference as it is a UC model without correla- 

tion, the UCUR model (without break), the best UCUR−t0 model and best UCUR−(t0, t1) 

model. The countries that have a higher BF in favor of the UCUR−t0 and UCUR−(t0, t1) 

models (in relation to the DT−t0 model) are Peru and Japan with values of 3.2×108 and 

4.6×106 respectively, while the countries with a lower BF are Canada, Chile and Mexico, 

where the results show values of 2.03, 3.05 and 3.10, respectively. BF values close to 

one may suggest that the trend estimated by the DT−t0 model is similar to that estimated 

by the UCUR−t0 models. 

The results indicate that in no case is the DT model selected. In the case of the DT−t0 

model and for G7 countries, it is found that the best models are selected using a break 

around 1973. Such are the cases of the US, Canada, Germany, France, Italy and Japan. 

Only the UK indicates a break in 2008. In the case of the LA countries, the breaks appear 

on different dates associated more with domestic events: 2012 (Argentina), 2013 (Brazil 

and Chile), 1982 (Mexico) and 1992 (Peru).  However,  the results support the  extensive 

empirical evidence in favor of break-correlated UC models (UCUR−t0); see Morley et al. 

(2003), Morley and Piger (2012), Luo and Startz (2014), and Grant and Chan (2017a). 

This model outperforms the DT−t0, UC0 and UCUR models although there are some 

nuances.  According to the BF, the selected models (for G7 countries) are:  UCUR-73 

(US), UCUR-75 (Canada) and UCUR-73 (UK). A model with two breaks is selected for 

Germany (UCUR-(73, 91)), France (UCUR-(73, 08)), Italy (UCUR-(74, 07)) and Japan 

(UCUR-(73, 89)). In the cases of US, Canada and UK, the break date is related to the oil 

price shock. In the cases of France and Italy the break dates suggest the oil shock and the 

financial crisis of 2008 which seems reasonable. In the case of Germany, dates breaks 

dates are associated with the oil shock and the unification of Germany are also identified. 

In the case of the LA countries, the selected models are: UCUR-01 (Argentina), UCUR-82 

(Mexico) and UCUR-92 (Peru). In the cases of Brazil and Chile, the BF suggests a model 

with two breaks: UCUR-(09, 13) and UCUR-(98, 15), respectively. Again, the selected 

break points are related to domestic event in the region.  In the case of Argentina, it 
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coincides with the 2001 crisis as a result of the failure of the Convertibility plan; Brazil 

with the political crisis of 2014 together with the drop in metal prices; Chile with the Asian 

crisis in 1998; Mexico with the external debt crisis in 1982; and Peru with the period of 

hyperinflation and internal conflict in 1992. 

According to Table 3, the sum of the posterior means of the autoregressive coefficients 

(φ1 and φ2) is between 0.46 and 0.69 for Chile, Mexico, Brazil and all the G7 countries. 

This contrasts with the results found using the Perron and Wada (2009, 2016) procedure 

and is comparable to the results obtained using the BN decomposition. This finding trans- 

lates into a high volatility of the economic cycles estimated under this procedure. There 

are two exceptional cases: Argentina and Peru with models UCUR-01 and UCUR-92, 

respectively. In these cases, it is found that the sum of the posterior means of φ1 and φ2 

are 0.96 and 0.87 which is more in line with the findings obtained using the Perron and 

Wada (2009, 2016) method where valuesof 0.96 and 0.83 were obtained for Argentina 

and Peru, respectively. Consequently, in these cases the cyclical component shows high 

persistence compared to the rest of the countries. The difference in the findings and be- 

havior of the cases of Argentina and Peru can be explained by the extreme and prolonged 

fluctuations of the output of both countries as a consequence of crises that occurred in 

the first years of the samples of said countries.  Due to the scarce and varied availability 

of data, the samples of Brazil, Chile and Mexico do not present recessive periods at the 

beginning of their samples that are comparable with those found in Argentina and Peru18. 

These countries show recessive periods (Tequila, financial crises, among others) but they 

do not have the magnitude of the events that occurred in Argentina and Peru. Our hy- 

pothesis at this point is that if all the major crises in LA countries were included, we would 

observe behaviors and parameters very similar to those found for Argentina and Peru. 

The results of the estimated posterior means of the variances (see Table 3) for Brazil, 

Chile, Mexico and all the G7 countries, reveal that the trend shocks (ηt ) are more im- 

portant than the shocks that affect the cycle (εt ) in explaining the variation of the output. 

This implies that during recessive periods, shocks ηt affect the long-term level of GDP in 
 

18Recall that the samples of Brazil and Chile begin in 1996Q1 and 1995Q1, respectively. These countries 

went through severe domestic crises in the 1980s and 1970s, respectively. 
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these countries, an opposite result to that found in the UCMN model by Perron and Wada 

(2009, 2016).  This is confirmed in the posterior densities of the variance ratio σ 2 /σ 2, 
η ε 

which are found in a region greater than one19. In the cases of Argentina and Peru, the 

results are opposite in the sense that the shocks εt are more important than the shocks ηt 

in explaining output fluctuations. In this case, the region of posterior densities of the ratio 

of variances σ 2 /σ 2 are below one. The greater importance of the shocks εt in Argentina 
η ε 

and Peru can be explained by the characteristics of the crises in these countries, which, 

although they generated permanent changes in productivity, had a greater effect on the 

cycle. In the case of Argentina we find the economic crisis that occurred between 1998 

and 2002, associated with the loss of competitiveness as a result of the fixed exchange 

rate regime between the peso and the US dollar, known as the Convertibility plan, as 

well as its collapse. In the case of Peru, recessions are associated with the economic 

crisis in the late 1980s and early 1990s, characterized by hyperinflation. Likewise, it is 

important to mention the disaster that occurred at the beginning of the 1980s related to 

the destruction of the north of the country due to the phenomenon of the coastal named 

El Niño. 

The estimated posterior means of the parameter ρ  (Table 3) for Brazil, Chile, Mexico 

and all the G7 countries are negative and large in magnitude, which is close to the ρ = 

−1 correlation imposed by the BN decomposition. These results would indicate that the 

shocks that affect the trend are not the same shocks that affect the cycle and that, in 

addition, there is an empirical relevance of allowing a non-zero correlation between the 

trend and cyclical shocks, which reaffirms what was found in Morley et al. (2003) and 

Grant and Chan (2017a). Likewise, it is possible to observe that the posterior densities of 

ρ are close to -1, which reinforces the importance of trend shocks in economies. Stock 

and Watson (1988) consider that these shocks related to the trend generate long-term 

variations in GDP, since they can change its trajectory and generate fluctuations in the 

short term, where the cycle constantly adjusts to said changes. An interesting aspect is 

the fact that the estimated posterior mean of ρ decreases for all countries as one or two 

breaks in the trend are introduced for the UCUR model, while its statistical significance 
 19The posterior densities calculated for the variance ratio σ 2 /σ 2 are available upon request. 

η ε 
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also decreases. This implies that the use of more breaks reduces the correlation between 

shocks to the trend and to the cycle, making transitory shocks more important compared 

to permanent shocks. This coincides with the arguments of Perron (1989) in opposition 

to what was proposed by Nelson and Plosser (1982). 

In the cases of Argentina and Peru, opposite results are found where the estimated 

posterior means of ρ take values of 0.62 and 0.43, respectively, while the posterior densi- 

ties of this parameter are close to one, having little concentration close to zero. Our results 

contradict the conclusions of Morley et al. (2003), because these authors consider that 

when the non-correlation restriction between cycle and the trend disturbances is relaxed, 

the UC model leads to a decomposition and an univariate representation similar to that 

of the BN decomposition, that is, ρ ≈ −1.  In contrast, our results for Argentina and Peru 

indicate that when this restriction is relaxed, a positive and large magnitude correlation 

can be found between both disturbances20. 

From the complex characteristic roots of the best UCUR models, it is found that, with 

the exception of the US, UK and Peru, business cycles have an average duration of 2.31 

years, with the lowest value being that of Mexico (1.91 years) and the highest value is 

that of Germany (4.29 years). These values are low and are consistent with the low 

persistence found using the sum of the posterior means of the autoregressive coefficients. 

However, in the case of Peru, the duration obtained is 6.02 years. 

