PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

TEXTURAS Y GEOQUÍMICA DE ELEMENTOS TRAZA EN

MINERALES DE MENA DEL YACIMIENTO DE SULFUROS

MASIVOS VOLCANOGÉNICOS DE MARÍA TERESA, HUARAL,

PERÚ

Tesis para obtener el título profesional de Ingeniero Geólogo

AUTOR

Brayam Andre Ortiz Benavente

ASESOR:

Lisard Torró i Abat

Lima, mayo, 2022

RESUMEN

Los yacimientos tipo sulfuro masivo volcanogénico (VMS) son una fuente importante de Zn, Cu, Pb, Ag y Au y, además, pueden contener concentraciones relevantes de elementos como In, Ge y Ga, considerados críticos por organismos internacionales debido a su gran demanda, importancia económica y riesgo de suministro. A pesar de ello, son de interés marginal para la mayoría de empresas mineras que operan en el país. En el presente trabajo de investigación se ha desarrollado una caracterización petrográfica de la mineralización en el yacimiento VMS de María Teresa en Huaral (Lima) como base para la determinación de la composición de elementos mayoritarios, minoritarios y traza en esfalerita, galena, calcopirita y cobres grises.

Las mediciones de ablación láser acoplada a espectrometría de masas con fuente de plasma de acoplamiento inductivo (LA-ICP-MS) indican que In y Ga se concentran principalmente en esfalerita (rango intercuartil Q1-Q3 [RIC] de 4.39-79.4 ppm y hasta 415 ppm In, y RIC de 10.6-31.9 ppm y hasta 94.2 ppm Ga). La concentración de Ge es sistemáticamente baja en los cuatro minerales analizados, a excepción de concentraciones localmente elevadas en calcopirita de hasta 79.6 ppm. Las correlaciones entre concentraciones de elementos traza sugieren que In y Ga se incorporaron a la red cristalina de la esfalerita a través de sustituciones acopladas que involucran Cu y, de forma subordinada, también Sn y Ag. La disponibilidad de Cu, favorecida en fluidos mineralizantes de relativamente alta temperatura (>300 °C), es, por lo tanto, fundamental para el enriquecimiento de In y Ga en esfalerita. En cuerpos de sulfuro masivo que han experimentado "zone refining", la esfalerita más rica en In se forma dentro o cerca de la zona de calcopirita en el núcleo del cuerpo. En María Tersa, los valores de In, Ge y Ga son sub-económicos; sin embargo, el estudio de su distribución permitió determinar vectores guía para la exploración de VMS.

Palabras clave: VMS; "zone refining"; secuencia paragenética; elementos críticos; indio; Perú

ABSTRACT

Volcanogenic massive sulfide (VMS) deposits are an important source of Zn, Cu, Pb, Ag, and Au, and may host relevant concentrations of elements such as In, Ge, and Ga, considered critical commodities by international organizations due to their high demand, economic importance and supply risk. Despite this, they are of marginal interest to most mining companies operating in the country. In this research, a petrographic characterization of the ore mineralization in the María Teresa VMS deposit has been developed as a base for major, minor and trace element composition determinations in sphalerite, galena, chalcopyrite, and fahlore.

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) measurements indicate that In and Ga are mainly concentrated in sphalerite (interquartile range Q1-Q3 [IQR] 4.39-79.4 ppm and up to 415 ppm In, and IQR 10.6-31.9 ppm and up to 94.2 ppm Ga). Germanium contents are systematically low in the four analyzed minerals, except for locally elevated concentrations up to 79.6 ppm in chalcopyrite. Correlations between trace element contents suggest that In and Ga were incorporated in the sphalerite crystal lattice via coupled substitutions involving Cu, and subordinately also Sn and Ag. Availability of Cu, favored in hydrothermal fluids at relatively high-temperature (>300 °C), is therefore essential to In and Ga enrichment in sphalerite. In massive sulfide bodies that have undergone zone refining, the In-riches sphalerite occurs within or near the chalcopyrite zone in the core of the body. In Maria Teresa, the values of In, Ge and Ga are sub-economic; however, the study of its distribution allowed to determine vectoring elements that might be applied during exploration of VMS.

Keywords: VMS; zone refining; paragenetic sequence; critical elements; indium; Peru

<u>ÍNDICE</u>

1. INTRODUCCIÓN1					
1.1.	Generalidades sobre los yacimientos tipo VMS				
1.2.	Antecedentes en el estudio de yacimientos tipo VMS en Perú				
1.3.	.3. Elementos de alta tecnología en yacimientos tipo VMS				
1.4.	Probl	emática	14		
1.5.	Objet	ivos del trabajo	14		
1.6.	.6. Hipótesis		15		
1.7.	Justif	icación	16		
2. CO	NTEX	TO GEOGRÁFICO Y GEOLÓGICO	17		
2.1.	Conte	exto geográfico	17		
2.2. Contexto geológico					
2.2	.1. (Contexto geodinámico de las mineralizaciones tipo VMS en Perú	18		
2.2	.2. 0	Geología del yacimiento de María Teresa	22		
3. MU	JESTR	REO Y TÉCNICAS ANALÍTICAS	27		
3.1.	Mues	treo y preparación de las muestras	27		
3.2.	Técni	cas analíticas	27		
3.2	.1. N	Aicroscopía óptica de luz reflejada	27		
3.2	.2. N	Aicroscopía electrónica de barrido (SEM-EDS)	28		
3.2	.3. N	Aicrosonda electrónica (EPMA)	28		
3.2	.4. A	Ablación laser ICP-MS	29		
4. RE	SULT	ADOS	32		
4.1.	Mine	ralogía y texturas	32		
4.2.	Geoq	uímica mineral	40		
4.2	.1. F	Resultados de EPMA	40		
Z	4.2.1.1	. Esfalerita	40		
Z	4.2.1.1	. Galena	44		
2	4.2.1.2	. Calcopirita	44		
2	4.2.1.3	. Cobres grises	44		
4.2	.2. F	Resultados de ablación laser ICP-MS	48		
Z	4.2.2.1	. Esfalerita	48		
Z	1.2.2.2	. Galena	56		
Z	1.2.2.3	. Calcopirita	60		
2	1.2.2.4	. Cobres grises	65		
5. DISCUSIÓN					
5.1.	Enriq	uecimiento de elementos tecnológicos en María Teresa	66		
5.2.	Temp	peratura de formación de la esfalerita	69		

