PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Escuela de Posgrado

Desigualdad económica y crecimiento económico en América Latina, 1950-2018

Tesis para optar el grado académico de Magíster en Economía que presenta:

Reynaldo Alejandro Aponte Fretel

Asesor:

Germán Alejandro Alarco Tosoni

Lima, 2021

Desigualdad económica y crecimiento económico en América Latina, 1950-2018

Resumen

Este estudio investiga la relación entre la desigualdad económica y el crecimiento económico. Se utilizan dos enfoques teóricos para estimar la relación entre la desigualdad económica y crecimiento económico de 16 economías de América Latina y la región en su conjunto entre 1950-2018. El primer enfoque es el neoclásico: el de Cingano (2014) que aprovecha el modelo de Mankiw, Romer y Weil (1992) El segundo enfoque es el poskeynesiano: el de Oyvat, Öztunali y Elgin (2018) que utilizan el modelo de Stockhammer, Onaran y Ederer (2009), que investiga si los regímenes de crecimiento están basados en salarios o en ganancias. Las estimaciones de ambos enfoques teóricos se comparan al utilizar diferentes medidas de desigualdad relacionadas a la distribución personal del ingreso y distribución factorial del ingreso. Los resultados muestran que una mayor desigualdad económica genera una reducción en el crecimiento y que la mayoría de países de América Latina tienen un régimen de crecimiento basado en salarios. Entonces, las políticas redistributivas que logran una mayor igualdad en el ingreso no tienen consecuencias adversas para el crecimiento, hay espacio para políticas dirigidas al crecimiento y distribución del ingreso simultáneamente.

Palabras clave: América Latina, coeficiente Gini, coeficiente Salarial, crecimiento económico, desigualdad económica, distribución factorial del ingreso, Gini salarial, modelo neoclásico, modelo poskeynesiano, participación salarial, regímenes de crecimiento.

Contenido

Resumen	ii
Contenido	ii
Introducción	1
Capítulo I. Revisión de la Literatura	3
Capítulo II. Preguntas de Investigación e Hipótesis	7
Capítulo III. Modelo Neoclásico y Modelo Poskeynesiano	8
1. Modelo Neoclásico	8
2. Modelo Poskeynesiano.	14
Capítulo IV. Marco Metodológico e Información Estadística	20
1. Estimación en el Modelo Neoclásico	20
2. Datos en el Modelo Neoclásico	24
3. Estimación en el Modelo Poskeynesiano	26
4. Datos en el Modelo Poskeynesiano	29
Capítulo V. Estimación y Resultados	30
1. Resultados de la Estimación en el Modelo Neoclásico	30
Resultados de la Estimación en el Modelo Poskeynesiano	35
Capitulo VI. Conclusiones	
Capítulo VII. Inferencias de Política Económica	40
Referencias Bibliográficas	
Anexos	44
Lista de Tablas	
Tabla 1. Efectos de la desigualdad sobre el crecimiento económico	5
Tabla 2. América Latina. El nexo entre desigualdad y crecimiento	
Tabla 3. Resultados estimados en modelos VECM – PS	35
Tabla 4. Resultados estimados en modelos ARDL – PS	36
Tabla 5. Resultados estimados en modelos VECM – GS	37
Tabla 6. Resultados estimados en modelos ARDL – GS	38
Anexos	
Anexo 1. Lista de variables	43
Anexo 2. América Latina. Estadística descriptiva resumida	43
Anexo 3. Efectos de la desigualdad sobre el crecimiento económico. Síntesis	
Anexo 4. Escuelas de Pensamiento Económico	44
Anexo 5. Datos del estudio.	44

Introducción

Una mayor desigualdad económica es uno de los riesgos de la economía mundial, sus impactos son económicos, sociales y políticos, entre otros, de acuerdo al análisis del Informe de Riesgos Globales 2020 del Foro Económico Mundial. En este contexto, el objetivo principal del estudio es explicar la relación entre la desigualdad económica y el crecimiento económico, siendo la principal interrogante: ¿cuál es la relación entre la desigualdad económica y crecimiento económico? Es importante conocer de qué manera afecta la desigualdad económica al crecimiento económico, más aún cuando la desigualdad se ha intensificado en las últimas décadas.

Las otras preguntas y sus objetivos específicos correspondientes son: ¿cómo integrar los enfoques teóricos neoclásico y poskeynesiano en la relación de desigualdad económica y crecimiento económico? Comparar los resultados de las estimaciones en los enfoques teóricos neoclásico y poskeynesiano de la relación de desigualdad y crecimiento. ¿Cuál es el impacto de la desigualdad económica en el crecimiento económico? Calcular el impacto de la desigualdad económica en el crecimiento económico, en un periodo de tiempo.

¿Qué otras medidas de desigualdad económica existen, diferentes a las relacionadas a la distribución personal del ingreso? Proponer medidas de desigualdad económica relacionadas a la distribución factorial del ingreso. ¿Cuáles son los regímenes de crecimiento en América Latina? Examinar los regímenes de crecimiento en América Latina. ¿Qué métodos econométricos permiten explicar la relación de largo plazo de la desigualdad económica y crecimiento económico? Identificar y mostrar los métodos econométricos para un análisis de largo plazo de la relación entre la desigualdad y crecimiento.

Se utilizan dos enfoques teóricos. El primero es el neoclásico, el de Cingano (2014, Mankiw, Romer y Weil (MRW) 1992) que realizó un estudio de países OCDE, muestra que la desigualdad de ingresos tiene un impacto negativo y estadísticamente significativo en el crecimiento posterior. El segundo es el poskeynesiano, el de Oyvat, Öztunali y Elgin (2018, Stockhammer, Onaran y Ederer (SOE) 2009), muestran la evolución de la distribución factorial del ingreso respecto al crecimiento económico, determinan si el régimen de crecimiento está basado en salarios o en ganancias y un crecimiento impulsado por la demanda para una economía abierta.

Por otro lado, la distribución personal se utiliza en la distribución del ingreso entre hogares, que provienen de distintas fuentes (capital o trabajo) y su interacción con otras variables económicas, sociales, entre otras. La distribución factorial del ingreso es la forma en que se reparte la renta de los factores de producción, parte de autores clásicos (de la teoría de la distribución de Ricardo), permite conectar la distribución personal con las cuentas nacionales y simultáneamente permite realizar el análisis de la distribución del ingreso en relación con el crecimiento de la economía.

Asimismo, en el modelo neoclásico respecto a la distribución personal del ingreso, la medida de desigualdad económica es el coeficiente Gini, varía de cero (todos tienen ingresos idénticos) a 1 (todos los ingresos van a una sola persona). El coeficiente Gini se reemplaza por el coeficiente Salarial, medida de desigualdad económica relacionada a la distribución factorial del ingreso, estableciéndose así una interrelación con el modelo poskeynesiano (véase anexo 4: Escuelas de Pensamiento Económico).

En el modelo poskeynesiano respecto a la distribución factorial del ingreso, la medida de desigualdad es la participación salarial, relacionada a las políticas de distribución del ingreso a favor de los trabajadores en una economía basada en salarios. El propósito central es dilucidarsi el aumento de la participación salarial en el PIB contribuye o no a que se eleve el nivel de actividad económica. En caso afirmativo se tiene un régimen de crecimiento basado en salarios y en caso negativo un régimen basado en ganancias. La participación salarial se reemplaza por un índice de desigualdad denominado Gini salarial, medida de desigualdad relacionada a la distribución personal del ingreso, estableciéndose así una interrelación con el modelo neoclásico.

El estudio se inicia con una introducción que incluye el planteamiento del problema, ¿qué es lo se desea investigar? ¿Qué problemas se quiere dilucidar? ¿Cuáles son los objetivos de la investigación? ¿Por qué es importante el tema? En el primer capítulo se presenta la revisión de la literatura teórica y empírica de acuerdo a los objetivos de la investigación. En el segundo capítulo se muestran las preguntas de investigación y la hipótesis, donde se expresan las variables económicas a analizar. En el tercer capítulo se desarrollan los enfoquesteóricos. En el neoclásico es Cingano (2014, MRW 1992) y en el poskeynesiano es Oyvat, Öztunali y Elgin (2018, SOE 2009).

En el cuarto capítulo se describe el marco metodológico e información estadística, para corroborar la hipótesis se explica la metodología de estimación y de los datos, en cada modelo. En el quinto capítulo se exponen los resultados de las estimaciones de los modelos neoclásico y poskeynesiano. En el sexto capítulo se presentan las conclusiones, se evalúan los hallazgos, se destaca el valor agregado explicativo del estudio enfatizando en los resultados de cada modelo. Por último, en el séptimo capítulo se expresan las inferencias de política económica, soluciones propuestas al problema, relacionado y consistente con los resultados econométricos de los modelos neoclásico y poskeynesiano. Además, se presentan los anexos para ampliar o complementar la investigación.

Entre los alcances del estudio destaca el análisis macroeconómico comparativo de dos enfoques teóricos, el neoclásico y el poskeynesiano, el uso de métodos econométricos apropiados que permiten capturar mejor las relaciones de largo plazo. Aunque, la muestra está limitada por la disponibilidad de estadísticas de desigualdad, de capital humano y porque la estimación de datos de panel y análisis de series de tiempo requieren de una gran cantidad de observaciones.

Capítulo I. Revisión de la Literatura

En la literatura teórica se aborda la "causalidad" desde el crecimiento económico a la desigualdad económica, ésta analiza la conocida hipótesis de Kuznets de U invertida, otra línea de investigación se ha centrado en la "causalidad inversa", en el efecto de la desigualdad económica en el crecimiento económico, seguido en el presente estudio. El modelo neoclásico de crecimiento económico se basa en el supuesto de que el crecimiento está determinado por la dotación de factores productivos de la economía y por la productividad de los mismos, es un modelo por el lado de la oferta que determina la producción en equilibrio, según la ley de Say, explica el crecimiento económico.

Utilizan la función de producción Cobb-Douglas para estimar la distribución factorial del ingreso, usar esa función te da que la relación entre salarios y ganancias es constante, debido a que las elasticidades de producción de trabajo y capital son las mismas. Si un factor se encarece, la tecnología permitirá sustituirlo de forma perfecta por el otro factor y así la remuneración que recibe el trabajo y el capital se mantiene constante. Suponen que las derivadas parciales de cada una de las variables con respecto a la distribución factorial son iguales a cero. El modelo de Bhaduri y Marglin (1990), es más general, no asume esta nulidad.

Además, Mankiw, Romer y Weil MRW (1992), referencia teórica del presente estudio, muestran un modelo de Solow aumentado que incluye la acumulación de capital humano y físico, proporcionan un mejor análisis de los datos entre países, examinan las implicaciones del modelo de Solow para la convergencia en los niveles de vida. La evidencia indica que manteniendo constantes el crecimiento de la población y la acumulación de capital, los países convergen aproximadamente a la tasa que predice el modelo de Solow aumentado. La acumulación de capital humano es la principal fuente de crecimiento de la productividad, es decir, la tasa de crecimiento depende de la tasa de acumulación de capital humano y no del nivel de capital humano.

Por otra parte, establecen el resurgimiento de los modelos neoclásicos de crecimiento al considerar una definición más amplia del capital, predicen una menor tasa de convergencia al equilibrio que la tasa del modelo de Solow, esto implica que la velocidad de convergencia es menor y que el modelo de Mankiw, Romer y Weil (1992) se ajustamejora los datos que el modelo de Solow. Se centran en probar la convergencia en varios países o regiones durante un período de tiempo, la trayectoria de convergencia es una tendencia lineal en el tiempo, cuya pendiente está determinada por la tasa de progreso técnico exógeno mientras que la intersección refleja los e fectos de los factores que caracterizan la convergencia condicional.

En la teoría poskeynesiana las participaciones dependen de los componentes de la demanda efectiva, en ese caso, puedes tener fluctuaciones en las participaciones del ingreso porque los factores que la determinan (propensiones a consumir, efecto acelerador de la inversión, entre otros) varían. Desde Kalecki (1956) la distribución factorial del ingreso es un elemento central para explicar el nivel y evolución del PIB, en el modelo poskeynesiano relacionado a la distribución factorial del ingreso, la medida desigualdad a utilizar en las estimaciones es la participación salarial.

Asimismo, Bhaduri y Marglin (1990) proporcionan una parte importante del marco teórico que sirve de base para la evaluación de los regímenes de crecimiento. Desarrollan un marco macroeconómico para analizar la relación entre salarios y desempleo partiendo de las dos perspectivas básicas en relación al salario real: como costo de producción (vertiente neoclásica) o como base del poder de compra de los trabajadores, que estimula la demanda.

Stockhammer, Onaran y Ederer SOE (2009), referencia teórica del presente estudio, la demanda agregada puede estar basada en salarios o en ganancias, esto depende de la suma de los efectos ante un aumento en la participación salarial, en el caso de los gastos de consumo privado, éstos aumentan porque los ingresos salariales suelen estar asociados con mayores propensiones al consumo que los ingresos de capital, los gastos de inversión están afectados negativamente porque la inversión dependerá positivamente de las ganancias, las exportaciones netas están afectadas negativamente porque un aumento en la participación salarial corresponde a un aumento en los costos laborales unitarios y, por lo tanto, a una pérdida de competitividad, éstos resultados dependerán fundamentalmente de que tan abierta sea la economía.

Por otro lado, Onaran y Stockhammer (2008) ¿Están las economías reales impulsadas por las ganancias o los salarios? La ortodoxia actual supone implícitamente que están basadas en ganancias y, por lo tanto, apoya la agenda de la política neoliberal. El mérito de los modelos poskeynesianos es que destacan la doble función de los salarios como un componente de la demanda agregada, así como un elemento de costo. Si una economía no está basada en ganancias, entonces hay espacio para políticas dirigidas al crecimiento y la distribución del ingreso simultáneamente. Sin embargo, las economías son realmente dinámicas en el sentido de que una economía puede pasar de un régimen basado en salarios a un régimen basado en ganancias, con un conflicto distributivo intensificado.

En la revisión de la literatura empírica¹ neoclásica de la relación entre la desigualdad económica y el crecimiento económico, hay 3 grupos de estudios: el primero que concluyen que la desigualdad económica tiene una relación negativa con el crecimiento económico: Alesina y Rodrik (1994), Persson y Tabellini (1994), Clarke (1995), Perotti (1996), Birdsall y Londoño (1997), Deininger y Squire (1998), Banerjee y Duflo (2003), Knowles (2005), Chambers y Krause (2010), Castello (2010), Khalifa y El Hag (2010), Herzer y Vollmer (2012), Cingano (2014), Ostry, Berg y Tsangarides (2014).

¹ Sobre la base de Neves y Silva (2014), Neves, Afonso y Silva (2016), Cingano (2014), entre otros.

Segundo, los estudios donde los resultados tienen relación positiva: Li y Zou (1998), Deininger y Olinto (2000), Forbes (2000) y un tercer grupo, donde la relación depende del nivel de desarrollo del país, entre otros: Barro (2000), Chen (2003), Bleaney y Nishiyama (2004), Bengoa y Sánchez-Robles (2005), Voitchovsky (2005) Halter, Oechslin y Zweimuller (2014). También, véase anexo3: Efectos de la desigualdad sobre el crecimiento económico. En la tabla 1, se agrupa estas evidencias por efectos de la desigualdad sobre el crecimiento económico, método de estimación, en la mayoría se utilizan estructura de datos de panel o sección transversal, las muestras y los autores de los estudios.

Tabla 1. Efectos de la desigualdad sobre el crecimiento económico

Efecto	Método de Estimación	Muestras	Autores		
(-)		46/70 países 1960-1985	Alesina y Rodrik (1994)		
(-)		56 países 1960-1985	Persson y Tabellini (1994)*		
(-)		74/81 países 1970-1978	Clarke (1995)*		
(-)	MCO	67 países 1960-1985	Perotti (1996)*		
(-)	100	43 países 1960-1992	Birdsall y Londoño (1997)		
(-)	1110	66/87 países 1960-1992	Deininger y Squire (1998)		
(-)	1 1.	40 países 1960-1990	Knowles (2005)		
(-)		46/70 países 1960-1985	Alesina y Rodrik (1994)		
(-)	MC2E	56 países 1960-1985	Persson y Tabellini (1994)*		
(-)		74/81 países 1970-1978	Clarke (1995)*		
(-)	T / //X	74/81 países 1970-1978	Clarke (1995)*		
(-)	MCP	67 países 1960-1985	Perotti (1996)*		
(-)	Efectos fijos	45 países 1965-1995	Banerjee y Duflo (2003)**		
(-)	Efectos variables	45 países 1965-1995	Banerjee y Duflo (2003)**		
(-)	Elector (mimere	102/56 países 1960-2000	Castello (2010)*, **		
(-)	GMM en Sistema	31 países OCDE, 1970-2010	Cingano (2014)**		
(-)	Giviivi cii bisteiliu	90 países 1960-2010	Ostry, Berg y Tsangarides (2014)**		
(-)	GMM en Primeras Dif.	45 países 1965-1995	Banerjee y Duflo (2003)**		
(-)	Específicos,	46 países 1970-1995	Herzer y Vollmer (2012)**		
(-)	desarrollado por	70 países 1970-1999	Khalifa y El Hag (2010)		
(-)	separado.	54 países 1960-2000	Chambers y Krause (2010)		
(+)	Efectos fijos	46 países 1960-1990	Li y Zou (1998)**		
(+)	Efectos variables	46 países 1960-1990	Li y Zou (1998)**		
(+)	GMM en Sistema	31/60 países 1966-1990	Deininger y Olinto (2000)		
(+)	GMM en Primeras Dif.	45 países 1966-1995	Forbes (2000)**		
(-), (+)	MCO	42-69 países 1965- 2000	Bleaney y Nishiyama (2004)		
(-), (+)	MC3E	84 países 1965-1995	Barro (2000)**		
U invertida	MCO	43 países 1970-1992	Chen (2003)		
(+) renta alta, U invertida renta media	MCO	19/10 países 1975-1995	Bengoa, Sánchez-Robles (2005)*, **		
(+) renta alta, U invertida renta media	Efectos fijos	19/10 países 1975-1995	Bengoa, Sánchez-Robles (2005)*, **		
(+) renta alta, U invertida renta media	Efectos variables	19/10 países 1975-1995	Bengoa, Sánchez-Robles (2005)*, **		
(+) mayor desigualdad (-) menor desigualdad	CMM C'	21 países 1975-2000	Voitchovsky (2005)**		
(+) renta alta (-) renta baja	GMM en Sistema	90 países 1966-2005	Halter, Oechslin y Zweimuller (2014)		
(+) renta alta, U invertida renta media	GMM en Primeras Dif.	19/10 países 1975-1995	Bengoa, Sánchez-Robles (2005)*, **		

Nota: * Medida de desigualdad diferente al coeficiente Gini, ** estructura de datos de panel; los otros: datos de corte trans versal.

Fuente: Elaboración propia.

Cingano (2014), referencia empírica en el presente estudio, realizó un estudio de países OCDE, muestra que la desigualdad de ingresos tiene un impacto negativo y estadísticamente significativo en el crecimiento posterior. El modelo de Solow implica que el crecimiento del PIB depende de su distancia del estado estacionario, al que converge a una tasa constante. El estado estacionario del PIB es a su vez una función de determinantes subyacentes, incluido el capital humano y físico que puede utilizarse en el análisis de la desigualdad económica. Por tanto, las estimaciones de la velocidad de convergencia y de la sensibilidad del estado estacionario a cada determinante permiten calcular los efectos implícitos de los cambios en la desigualdad sobre el PIB per cápita, en fechas posteriores.

Además, Lavoie y Stockhammer (2012) afirman que la relación entre distribución y crecimiento había estado en el centro del análisis en la economía clásica, pero con el predominio de la economía neoclásica en el siglo XX, los problemas de distribución ocuparon un lugar secundario, ya que se suponía que la distribución del ingreso estaba regulada por la productividad marginal, en un modelo de competencia perfecta, con salarios determinados por las fuerzas del mercado. Pero ese modelo de determinación salarial y distribución del ingreso no se sostiene en un mundo donde las características monopsonistas, la competencia imperfecta y el poder económico y social entran en juego. En ese mundo, en contraste con el mundo ideal del fundamentalismo del mercado, las fuerzas del mercado no producen resultados óptimos y hay espacio para modificar la distribución del ingreso.

Oyvat, Öztunali y Elgin (2018), referencia empírica en el presente estudio, para una muestra de 41 países en el periodo 1961-2011, sus resultados reflejan firmemente que un mayor nivel de apertura comercial está asociado con una menor probabilidad de estar basado en salarios. Hartwig (2014) utilizando datos de panel en el periodo de 1970-2011 estima que los países de la OCDE están basados en salarios.

Por otro lado, SOE (2009) en general en un periodo de 1962-2005, encuentran que la zona del euro en su conjunto está basada en salarios. Naastepad, Storm (2007) para una muestra de 8 países OCDE en el periodo 1960-2000, utilizando MCO, encuentran que la restricción del crecimiento de los salarios se considera como una medida necesaria para el crecimiento sostenido del PIB y el menor desempleo, permiten evaluar el crecimiento de la demanda sea basado en ganancias. Carvalho y Rezai (2016), en el periodo de 1967-2010, muestran que las crecientes desigualdades salariales hacen que la economía de EE. UU. esté basada en ganancias.

Alarco (2016) para una muestra de 16 países de América Latina en el periodo 1950-2012, utilizando MCO, basado en el modelo de Naastepad y Storm (2007), analiza la evolución de la distribución factorial del ingreso respecto al crecimiento económico y concluye que la mayor parte de las economías de la región tienen regímenes de crecimiento basados en salarios, por lo que las políticas redistributivas a favor de la masa salarial son positivas para el crecimiento económico.

Capítulo II. Preguntas de Investigación e Hipótesis

La principal interrogante, de acuerdo a los objetivos de la investigación es: ¿cuál es la relación entre la desigualdad económica y crecimiento económico? Las otras preguntas son: ¿cómo integrar los enfoques teóricos neoclásico y poskeynesiano en la relación de desigualdad económica y crecimiento económico? ¿Cuál es el impacto de la desigualdad económica en el crecimiento económico? ¿Qué otras medidas de desigualdad existen, diferentes a las relacionadas a la distribución personal del ingreso? ¿Cuáles son los regímenes de crecimiento en América Latina? ¿Qué métodos econométricos permiten explicar la relación de largo plazo de la desigualdad económica y crecimiento económico?

Para responder estas interrogantes, nuestra hipótesis sobre el efecto de la desigualdad económica en el crecimiento económico, del modelo teórico neoclásico y poskeynesiano es:

La reducción de la desigualdad económica contribuirá a un mayor crecimiento económico y estabilidad económica.

Para corroborar la hipótesis se utiliza un modelo neoclásico con variable dependiente Δlny_t donde y_t es el PIB percápita y las otras variables son el coeficiente Gini, años promedio de educación, formación bruta de capital. Se reemplaza el coeficiente Gini, a diferencia de Cingano (2014), por el coeficiente Salarial. Se espera una relación negativa entre la desigualdad y el crecimiento económico con ambas medidas de desigualdad, es decir, que los coeficientes estimados sean negativos, estableciéndose una interrelación comparativa con el modelo poskeynesiano.

En el modelo poskeynesiano con variable dependiente log (PIB) y las otras variables son la participación salarial, tipo de cambio real, participación del gasto público. Se reemplaza la participación salarial, a diferencia de Oyvat, Öztunali y Elgin (2018), por el Gini salarial. Se espera que la mayoría de países registren un régimen de crecimiento basado en salarios, es decir, que la mayoría de países de América Latina registren una economía basada en salarios, en ambos casos, estableciéndose una interrelación comparativa con el modelo neoclásico.

Los modelos neoclásico y poskeynesiano se explican estadísticamente y econométricamente con los test que correspondan y método econométrico, en el primero es el Método Generalizado de Momentos GMM en Sistema y en el segundo un modelo de corrección de errores vectoriales (VECM) o un modelo autorregresivo de retardo de distribuido (ARDL). Se quiere ver si los modelos captan el efecto de la desigualdad económica en el crecimiento económico y si el régimen de crecimiento es por salarios o por ganancias. Se realiza la estimación para 16 países de América Latina y la región en su conjunto en el periodo 1950-2018, para el análisis comparativo el periodo es 1978-2018.

Capítulo III. Modelo Neoclásico y Modelo Poskeynesiano

1. Modelo Neoclásico

La ecuación estima el crecimiento como una función lineal de la desigualdad inicial, el ingreso, el capital humano y físico, similar al utilizado en la mayoría de los análisis empíricos de los determinantes del crecimiento, puede derivarse de un modelo de crecimiento de Solow aumentado: Mankiw, Romer y Weil (1992).

$$\begin{split} & \ln y_{i,t} - \ln y_{i,t-1} = \lambda_1 \ln y_{i,t-1} + \lambda_2 Desig_{i,t-1} + \lambda_3 CH_{i,t-1} + \lambda_4 CF_{i,t-1} + \mu_i + \mu_t + \epsilon_{i,t} \\ & X_{i,t-1} = CH_{i,t-1} + Inv_{i,t-1} \\ & CH: Capital\ human, CF: Inv: Capital\ físico \end{split} \tag{1}$$

i denota un país, (t, t-1) es un intervalo de 5 años, debido a que se utiliza datos de panel dinámico con métodos GMM en Sistema, donde se requiere que $n \ge t$ siendo n el número de países (16 países de América latina) y que los datos de desigualdad, de capital humano (años promedio de educación, se miden cada 5 años (Barro y Lee (2016, 2018)) no se miden con alta frecuencia en todos los países, en el periodo de 1950-2018; $\ln y$ es el logaritmo del PIB percápita. El lado izquierdo de la ecuación (1) se aproxima a un crecimiento de 5 años en un país.

Desig es una medida resumida de la desigualdad (coeficiente Gini, coeficiente Salarial). El PIB percápita y_{t-1} es el control estándar para la convergencia, X es el vector que contiene un conjunto de variables para capital físico y humano. El capital humano (CH) está representado por los años promedio de educación (población de 25 a 65 años), la expresión está en términos de stock de capital humano (h). Para el capital físico (Inv) se utiliza los datos de formación bruta de capital.

El uso de datos de panel permite contabilizar del país (y tiempo) los efectos fijos ($\mu_i y \mu_t$), en tanto que $\epsilon_{i,t}$ es el término de error. Las variables ficticias del país se incluyen para controlar el sesgo de variable omitida invariante en el tiempo y las variables ficticias del período se incluyen para controlar las conmociones mundiales que pueden afectar el crecimiento agregado en cualquier período, pero que no son capturadas por las variables explicativas.

El modelo de Mankiw, Romer y Weil (1992) es el resurgimiento del modelo de crecimiento neoclásico frente a las nuevas investigaciones en los modelos de crecimiento endógeno. Destacaron que el modelo de Solow no predice necesariamente la convergencia de ingresos, sino solo que cada ingreso convergerá a su propio nivel de equilibrio de largo plazo, es la hipótesis de convergencia condicional: los países tienen diferentes parámetros fundamentales, cada economía convergerá a su propio estado estacionario. Señalan que la acumulación de capital humano es la principal fuente de crecimiento de la productividad, es decir, la tasa de crecimiento depende de la tasa de acumulación de capital humano y no del nivel de capital humano:

$$Y_{(t)} = K_{(t)}{}^{\alpha} H_{(t)}{}^{\beta} (A_{(t)} L_{(t)})^{1-\alpha-\beta}, \quad \alpha, \beta, \alpha + \beta \in (0,1)$$
(2)

Donde Y, K y H son el producto, el capital físico y humano respectivamente, L es trabajo que aumenta tecnología, α y β son las elasticidades parciales de la producción con respecto al capital físico y humano. L y A crecen exógenamente a tasas de n y g:

$$L_{(t)} = L_{(0)}e^{nt}$$

$$A_{(t)} = A_{(0)}e^{gt}$$

El número de unidades efectivas de trabajo $A_{(t)}L_{(t)}$ crece a una tasa n+g. La función de producción Cobb Douglas en Mankiw, Romer y Weil (1992) supone rendimientos constantes a escala:

Producto por unidad de trabajo eficiente: $y = \frac{Y}{AL}$

Capital físico por unidad de trabajo eficiente: $k = \frac{K}{AL}$

Capital humano por unidad de trabajo eficiente: $h = \frac{H}{AL}$

 S_k y S_h son las fracciones del ingreso invertido en capital físico y humano. El ahorro se divide en formación de capital físico y humano, es decir, s_k y s_h son las tasas de ahorro dadas exógenamente de capital físico y humano respectivamente:

$$S_k = s_k Y_{(t)}, \quad 0 < s_k < 1$$

$$S_h = s_h Y_{(t)}, \quad 0 < s_h < 1$$

Depreciación del capital físico y capital humano:

$$\delta_k K_{(t)}, \quad 0 < \delta_k < 1$$

$$\delta_h H_{(t)}$$
, $0 < \delta_h < 1$

 $\delta_k = \delta_h = \delta$ son las tasas de depreciación del capital físico y humano respectivamente.