 
4.1.4 PSY (2017) 

Prior to estimating the cycle, we calculate the Wald-type statistical test robust to the pres- 

ence of I(0)/I(1) components in the noise function, in which the null hypothesis is the 

non-existence of nonlinearities. The Wald test is presented in Table 4 and the results indi- 

cate rejection of the null hypothesis for all countries; that is, there is evidence of non-linear 

trends in all cases. The results indicate that the LA countries present a greater rejection 

of the null hypothesis compared to the G7 countries, with the exception of Japan. This 

seems to suggest that, on average, the LA countries present stronger evidence of nonlin- 

earities in the trend than the G7 countries, which is related to the greater incidence and 

20The posterior densities calculated for ρ are available upon request. 
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depth of recessive processes in these countries. The exceptional case of Japan can be 

explained by the higher incidence of crisis in the periods after the 2008 financial crisis, 

where three recessive episodes were recorded between 2010 and 2015 as a result of 

lower population growth. Table 4 also shows three values of the α coefficient of the esti- 

mated AR process for the noise function: OLS, Median Unbiased, and Super Unbiased. 

In all cases, the truncation is done with α = 1, which allows equal critical values for the 

Wald statistic for processes I(0) and I(1) to be obtained. 

In the case of the G7 countries, with the exception of Canada, the UK and, to a lesser 

extent, Japan, the statistical significance of the coefficients indicates that in order to esti- 

mate the non-linear trend of these economies, it is only necessary to include parameters 

with a lower number of frequencies such as cos(2πt/T ) and cos(4πt/T ); see Table 4. 

These frequencies imply less recurrent undulation, which results in a smoother estimate 

of the trend. This behavior is found in the US, Germany, France and Italy, where only two 

frequencies are necessary to estimate the non-linear trend component. This is in line with 

the stylized facts, since the observed GDP in these countries presents a stable periodic 

behavior without a greater incidence of crisis. 

Unlike the above, for the LA countries, with the exception of Brazil, to estimate the 

non-linear trend, parameters with a greater number of frequencies must be included; see 

Table 4. This greater number of frequencies translates into more recurrent undulations, 

which generates an estimate of the trend with a greater number of nonlinearities. We find 

statistical significance for frequencies such as cos(10πt/T ) in Chile, Mexico and Peru, and 

for cos(6πt/T ) in Argentina, Chile and Peru. 

 
4.2 Estimated Business Cycle Evaluation and Comparison 

We have organized the results into four blocks: (i) the BN decomposition and the UCUR 

model of Grant and Chan (2017a); (ii) the statistical filters of HP, BK, CF and KMW; (iii) the 

UCMN model of Perron and Wada (2009, 2016), the method of flexible nonlinear trends 

via Fourier expansions of PSY (2017) and the Hamilton (2018) method; and (iv) the DT−t0 

model from Grant and Chan (2017a). This division corresponds to the different behavior of 

the cycles in the four groups mentioned. The estimates are illustrated in Figure 1, where 
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gray bars denote periods of recession. These periods have been previously identified by 

the Economic Cycle Research Institute (ECRI) for the cases of Brazil, Mexico and the G7, 

with the exception of Canada, which follows the dates established by the Central Bank 

of Canada. For Argentina, Chile and Peru, recessions were identified as those in which 

negative GDP growth rates are observed for two or more consecutive quarters. 

 
4.2.1 BN Decomposition and UCUR Models 

 
The business cycle estimates under these two methods are shown in the first and second 

panels of Figure 1. The simple correlation coefficient between both methods ranges be- 

tween 0.61 and 0.79 for the cases of the US, UK and Canada. For France, Italy, Germany 

and Japan this relationship ranges between -0.42 and 0.45, respectively. For the cases of 

LA, the simple correlation coefficient ranges between -0.16 and 0.27, being the lowest in 

the case of Argentina and the highest in the case of Chile. This low correlation between 

methods for both groups of countries is consistent with what was found in 4.1.1 and 4.1.3 

and is also a consequence of the far from unity sum of the estimates of the autoregressive 

parameters, especially in the case of the BN decomposition. Despite the low correlation 

between the cycles from both methods, all the countries show volatile business cycles 

that are small in magnitude (compared to the other methods; see below). This does not 

allow for an adequate identification of recession and expansion periods. 

In the case of the G7 countries, an important aspect found is that both models are not 

consistent with the gray bars that denote recessions. In some cases, the methods suggest 

an expansion when the gray bars specify a drop in output. For example, for  the US,  

both models estimate an expansion that reaches a level of 0.9% during the 2001 crisis, 

characterized by the increase in unemployment. The same happens during the financial 

crisis where both methods indicate a growth of 2.9%.  Another example is that of the  

UK, which in 1980 experienced a crisis as a result of the depreciation of its currency, high 

interest rates and a contractionary fiscal policy, where both models estimate an expansion 

that reaches a level of 1.9%. Another case is that of Italy during the financial crisis, 

where the BN decomposition estimates an expansion that reaches a level of 5%. Also,  

in some cases the models estimate downturns in the cycle starting between one and 
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four quarters after what the gray bars indicate.  For  example,  Canada experienced a  

fall in output in 1981 characterized by  a reduction in domestic demand.  In this case,  

the economic cycles estimated under the UCUR model and the BN decomposition show 

a fall in the cycle that occurs three and four quarters after what the Central Bank of 

Canada identifies. In the case of France and Italy during the 1973 oil crisis, the fall in  

the cycle under the BN decomposition occurs one and three quarters after what the ECRI 

identifies, respectively. It is important to mention that although in some recessions and 

expansions the UCUR model seems to better approximate recession periods, when taking 

into account the confidence bands (not reported)21 said identification loses consistency, 

implying a null or insignificant output gap. 

Our results are similar to the findings of Marczak and Beissinger (2012) for Germany, 

who uses the BN decomposition and finds volatile business cycles. In the case of France, 

we found differences in the depth of the cycles with respect to the findings of Doz et al. 

(1995), who estimate an ARIMA(2,1,0) model. In the case of Canada, we find different 

results from those of Cayen and van Norden (2005), who use the BN decomposition and 

the UC0 model; however, this difference is due to the fact that these authors use the 

output in real time and a small sample. On the other hand, for the US, our results under 

the UCUR model are similar to the findings of Morley and Piger (2012) and Grant and 

Chan (2017a). For the case of Italy, we obtain cycles (under the UCUR model) that are 

small in magnitude compared to Zizza (2006), who uses annual data. 

For the LA countries, it is also not possible to clearly identify the recession periods 

under both methods. Once again, business cycles are volatile and in some cases, expan- 

sions are found instead of recessions; however, a slightly higher persistence is observed 

in the UCUR model. For example, Brazil during 2014 and 2016 experienced a crisis char- 

acterized by high levels of unemployment, high inflation and contractions in most of the 

productive sectors; nonetheless, the BN decomposition and the UCUR model estimate 

an expansion that reaches a level of 0.9% and 0.8%, respectively. Another case is that of 

Mexico during the 2008 financial crisis, where the BN decomposition estimates a down- 

21Since there are no confidence bands for the other methods, these bands are not reported for the UCUR 

model in order to standardize the results in the Figures. Results of confidence bands are available upon 

request. 
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turn in the cycle that occurs two quarters after what the gray bar specifies. It is found that 

the UCUR model obtains better results identifying the Tequila crisis (1994) in Mexico, the 

Asian and Russian crisis in Chile and the financial crisis in both countries. It is impor- 

tant to mention that these results weaken when considering the confidence bands in the 

UCUR model. 

For the case of Mexico, Galindo et al. (2019) use the BN decomposition and find 

persistent cycles that are different from our results, which may be due to the fact that  

the authors use annual data. On the other hand, under the UCUR model for Mexico, our 

results are consistent with those estimated by Faal (2005), who also obtains volatile and 

small cycles. On the other hand, for Brazil, Tiecher et al. (2010) use a UC0 model for the 

period between 1996 and 2008, and obtain a cycle that, unlike our results, is characterized 

by being recessive most of the time. 

For the cases of Argentina and Peru, the cycles estimated by both methods contradict 

each other, as well as with respect to the other countries. On one hand, it is found that  

in some periods the UCUR model suggests a recession in the economic cycle, while the 

BN decomposition suggests an expansion. In the case of Peru during the 1990 crisis, the 

UCUR model estimates a recession that reaches a level of -13.8% in 1990Q3, while the 

BN decomposition estimates an expansion of 8.5% in 1990Q3. This is clearly contradic- 

tory and in favor of the UCUR model given that in that quarter Peru adopted a monetary 

and fiscal stabilization plan that meant one of the largest drops in output in the entire his- 

tory of the country. In the case of Argentina, during the 2001 crisis as a result of the failure 

of the Convertibility Plan, the UCUR model estimates a recession of -13.9% in 2001Q4, 

while the BN decomposition estimates an expansion of 6.3% on the same date. Likewise, 

it is important to remember that for these two countries, under the UCUR model, we find 

greater depth and persistence in the economic cycles, which contrasts with the other LA 

countries and the G7. 