4	5.3. Recomendaciones para la exploración de In, Ga y Ge en yacimientos tipo VMS en	n		
ľ	nárgenes continentales	74		
6.	CONCLUSIONES	76		
7.	AGRADECIMIENTOS	.78		
8.	REFERENCIAS	.79		
ANEXOS				

ÍNDICE DE FIGURAS

Figura 1. Modelo de lente de sulfuros masivos idealizado que ilustra la distribución de alteraciones hidrotermales, la geometría y la zonación de minerales de mena5 Figura 2. Ubicación de yacimientos y mineralizaciones tipo VMS en las cuencas volcanosedimentarias cretácicas Lancones, Huarmey y Cañete......7 Figura 3. Diagrama de resultados de importancia económica y riesgo de suministro en la evaluación de criticidad de cada materia prima en 201710 Figura 4. Principales usos de A. indio, B. galio y C. germanio en el 2010......11 Figura 5. Mapa de ubicación geográfica de la unidad minera María Teresa. Mapa principal de Figura 6. A. Mapa geológico de la WPT del Mesozoico y del Batolito de la Costa de Perú mostrando la ubicación de los principales yacimientos tipo VMS y las cuencas volcanosedimentarias relacionadas. B. Interpretación de los principales lineamientos y estructuras presentes entre las cuencas Huarmey y Cañete. Modificado de Polliand (2006). 20 Figura 8. Sección esquemática representativa del cuerpo Sofía D en el yacimiento VMS María Figura 9. Fotografías de muestras de mano de los cuerpos Sofía D (A-H) y Bubulina (I)..... 33 Figura 13. Secuencia paragenética del cuerpo Bubulina del vacimiento María Teresa 39 Figura 14. Diagrama binario de Fe vs. Zn en esfalerita de los yacimientos María Teresa Figura 15. Cobres grises del vacimiento María Teresa (sector/cuerpo/sección) en el diagrama binario As/(As+Sb)_{at.} vs. Ag/(Ag+Cu)_{at.} correspondiente a minerales del grupo de la tetraedrita Figura 16. Diagramas de cajas y bigotes de diversos elementos traza en esfalerita respecto a Figura 17. Diagramas de cajas y bigotes de diversos elementos traza en esfalerita de los Figura 18. Diagramas binarios de correlación entre concentraciones elementales en esfalerita Figura 19. Diagramas de cajas y bigotes de diversos elementos traza en galena respecto a Figura 20. Diagramas de cajas y bigotes de diversos elementos traza en galena de los Figura 21. Diagramas binarios de correlación entre concentraciones elementales en galena de Figura 22. Diagramas de cajas y bigotes de diversos elementos traza en calcopirita respecto a Figura 23. Diagramas de cajas y bigotes de diversos elementos traza en calcopirita de los Figura 24. Diagramas binarios de correlación entre concentraciones elementales en calcopirita Figura 25. Correlación de cajas y bigotes entre contenidos de elementos traza (A-C) y temperatura de formación de esfalerita (D) según el geotermómetro GGIMFis de Frenzel et al. (2016) vs. profundidad de muestras en el sondaje 34-18-S ubicado en la sección -300 del cuerpo

ÍNDICE DE TABLAS

1. INTRODUCCIÓN

1.1. Generalidades sobre los yacimientos tipo VMS

La terminología de sulfuro masivo volcanogénico (VMS por sus siglas en inglés) ha sido utilizada por casi 50 años (Hutchinson 1973) para referirse a mineralizaciones de sulfuros asociadas espacio-temporalmente a procesos volcánicos submarinos (Herzig y Hannington 1995; Franklin et al. 2005; Piercey 2011; Koski y Mosier 2012). Sulfuro masivo hospedado en rocas volcánicas, sulfuro masivo asociado a rocas volcánicas, sulfuro masivo volcánico-exhalativo, entre otros, son diferentes nombres que se han asignado a esta tipología de yacimientos. Los yacimientos tipo VMS son una fuente importante de Zn, Cu, Pb, Ag y Au aportando por lo menos el 22%, 6%, 9.7%, 8.7% y 2.2%, respectivamente, de la producción mundial de cada metal (Garside 2019). Además, pueden contener concentraciones variables de otros elementos económicamente recuperables como subproductos o bien perniciosos (As, Be, Bi, Cd, Co, Cr, Ga, Ge, Hg, In, Mn, Mo, Ni, Sb, Se, Sn, Te y metales del grupo del platino; Galley et al. 2007; Koski y Mosier 2012; Monecke et al. 2016).

Los yacimientos VMS aparecen en terrenos volcánicos submarinos de ambientes geológicos antiguos (depósitos de sulfuros masivos volcanogénicos fósiles) y modernos (depósitos de sulfuros masivos de piso oceánico [SMS] formándose en la actualidad). La edad de estos yacimientos varía desde 3.4 Ga (depósitos arcaicos en el cratón de Pilbara, Australia; Brauhart et al. 1998) hasta depósitos activos en fondos oceánicos actuales (p.ej., exhalación hidrotermal activa TAG en la Dorsal Meso-Atlántica; Petersen et al. 2000), reconociéndose cerca de 1100 yacimientos adscritos a esta tipología a nivel global (Franklin et al. 2005; Koski y Mosier 2012).