Ecuación de acumulación de capital físico:

$$\dot{K}_{(t)} = s_K Y_{(t)} - \delta_K K_{(t)}$$

Ecuación de acumulación de capital humano:

$$\dot{H}_{(t)} = s_H Y_{(t)} - \delta_H H_{(t)}$$

El modelo supone que se invierte una fracción constante de la producción, s. Definiendo k como el stock de capital por unidad efectiva de trabajo, k = K/AL, y como el nivel de producción por unidad efectiva de trabajo, y = Y/AL. La ecuación (2) función de producción puede escribirse como:

$$Y_{(t)} = k^{\alpha} h^{\beta} A L$$

El producto por unidad de trabajo eficiente es:

$$y_{(t)} = f_{(k_{(t)}, h_{(t)})} = k_{(t)}^{\alpha} h_{(t)}^{\beta}$$
(3)

$$y = \frac{Y_{(t)}}{AL} = \frac{k^{\alpha}h^{\beta}AL}{AL} = k^{\alpha}h^{\beta} \tag{4}$$

De las ecuaciones de acumulación de capital físico y humano se obtiene:

La tasa de crecimiento del stock de capital físico es: $\frac{k}{k} = s_k k^{\alpha-1} h^{\beta} - \delta_k$

La tasa de crecimiento del stock de capital humano es: $\frac{H}{H} = s_H k^{\alpha} h^{\beta-1} - \delta_H$

La tasa de crecimiento del stock de capital físico por unidad de trabajo eficiente es:

$$k_{(t)} = s_k y_{(t)} - (n + g + \delta) k_{(t)}$$
(5)

La tasa de crecimiento del stock de capital humano por unidad de trabajo eficiente es:

$$h_{(t)} = s_h y_{(t)} - (n + g + \delta) h_{(t)}$$
(6)

Las ecuaciones (5) y (6) forman un sistema de ecuaciones diferenciales de primer orden en k y h, en el estado estacionario $k_{(t)}$ y $h_{(t)}$ son iguales a cero. Entonces de las ecuaciones (5) y (6):

$$s_k y_{(t)} = (n + g + \delta) k_{(t)}$$
 (5)'

$$s_h y_{(t)} = (n + g + \delta) h_{(t)}$$
 (6)'

De las ecuaciones (5)' y (6)', se obtiene: $\frac{s_k}{s_h} = \frac{k_{(t)}}{h_{(t)}} = \frac{k}{h}$

Esta expresión se utiliza para reemplazar $h_{(t)}$: h en la ecuación (5)' y $k_{(t)}$: k en la ecuación (6)'.

En la ecuación (5)', utilizando la ecuación (4), $y = k^{\alpha}h^{\beta}$:

$$\begin{split} s_k y_{(t)} &= (n+g+\delta) k_{(t)} \\ s_k k^\alpha h^\beta &= (n+g+\delta) k \\ s_k k^\alpha \left(\frac{s_h}{s_k} k\right)^\beta &= (n+g+\delta) k \\ (n+g+\delta) k &= s_k k^\alpha \frac{s_h^\beta}{s_k^\beta} k^\beta \\ k^{1-\alpha-\beta} &= \frac{s_k^{1-\beta} s_h^\beta}{n+g+\delta} \end{split}$$

Implica que *k* converge al estado estacionario:

$$k^* = \left(\frac{s_k^{1-\beta}s_h^{\beta}}{n+g+\delta}\right)^{1/(1-\alpha-\beta)} \tag{7}$$

De manera similar, en la ecuación (6)' se reemplaza $y = k^{\alpha}h^{\beta}$:

$$s_h y_{(t)} = (n + g + \delta)h_{(t)}$$

$$s_h k^{\alpha} h^{\beta} = (n + g + \delta)h$$

$$s_k \left(\frac{s_k}{s_h}h\right)^{\alpha} h^{\beta} = (n + g + \delta)h$$

$$(n + g + \delta)h = s_k \frac{s_k^{\alpha}}{s_h^{\alpha}} h^{\alpha} h^{\beta}$$

$$h^{1-\alpha-\beta} = \frac{s_k^{\alpha} s_h^{1-\alpha}}{n+g+\delta}$$

Implica que h converge al estado estacionario:

$$h^* = \left(\frac{s_k^{\alpha} s_h^{1-\alpha}}{n+\alpha+\delta}\right)^{1/(1-\alpha-\beta)} \tag{8}$$

La relación capital-trabajo en estado estacionario se relaciona positivamente con la tasa de ahorro y negativamente con la tasa de crecimiento de la población. Las predicciones centrales del modelo de Solow se refieren al impacto del ahorro y el crecimiento de la población sobre la renta real. Reemplazando (7) y (8) en (4), se obtiene el valor del ingreso por unidad de trabajo efectivo en el estado estacionario:

$$y^* = (k^*)^{\alpha} (h^*)^{\beta} = \left(\frac{s_k^{1-\beta} s_h^{\beta}}{n+g+\delta}\right)^{\alpha/(1-\alpha-\beta)} \left(\frac{s_k^{\alpha} s_h^{1-\alpha}}{n+g+\delta}\right)^{\beta/(1-\alpha-\beta)}$$

$$y^* = \left(\frac{1}{n+g+\delta}\right)^{\frac{\alpha}{1-\alpha-\beta}} \left(s_k^{1-\beta} s_h^{\beta}\right)^{\frac{\alpha}{1-\alpha-\beta}} \left(\frac{1}{n+g+\delta}\right)^{\frac{\beta}{1-\alpha-\beta}} \left(s_k^{\alpha} s_h^{1-\alpha}\right)^{\frac{\beta}{1-\alpha-\beta}}$$

$$y^* = \left(\frac{1}{n+g+\delta}\right)^{\frac{\alpha}{1-\alpha-\beta}} s_k^{\frac{(1-\beta)\alpha}{1-\alpha-\beta}} s_h^{\frac{\beta\alpha}{1-\alpha-\beta}} \left(\frac{1}{n+g+\delta}\right)^{\frac{\beta}{1-\alpha-\beta}} s_k^{\frac{\alpha\beta}{1-\alpha-\beta}} s_h^{\frac{(1-\alpha)\beta}{1-\alpha-\beta}}$$

$$y^* = \left(\frac{1}{n+g+\delta}\right)^{\frac{\alpha}{1-\alpha-\beta}} s_k^{\frac{(1-\beta)\alpha}{1-\alpha-\beta}} s_k^{\frac{\alpha\beta}{1-\alpha-\beta}} \left(\frac{1}{n+g+\delta}\right)^{\frac{\beta}{1-\alpha-\beta}} s_h^{\frac{\beta\alpha}{1-\alpha-\beta}}$$

$$y^* = \left(\frac{1}{n+g+\delta}\right)^{\frac{\alpha}{1-\alpha-\beta}} s_k^{\frac{\alpha}{1-\alpha-\beta}} \left(\frac{1}{n+g+\delta}\right)^{\frac{\beta}{1-\alpha-\beta}} s_h^{\frac{\beta}{1-\alpha-\beta}}$$

$$y^* = \left(\frac{s_k}{n+g+\delta}\right)^{\frac{\alpha}{1-\alpha-\beta}} \left(\frac{s_h}{n+g+\delta}\right)^{\frac{\beta}{1-\alpha-\beta}}$$

Tomando logaritmos:

$$\ln y^* = \ln \left(\frac{s_k}{n+g+\delta} \right)^{\frac{\alpha}{1-\alpha-\beta}} \left(\frac{s_h}{n+g+\delta} \right)^{\frac{\beta}{1-\alpha-\beta}}$$

$$\ln y^* = \ln \left(\frac{s_k}{n+g+\delta} \right)^{\frac{\alpha}{1-\alpha-\beta}} + \ln \left(\frac{s_h}{n+g+\delta} \right)^{\frac{\beta}{1-\alpha-\beta}}$$

$$\ln y^* = \frac{\alpha}{1-\alpha-\beta} \ln \frac{s_k}{n+g+\delta} + \frac{\beta}{1-\alpha-\beta} \ln \frac{s_h}{n+g+\delta}$$
(10)

Se reemplaza el nivel de producción por unidad efectiva de trabajo, y = Y/AL.

$$\ln \frac{Y}{AL} = \frac{\alpha}{1 - \alpha - \beta} \ln \frac{s_k}{n + g + \delta} + \frac{\beta}{1 - \alpha - \beta} \ln \frac{s_h}{n + g + \delta}$$

$$\ln \frac{Y}{L} = \ln A + \frac{\alpha}{1 - \alpha - \beta} \ln \frac{s_k}{n + g + \delta} + \frac{\beta}{1 - \alpha - \beta} \ln \frac{s_h}{n + g + \delta}$$
(10)'

A crece exógenamente a tasa g:

$$A_{(t)} = A_{(0)}e^{gt}$$

 $\ln A_{(t)} = \ln A_{(0)} + gt$

Se reemplaza ln A, en la ecuación (10)' de productividad:

$$\ln \frac{Y}{L} = \ln A_{(0)} + gt + \frac{\alpha}{1 - \alpha - \beta} \ln \frac{s_k}{n + g + \delta} + \frac{\beta}{1 - \alpha - \beta} \ln \frac{s_h}{n + g + \delta}$$

$$\ln \frac{Y}{L} = \ln A_{(0)} + gt - \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta) + \frac{\alpha}{1 - \alpha - \beta} \ln s_k + \frac{\beta}{1 - \alpha - \beta} \ln s_h$$

$$\ln \left(\frac{Y_{(t)}}{L_{(t)}}\right)^* = \ln y^* = \ln A_{(0)} + gt - \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta) + \frac{\alpha}{1 - \alpha - \beta} \ln s_k + \frac{\beta}{1 - \alpha - \beta} \ln s_h \quad (11)$$

Esta ecuación describe el sendero de crecimiento equilibrado, el nivel de la productividad está en función de $A_{(0)}$, depende negativamente de las tasas de crecimiento de la población, del progreso técnico y de la depreciación $(n + g + \delta)$, depende positivamente de las tasas de ahorro de capital humano s_h , de capital físico s_k y del stock de conocimientos científicos gt.

La ecuación (11) de acuerdo a Mankiw, Romer y Weil (1992) hace dos predicciones. Primero, la presencia de acumulación de capital humano aumenta el impacto de la acumulación de capital físico sobre el ingreso. Segundo, el alto crecimiento de la población reduce el ingreso per cápita porque las cantidades de capital físico y humano deben distribuirse más finamente entre la población. De los determinantes de la productividad se comprueba si los países convergen o no a sus respectivos estados estacionarios.

Dada la ecuación (3), se expresa la producción por unidad de trabajo efectivo en términos de tasas de crecimiento:

$$y_{(t)} = f_{(k_{(t)}, h_{(t)})} = k_{(t)}^{\alpha} h_{(t)}^{\beta}$$
$$\frac{\partial \ln y_{(t)}}{\partial t} = g_y = \alpha g_y + \beta g_y = \alpha \frac{k}{k} + \beta \frac{h}{h}$$

Reemplazando las ecuaciones (5) y (6), la ecuación de tasa de crecimiento se convierte en:

$$g_{y} = \alpha \left(s_{k} k^{\alpha - 1} h^{\beta} - (n + g + \delta) \right) + \beta \left(s_{h} k^{\alpha} h^{\beta - 1} - (n + g + \delta) \right)$$

$$\tag{12}$$

Luego:

$$g_{y} = \alpha \left[s_{k} e^{\ln k^{\alpha - 1}} e^{\ln h^{\beta}} - (n + g + \delta) \right] + \beta \left[s_{h} e^{\ln k^{\alpha}} e^{\ln h^{\beta - 1}} - (n + g + \delta) \right]$$

$$g_{y} = f(\ln k, \ln h) = \alpha \left(s_{k} e^{((\alpha - 1)\ln k + \beta \ln h)} - (n + g + \delta) \right) + \beta \left(s_{h} e^{(\alpha \ln k + (\beta - 1)\ln h)} - (n + g + \delta) \right)$$
(13)

Esta ecuación es válida para que la economía se compare con su estado estacionario. Para su estimación econométrica se realiza su aproximación de Taylor de primer orden alrededor del estado estacionario.

 $f(\ln k, \ln h) = f(\ln k^*, \ln h^*) + f_{\ln k}(\ln k^*, \ln h^*)(\ln k - \ln k^*) + f_{\ln h}(\ln k^*, \ln h^*)(\ln h - \ln h^*)$ (13)' Donde k^*, h^* son los valores de estado estacionario del capital físico y humano por unidad de trabajo efectivo, respectivamente. Se calcula cada uno de los términos de la ecuación (13)':

$$f(\ln k^*, \ln h^*) = \alpha \left(s_k e^{((\alpha - 1)\ln k^* + \beta \ln h^*)} - (n + g + \delta) \right) + \beta \left(s_h e^{(\alpha \ln k^* + (\beta - 1)\ln h^*)} - (n + g + \delta) \right) = 0$$
 (i)
$$\alpha, \beta, \alpha + \beta \in (0, 1)$$

Entonces:

$$s_k e^{((\alpha - 1) \ln k^* + \beta \ln h^*)} - (n + g + \delta) = 0 \rightarrow s_k e^{((\alpha - 1) \ln k^* + \beta \ln h^*)} = (n + g + \delta)$$

$$s_h e^{(\alpha \ln k^* + (\beta - 1) \ln h^*)} - (n + g + \delta) = 0 \rightarrow s_h e^{(\alpha \ln k^* + (\beta - 1) \ln h^*)} = (n + g + \delta)$$

Luego se utiliza lo calculado en (i):

$$f_{\ln k}(\ln k, \ln h) = \alpha s_k e^{((\alpha - 1) \ln k + \beta \ln h)} (\alpha - 1) + \beta s_h e^{(\alpha \ln k + (\beta - 1) \ln h)} \alpha$$

$$f_{\ln k}(\ln k^*, \ln h^*) = \alpha (n + g + \delta)(\alpha - 1) + \beta (n + g + \delta)\alpha$$
(ii)

$$f_{\ln h}(\ln k, \ln h) = \alpha s_k e^{((\alpha-1)\ln k + \beta \ln h)} \beta + \beta s_h e^{(\alpha \ln k + (\beta-1)\ln h)} (\beta - 1)$$

$$f_{\ln h}(\ln k^*, \ln h^*) = \alpha(n+g+\delta)\beta + \beta(n+g+\delta)(\alpha-1)$$
 (iii)

Reemplazando (i), (ii) y (iii) en la ecuación (13)' se obtiene:

$$g_{\nu} = (n+g+\delta)(\beta+\alpha-1)[\alpha(\ln k - \ln k^*) + \beta(\ln h - \ln h^*)]$$
(14)

Dada la ecuación (3), el nivel de ingreso por trabajo efectivo en el estado estacionario es:

$$y^* = f(k^*, h^*) = k^{*\alpha} h^{*\beta}$$
(15)

Luego:

$$[\ln y^* - \ln y] = \alpha [(\ln k^* - \ln k) + \beta (\ln h^* - \ln h)]$$
(16)

Reemplazando la ecuación (16) en la ecuación (14) se obtiene:

$$g_{y} = \frac{\partial \ln y_{(t)}}{\partial t} = (n + g + \delta)(1 - \alpha - \beta)[\ln y^{*} - \ln y]$$
(17)

 $v = (n + g + \delta)(1 - \alpha - \beta)$ es la tasa de convergencia, muestra la rapidez con la que la economía se acerca a su estado estacionario. Este parámetro disminuye cuando aumentan las elasticidades parciales y viceversa, esto se debe a la supuesta productividad marginal decreciente de los factores de producción. Los otros parámetros n y g están vinculados positivamente a la tasa de convergencia. Es independiente de la tasa de ahorro y del nivel de tecnología. La ecuación (17) es una ecuación diferencial de primer orden con coeficiente constante, su solución es:

$$\ln y_{(t)} = (1 - e^{-\nu t}) \ln y^* + e^{-\nu t} \ln y_{(0)}$$

Donde $\ln y_{(0)}$ es el ingreso por trabajador efectivo en fecha inicial y generalizando(t=s) se tiene:

$$\ln y_{(t)} = (1 - e^{-\nu s}) \ln y^* + e^{-\nu s} \ln y_{(t-s)}$$

$$\ln y_{(t)} - \ln y_{(t-s)} = (1 - e^{-\nu s}) (\ln y^* - \ln y_{(t-s)})$$
(18)

De la ecuación (10) se tiene:

$$\begin{split} \ln y^* &= \frac{\alpha}{1 - \alpha - \beta} \ln \frac{s_k}{n + g + \delta} + \frac{\beta}{1 - \alpha - \beta} \ln \frac{s_h}{n + g + \delta} \\ \ln y^* &= \frac{\alpha}{1 - \alpha - \beta} \left(\ln s_k - \ln(n + g + \delta) \right) + \frac{\beta}{1 - \alpha - \beta} \left(\ln s_h - \ln(n + g + \delta) \right) \\ \ln y^* &= \frac{\alpha}{1 - \alpha - \beta} \ln s_k + \frac{\beta}{1 - \alpha - \beta} \ln s_k - \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta) \end{split}$$

En la ecuación (18) se reemplaza la expresión $\ln y^*$:

$$\ln y_{(t)} - \ln y_{(t-s)} = -(1 - e^{-\nu s}) \left(\frac{\alpha}{1 - \alpha - \beta} \ln s_k + \frac{\beta}{1 - \alpha - \beta} \ln s_k - \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta) - \ln y_{(t-s)} \right)$$

$$\ln y_{(t)} - \ln y_{(t-s)} = -(1 - e^{-\nu s}) \ln y_{(t-s)} + (1 - e^{-\nu s}) \frac{\alpha}{1 - \alpha - \beta} \ln s_k + (1 - e^{-\nu s}) \frac{\beta}{1 - \alpha - \beta} \ln s_h - (1 - e^{-\nu s}) \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta)$$
(19)
$$\operatorname{Con} \phi_{(\nu)} = (1 - e^{-\nu s}):$$

$$\ln y_{(t)} - \ln y_{(t-s)} = -\phi_{(v)} \ln y_{(t-s)} + \phi_{(v)} \frac{\alpha}{1 - \alpha - \beta} \ln s_k + \phi_{(v)} \frac{\beta}{1 - \alpha - \beta} \ln s_h - \phi_{(v)} \frac{\alpha + \beta}{1 - \alpha - \beta} \ln(n + g + \delta)$$
 (20)

Esta ecuación es la que se utiliza para estimar la velocidad de convergencia en los estudios empíricos de crecimiento económico para contrastar la hipótesis de convergencia, existe una relación negativa entre la distancia al equilibrio y la velocidad de convergencia. El crecimiento del producto es una función del nivel inicial de ingresos y de los determinantes finales del estado estacionario.

2. Modelo Poskeynesiano

El modelo de Bhaduri y Marglin (1990) se utiliza principalmente para analizar los efectos de los cambios en la distribución factorial del ingreso sobre la demanda agregada. En este modelo son posibles los regímenes de demanda tanto en salarios como en ganancias. Para demostrar la relación entre la participación salarial (Ω) y la producción total (Y) se utiliza el modelo de Stockhammer, Onaran y Ederer (2009) que basan su análisis en el modelo de Bhaduri y Marglin (1990). Tienen como objetivo obtener el efecto de la distribución factorial del ingreso o su medida, participación salarial, sobre el consumo (C), la inversión (I), las exportaciones netas (I) y el gasto público (I).

En el equilibrio de mercado el efecto total sobre la demanda agregada es igual al producto (AD = Y), en forma general el consumo, la inversión, las exportaciones netas se expresan en función del ingreso (Y). La participación salarial (Ω) y algunas otras variables de control (resumidas con z) se suponen independientes de la producción y de la distribución del ingreso. Se considera que el gasto público es una función del producto y de variables exógenas (z_G) , la demanda agregada es igual a:

$$AD = Y = C(Y, \Omega) + I(Y, \Omega, z_I) + NX(Y, \Omega, z_{NX}) + G(Y, z_G)$$
(21)

Los modelos neoclásicos suponen que las derivadas parciales de cada una de las variables con respecto a la distribución factorial del ingreso son iguales a cero, que $\partial C/\Omega = \partial I/\partial\Omega = \partial NX/\partial\Omega = \partial G/\partial\Omega = 0$. El modelo de Bhaduri y Marglin (1990), es más general, no asume esta nulidad. El modelo, ecuación (21), es bastante general en el sentido de que puede reducirse a un modelo keynesiano estándar de economía abierta. Debido a nuestro enfoque en el efecto de los cambios en la distribución factorial del ingreso, los efectos de la política fiscal se excluyen de nuestro análisis.

Para un nivel dado de Y, el efecto total de la distribución del ingreso sobre la demanda de equilibrio ($AD = Y^*$ y aplicando diferencial total con respecto a la participación de salarios (Ω), en la ecuación (21)) es igual a la siguiente expresión:

$$dY = \frac{\partial C}{\partial Y}dY + \frac{\partial C}{\partial \Omega}d\Omega + \frac{\partial I}{\partial Y}dY + \frac{\partial I}{\partial \Omega}d\Omega + \frac{\partial I}{\partial Z_{I}}dZ_{I} + \frac{\partial NX}{\partial Y}dY + \frac{\partial NX}{\partial \Omega}d\Omega + \frac{\partial NX}{\partial Z_{NX}}dZ_{NX} + dG$$

De acuerdo a lo mencionado en nuestro enfoque, la política fiscal se excluye del análisis,

entonces dG = 0, además las otras variables resumidas en z, variables exógenas, se suponen independientes de la producción y de la distribución del ingreso, entonces $dz_I = dz_{NX} = 0$. Se reemplaza en la expresión anterior:

$$dY = \frac{\partial C}{\partial Y} dY + \frac{\partial C}{\partial \Omega} d\Omega + \frac{\partial I}{\partial Y} dY + \frac{\partial I}{\partial \Omega} d\Omega + \frac{\partial NX}{\partial Y} dY + \frac{\partial NX}{\partial \Omega} d\Omega$$

$$dY \left(1 - \frac{\partial C}{\partial Y} - \frac{\partial I}{\partial Y} - \frac{\partial NX}{\partial Y} \right) = \frac{\partial C}{\partial \Omega} d\Omega + \frac{\partial I}{\partial \Omega} d\Omega + \frac{\partial NX}{\partial \Omega} d\Omega$$

$$\frac{dY}{d\Omega} \left(1 - \frac{\partial C}{\partial Y} - \frac{\partial I}{\partial Y} - \frac{\partial NX}{\partial Y} \right) = \frac{\partial C}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial NX}{\partial \Omega}$$

$$\frac{dY^*}{d\Omega} = \frac{\frac{\partial C}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial NX}{\partial \Omega}}{1 - \left(\frac{\partial C}{\partial Y} + \frac{\partial I}{\partial Y} + \frac{\partial NX}{\partial Y}\right)} = \frac{h_2}{1 - h_1}$$
(22)

Donde:

office:

$$h_1 = \frac{\partial C}{\partial Y} + \frac{\partial I}{\partial Y} + \frac{\partial NX}{\partial Y} Y h_2 = \frac{\partial C}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial NX}{\partial \Omega}$$

$$\frac{\partial NX}{\partial \Omega} = \frac{\partial X}{\partial \Omega} - \frac{\partial M}{\partial \Omega}, \frac{\partial NX}{\partial Y} = \frac{\partial X}{\partial Y} - \frac{\partial M}{\partial Y}$$

El valor de $1/(1 - h_1)$ es el multiplicador estándar de la demanda agregada, condición de estabilidad keynesiana y se supone positivo (Bhaduri y Marglin, 1990), para la estabilidad del modelo. El valor del efecto de la variación de los salarios en el crecimiento depende del signo del numerador (h_2) . El signo de h_2 , llamado exceso de demanda privada, determina el signo del diferencial total, da el cambio en la demanda debido a un cambio en la distribución del ingreso a un cierto nivel de ingreso. Su signo no se puede determinar sin una investigación empírica ya que las derivadas parciales tienen signos diferentes.

El efecto total del aumento de participación salarial en el agregado depende del tamaño relativo de las reacciones de los componentes del PIB a los cambios en la distribución del ingreso. Si $\frac{dY^*}{d\Omega}$ es positivo, el régimen de crecimiento será basado en salarios, de lo contrario estará basado en ganancias.

La expresión: $\frac{\partial NX}{\partial Y} = \frac{\partial X}{\partial Y} - \frac{\partial M}{\partial Y}$, dado que no hay efecto del ingreso interno sobre las exportaciones $\frac{\partial X}{\partial Y} = 0$, se reduce a $\frac{\partial NX}{\partial Y} = -\frac{\partial M}{\partial Y}$. Entonces:

$$\frac{dY^*}{d\Omega} = \frac{\frac{\partial C}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial X}{\partial \Omega} - \frac{\partial M}{\partial \Omega}}{1 - \left(\frac{\partial C}{\partial Y} + \frac{\partial I}{\partial Y} - \frac{\partial M}{\partial Y}\right)} \tag{23}$$

Se desarrolla los componentes de la demanda agregada para calcular las derivadas parciales de la ecuación (23). La función de consumo es similar a la función keynesiana ($C = c_0 + cY$), c_0 es el consumo autónomo, c es la propensión marginal a consumir, en la que el ingreso esta divido en salarios (W) y ganancias (R) asociados a diferentes propensiones a consumir, es una función de consumo kaleckiana, la propensión marginal a consumir con los salarios, c_W , es mayor que con las

ganancias, c_R .

Keynes (1936) señalo que la propensión marginal a consumir con los salarios (que en el modelo está representada por los trabajadores) es mayor que la propensión marginal a consumir con las ganancias, $c_W > c_R$; se espera que el consumo aumente cuando aumente la participación salarial, en otras palabras, la elasticidad de consumo con respecto a los salarios es mayor a la elasticidad con respecto a las ganancias. La producción total (Y) es equivalente al salario más la ganancia:

$$Y = W + R \tag{24}$$

$$W = Y\Omega, \quad R = Y(1 - \Omega) \tag{25}$$

$$C = f(R, W) = c_0 + c_R R + c_W W (26)$$

Para determinar el efecto de un cambio en la participación de los salarios en la distribución del crecimiento de la demanda de consumo, se puede partir de la siguiente expresión:

$$C = C_R + C_W \tag{27}$$

C es el consumo total, C_R consumo de las ganancias, C_W consumo de los salarios.

$$C = c_R R + c_W (Y - R)$$

$$C = c_R Y (1 - \Omega) + c_W (Y - Y + Y \Omega)$$

$$C = c_R Y - c_R Y \Omega + c_W Y \Omega$$

$$C = c_R Y + (c_W - c_R) Y \Omega$$

Según Hein y Vogel (2009) el efecto de un cambio en la participación de las ganancias $(1 - \Omega)$ no tiene más efecto sobre el PIB, por lo tanto, asumiendo que no hay interacciones entre los agregados de demanda, se obtiene de la ecuación:

$$\frac{\partial C}{\partial \Omega} = (c_W - c_R)Y \tag{28}$$

Dado que $c_W > c_R$ se espera que el consumo aumente cuando aumente la participación en los salarios (Onaran y Galanis, 2014; Onaran y Obst, 2016; Alarco, 2016; Obst, Onaran y Nikolaidi 2017) estiman el impacto de la participación salarial en el consumo, encuentran que una mayor participación salarial también aumenta el consumo. Esto respalda el argumento de que la propensión marginal a consumir es mayor para los trabajadores que para los capitalistas, $c_W > c_R$.