Our results for Argentina under the BN decomposition are different from the findings 

of Trajtenberg (2004) and Rabanal and Baronio (2010), who use an ARIMA(2,1,2) model 

and an ARMA(1,1) model in first differences, respectively. However, this difference is  

due to the fact that these authors estimate the cycle for a much shorter sample and that 
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Rabanal and Baronio (2010) use annual data. With respect to the UCUR model, we find 

very similar results in terms of the depth of the economic cycles, with those estimated by 

Florián and Martínez (2019) for the Peruvian case. 

The opposite behavior of the economic cycles estimated between both methods is 

explained by the correlation parameter ρ. In the UCUR model, the posterior value of ρ 

can take values between -1 and 1, while the BN decomposition imposes ρ = −1. Contrary 

to other countries, in the cases of Argentina and Peru our estimates suggest a positive 

posterior value of ρ. Thus, these two countries show opposite results to Morley et al. 

(2003). But in the rest of the countries (G7 and LA) we find a negative correlation between 

the shocks of ηt and εt , which is consistent with Morley et al. (2003) arguments. 

Except for the cases of Argentina and Peru, the results mentioned show cycles of  

low persistence which are difficult to reconcile with the stylized facts and the gray bars in 

Figure 1. In the case of the G7 countries, the sum of coefficients of the autoregressive 

values are between 0.41 (Italy and Japan) and 0.74 (Germany), which are small values far 

from one. In the case of the LA countries, these values are between 0.41 and 0.45, which 

implies less persistent economic cycles. 

 
4.2.2 HP, BK, CF and KMW Filters 

 
The estimates of the economic cycles under these filters are presented between the third 

and sixth panels of Figure 1. The estimates of the cycles are characterized by a greater 

persistence and depth, allowing for a better identification of the cycles compared to the BN 

decomposition and the UCUR models from Grant and Chan (2017a). The HP, BK and CF 

filters show a simple correlation that ranges between 0.91 and 0.99 for the G7 countries 

and between 0.92 and 0.98 for the LA countries. This indicates a high similarity between 

the estimates of these filters. However, the correlation of these three filters with the KMW 

filter ranges between 0.43 and 0.69 for the G7 countries, with the lowest correlation in 

the case of Japan between the BK and KMW filters and the highest correlation in the 

case of Italy between HP and KMW filters. In the case of the LA countries, the correlation 

between the three filters and the KMW filter ranges between 0.39 and 0.68, with the lowest 

correlation for Brazil between the BK and KMW filters and the highest correlation between 
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the CF and KMW filters for the case of Mexico. 

In the case of the G7 countries, it is observed that the identification of recessions is 

generally consistent with the gray bars. In addition, we find a similar behavior in the depth 

of recessions. For example, all filters identify the recessive period in the early 1980s in 

the UK, showing an (average) fall in output of -2.2% in 1981Q1. Another case is that of 

Italy during the 1980 crisis, where an (average) level of -1.9% was reached in 1983Q4. 

However, in most cases under the KMW filter, downturns in the cycle occur three to four 

quarters earlier than the other filters estimate. For example, this is the case for all the  

G7 countries during the 1973 oil crisis and the 2008 financial crisis. Likewise, we find 

evidence that the expansionary periods estimated by the KMW filter are smaller than 

those estimated by the other filters. For example, in the case of the US, prior to the oil 

crisis, there is an expansion that reaches a level of 1.23% in 1973Q2 with the KMW filter, 

while the other filters reached a level of 3.4% at the same time. This can also be observed 

in the case of France, prior to the financial crisis of 2008, where the KMW filter indicates 

a drop of -0.12% in 2008Q1, contrasting with the 2.3% expansion estimated by the other 

filters. 

With respect to the HP filter, we find economic cycles similar to those of Blackburn 

and Ravn (1992) for the case of the UK and to those of Brandner and Neusser (1992) 

and Marczak and Beissinger (2012) for the case of Germany. For the case of Italy, our 

results are very similar to those of Busetti and Caivano (2013), although we find deeper 

cycles in magnitude compared to Zizza (2006), who uses annual data. We obtain great 

similarity with the findings of Gallego and Johnson (2005) using the HP and CF filters for 

all G7 countries, despite the fact that these authors use a smaller sample. On the other 

hand, we obtain different results from Rünstler and Vlekke (2017) using the CF filter, 

who estimate the economic cycle for the G7 countries, with the exception of Canada and 

Japan. This difference is due to the fact that these authors use annual data. 

In the case of LA, consistency of the estimated business cycles with recession periods 

is also observed. For example, in the case of Mexico, all the filters manage to identify the 

recessive periods associated with the Tequila crisis (1994) and in Peru during the eco- 

nomic crisis at the beginning of the 1990s. However, as in the case of the G7 countries, 
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there are several cases in which the KMW filter estimates drops in the cycle that occur 

earlier than estimated by the other filters. For example, in the case of Mexico during the 

Tequila crisis (1994) and in Argentina during the financial crisis of 2008. Likewise, we 

find that the expansive periods estimated by the KMW filter are of lesser amplitude and 

in some cases are at levels close to zero, which suggests that the output is close to the 

level of trend output. This is observed in Brazil prior to the 2013-2016 crisis, where the 

cycle is at a level of -0.5% in 2014Q1 under the KMW filter and at a level of 3% under the 

other filters in the same period. Another example is that of Chile prior to the 2008 financial 

crisis, where the economic cycle estimated by the KMW filter reaches a level of 1.1% in 

2008Q1, while the other filters reach a level of 3.4% in the same period. 

Regarding the HP filter, our results are consistent with the findings of Trajtenberg 

(2004) and Krysa and Lanteri (2018) for the case of Argentina, although they differ with 

the estimates of Rabanal and Baronio (2010), who estimate very persistent cycles; how- 

ever, this difference may be due to the fact that these authors use annual data. For the 

case of Brazil, we find consistency with the results of Tiecher et al. (2010) and less per- 

sistent cycles compared to Araujo et al. (2008), who use annual data. For Chile, we find 

similarities with the results of Chumacero and Gallego (2002) despite the fact that these 

authors use a very short sample. For Peru, our results differ from those of Jiménez (1997) 

and Dancourt and Jiménez (2009) who use information in annual frequency for a shorter 

period. A similar aspect occurs with Jiménez (2016) who estimates cycles that are much 

more persistent and deeper in magnitude, possibly due to the use of annual data; see also 

Jimenez (2011). With respect to the BK filter, we obtain the same results as Catalán and 

Romero (2018) for the case of Mexico, who also find a great similarity with the estimates 

under the HP filter. For the case of Peru, using the BK filter, we find consistency with the 

results of Castillo et al. (2006). 

Finally, it is important to note that the KMW filter allows cycles to be obtained that are 

quite different from those obtained using the BN decomposition. The evidence suggests 

that the KMW filter, although it does not adequately estimate expansions in most cases, 

is capable of estimating recessions that mostly coincide with the gray bars and that are 

similar to the recessions estimated by the other traditional filters (HP, BK and CF) both 
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in depth and duration. This is because, as Kamber et al. (2008), the BN decomposition 

imposes a high signal-to-noise ratio (the sum of the autoregressive coefficients is small 

and far from unity), obtaining a cycle with low persistence. The simple solution of Kamber 

et al. (2008), which is to use a smaller signal-to-noise ratio, shows that the result is ade- 

quate since we can find more persistent and deeper cycles consistent with the recession 

episodes indicated by the gray bars. 