Depósitos SMS han sido reconocidos en ambientes tectónicos extensionales como dorsales meso-oceánica (65%), cuencas de trasarco (22%), arcos volcánicos submarinos (12%) y volcanes intraplaca (1%). En cambio, la mayoría de depósitos VMS fósiles se ha conservado principalmente en arcos oceánicos y continentales y cuencas de trasarco (Hannington et al. 2005; Galley et al. 2007). Los VMS y SMS también se pueden emplazar en zonas de antearco en arcos insulares durante etapas de inicio de subducción (Torró et al. 2016). Las rocas hospedantes de la mineralización son principalmente volcánicas, volcanoclásticas y sedimentarias, o sus equivalentes metamórficos resultantes de eventos tectono-metamórficos posteriores a la formación del depósito mineral (Franklin et al. 2005; Galley et al. 2007; Mosier et al. 2009; Piercey 2010, 2011; Morgan y Schulz 2012). Los complejos intrusivos subvolcánicos son generalmente la principal fuente de calor para formar mineralizaciones de tipo VMS y en ocasiones pueden ser importantes contribuyentes de metales, fluidos y volátiles al sistema hidrotermal (Piercey 2011).

En general, los yacimientos VMS consisten en dos partes diferenciadas: i) lentes de sulfuro masivo concordantes estratoligados que pueden variar ampliamente en forma y tamaño; y ii) una mineralización de sulfuro tipo red de vetas (*"stockwork"*) subyacente, hospedada por la caja piso o muro (Franklin et al. 2005; Galley et al. 2007; Shanks III y Koski 2012; Slack 2012a). Los yacimientos VMS, formados originalmente en ambientes extensionales, pueden sufrir deformación posterior debido a un cambio a regímenes compresivos (p. ej. durante obducción), incluyendo plegamiento, fallamiento y cizallamiento que pueden llegar a desdibujar estas dos partes (Large 1992; Slack 2012a).

Los avances en el estudio de actividad hidrotermal en fondos oceánicos modernos en los últimos 60 años han facilitado la comprensión de los mecanismos de formación de los yacimientos VMS fósiles (Tivey 2007). Estas mineralizaciones se forman en o cerca del suelo oceánico en ambientes volcánicos submarinos a través de la descarga focalizada de fluidos hidrotermales metalíferos (Doyle y Allen 2003; Galley et al. 2007), donde estos fluidos circulantes, impulsados por una fuente de calor, se enfrían bruscamente por mezcla con aguas del fondo marino o cerca de este en la porosidad de la roca (Tivey 2007; Shanks III 2012). Producto de estos procesos se generan alteraciones hidrotermales características, volumétricamente extensas, alrededor de los cuerpos de sulfuros.

Las zonas de alteración relacionadas a yacimientos VMS pueden comprender diferentes tipos de alteración como argílica avanzada (solo en yacimientos de tipo híbrido VMS-epitermal de alta sulfuración), argílica, sericítica, clorítica y carbonatopropilítica. Los minerales de alteración típicos en litologías no metamorfizadas incluyen cuarzo y otras formas de sílice, illita, sericita, fengita, esmectita, clorita, serpentina, albita, epidota, pirita, carbonatos, talco, caolinita, pirofilita, sulfatos y óxidos. Las asociaciones de alteración hidrotermal se distribuyen i) discordantemente a la serie sedimentaria/lente de sulfuros, alrededor de los conductos de ascenso de fluidos, y ii) de forma semi-corcondante alrededor de los lentes de sulfuro masivo (Galley et al. 2007; Shanks III 2012). En el distrito de Bathurst, usado comúnmente como modelo de zonación de alteración hidrotermal en yacimientos VMS, la caja piso del sulfuro masivo y la zona de stockwork están dominadas por alteración a cloritasericita-cuarzo, mientras que la caja techo y zonas laterales contienen fengita-clorita (Goodfellow 2007). El metamorfismo de estas asociaciones minerales de alteración hidrotermal puede dar lugar a cristalización de andalucita, corindón, topacio, sillimanita, cianita, cordierita, granate, flogopita, ortopiroxenos y ortoanfíboles (Barrett et al. 2005; Galley et al. 2007; Shanks III 2012). Es característica de este tipo de depósito la presencia de exhalitas espacialmente asociadas a los sulfuros masivos.

Estas incluyen facies minerales de óxidos, carbonatos, silicatos y sulfatos en forma de lentes estratiformes (Peter 2003; Grenne y Slack 2005; Slack 2012b).

La composición mineral mayoritaria de las menas en yacimientos tipo VMS es relativamente simple y se compone de sulfuros de Fe (pirita y/o pirrotina), calcopirita, esfalerita y galena. Otras fases minerales que pueden aparecer en concentraciones menores son marcasita, magnetita, arsenopirita, cobres grises, cobaltita, sulfosales de Sb-As-Bi, sulfosales de Ag, telururos de Au-Ag, argentita, electrum y oro. La zona de *"stockwork"* está dominada mayormente por calcopirita + pirita + pirrotina, mientras que en sus márgenes exteriores predomina pirita + esfalerita + galena. Respecto al cuerpo de sulfuro masivo, en la parte basal prepondera pirita + calcopirita ± pirrotina, que gradualmente pasa vertical y lateralmente a mayores concentraciones de esfalerita ± galena ± pirita ± baritina (Figura 1) (Lambert y Sato 1974; Large 1977; Galley et al. 2007; Koski 2012a). El proceso de desarrollo de esta zonación metalífera y mineralógica se denomina "zone refining", el cual es consistente con episodios ininterrumpidos de disolución y reprecipitación de minerales anteriormente formados conforme ingresan fluidos mineralizantes gradualmente de mayor temperatura a través del cuerpo de sulfuros (Eldridge et al. 1983; Campbell et al. 1984; Large 1992; Ohmoto 1996).