Además, en la ecuación (26) se calcula el efecto marginal de un cambio en la participación de los salarios sobre la contribución del consumo al crecimiento del PIB, las elasticidades se convierten de acuerdo a la función keynesiana: $C = c_0 + cY$

Se reemplaza Y = W + R, de la ecuación (24):

$$C = c_0 + c_W W + c_R R$$
, $c_0 > 0$, $c_W > 0$, $c_R > 0$

Se reemplaza $W = Y\Omega$, $R = Y(1 - \Omega)$, de la ecuación (25):

$$C = c_0 + c_W Y \Omega + c_R Y (1 - \Omega)$$

$$\frac{\partial C}{\partial Y} = c_W \Omega + c_R (1 - \Omega) \tag{29}$$

Un aumento en la participación salarial aumenta los gastos de consumo privado porque los ingresos salariales están asociados con mayores propensiones al consumo que los ingresos de capital. En Bhaduri y Marglin (1990) la inversión depende de $(1 - \Omega)$ y positivamente de la producción, de manera que: $I = I(Y, \Omega, z_I), \frac{\partial I}{\partial \Omega} < 0, \frac{\partial I}{\partial Y} > 0, \frac{\partial I}{\partial Z_I} = 0$

El efecto positivo de $(1 - \Omega)$ sobre la inversión puede justificarse por el uso de las ganancias retenidas de las empresas para aliviar las restricciones financieras de la inversión o bien pensando en $(1 - \Omega)$ como la tasa de rendimiento esperada de una nueva inversión. El efecto positivo de Y refleja el efecto acelerador, el efecto del crecimiento de la producción sobre la demanda de nuevos equipos de capital. La función de inversión es similar a las funciones de Blecker (2002) y Naastepad (2006):

$$I = \phi_0(Y)^{\phi_1} (1 - \Omega)^{\phi_2} (z_I)^{\phi_3}, \quad \emptyset_0, \emptyset_1, \emptyset_2, \emptyset_3 > 0$$
(30)

 ϕ_0 es una constante positiva, ϕ_1 y ϕ_2 son las elasticidades de la inversión con respecto a la producción total y la participación de las ganancias $(1 - \Omega)$, respectivamente; z_l representa otros factores (exógenos a la inversión). Como señala Blecker, cuando las variables se expresan como tasas de crecimiento los exponentes de la ecuación (30) pueden interpretarse como elasticidades. En la ecuación (30) se calcula $\frac{\partial l}{\partial \Omega}$:

$$\begin{split} \log I &= \log \phi_0(Y)^{\phi_1} (1 - \Omega)^{\phi_2} (z_I)^{\phi_3} \\ \frac{\partial [\log I]}{\partial \Omega} &= \frac{\partial \left[\log \phi_0(Y)^{\phi_1} (1 - \Omega)^{\phi_2} (z_I)^{\phi_3} \right]}{\partial \Omega} \\ \frac{\partial I}{\partial \Omega} &= -\frac{\phi_2}{\Omega} \\ \frac{\partial I}{\partial \Omega} &= -\frac{\phi_2}{\Omega} I \end{split}$$

Se reemplaza $\Omega = W/Y$, de la ecuación (25):

$$\frac{\partial I}{\partial \Omega} = -\phi_2 \frac{I}{W} Y
\frac{\partial [\log I]}{\partial Y} = \frac{\partial \left[\log \phi_0(Y)^{\phi_1} (1 - \Omega)^{\phi_2} (z_I)^{\phi_3}\right]}{\partial Y}$$
(31)

$$\frac{\frac{\partial I}{\partial Y}}{I} = -\frac{\phi_1}{Y}$$

$$\frac{\partial I}{\partial Y} = -\phi_1 \frac{I}{Y}$$
(32)

Un aumento en la participación salarial afecta negativamente los gastos de inversión porque la inversión dependerá positivamente de las ganancias. Una mayor demanda total aumentaría la utilización de la capacidad y estimularía las inversiones ($\emptyset_1 > 0$). Un mayor porcentaje de ganancias tendría un efecto positivo directo sobre las inversiones ($\emptyset_2 > 0$) y la mejora de otros factores (z_1) también aumentaría las inversiones ($\emptyset_3 > 0$).

Las exportaciones (X) están en función de la demanda mundial (Y_W) , la participación en las ganancias $(1 - \Omega)$ y el tipo de cambio real (e):

$$X = \alpha_0 (Y_W)^{\alpha_1} (1 - \Omega)^{\alpha_2} (e)^{\alpha_3}, \quad \alpha_0, \alpha_1, \alpha_2, \alpha_3 > 0$$

$$\log X = \log \alpha_0 (Y_W)^{\alpha_1} (1 - \Omega)^{\alpha_2} (e)^{\alpha_3}$$

$$\frac{\partial [\log X]}{\partial \Omega} = \frac{\partial [\log \alpha_0 (Y_W)^{\alpha_1} (1 - \Omega)^{\alpha_2} (e)^{\alpha_3}]}{\partial \Omega}$$

$$\frac{\partial X}{\partial \Omega} = -\frac{\alpha_2}{\Omega}$$

$$\frac{\partial X}{\partial \Omega} = -\frac{\alpha_2}{\Omega} X$$
(33)

Se reemplaza $\Omega = W/Y$, de la ecuación (25):

$$\frac{\partial X}{\partial \Omega} = -\alpha_2 \frac{X}{W} Y \tag{34}$$

 α_0 es una constante positiva, α_1 y α_2 son las elasticidades de la exportación con respecto a la demanda mundial y la $(1-\Omega)$, respectivamente. Una mayor demanda mundial aumentaría la utilización de la capacidad y estimularía las exportaciones mundiales $(\alpha_1 > 0)$. Un aumento de $(1-\Omega)$ reduce la competitividad internacional al aumentar el costo laboral unitario de la mano de obra en relación con el costo laboral unitario de la mano de obra en el socio comercial $(\alpha_2 > 0)$ y un aumento en e representa la depreciación real de la moneda y generaría un incremento en las exportaciones $(\alpha_3 > 0)$ (Naastepad, 2006; Hein y Tarassow, 2010; Onaran y Obst, 2016; Obst, Onaran y Nikolaidi 2017).

Un aumento en la participación salarial corresponde a un aumento en los costos laborales unitarios y, por lo tanto, a una pérdida de competitividad.

Se define las importaciones (M) de manera similar, excepto que las importaciones dependen del ingreso interno (Y) en lugar del ingreso mundial (Y_W) .

$$M = \gamma_0(Y)^{\gamma_1} (1 - \Omega)^{\gamma_2} (e)^{\gamma_3}, \quad \gamma_0 > 0, \ \gamma_1 > 0, \ \gamma_2 < 0, \ \gamma_3 < 0$$

$$\log M = \log \gamma_0(Y)^{\gamma_1} (1 - \Omega)^{\gamma_2} (e)^{\gamma_3}$$

$$\frac{\partial [\log M]}{\partial \Omega} = \frac{\partial [\log \gamma_0(Y)^{\gamma_1} (1 - \Omega)^{\gamma_2} (e)^{\gamma_3}]}{\partial \Omega}$$

$$\frac{\partial M}{\partial \Omega} = -\frac{\gamma_2}{\Omega}$$

$$\frac{\partial M}{\partial \Omega} = -\frac{\gamma_2}{\Omega} M$$
(35)

Se reemplaza $\Omega = W/Y$, de la ecuación (25):

$$\frac{\partial M}{\partial \Omega} = -\gamma_2 \frac{M}{W} Y
\frac{\partial [\log M]}{\partial Y} = \frac{\partial [\log \gamma_0 (Y)^{\gamma_1} (1 - \Omega)^{\gamma_2} (e)^{\gamma_3}]}{\partial Y}$$
(36)

$$\frac{\frac{\partial M}{\partial Y}}{M} = -\frac{\gamma_1}{Y}$$

$$\frac{\partial M}{\partial Y} = -\frac{\gamma_1}{Y}M$$
(37)

 γ_0 es una constante positiva, γ_1 y γ_2 son las elasticidades de la demanda de la importación con respecto a la demanda interna y $(1-\Omega)$, respectivamente. Una mayor demanda interna aumentaría la utilización de la capacidad y estimularía las importaciones $(\gamma_1 > 0)$. Un aumento de $(1-\Omega)$ incrementa la competitividad nacional al disminuir el costo unitario de la mano de obra en relación con el costo unitario de la mano de obra del socio comercial $(\gamma_2 < 0)$ y una disminución en e representa la apreciación real de la moneda y generaría un incremento en las importaciones $(\gamma_3 < 0)$.

Reemplazando las ecuaciones (28), (29), (31), (32), (34), (36) y (37) en la ecuación (23), se obtiene el impacto de la participación en los salarios sobre el cambio en la producción:

$$\begin{split} \frac{dY^*}{d\Omega} &= \frac{\frac{\partial C}{\partial \Omega} + \frac{\partial I}{\partial \Omega} + \frac{\partial X}{\partial \Omega} - \frac{\partial M}{\partial \Omega}}{1 - \left(\frac{\partial C}{\partial Y} + \frac{\partial I}{\partial Y} - \frac{\partial M}{\partial Y}\right)} \\ \frac{dY^*}{d\Omega} &= \frac{(c_W - c_R)Y - \emptyset_2 \frac{I}{W}Y - \alpha_2 \frac{X}{W}Y + \gamma_2 \frac{M}{W}Y}{1 - \left(c_W \Omega + c_R \left(1 - \Omega\right) - \emptyset_1 \frac{I}{Y} + \frac{\gamma_1}{Y}M\right)} \\ \frac{dY^*}{d\Omega} &= \frac{(c_W - c_R)Y - \emptyset_2 \frac{I}{W}Y - \alpha_2 \frac{X}{W}Y + \gamma_2 \frac{M}{W}Y}{1 - c_W \Omega - c_R \left(1 - \Omega\right) + \emptyset_1 \frac{I}{Y} - \frac{\gamma_1}{Y}M} \end{split}$$

De otra manera, el impacto de la participación en los salarios sobre el cambio porcentual en la producción:

$$\frac{\left(\frac{dY^*}{d\Omega}\right)}{Y} = \frac{\left(c_W - c_R\right) - \emptyset_2 \frac{I}{W} - \alpha_2 \frac{X}{W} + \gamma_2 \frac{M}{W}}{\psi_4} \tag{38}$$

Donde:

$$\psi_1 = 1 - c_W \Omega - c_R (1 - \Omega) + \phi_1 \frac{I}{V} - \frac{\gamma_1}{V} M$$

Se cumple $\psi_1 > 0$, la condición de estabilidad keynesiana. Si $\frac{\left(\frac{dY^*}{d\Omega}\right)}{\gamma}$ es positivo, el régimen de crecimiento estará basado en salarios, de lo contrario estará basado en ganancias. Este resultado depende del signo del numerador de la ecuación (38), si $\frac{\left(\frac{dY^*}{d\Omega}\right)}{\gamma}$ es positivo es porque el impacto positivo del aumento de la participación de los salarios a través de la brecha de las propensiones marginales al consumo, es mayor que su efecto positivo a través de la inversión, las exportaciones y las importaciones $\left((c_W-c_R)>\phi_2\frac{I}{W}+\alpha_2\frac{X}{W}-\gamma_2\frac{M}{W}\right)$, el régimen de crecimiento estará basado en salarios.

Capítulo IV. Marco Metodológico e Información Estadística

1. Estimación en el Modelo Neoclásico

La estimación no tiene en cuenta el último término de la ecuación (20), el acumulado de crecimiento de la población, progreso tecnológico y depreciación de capital $(n+g+\delta)$. Se realiza una especificación simplificada. Primero, el tamaño de la muestra está limitado por la disponibilidad de estadísticas de desigualdad, de capital humano y especialmente porque la estimación de panel requiere una gran cantidad de observaciones, esta especificación ayuda a maximizar los grados de libertad.

Segundo, dentro de la variación del país es poco probable que el crecimiento de la población difiera mucho dentro de los países (se supone que la depreciación del capital es constante y el crecimiento tecnológico no se observa). Tercero, el modelo adoptado es el que se usa típicamente para estimar el efecto de la desigualdad en el crecimiento (Perotti 1996; Forbes, 2000).

En las estimaciones se utiliza el método empírico de Cingano (2014), se estima explícitamente un panel de datos recién ensamblado (desequilibrado) que cubre 16 países de América Latina durante el período 1950-2018. Para el análisis comparativo de los modelos neoclásico y poskeynesiano se utilizan los mismos periodos, 1978-2018.

La ecuación de estimación es ("ecuación (1) del modelo"):

$$\ln y_{i,t} - \ln y_{i,t-s} = \lambda_1 \ln y_{i,t-s} + \lambda_2 Desig_{i,t-s} + \lambda_3 CH_{i,t-s} + \lambda_4 Inv_{i,t-s} + \mu_i + \mu_t + \epsilon_{i,t-s}$$

Una variable endógena es aquella que está determinada dentro del modelo, es decir, existe causalidad en ambos sentidos. El presente estudio es de un modelo con relaciones endógenas, endogeneidad como el efecto del pasado en el presente, tanto en el modelo (variable dependiente) y en las variables independientes o como la causalidad de la relación entre regresores y la variable explicada a lo largo del tiempo. El modelo dinámico incorpora la relación entre la variable dependiente y las independientes de manera bidireccional y a su vez la relación de dependencia entre las variables independientes.

La regresión lineal simple permite explicar un fenómeno económico (variable dependiente) a través de un conjunto de factores (variables independientes), en ese marco, los estudios realizados desde décadas atrás han utilizado Mínimos Cuadrados Ordinarios, sin embargo, esta metodología presenta algunas críticas: no permite el estudio de los efectos individuales, los estimadores son inconsistentes y pueden ser insesgados cuando se trata de analizar varios periodos de tiempo y/o relaciones de endogeneidad. Estas investigaciones han servido y sirven de base para muchos estudios de gran relevancia para la economía.

En las últimas décadas para solucionar algunos de los problemas descritos anteriormente se utiliza la metodología de datos de panel, que permite direccionar simultáneamente en forma independiente el conjunto de datos de un país en el tiempo, lo que se conoce como efectos individuales; numerosos períodos; tratar relaciones de endogeneidad.

La metodología de datos de panel dinámico ofrece la posibilidad de abordar la heterogeneidad de los países y también el uso de varias variables instrumentales para hacer frente a la endogeneidad de las variables del modelo, también conocidas como "variables rezagadas". Requiere de dos condiciones: datos de diferentes observaciones (n) recopilados a lo largo del tiempo (t), además de estas condiciones, también pueden surgir restricciones debido al número de observaciones y la relación entre n y t. La recomendación en datos de panel es que $n \ge t$, con el fin de tener los grados de libertad adecuados y evitar la sobreidentificación.

Labra y Torrecillas (2018) señalan que teniendo en cuenta la construcción de instrumentos en datos de panel dinámico es posible encontrar diferentes estimadores: el primero fue desarrollado por Arellano y Bond (1991), se le conoce como GMM en diferencias, utiliza como instrumentos los rezagos en las diferencias. Posteriormente se desarrolló el estimador que utiliza variables instrumentales, las que se retrasa en diferencias y niveles. Este cambio permitió trabajar con datos de panel para un período corto de tiempo y, por lo tanto, con un número reducido de instrumentos.

Asimismo, se conoce como GMM en Sistema y fue desarrollado por Arellano y Bover (1995), Blundell y Bond (1998) corrige la endogeneidad mediante la introducción de más instrumentos para enormemente mejorar la eficiencia en el modelo, además que transforma los instrumentos para hacerlos no correlacionados (exógeno) con los efectos fijos. Construye un sistema de 2 ecu aciones: el original y la transformada, utiliza desviaciones ortogonales en lugar de restar la observación anterior de la contemporánea; sustrae el promedio de todas las observaciones futuras disponibles de una variable. No importa cuantos espacios, es controlable para todas las observaciones excepto la última, por lo que minimiza la perdida de datos.

Roodman (2006) desarrolló un tercer estimador: xtabond2², sigue la misma lógica que GMM en Sistema, pero introduce más opciones en el uso de los instrumentos, permite trabajar por separado la endogeneidad de las variables dependientes o independientes. Stata tiene algunos estimadores que utilizan las variables instrumentales en nivel y diferencias (xtdpdsysy xtdpd). Sin embargo, xtabond2 tiene algunas ventajas con respecto a estos últimos, permite excluir los rezagos de las variables dependientes como regresores, usa los rezagos en los niveles, aumentando el tamaño de la matriz (ecuación del sistema) y el número de instrumentos de la (s) variable (s) endógena (s).

En la estimación mediante el estimador "GMM en Sistema, xtabond2", las variables

21

² xtabond2 usa variables instrumentales de variable endógena como rezagos en niveles y diferencias. Este no es un comando oficial en Stata, pero es una opción dada por Roodman (2006). Además, el estimador permite hacer el análisis a través de 2 alternativas: una etapa y dos etapas, dependiendo de si la matriz de peso es homocedástico o heterocedástico. La literatura indica que los estimadores de 2 etapas son más eficientes; por tanto, es recomendable el uso de la matriz heterocedástica en este tipo de estimaciones.

explicativas relevantes se miden al comienzo del período de crecimiento con el fin de mitigar las interrelaciones de que la dinámica del PIB retroalimenta la desigualdad. Los resultados se basan en el análisis de la variación en la desigualdad entre países como dentro del país (a lo largo del tiempo). Se obtiene la mayor fuente de variación en la desigualdad al tiempo que tiene en cuenta otros factores explicativos específicos del país. GMM en Sistema permite tener en cuenta los problemas de estimación que surgen debido a la presencia de una variable dependiente rezagada ($\ln y_{i,t-1}$), el llamado "sesgo de Nickell".

El enfoque analiza un conjunto de instrumentos internos construidos a partir de observaciones pasadas de las variables instrumentadas (como desigualdad), proporcionando varios test para la validez de dichos instrumentos. GMM en Sistema es aplicable en la ecuación (1), implica el uso de un mayor número de condiciones de momentos, pero la evidencia Monte Carlo sugiere t pequeño y n grande, porque hay ganancias de precisión y se reduce el sesgo de muestra pequeña. En presencia de heterocedasticidad y correlación serial, un GMM en Sistema 2 etapas es más eficaz que el estimador que analiza la matriz de ponderación utilizando residuos de la primera etapa.

En otras palabras, se utiliza GMM en Sistema porque es un método genérico para estimar parámetros en modelos econométricos, es un estimador de datos de panel dinámico, utiliza las condiciones de momento que son funciones de los parámetros y datos del modelo; controles para endogeneidad de las variables dependiente rezagada, cuando hay correlación entre la variable explicativa y el termino de error en un modelo; para sesgo de variables omitidas, para heterogeneidad de panel no observada, también controla los errores de medición en los datos.

La utilización de GMM en Sistema, en la estimación podría tener dos problemas principales: la proliferación de instrumentos y la autocorrelación serial de errores. Estos problemas serán mayores cuando el panel utilizado está formado por una muestra con un gran período de tiempo y reducido número de observaciones. La proliferación de instrumentos se refiere a la existencia de un nivel superior de instrumentos, esto provocará una sobreidentificación en el modelo como consecuencia de la generación de variables instrumentales en diferencias y niveles.

Para comprobar si el número de instrumentos es adecuado y no produce sobreidentificación, hay dos test disponibles (identifican la existencia de excesos de variables instrumentales): el test de Sargan y el test de Hansen. En el estudio se utiliza el test de Hansen (detecta una sobreidentificación en presencia de una matriz heterocedástica) con las opciones: twostep robust. El test de Hansen solo está disponible para xtabond2 y se informa directamente cuando se utiliza este comando en Stata. Para evitar una sobreidentificación del modelo el número de observaciones debe ser mayor que el número de instrumentos utilizados. Por lo tanto, el número de instrumentos se convierte en una condición necesaria cuando se utiliza paneles. La interpretación del test es la siguiente:

H₀: Las restricciones de sobreidentificación son válidas

Criterios de rechazo/aceptación

$$Prob > x^2 \ge 0.05(5\%)$$

Si la probabilidad es cercana a 1 no significa que los instrumentos sean válidos, sino que probablemente no se está cumpliendo las propiedades asintóticas del test de Hansen (Roodman 2009). Como recomendación la probabilidad $P(x^2)$ debe estar en el rango de $0.05 \le P(x^2) < 0.8$, siendo el óptimo: $0.1 \le P(x^2) < 0.25$. Si $P(x^2)$ está fuera de ese rango el modelo podría estar sobreidentificado y podría necesitar la introducción de algunas restricciones en la generación de instrumentos.

En los modelos endógenos además de la sobreidentificación puede haber autocorrelación de residuos en serie de segundo orden, lo que indica que el instrumento utilizado no es consistente. Dada esta limitación se necesita probar las variables del instrumento con el fin de definir el regresor apropiado. En Stata, por defecto, el test de Arellano y Bond (AR) entrega resultados para el orden 1 y 2 (AR(1)y AR(2)).

Los datos del panel dinámico introducen la condición de que los errores estén no correlacionados. Se debería esperar que la probabilidad de AR(2) (pr > z) no sea significativa al 5%. Esto confirmará la ausencia de autocorrelación serial en los errores en el orden 2. Normalmente, AR(1) debería ser significativo al 5% (AR(1) pr > z < 0.05). La interpretación de esta prueba es la siguiente:

Hipótesis nula: $H_0 = No$ existe autocorrelación.

Para rechazar o no la hipótesis nula se utiliza el valor de la pr > z en AR (2). No se rechaza cuando este valor es mayor que 0.05, los errores no están serialmente correlacionados.

Criterio de no rechazo

La estimación está correcta, desde el punto de vista de autocorrelación, cuando AR(2) > 0.05

En síntesis, en modelos GMM en Sistema³ para que un modelo sea aceptado como válido debe cumplirse las siguientes 3 condiciones necesarias.

Condición 1: Validez de los instrumentos (z: valor informado por el test de Hansen)

$$0.1 \le prob > x^2 = z < 0.8$$

Condición 2: Autocorrelación: z: valor informado por el test de Arellano y Bond.

AR(2) pr > z > 0.05. No hay autocorrelación.

Condición 3: No presencia de sobreidentificación.

Número de instrumentos ≤ Número de países

³ Labra y Torrecillas (2018). Estimating dynamic Panel data. A practical approach to perform long panels.

2. Datos en el Modelo Neoclásico

El análisis se centra en economías relativamente similares, para el período 1950-2018, en el anexo 2 se presenta un resumen estadístico descriptivo del conjunto de datos de esta investigación, para los 16 países de América Latina.

El coeficiente Gini, relacionado a la distribución personal, es un índice de desigualdad económica basado en la comparación de las proporciones acumulativas de la población con las proporciones acumuladas de ingresos que reciben, oscila entre 0 en el caso de la igualdad perfecta y 1 en el caso de la desigualdad perfecta. En el modelo neoclásico se reemplaza el coeficiente Gini por el coeficiente Salarial, un índice de desigualdad derivado de la participación salarial, relacionado a las políticas de distribución del ingreso a favor de los trabajadores en una economía basada en salarios.

Nuestra fuente de datos para el PIB percápita (US\$ a precios constantes 2010) provienen del Banco Mundial, Maddison 2020, 2010; para el coeficiente Gini provienen de CEPALSAT, WIID Base de datos mundial sobre desigualdad de ingresos de Naciones Unidas, Datos Socioeconómicos para América Latina y el Caribe SEDLAC. Respecto al capital humano, los datos de años promedio de educación (población de 25 a 65 años) provienen de Barro y Lee (2016, 2018), Programa de las Naciones Unidas para el Desarrollo PNUD; para el capital físico, los datos de formación bruta de capital (US\$ a precios constantes 2010) provienen del Banco Mundial. Para mayor detalle véase anexo 5: datos del estudio y anexo 1: lista de variables, descripción y fuente.

De los datos del Gini, se observa que la disparidad en la distribución de los ingresos de los hogares ha aumentado en las últimas 7 décadas, en la gran mayoría de países de América Latina, confirman la tendencia a largo plazo hacia una mayor desigualdad. El coeficiente Gini se sitúa alrededor del 0.5 en promedio, muy elevado en comparación con los países OCDE cuyo promedio es de 0.3, en el periodo de 1975 a 2012.

En el análisis comparativo de los modelos neoclásico y poskeynesiano, en el modelo neoclásico se estima la relación del coeficiente de Gini, el logaritmo del PIB percápita, los años promedio de educación (población de 25 a 65 años) y el logaritmo de la formación bruta de capital (se normaliza estadísticamente); en un segundo modelo se incluye todas las variables anteriores, solo se reemplaza el coeficiente Gini por el coeficiente Salarial. El periodo de análisis general es de 1950-2018, en el análisis comparativo se utilizan los mismos periodos, de 1978-2018.

Alarco y Castillo (2020), PNUD⁴ desarrollan el índice de desigualdad económica el cual consta de 3 componentes: el coeficiente Gini de ingreso neto (*CGI_{ir}*, distribución personal del ingreso), el

⁴ Nota técnica de actualización estadística en UNDP. 2018. Statistical Update: Human Development Indices and Indicators. New York. http://hdr.undp.org/en/content/human-development-indices-indicators-2018-statistical-update

coeficiente Gini de la riqueza (CGR_{it}) y la participación salarial en el PIB (distribución factorial del ingreso). Con esta información se construye un índice relativo (IW_{it}) que se obtiene como una razón, en el numerador es la diferencia entre la participación salarial observada de una economía específica i en el año t y la mayor participación salarial registrada (máx.) El denominador es la diferencia entre esta participación salarial (máx.) y la menor participación salarial registrada (mín.).

El índice relativo de la participación salarial se calcula de la siguiente manera:

$$IW_{it} = \frac{\left(\frac{W}{Y}\right)_{it} - \left(\frac{W}{Y}\right)_{min,t}}{\left(\frac{W}{Y}\right)_{máx,t} - \left(\frac{W}{Y}\right)_{min,t}}$$

El índice relativo (IW_{it}) fluctúa entre 0 y 1: Si el índice se acerca a 1, entonces la importancia de la participación salarial en el PIB es mayor, por tanto, hay una menor participación de ingreso de capital. Para ser consistente con la teoría económica, se requiere modificar la dirección del índice relativo de participación salarial, tomando la diferencia de 1 menos el índice relativo (IW_{it}). Por lo tanto, cada vez que crece la participación salarial se reduce el ingreso hacia el factor capital, entonces disminuye el componente factorial de la distribución del ingreso. El índice de desigualdad económica es igual a:

$$I_{it} = \sqrt[3]{(1 - IW_{it}) * CGR_{it} * CGI_{it}}$$

Para nuestro análisis, índice de desigualdad económica relativo de la participación salarial, es el coeficiente Salarial (CS_{it}), un proxy del coeficiente Gini, como medida de desigualdad económica se expresa como:

$$\begin{split} I_{it} &= 1 - IW_{it} \\ I_{it} &= CS_{it} = 1 - \frac{\left(\frac{W}{Y}\right)_{it} - \left(\frac{W}{Y}\right)_{min,t}}{\left(\frac{W}{Y}\right)_{mix,t} - \left(\frac{W}{Y}\right)_{min,t}} \end{split}$$

Para las estimaciones, se utilizan los siguientes valores, de participación salarial:

$$\left(\frac{W}{Y}\right)_{m\acute{a}x,t} = 90$$

$$\left(\frac{W}{Y}\right)_{min,t} = 10$$

Se asume, estos valores para elaborar un índice relativo global, el coeficiente Salarial. Para el máximo histórico, la referencia es Suecia⁵: $\left(\frac{w}{y}\right)_{m\acute{a}x,t}=86$. Para el mínimo histórico, la referencia es la información registrada por la Organización Internacional del Trabajo OIT, con la metodología 2019, es Qatar (2010): $\left(\frac{w}{y}\right)_{mín,t}=11.9$.

⁵ Lars Ahnland (2020) The wage share and government job creation in Sweden, 1900–2016, Labor History, 61:3-4, 228-246. Del gráfico de participación salarial, se utiliza el dato de 1978=86, pag.231.

3. Estimación en el Modelo Poskeynesiano

En las estimaciones se utiliza el método empírico de Oyvat, Öztunali y Elgin (2018), se realizan para 16 países de América Latina en el periodo de 1950-2018, para el análisis comparativo de los modelos neoclásico y poskeynesiano se efectúan estimaciones en el periodo de 1978-2018, periodo donde los modelos neoclásicos (con coeficiente Gini y coeficiente Salarial, que incluyen capital humano y físico) cumplen las 3 condiciones necesarias en GMM en Sistema para que ser aceptados como modelos válidos y los coeficientes estimados son significativos.

Se analiza si un mayor nivel de desigualdad salarial, hacen que un régimen de crecimiento esté basado en salarios o en ganancias. Se busca establecer una relación sólida entre la participación salarial y el logaritmo del PIB, para lo cual se realiza un análisis de series de tiempo, se estima una regresión única para cada país para determinar el tipo de régimen de crecimiento de cada país, se incluyen el tipo de cambio real y los gastos del gobierno como un porcentaje del PIB cada vez que se encuentran vectores cointegrados con estas variables.

Para cada país se utilizan 3 modelos diferentes. En el primero y más general (Modelo 1) se estima la relación entre la participación salarial, el logaritmo del PIB, el tipo de cambio real *RER* y la participación del gasto público en el PIB. Para esto, se verifica el orden de integración de las cuatro variables utilizando el test de Dickey Fuller Aumentado (ADF). Si el orden de integración de todas las variables es 1 y el test de cointegración de Johansen con un nivel de significancia del 5% indica la presencia de integración entre las variables se estima un modelo VECM, donde el número de rezagos se determina de acuerdo con el criterio de información de Akaike (AIC). Se estima los VECM de la siguiente forma:

$$\Delta \log(PIB)_{t} = a_{1}(b_{1}\log(PIB)_{t-1} - b_{2}ws_{t-1} - b_{3}G_{t-1} - b_{4}RER_{t-1} - \mu_{1} - \rho_{1}t)$$

$$+ a_{2}(c_{1}G_{t-1} - c_{2}ws_{t-1} - c_{3}\log(PIB)_{t-1} - c_{4}RER_{t-1} - \mu_{2} - \rho_{2}t)$$

$$+ a_{3}(d_{1}RER_{t-1} - d_{2}ws_{t-1} - d_{3}\log(PIB)_{t-1} - d_{4}G_{t-1} - \mu_{3} - \rho_{3}t)$$

$$+ \sum_{i=1}^{n} \Gamma_{i}\Delta \log(PIB)_{t-i} + \sum_{i=1}^{n} \Lambda_{i}\Delta G_{t-i} + \sum_{i=1}^{n} \Upsilon_{i}\Delta RER_{t-i} + \nu + rt + \varepsilon_{t}$$

$$(39)$$

Donde:

$$\log(PIB)_t = \left(\frac{b_2}{b_1}\right)ws_t + \left(\frac{b_3}{b_1}\right)G_t + \left(\frac{b_4}{b_1}\right)RER_t + \frac{\mu_1}{b_1} + \left(\frac{\rho_1}{b_1}\right)t$$

Es la relación a largo plazo para el logaritmo del *PIB* (log PIB), ws es la participación salarial, *RER* es el tipo de cambio real, G es la participación del gasto público en el *PIB* y t es la tendencia temporal; $a_3 = 0$ si la prueba de cointegración de Johansen sugiere 2 vectores de cointegración, a_2 , $a_3 = 0$ si la prueba de cointegración de Johansen sugiere solo 1 vector de cointegración.