The estimation of an AR(2) model for the cyclical components extracted by the four 

filters indicates the following: (i) in the case of the HP filter, the sum of the estimated 

autoregressive coefficients is between 0.754 (Italy) and 0.841 (France). These are higher 

values than those found in the previous group of procedures. The average cycle lengths 

are 10.95 years (Canada), 10.89 years (France), and 6.54 years (Italy). In the case of 

the LA countries, the persistence of the cycles is between 0.701 (Brazil) and 0.83 (Ar- 

gentina), values that are also higher than those obtained by the BN decomposition and 

the UCUR models. The average duration is 4.69 years (Argentina), 5.73 years (Brazil), 

5.55 years (Chile), 3.89 years (Mexico) and 3.38 years (Peru); (ii) in the case of the BK 

filter, the persistence is between 0.81 (Italy) and 0.87 (US), with the average durations 

being 3.83 years for Japan and 4.31 years for  the US and the UK. In the case of LA,   

we find persistences values of 0.79 for Peru and 0.85 for Argentina. Some average du- 

rations are 3.34 years for Peru and 4.09 years for Argentina; (iii) in the case of the CF 

filter, the inertia of the cycles is between 0.781 (Italy) and 0.841 (US and UK). Thus, we 

have average durations of 3.26 years for Italy and 3.84 and 3.85 years for the US and 

UK, respectively. In the case of LA, the persistence values range between 0.731 (Peru) 

and 0.82 (Argentina). The average duration is 2.91 years for Peru and 3.55 years for 

Argentina; values relatively lower than those implied by the HP and BK filters; (iv) for the 

KMW filter, the persistence values are between 0.787 (Germany) and 0.881-0.900 (US 

and UK). Thus, we have average durations of 21.6 years for Canada and 5.6 years for 

Italy, the first case being a clear overestimation. In the case of LA, the persistence of the 

cycles is between 0.74 (Peru) and 0.86 (Argentina), whose average durations are 3.01 

years and 4.31 years, respectively. 

In general, it can be seen that the persistence values are very similar between the four 
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filters and higher than those obtained by the BN decomposition and the UCUR models. 

This explains the longer duration of the cycles and their more adequate consistency with 

the gray bars and the stylized facts of the different countries. 

 
4.2.3 UCMN Model and PSY (2017) and Hamilton (2018) Methods 

 
The estimates of the business cycle under these three methods are between the seventh 

and ninth panel of Figure 1. According to the results, we find business cycles with high 

persistence (low volatility) and depth, which allows for a better identification of recessions 

and expansions. These features are attributed to the greater importance of cycle shocks 

on output compared to trend shocks. This allows us to differentiate the results from the 

estimates of the BN decomposition and UCUR models, although maintaining a high sim- 

ilarity with the statistical filters. Although the three methods share these characteristics, 

differences are found in the levels of correlation. The simple correlation between the es- 

timated output gaps for the G7 countries ranges between 0.39 and 0.84, with the lowest 

coefficient found in the case of France between the UCMN model and the PSY (2017) 

method and the highest relationship for the case of France and Italy between the UCMN 

model and the Hamilton (2018) method. Furthermore, for this group of countries we obtain 

an average correlation of 0.60.  For LA countries, the simple correlation ranges  between 

0.38 and 0.92, with the lowest correlation for the case of Chile between the UCMN model 

and the PSY (2017) method and the highest correlation for the case of Argentina between 

the UCMN model and the PSY (2017) method. For this group of countries, we obtain an 

average correlation of 0.57. 

In the case of the G7 countries, an important feature is that the estimates are generally 

consistent with the gray bars denoting recessions. For example, for the US, the methods 

identify the recessive period at the beginning of the 1980s, where the cycle reaches a level 

between -6% and -8% in 1982Q3 as a consequence of the increase in inflation. Other 

cases are those of Japan at the beginning of the 1990s during the crisis generated by the 

financial and real estate bubble and France at the beginning of the 2000s as a result of the 

bursting of the dotcom bubble generated by the speculation around internet companies. 

In the estimates of the G7 countries, the methods allow identifying the oil crisis of 1973 



49 
 

 

and the financial crisis of 2008, showing a drop in the cycle that ranges between -3% and 

-7% depending on the country considered. However, there are cases such as Germany 

where except for the Hamilton (2018) method, the methods estimate an expansion in the 

period prior to unification in which there was a recession in East Germany as a result of 

the collapse of the Soviet Union and in Japan where, except for the UCMN model, none 

of the methods estimates a recession during the economic crisis of 2014, characterized 

by a drop in consumption and productivity. Likewise, the fluctuations in the cycle under 

the method of Hamilton (2018) occur earlier than what is estimated by the other models. 

This can be seen, for example, in the case of the UK and Canada in the early 1990s and 

in France during the financial crisis of 2008. 

With the exception of the UK and Germany, the persistence (amplitude) of the eco- 

nomic cycles estimated by the UCMN models are consistent with the findings of Perron 

and Wada (2009, 2016), despite the fact that we used a larger number of observations 

and that the best models for each country are different from those identified by the au- 

thors. However, it is important to mention that we coincide with the selection of models 

for the cases of the US (UC-CP) and Italy (UC-CP). 

In the case of the LA countries, it is found that the economic cycles are also consistent 

with respect to the gray bars that denote recessions. As in the G7 countries, the cycles 

show high persistence. For example, in Brazil the methods adequately identify the re- 

cessive period during 2014 and 2016. Another case is that of Mexico during the Tequila 

crisis (1994), which was characterized by a contraction in the output generated by the 

devaluation of the Mexican currency (peso). In addition, there is a correct estimate of  

the recession in the case of Argentina during the 1998-2002 crisis, characterized by the 

loss of competitiveness and the collapse of the Convertibility plan; and for Peru during 

the economic crisis at the beginning of the 1990s, as a consequence of hyperinflation 

and the internal conflict. Other examples are those of Brazil, Chile and Mexico during the 

financial crisis. However, there are cases where recessions are not adequately identified 

under these methods. For example, for Argentina, the UCMN model estimates an expan- 

sion instead of a recession during the 2008 financial crisis, while the PSY (2017) method 

presents a greater depth in recessions and expansions throughout the entire sample, 
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compared to the other methods. 

For the LA countries, our observations regarding the UCMN model are consistent with 

what was found by Guillén and Rodríguez (2014) for the Peruvian case, who also select 

the UC-CN model and conclude that there is a similarity with the HP filter throughout the 

entire sample. In the case of the other LA countries, there is no literature to compare with 

since the UCMN models, the PSY (2017) method and the Hamilton (2018) method are 

recent methodologies, for which there are currently no empirical applications. 

Although the Hamilton (2018) method manages to identify recessive periods, it is ob- 

served that in most cases the estimated business cycle has a greater depth than the 

UCMN model and the PSY (2017) method. For example, in the cases of the UK and 

Canada at the beginning of the 1990s, the Hamilton (2018) method estimates cycles of 

greater depth than the other methods, finding levels of -6.5% in the period 1992Q2 with 

respect to values around -2.3% for the UK and -8.36% in the period 1992Q1 with respect 

to values around -3% for Canada. This is also observed in the LA countries, as is the 

case of Peru, where a recession of up to -30% is estimated in 1989Q3 during the hyper- 

inflation crisis and the internal conflict, contrasting with the other methods that reach a 

rate between -13% and -15%. The results found using the Hamilton (2018) method are 

consistent with the arguments of Schüler (2021) and Donayre (2021), who find that this 

methodology has certain disadvantages, highlighting the following: (i) introduction of false 

positive deviations in the trend; (ii) overestimation of the amplitude of recessions and ex- 

pansions; and (iii) overestimation of the average duration of expansions and recessions. 

In short, the authors consider that this method can fail in the decomposition of series 

that have a non-linear behavior, as is the case in all the countries in the sample and in 

particular the LA countries; see Table 4 with the results of non-linear trends from PSY 

(2017)22. 

When estimating an AR(2) model for the cycle estimated by PSY (2017) for the G7 

countries, the persistence values are between 0.84 (Canada) and 0.94 (US and France). 
 

22In addition to the OLS method, Hamilton (2018) proposes a method that assumes that the series follows 

a random walk behavior. Despite the positive arguments of Hamilton (2018), we find shortcomings in the 

estimated business cycles regarding the identification of recessions using this alternative. The results of 

this method are available upon request. 



51 
 

 

In the case of the LA countries, these values are between 0.64 (Chile) and 0.98 (Ar- 

gentina). The average durations are 2.83 years for Peru and 3.21 years for Mexico. In 

the case of the Hamilton (2018) method, the persistence values are between 0.86 (Ger- 

many) and 0.891 (Japan), while for LA, these values are between 0.86 (Peru) and 0.88 

(Argentina). It is important to remember that in the case of the UCMN model (see Section 

1.1.2) the persistence is between 0.85 (Japan) and 0.98 (UK). In the case of LA countries, 

these values are between 0.83 (Peru) and 0.96 (Argentina). Likewise, the average dura- 

tions are 4.97 years for Italy and 4.89 years for Japan. In the case of Argentina, Mexico 

and Peru, the average durations are 13.9, 8.14 and 3.98 years, respectively. 

In general, it can be seen that the persistence values are similar and slightly higher 

than those obtained in the four statistical filters and it is evident that they are higher than 

those obtained by the BN decomposition and the UCUR model. This explains the longer 

duration of the cycles and their more adequate consistency with the gray bars and the 

stylized facts of the different countries. 