Figura 1. Modelo de lente de sulfuros masivos idealizado que ilustra la distribución de alteraciones hidrotermales, la geometría y la zonación de minerales de mena. Modificado de Lydon (1984) en Koski (2012a). Abreviaciones: ba, baritina; cpy, calcopirita; gn, galena; po, pirrotina; py, pirita; sl, esfalerita.

Las mineralizaciones metálicas en yacimientos tipo VMS muestran una amplia y compleja gama de texturas que incluyen corrosión, disolución-reemplazamiento, coloforme, framboidal, de intercremientos y bandeamiento, entre muchas otras. La correcta identificación textural permite interpretar la evolución mineralógica y textural del yacimiento (p. ej. Galley et al. 2007; Torró et al. 2016, 2018; Almodóvar et al. 2019).

Con respecto a zonas de enriquecimiento supergénico desarrolladas sobre mineralizaciones de sulfuros masivos, la presencia de calcocita, bornita, digenita y covelita es común. En la zona de gossan, las principales fases minerales son goethita, hematites, cuarzo, sílice amorfa, clorita, caolinita, jarosita y carbonatos, y puede contener granos de oro de gran pureza así como haluros de plata (Hannington y Scott 1989; Koski 2012a, b; Slack 2012c; Andreu et al. 2015; Almodóvar et al. 2019).

Los yacimientos tipo VMS se pueden clasificar según el ambiente tectónico (Cox y Singer 1986), contenido de metales de base (Hutchinson 1973; Large 1992; Franklin et al. 2005), contenido de oro (Hannington et al. 1999) o litología de la roca caja contexto geodinámico. Esta última y más robusta clasificación divide a los depósitos VMS en cinco grupos: siliciclástico-félsico (p. ej. Palma y Perubar, Perú), bimodalfélsico (p. ej. María Teresa, Perú), bimodal-máfico (p. ej. Cerro de Maimón, República Dominicana), siliciclástico-máfico (Besshi, Japón) y máfico-ultramáfico (Skouriotissa, Chipre) (Barrie y Hannington 1999; Franklin et al. 2005; Galley et al. 2007; Shanks III y Koski 2012).

1.2. Antecedentes en el estudio de yacimientos tipo VMS en Perú

Los yacimientos VMS en el Perú se encuentran ubicados en tres cuencas volcanosedimentarias cretácicas a lo largo de la región costera que, de norte a sur, son Lancones, Huarmey y Cañete (Figura 2) (Atherton et al. 1983; Steinmüller et al. 2000).

Figura 2. Ubicación de yacimientos y mineralizaciones tipo VMS en las cuencas volcanosedimentarias cretácicas Lancones, Huarmey y Cañete. Modificado de Steinmüller et al. (2000) y con datos recopilados de Vidal (1987), Winter et al. (2010), Valencia et al. (2017) y Acosta et al. (2019).

La cuenca de Lancones aloja el depósito VMS de Cu-Zn-Au de clase mundial de Tambogrande, que está situado en la ciudad de Piura al norte de Perú. La mineralización en Tambogrande se hospeda en rocas volcánicas de la Formación (Fm.) San Lorenzo del Cretácico medio ($104.8 \pm 1.3 \text{ a } 100.2 \pm 0.5 \text{ Ma}$), de acuerdo a dataciones U-Pb en circones publicadas por Winter et al. (2010). Una descripción más detallada de la configuración tectónica, estratigrafía, litogeoquímica, alteración y mineralización en el distrito de Tambogrande se puede encontrar en Injoque et al. (1979), Tegart et al. (2000) y Winter et al. (2004, 2010). Los depósitos de Zn-Pb-Cu El Papayo, Cerro Colorado, Potrobayo y Tomapampa también se localizan en la cuenca Lancones y están hospedados en rocas volcánicas y volcanoclásticas de la Fm. La Bocana (Ríos et al. 2008; Valencia et al. 2017) con edades comprendidas entre 99.3 ± 0.3 y 91.1 ± 1 Ma (Cenomaniense-Turoniense; edades U-Pb en circón; Winter et al. 2010).

El yacimiento de Zn-Pb-Cu-Ag María Teresa es el único conocido dentro de la cuenca Huarmey y ha sido estudiado por Vidal (1987), Steinmüller et al. (2000) y, más recientemente, por Fontboté (2019) y Pichardo et al. (2019). Este depósito se hospeda en rocas volcánicas y subvolcánicas del arco plutónico-volcánico del Cretácico Superior (Cueva et al. 2010), como se describe con mayor detalle en el apartado 3 de esta tesis. En María Teresa, Romero et al. (2008) reportaron una edad del Cretácico Superior (68 \pm 6 Ma, Rb/Sr en sericita hidrotermal). Pichardo et al. (2019) realizaron estudios de geoquímica de elementos traza inmóviles para la clasificación de rocas volcánicas y subvolcánicas, y de elementos mayores para la clasificación de las alteraciones hidrotermales y su distribución mediante el uso de los índices de alteración de Ishikawa – AI – y de clorita-carbonato-pirita – CCPI.