Si al menos una de las variables tiene un orden de integración diferente a 1 (como 0 o 2) o las

4 variables no están cointegradas de acuerdo al test de cointegración de Johansen, se verifica la cointegración utilizando un modelo ARDL. Si las variables están cointegradas, se estima un modelo ARDL en la forma de corrección de errores, donde el número de rezagos se determina nuevamente usando el criterio AIC. Los modelos ARDL se expresan como:

$$\Delta \log(PIB)_{t} = a(b_{1}\log(PIB)_{t-1} - b_{2}ws_{t-1}b_{3}G_{t-1} - b_{4}RER_{t-1} - \mu - \rho t) + \sum_{i=1}^{n_{1}} \Gamma_{i}\Delta \log(PIB)_{t-i} + \sum_{i=1}^{n_{2}} \Lambda_{i}\Delta G_{t-i} + \sum_{i=1}^{n_{3}} \Upsilon_{i}\Delta RER_{t-i} + \nu + r_{1}t + r_{2}f + \varepsilon_{t}$$

$$(40)$$

Donde f es la variable ficticia en los años posteriores al cambio estructural y

$$\log(PIB)_t = \left(\frac{b_2}{b_1}\right)ws_t + \left(\frac{b_3}{b_1}\right)G_t + \left(\frac{b_4}{b_1}\right)RER_t + \frac{\mu}{b_1} + \left(\frac{\rho}{b_1}\right)t$$

Es nuestra relación a largo plazo para el logaritmo del PIB.

Si el uso de ambos procedimientos no produce estimaciones significativas en el primer modelo, entonces se utiliza el segundo modelo (Modelo 2) sin la presencia del gasto público y nuevamente se repite el mismo procedimiento con los enfoques *VECM* y *ARDL*. Finalmente, si el segundo modelo se tiene estimaciones no significativas se utiliza un tercer modelo (Modelo 3) con solo participación salarial y el logaritmo del PIB real. Los países en los que no se detecta una relación a largo plazo, una cointegración entre la participación salarial y el logaritmo del PIB real o un efecto significativo de la participación salarial se eliminan de nuestra muestra.

Un desarrollo básico de la metodología del modelo VECM, en el programa econométrico EViews es iniciar con la aplicación del test de raíz unitaria, Dickey-Fuller Aumentado ADF, para las series, previamente se realiza el análisis de estacionariedad de las series (PIB, participación salarial, tipo de cambio real, gasto público) En cada una de las series de las 16 economías de América Latina, se selecciona la serie y se da doble clic, se utiliza View, se elige el test de raíz unitaria, primero se trabaja en niveles, luego en primeras diferencias o segundas, el test se realiza con constante, en longitud de rezago se utiliza el criterio AIC, máximos rezagos: 2 (de manera general, primero se utiliza 4), luego ok.

En la regresión auxiliar, al hacer el test se analiza si hay autocorrelación, es decir, se revisa el estadístico de Durbin Watson que este comprendido entre 1.80 y 2.20 (de ser necesario, se utiliza la tabla de Durbin Watson), si se cumple ese criterio, se afirma que no hay autocorrelación, entonces tiene validez el test de raíz unitaria en esta ecuación y se procede a analizar la significancia de los coeficientes. Si es significativo, entonces es una situación ideal, un modelo en el cual no hay autocorrelación, hay pocos rezagos, se debe buscar los mínimos posibles y luego analizar la significancia de los coeficientes, finalmente se interpreta los resultados definitivos del test.

Si hay autocorrelación, el test ADF a partir de los resultados es incorrecto, no es válido, lo que

se tiene que hacer para intentar corregirlo es añadir más dinámica al modelo, si el modelo consiste en dos rezagos se utiliza un tercer rezago y se repite el test, luego clic en ok. Se analiza la autocorrelación, si hay autocorrelación invalidaría el test de ADF, si se cumple el test y no hay autocorrelación se tiene que analizar la significancia del último rezago que tiene el modelo, si se da el caso que no es significativo el último rezago lo qué se hace a continuación es quitar ese rezago, puesto que se intenta ver si el modelo queda mejor eliminándolo.

El problema de la autocorrelación es más grave que el hecho de que haya algún rezago no significativo, porque esto último no inválida el test de raíz unitaria simplemente pierde potencia, la autocorrelación sí que la inválida. Todas las series deben ser estacionarias en la primera diferencia I(1) y no en la segunda diferencia I(2), ni I(0). Entonces, doble clic en la serie, luego clic en View, se selecciona el test de raíz unitaria, luego el criterio AIC, máximo rezago: 4, clic en ok. Hipótesis nula H_0 : serie tiene una raíz unitaria, incluir: constante. En nuestros resultados para la serie, es que tiene raíces unitarias, entonces, ¿cómo se rechaza o no la hipótesis nula?

Una manera es revisar el estadístico t (alternativamente se puede interpretar el p-valor que conduce a la misma conclusión (si es mayor que el nivel de significancia: 0.05), la probabilidad de equivocarnos si se rechaza la H_0 es mayor de lo que se está dispuesto a permitir, luego no se rechaza), donde el valor absoluto del estadístico debe ser mayor que los valores críticos indicados en los resultados del test de raíz unitaria. Si se observa el estadístico t que no es más alto que los valores críticos indicados, entonces no se puede rechazar la H_0 .

Si el orden de cointegración de todas las variables es 1 I(1), se utiliza el test de Johansen (evalúa la relación de largo plazo de las series), se selecciona las series cointegradas, y se abren como grupo, luego Quick, estadísticas de grupo, test de cointegración de Johansen, lista de series (escribir las variables, la primera que se escribe será la variable dependiente), especificación del test de cointegración (Allow for linear deterministic tren in data: Se selecciona el modelo: 3. Interceptar (sin tendencia) en CE y probar VAR), clic en ok. En los resultados, se evalúa la H_0 , se rechaza si el estadístico traza es mayor que el valor critico al 5% (alternativamente se puede utilizar p-valor).

Decidir la longitud máxima del rezago es una cuestión empírica, demasiados rezagos generan pérdidas de grados de libertad, coeficientes estadísticamente insignificantes y multicolinealidad, muy pocos rezagos, generan errores de especificación. Se escoge los rezagos utilizando el criterio AIC. Si el orden de cointegración de todas las variables es 1 *I*(1) y el test de Johansen indica presencia de cointegración de las variables, se estima un modelo VECM. Se selecciona las series cointegradas, se abre como VAR, donde el número de rezagos se determina de acuerdo con AIC y la información del test de Johansen, se elige el Vector Error Correction. Se prosigue con el modelo 3: Interceptar (sin tendencia) en CE y probar VAR. Finalmente se interpreta los coeficientes estimados.

4. Datos en el Modelo Poskeynesiano

El análisis se centra en economías relativamente similares para el periodo 1950-2018, en el anexo 2 se presenta un resumen estadístico descriptivo del conjunto de datos del estudio para 16 economías de América Latina. También, se realizan las estimaciones para el periodo de 1978-2018, se homogenizan los periodos y se realiza un análisis comparativo con el modelo neoclásico.

Nuestra fuente de datos para el PIB (US\$ a precios constantes 2010): WDI Indicadores del desarrollo mundial de Banco Mundial, Maddison 2020, 2010. Para datos de participación salarial: Alarco (2017b), Banco Mundial, CEPAL, OIT. El gasto público como porcentaje del PIB y el índice de tipo de cambio efectivo real (2010 = 100) se obtienen de WDI del Banco Mundial. La dimensión temporal de cada país es diferente debido a la disponibilidad limitada de datos, de la serie de gasto público, no hay datos para Ecuador, Panamá y Venezuela. En los países donde si hay estos datos la información es consistente para el periodo de 1978-2018. En América Latina la participación salarial promedio, periodo de 1950-2018, es del 38%, siendo muy bajo en comparación con países OCDE, periodo de 1970-2010, es del 65%, la desigualdad permanece en el largo plazo. Para mayor detalle véase el anexo 5: datos del estudio y anexo 1: lista de variables, descripción y fuente.

Para el cálculo de la participación salarial de América Latina, se utiliza:

$$w_t^{AL} = \frac{\sum_{i=1}^{16} Y_i}{\sum_{i=1}^{16} Y_{it}} w_i$$

Donde: t = 1950, 1951, 1952, ..., 2018

i=1: Argentina, i=2: Bolivia, i=3: Brasil, i=4: Chile, i=5: Colombia, i=6: Costa Rica, i=7: Ecuador, i=8: El Salvador, i=9: Honduras, i=10: México, i=11: Nicaragua, i=12: Panamá, i=13: Paraguay, i=14: Perú, i=15: Uruguay, i=16: Venezuela.

En el análisis comparativo, periodo de 1978-2018, en el modelo poskeynesiano se estima la relación de la participación salarial, el logaritmo del PIB como variable dependiente, el tipo de cambio real *RER* y la participación del gasto público en el PIB (de acuerdo a los modelos tipo 1, 2 y 3). En un segundo modelo se incluyen todas las variables anteriores, solo se reemplaza la participación salarial por un índice de desigualdad económica relativo a la distribución personal, por el Gini salarial. Sin embargo, a diferencia de la participación salarial, el coeficiente Gini está limitado por la disponibilidad de datos, Honduras y Nicaragua casi no tienen datos en este periodo, son retirados del análisis de series de tiempo. En algunos casos, las series se reconstruyen para realizar nuestro análisis.

El índice relativo al coeficiente Gini (GS_{it}) fluctúa entre 0 y 1. Se requiere modificar la dirección del índice, tomando la diferencia de 1 menos índice relativo (GS_{it}) que en este caso es el coeficiente Gini, de manera similar al índice de desigualdad económica relativo a la participación salarial desarrollado en la sección de los datos del modelo neoclásico. El Gini salarial (I_{it}) es un proxy de la participación salarial como medida de desigualdad, se expresa como: $I_{it} = 1 - GS_{it}$

Capítulo V. Estimación y Resultados

1. Resultados de la Estimación en el Modelo Neoclásico

El análisis se centra en la comparación y/o complementariedad de 2 modelos, en el primero se estima la relación del coeficiente Gini, el logaritmo PIB percápita, los años promedio en educación (población de 25 a 65 años) y el logaritmo de la formación bruta de capital (se normaliza estadísticamente), en el segundo modelo se incluyen todas las variables anteriores, solo se reemplaza el coeficiente Gini por el coeficiente Salarial. Los resultados de las estimaciones del estudio muestran que la desigualdad económica tiene un impacto negativo en el crecimiento económico.

Tabla 2
América Latina. El nexo entre desigualdad y crecimiento

$\ln y_{i,t} - \ln y_{i,t-s} = \lambda_1 \ln y_{i,t-s} + \lambda_2 Gini_{i,t-s} + \lambda_3 CH_{i,t-s} + \lambda_4 Inv_{i,t-s} + \mu_i + \mu_t + \epsilon_{i,t-s}$										
$\ln y_{i,t} - \ln y_{i,t-s} = \omega_1 \ln y_{i,t-s} + \omega_2 CS_{i,t-s} + \omega_3 CH_{i,t-s} + \omega_4 Inv_{i,t-s} + \mu_i + \mu_t + \epsilon_{i,t-s}$										
	1958-2018 1978-2018		1978-2018		1978-2018					
	(1)		(2)		(3)		(4)			
	Gini	CS	Gini	CS	Gini	CS	Gini	CS		
$Desigualdad_{t-1}$	-2.733	-1.177	-1.469**	-0.550***	-1.367***	-0.847***	-1.174***	-1.021***		
	(5.088)	(2.616)	(0.763)	(0.431)	(0.924)	(0.936)	(0.969)	(1.280)		
y_{t-1}	-0.018*	-0.033*	-0.046*	-0.026*	-0.078*	-0.159**	-0.031*	-0.186**		
	(0.212)	(0.232)	(0.044)	(0.089)	(0.127)	(0.403)	(0.069)	(0.377)		
Capital humano $_{t-1}$					0.014	-0.142	-0.014	-0.154		
					(0.073)	(0.161)	(0.037)	(0.106)		
Capital físico $_{t-1}$	1 1				-0.501	-0.142	-0.544	-1.520		
the state of the s					(1.954)	(0.161)	(1.360)	(1.790)		
AR(2)	0.566	0.678	0.186	0.213	0.274	0.261	0.295	0.326		
Test Hansen	0.308	0.541	0.616	0.095	0.223	0.299	0.274	0.380		
Observaciones	192	191	128	128	126	126	126	126		
Nº países	16	16	16	16	16	16	16	16		
Nº de instrumentos	16	16	15	12	16	14	16	16		

Nota: La variable dependiente es Δlny_t donde y_t es el PIB pc, y (t-(t-1)) es un periodo de 5 años. La desigualdad se mide por el coeficiente Gini y el coeficiente Salarial. El estimador es GMM en Sistema 2 etapas. Si no existe correlación serial de segundo orden $(AR(2)\,pr>z>0.05)$, el primer retardo como instrumento (Y_{t-2}) sí sería adecuado. El test de Hansen denota el valor p, que permite detectar la sobreidentificación del modelo cuando se ha empleado la matriz de pesos heterocedástica, es válido para estimaciones con 2 etapas. *, **, *** denotan significancia en los niveles de 1,5, 10%, respectivamente.

Los resultados se presentan en 4 columnas de la tabla 2, en cada columna con el coeficiente Gini y el coeficiente Salarial, ordenados por periodos⁶: 1958-2018 y 1978-2018. En las columnas (1) y (2) se presentan las estimaciones en la que crecimiento solo depende del ingreso inicial y la desigualdad económica (representado por el coeficiente Gini y el coeficiente Salarial). En las columnas (3) y (4) el modelo se aumenta con capital humano y capital físico, lo que no afecta los

confirma con los resultados de los modelos en el periodo de 1978-2018.

30

⁶ Para el periodo 1953-2018, los modelos estimados con variable dependiente Δlny_t donde y_t es el PIB pc, (t-(t-1)) es un periodo de 5 años. y la desigualdad se mide con el coeficiente Gini y el coeficiente Salarial, resultan que el Nº de instrumentos (17) > (16) Nº de países, no cumplen una de las 3 condiciones necesarias para ser aceptados como válidos; las otras 2 condiciones si se cumplen. Por tanto, tomando en cuenta los estadísticos analizados, este modelo podría requerir una reespecificación. En este caso n=16 y t=14, a pesar que se cumple que n>t, requisito para la estimación de modelos de panel de datos, se requiere reducir t para tener una mejor estimación, tal como se

hallazgos anteriores, en particular para el periodo 1978-2018 se consolidan los resultados, con la validación completa de los test para GMM en Sistema. La columna (4) analiza lo mismo de la columna (3), cambiando la matriz de variables instrumentales para abordar el problema de "proliferación de instrumentos".

En la columna (1), para el periodo de 1958-2018 relacionado al coeficiente Gini, las condiciones necesarias para que el modelo sea aceptado como válido son las siguientes:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.308 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo.

AR(2) = 0.566. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

16 = 16. El modelo no presenta sobreidentificación.

De los estadísticos analizados sobre la validez de los modelos: GMM en Sistema, se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

Relacionado al coeficiente Salarial, columna (1), se revisa las condiciones necesarias para que el modelo sea aceptado como válido:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.541 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo

AR(2) = 0.678. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

16 = 16. El modelo no presenta sobreidentificación.

Se concluye que este modelo reúne las condiciones necesarias para ser aceptado como válido.

De los resultados en la columna (1), la relación de desigualdad económica y crecimiento económico es negativa para el coeficiente Gini y para el coeficiente Salarial, sin embargo, los coeficientes estimados no son significativos. Estos modelos cumplen las 3 condiciones necesarias para que sean aceptados como válidos, la no significancia de los coeficientes no inválida los modelos, sino que simplemente pierden potencia. Las causas de esta no significancia de los coeficientes se evidencia en los valores elevados de desviación estándar y que t debe reducirse para un mejor resultado, $n \ge t$, $(16 \ge 13)$, a continuación, se estima para el periodo $1978-2018(16 \ge 9)$

En la columna (2), para el periodo de 1978-2018 relacionado al coeficiente Gini, las condiciones necesarias para que el modelo sea aceptado como válido son las siguientes:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.616 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo.

AR(2) = 0.186. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

15 < 16. El modelo no presenta sobreidentificación.

De los estadísticos analizados se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

Relacionado al coeficiente Salarial, columna (2), se revisa las condiciones necesarias para que el modelo sea aceptado como válido:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.095 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo.

AR(2) = 0.213. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

12 < 16. El modelo no presenta sobreidentificación.

Se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

De los resultados en la columna (2), la relación de desigualdad económica y crecimiento económico es negativa para el coeficiente Gini y para el coeficiente Salarial. Los coeficientes son significativos al 5% en el caso del coeficiente Gini y 10% para el coeficiente Salarial.

En la columna (3), para el periodo de 1978-2018 relacionado al coeficiente Gini, las condiciones necesarias para que el modelo sea aceptado como válido son las siguientes:

Condición 1: Validez de los instrumentos (Test de Hansen: óptimo)

 $0.1 \le prob > x^2 = 0.223 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo.

AR(2) = 0.274. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

16 = 16. El modelo no presenta sobreidentificación.

De los estadísticos analizados se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

Relacionado al coeficiente Salarial, columna (3), se revisa las condiciones necesarias para que el modelo sea aceptado como válido:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.299 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo.

AR(2) = 0.261. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

14 < 16. El modelo no presenta sobreidentificación.

Se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

De los resultados en la columna (3), la relación de desigualdad económica y crecimiento económico es negativa para el coeficiente Gini y para el coeficiente Salarial, incluye capital humano y capital físico. Los coeficientes son significativos al 10% en el caso del coeficiente Gini y 10% para el coeficiente Salarial.

En la columna (4), para el periodo de 1978-2018 relacionado al coeficiente Gini, las condiciones necesarias para que el modelo sea aceptado como válido son las siguientes:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.274 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo

AR(2) = 0.295. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

16 = 16. El modelo no presenta sobreidentificación.

De los estadísticos analizados se concluye que este modelo reúne las condiciones necesarias para ser aceptado como válido.

Relacionado al coeficiente Salarial, columna (4), se revisa las condiciones necesarias para que el modelo sea aceptado como válido:

Condición 1: Validez de los instrumentos (Test de Hansen: aceptable)

 $0.1 \le prob > x^2 = 0.380 < 0.8$. Los instrumentos empleados son válidos.

Condición 2: Autocorrelación AR(2) significativo

AR(2) = 0.326. No se rechaza la H_0 , entonces no hay autocorrelación.

Condición 3: Número de instrumentos ≤ Número de países

16 = 16. El modelo no presenta sobreidentificación.

Se concluye que este modelo reúne las 3 condiciones necesarias para ser aceptado como válido.

De los resultados en la columna (4), la relación de desigualdad económica y crecimiento económico es negativa para el coeficiente Gini y para el coeficiente Salarial, incluye capital humano y capital físico. Los coeficientes son significativos al 10% en el caso del coeficiente Gini y 10% para el coeficiente Salarial.

Entonces, en el modelo:

$$\ln y_{i,t} - \ln y_{i,t-s} = \lambda_1 \ln y_{i,t-s} + \lambda_2 Gini_{i,t-s} + \lambda_3 CH_{i,t-s} + \lambda_4 Inv_{i,t-s} + \mu_i + \mu_t + \epsilon_{i,t-s}$$

sale todo bien, λ_1 , λ_2 , es lo que se esperaba en los coeficientes estimados y cuando se reemplaza con el coeficiente Salarial no cambia de signo, que según el modelo de convergencia del modelo

neoclásico ω_1 debe ser negativo y sale negativo y eso no cambia cuando utilizo λ_1 .

$$\ln y_{i,t} - \ln y_{i,t-s} = \omega_1 \ln y_{i,t-s} + \omega_2 CS_{i,t-s} + \omega_3 CH_{i,t-s} + \omega_4 Inv_{i,t-s} + \mu_i + \mu_t + \epsilon_{i,t-s}$$
Los coeficientes estimados $\hat{\omega}_1, \hat{\omega}_2$ son negativos y significativos.

Por ello, con ambas variables de desigualdad económica impacta negativamente en el crecimiento económico, estableciéndose de esa manera una comparación e interrelación del modelo neoclásico con el modelo poskeynesiano. Como se esperaba, después de realizar los test y desarrollarlos de manera explícita, los coeficientes estimados del coeficiente Gini y coeficiente Salarial $\hat{\lambda}_2, \hat{\omega}_2$ son negativos en el periodo de 1958-2018 y en particular de 1978-2018 donde el modelo incluye el capital humano y físico, son negativos y significativos, nuestro hallazgo confirma la relación negativa entre la desigualdad económica y crecimiento económico. Un segundo hallazgo importante en el modelo, es que $\hat{\lambda}_1$, $\hat{\omega}_1$ son negativos tienen el mismo signo y son significativos al 1% en todos los casos, entonces hay convergencia.

El impacto de la desigualdad económica en el crecimiento es enorme, tomando los coeficientes estimados en la tabla 2, columna (3), reducir la desigualdad en 1% de Gini se traduciría en un aumento del crecimiento acumulativo de 1.367% en los siguientes 5 años (ó 0.27% por año), interpretar los coeficientes estimados permite recuperar el efecto implícito de los cambios en la desigualdad a largo plazo a medida que la economía converge al nuevo estado estacionario.

Estimar la ecuación (20) permite inferir el impacto de cada determinante de crecimiento en el patrón de crecimiento posterior. El coeficiente estimado $\widehat{\lambda}_1$ sobre la producción rezagada en la ecuación (1) permite recuperar la velocidad de convergencia, $\phi_{(v)} = (1 - e^{-vs})$: $\widehat{v} = -\ln(1 + \widehat{\lambda}_1)/s$, con s = 5. Además, el coeficiente estimado sobre un determinante de crecimiento dado $Z(\widehat{\lambda}_1, \text{ como})$ en el caso de desigualdad en la ecuación (1)) permite calcular el impacto del determinante de crecimiento en el nivel de producto, en estado estacionario $(\Delta \ln \widehat{y}^* = -(\widehat{\lambda}_2/\widehat{\lambda}_1) * \Delta Z)$. De los coeficientes estimados en la columna (3), una reducción de 1 punto Gini en la desigualdad aumentaría el nivel de estado estacionario del PIB percápita en 17.5% $(\Delta \ln \widehat{y}^*\% = -(\widehat{\lambda}_2/\widehat{\lambda}_1) * (-1))$.

Con las 2 estimaciones anteriores y la ecuación (18) se puede calcular el efecto implícito de un cambio en la desigualdad en el crecimiento a largo plazo. Al diferenciar la ecuación (18) se obtiene una expresión para el cambio porcentual en el PIB en el año t (que es s años antes del período actual) en función de $\Delta \ln y^*$: $\Delta \ln y_{(t)} = (1 - e^{-\hat{v}s})(\Delta \ln y^*)$. Para la estimación con el Gini de la columna (3), la velocidad estimadade convergencia es: $\hat{v} = -\ln(1 + \hat{\chi}_1)/5 = 0.0164$ y el impacto de la desigualdad en el crecimiento es: $\Delta \ln y_{(t)} = (1 - e^{-0.0164 *5})(0.175) = 0.0138$. Esta estimación implica que una reducción de 1% del coeficiente Gini aumentaría el PIB percápita en 1.38%, un 9.66% después de 35 años (un aumento en el crecimiento promedio de 0.28% por año, en el estudio de Cingano (2014) se tiene un aumento en el crecimiento promedio de 0.12% por año, para países OCDE).

2. Resultados de la Estimación en el Modelo Poskeynesiano

En el modelo poskeynesiano con variable dependiente log (PIB) y las otras variables, participación salarial en el PIB, tipo de cambio real, participación del gasto público en el PIB, se confirma (para la participación salarial y para el Gini salarial) que la mayoría de países registran un régimen de crecimiento basado en salarios. Los resultados de las estimaciones en los modelos VECM y los modelos ARDL se presentan en la tabla 3 y tabla 4 respectivamente. Para cada país se observa en la tabla 3, los tipos de modelos utilizados, el coeficiente estimado de participación salarial de largo plazo, su desviación estándar, el periodo de estimación y el régimen de crecimiento.

Tabla 3. Resultados estimados en modelos VECM - PS

$c \log(DIR) = c$	DFD	$\begin{array}{c c} _{1} - b_{2}Ws_{t-1} - b_{3}G_{t-1} - \\ _{2} - \rho_{2}t) + a_{3}(d_{1}RER_{t-2} - \\ G_{t-i} + \sum_{i=1}^{n} Y_{i}\Delta RER_{t-i} - \\ LP \end{array}$	$b_4 RER_{t-1} - \mu_1 - \rho_1 t) + b_4 RER_{t-1} - d_1 \log(PIB) + v + rt + \varepsilon_t$	$(c_1G_{t-1} - C_2)$ $(c_1G_{t-1} - C_4G_{t-1} - C_2)$	$ \mu_3 - \rho_3 t) + $	
País	Tipo de modelo	LP Coeficiente de participación salarial	LP Desviación estándar de participación salarial	Periodo de estimación	Régimen de crecimiento	
Argentina	3	0.326894**	0.15737	1955-2018	Salarios	
8	2	0.138523*	0.03322	1978-2018	5 did 103	
Bolivia	2	-0.102782*	0.01071	1962-2018	Ganancias	
	2	-0.110882*	0.01254	1978-2018	Gunanoras	
Brasil	2	0.798378***	0.58082	1962-2018	Salarios	
	2	0.245988*	0.06513	1978-2018	Sularios	
Chile	2	1.194297*	0.30923	1963-2018	Salarios	
	3	0.695131*	0.22965	1978-2018	Salarios	
Costa Rica	2	0.803439*	0.12921	1962-2018	Salarios	
Costa reca	1	0.726378*	0.19875	1978-2018	Salarios	
Ecuador	2	0.115739**	0.05090	1969-2018	C-1	
Ledddoi	2	0.028376*	0.00233	1978-2018	Salarios	
El Salvador	2	-1.748993*	0.42331	1968-2018	- ·	
El Sulvacol	2	-0.041894*	0.01125	1978-2018	Ganancias	
Honduras	2	0.084690*	0.01131	1962-2018	Salarios	
Trondurus	2	0.051142*	0.01115	1978-2018	Salarios	
México	2	-0.212474*	0.02840	1974-2018	Ganancias	
Mexico	1	-0.139526*	0.00925	1978-2018	Ganancias	
Nicaragua	2	-0.072631*	0.02476	1971-2018	С .	
Titlearagua	2	-1.174615*	0.21666	1978-2018	Ganancias	
Panamá	2	-0.067336*	0.00495	1962-2018	Camanai	
1 miniin	2	-0.043873*	0.00773	1978-2018	Ganancias	
Paraguay	2	-1.843266**	0.82189	1967-2018	C	
1 uruguuy _	2	-0.552899*	0.19966	1978-2018	Ganancias	
Perú _	2	0.268645*	0.06089	1965-2018	Salarios	
1 514	2	0.267625*	0.07602	1978-2018	Saiarios	

Nota: *, **, *** denotan significancia en los niveles de 1, 5, 10%, respectivamente.

-0.018205***

0.181758*

2

Uruguay

El coeficiente estimado positivo (negativo) implica un crecimiento basado en salarios (basado

0.01090

0.03815

1966-2018

1978-2018

Ganancias

Salarios

en ganancias), la variable dependiente es el log (*PIB*), el Modelo 1 incluye la participación salarial en el PIB, el tipo de cambio real y la participación de los gastos del gobierno en el PIB, el Modelo 2 incluye la participación salarial, el tipo de cambio real y el Modelo 3 incluye solo la participación salarial.

Se verifica el orden de integración de las series, que sean de orden 1 I(1) a nivel individual con el test ADF y para la cointegración conjunta o relación de largo plazo entre todas las variables del modelo, para cada país se utiliza el test de cointegración de Johansen, luego se realiza las estimaciones en los modelos VECM, para el número de rezagos se utiliza el criterio AIC y para los casos donde el orden de integración es diferente de 1 I(1) o no se cumplen la cointegración conjunta, se utilizan modelos ARDL, tabla 4, donde el número de rezagos se determina por el criterio AIC.