 
4.2.4 DT Model with Break: Back to Simplicity 

According to Table 3 and the BF, the DT−t0 models are not selected. Despite this, we 

consider this model due to the simplicity of its estimation; recall that before the influence 

of Nelson and Plosser (1982), and still today, it is simple to estimate the cycle by fitting a 

linear trend with a break at some point in time. Another argument is Perron (1989) where 

the existence of breaks is the only source of permanent shocks in the output,  all the  

rest being transitory shocks; that is, the cyclical component acquires greater importance 

compared to the trend component. 

The DT−t0 models selected for both groups of countries share the breaks chosen for 

the UCUR−t0 models, with the exception of the UK, Argentina and Chile; see Table 3 and 

Section 4.1.3.  In the case of the G7 countries, the breaks coincide with global recessive 

processes such as the 1973 oil crisis and the 2008 financial crisis.  In the case of the   

LA countries, the breaks are mainly associated with local crisis episodes. In the case of 

Argentina, the break chosen coincides with the crisis of 2012 generated by the increase 

of inflation and restrictions in the foreign exchange market, Brazil with the crisis of 2014 
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generated by an internal political crisis and by the fall in prices of metals, Chile with the 

drop in metal prices that began in 2012, Mexico with the foreign debt crisis in 1982, and 

Peru with the period of hyperinflation and internal conflict in 1992. 

Table 3 shows that the sum of the posterior means of the estimates of the autoregres- 

sive parameters (φ1 and φ2) ranges between 0.97 and 0.99 for the G7 countries, being 

the lowest sum for the UK and Germany, and the highest for Japan. For LA countries, this 

sum ranges between 0.91 and 0.96, being the lowest in the case of Peru and the highest 

in the case of Argentina. These values are the highest compared to any of the other nine 

procedures. This sum close to unity for both groups of countries implies that the cycles 

are highly persistent, which in several cases allows a good identification of expansions 

and recessions. 

The simple correlation coefficient between the DT−t0 model and the procedures of the 

first group of methods (Section 4.2.1) is only high for the cases of Argentina (0.87) and 

Peru (0.89) under the UCUR model, while for the rest of the cases there is a low correla- 

tion. Regarding the simple correlation between the DT−t0 model and the statistical filters, 

it is only high in the cases of Argentina (0.78), Brazil (0.74) and Chile (0.83) under the BK 

filter and Chile (0.79) under the HP filter, while for the rest of the cases this relationship 

is less than 0.74. The simple correlation coefficient between the DT−t0 model and the 

UCMN model is relatively high for the cases of the UK (0.82), Canada (0.73), Argentina 

(0.81) and Chile (0.71), while for the rest of the countries and for the rest of the methods 

this relationship is around 0.67. 

Although a high correlation is not obtained for all countries between the DT−t0 model 

and the procedures of the third group, we make a comparison with these methods, given 

that they adjust better to periods of recession. In the case of the G7 countries, it is  

found that the estimates are consistent with some recessive periods. For example, in 

Canada the method adequately identifies the crisis at the beginning of 1980 caused by 

the energy crisis of 1979, where a level of -6.12% is reached, which is similar to that 

found by the UCMN model and the PSY (2017) method. Other cases are those of the US 

during the 1973 oil crisis and that of Germany during the 2008 financial crisis.  However, 

we find cases where the DT−t0  model does not coincide with the gray bars that indicate 
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recession and in some cases, it estimates expansions instead of recessions. For example, 

in the US during the 2008 financial crisis and the UK during the 1973 oil crisis, the DT−t0 

model estimates drop in the cycle that do not reach negative values. In the cases of 

France, Italy and Japan starting from the oil crisis of 1973, a period in which a break in 

the trend is introduced for these countries, the method estimates a large-scale expansion 

that extends until periods after the financial crisis of 2008 and reaches maximum levels of 

9.44%, 16.43% and 29.97%, respectively. 

In the case of the LA countries, an important characteristic is that, unlike the G7 coun- 

tries, in some cases recessions are better identified. For example, in Mexico the Tequila 

crisis of 1994 is identified, which reaches a level of -9.78%, similar to that obtained un- 

der the UCMN model and Hamilton (2018) method. Other cases are those of Argentina 

during the 2001 crisis generated by the failure of the Convertibility plan and Chile  during 

the 2008 financial crisis.  However, we also find cases in which the DT−t0  model fails  to 

identify recessive periods. This is observed, for example, in Mexico during the financial 

crisis, where the DT−t0 model estimates an expansion, as well as in Peru during the crisis 

generated by the 1983 El Niño phenomenon, where the model fails to identify the reces- 

sive period. A potential explanation for these inconsistencies is that they may be caused 

by the choice of the break or the presence of more breaks. In this case, the PSY (2017) 

method is advisable. 
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5 Conclusions 

 
There is a wide literature on empirical applications of trend-cycle output decomposition 

methods. However, few works make a comparison between several  of these methods  

as well as for a large sample of countries. We have also found that the literature has 

proposed new and recent methodological alternatives to decompose the output. To our 

knowledge, these procedures have not yet been applied empirically or compared with 

approaches already established in the literature. This document contributes to this dis- 

cussion using ten methods and a group of heterogeneous countries (G7 and LA). 

The questions raised in the Introduction Section have been answered throughout this 

document and that we summarize below. In general, we find a difference in the depth of 

the business cycles estimated for Argentina and Peru compared to the rest of the coun- 

tries. While expansions and recessions reach in general levels  between 5% and -5%  

for most countries, in the cases of Argentina and Peru the economic cycles estimated  

by almost all procedures, with the exception of the BN decomposition, show high persis- 

tence and depth reaching levels between 20% and -30%. This may be due to the severe 

domestic economic crises that took place during the first years of the samples, which is 

not possible to observe in the other LA countries due to the limitations on the availability 

of the information. On one hand, Argentina had a crisis generated by the failure of the 

Convertibility plan and, on the other hand, Peru had a prolonged period of hyperinflation 

and internal conflict. Although the rest of the countries had local recessive periods, such 

as the Tequila crisis in Mexico, the bursting of the technological bubble in Japan and the 

dissolution of the Soviet Union affecting East Germany, and international crisis processes 

such as the oil crisis of 1973, the Asian crisis of 1997, the Russian crisis of 1998, and the 

financial crisis of 2008, these were episodes of little duration and depth. 

On the other hand, our results indicate that the BN decomposition and the UCUR 

model estimate cycles of low persistence that do not allow rigorous and adequate identi- 

fication of recession periods. Statistical filters better identify expansions and recessions, 

although band-pass filters estimate cycles with smooth behavior, while the KMW filter 

overestimates expansion periods.  Therefore, the best trend-cycle decomposition proce- 
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dures are the following: the UCMN model by Perron and Wada (2009, 2016), the PSY 

(2017) method and the Hamilton (2018) method. These methods estimate high persis- 

tence business cycles compared to the other procedures, and better approximate the 

recession periods identified by ECRI. All of this implies that most of the variation in output 

are attributed to the shocks that affect the cyclical component rather than to the shocks 

that affect the trend. In the BN decomposition and the UCUR model, the opposite occurs. 

Additionally, despite the fact that the DT−t0 model by Grant and Chan (2017a) was not 

selected by means of the BF, we have considered this procedure given that it estimates 

highly persistent cycles and that in some cases it adequately identifies periods of reces- 

sion. This is a simple output decomposition method where breaks are the only source of 

permanent shocks. Despite its simplicity, it seems to produce good results, since in sev- 

eral periods the cycles are similar to those obtained using the best methods; see Guillén 

and Rodríguez (2014) for more arguments. 