Depósitos VMS de la cuenca Cañete incluyen Perubar, Aurora Augusta, Palma y Balducho. Estas mineralizaciones ocupan una posición estratigráfica equivalente a la de María Teresa (Acosta et al. 2019; Fontboté 2019). Estudios de clasificación de rocas volcánicas mediante geoquímica de roca total en Perubar, Cerro Lindo y Palma son presentados por Polliand (2006), Bueno Carreón y Mendoza Mondragón (2019) y Farfán et al. (2019), respectivamente. Polliand y Fontboté (2000) describen que el depósito de Zn-Pb-Ba Perubar, ubicado en el distrito minero Cocachacra, consiste en cuatro cuerpos principales de sulfuros-baritina masivos llamados Graciela, Juanita, Cecilia Norte y Cecilia Sur. Polliand et al. (2005) obtuvieron edades de 69.71 ± 0.18 y 68.92 ± 0.16 Ma (U-Pb en circón) en lavas riolíticas hospedantes de los cuerpos mineralizados de Perubar. Vidal et al. (1987) publicaron edades K-Ar en sericita de 68 ± 2 y 63 ± 2 Ma en halos de cuarzo-sericita-clorita en el depósito VMS Aurora Augusta (Ba-Zn-Pb-Cu). Farfán et al. (2019), en el yacimiento VMS de Palma (Zn-Pb) ubicado en el margen sur del valle de Lurín, atribuyeron una edad Cretácico terminal a la secuencia volcanosedimentaria hospedante de la mineralización debido a la continuidad y similitud geológica del afloramiento con la secuencia huésped del yacimiento VMS de Perubar. El yacimiento Balducho (Ba-Zn-Cu), localizado dentro del valle del río Chilca, se hospeda en pelitas metamórficas intruidas por cuerpos granodioríticos y tiene una edad de mineralización de 68 a 62 Ma según Vidal (1987) y Acosta et al. (2019). Las edades mencionadas muestran que las mineralizaciones VMS en esta región no están hospedadas en rocas volcánicas y volcanosedimentarias del Grupo Casma del Cretácico Medio (Albiense-Cenomaniense), como se creía anteriormente (Cueva et al. 2010; Fontboté 2019). Además, estos nuevos datos geocronológicos y observaciones de carácter regional llevaron a Polliand et al. (2005) a concluir que la mineralización de Perubar se emplazó en un contexto de cuenca de pull-apart en un arco plutónico-volcánico y no en una cuenca marginal, como había sido propuesto con anterioridad (Vidal 1987). Datos isotópicos de S y Sr reportados por Polliand et al. (1999) y Polliand (2006) para los depósitos Perubar, Palma y María Teresa sugieren que el principal mecanismo de precipitación de sulfuros y baritina fue la mezcla de fluidos hidrotermales de origen magmático con aguas contemporáneas del fondo marino en el subsuelo oceánico.

El análisis geocronológico realizado por Bueno Carreón (2019) indica que las edades de las riolitas hospedantes de la mineralización VMS en el yacimiento de Cerro Lindo (Zn-Cu-Pb), pertenecientes a la Fm. Huaranguillo, oscilan entre 105.7 y 106.9 \pm 0.2

Ma (U-Pb en circón). La Fm. Huaranguillo pertenece al Grupo Casma (Zevallos 2000; Bueno Carreón y Mendoza Mondragón 2019). Estas edades contrastan con las del resto de yacimientos VMS en la cuenca de Cañete descritos en el párrafo anterior, los cuales estarían emplazados en rocas de edad Maastrichtiense-Daniense y no en rocas del Grupo Casma (Romero et al. 2008).

Los resultados positivos de exploración pasados y recientes indican un alto potencial para nuevos descubrimientos en la franja metalogenética de VMS, tanto al norte como en el centro de la región costera del Perú (Acosta et al. 2019; Fontboté 2019).

1.3. Elementos de alta tecnología en yacimientos tipo VMS

Existen materias primas que son consideradas críticas por organismos internacionales debido a su gran demanda, importancia económica y riesgo de suministro (Figura 3) (European Commission 2017; Foley et al. 2017; Shanks III et al. 2017).

Figura 3. Diagrama de resultados de importancia económica y riesgo de suministro en la evaluación de criticidad de cada materia prima en 2017. Modificado de European Commission (2017). LREE: Elementos de tierras raras ligeras, HREE: Elementos de tierras raras pesadas, PGM: Metales del grupo del platino (excluyendo el osmio).

Dentro de las 26 materias primas identificadas como críticas por la Comisión Europea (2017) se encuentran los metales indio (In) y galio (Ga) y el metaloide germanio (Ge). Estos elementos y sus aleaciones son considerados materias primas de alta tecnología por su uso para la fabricación de dispositivos digitales y tecnologías verdes incluyendo pantallas planas y táctiles, catalizadores de polimerización, tecnología LED, circuitos integrados digitales, óptica infrarroja, aplicaciones eléctricas solares fotovoltaicas, sistemas de fibra óptica, etc. (Figura 4) (Bleiwas 2010; Butcher y Brown 2014; Melcher y Buchholz 2014; Schwarz-Schampera 2014; Frenzel et al. 2016; Foley et al. 2017; Shanks III et al. 2017).

Figura 4. Principales usos de A. indio, B. galio y C. germanio en el 2010. Modificado de Butcher y Brown (2014), Melcher y Buchholz (2014) y Schwarz-Schampera (2014).

China es el mayor productor mundial de In, Ge y Ga destacando con un 48%, 80% y 80%, respectivamente, de las cuotas de suministro global en el 2020 (European Commission 2020). Los tres elementos pueden concentrarse en sulfuros y sulfosales, destacándose la esfalerita (Takeuchi et al. 1956; Bente y Doering 1995; Marcoux et al. 1996; Cook et al. 2009). Concentraciones elevadas de estos elementos han sido descritas en yacimientos tipo VMS, Mississippi Valley (MVT), xenotermales, epitermales (incluyendo la familia de los "cordilleranos"), pórfidos de Cu (\pm Au, \pm Mo), pórfidos Sn-W, entre otros. No forman yacimientos propios y son beneficiados como subproductos de otros metales (Foley et al. 2017; Shanks III et al. 2017). Cabe resaltar que en la actualidad, el Ga se obtiene principalmente como subproducto del procesamiento de bauxita como fuente de aluminio (Foley et al. 2017). Técnicas de análisis puntual como ablación láser acoplada a espectrometría de masas con fuente de plasma de acoplamiento inductivo (LA-ICP-MS), emisión de rayos X inducida por partículas (PIXE), espectrometría de masas de iones secundarios (SIMS), entre otras, han permitido avanzar en el conocimiento del comportamiento geoquímico de estos elementos (p. ej. Schwarz-Schampera y Herzig 2002; Cook et al. 2009; Belissont et al. 2015).