En la mayoría de los resultados de las estimaciones ya sean por modelos VECM o por modelos ARDL los modelos son tipo 2, que incluye la participación salarial, el tipo de cambio real y el log (PIB) como variable dependiente. Los coeficientes estimados en la mayoría de los casos son significativos al 1%.

Tabla 4. Resultados estimados en modelos ARDL - PS

$\Delta \log(PIB)_t = a(b_1 \log(PIB)_{t-1} - b_2 w s_{t-1} b_3 G_{t-1} - b_4 RER_{t-1} - \mu - \rho t) + \sum_{i=1}^{n_1} \Gamma_i \Delta \log(PIB)_{t-i} + \sum_{i=1}^{n_2} \Lambda_i \Delta G_{t-i} + \frac{1}{2} \sum_{i=1}^{n_2} \Gamma_i \Delta $										
$\sum_{i=1}^{n_3} Y_i \Delta RER_{t-i} + \nu + r_1 t + r_2 f + \varepsilon_t$										
País Tipo de modelo Coeficiente de participaciónsalarial LR Desviación estándar de participación salarial Periodo de estimación Régimen de crecimiento										
Colombia	2	0.091615**	0.042148	1960-2018	Salarios					
Coloniola	2	0.115096*	0.021209	1978-2018	Salarios					
Venezuela	2	0.039105*	0.014241	1978-2018	Salarios					
América	3	0.158811*	0.052707	1962-2018	Salarios					
Latina	3	0.451747***	0.265968	1978-2018	Saidi 108					

Nota: *, **, *** denotan significancia en los niveles de 1, 5, 10%.

Las economías con regímenes de crecimiento basados en salarios son Argentina para los periodos 1955-2018 y 1978-2018, Brasil 1962-2018 y 1978-2018, Chile 1963-2018 y 1978-2018, Colombia 1960-2018 y 1978-2018, Costa Rica 1962-2018 y 1978-2018, Ecuador 1969-2018 y 1978-2018, Honduras 1962-2018 y 1978-2018, Perú 1965-2018 y 1978-2018, Uruguay 1978-2018, Venezuela 1978-2018.

América Latina para los periodos de 1962-2018 y 1978-2018 registra un régimen de crecimiento basado en salarios, las políticas que mejoran las condiciones de los asalariados tendrían un impacto positivo sobre la demanda, la producción, el empleo y la acumulación de capital. Algunas políticas recomendadas pueden ser el incremento del salario mínimo o la mejora en la estructura sindical y el poder de negociación de los trabajadores.

Las economías con regímenes de crecimiento basados en ganancias son Bolivia para los

periodos de 1962-2018 y 1978-2018, El Salvador 1968-2018 y 1978-2018, México 1974-2018 y 1978-2018, Nicaragua 1971-2018 y 1978-2018, Panamá 1962-2018 y 1978-2018, Paraguay 1967-2018 y 1978-2018, Uruguay 1966-2018. El único país que cambio de régimen de crecimiento ha sido Uruguay, de un régimen de crecimiento basado en ganancias, periodo 1966-2018 a un régimen de crecimiento en salarios, periodo de 1978-2018.

En el periodo de 1978-2018, las economías basadas en salarios son Argentina, Brasil, Chile, Colombia, Costa Rica, Ecuador, Honduras, Perú, Uruguay y Venezuela. Serían adecuadas, políticas de distribución a favor de los trabajadores. Las economías basadas en ganancias son Bolivia, El Salvador, México, Nicaragua, Panamá y Paraguay. Las políticas de distribución deben estar a favor del capital, en un "neoliberalismo en teoría", las ganancias más altas conducen a un mejor desempeño macroeconómico, los mayores márgenes de ganancias atraerán la inversión y llevarán al crecimiento.

Por otro lado, América Latina en conjunto está basada en salarios, esto complementa los resultados de la estimación del modelo neoclásico, donde la desigualdad económica en América Latina tiene una relación negativa con el crecimiento económico. En las estimaciones se reemplaza la participación salarial por el Gini salarial para el periodo de 1978-2018, se verifica el signo de los coeficientes que nos permite confirmar los resultados anteriores, con la participación salarial.

El coeficiente estimado positivo (negativo) implica un crecimiento basado en salarios (basado en ganancias), la variable dependiente es el log (*PIB*), el Modelo 1 incluye el Gini salarial, el tipo de cambio real y la participación de los gastos del gobierno en el PIB, el Modelo 2 incluye el Gini salarial, el tipo de cambio real y el Modelo 3 incluye solo Gini salarial. Los resultados de los modelos VECM y los modelos ARDL se presentan en tabla 5 y tabla 6 respectivamente. Para cada país se observa en la tabla 5, los tipos de modelos utilizados, el coeficiente estimado del Gini salarial de largo plazo, su desviación estándar, el periodo de estimación y el régimen de crecimiento.

Tabla 5. Resultados estimados en modelos VECM - GS

 $A\log(DD) = a \left(b \log(DD) \right) \quad b \text{ and } \quad b \in DD \quad \text{if } \quad a \in C$

$\Delta \log(PIB)_t = a_1(b_1)\log(PIB)_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - c_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - \rho_1t) + a_2(c_1G_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_4RER_{t-1} - \mu_1 - b_1t) + a_2(c_1G_{t-1} - b_2ws_{t-1} - b_3G_{t-1} - b_3G_{t-$										
$c_3\log(PIB)_{t-1} - c_4RER_{t-1} - \mu_2 - \rho_2t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_2ws_{t-1} - d_3\log(PIB)_{t-1} - d_4G_{t-1} - \mu_3 - \rho_3t) + a_3(d_1RER_{t-1} - d_3ws_{t-1} $										
$\sum_{i=1}^{n} \Gamma_i \Delta \log(PIB)_{t-i} + \sum_{i=1}^{n} \Lambda_i \Delta G_{t-i} + \sum_{i=1}^{n} Y_i \Delta RER_{t-i} + \nu + rt + \varepsilon_t$										
País	Tipo de modelo	LP Coeficiente Gini Salarial	LP Desviación estándar de Gini Salarial	Periodo de estimación	Régimen de crecimiento					
Argentina	2	27.50464**	13.3887	1978-2018	Salarios					
Bolivia	2	-20.49554*	4.60777	1978-2018	Ganancias					
Brasil	3	11.51421*	3.40821	1978-2018	Salarios					
Chile	3	17.66882*	4.62564	1978-2018	Salarios					
Colombia	2	42.13546*	8.71937	1978-2018	Salarios					
Ecuador	2	4.837647*	1.72044	1978-2018	Salarios					
Perú	1	4.286452**	2.08808	1978-2018	Salarios					
Uruguay	1	-1.885787*	0.58757	1978-2018	Ganancias					
América Latina	3	8.601964**	4.32526	1978-2018	Salarios					

Nota: *, **, *** denotan significancia en los niveles de 1, 5, 10%.

En este caso a diferencia de la participación salarial, el coeficiente Gini (utilizado para elaborar el Gini salarial) está limitado por la disponibilidad de datos, en particular Honduras y Nicaragua casi no tienen datos en este periodo, 1978-2018, son retirados del análisis de series de tiempo. En el caso de Panamá los coeficientes estimados son no significativos. En el periodo de 1978-2018, la mayoría de países registran un régimen de crecimiento basado en salarios y se confirma los resultados que se obtiene con la participación salarial, estableciéndose una interrelación comparativa con el modelo neoclásico, aunque en este caso hay más países donde se estima con modelos ARDL.

Tabla 6. Resultados estimados en modelos ARDL - GS

$\Delta \log(PIB)_{t} = a(b_{1}\log(PIB)_{t-1} - b_{2}ws_{t-1}b_{3}G_{t-1} - b_{4}RER_{t-1} - \mu - \rho t) + \sum_{i=1}^{n_{1}} \Gamma_{i}\Delta \log(PIB)_{t-i} + \sum_{i=1}^{n_{2}} \Lambda_{i}\Delta G_{t-i} + \sum_{i=1}^{n_{3}} \Upsilon_{i}\Delta RER_{t-i} + \nu + r_{1}t + r_{2}f + \varepsilon_{t}$										
País	Tipo de modelo	LP Coeficiente Gini Salarial	LP Desviación estándar de Gini Salarial	Periodo de estimación	Régimen de crecimiento					
Costa Rica	1	16.75881*	2.261541	1978-2018	Salarios					
El Salvador	2	-3.572472*	0.697161	1978-2018	Ganancias					
México	2	-22.19067**	9.719562	1978-2018	Ganancias					
Paraguay	2	-22.40640**	9.751455	1978-2018	Ganancias					
Venezuela	2	15.36022*	5.197101	1978-2018	Salarios					

Nota: *, **, *** denotan significancia en los niveles de 1, 5, 10%.

En la mayoría de las estimaciones ya sean por modelos VECM o por modelos ARDL, los modelos son tipo 2, que incluyen el Gini salarial, el tipo de cambio real y el \log (PIB) como variable dependiente. Se verifica el orden de integración de las series, que sean de orden 1 I(1) a nivel individual con el test ADF y para la cointegración conjunta o relación de largo plazo entre todas las variables del modelo para cada país se utiliza el test de cointegración de Johansen.

Luego se realizan las estimaciones en los modelos VECM, para el número de rezagos se utiliza el criterio AIC y para los casos donde el orden de integración es diferente de I(1) o no se cumplen la cointegración conjunta se utiliza los modelos ARDL, tabla6, donde el número de rezagos se determina por el criterio AIC. Los coeficientes estimados en la mayoría de los casos son significativos al 1%.

En el periodo de 1978-2018, de la misma manera que los resultados con la participación salarial, en el caso del Gini salarial las economías que tienen un régimen de crecimiento basado en salarios son Argentina, Brasil, Chile, Colombia, Costa Rica, Ecuador, Honduras, Perú, Uruguay y Venezuela. Las economías con régimen de crecimiento basados en ganancias son Bolivia, El Salvador, México, Nicaragua, Panamá y Paraguay. América Latina en conjunto registra un régimen de crecimiento basada en salarios, de igual manera que con la participación salarial, complementa los resultados de la estimación del modelo neoclásico, donde la desigualdad económica en América Latina tiene una relación negativa con el crecimiento económico.

Capítulo VI. Conclusiones

Este estudio analiza la relación entre la desigualdad económica y el crecimiento económico para 16 economías de América Latina y la región en su conjunto entre 1950-2018. Se han utilizado 2 enfoques teóricos: el neoclásico y el poskeynesiano, en términos generales los resultados son similares, se muestra con las estimaciones econométricos que reducir la desigualdad económica contribuirá a un mayor crecimiento económico y que la mayoría de economías de América Latina tienen un régimen de crecimiento basado en salarios.

En el periodo de 1978-2018, en el modelo neoclásico con medida de desigualdad: coeficiente Gini y coeficiente Salarial, del análisis econométrico, la mayor desigualdad tiene un impacto negativo y es estadísticamente significativo en el crecimiento. Una reducción de 1% del Gini aumentaría el PIB percápita en 1.38%, 9.66% después de 35 años, con un crecimiento promedio de 0.28% por año. En el modelo poskeynesiano, con medida de desigualdad: participación salarial y Gini salarial, se confirma que la mayoría de economías están basadas en salarios: Argentina, Brasil, Chile, Colombia, Costa Rica, Ecuador, Honduras, Perú, Uruguay y Venezuela. Por otro lado, Bolivia, El Salvador, México, Nicaragua, Panamá y Paraguay registran un crecimiento basado en ganancias.

Las economías con regímenes de crecimiento basados en salarios son: Argentina 1955-2018 y 1978-2018, Brasil 1962-2018 y 1978-2018, Chile 1963-2018 y 1978-2018, Colombia 1960-2018 y 1978-2018, Costa Rica 1962-2018 y 1978-2018, Ecuador 1969-2018 y 1978-2018, Honduras 1962-2018 y 1978-2018, Perú 1965-2018 y 1978-2018, Uruguay 1978-2018, Venezuela 1978-2018 y América Latina 1962-2018 y 1978-2018. Con regímenes de crecimiento basados en ganancias son: Bolivia 1962-2018 y 1978-2018, El Salvador 1968-2018 y 1978-2018, México 1974-2018 y 1978-2018, Nicaragua 1971-2018 y 1978-2018, Panamá 1962-2018 y 1978-2018, Paraguay 1967-2018 y 1978-2018, Uruguay 1966-2018.

La desigualdad económica tiene un impacto negativo y significativo en el crecimiento económico en América Latina, lo que sugiere que existe convergencia y además se tiene un régimen de crecimiento basado en salarios. Entonces, las políticas redistributivas que logran una mayor igualdad en el ingreso no tienen consecuencias adversas para el crecimiento y hay espacio para políticas dirigidas al crecimiento y la distribución del ingreso simultáneamente.

Por lo anterior, en los últimos años y más aún en la actual pandemia, se ha dado el aumento y gran interés en temas de desigualdad, en América Latina la mayor desigualdad económica ha permanecido durante el periodo de estudio, 1950-2018. Estas señalarían que el impacto de la desigualdad en el crecimiento económico se intensificaría, podría tener muchos efectos negativos: el aumento de la pobreza, aumento de la estratificación social y muy probables crisis económicas. Por lo tanto, es una decisión política a tomar muy en cuenta en el progreso de los países latinoamericanos.

Capítulo VII. Inferencias de Política Económica

En ambos enfoques teóricos, neoclásico y poskeynesiano, la desigualdad económica impacta negativamente: una mayor desigualdad económica genera una reducción en el crecimiento económico y la mayoría de países de América Latina tienen un régimen de crecimiento basado en salarios, por tanto, el objetivo de política debe ser la reducción de la desigualdad económica para contribuir a un mayor crecimiento económico y estabilidad económica. En el modelo neoclásico, el análisis econométrico sugiere que la mayor desigualdad tiene un impacto negativo, es estadísticamente significativo en el crecimiento y que las políticas redistributivas que logran una mayor igualdad en el ingreso no tienen consecuencias adversas para el crecimiento.

En el modelo poskeynesiano, la mayoría de economías tienen un régimen de crecimiento basada en salarios, entonces, hay espacio para políticas dirigidas al crecimiento y la distribución del ingreso simultáneamente. La distribución factorial del ingreso puede ser un importante impulsor de la desigualdad, cuando la remuneración del mercado de trabajo y capital es muy desigual entre los individuos, como lo ha sido en las últimas décadas, la distribución personal de los ingresos tiende a polarizarse poniendo en peligro la cohesión social.

Entonces, se pueden implementar políticas de distribución del ingreso a favor de los trabajadores, en una economía basada en salarios permiten mejorar la distribución factorial del ingreso y esta a su vez a la distribución personal del ingreso, pero tener presente que los regímenes de crecimiento responden a una institucionalidad que cambia en el tiempo. Una vía política para reducir la desigualdad implicaría reformas en las políticas fiscales y de ganancias, por lo tanto, los gobiernos pueden considerar evaluar sus sistemas impositivos para garantizar que las personas más ricas contribuyan con una parte justa de la carga impositiva.

La evidencia sugiere fuertemente que la mayor desigualdad económica obstaculiza la capacidad de las personas de bajos ingresos para invertir en su capital humano, tanto en términos del nivel de educación, pero aún más en términos de calidad de la educación. Esto implicaría que la política educativa debería centrarse en mejorar el acceso de los grupos de bajos ingresos, cuyos resultados educativos no solo son en promedio peores que los de los grupos de ingresos medios y altos, sino que también son más sensibles al aumento de la desigualdad.

Por lo tanto, se debe establecer una agenda integral para reducir la desigualdad económica, políticas redistributivas, reformas fiscales y de ganancias, políticas dirigidas al crecimiento y a la distribución del ingreso simultáneamente que impliquen un mayor gasto público y salarios más altos para estimular el crecimiento y mejorar la distribución. Además, políticas favorables al trabajo contribuirían positivamente al crecimiento económico, esto puedo darse a través del incremento del salario mínimo o mejoras en la estructura sindical y el poder de negociación de los trabajadores.

Referencias Bibliográficas

- Alarco, G. (2014). Participación salarial y crecimiento económico en América Latina, 1950-2011. Revista CEPAL 113, 43-60.
- Alarco, G. (2016). Distribución factorial del ingreso y regímenes de crecimiento en América Latina, 1950–2012. Revista Internacional del Trabajo, 135(1), 79-103.
- Alarco, G. (2017b). Ciclos distributivos y crecimiento económico en América Latina, 1950-2014. Cuadernos de Economía, 36 (72), 1-42.
- Alarco, G. y Castillo, C. (2018). Distribución factorial del ingreso y régimen de crecimiento en el Perú 1942-2013. Revista CEPAL, 125, 225-243.
- Alarco, G. y Castillo, C. (2020). Índice de Desigualdad y Crecimiento Económico en América Latina. Universidad Nacional Autónoma de México, Facultad de Economía.
- Bhaduri, A. and Marglin, S. (1990). Unemployment and the real wage: the economic basis for contesting political ideologies. Cambridge Journal of Economics, Vol. 14, 375-393.
- Blecker, R. (2002). Distribution, demand and growth in neo-Kaleckian macro-models. Setterfield, M. (ed.), The Economics of Demand-led Growth. Chapter 8, Edward Elgar Publishing.
- Carvalho, L. and Rezai, A. (2016). Personal income inequality and aggregate demand. Cambridge Journal of Economics, 40, 491-505.
- Cingano, F. (2014). Trends in Income Inequality and its Impact on Economic Growth. OECD Social, Employment and Migration Working Papers, No 163.
- Forbes, K. (2000). A reassessment of the relationship between inequality and growth. American Economic Review, 90, 869–887.
- Hartwig, J. (2014). Testing the Bhaduri-Marglin model with OECD panel data. International Review of Applied Economics, Vol. 28, 419-435.
- Hein, E. and Tarassow, A. (2010). Distribution, aggregate demand and productivity growth: theory and empirical results for six OECD countries based on a post-Kaleckian model. Cambridge Journal of Economics, Vol. 34, 727-754.
- Hein, E. and Vogel, L. (2009). Distribution and Growth in France and Germany: Single Equation Estimations and Model Simulations Based on the Bhaduri/Marglin Model. Review of Political Economy, Vol. 21, 245-272.
- Jiménez, F. (2020). Cambio tecnológico, productividad y producto de largo plazo de Perú. Problemas del Desarrollo. Revista Latinoamericana de Economía, Vol.52. Nº especial Jaime Ros, 2021.
- Keynes, J. (1936). The General Theory of Employment, Interest and Money, London: MacMillan.
- Labra, R. and Torrecillas, C. (2018). Estimating dynamic Panel data. A practical approach to perform long panels. Revista Colombiana de Estadística, Vol.41, 31-52.

- Lavoie, M. and Stockhammer, E. (2012). Wage-led growth: Concepts, theories and policies. Serie Condiciones de Trabajo y Empleo, No 41. OIT.
- Mankiw, G., Romer, D. and Weil, D. (1992). A contribution to the empirics of economic growth. The Quarterly Journal of Economics, 107(2), 407-437.
- Mendoza, W., Leyva, J. y Flor, J. (2011). La distribución del ingreso en el Perú. J. León y J. Iguíñiz (eds.), Desigualdad distributiva en el Perú: dimensiones, Lima, PUCP.
- Naastepad, C. (2006). Technology, demand and distribution: a cumulative growth model with an application to the Dutch productivity growth slowdown. Cambridge Journal of Economics 30, 403-434.
- Naastepad, C. and Storm, S. (2007). OECD demand regimes (1960-2000). Journal of Post Keynesian Economics, 29 (2), 211-246.
- Neves, P., Afonso, O. and Silva, S. (2016). A Meta- Analytic Reassessment of the Effects of Inequality on Growth. World Development, Vol.78, 386-400.
- Neves, P. and Silva, S. (2014). Inequality and Growth: Uncovering the Main Conclusions from the Empirics. The Journal of Development Studies, 50(1), 1-21.
- Obst, T., Onaran, Ö. and Nikolaidi, M. (2017). The effect of income distribution and fiscal policy on growth, investment, and budget balance: the case of Europe. Forum FMM W.P. N°10.
- Onaran, Ö. and Galanis, G. (2014). Income distribution and growth: a global model. Environment and Plannig, Vol. 46, 2489-2513.
- Onaran, Ö. and Stockhammer, E. (2008). Income distribution, growth, and conflict: The aggregate demand nexus. METU Studies in Development, 35 (June), 209-224.
- Onaran, O. and Obst, T. (2016). Wage-led growth in the EU15 member-states: the effects of income distribution on growth, investment, trade balance and inflation. Cambridge Journal of Economics, Vol.40, 1517-1551.
- Oyvat, C., Öztunali, O. and Elgin, C. (2018). Wage-Led vs. Profit-Led Growth: A Comprehensive Empirical Analysis. Greenwich papers in political economy, N° GPERC6.
- Perotti, R. (1996). Growth, income distribution, and democracy: What the data Say. Journal of Economic Growth, 1, 149–187.
- Roodman, D. (2006). How to do xtabond2: An introduction to difference and system GMM in Stata.
- Roodman, D. (2009). A note on the theme of too many instruments. Oxford Bulletin of Economics and Statistics, 71(1), 135-158.
- Stockhammer, E. Onaran, Ö. and Ederer, S. (2009). Functional income distribution and aggregate demand in the Euro area. Cambridge Journal of Economics, 33, 139-159.
- World Economic Forum. (2020). The Global Risks Report.

Anexos

Anexo 1. Lista de variables

Variable	Descripción	Fuente				
PIB	Producto Interno Bruto (US\$ a precios constantes de 2010)	Banco Mundial, CEPAL,				
ПБ	rioducto intenio biuto (OS\$ a piecios constantes de 2010)	Maddison 2010, 2020.				
PIB pc	Producto Interno Bruto per cápita (US\$ a precios constantes	Banco Mundial, CEPAL,				
тъ рс	de 2010)	Maddison 2010, 2020.				
CG	Coeficiente Gini	CEPALSAT, WIID, SEDLAC				
CS	Coeficiente Salarial (Índice de desigualdad económica,	Alarco (2017). Con base en				
CS	relacionado a la participación salarial)	Banco Mundial, CEPAL, OIT.				
СН	Años promedios de educación (25 a 65 años)	Barro y Lee (2016, 2018) y				
CII	Allos promedios de educación (23 a 03 anos)	PNUD				
CF	Formación Bruta de Capital (US\$ a precios constantes de	Banco Mundial				
	2010)					
PS	Participación Salarial	Alarco (2017), con base en				
15	•	Banco Mundial, CEPAL, OIT.				
TCR	Tipo de Cambio Real: Índice de tipo de cambio efectivo real	Banco Mundial, CEPAL,				
TCK	(2010 = 100)	Bruegel Datasets				
GP	Gasto Público: % Producto Interno Bruto	Banco Mundial, Fondo				
Or	Gasto Fuolico. /0 Floducto Intello Diuto	Monetario Internacional.				

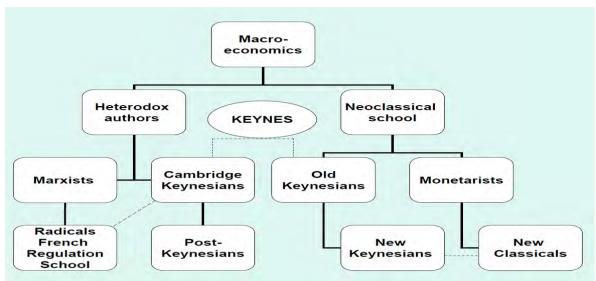
Fuente: Elaboración propia

Anexo 2. América Latina Estadística descriptiva resumida

Variable	Media	Coeficiente de variación	Mínimo	Máximo
PIB (millones USD 2010)	161223.465	2.162	1497.621	2423271.865
PIB per cápita (USD 2010)	5027.541	0.700	986.001	15739.380
Coeficiente Gini	0.514	0.114	0.322	0.689
Coeficiente Salarial	0.634	0.200	0.256	0.932
Años promedio de educación (25 a 65 años)	8.065	0.213	3.60	11.80
Formación Bruta de Capital (millones USD 2010)	38853.322	2.033	171.237	548691.481
Participación salarial (%PIB)	37.928	0.227	11.506	69.562
Tipo de cambio real (2010=100)	123.567	0.927	8.174	2834.986
Gastos del gobierno (% del PIB)	20.835	0.305	10.089	65.227

Fuente: Elaboración propia

Anexo 3. Efectos de la desigualdad sobre el crecimiento económico Síntesis



Nota: Desde la relación de desigualdad económica y crecimiento económico, síntesis de los estudios empíricos de los efectos de la desigualdad sobre el crecimiento económico, se observa 3 grupos. * Diferente a Coeficiente Gini, **Panel. Fuente: Elaboración propia.

Anexo 4. Escuelas de Pensamiento Económico

Nota: La economía poskeynesiana es una de las muchas escuelas económicas heterodoxas. Los economistas heterodoxos son disidentes de la economía. La disensión es un concepto más amplio que la heterodoxia. Fuente: Marc Lavoie, Universidad de Ottawa (2009)

Anexo 5. Datos del estudio

Argent	ina							
Año	PIBa	PIBpc ^b	CGc	CHd	CFe	PS ^f	RERg	GP ^h
1950	86218	5062				42.377		
1951	89570	5149				40.459		
1952	85062	4788				42.429		
1953	89570	4947	0.405	4.60		41.700		
1954	93267	5055				43.352		
1955	99855	5316				40.657		
1956	102629	5365				38.670		
1957	107946	5543				37.331		
1958	114534	5784	0.401	5.00		42.177		
1959	107136	5320				32.178		
1960	115574	5643			23009	32.429	188.521	
1961	121847	5853	0.407		25236	34.836	188.678	
1962	120809	5711			23009	33.932	189.166	
1963	114396	5323	0.399	5.32	18927	42.416	143.576	
1964	125985	5773			24308	32.984	168.456	
1965	139301	6286	0.353		25236	34.604	173.922	
1966	138382	6152			24308	37.340	181.086	
1967	142799	6255			25236	38.810	143.339	
1968	149685	6461	0.411	5.60	27462	40.992	155.933	
1969	164174	6981	0.373		33771	38.085	160.971	
1970	169174	7084	0.361		34525	39.082	160.377	
1971	178746	7368			38299	39.692	171.510	
1972	181657	7369	0.334		38689	36.451	226.723	
1973	186765	7454	0.353	5.92	36870	43.102	316.131	
1974	197100	7741	0.322		37278	43.403	346.477	
1975	197044	7618	0.347		37946	42.122	122.498	
1976	193067	7351	0.352		40581	27.046	168.919	
1977	206455	7744	0.403		49061	25.978	146.856	
1978	197152	7285	0.434	6.43	41249	28.720	183.486	
								((+:)

(Contin'ua)

_	nuación)	nrn . h	CCC	CITA	OE ₂	nof	DEDa	Ciph
Año	PIB ^a	PIBpc ^b	CG ^c	CHd	CF ^e	PS ^f	RER ^g	GP ^h
1979	217306	7910	0.413		45461	31.278	253.480	
1980	220606	7908	0.427		49147	36.045	320.421	
1981	209157	7381	0.427		41787	33.827	270.388	
1982	207619	7210	0.402		33453	25.572	124.637	
1983	216648	7404	0.404	6.72	33587	32.952	140.226	
1984	220051	7400			32198	34.771	160.876	
1985	208633	6905	0.398		27657	34.533	140.523	
1986	221471	7214	0.405		30710	35.899	116.783	
1987	227461	7294	0.431		34683	34.194	107.385	
1988	224982	7104	0.455	7.45	33462	25.750	112.577	
1989	208880	6497	0.476		26234	24.963	73.368	
1990	203727	6246	0.501		21814	33.620	138.491	10.325
1991	222333	6721	0.468		28345	37.739	184.449	11.206
1992	239980	7157	0.455		37598	40.737	208.972	11.801
1993	259676	7644	0.449	8.10	42998	28.998	244.970	14.282
1994	274831	7989	0.459		48431	39.569	236.403	14.901
1995	267011	7667	0.489		42312	37.234	220.510	15.511
1996	281768	7994	0.495		47856	33.742	214.957	15.166
1997	304622	8543	0.491		55796	33.975	222.283	15.014
1998	316351	8772	0.507	8.80	58530	26.407	231.981	15.099
1999	305641	8381	0.539		48626	36.629	249.547	16.744
2000	303230	8224	0.544		46774	35.067	250.046	16.833
2001	289861	7776	0.533		41192	35.607	260.376	16.992
2002	258282	6854	0.538		25706	25.048	108.581	19.677
2003	281106	7380	0.528	9.30	36038	26.022	118.778	19.837
2004	306489	7962	0.486		46710	27.005	113.048	16.876
2005	333618	8578	0.480		53622	28.106	114.378	
2006	360465	9175	0.467		57303	29.505	113.212	
2007	392935	9902	0.466		68953	30.409	111.025	
2008	408877	10201	0.453	8.90	73562	26.033	108.804	
2009	384677	9502	0.489		56590	36.293	101.477	
2010	423627	10386	0.445		75005	35.965	100.000	
2011	449062	10883	0.427		87076	38.403	93.270	
2012	444453	10650	0.414		77336	41.609	93.804	
2013	455143	10785	0.410	9.80	80947	40.644	94.719	
2014	443707	10399	0.417	7.00	75910	39.030	97.369	24.570
2015	455825	10568	0.405		79368	38.444	110.075	25.008
2016	446343	10239	0.424		75333	38.613	112.763	26.180
2017	458254	10404	0.412		87311	39.120	112.954	24.318
2018	446881	10044	0.396	9.90	81166	40.487	112.792	22.904
Bolivia	110001	10011	0.370	7.50	01100	10.107	112.772	22.501
1950	3539	1201		WAA U				
1951	3788	1260						
1952	3903	1271						
1953	3534	1127	0.520	1.80				
1954	3607	1126						
1955	3798	1160						
1956	3573	1068						
1957	3455	1010						
1958	3537	1012	0.530	2.08		43.369		
1959	3525	986	0.000	2.00		.5.50)		
1960	3677	1005			420	36.615	127.592	
1961	3754	1007			340	37.315	134.760	
1962	3963	1042			551	37.807	134.760	
1963	4232	1091	0.540	2.52	560	41.735	138.001	
1964	4400	1112	0.540	2.32	589	37.475	145.617	
1701	1.00	1112			207	57.175	1.5.017	(Continúa)
								(Jonninua)