Current research can be extended in several directions. First, other economic indi- 

cators such as consumption, unemployment and inflation can be used to carry out the 

same comparison exercise and analysis of the different decomposition procedures. Sec- 

ond, the comparison can be extended to include the other LA countries and Southeast 

Asian countries. Third, the work can be extended to a multivariate level using and ex- 

panding the literature that it proposes to incorporate, for example, the Phillips curve or 

some relationship with unemployment through Okun’s law. 
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7 Tables 

 
7.1 Table 1. Maximum Likelihood Estimates for ARIMA(p,1,q) for the Decomposition of Beveridge and Nelson 

(1981) 

 

Canada France    Germany Italy Japan UK US Argentina    Brazil Chile Mexico Peru 
 

LL -273.434   -128.368   -354.180   -312.285 -377.778   -314.023 -270.044 -214.103 -150.035 -149.743 -262.053 -369.737 

c 0.775 0.524 0.596 0.577 0.892 0.576 0.734 0.521 0.552 0.870 0.566 0.776 
(0.09) (0.07) (0.11) (0.11) (0.13) (0.10) (0.09) (0.39) (0.16) (0.19) (0.17) (0.41) 

φ1 0.358 
(0.05) 

0.491 
(0.05) 

0.732 
(0.36) 

0.403 
(0.04) 

0.406 
(0.04) 

0.400 
(0.24) 

0.259 
(0.06) 

0.500 
(0.08) 

0.218 
(0.09) 

0.353 
(0.13) 

0.307 
(0.05) 

0.382 
(0.04) 

φ2 0.088 
(0.06) 

- 0.015 
(0.08) 

- - 0.154 
(0.06) 

0.200 
(0.05) 

- - - - - 

θ1 - - -0.648 
(0.36) 

- - -0.333 
(0.25) 

- - - - - - 

se 0.600 
(0.05) 

0.219 
(0.01) 

1.134 
(0.06) 

0.831 
(0.04) 

1.381 
(0.09) 

0.810 
(0.04) 

0.561 
(0.04) 

3.194 
(0.34) 

1.377 
(0.15) 

1.204 
(0.11) 

1.581 
(0.10) 

6.122 
(0.40) 

roots 0.52, -0.17 0.49 0.75, -0.02 0.40 0.41 0.64, -0.24 0.60, -0.34 0.50 0.22 0.35 0.31 0.38 

ψ(1) 1.804 1.965 1.388 1.675 1.683 1.496 1.850 1.999 1.278 1.545 1.442 1.618 

Parentheses denote standard errors for coefficients. 

Source: Own elaboration. 
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7.2 Table 2. Maximum Likelihood Estimates using Perron and Wada (2009, 2016) 
 

 η1 

  

 υ1 

  

 ε1 

  

  

  

 
 

 

Canada France Germany  Italy Japan  UK  US Argentina  Brazil  Chile Mexico  Peru 

UC-NP UC-CN  UC-N UC-CP UC-N UC-CN UC-CP  UC-CN UC-CP UC-NP UC-CN UC-CN 

LL -279.782    -123.715    -349.498 -285.764 -356.432 -280.747    -262.414 -211.232 -144.725    -151.766 -241.966 -336.205 

σ 0.356 
(0.04) 

0.001 
(0.00) 

0.360 
(0.02) 

0.000 
(0.00) 

0.017 
(0.00) 

0.001 
(0.05) 

0.001 
(0.01) 

0.639 
(0.24) 

0.000 
(0.03) 

0.001 
(0.00) 

0.000 
(0.06) 

0.641 
(0.21) 

ση2 0.357 
(0.09) 

0.434 
(0.23) 

1.893 
(0.13) 

- 2.013 
(0.09) 

2.059 
(0.15) 

- 2.238 
(0.81) 

- 2.869 
(1.52) 

1.126 
(0.19) 

5.733 
(1.63) 

σ 0.050 
(0.01) 

0.061 
(0.03) 

0.034 
(0.00) 

0.000 
(0.00) 

0.109 
(0.00) 

0.021 
(0.02) 

0.008 
(0.00) 

0.049 
(0.05) 

0.184 
(0.20) 

0.048 
(0.01) 

0.017 
(0.03) 

0.132 
(0.06) 

συ2 0.060 
(0.05) 

- - 0.408 
(0.28) 

- - 0.144 
(0.21) 

- 0.185 
(0.21) 

0.059 - - 
(0.03) 

σ 0.497 
(0.04) 

0.243 
(0.08) 

0.352 
(0.02) 

0.220 
(0.07) 

0.498 
(0.02) 

0.144 
(0.01) 

0.143 
(0.02) 

0.614 
(0.25) 

0.497 
(0.09) 

0.842 
(0.03) 

0.521 
(0.08) 

0.558 
(0.25) 

σε2 - 1.278 
(0.80) 

- 1.988 
(0.43) 

- 0.838 
(0.65) 

1.042 
(0.13) 

2.923 
(0.93) 

2.005 
(0.42) 

- 5.211 
(2.74) 

3.961 
(1.42) 

σω 0.000 0.113 0.262 0.314 0.360 0.131 0.236 0.000 0.000 0.004 0.000 0.000 
(0.09) (0.03) (0.01) (0.03) (0.01) (0.07) (0.03) (0.02) (0.01) (0.00) (0.02) (0.03) 

φ1 1.478 
(0.06) 

φ2 -0.529 
(0.05) 

1.552 
(0.07) 

-0.594 
(0.09) 

1.691 
(0.03) 

-0.712 
(0.03) 

1.556 
(0.05) 

-0.670 
(0.05) 

1.399 
(0.04) 

-0.544 
(0.03) 

1.370 
(0.06) 

-0.387 
(0.07) 

1.395 
(0.07) 

-0.852 
(0.46) 

1.674 
(0.08) 

-0.710 
(0.08) 

1.120 
(0.10) 

-0.239 
(0.10) 

1.267 
(0.10) 

-0.323 
(0.05) 

1.407 
(0.07) 

-0.514 
(0.07) 

1.446 
(0.09) 

-0.613 
(0.10) 

α 0.533 (σ ) 0.973 (σ ) 0.826 (σ ) 0.911 (σ ) 0.908 (σ ) 0.500 (σ ) 0.672 (σ ) 0.863 (σ ) 0.747 (σ ) 0.949 (σ ) 0.976 (σ ) 0.885 (σ ) 
 1 

(0.22

 

) 
η 

(0.04

 

) 
ε 

(0.06

 

) 
η 

(0.03

 

) 
ε

 (0.03

 

) 
η 

(0.03

 

) 
ε 

(0.07

 

) 
ε

 (0.10

 

) 
ε

 (0.10

 

) 
ε 

(0.05

 

) 
η

 (0.02

 

) 
ε

 (0.07

 

) 
ε

 

α 0.947 (σ  ) 0.797 (σ ) - 0.932 (σ ) - 0.905 (σ ) 0.826 (σ ) 0.950 (σ ) 0.824 (σ ) 0.803 (σ ) 0.510 (σ ) 0.892 (σ ) 
 2 

(0.09

 

) 
υ 

(0.42

 

) 
η 

(0.09

 

) 
υ

 (0.08

 

) 
η 

(0.46

 

) 
υ

 (0.16

 

) 
η

 (0.23

 

) 
υ 

(0.24

 

) 
υ

 (0.17

 

) 
η

 (0.05

 

) 
η

 

roots 0.87, 0.61 0.87, 0.69 0.90, 0.80 0.78 ± 0.25i 0.70 ± 0.23i 0.97, 0.40 0.81, 0.59 0.84 ± 0.10i 0.83, 0.29 0.91, 0.35 0.70 ± 0.14i 0.72 ± 0.30i 
(4.97) (4.89) (13.43) (8.14) (3.98) 

 

Parentheses denote standard errors for coefficients and mean duration in years for roots. 

Source: Own elaboration. 
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7.3 Table 3. Estimated Posterior Means using Grant and Chan (2017a) 
 

± ± 

η 

η 

 
 

 

Canada France 

DT-75 UC0 UCUR UCUR−75  UCUR-(75,08) DT-73 UC0 UCUR UCUR-73 UCUR-(73,08) 
 

log ML -283.196 
(0.01) 

φ1 1.31 
(0.06) 

φ2 -0.33 
(0.06) 

-299.137 
(0.04) 

1.52 
(0.10) 

-0.53 
(0.10) 

-287.838 
(0.11) 

0.58 
(0.14) 

0.03 
(0.11) 

-282.486 
(0.10) 

0.75 
(0.37) 

-0.12 
(0.21) 

-282.921 
(0.17) 

0.80 
(0.40) 

-0.15 
(0.23) 

-146.161 
(0.00) 

1.44 
(0.07) 

-0.46 
(0.07) 

-155.412 
(0.01) 

1.65 
(0.09) 

-0.66 
(0.09) 

-145.709 
(0.14) 

0.75 
(0.11) 

-0.06 
(0.10) 

-141.407 
(0.05) 

0.95 
(0.24) 

-0.26 
(0.18) 

-140.024 
(0.32) 

1.02 
(0.32) 

-0.34 
(0.22) 

2 0.57 
(0.05) 

0.40 
(0.13) 

1.11 
(0.54) 

0.99 
(0.63) 

0.88 
(0.59) 

0.22 
(0.02) 

0.13 
(0.04) 

0.96 
(0.53) 

0.67 
(0.43) 

0.44 
(0.32) 

2 - 0.22 
(0.11) 

2.10 
(0.47) 

1.43 
(0.58) 