Los yacimientos tipo VMS son uno de los principales aportadores de estos tres elementos tecnológicos. Belissont et al. (2015) observaron que el Ge se enriquece preferentemente en calcopirita en lugar de en la serie tennantita-tetrahedrita, y que en la esfalerita, los elementos monovalentes (Cu, Ag, Tl) favorecen la incorporación de Ge mediante sustitución acoplada. Benzaazoua et al. (2003) determinaron que el In en el depósito Neves-Corvo está alojado en estannita [Cu₂FeSnS₄] y estanoidita [Cu₈(Fe,Zn)₃Sn₂S₁₂], pero no en mawsonita [Cu₆Fe₂SnS₈], mineral de composición química similar y estructura cristalina diferente, por lo que la química cristalina sería

crucial en la incorporación del In en una red mineral. Según Carvalho et al. (2018), la distribución de In en Neves-Corvo está controlada por su afinidad metalogenética (fuente favorable de In-Cu) y su afinidad cristaloquímica en esfalerita (distribución mineral favorable). Además, según estos autores, cuando la calcopirita y la esfalerita coexisten, el contenido de In en la esfalerita es de 2 a 3 veces más alto que en la calcopirita.

Frenzel et al. (2019) desarrollaron un modelo cuantitativo del comportamiento del In en los minerales de mena del yacimiento VMS de Neves-Corvo demostrando cómo las regularidades de la partición del In en diferentes minerales pueden usarse para la predicción de su comportamiento mineralógico en muestras de testigos de perforación. Wierzbicka-Wieczorek et al. (2019) analizaron la distribución de In en los residuos mineros metalíferos de yacimientos ubicados en la Faja Pirítica Ibérica y concluyeron que este metal se enriquece significativamente en los residuos sulfurosos debido a reacciones de meteorización que promueven su movilidad y su posterior precipitación. Frenzel et al. (2016) centraron su estudio en In, Ge y Ga, además de otro seis elementos (Ag, Cd, Co, Cu, Fe y Mn) en esfalerita notando que existen diferencias estadísticamente significativas en los contenidos de estos elementos en esfalerita de distintos tipos de yacimientos y propusieron un geotermómetro basado en la composición de elementos traza en este mineral.

Monecke et al. (2016), en base a un estimado de 600 millones de toneladas métricas (Mt) de sulfuros masivos en zonas neovolcánicas de los océanos del mundo, sugieren que la dotación de elementos menores (entre ellos In, Ge y Ga) en depósitos VMS modernos del fondo marino es limitada en comparación con recursos minerales en depósitos VMS fósiles. De acuerdo a estos autores, la viabilidad económica de operaciones mineras que explotan depósitos exhalativos en fondos oceánicos actuales

13

dependerá del contenido de metales base y preciosos, mas no de su contenido de elementos menores.

1.4. Problemática

Se han realizado muy pocos estudios de elementos menores y traza en yacimientos metálicos de los Andes centrales del Perú (Soler 1987; Benites et al. 2019). No existen datos publicados sobre los contenidos de metales estratégicos en el yacimiento de María Teresa ni en otros yacimientos VMS peruanos, a pesar de que se sabe que yacimientos de esta tipología pueden contener concentraciones económicas de metales estratégicos (p. ej. principal tipo de vacimiento fuente de In y Ge, y en menor proporción de Ga) potencialmente explotables como subproductos. Además, no existen guías de exploración para In, Ge y Ga en yacimientos de la franja metalogenética de VMS de la región costera del Perú. Por otro lado, según el Servicio Geológico de los Estados Unidos (2020), en el 2019 Perú produjo un estimado de 10 toneladas métricas de producto refinado de In (principalmente a partir de esfalerita) que representa aproximadamente el 1% de la producción total mundial. Muchos subproductos metálicos son de interés marginal para la mayoría de las empresas mineras aun cuando se conoce el gran potencial para generar ingresos adicionales significativos, así como por su importancia para la economía global y la alta probabilidad de su escasez en el futuro (Wellmer et al. 1990; Nassar et al. 2015; European Commission 2017; Frenzel et al. 2017).

1.5. Objetivos del trabajo

Objetivo general:

Evaluar el potencial de metales críticos o de alto interés tecnológico (In, Ge y Ga) en el yacimiento tipo VMS de María Teresa.

Objetivos específicos:

 Caracterizar petrográficamente la mineralización y elaborar secuencias paragenéticas para diferentes sectores y estilos de mineralización en el yacimiento VMS de María Teresa;

2. Analizar la concentración de elementos mayoritarios, minoritarios y traza de sus principales minerales de mena;

3. Comprender los mecanismos de incorporación de estos elementos en la estructura de los sulfuros; y

4. Establecer patrones de distribución de elementos tecnológicos a lo largo de la secuencia paragenética y de los cuerpos de sulfuros.

1.6. Hipótesis

De acuerdo a la literatura revisada, se plantean las siguientes hipótesis:

1. El In será el metal estratégico más abundante en el yacimiento de María Teresa, y su concentración es mayor en esfalerita y calcopirita, especialmente en aquellos sectores con menas ricas en Cu.