Año	PIB ^a	PIBpcb	CGc	CHd	CFe	PSf	RERg	GP ^h
1965	4616	1143			701	37.047	144.502	
1966	4947	1200			731	36.730	149.589	
1967	5259	1250			683	35.583	167.046	
1968	5708	1328	0.530	2.78	944	42.569	172.793	
1969	5963	1359			887	37.532	168.730	
1970	6275	1400			907	37.617	167.275	
1971	6593	1439			1017	39.373	164.327	
1972	7118	1520			1357	38.276	141.088	
1973	7527	1573	0.530	3.27	1133	43.369	104.353	
1974	7748	1584	0.550	3.27	965	34.581	152.107	
1975	8315	1662			1579	33.260	168.919	
1976	8698	1701			1279	33.887	164.562	
1977	9131	1746	0.516	2.65	1387	34.617	166.344	
1978	9318	1743	0.516	3.65	1800	36.041	163.534	
1979	9331	1708			1567	35.828	165.603	
1980	9203	1649			1126	34.051	173.926	
1981	9228	1620			1117	32.147	220.872	
1982	8865	1525			855	31.443	238.510	
1983	8506	1434	0.516	4.47	760	35.241	222.452	
1984	8489	1402			1058	43.115	293.448	
1985	8347	1351			1342	32.045	503.725	
1986	8132	1289	0.516		933	24.126	147.499	11.975
1987	8332	1293			1096	28.111	140.049	12.236
1988	8575	1303	0.537	5.36	1138	33.012	133.895	11.679
1989	8900	1324	0.537		966	35.965	128.861	13.065
1990	9312	1357	0.545		1137	34.877	106.323	14.192
1991	9803	1398	0.420		1469	35.355	110.463	14.528
1992	9964	1391	0.495		1548	36.264	108.581	17.562
1993	10390	1421	0.532	6.80	1547	33.543	107.498	20.377
1994	10875	1456	0.514	0.00	1383	34.780	102.568	18.976
1995	11383	1493	0.514		1553	33.027	99.833	17.707
1995	11880	1527	0.527		1845	34.334	104.468	18.832
1997	12468	1571	0.595	7.20	2402	33.303	106.772	19.689
1998	13095	1617	0.595	7.30	3087	26.857	111.652	19.676
1999	13151	1593	0.601		2508	34.645	114.976	20.504
2000	13481	1601	0.678		2323	36.064	113.123	20.554
2001	13708	1598	0.604		1917	36.020	111.145	24.245
2002	14049	1607	0.612		2259	35.189	109.520	28.784
2003	14430	1620	0.612	7.10	1970	25.053	98.569	28.208
2004	15032	1658	0.550		1736	32.576	92.118	27.211
2005	15697	1700	0.585		2203	30.802	87.047	25.983
2006	16450	1751	0.604		2091	27.251	85.484	23.938
2007	17200	1799	0.586		2322	26.991	86.655	21.811
2008	18258	1878	0.513	7.60	3002	35.559	97.217	
2009	18871	1909	0.511		3119	27.776	105.954	
2010	19650	1955			3342	26.457	100.000	
2011	20672	2024	0.471		4206	26.098	102.289	
2012	21731	2094	0.474		3928	25.184	106.657	
2012	23208	2201	0.480	8.40	4558	25.461	112.276	
2013	24475	2286	0.480	0.70	5128	26.162	120.104	
2014	25664	2361	0.478		5170	20.102	137.675	
2015	26758	2426	0.467		5680	23.231	143.310	
2017	27881	2491	0.461	9.00	6580	23.123	140.126	
2018	29058	2560	0.438	8.90	6551	26.718	143.253	
Brasil								

(Continúa)

(a		., \
110	ntımı	ac ión)
(60	iii iiiu	ucioni

	inuación)							
Año	PIB ^a	PIBpcb	CGc	CHd	CFe	PSf	RERg	GP ^h
1951	136453	2491				41.790		
1952	147053	2564				43.242		
1953	151740	2611	0.683	1.96		42.061		
1954	168610	2705				42.048		
1955	177757	2819				44.823		
1956	183542	2775				48.194		
1957	198506	2918				48.274		
1958	213631	3090	0.680	2.18		42.272		
1959	224911	3251				47.468		
1960	246662	3417	0.689			47.113	78.506	
1961	272009	3660				46.274	70.631	
1962	286197	3740				46.613	85.891	
1963	288700	3665	0.670	2.49		42.974	98.255	
1964	298763	3685				45.629	84.276	
1965	307886	3693				45.242	81.662	
1966	320664	3742				45.194	94.104	
1967	336425	3821				45.629	100.947	
1968	374870	4147	0.647	2.77		44.588	97.347	
1969	411366	4435	0.047	2.77		44.097	100.947	
1970	447443	4704	0.647		103634	43.113	103.909	
1970	497982	5108	0.630		119541		103.303	
1971	558003	5588	0.610		139521	41.323	95.327	
1972		6220	0.610	3.09	168808	47.985		
1973	636004	6623		3.09			87.894 88.862	
	693513		0.608		191190	39.952		
1975	729638	6805	0.605		209801	40.597	95.766	
1976	801073	7296	0.600		224544	39.903	97.152	
1977	837973	7454	0.580	2.02	221915	40.290	98.199	
1978	865054	7514	0.560	2.82	232451	40.677	92.387	
1979	923586	7835	0.594		241483	40.629	81.902	10.554
1980	1007733	8349	0.560		263631	40.468	84.233	18.574
1981	963460	7797	0.580		230966	42.048	97.938	18.751
1982	969050	7661	0.584		215438	42.677	106.161	19.390
1983	936008	7231	0.590	2.93	180756	38.035	81.435	19.359
1984	985327	7443	0.584		182987	43.919	72.625	19.555
1985	1063620	7863	0.589		199073	42.548	70.245	24.426
1986	1148585	8317	0.585		244820	43.742	67.042	25.987
1987	1189930	8446	0.597		242031	44.339	69.586	23.573
1988	1188708	8276	0.614	3.59	230315	42.321	69.027	30.126
1989	1227691	8390	0.633		233104	44.952	92.435	36.569
1990	1189604	7984	0.627		214229	45.372	114.565	34.187
1991	1207590	7963	0.600		231547	41.648	96.317	23.471
1992	1201952	7792	0.581		216216	43.538	84.725	28.483
1993	1258025	8021	0.606	4.30	229894	44.626	89.092	36.510
1994	1325135	8312	0.616		262669	40.114	92.812	32.207
1995	1383662	8540	0.629		281818	42.569	101.549	
1996	1414207	8591	0.599		284068	42.505	107.128	
1997	1462217	8745	0.598		307981	41.282	109.883	21.816
1998	1467161	8641	0.591	5.20	307476	45.947	106.813	21.895
1999	1474026	8554	0.625	2.23	280187	41.174	71.013	21.710
2000	1538706	8803	0.600		293673	40.470	76.573	21.368
2001	1560092	8804	0.584		297504	40.579	63.939	22.582
2001	1607729	8955	0.584		293208	39.820	60.936	22.627
2002	1626071	8944	0.576	6.20	281525	39.820	57.594	24.688
2003	1719732	9346	0.565	0.20	305418	39.208	60.449	24.088
2004	1719732	9535	0.563		311393	40.093		25.369
2005		9535 9806	0.595		311393		73.463	25.369 27.835
2000	1845117	2000	0.393		332133	40.912	81.729	
								(Continúa)

(Cont	inuac ión)							
Año	PIBa	PIBpc ^b	CGc	CHd	CFe	PSf	RERg	GP ^h
2007	1957113	10294	0.549		371833	41.329	87.433	26.810
2008	2056813	10711	0.540	6.70	417520	42.439	90.379	27.305
2009	2054225	10595	0.579		408610	43.619	89.161	26.337
2010	2208872	11286	0.580		481563	43.687	100.000	30.838
2011	2296662	11628	0.579		514470	43.155	103.184	31.327
2012	2340784	11746	0.527		518478	44.355	92.011	30.178
2013	2411121	11993	0.575	7.40	548691	48.156	86.428	30.207
2014	2423272	11951	0.515		525514	46.876	84.601	31.379
2015	2337348	11431	0.513		452222	48.849	69.620	36.158
2016	2260779	10966	0.537		397369	48.612	73.038	35.676
2017	2290686	11022	0.533		387208	47.665	79.264	36.261
2018	2320859	11080	0.540	7.80	402339	47.239	70.984	36.025
Chile	2320037	11000	0.540	7.00	402337	47.237	70.704	30.023
1950	20639	3104				41.818		
1951	21531	3156				39.932		
1952	22761	3293				42.807		
1953	23948	3478	0.465	4.69		37.712		
1954	24048	3305				36.249		
1955	24016	3362				34.093		
1956	24151	3347				32.700		
1957	26686	3607				22 440		
1958	27707	3715	0.461	4.89		38.162		
1959	27558	3419				37.911		
1960	29376	3612			3851	40.516	507.960	
1961	30917	3723			3900	41.140	545.894	
1962	32161	3794			4379	40.471	603.717	
1963	34040	3935	0.459	5.00	5025	38.387	558.807	
1964	34910	3957	0.462	3.00	4739	37.091	557.056	
1965	35242	3920	0.102		4453	39.286	504.204	
1966	39202	4283			4596	39.916	490.672	
1967	40619	4362			4694	39.295	432.691	
1968	42078	4444	0.507	5.30	5138	30.590	393.666	
1969	43735	4544	0.507	3.30	5397	40.154	393.372	
1970	44535	4552	0.501		5746	42.705	378.591	
1971	48732	4901	0.460		5612	50.563	399.247	
1972	48235	4774	0.440		4485	52.195	375.969	32.447
1973	45809	4462	0.450	5.80	4214	52.756	424.340	26.546
1974	46900	4497	0.450	3.00	5020	37.236	269.480	24.039
1975	40844	3856	0.471		3877	38.979	145.839	27.709
1976	42410	3943	0.538		3303	38.341	162.970	25.666
1977	46839	4288	0.526		3813	39.439	176.660	27.211
1977	50446	4549	0.520	6.00	4475	38.505	147.119	26.959
1978	54693	4860	0.520	0.00	5229	36.077	147.119	24.134
1979	59061	5172	0.532		6375	38.103	164.323	24.134
1980	62915	5432	0.535		7443	40.001	194.820	25.452
1981								
	55986	4767 4466	0.570	6.40	4592	42.361	175.704	30.729
1983	53177	4466	0.545	6.40	3902	36.029	143.911	29.068
1984	55359	4583	0.558		4637	36.531	142.698	29.717
1985	57579	4698	0.549		5100	35.643	120.732	25.738
1986	60675	4875	0.557		5223	34.000	101.663	24.038
1987	64595	5109	0.567	7.22	6625	31.919	93.398	21.090
1988	69339	5397	0.545	7.23	7394	36.029	87.757	19.251
1989	76220	5837	0.573		9362	32.198	90.125	17.709
1990	78761	5933	0.585		9865	33.783	86.259	16.821
1991	84908	6292	0.554		9933	34.174	88.308	17.128
1992	94389	6880	0.551		12096	35.271	93.294	16.594
								(Continúa)

Año 1993 1994	PIB ^a	PIBpc ^b	CGc	CHd	$\mathbf{CF^e}$	PSf	RER^g	GP ^h
	100608	7215	0.500	8.30	14649	40.485	95.132	16.598
	105669	7459	0.550		14763	36.418	98.464	15.982
1995	115109	8004	0.572		19813	35.396	104.421	15.124
1996	122940	8428	0.585		20973	37.933	106.940	15.846
1997	132072	8932	0.570		22781	38.580	114.782	16.010
1998	137783	9199	0.559	8.60	24134	34.643	112.727	17.315
1999	137215	9049	0.573		19348	41.546	107.365	18.819
2000	144525	9420	0.564		23060	40.433	106.509	20.239
2001	149298	9622	0.550		24692	40.658	95.942	20.209
2002	153937	9815	0.540		24897	40.476	91.672	20.253
2003	160235	10110	0.528	9.40	25034	37.713	86.225	19.558
2004	171787	10727	0.520		27103	39.109	91.035	18.184
2005	181652	11225	0.516		34469	37.502	96.324	17.120
2006	193128	11809	0.511		39439	34.802	100.139	15.789
2007	202601	12256	0.510		41155	35.181	97.516	15.945
2008	209752	12554	0.511	9.90	51416	39.396	98.271	18.414
2009	206471	12227	0.496	9.50	37680	37.793	95.135	21.191
2010	218538	12808	0.490		50570	36.117	100.000	20.076
2011	231892	13456	0.487		59341	36.986	100.712	19.415
2012	244226	14036	0.490		65766	38.650	102.905	19.929
2013	254105	14461	0.498	9.90	65689	38.283	101.351	20.113
2013	258594	14561	0.495	7.70	58990	39.241	91.877	20.585
2015	264551	14722	0.485		60389	39.693	90.982	21.509
2016	269078	14777	0.470		58195	40.081	92.609	22.026
2017	272276	14741	0.466		58378	40.146	95.741	22.292
2017	283029	15112	0.485	10.30	63050	39.571	97.103	22.401
Colom		13112	0.403	10.50	03030	37.371	77.103	22.701
1950	23863	2017				37.112		
1951	24607	2014				36.007		
1952	26159	2074				35.751		
1953	27750	2133	0.603	2.24		31.735		
1954	29669	2209				32.477		
1955	30828	2223				34.415		
1956	32079	2240				33.358		
1957	32794	2249				32.633		
1958	33601	2233	0.596	2.52		33.202		
1959	36028	2317				33.222		
1960	37566	2339	0.592		5412	34.400	168.028	
1961	39478	2383			5958	35.750	179.287	
1962	41614	2435	0.525		5560	37.474	178.772	
1963	42982	2438	0.588	2.78	5370	33.965	169.038	
1964	45633	2511			6079	35.945	193.525	
1965	47276	2525			5885	36.680	172.932	
1966	49751	2581			7634	36.354	151.476	
1967	51809	2612			6927	37.372	149.213	
1968	54882	2691	0.562	3.08	7934	36.443	139.353	
1969	58232	2781	0.502	5.00	7758	37.730	134.229	
1970	61847	2879	0.562		10028	39.026	128.662	
1970	65533	2978	0.562		10028	39.026	128.002	
1971	70559		0.570		10430		127.431	
1972		3134		2 20		39.263		
1973 1974	75302 70620	3271	0.570	3.38	11127	35.680	119.844	
	79629	3383	0.520		13334	37.182	119.381	
1975	81479	3386	0.560		10931	37.823	113.562	
1976	85332	3468	0.508		11949	37.117	116.698	
1977	88880 96408	3532 3746	0.520 0.545	3.86	13889 14850	37.084 38.116	136.912 134.765	
1978	MOALIX	3 /40	U 343	1 30	14830	28 110	134 /03	

Año	PIBa	PIBpc ^b	CGc	CH^d	CFe	PSf	RER^g	GP ^h
1979	101594	3861	0.550		14803	40.945	136.554	
1980	105747	3931	0.591		16413	41.604	136.765	
1981	108155	3933	0.580		18585	42.793	147.763	
1982	109180	3885	0.560		19576	43.125	157.418	
1983	110899	3862	0.560	4.26	19155	38.332	156.181	
1984	114615	3908	0.500	1.20	18027	43.377	145.866	
1985	118176	3946	0.447		16288	40.622	127.387	
1986	125058	4091	0.490		16997	37.939	94.479	
1987	131773	4224	0.520		18563	37.980	84.332	
1988	137128	4309	0.540	4.79	20050	44.177	81.820	
1989	141810	4369	0.536	4.79	18581	38.267	78.663	
1990	147882	4467	0.560		18363	37.351	69.132	
1991	150842	4468	0.577		16759	40.976	68.797	
1992	156944	4559	0.515	5 00	23962	43.312	69.077	
1993	165396	4713	0.604	5.80	33117	34.272	74.467	
1994	175013	4894	0.601		41963	35.214	90.273	
1995	184118	5055	0.570		44508	35.006	93.667	
1996	187903	5068	0.569		39158	37.103	99.255	
1997	194349	5152	0.582		38906	37.220	105.529	
1998	195456	5095	0.577	6.30	36452	36.764	99.067	19.317
1999	187239	4801	0.587		22370	37.266	89.888	22.120
2000	192716	4863	0.587		25114	32.795	81.407	16.933
2001	195949	4868	0.572		27229	33.323	78.863	12.617
2002	200856	4914	0.567		29971	33.734	78.665	12.119
2003	208726	5031	0.549	6.50	33375	39.347	68.941	27.622
2004	219857	5225	0.565	0.00	37107	32.356	75.188	28.791
2005	230474	5404	0.537		41364	32.114	84.783	36.552
2006	245954	5693	0.580		48369	31.946	82.987	31.378
2007	262527	6002	0.601		56010	32.021	92.296	35.216
2007	271147	6127	0.572	7.30	61097	37.225	95.313	24.568
	274237			7.30				
2009		6128	0.560		57251	32.823	90.412	24.730
2010	286563	6337	0.573		62725	32.716	100.000	25.404
2011	306473	6712	0.549		74339	31.361	100.131	24.225
2012	318464	6912	0.539		76485	32.230	105.340	25.033
2013	334814	7201	0.572	7.80	82456	31.625	101.296	33.285
2014	349878	7449	0.540		92313	33.099	95.881	30.163
2015	360220	7580	0.511		91250	33.288	77.617	26.816
2016	367739	7634	0.508		91102	33.541	73.986	28.631
2017	372738	7622	0.511		88160	33.478	76.444	28.649
2018	382113	7696	0.520	8.30	89980	32.423	77.233	27.482
Costa F					AWAY W	No.		
1950	1945	2105						
1951	1997	2092						
1952	2239	2267						
1953	2579	2523	0.534	3.51		47.012		
1954	2601	2454				45.882		
1955	2902	2638				46.009		
1956	2819	2467				46.550		
1957	3058	2580				46.680		
1958	3438	2793	0.532	3.55		47.173		
1958	3438 3564	2786	0.332	3.33		48.744		
					055		100 645	
1960	3874	2911	0.521		855	47.595	199.645	
1961	3947	2858	0.531		534	46.981	192.085	
1962	4162	2903	0 :		581	46.438	174.764	
1963	4449	2993	0.531	3.60	442	47.253	176.029	
1964	4611	2995			644	46.486	178.643	
								(Continúa)

Año	PIB ^a	PIBpc ^b	CGc	CHd	CFe	PSf	RERg	GP ^h
1965	4989	3132			626	46.855	172.649	
1966	5337	3244			759	47.974	167.798	
1967	5638	3323			810	47.783	165.287	
1968	6116	3500	0.520	3.80	797	48.139	167.867	
1969	6452	3589	0.520		920	47.085	164.891	
1970	6936	3755	0.490		1048	46.862	164.169	
1971	7406	3906	0.476		1295	47.970	162.372	
1972	8012	4121	0.460		1205	47.624	158.329	
1973	8630	4331	0.452	3.70	1429	53.613	162.991	15.548
1974	9108	4460	0.452		1552	45.338	156.412	15.058
1975	9299	4441	0.470		1414	45.782	154.090	16.305
1976	9813	4567	0.477		1789	46.530	153.023	16.348
1977	10686	4845	0.490		2196	44.819	147.691	16.141
1978	11356	5014	0.490	4.30	2187	50.852	139.951	20.534
1979	11917	5122	0.450	=	2389	49.584	135.806	21.281
1980	12007	5024	0.460		2556	49.499	141.465	21.591
1981	11735	4779	0.475		1592	43.403	77.056	18.090
1982	10880	4312	0.420		1187	39.098	78.989	16.625
1983	11192	4316	0.456	5.20	1579	50.442	95.590	20.972
1984	12090	4538	0.448		1752	45.105	98.305	20.023
1985	12177	4449	0.428		1887	46.807	101.056	19.508
1986	12851	4573	0.420		2474	45.727	93.158	24.256
1987	13463	4667	0.466		2559	47.118	89.197	25.561
1988	13925	4703	0.467	6.04	2379	49.488	84.099	23.214
1989	14714	4842	0.467	0.01	2541	49.072	88.651	24.360
1990	15237	4885	0.453		2726	50.566	87.511	24.250
1991	15582	4866	0.467		2381	47.374	80.961	18.488
1992	17015	5177	0.457		2989	47.408	85.641	17.856
1993	18221	5403	0.460	7.22	3317	50.095	88.331	19.456
1994	19039	5504	0.468	7.22	3474	49.684	87.641	23.121
1995	19824	5591	0.457		3438	50.550	89.367	21.663
1996	20069	5525	0.457		3249	47.319	89.542	22.608
1997	21186	5697	0.456		4088	48.409	90.672	21.501
1998	22661	5957	0.450	7.80	5039	50.008	92.571	21.165
1999			0.477	7.80	4789			22.216
2000	23554 24457	6062	0.477		4844	42.955 44.874	90.247 92.135	22.210
2000	25311	6172 6274	0.479		4947	47.532	95.842	22.129
2001	26144	6375	0.510		5193	47.903	93.608	24.705
2002	27257	6546	0.319	7.90	5206	47.903	93.608 87.558	23.726
2003	28439			7.90		46.502		
2004	29540	6731 6893	0.486		5067 5265		84.809	22.625
			0.475			46.933	84.700	22.751
2006	31678	7290	0.494		6173	46.531	85.293	21.709
2007	34265	7779	0.498	0.40	7377	46.878	86.519	21.272
2008	35858	8034	0.491	8.40	8067	51.406	89.128	21.803
2009	35510	7855	0.512		5361	50.100	90.276	24.893
2010	37269	8142	0.508		7347	50.304	100.000	25.882
2011	38874	8390	0.500		7613	50.840	101.799	25.679
2012	40739	8690	0.502	0.50	7974	51.380	106.173	26.368
2013	41663	8786	0.508	8.50	7709	50.355	110.487	27.160
2014	43128	8994	0.498		7952	50.966	106.301	27.496
2015	44694	9219	0.484		8328	50.876	114.567	29.423
2016	46591	9510	0.500		8957	50.245	113.766	27.949
2017	48390	9776	0.496		9348	50.426	108.516	26.280
2018	49677	9937	0.501	8.81	9591	51.338	105.724	29.811
Ecuado	•							

(Continúa)

(.,)
(Continuo	າເເດກ ໄ
(Goin mu	$\iota\iota\iota\iota\iota\iota\iota\iota\iota$

<u>(Co</u> nt i	inuación)							
Año	PIB ^a	PIBpc ^b	CGc	CHd	CFe	PS ^f	RERg	GP^h
1951	6313	1794						
1952	7044	1964						
1953	7288	1953	0.600	2.38		22.357		
1954	7980	2056				28.729		
1955	8347	2054				29.969		
1956	8626	2074				29.660		
1957	8950	2108				30.046		
1958	9195	2111	0.590	2.62		23.484		
1959	9635	2162				31.477		
1960	10169	2238			4029	32.405	279.408	
1961	10690	2287			4163	30.781	260.876	
1962	11216	2332			3984	29.350	240.078	
1963	11452	2314	0.560	2.97	4108	26.866	250.028	
1964	12300	2415			4373	31.284	250.217	
1965	12703	2422			4477	29.737	252.154	
1966	12660	2345			4376	30.975	261.349	
1967	13245	2382			5006	31.091	265.868	
1968	13498	2358	0.527	3.44	5046	30.586	273.866	
1969	14128	2396	0.525	3.77	5224	27.249	280.227	
1970	15099	2488	0.520		5435	30.738	242.187	
1971	16049	2569	0.518		6408	31.642	210.099	
1972	16854	2621	0.515		6188	30.060	208.730	
1973	19206	2903	0.510	3.87	5920	32.503	205.502	
1974	21358	3139	0.510	3.67	5681	25.920	224.018	
1975	23702	3389	0.512		7647	29.745	240.865	
1976	25455	3541	0.510		7990	30.573	254.704	
1977	25864	3503	0.512		8720			
1977	27340	3606	0.512	4.27	9526	28.520 28.394	261.065 259.270	
				4.27				
1979	28360	3643	0.510		9200 9417	27.843	252.217	
1980	29412	3682	0.510			31.930	251.556	
1981 1982	31063 31254	3789 3717	0.508 0.508		9290 9292	30.194 28.870	282.400	
				5.20			281.471	
1983	31149	3612	0.505	5.39	7864	28.998	286.667	
1984	31967	3615	0.506		7903	22.092	269.205	
1985	33225	3665	0.508		8523	20.909	317.668	
1986	34376	3699	0.508		8959	21.799	200.637	
1987	34287	3601	0.505	5.05	9462	22.351	169.966	
1988	36306	3722	0.505	5.85	8614	28.998	142.176	
1989	36671	3670	0.510		8754	15.214	139.389	
1990	38021	3716	0.515		8597	13.590	129.879	
1991	39652	3786	0.520		8701	12.737	125.151	
1992	40491	3778	0.530	6.00	9125	12.675	123.843	
1993	41290	3767	0.548	6.80	8319	23.804	108.048	
1994	43048	3841	0.548		8963	14.616	102.314	
1995	44018	3843	0.567		8724	15.054	102.515	
1996	44780	3826	0.468		8307	15.196	103.521	
1997	46718	3909	0.469		9242	18.057	100.000	
1998	48244	3955	0.573	6.90	10250	14.384	99.698	
1999	45958	3694	0.586		7161	11.506	137.324	
2000	46459	3664	0.564		7959	14.371	156.338	
2001	48325	3742	0.538		10639	14.512	109.759	
2002	50305	3827	0.539		12541	20.997	94.970	
2003	51675	3865	0.540	7.10	11214	24.770	92.354	
2004	55918	4113	0.539		11962	37.276	96.479	
2005	58876	4258	0.531		13843	31.906	100.604	
2006	61469	4372	0.528		14918	32.060	101.610	
								(Continúa)

(Cont i	nuación)							
Año	PIBa	PIBpcb	CGc	CHd	$\mathbf{CF^e}$	PS ^f	RERg	GP^h
2007	62815	4394	0.534		15551	31.577	107.243	
2008	66808	4596	0.497	7.90	19047	37.165	108.954	
2009	67187	4548	0.485		17655	34.972	101.207	
2010	69555	4634	0.490		19501	33.410	100.000	
2011	75028	4922	0.479		21750	33.932	102.716	
2012	79261	5122	0.468		22661	35.121	98.692	
2013	83182	5296	0.470	8.30	24808	33.226	96.982	
2014	86333	5412	0.450		25644	37.265	92.958	
2015	86419	5331	0.462		23287	38.721	83.300	
2016	85359	5176	0.450		20610	38.576	81.489	
2017	87381	5206	0.447		23029	37.920	84.004	
2018	88507	5181	0.454	8.70	23420	32.759	85.614	
El Salv	ador							
1950	3438	1671						
1951	3506	1661						
1952	3769	1739						
1953	4038	1813	0.546	1.40				
1954	4085	1783						
1955	4296	1822						
1956	4633	1909						
1957	4879	1953	1					
1958	4985	1936	0.520	1.56		18.519		
1959	5209	1962						
1960	5421	1979				15.804	89.050	
1961	5611	1985	0.546			17.032	86.420	
1962	6281	2155				16.892	85.250	
1963	6553	2178	0.546	1.67		16.745	84.924	
1964	7163	2309				17.685	84.924	
1965	7547	2358	0.530			20.290	83.290	
1966	8088	2455	0.539			21.801	80.058	
1967	8528	2517				22.925	79.267	
1968	8804	2529	0.539	1.95		20.053	78.974	
1969	9111	2547	0.535			26.258	75.639	
1970	9382	2554	0.530			25.077	74.039	
1971	9744	2585	0.520			27.739	71.512	
1972	10340	2674	0.510	2.20		30.061	68.245	
1973	10843	2735	0.502	2.28		24.855	64.875	
1974	11421	2813	0.500			33.889	66.869	
1975	11755	2829	0.490			36.207	72.354	
1976	12349	2907	0.480			35.678	73.971	
1977	13186	3039	0.484	2.62		34.464	77.100	
1978	13888	3137	0.484	2.63		41.714	78.716	
1979	13307	2950	0.490			39.308	80.401	
1980	11741	2557	0.510			40.332	83.153	
1981	10514	2253	0.520			41.915	92.403	
1982	9851	2079	0.530	2.05		41.088	103.081	
1983	10002	2082	0.540	3.05		31.664	114.584	
1984	10136	2081	0.542			31.457	125.382	
1985	10198	2066	0.540			22.873	149.351	
1986 1987	10217 10474	2043 2067	0.545 0.538			29.779 37.156	97.407 111.644	
1987	10474	2067	0.538	3.40		37.156	111.644 125.520	
1988				3.40				
1989	10774 11294	2072 2143	0.542 0.542		1631	40.243 32.985	142.439 126.706	
1990			0.542		1888			
1991	11463 12267	2146 2265	0.540		1888 2409	32.375 32.353	139.367 136.202	
1774	1220/	2203	0.555		∠ 1 09	34.333	130.202	(Continúa)
								(Commud)