1.34 
(0.63) 

- 0.08 
(0.03) 

1.37 
(0.53) 

0.91 
(0.40) 

0.63 
(0.33) 

ρ - - -0.92 
(0.04) 

-0.83 
(0.24) 

-0.77 
(0.32) 

- - -0.95 
(0.02) 

-0.94 
(0.03) 

-0.85 
(0.26) 

roots   0.97, 0.34   0.98, 0.54   0.63, -0.05   0.52, 0.23 0.50, 0.30 0.96, 0.48 0.97, 0.68 0.66, 0.09 0.48 0.19i 
(4.22) 

0.51 0.28i 
(3.10) 

 

Germany Italy 

DT-73 UC0 UCUR UCUR-73   UCUR-(73,91) DT-74 UC0 UCUR UCUR-74 UCUR-(74,07) 

logML -364.651 
(0.01) 

φ1 1.03 
(0.07) 

φ2 -0.06 
(0.07) 

 
-368.996 

(0.01) 

0.78 
(0.54) 

-0.29 
(0.32) 

 
-366.202 

(0.10) 

0.78 
(0.35) 

-0.09 
(0.29) 

 
-361.419 

(0.10) 

0.77 
(0.45) 

-0.17 
(0.28) 

 
-361.535 

(0.05) 

0.81 
(0.46) 

-0.19 
(0.29) 

 
-325.056 

(0.01) 

1.29 
(0.06) 

-0.31 
(0.06) 

 
-346.000 

(0.05) 

1.56 
(0.09) 

-0.57 
(0.09) 

 
-326.644 

(0.13) 

0.78 
(0.18) 

-0.22 
(0.15) 

 
-317.501 

(0.17) 

0.83 
(0.26) 

-0.34 
(0.18) 

 
-314.996 

(0.06) 

0.98 
(0.33) 

-0.46 
(0.18) 

2 1.10 
(0.10) 

0.09 
(0.09) 

0.71 
(0.62) 

0.52 
(0.58) 

0.54 
(0.63) 

0.78 
(0.07) 

0.51 
(0.16) 

1.26 
(0.55) 

0.82 
(0.54) 

0.56 
(0.40) 

2 - 1.08 
(0.13) 

1.97 
(0.62) 

1.28 
(0.48) 

1.25 
(0.50) 

- 0.35 
(0.14) 

2.48 
(0.35) 

1.77 
(0.44) 

1.31 
(0.43) 

ρ - - -0.73 
(0.16) 

-0.45 
(0.36) 

-0.40 
(0.42) 

- - -0.91 
(0.03) 

-0.87 
(0.06) 

-0.77 
(0.21) 

roots 0.97, 0.06 0.39 ± 0.37i 0.64, 0.14 0.39 ± 0.15i 0.41 ± 0.16i 0.97, 0.32 0.98, 0.58 0.39 ± 0.26i 0.42 ± 0.41i 0.49 ± 0.47i 
(2.06) (4.29) (4.15) (2.67) (2.02) (2.06) 
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σ 

σ 

σ 

σ 

ε 

ε 



Japan UK 

 

η 

η 

DT-73 UC0 UCUR UCUR-73   UCUR-(73,89) DT-08 UC0 UCUR UCUR-73 UCUR-(73,08) 

log ML -1412.927 
(0.15) 

φ1 1.09 
(0.06) 

φ2 -0.10 
(0.06) 

 
-1447.715 

(0.06) 

1.07 
(0.49) 

-0.31 
(0.31) 

 
-1436.000 

(0.36) 

0.84 
(0.18) 

-0.36 
(0.19) 

 
-1403.314 

(0.09) 

0.87 
(0.26) 

-0.31 
(0.26) 

 
-1397.577 

(0.03) 

0.89 
(0.34) 

-0.32 
(0.29) 

 
-331.774 

(0.01) 

1.07 
(0.07) 

-0.10 
(0.07) 

 
-335.624 

(0.02) 

1.51 
(0.30) 

-0.59 
(0.24) 

 
-331.792 

(0.07) 

0.95 
(0.32) 

-0.27 
(0.24) 

 
-331.178 

(0.06) 

0.84 
(0.30) 

-0.19 
(0.26) 

 
-331.468 

(0.08) 

0.91 
(0.31) 

-0.23 
(0.26) 

2 0.15 
(0.05) 

0.20 
(0.26) 

0.24 
(0.16) 

0.24 
(0.23) 

0.18 
(0.20) 

0.83 
(0.08) 

0.13 
(0.11) 

0.73 
(0.58) 

0.82 
(0.69) 

0.69 
(0.73) 

2 - 1.67 
(0.33) 

1.94 
(0.05) 

1.70 
(0.21) 

1.42 
(0.31) 

- 0.67 
(0.12) 

1.78 
(0.51) 

1.76 
(0.50) 

1.67 
(0.53) 

ρ - - -0.80 
(0.10) 

-0.66 
(0.18) 

-0.47 
(0.36) 

- - -0.81 
(0.16) 

-0.83 
(0.13) 

-0.79 
(0.20) 

roots 0.99, 0.10 0.54 ± 0.15i 0.42 ± 0.43i 0.44 ± 0.35i 0.45 ± 0.35i 0.97, 0.10 0.76 ± 0.14i 0.48 ± 0.21i 0.42 ± 0.12i 0.46 ± 0.15i 
(5.60) (1.97) (2.33) (2.36) (8.49) (3.76) (5.80) (4.88) 

 

US Argentina 

DT-73 UC0 UCUR UCUR-73   UCUR-(73,07) DT-12 UC0 UCUR UCUR-01 UCUR-(01,12) 

log ML -290.009 
(0.01) 

φ1 1.29 
(0.06) 

φ2 -0.31 
(0.06) 

 
-291.547 

(0.02) 

1.61 
(0.11) 

-0.63 
(0.11) 

 
-285.489 

(0.11) 

0.79 
(0.22) 

-0.18 
(0.16) 

 
-285.335 

(0.06) 

0.76 
(0.24) 

-0.16 
(0.17) 

 
-286.078 

(0.11) 

1.12 
(0.45) 

-0.37 
(0.26) 

 
-687.156 

(0.10) 

1.44 
(0.08) 

-0.48 
(0.08) 

 
-685.412 

(0.08) 

1.55 
(0.11) 

-0.59 
(0.11) 

 
-684.212 

(0.20) 

1.54 
(0.13) 

-0.58 
(0.13) 

 
-682.886 

(0.27) 

1.54 
(0.13) 

-0.58 
(0.13) 

 
-683.215 

(0.19) 

1.53 
(0.13) 

-0.56 
(0.13) 

2 0.58 
(0.05) 

0.21 
(0.09) 

0.95 
(0.57) 

0.84 
(0.52) 

0.56 
(0.50) 

2.85 
(0.14) 

2.08 
(0.47) 

2.08 
(0.61) 

2.13 
(0.58) 

2.09 
(0.61) 

2 - 0.33 
(0.09) 

1.79 
(0.49) 

1.67 
(0.50) 

1.04 
(0.69) 

- 1.84 
(0.67) 

1.69 
(0.76) 

1.75 
(0.76) 

1.80 
(0.76) 

ρ - - -0.89 
(0.08) 

-0.88 
(0.09) 

-0.53 
(0.53) 

- - 0.59 
(0.30) 

0.62 
(0.29) 

0.60 
(0.29) 

roots 0.97, 0.32 0.94, 0.67 0.40 ± 0.15i 0.38 ± 0.12i 0.56 ± 0.24i 0.92, 0.52   1.11, 0.44    0.88, 0.66    0.88, 0.66 0.92, 0.61 
(4.20) (4.95) (3.92) 
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σ 

σ 

σ 

σ 

ε 

ε 



Brazil Chile 

 

η 

η 

DT-13 UC0 UCUR UCUR-13   UCUR-(09,13) DT-13 UC0 UCUR UCUR-98 UCUR-(98,15) 

log ML -158.838 
(0.01) 

φ1 1.10 
(0.11) 

φ2 -0.16 
(0.11) 

 
-162.479 

(0.02) 

0.99 
(0.44) 

-0.27 
(0.29) 

 
-159.427 

(0.05) 

0.60 
(0.38) 

-0.02 
(0.29) 

 
-157.003 

(0.04) 

0.71 
(0.43) 

-0.13 
(0.31) 

 
-157.814 

(0.08) 

0.70 
(0.41) 

-0.14 
(0.29) 

 
-158.902 

(0.01) 

1.27 
(0.11) 

-0.35 
(0.11) 

 
-163.238 

(0.02) 

1.38 
(0.24) 