2. El Ge se concentra preferentemente en calcopirita en lugar de hacerlo en cobres grises debido a una mayor afinidad por Fe^{3+} (tetraédrico) que por As^{3+} y Sb^{3+} .

3. En esfalerita, los elementos como Cu, Ag y Tl pueden facilitar la incorporación de Ge mediante sustitución acoplada.

4. En esfalerita, la concentración de In se correlaciona positivamente con Cu, corroborando una sustitución acoplada, mientras que su correlación con Fe es nula.

5. El contenido de In en la esfalerita puede ser, en promedio, 2 a 3 veces más alto que en la calcopirita cuando estas dos fases minerales coexisten.

6. Enriquecimientos tectonometamórficos de In pueden distorsionar la concentración original descrita entre fases coexistentes.

7. La concentración de In aumenta, mientras que las concentraciones de Ga y Ge disminuyen al aumentar la temperatura de cristalización de la esfalerita y, en general, del cuerpo mineralizado.

1.7. Justificación

Perú es un productor destacado de In (Anderson 2020) y probablemente también de Ge y Ga. Actualmente estos tres elementos son considerados críticos para la economía mundial (European Commission 2017; Foley et al. 2017; Shanks III et al. 2017). La importancia estratégica que tienen las tecnologías que usan estos tres elementos radica en la promoción de la generación de energía a partir de fuentes renovables como el sol, el agua y el viento, los cuales son considerados como recursos "inagotables". Rebajar el impacto ambiental y social causados por el cambio climático, el incremento del costo de los combustibles fósiles y el aumento de la dependencia energética son objetivos prioritarios a escala global que dependen de un adecuado suministro de una gran variedad de materias primas de origen mineral (Bleiwas 2010). María Teresa y otros yacimientos tipo VMS en el Perú podrían aportar a la producción mundial de productos refinados de In, Ge y Ga. Para ello se debe invertir en investigación básica y aplicada en torno a su distribución y expresión mineralógica. Para ayudar al desarrollo de Perú como futuro productor de metales críticos, aquí realizamos el primer estudio de elementos estratégicos (In, Ge y Ga) en menas de depósitos VMS peruanos; además, proponemos vectores guías a partir del patrón de distribución espacial de elementos traza en la esfalerita en cuerpos con zonación metalífera. Por otro lado, los procesos geometalúrgicos y de minado podrían optimizarse y ser mejor aprovechados conociéndose las características texturales y mineralógicas de las distintas menas asociadas a los yacimientos de sulfuros masivos volcanogénicos potencialmente portadoras de In, Ge y Ga.

2. CONTEXTO GEOGRÁFICO Y GEOLÓGICO

2.1. Contexto geográfico

La unidad minera María Teresa se ubica en el distrito de Huaral (Figura 5), provincia de Huaral, departamento de Lima. Se encuentra localizada a 11 km al noroeste de la ciudad de Huaral y 85 km al norte de la ciudad de Lima, a una altitud entre 120 a 400 m.s.n.m. y en las siguientes coordenadas UTM WGS84: 251366 m E, 8728382 m N – Zona 18L. El acceso a la zona desde el centro de la ciudad de Lima se logra en 2 horas a través de la carretera Panamericana Norte hasta el Óvalo Chancay-Huaral. Se prosigue mediante la carretera Huaral-Chancay llegando al centro poblado Quepepampa y pasando por los centros poblados Cerro La Culebra y Nueva Estrella. A través de una carretera asfaltada y afirmada, se finaliza en Cerro La Mina en la zona Paraje Jecuán, dónde se ubica la unidad, en aproximadamente 30 min.

La mina se ubica en laderas de llanura aluvial correspondientes a la parte más baja del río Chancay-Huaral. En el área no existen quebradas profundas ni conos de deyección. El clima del área es seco y semicálido con temperaturas mensuales promedio que varían entre 14.6 y 26.7 °C, y una variabilidad moderada en la precipitación anual. Durante la época húmeda, la precipitación pluvial anual promedio en la parte alta de la cuenca se estima entre 306 y 486 mm, mientras que en la parte baja de la cuenca se estima entre 23 y 34 mm (GEOMECANICA LATINA S.A. 2017).

Figura 5. Mapa de ubicación geográfica de la unidad minera María Teresa. Mapa principal de la figura a escala 1/500,000. Modificado de Lazo (2012).

2.2. Contexto geológico

2.2.1. Contexto geodinámico de las mineralizaciones tipo VMS en Perú

La subducción rápida y oblicua de la placa del Farallón por debajo de la placa Sudamericana a lo largo del margen costero peruano durante el Cretácico tardío derivó en un importante periodo de magmatismo de arco y de formación de cuencas volcanosedimentarias con altas tasas de subsidencia (Cobbing 1978; Gordon y Jurdy 1986; Jaillard 1994). Esta serie de sucesos desarrolló la Cuenca Peruana Occidental (*"Western Peruvian Trough"* – WPT por sus siglas en inglés) coetáneamente al emplazamiento de numerosas intrusiones entre ~100 y 30 Ma, que conformaron el actual Batolito de la Costa de Perú (Atherton et al. 1983; Mukasa 1986; Soler y Rotach-Toulhoat 1990). La WPT comprende tres cuencas principales conocidas como Lancones, Huarmey y Cañete, dentro de las cuales se ubican distintos yacimientos tipo VMS como Tambogrande, María Teresa, Aurora Augusta, Perubar, Palma, Balducho y Cerro Lindo (Figura 6A) (Cobbing 1978; Atherton et al. 1983).