Año	ruación) PIBª	PIBpcb	CGc	CHd	CFe	PS ^f	RERg	GP ^h
1993	12981	2364	0.530	4.00	2687	32.745	122.750	
1994	13590	2443	0.530		2992	36.605	115.727	
1995	14233	2529	0.513		3407	34.567	111.474	
1996	14350	2522	0.510		2563	36.645	103.066	
1997	14800	2576	0.529		2677	37.183	99.802	
1998	15193	2620	0.559	4.80	3496	29.612	98.318	11.992
1999	15521	2655	0.545	7.00	3298	33.840	97.033	14.236
2000					3305		95.549	
	15696	2666	0.532			35.069		15.020
2001	15833	2671	0.514		3419	32.897	95.945	22.970
2002	16084	2698	0.519		3347	30.188	96.439	20.222
2003	16335	2725	0.504	5.70	3621	35.553	97.132	17.345
2004	16480	2736	0.483		3506	32.689	97.428	19.618
2005	16927	2797	0.504		3719	28.558	98.912	20.476
2006	17662	2905	0.474		4181	29.725	99.209	22.530
2007	17990	2946	0.470		4216	27.337	99.802	20.542
2008	18453	3009	0.470	6.40	3967	39.226	100.593	22.752
2009	18068	2934	0.478	0.10	2857	30.411	98.516	25.853
2010	18448	2983	0.454		3076	29.120		24.146
							100.000	
2011	19152	3084	0.440		3406	27.616	102.716	24.890
2012	19691	3157	0.438		3501	28.668	98.692	22.902
2013	20131	3213	0.434	6.60	3704	30.315	96.982	22.996
2014	20476	3253	0.434		3349	31.550	92.958	22.770
2015	20966	3315	0.426		3651	31.973	83.300	22.763
2016	21500	3383	0.420		3783	31.761	81.489	23.208
2017	21984	3441	0.399		3920	31.761	84.004	24.844
2018	22518	3507	0.405	6.90	4184	31.848	85.614	24.636
Hondur								
1950	1652	1029		MIN	1	36.717		
1951	1725	1054				37.628		
1952	1763	1063				38.659		
1953	1870	1114	0.640	1.61		36.544		
1954	1751	1019	0.040	1.01		42.500		
1955	1855	1014				40.934		
1956	1941	1061				40.206		
1957	2020	1076				40.729		
1958	2133	1074	0.656	1.67		35.088		
1959	2184	1066				41.843		
1960	2234	1096			375	42.059	216.132	
1961	2276	1086			338	41.365	218.737	
1962	2407	1117			446	40.845	218.295	
1963	2493	1125	0.629	1.70	514	32.746	220.869	
1964	2628	1153	0.02)	11,70	515	38.403	227.091	
1965	2866	1222			559	38.741	228.750	
1966	3020	1251			634	40.455	226.444	
1967	3200	1287			824	39.214	225.165	
1968	3411	1332	0.620	1.73	823	33.565	222.196	
1969	3434	1302			832	39.169	215.247	
1970	3558	1310			876	41.389	210.289	
1971	3700	1322			712	43.776	206.593	
1972	3914	1358			697	42.839	202.061	13.169
1973	4222	1422	0.600	1.91	884	35.385	192.175	11.134
1973	4170	1363	0.000	1.71	1181	39.923	192.173	10.652
1975	4259	1351			925	42.794	188.827	11.899
1976	4706	1447			991	42.841	188.843	12.556
	5195	1549			1335	40.731	190.706	
1977								
1977 1978	5504	1592	0.550	2.08	1474	49.638	182.400	(Continú

Año	nuación) PIBª	PIBpcb	CGc	CHd	CF^e	PS ^f	RERg	GP^h
1979	5813	1630			1569	44.126	182.873	
1980	5848	1590			1386	46.317	190.596	
1981	5777	1523			1113	46.923	197.481	
1982	5657	1447			734	48.269	211.884	
1983	5708	1416	0.551	2.88	787	49.081	224.817	
1984	6069	1461	0.551	2.00	1004	48.720	229.745	
1985	6411	1497			1062	48.770	230.945	
1986	6752		0.551		910			
		1531	0.551			50.361	231.371	
1987	7201	1585	0.504	2 = 4	1193	49.982	222.259	
1988	7326	1566	0.591	3.71	1484	40.962	217.932	
1989	7526	1563	0.591		1407	49.158	230.282	
1990	7736	1561	0.615		1492	48.808	129.622	
1991	7480	1467	0.519		1647	46.347	136.005	
1992	7934	1513	0.566		1860	47.559	136.005	
1993	8449	1566	0.535	3.70	2410	45.608	146.341	
1994	8467	1526	0.550		2626	43.174	162.253	
1995	8991	1575	0.578		2759	41.515	147.851	
1996	9159	1559	0.557		2558	41.247	149.245	
1997	9580	1585	0.591		2749	41.843	139.257	
1998	9924	1595	0.595	4.10	2822	40.630	127.294	
1998	9924 9851	1540	0.593	4.10	3086			
1999 2000	9851 10570		0.384		3289	42.853 42.444	121.835	
		1608	0.556				116.492	
2001	10858	1608	0.556		3160	43.842	113.008	
2002	11265	1626	0.557		3016	44.544	113.240	
2003	11777	1657	0.581	4.60	3163	41.792	114.402	20.903
2004	12511	1718	0.581		3857	44.749	116.376	19.541
2005	13268	1779	0.595		3812	44.468	116.144	19.882
2006	14140	1852	0.575		4088	44.347	114.634	19.908
2007	15015	1923	0.558		5095	45.086	113.240	22.424
2008	15650	1961	0.555	5.10	5549	43.949	109.408	22.047
2009	15270	1873	0.513		3094	46.640	101.161	23.608
2010	15839	1904	0.531		3466	47.171	100.000	22.748
2011	16447	1939	0.562		4302	46.742	99.187	22.504
2012	17126	1982	0.561		4185	45.883	97.329	23.499
			0.526	5.80				
2013	17604	2001		5.80	3706	46.035	98.490	23.894
2014	18142	2026	0.504		4054	47.141	95.935	24.242
2015	18839	2067	0.496		4963	46.224	95.006	21.976
2016	19572	2111	0.501		4706	45.024	96.400	
2017	20520	2176	0.505		5260	46.365	98.026	
2018	21279	2219	0.505	6.50	5489	47.298	97.677	
México	04.60.5	2055	0.55		AWA W	00.511		
1950	81686	2929	0.526			29.241		
1951	88003	3068				27.006		
1952	91523	3101				28.496		
1953	91774	3021	0.555	2.17		29.906		
1954	100953	3226				31.010		
1955	109500	3396				30.544		
1956	117012	3521				30.730		
1957	125876	3672	0.551			30.544		
1958	132570	3746	0.546	2.18		32.545		
1959	136530	3740	0.570	2.10		34.083		
1939					30600		110 592	
	147593	3907			30690	35.480	110.583	
1961	154973	3977			31777	35.480	111.798	
1962	162202	4035		_	31645	35.666	111.682	
	175351	4229	0.540	2.33	37076	33.238	110.351	
1963								
1963 1964	196227	4588			44312	35.200	111.358	(Continúa)

Año	inuación) PIBª	PIBpcb	CGc	CHd	CFe	PS ^f	RERg	GP ^h
1965	210160	4763		CII	63029	36.132	112.724	- 01
1966	222971	4898			68060	36.318	113.927	
1967	236026	5027			70901	36.504	114.159	
1968	258267	5333	0.580	2.54	82244	33.419	112.724	
1969	267097	5348	0.580	2.34	75765	35.852	110.976	
1970	284464	5524	0.583		80255	35.666	110.570	
1971	295167	5561	0.582		77695	35.482	111.509	
1972	319456	5841	0.582		86591	36.938	110.860	10.088
1973	344569	6118	0.581	2.89	98955	32.503	113.522	10.420
1974	364474	6288	0.580	2.67	115962	36.739	125.281	11.667
1974	385411	6466	0.579		118629	38.080	132.236	12.545
1976 1977	402437	6571	0.540 0.500		118952	40.264	117.712	13.129
	416082	6618		2 22	112117	38.866	96.591	12.980
1978	453350	7029	0.526	3.33	127864	37.891	102.528	12.666
1979	497317	7521	0.525		147833	37.723	108.604	13.168
1980	543235	8017	0.520		166675	36.038	120.848	10.873
1981	589549	8494	0.515		192020	37.461	137.507	12.572
1982	586479	8253	0.510		145051	35.214	98.724	21.956
1983	566032	7785	0.506	3.92	105379	39.872	87.000	21.040
1984	585338	7872	0.506		111104	28.654	101.901	18.658
1985	598143	7872	0.520		123396	28.676	104.745	20.530
1986	579727	7471	0.530		100096	28.545	73.158	24.905
1987	589712	7446	0.540		105643	26.837	67.406	27.330
1988	597280	7393	0.547	4.80	118319	35.811	83.646	23.800
1989	621801	7549	0.547		123581	29.540	89.768	19.342
1990	653984	7791	0.550		137300	29.531	91.856	16.919
1991	681548	7970	0.560		147653	30.877	100.719	13.773
1992	705682	8104	0.567		168498	32.881	108.898	13.362
1993	719381	8117	0.567	6.10	164118	33.829	117.110	10.872
1994	754926	8374	0.567		187825	35.341	112.331	10.914
1995	707432	7718	0.570		129106	31.080	75.483	11.914
1996	755348	8109	0.580		149449	28.861	84.770	11.684
1997	807065	8530	0.560		170511	29.628	97.599	12.218
1998	848742	8836	0.542	6.60	188046	36.306	98.369	11.162
1999	872112	8946	0.550		193494	31.229	106.771	11.963
2000	915216	9254	0.553		212267	31.315	115.540	12.680
2001	911515	9088	0.530		186032	32.550	123.018	
2002	911152	8961	0.510		184884	32.557	123.051	
2003	924331	8967	0.553	7.10	188186	35.216	110.192	
2004	960570	9191	0.506		197722	28.781	105.977	
2005	982738	9271	0.501		213268	28.542	109.806	
2006	1026913	9547	0.500		231946	27.888	109.901	
2007	1050444	9622	0.510		243655	27.681	108.374	
2008	1062457	9588	0.522	8.00	256193	38.287	106.080	22.105
2009	1006298	8948	0.515	0.00	225783	28.739	92.784	21.570
2010	1057801	9271	0.511		241106	27.581	100.000	21.404
2010	1096549	9478	0.511		256675	27.010	99.797	21.732
2012	1136488	9691	0.509		270382	27.110	96.625	21.874
2012	1151878	9694	0.509	8.40	264670	28.977	102.273	21.551
2013	1184180	9839	0.511	0.70	269289	27.189	102.273	21.795
2014	1223116	10037	0.502		280914	27.189	90.751	21.793
2013	1258715	10037	0.503		284718	27.189	79.027	20.976
2016					280107			
	1285376	10301 10404	0.505 0.504	8.60	280107	27.427	80.882	20.433 20.449
2018 Nigara	1312831	10404	0.304	8.00	200009	29.670	80.996	20.449
Nicaraş 1950	gua 1600	1227						

(., \
Unnt	inuac	10n l
Conu	muuc	$\iota \cup \iota \iota \iota \iota$

	ruación)							
Año	PIB ^a	PIBpc ^b	CGc	CHd	CFe	PSf	RERg	GP ^h
1951	1708	1271						
1952	1998	1443						
1953	2046	1434	0.590	1.53				
1954	2237	1520						
1955	2387	1573						
1956	2386	1525						
1957	2587	1603						
1958	2595	1558	0.585	1.68		48.585		
1959	2634	1533						
1960	2670	1506			480	53.045		
1961	2870	1568			524	53.611		
1962	3182	1686			655	54.086		
1963	3528	1813	0.580	1.93	723	48.009		
1964	3941	1964	0.560	1.75	965	55.176		
1965	4316	2087			1121			
						54.362		
1966	4459	2091			1262	54.673		
1967	4770	2171	0.505	4.00	1262	55.230		
1968	4834	2134	0.585	1.90	1101	49.385	4.4.400	
1969	5135	2200			1267	55.336	14.490	
1970	5205	2163			1281	53.459	17.483	
1971	5377	2167			1324	53.642	21.515	
1972	5496	2148			887	53.071	25.559	
1973	5849	2217	0.500	2.65	1812	51.594	28.829	
1974	6679	2454			2549	53.341	28.642	
1975	6669	2376			1509	54.292	27.987	
1976	7016	2424			1545	54.525	27.462	
1977	7603	2547			2643	54.093	28.393	
1978	7007	2277	0.510	2.88	1085	52.624	26.599	
1979	5152	1624				42.279	30.888	
1980	5389	1650			1308	42.070	34.759	
1981	5678	1690			2001	41.952	42.819	
1982	5632	1630			1649	42.483	53.266	
1983	5892	1660	0.564	3.21	1793	52.205	67.979	
1984	5800	1592	0.00.	5.21	1809	41.122	90.198	
1985	5563	1490			1798	57.244	106.216	
1986	5506	1440			1776	39.098	317.755	
1987	5467	1398			1748	26.028	2834.986	
1988	4787	1198	0.560	3.63	1234	30.873	35.766	
1989	4703	1152	0.500	3.03	1069	29.552	18.734	
								(5.227
1990	4701 4692	1126 1099			933	51.735	59.747	65.227
1991					1047	47.945	109.959	23.731
1992	4710	1079	0.502	4.40	1097	57.179	126.580	24.400
1993	4692	1051	0.582	4.40	896	50.999	127.785	25.174
1994	4848	1063			1133	34.013	120.229	11.311
1995	5135	1104			1298	32.277	109.888	10.922
1996	5461	1152			1568	32.272	107.742	10.803
1997	5677	1176			1901	31.303	105.206	11.295
1998	5888	1199	0.583	4.90	1965	55.732	107.160	11.448
1999	6302	1263			2567	31.080	111.425	12.683
2000	6561	1294			2134	33.440	109.900	12.693
2001	6755	1313	0.568		1955	35.470	110.273	14.415
2002	6806	1304			1816	34.433	107.653	12.201
2003	6978	1318	0.568	5.30	1798	51.937	100.712	13.153
2004	7348	1370			1990	34.851	96.957	12.924
2005	7663	1409	0.526		2215	34.862	95.846	13.718
	7981	1447	0.020		2212	36.782	96.148	15.078
2006	/201	1 /					90.140	1.).U/A

Año	uación) PIBª	PIBpcb	CGc	CHd	CFe	PSf	RERg	GP ^h
2007	8386	1500			2612	37.454	94.213	14.694
2008	8674	1531	0.526	5.80	2872	54.752	97.822	15.207
2009	8389	1460	0.463		1965	36.060	106.948	15.497
2010	8759	1504	0.103		2176	36.069	100.000	14.993
2010	9312	1577			2810	36.624	95.884	14.975
2011	9917				2969	39.722	97.431	15.229
		1658	0.405	6.40				
2013	10406	1716	0.495	0.40	3072	38.429	97.230	15.091
2014	10904	1775	0.495		3058	39.560	97.331	15.428
2015	11426	1836			3904	39.560	101.986	15.924
2016	11947	1895			3894	39.493	102.096	16.394
2017	12501	1958			3941	39.358	98.340	16.522
2018	12007	1857	0.500	6.70	2900	38.894	95.573	16.797
Panamá								
1950	1511	1714				60.091		
1951	1498	1656				59.961		
1952	1578	1701				61.961		
1953	1674	1762	0.562	3.59		67.912		
1954	1734	1783				61.948		
1955	1835	1839				63.192		
1956	1930	1886				64.607		
1957	2132	2031				(0.010		
1958	2149	2005	0.532	3.83		69.091		
1959	2286	2078				63.535		
1960	2424	2139	0.500		495	64.093	156.520	
1961	2689	2304	0.500		629	65.409	161.893	
1962	2910	2420			708	65.174	158.889	
1963	3159	2550	0.520	4.26	796	69.562	153.272	
1963			0.320	4.20				
	3299	2585			726	66.561	156.308	
1965	3601	2739			824	64.919	150.741	
1966	3874	2862			1097	65.494	146.632	
1967	4206	3017			1157	65.305	143.540	
1968	4499	3136	0.557	4.38	1311	68.108	141.053	
1969	4879	3304	0.557		1501	67.411	137.655	
1970	5218	3435	0.570		1769	50.280	134.694	
1971	5720	3659	0.565		2170	51.801	135.922	
1972	5982	3721	0.562		2485	54.032	129.769	
1973	6303	3813	0.560	4.69	2579	67.990	119.396	
1974	6458	3801	0.550		2449	54.223	120.225	
1975	6570	3765	0.535		2362	51.106	115.281	
1976	6679	3729	0.520		2340	51.391	113.099	
1977	6752	3674	0.510		1627	50.655	106.136	
1978	7414	3934	0.500	5.22	2032	49.480	94.472	
1978	7748	4012	0.300	3.22	2190	49.406	93.410	
1980	8762	4429	0.500		2582	51.117	96.371	
1981	9569	4723	0.515		2844	47.670	100.531	
1982	10081	4861	0.518		2816	47.690	107.683	
1983	9628	4537	0.520	5.90	1764	47.860	108.164	
1984	9889	4556	0.535		1694	48.767	109.744	
1985	10377	4676	0.550		1625	49.004	109.894	
1986	10748	4738	0.565		2090	50.318	96.139	
1987	10553	4552	0.575		2142	50.091	87.538	
1988	9141	3859	0.589	6.63	819	42.268	80.336	
1989	9284	3837	0.589		595	56.688	78.999	
1990	10036	4062	0.585		2143	52.947	75.657	
1991	10981	4352	0.582		2368	51.322	78.286	
1991	11882	4613	0.582		3283	49.372	81.013	
1774	11002	4013	0.565		3203	77.3/4	01.013	(0 : :