-0.48 
(0.18) 

 
-160.331 

(0.07) 

0.64 
(0.49) 

-0.20 
(0.27) 

 
-158.369 

(0.09) 

0.69 
(0.50) 

-0.23 
(0.27) 

 
-157.786 

(0.09) 

0.75 
(0.52) 

-0.25 
(0.26) 

2 1.33 
(0.20) 

0.38 
(0.38) 

0.91 
(0.60) 

0.74 
(0.58) 

0.79 
(0.59) 

1.16 
(0.17) 

0.65 
(0.36) 

1.10 
(0.76) 

1.17 
(0.80) 

1.12 
(0.80) 

2 - 1.13 
(0.43) 

2.69 
(0.92) 

1.82 
(0.88) 

1.81 
(0.80) 

- 0.63 
(0.38) 

2.03 
(0.66) 

1.87 
(0.67) 

1.62 
(0.72) 

ρ - - -0.77 
(0.19) 

-0.55 
(0.36) 

-0.56 
(0.35) 

- - -0.77 
(0.24) 

-0.76 
(0.25) 

-0.70 
(0.31) 

roots 0.93, 0.17 0.50 ± 0.16i 0.56, 0.04 0.36 ± 0.06i 0.35 ± 0.13i 0.87, 0.40 0.69 ± 0.06i 0.32 ± 0.31i 0.35 ± 0.33i 0.38 ± 0.33i 
(5.08) (8.94) (4.35) (17.40) (2.03) (2.03) (2.17) 

 

Mexico Peru 

DT-82 UC0 UCUR UCUR-82   UCUR-(82,97) DT-92 UC0 UCUR UCUR-92 UCUR-(83,92) 

log ML -274.385 
(0.01) 

φ1 1.28 
(0.08) 

φ2 -0.34 
(0.08) 

 
-274.212 

(0.02) 

1.38 
(0.11) 

-0.47 
(0.12) 

 
-273.520 

(0.07) 

0.93 
(0.45) 

-0.41 
(0.15) 

 
-273.253 

(0.01) 

0.87 
(0.45) 

-0.41 
(0.15) 

 
-274.804 

(0.09) 

0.88 
(0.45) 

-0.41 
(0.15) 

 
-397.354 

(0.15) 

1.31 
(0.05) 

-0.40 
(0.05) 

 
-383.976 

(0.08) 

1.45 
(0.10) 

-0.52 
(0.09) 

 
-383.659 

(0.08) 

1.46 
(0.10) 

-0.49 
(0.09) 

 
-377.757 

(0.27) 

1.38 
(0.10) 

-0.51 
(0.09) 

 
-378.499 

(0.16) 

1.38 
(0.10) 

-0.51 
(0.09) 

2 1.57 
(0.18) 

0.98 
(0.33) 

1.31 
(0.72) 

1.29 
(0.73) 

1.32 
(0.74) 

2.97 
(0.04) 

2.69 
(0.27) 

2.40 
(0.48) 

2.39 
(0.48) 

2.42 
(0.47) 

2 - 0.54 
(0.30) 

1.89 
(1.10) 

2.10 
(0.94) 

2.16 
(0.95) 

- 2.61 
(0.31) 

1.81 
(0.69) 

1.73 
(0.70) 

1.66 
(0.70) 

ρ - - -0.58 
(0.41) 

-0.66 
(0.30) 

-0.66 
(0.32) 

- - 0.52 
(0.29) 

0.43 
(0.33) 

0.46 
(0.32) 

roots 0.90, 0.38 0.77, 0.61 0.47 ± 0.44i 0.44 ± 0.47i 0.44 ± 0.47i 0.83, 0.49 0.80, 0.65 0.84, 0.62 0.69 ± 0.18i 0.69 ± 0.18i 
(2.07) (1.91) (1.93) (6.02) (6.02) 

 

Parentheses denote standard errors for coefficients and mean duration in years for roots. 

Source: Own elaboration. 
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7.4 Table 4. Estimates of the Nonlinear Trend Functions - Perron, Shintani and Yabu (2017) Method 

 

Canada  France  Germany    Italy Japan UK US Argentina   Brazil Chile    Mexico Peru 
 

Frequencies 5 2 2 2 3 4 2 3 1 5 5 5 

Wald H0 6.9498b   5.7028c    5.1490c    5.3748c  22.3536a  6.6999b  5.5161c     7.8024b     8.5278b   6.7906b  8.6183b 5.8791c
 

α(OLS) 0.844 0.931 0.888 0.903 0.894 0.888 0.931 0.855 0.823 0.631 0.793 0.756 

α(Median Unbiased)   1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 

α(Supper Efficient) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Constant 0.000 
(0.000) 

Trend  0.008a 

(0.001) 

sin(2πt/T)  0.059c 

(0.034) 

cos(2πt/T) -0.081b 

(0.034) 

0.000 
(0.000) 

0.05 a
 

(0.001) 

0.004 
(0.026) 

-0.051b 

(0.026) 

0.000 
(0.000) 

0.06 a
 

(0.001) 

0.044 
(0.037) 

-0.100a 

(0.036) 

0.000 
(0.000) 

0.006a
 

(0.001) 

0.031 
(0.041) 

-0.191a 

(0.040) 

0.000 
(0.000) 

0.009a
 

(0.001) 

0.106a
 

(0.036) 

-0.301a 

(0.036) 

0.000 
(0.000) 

0.06 a
 

(0.001) 

-0.021 
(0.031) 

-0.023 
(0.031) 

0.000 
(0.000) 

0.07 a
 

(0.001) 

-0.008 
(0.038) 

-0.055 
(0.038) 

0.000 
(0.000) 

0.005a
 

(0.002) 

0.081c
 

(0.044) 

0.007 
(0.044) 

0.000 
(0.000) 

0.006a
 

(0.001) 

-0.068b 

(0.028) 

-0.043 
(0.027) 

0.000 
(0.000) 

0.009a
 

(0.001) 

-0.035 
(0.024) 

-0.019 
(0.024) 

0.000 
(0.000) 

0.006a
 

(0.001) 

-0.029 
(0.036) 

-0.008 
(0.036) 

0.000 
(0.000) 

0.008a
 

(0.002) 

-0.077 
(0.072) 

0.176b
 

(0.072) 

sin(4πt/T) -0.004 
(0.017) 

cos(4πt/T) -0.053a 

(0.017) 

-0.020 
(0.013) 

-0.023c 

(0.013) 

-0.025 
(0.018) 

-0.033c 

(0.018) 

0.013 
(0.020) 

-0.068a 

(0.020) 

0.040b
 

(0.018) 

-0.079a 

(0.018) 

0.011 
(0.016) 

-0.034b 

(0.016) 

0.020 
(0.019) 

-0.040b 

(0.019) 

0.055b
 

(0.022) 

-0.033 
(0.022) 

- 0.006 
(0.012) 

- 0.003 
(0.012) 

0.003 
(0.018) 

0.028 
(0.018) 

0.001 
(0.036) 

0.023 
(0.036) 

sin(6πt/T) 0.017 
(0.011) 

cos(6πt/T) -0.012 
(0.011) 

- - -  -0.021c 

(0.012) 

- - - -0.053a 

(0.012) 

0.005 
(0.010) 

-0.014 
(0.010) 

- -0.030b
 

(0.015) 

- -0.035b
 

(0.015) 

-  0.015c 

(0.008) 

- -0.018b
 

(0.008) 

0.001 
(0.012) 

0.008 
(0.012) 

0.028 
(0.024) 

-0.032 
(0.024) 

sin(8πt/T) -0.004 
(0.008) 

cos(8πt/T) 0.003 
(0.008) 

- - - -  -0.008 
(0.008) 

- - - -  0.019b 

(0.008) 

- - -  -0.007 
(0.006) 

- - - 0.004 
(0.006) 

0.009 
(0.009) 

0.002 
(0.009) 

-0.036b 

(0.018) 

0.004 
(0.018) 

sin(10πt/T) 0.007 
(0.007) 

cos(10πt/T) -0.016b 

(0.007) 

- - - - - - - - 0.003 
(0.005) 

- - - - - - - - -0.012b
 

(0.005) 

0.006 
(0.007) 

-0.020a 

(0.007) 

0.008 
(0.014) 

0.034b
 

(0.014) 
 

a, b and c denote statistic significance at the 1%, 5% and 10% level, respectively. Wald test critical values: 90%=4.605, 95%=5.992, 99%=9.210. 

Source: Own elaboration. 
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8 Figures 

 
8.1 Figure 1. Business Cycles under different approaches 
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