994 12887 4801 0.537 4270 47.720 85.102 995 13113 4786 0.578 4731 47.758 88.802 9996 13648 4881 0.554 5084 37.634 88.510 9997 14530 5091 0.582 5298 36.292 88.608 9998 15596 5355 0.575 8.30 5877 43.402 87.634 9999 16207 5455 0.565 6086 36.457 86.758 9990 16207 5455 0.565 56086 36.457 86.758 9900 16648 5494 0.570 5525 37.763 86.563 9001 16743 5419 0.575 4189 36.939 88.510 9002 17116 5435 0.572 3962 35.680 88.413 9003 17836 5558 0.569 8.80 4716 43.889 91.042 9104 19178 5866 0.563 5181 34.691 95.618 9105 20557 6173 0.550 5329 33.124 97.371 9106 22336 6585 0.562 6050 33.118 99.611 9107 25012 7242 0.539 8404 32.560 103.019 9108 27478 7815 0.531 9.20 10773 46.968 103.700 927819 7772 0.518 8400 28.691 100.779 9101 32771 8842 0.528 12801 27.380 101.168 9101 32771 8842 0.528 12801 27.380 101.168 9101 32771 8842 0.528 12801 27.380 101.168 9101 32771 8842 0.524 9.70 17733 27.555 89.776 9101 3404 8082 0.527 11250 29.101 100.000 927819 7772 0.518 10077 27.068 91.918 9101 32771 8842 0.528 12801 27.380 101.168 9101 32771 8842 0.528 12801 27.380 101.168 9101 40408 10358 0.509 18823 26.547 86.465 9101 44040 10358 0.509 18823 26.547 86.465 9101 44040 10358 0.509 18823 26.547 86.465 9101 44040 10358 0.509 18823 26.547 86.465 9101 44040 10358 0.509 18823 26.547 86.465 9101 44040 10358 0.509 18823 26.547 86.465 9101 47351 11530 0.508 21581 26.812 83.057 9101 9468 1380 959 2619 1387 960 2598 1364 9.509 180 35.168 181.536 960 2598 1364 961 2777 1421 1 31.500 20.514 10.20 2024 28.346 84.615 956 2333 1357 9597 2468 1385 959 2619 1387 960 2598 1364 961 3700 328 35.743 181.452 966 3389 1519 393 36.974 180.439 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 9668 3867 1644 0.525 3.37 471 35.692 179.049	Año	PIB ^a	PIBpcb	CG^c	CH^d	CF^e	PSf	RERg	GPh
995 13113 4786 0.578 4731 47.758 88.802 996 1364 4881 0.554 5084 37.634 88.510 997 14530 5091 0.582 5298 36.292 88.608 998 15596 5355 0.575 8.30 5877 43.402 87.634 998 15596 5355 0.575 8.30 5877 43.402 87.634 999 16207 5455 0.565 6086 6086 36.457 86.758 8000 16648 5494 0.570 5525 37.763 86.563 0001 16743 5419 0.575 4189 36.939 88.510 002 17116 5435 0.572 3962 35.680 88.413 0033 17836 5558 0.569 8.80 4716 43.889 91.042 0044 19178 5866 0.563 5181 34.691 95.618 0050 20557 6173 0.550 5329 33.124 97.371 0066 22336 6585 0.562 6050 33.118 99.611 0073 46.968 103.019 0072 25012 7242 0.539 8404 32.560 103.019 0072 25012 7742 0.539 8404 32.560 103.019 0072 27478 7815 0.531 9.20 10773 46.968 103.700 0070 27819 7772 0.518 8400 28.691 100.779 0101 29440 8082 0.527 11250 29.101 100.000 0113 32771 8842 0.528 12801 27.380 101.168 0133 8459 10027 0.524 9.70 17733 27.535 89.776 0101 34849 10027 0.524 9.70 17733 27.535 89.776 0101 34849 10027 0.524 9.70 17733 27.535 89.776 0101 440408 10358 0.509 18823 26.547 86.465 0101 34849 10027 0.524 9.70 17733 27.535 89.776 0101 440408 10358 0.509 18823 26.547 86.465 0101 34849 10027 0.524 9.70 17733 27.535 89.776 9.791 1775 11550 0.518 1002 20035 27.535 89.776 9.791 1775 11550 0.514 1000 11755 0.514 10.20 2024 28.346 84.615 0101 17777 1779 1779 1779 1779 1779 177	1993	12530		0.582	6.63		42.835	82.863	
996 13648 4881 0.554 5084 37.634 88.510 997 14530 5091 0.582 5298 36.292 88.608 998 15596 5355 0.575 8.30 5877 43.402 87.634 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16208 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.563 9001 16743 5419 0.575 4189 36.939 88.510 9002 17116 5435 0.572 3962 35.680 88.413 9003 17836 5558 0.569 8.80 4716 43.889 91.042 9004 19178 5866 0.563 5181 34.691 95.618 9005 20557 6173 0.550 5329 33.124 97.371 9006 22336 6585 0.562 6050 33.118 99.611 9007 25012 7242 0.539 8404 32.560 103.019 9008 27478 7815 0.531 9.20 10773 46.968 103.700 9009 27819 7772 0.518 8400 28.691 100.779 91010 29440 8082 0.527 11250 29.101 100.000 9011 32771 8842 0.528 12801 27.380 101.168 91013 38459 10027 0.524 9.70 17733 27.535 89.776 91014 40408 10358 0.509 18823 26.547 86.465 91015 42724 10766 0.516 20035 26.901 82.765 91016 44841 1107 0.513 19942 27.343 81.792 91017 47351 11550 0.504 31.0 19942 27.343 81.792 950 1946 1390 1945 1390 951 1962 1380 995 2619 1387 995 2619 1387 995 2619 1387 995 2619 1387 996 2333 1357 996 2588 1340 140	1994	12887	4801	0.537		4270	47.720	85.102	
996 13648 4881 0.554 5084 37.634 88.510 997 14530 5091 0.582 5298 36.292 88.608 998 15596 5355 0.575 8.30 5877 43.402 87.634 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16208 5459 0.570 5525 37.763 86.563 9001 16743 5419 0.575 4189 36.939 88.510 901 16743 5419 0.575 4189 36.939 88.510 902 17116 5435 0.572 3962 35.680 88.413 903 17836 5558 0.569 8.80 4716 43.889 91.042 904 19178 5866 0.563 5181 34.691 95.618 905 20557 6173 0.550 5329 33.124 97.371 906 22336 6585 0.562 6050 33.118 99.611 907 25012 7242 0.539 8404 32.560 103.019 908 27478 7815 0.531 9.20 10773 46.968 103.700 909 27819 7772 0.518 8400 28.691 100.779 9010 29440 8082 0.527 11250 29.101 100.700 9011 32771 8842 0.528 12801 27.380 101.168 9012 35976 9541 0.517 16047 27.068 9.1918 9013 38459 10027 0.524 9.70 17733 27.535 89.776 9014 40408 10358 0.509 18823 26.547 86.465 9015 42724 10766 0.516 20035 26.901 82.765 9016 44841 11107 0.513 19942 27.343 81.792 9017 47351 11550 0.508 2.82 9018 49100 11755 0.514 10.20 22024 28.346 84.615 989 2619 1387 98.94 1390 995 2619 1387 99.95 1380 996 2333 1357 9958 1321 996 22869 1426 0.550 2.82 997 2468 1385 99.96 1387 99.96 998 2619 1387 99.96 1387 138.095 999 2619 387 99.96 1387 138.095 990 1946 1390 1775 1421 180 139.29 180.97 145.00 14	1995	13113	4786	0.578		4731	47.758	88.802	
997 14530 5091 0.582 5298 36.292 88.608 998 15596 5355 0.575 8.30 5877 43.402 87.634 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 999 16207 5455 0.565 6086 36.457 86.758 990 16208 5494 0.575 5525 37.763 86.563 9000 1648 5494 0.575 3962 35.680 88.413 9001 16743 5419 0.575 3962 35.680 88.413 9002 17116 5435 0.572 3962 35.680 88.413 9003 17836 5558 0.569 8.80 4716 43.889 91.042 9004 19178 5866 0.563 5181 34.691 95.618 9005 20557 6173 0.550 5329 33.124 97.371 9008 27478 7815 0.531 9.20 10773 45.968 103.709 9009 27819 7772 0.518 8400 28.691 100.779 9010 29440 8082 0.527 11250 29.101 100.000 9011 32771 8842 0.528 12801 27.380 101.168 9012 35976 9541 0.517 16047 27.068 91.918 9013 38439 10027 0.524 9.70 17733 27.535 89.776 9014 40408 10358 0.509 18823 26.547 86.465 9015 42724 10766 0.516 20035 26.901 82.765 9016 44841 11107 0.513 19942 27.343 81.792 9017 47351 11530 0.508 21581 26.812 83.057 9958 2468 1385 995 2468 1385 9959 2519 1387 9960 2598 1364 161.111 961 27777 1421 180 38.698 18.036 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 6165 445 63.698 84.601 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.510 577 36.29 162.511 971 4510 1779 0.510 577 36.29 162.511 972 4810 1872 0.515 500 34.396 164.193 973 5161 1941 0.495 3.74 950 3	1996	13648		0.554		5084	37.634	88.510	
998 15596 5355 0.575 8.30 \$877 43.402 87.634 999 16207 5455 0.565 6086 36.457 86.758 9000 16648 5494 0.570 5525 37.763 86.563 9001 16743 5419 0.575 4189 36.939 88.510 901 16743 5419 0.575 4189 36.939 88.510 902 17116 5435 0.572 3962 35.680 88.413 903 17836 5558 0.569 8.80 4716 43.889 91.042 91001 19178 5866 0.563 5181 34.691 95.618 91002 20557 6173 0.550 5329 33.124 97.371 91004 19178 5866 0.563 5181 34.691 95.618 91005 20557 6173 0.550 5329 33.118 99.611 91007 22012 7242 0.539 8040 32.560 103.019 91008 27478 7815 0.531 9.20 10773 46.968 103.700 91010 29440 8082 0.527 11250 29.101 100.000 91011 32771 8842 0.528 12801 27.380 101.168 91012 35976 9541 0.517 16047 27.968 91.918 91013 38459 10027 0.524 9.70 17733 27.535 89.776 91014 40408 10358 0.509 18823 26.547 86.465 91015 42724 10766 0.516 20035 26.901 82.765 91016 44841 1107 0.513 19942 27.343 81.792 91017 47351 11530 0.508 21.881 26.812 83.057 91018 49100 11755 0.514 10.20 22024 28.346 84.615 9878 2060 1324 0.551 2.55 999 2619 1387 990 1387 990 1387 990 1387 990 2598 1364 910 180 35.168 181.536 996 2598 1364 910 180 35.168 181.536 996 2598 1364 910 177 421 910 183.959 996 2598 1364 910 180 35.168 181.536 996 2333 1530 328 33.74 181.452 997 24810 1882 0.550 577 36.329 162.511 997 44810 1779 0.510 577 36.329 162.511 997 44810 1852 0.505 675 36.502 177.297 997 44810 1852 0.505 675 36.502 177.297 997 44810 1852 0.505 675 36.502 177.297 997 44810 1852 0.505 675 36.502 177.297 997 44810 1852 0.505 675 36.502 177.297 997 4510 1779 0.510 577 36.329 16	1997	14530				5298		88.608	
999 16207 5455 0.565 6086 36.457 86.758 1000 16648 5494 0.570 5525 37.763 86.563 1000 16743 5419 0.575 4189 36.939 88.510 1001 16743 5419 0.575 4189 36.939 88.510 1002 17116 5435 0.572 3962 35.680 88.413 1003 17836 5558 0.569 8.80 4716 43.889 91.042 1004 19178 5866 0.563 5181 34.691 95.618 1005 20557 6173 0.550 5329 33.124 97.371 1006 22336 6585 0.562 6050 33.118 99.611 1007 25012 7242 0.539 8404 32.560 103.019 1008 27478 7815 0.531 9.20 10773 46.968 103.700 1010 29440 8082 0.527 11250 29.101 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1016 44048 10358 0.509 18823 26.547 86.465 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 1755 0.514 10.20 22024 28.346 84.615 1840 2377 1421 180 35.168 181.536 1962 2869 1336 995 1387 996 2333 1357 1972 2468 1385 0.540 3.11 171 34.369 187.418 1961 2777 1421 180 39.33 36.974 180.439 1962 2869 1336 996 3323 35.93 36.974 180.439 1963 3004 1458 0.540 3.11 171 34.369 187.418 1964 3130 1480 211 35.122 181.118 1965 3323 1530 328 35.73 181.452 1966 3389 1519 393 36.974 180.439 1967 3700 1615 445 36.898 184.001 1979 4461 1779 0.510 577 36.329 162.511 1971 4510 1779 0.510 577 36.329 162.511 1972 4810 1852 0.505 675 36.502 177.297 1973 5161 1941 0.495 3.74 950 38.339 146.892 1974 5593 2053 0.490 1088 34.871 159.450 1975 5977 2464 0.480 1385 35.816 173.240 1977 7165 2441 0.470 1635 3.4748 176.751 1978 8027 2664 0.460 4.09 2050 32.89	1998				8.30				
1000	1999								
1001 16743 5419 0.575 4189 36,939 88,510 1002 17116 5435 0.572 3962 35,680 88,413 1003 17836 5558 0.569 8.80 4716 43,889 91,042 1004 19178 5866 0.563 5181 34,691 95,618 1006 22336 6585 0.562 6050 33,118 99,611 1006 22336 6585 0.562 6050 33,118 99,611 1007 25012 7242 0.539 8404 32,560 103,019 1008 27478 7815 0.531 9.20 10773 46,968 103,700 1009 27819 7772 0.518 8400 28,691 100,779 1010 29440 8082 0.527 11250 29,101 100,000 1011 32771 8842 0.528 12801 27,380 101,168 1012 35976 9541 0.517 16047 27,068 91,918 1013 38459 10027 0.524 9,70 17733 27,535 89,776 1014 40408 10358 0.509 18823 26,547 86,465 1016 44841 11107 0.513 19942 27,343 81,792 1017 47351 11530 0.508 21581 26,812 83,057 1018 49100 11755 0.514 10.20 22024 28,346 84,615 1017 47351 1380 9952 1958 1321 9951 1962 1380 9952 1958 1321 9953 2060 1324 0.551 2.55 9954 2119 1312 9952 278 1336 9960 2598 1364 961 2777 421 18,995 1962 1380 9961 2777 421 188 965 3323 1530 328 35,743 18,1452 9963 3004 1458 0.540 3,11 171 34,369 187,418 966 3389 1519 393 30,974 180,439 967 3700 1615 445 36,898 184,001 968 3867 1644 0.525 3,37 471 35,692 179,049 969 4049 1678 0.520 577 36,329 162,511 970 4274 1727 0.515 520 34,396 164,193 971 4510 1799 0.510 577 36,329 162,511 973 5161 1941 0.495 3,74 950 38,339 146,892 974 8027 2664 0.480 1385 35,816 173,240 977 7165 2441 0.470 1635 34,748 176,751 977 7165 2441 0.470 1635 34,748 176,751 977 7165 2441 0.470 1635 34,748 176,751									
17116									
1903 17836 5558 0.569 8.80 4716 43.889 91.042									
19178 5866 0.563 5181 34.691 95.618 19005 20557 6173 0.550 5329 33.124 97.371 19006 22336 6585 0.562 6050 33.118 99.611 19007 25012 7242 0.539 8404 32.560 103.019 10007 25012 7242 0.539 8404 32.560 103.019 10009 77819 7772 0.518 8400 28.691 100.779 1010 29440 8082 0.527 11250 29.101 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 1962 1380 1952 1958 1321 1962 1380 1955 2278 1336 1959 2468 1385 1959 2619 1387 1960 2598 1364 1426 0.550 2.82 1958 321 1962 1380 1962 1380 1962 1380 1962 1380 1962 1380 1962 1380 1962 1380 1962 1380 1963 1324 0.551 2.55 1958 321 1962 1380 1963 1324 0.551 2.55 1958 323 1336 1960 3393 36.974 180.439 180 35.168 181.536 180.959 180.					8.80				
2005 20557 6173 0.550 5329 33.124 97.371					0.00				
1006 22336 6585 0.562 6050 33.118 99.611 1007 25012 7242 0.539 8404 32.560 103.019 1008 27478 7815 0.531 9.20 10773 46.968 103.700 1009 27819 7772 0.518 8400 28.691 100.779 1010 29440 8082 0.527 11250 29.101 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 137araguay									
1007 25012 7242 0.539 8404 32.560 103.019 1008 27478 7815 0.531 9.20 10773 46.968 103.700 1009 27819 7772 0.518 8400 28.691 100.779 1010 29440 8082 0.527 11250 29.101 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1020 23024 28.346 84.615 1020 23024 28.346 84.615 1020 23024 28.346 84.615 1020 23024 28.346 84.615 1020 23024 28.346 84.615 1020 23024 2									
1008 27478 7815 0.531 9.20 10773 46.968 103.700 1009 27819 7772 0.518 8400 28.691 100.779 1009 27819 7772 0.518 8400 28.691 100.779 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 1019									
1009 27819 7772					0.20				
1010 29440 8082 0.527 11250 29.101 100.000 1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1019 1962 1380 952 1958 1321 953 2060 1324 0.551 2.55 954 2119 1312 953 2060 1324 0.551 2.55 959 2619 1387 960 2598 1364 161.111 961 2777 1421 183.959 962 2869 1430 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034					9.20				
1011 32771 8842 0.528 12801 27.380 101.168 1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 128 1380 952 1988 1321 953 2060 1324 0.551 2.55 954 2119 1312 953 26.901 38.7 956 2333 1357 957 2468 1385 958 2621 1426 0.550 2.82 959 2619 1387 960 2598 1364 161.111 961 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
1012 35976 9541 0.517 16047 27.068 91.918 1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 2018									
1013 38459 10027 0.524 9.70 17733 27.535 89.776 1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1018 49100 1755 0.514 10.20 22024 28.346 84.615 1019 1962 1380 9952 1958 1321 9953 2060 1324 0.551 2.55 954 2119 1312 955 2278 1336 9956 2333 1357 9957 2468 1385 9959 2619 1387 960 2598 1364 161.111 183.959 9619 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 36.98 184.001 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 974 4559 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034		32771							
1014 40408 10358 0.509 18823 26.547 86.465 1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 2017 47351 11530 0.508 21581 26.812 83.057 2018 49100 11755 0.514 10.20 22024 28.346 84.615 2018 49100 1390 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2018 2019 2019 2018 2018 2018 2018 2018 2018 2018 2018 2019 2019 2019 2018 2	2012								
1015 42724 10766 0.516 20035 26.901 82.765 1016 44841 11107 0.513 19942 27.343 81.792 1017 47351 11530 0.508 21581 26.812 83.057 1018 49100 11755 0.514 10.20 22024 28.346 84.615 1787 1878 1962 1380 1952 1958 1321 1953 2060 1324 0.551 2.55 1954 2119 1312 955 2278 1336 9958 2621 1426 0.550 2.82 959 2619 1387 960 2598 1364 161.111 961 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	2013	38459	10027	0.524	9.70	17733	27.535	89.776	
1016	2014	40408	10358	0.509		18823	26.547	86.465	
1016	2015	42724	10766	0.516		20035	26.901	82.765	
1017	2016	44841				19942			
1918 49100 11755 0.514 10.20 22024 28.346 84.615								83.057	
Paraguay 950					10.20				
950									
951	1950		1390						
952									
953									
954 2119 1312 955 2278 1336 956 2333 1357 957 2468 1385 958 2621 1426 0.550 2.82 959 2619 1387 960 2598 1364 962 2869 1430 1458 0.540 3.11 171 34.369 187.418 963 3004 1458 0.540 3.11 171 34.369 187.418 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 425 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.39 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 179.676 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034				0.551	2 55				
955 2278 1336 </td <td></td> <td></td> <td></td> <td>0.551</td> <td>2.33</td> <td></td> <td></td> <td></td> <td></td>				0.551	2.33				
956 2333 1357 957 2468 1385 958 2621 1426 0.550 2.82 959 2619 1387 960 2598 1364 183.959 962 2869 1430 1880 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
957 2468 1385 958 2621 1426 0.550 2.82 959 2619 1387 161.111 960 2598 1364 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510									
958 2621 1426 0.550 2.82 959 2619 1387 161.111 960 2598 1364 161.111 961 2777 1421 180 35.168 181.536 962 2869 1430 3.11 171 34.369 187.418 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193									
959 2619 1387 960 2598 1364 161.111 961 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4				0.550	2.92				
960 2598 1364 161.111 961 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74<				0.550	2.82				
961 2777 1421 183.959 962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974								161 111	
962 2869 1430 180 35.168 181.536 963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.8									
963 3004 1458 0.540 3.11 171 34.369 187.418 964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088									
964 3130 1480 211 35.122 181.118 965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 3					A				
965 3323 1530 328 35.743 181.452 966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 <td< td=""><td>1963</td><td></td><td></td><td>0.540</td><td>3.11</td><td></td><td></td><td></td><td></td></td<>	1963			0.540	3.11				
966 3389 1519 393 36.974 180.439 967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 <t< td=""><td>1964</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1964								
967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	1965	3323	1530			328	35.743	181.452	
967 3700 1615 445 36.898 184.001 968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	1966	3389	1519			393	36.974	180.439	
968 3867 1644 0.525 3.37 471 35.692 179.049 969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	1967						36.898		
969 4049 1678 0.520 522 36.278 174.525 970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	1968			0.525	3.37				
970 4274 1727 0.515 520 34.396 164.193 971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034	1969								
971 4510 1779 0.510 577 36.329 162.511 972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
972 4810 1852 0.505 675 36.502 157.297 973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
973 5161 1941 0.495 3.74 950 38.339 146.892 974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
974 5593 2053 0.490 1088 34.871 159.450 975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034					2 74				
975 5977 2141 0.485 1057 34.268 179.112 976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034					5./4				
976 6426 2246 0.480 1385 35.816 173.240 977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
977 7165 2441 0.470 1635 34.748 176.751 978 8027 2664 0.460 4.09 2050 32.895 167.034									
978 8027 2664 0.460 4.09 2050 32.895 167.034									
(Contin	1978	8027	2664	0.460	4.09	2050	32.895	167.034	
									(Contin

	nuación)							
Año	PIB ^a	PIBpc ^b	CGc	CHd	CFe	PSf	RERg	GP ^h
1979	8979	2901	0.462		2346	35.051	181.306	
1980	10031	3153	0.458		2935	34.846	189.862	
1981	10951	3346	0.455		3505	34.268	206.408	
1982	10798	3205	0.452		2882	33.363	177.582	
1983	10469	3018	0.451	4.64	2350	34.012	169.176	
1984	10764	3014	0.455		2373	31.969	166.451	
1985	11251	3060	0.453		2035	31.001	143.914	
1986	11809	3122	0.454		2333	30.633	143.961	
1987	12705	3265	0.452		2730	30.536	114.286	
1988	13456	3363	0.453	5.26	2579	33.764	122.220	
1989	14389	3499	0.450		2821	27.380	90.981	
1990	14983	3548	0.447		3245	24.337	89.550	
1991	15506	3578	0.455		3556	28.815	100.423	
1992	15769	3548	0.458		3682	30.124	97.398	
1993	16548	3632	0.511	6.00	3825	26.564	98.204	
1994	17428	3735	0.511	0.00	4318	31.667	103.538	
1994	18617	3897	0.511		4498	31.945	103.338	
1995	18910	3869	0.390		4275	33.883	104.663	
1997	19712	3944	0.549	6.00	4569	37.760	111.719	
1998	19725	3862	0.594	6.00	4083	37.060	101.924	
1999	19456	3730	0.594		3878	37.752	105.054	
2000	19006	3570	0.572		3384	38.728	101.786	
2001	18847	3472	0.561		3445	38.534	98.052	
2002	18843	3406	0.584		3569	37.784	85.187	
2003	19657	3490	0.560	7.00	3929	20.481	79.616	
2004	20455	3569	0.542		4035	32.663	82.042	
2005	20891	3587	0.524		3801	29.864	76.920	12.279
2006	21896	3703	0.534		4049	31.276	86.294	12.365
2007	23083	3848	0.548		4379	30.765	94.466	11.483
2008	24551	4037	0.516	7.40	5161	25.943	108.224	10.830
2009	24487	3973	0.503		4810	31.732	99.169	12.585
2010	27216	4356	0.536		6477	29.259	100.000	11.849
2011	28372	4479	0.535		6695	30.372	112.193	13.099
2012	28220	4395	0.489		5962	32.613	110.273	15.699
2013	30595	4699	0.504	8.30	6569	29.833	115.328	14.475
2014	32082	4861	0.522	0.50	7224	30.820	117.527	14.747
2015	33070	4944	0.494		7014	31.595	114.799	16.191
2016	34497	5090	0.510		6675	30.879	110.823	15.437
2017	36207	5273	0.510		7526	31.177	10.023	15.623
2017	37421	5380	0.503	8.40	8423	30.757	113.516	15.065
Perú	3/421	3380	0.303	0.40	0423	30.737	113.310	13.003
1950	15536	2067		744		34.792		
1951	16809	2173				33.313		
1952						34.449		
	17857	2228	0.550	2.46		-		
1953	18810	2310	0.558	2.46		42.031		
1954	20024	2314				36.935		
1955	20979	2421				37.666		
1956	21880	2464				38.919		
1957	23357	2517				40.317		
1958	23224	2457	0.520	2.70		41.897		
1959	24076	2402				41.193		
1960	27008	2660			3519	39.115	33.108	
1961	28992	2775			3952	39.662	35.601	
1962	31901	2968	0.520		4406	39.224	36.999	
1963	33282	3009	0.510	2.91	4271	38.114	38.532	
1964	35461	3115			4394	39.700	41.296	
								(Continúa)

Año	nuación) PIBª	PIBpc ^b	CGc	CHd	CFe	PSf	$\mathbf{RER^g}$	GP ^h
1965	37455	3198	·		5001	39.605	46.699	-
1966	40541	3366			5863	38.465	49.401	
1967	42102	3399			5594	39.537	47.127	
1968	42167	3311	0.480	3.25	4382	41.166	42.944	
1969	43648	3334	0.480		4620	37.570	43.747	
1970	45118	3352	0.510		5028	36.784	43.799	
1971	47189	3410	0.550		5779	38.635	44.738	
1972	48830	3433	0.570		5444	39.820	44.039	12.654
1973	51895	3551	0.570	3.67	8052	32.010	41.828	13.162
1974	56766	3780	0.572		10746	36.834	43.466	11.747
1975	59208	3838	0.570		10533	37.354	48.785	13.606
1976	60064	3792	0.571		9133	38.050	44.811	14.231
1977	60274	3707	0.572		8020	36.832	37.541	13.222
1978	58681	3517	0.570	4.45	7441	37.857	28.226	15.667
1979	61082	3569	0.571	7.73	8685	28.109	28.946	13.333
1980	64712	3688	0.572		11878	30.544	31.543	18.763
1981	68305	3798	0.572		14513	32.625	36.738	17.391
1982	68153	3699	0.545		13528	34.669	38.073	16.437
1983	61059	3236	0.530	5.27	8750	36.603	34.756	18.305
1984	63263	3275	0.535	3.21	8226	34.498	34.464	17.419
1985	64567	3265	0.535		7023	32.532	28.977	17.415
1986	70653	3492	0.343		9115	37.326	36.738	16.936
1987	77524	3747	0.475		11164	41.158	51.498	15.852
1988	70205	3319	0.473	5.83	9828	40.431	48.118	13.832
1989	61561	2848	0.492	5.65		36.157		12.978
1989	58494	2650	0.493		7741 7787	34.840	96.163 93.962	19.457
1990	59792	2655	0.494		8115	30.065	98.835	14.569
1991		2589	0.492		8218			
	59469			7.00		26.448	96.822	17.155
1993 1994	62587	2674 2947	0.504	7.00	9181	25.622	107.097	15.309
	70291		0.504		12213	25.124	99.153	15.430
1995	75500	3107	0.515		14638	25.853	98.093	17.502
1996	77614	3135	0.528		13919	26.285	95.233	17.050
1997	82640	3278	0.537	7.70	15996	26.188	95.551	16.625
1998	82317	3208	0.561	7.70	15666	28.680	97.034	16.924
1999	83547	3204	0.563		13558	28.419	106.356	17.818
2000	85798	3243	0.492		13163	28.656	105.826	18.421
2001	86329	3221	0.513		12254	30.323	103.919	18.244
2002	91037	3359	0.544	0.45	12739	30.988	101.059	17.613
2003	94828	3464	0.548	8.45	13385	34.789	104.237	17.771
2004	99530	3603	0.567		13412	31.319	105.403	17.383
2005	105786	3796	0.525		14247	30.969	105.932	18.020
2006	113750	4048	0.517		19180	30.275	107.945	17.078
2007	123440	4357	0.539		24672	30.694	108.686	18.143
2008	134706	4716	0.495	8.40	32345	35.329	105.403	17.824
2009	136182	4730	0.504		25810	31.301	103.602	18.484
2010	147529	5082	0.505		35054	30.552	100.000	17.822
2011	156863	5360	0.463		39333	30.324	102.331	17.628
2012	166494	5643	0.457	_	43068	31.072	95.445	17.918
2013	176238	5919	0.486	8.80	46730	31.436	95.763	18.958
2014	180437	5996	0.446		46236	31.168	97.987	20.511
2015	186305	6114	0.449		44583	31.235	99.682	20.568
2016	193670	6262	0.452		42009	30.631	100.953	19.188
2017	198548	6314	0.448		42022	30.966	97.564	20.018
2018	206445	6454	0.450	9.20	43978	31.863	99.153	19.755
Jrugua		·		·				

()		., \
11 oni	าทาเก	ción)
Conn	ıııuu	$\iota\iota\iota\iota\iota\iota\iota\iota$

	nuación)							
Año	PIBa	PIBpc ^b	CGc	CHd	CF^e	PSf	RERg	GP ^h
1951	12183	5469						
1952	12351	5471						
1953	12980	5672	0.425	4.07		49.102		
1954	13812	5950						
1955	13928	5907				45.000		
1956	14170	5916				45.217		
1957	14313	5886				46.522		
1958	13798	5962	0.418	4.28		49.281		
1959	13412	5364	0.110	1.20		45.000		
1960	13898	5475				39.348	69.790	
1961	14245	5539	0.366			44.203	86.914	
1962			0.500					
1962	14020	5384 5330	0.424	4.56		50.290	94.166	
	14044		0.424	4.30		50.085	88.557	
1964	14387	5398			2006	48.986	106.129	
1965	14537	5395			2096	47.174	89.972	
1966	14983	5503			2024	42.899	80.877	
1967	14435	5249	0.497		2323	47.536	80.817	
1968	14707	5300	0.497	4.73	2111	47.901	79.393	
1969	15570	5571	0.490		2698	46.522	85.728	
1970	15933	5671	0.480		3021	43.841	95.102	
1971	15893	5639	0.470		3087	45.942	110.184	
1972	15683	5559	0.460		2407	40.652	77.889	24.953
1973	15727	5573	0.450	5.24	2053	50.282	75.996	15.921
1974	16182	5730	0.451		2497	41.015	84.603	21.926
1975	17169	6066	0.452		3399	40.362	93.568	22.513
1976	17844	6280	0.450		4252	37.319	86.167	22.930
1977	18104	6337	0.440		4856	35.362	92.004	21.821
1978	19077	6634	0.424	5.61	5539	37.119	85.828	21.470
1979	20259	6996	0.425		6645	29.783	89.902	18.140
1980	21443	7355	0.424		7133	31.015	106.269	20.182
1981	21778	7421	0.437		6687	32.536	120.403	23.770
1982	19653	6653	0.415		5593	35.725	125.479	27.785
1983				6.25	2914			24.639
	17633	5931	0.404	0.23		35.868	78.112	
1984	17432	5826	0.410		2435	27.754	76.265	24.496
1985	17688	5873	0.417		2176	32.464	73.544	23.868
1986	19246	6350	0.402		2549	34.130	72.328	24.131
1987	20784	6815	0.387		3018	33.696	70.199	23.145
1988	21092	6873	0.417	6.86	3096	34.126	67.254	22.440
1989	21325	6904	0.446		3030	34.710	69.371	22.873
1990	21388	6878	0.492		2763	34.348	63.051	21.913
1991	22145	7071	0.470		3669	39.887	71.743	23.361
1992	23902	7577	0.456		4187	40.076	76.895	25.032
1993	24537	7721	0.456	7.30	4583	28.901	90.748	28.888
1994	26323	8223	0.423		5170	42.911	99.074	30.173
1995	25942	8046	0.468		5398	43.478	102.586	27.104
1996	27389	8434	0.427		5342	38.941	103.610	27.805
1997	29731	9091	0.430		5782	39.557	107.229	26.316
1998	31074	9442	0.439	7.70	6178	31.179	109.111	26.082
1999	30472	9211	0.440	3	5198	41.058	114.538	26.442
2000	29883	9002	0.447		4824	41.144	113.458	26.551
2001	28735	8641	0.464		4638	40.634	110.689	27.270
2001	26513	7971	0.474		3679	38.160	94.015	27.891
2002	26726	8041	0.474	8.00	3981	26.221	73.635	27.913
2003	28064			0.00	3981 4652			
		8449	0.476			32.797	72.446	26.592
2005	30157	9079	0.463		5080	34.366	81.076	26.557
2006	31393	9441	0.461		5696	36.425	81.721	26.864
								(Continúa)

(Conti	inuación)							
Año	PIBa	PIBpc ^b	CGc	CH^d	CFe	PS ^f	RERg	GP ^h
2007	33447	10039	0.468		6116	37.945	81.393	26.493
2008	35847	10732	0.456	8.40	7645	28.901	88.241	25.603
2009	37368	11156	0.492		6787	40.645	90.079	29.133
2010	40284	11992	0.445		7818	39.835	100.000	29.420
2011	42364	12575	0.422		8590	40.915	102.069	29.112
2012	43863	12981	0.399		9835	40.915	104.805	30.512
2013	45897	13541	0.405	8.50	10304	38.934	111.098	31.207
2014	47384	13935	0.402		10305	41.264	106.781	31.783
2015	47559	13939	0.402		9374	41.797	107.457	32.022
2016	48363	14124	0.397		9006	41.709	108.457	38.425
2017	49616	14437	0.395		7838	41.531	115.018	34.122
2018	50420	14617	0.394	8.70	8408	40.321	116.747	34.991
Venezu		0.625						
1950	47627	9637						
1951	53184	9896						
1952	57057	10321	0.545	1.50				
1953	60586	10275	0.545	1.50				
1954 1955	66420 72318	10870 11300						
1955	72318 79956	11783						
1950	89240	12989				36.843		
1958	90426	12677	0.540	1.79		43.578		
1959	97540	12911	0.540	1.75		46.201		
1960	101425	12457			18496	46.901	13.858	
1961	104663	12402			18025	46.022	13.376	
1962	113593	12993	0.545		19714	43.116	13.236	
1963	118025	13038	0.530	1.93	19680	44.437	13.140	
1964	131160	13999	0.550	1.55	26667	43.822	10.007	
1965	136620	14096			26555	43.781	9.839	
1966	138683	13837			23628	45.088	9.795	
1967	142613	13766			24542	46.042	9.576	
1968	153077	14303	0.545	2.13	32197	43.148	9.516	
1969	154158	13953	0.546		32781	40.745	9.362	
1970	166047	14570	0.545		43267	40.554	9.155	
1971	168503	14346	0.544		34371	40.558	9.055	
1972	170664	14107	0.541		37312	42.184	8.853	
1973	182799	14678	0.540	2.41	38139	43.578	8.174	
1974	186581	14557	0.541		38323	32.546	76.460	
1975	191985	14556	0.542		47559	38.787	77.629	
1976	206821	15239	0.540		57208	39.949	80.038	
1977	219791	15739	0.424		72510	40.928	79.278	
1978	224949	15660	0.407	3.25	71591	44.855	75.887	
1979	226668	15345	0.400		56887	41.688	75.320	
1980	216647	14269	0.432		47742	41.362	80.569	
1981	215861	13839	0.556		47651	41.949	90.348	
1982	211390	13197	0.422		50821	42.754	97.688	
1983	203432	12372	0.425	4.42	25089	42.858	103.472	
1984	206365	12228	0.521		33784	34.368	72.881	
1985	206764	11938	0.453		35197	35.156	72.748	
1986	220225	12392	0.446		36819	37.523	68.161	
1987	228113	12511	0.535	4.62	42011	35.100	42.705	
1988	241392	12909	0.444	4.63	48414	40.750	52.120	
1989 1990	220705 234981	11515 11969	0.453 0.471		22961 21158	34.316 30.686	41.721 36.826	
1990			0.471				39.442	
1991	257844 273470	12830 13303	0.423		38129 52691	33.160 34.673	39.442 41.073	
1374	413 4 10	13303	0.7/1		52091	57.075	71.0/3	(Continúa)
								(commun)

(Continuación)

	nuacion)							
Año	PIB ^a	PIBpc ^b	CGc	CHd	CFe	PSf	RERg	GP ^h
1993	274224	13048	0.462	5.10	42852	38.754	43.185	
1994	267781	12470	0.658		30283	31.532	41.760	
1995	278362	12693	0.647		41338	31.472	51.727	
1996	277812	12410	0.634		36773	25.523	42.897	
1997	295511	12940	0.626		49274	33.386	54.784	
1998	296380	12726	0.520	6.00	51416	32.320	67.477	
1999	278685	11739	0.498		45964	35.834	76.973	
2000	288960	11944	0.468		49046	32.845	79.964	
2001	298768	12122	0.482		55701	35.146	85.048	
2002	272310	10849	0.506		36771	33.046	66.497	
2003	251191	9831	0.504	7.00	23718	26.095	57.743	
2004	297126	11429	0.498		45380	30.052	55.759	
2005	327783	12401	0.524		59206	28.526	54.588	
2006	360142	13413	0.469		80674	30.565	57.811	
2007	391667	14374	0.391		103395	32.305	63.351	
2008	412339	14920	0.452	8.20	105661	39.863	75.972	
2009	399135	14239	0.381		85502	34.876	99.068	
2010	393192	13825	0.364		86391	29.561	100.000	
2011	409614	14179	0.368		99516	29.683	70.802	
2012	432658	14735	0.384		123460	32.260	84.987	
2013	438469	14722	0.388	9.90	106237	37.362	83.227	
2014	421394	14025	0.378		81883	36.398	128.957	
2015	395177	12980	0.385			31.565	310.050	
2016	32631	10506	0.395			32.320	740.620	
2017	27517	8891	0.405			32.169		
2018	22118	7393	0.410	10.30		36.522		

Nota: ^a Producto Interno Bruto (US\$ en millones a precios constantes de 2010); ^b Producto Interno Bruto percápita (US\$ a precios constantes de 2010); ^c Coeficiente Gini; ^d Años promedio de educación (población de 25 a 65 años); ^c Formación Bruta de Capital (US\$ en millones a precios constantes de 2010); ^f Participación Salarial (%PIB); ^g Indice de Tipo de Cambio Efectivo Real (2010=100); ^h Gasto Público (%PIB) Fuente: Elaboración propia.