La formación de la cuenca Lancones y los yacimientos VMS que aloja (p.ej., Tambogrande), se encuentra relacionada tectónicamente con la ruptura de Gondwana, que culminó con la apertura del océano Atlántico Sur en el Cretácico temprano (Scotese 1991). El "rifting" y la formación de la cuenca marginal Lancones fueron causados por subducción de alto ángulo ("steep subduction") y retroceso de la trinchera o "slab roll-back" (Winter et al. 2010). Esto fue seguido de la depositación de secuencias sedimentarias marinas y la erupción de grandes volúmenes de rocas volcánicas toleíticas de composición dominantemente basáltica (Benavides-Cáceres 1999; Winter et al. 2004). La apertura de la cuenca Lancones en el Albiense puede haber estado relacionada a componentes de cizalla dextral y rotación horaria durante la acreción del terreno alóctono Amotape (Winter et al. 2002, 2010).

Figura 6. A. Mapa geológico de la WPT del Mesozoico y del Batolito de la Costa de Perú mostrando la ubicación de los principales yacimientos tipo VMS y las cuencas volcanosedimentarias relacionadas. B. Interpretación de los principales lineamientos y estructuras presentes entre las cuencas Huarmey y Cañete. Modificado de Polliand (2006).

En la cuenca de Cañete, la presencia de fallas sinsedimentarias observadas en el depósito de Perubar definen una estructura en forma de rombo, lo que sugiere la formación de una cuenca "pull-apart" extensional dentro del arco plutónicovolcánico (Figura 6B) (Polliand et al. 2005). La convergencia oblicua de la placa de Farallón junto a la presencia de extensos lineamientos corticales, reflejan una tectónica transcurrente dextral que dio lugar a subsidencia de cuenca, volcanismo submarino y actividad plutónica en el Cretácico tardío a lo largo del margen peruano costero central (Duncan y Hargraves 1984; Gordon y Jurdy 1986; Pardo-Casas y Molnar 1987). La mineralización en Perubar y en otros depósitos tipo VMS asociados a la WPT en el Maastrichtiense está asociada espacial y temporalmente con estos eventos tectonomagmáticos a lo largo de lineamientos corticales de orientación noroeste (Polliand et al. 2005; Fontboté 2019). La ausencia de circones proterozoicos heredados sugiere la ausencia de un basamento antiguo por debajo de la WPT, contrariamente a la existencia de un basamento precámbrico en el Macizo de Arequipa, en el sur de Perú (Mukasa 1986; Polliand et al. 2005; Polliand 2006; Fontboté 2019).

Varios autores (Atherton et al. 1983, 1985; Atherton y Webb 1989; Atherton 1990; Atherton y Aguirre 1992; Cueva et al. 2010) proponen que la WPT estuvo asociada con la formación de una cuenca marginal extensional con *"rifting"* abortado durante el Albiense-Cenomaniense. Este modelo enmarcaría la depositación de las rocas del Grupo Casma, incluyendo las de la Fm. Huaranguillo que aloja el yacimiento de Cerro Lindo y que se asocia a un ambiente extensional marino en las primeras fases de *"rifting"* (Bueno Carreón 2019). No obstante, este modelo no es aplicable para la mineralización hospedada en las secuencias volcanosedimentarias de la WPT entre Trujillo y Pisco, en base a los estudios geocronológicos realizados por Polliand et al. (2005; ver sección 1.2 en esta tesis). De acuerdo con Soler (1991) y Jaillard (1994), las secuencias volcanosedimentarias del Grupo Casma también están probablemente asociadas a cuencas de tipo "pull-apart" en la zona de arco volcánico que habrían migrado progresivamente hacia el E junto con el arco, desde el Albiense hasta el Maastrichtiense (Polliand et al. 2005). La firma calcoalcalina de las rocas hospedantes, la relación espacio-temporal con un arco magmático y el ambiente tectónico transpresivo constituyen los principales rasgos geológicos en los yacimientos María Teresa, Aurora Augusta, Perubar, Palma y probablemente también Balducho (Polliand et al. 2005; Fontboté 2019).

2.2.2. Geología del yacimiento de María Teresa

En la actualidad, el yacimiento de María Teresa cuenta con un volumen estimado de 16 Mt y tiene una producción anual de 594,000 TM con 5.8% Zn, 1% Cu, 0.72% Pb y 1.95 oz Ag/TM. La producción acumulada hasta diciembre de 2017 es de 9.5 Mt con 7.44% Zn, 0.49% Cu, 1.39% Pb y 4.02 oz Ag/TM. Las reservas actuales son del orden de 1.76 Mt con 4.27% Zn, 0.36% Cu, 0.59% Pb y 1.39 oz Ag/TM, mientras que los recursos actuales son del orden de 5.3 Mt con 6.37% Zn, 1.04% Cu, 0.65% Pb y 1.86 oz Ag/TM (Minera Colquisiri, reportes internos no publicados).

La litología principal en el yacimiento VMS bimodal félsico de Zn-Pb-Cu-Ag de María Teresa comprende rocas volcánicas de composición andesítica basáltica a andesítica con textura afanítica localmente porfirítica, así como rocas volcánicas félsicas en menores proporciones (Pichardo et al. 2019). Se observan además texturas amigdaloides, autobrechas y lavas almohadilladas. Los depósitos de rocas volcánicas son sub-horizontales y buzan ligeramente hacia el oeste. La secuencia volcánica es cortada por diques subverticales de dirección N150E con composiciones andesíticas, dacíticas y riodacíticas (Figura 7). Las rocas y diques son de afinidad calco-alcalina (Pichardo et al. 2019). Al este del yacimiento afloran cuerpos de granodiorita, diorita y tonalita alineados en la misma dirección que los diques. A nivel tectónico, la falla subvertical El Abra, de orientación N160E, desplaza el sector Calera unos 500 m hacia el sur con respecto al sector Mina 2 y Bubulina. La falla inversa Sofía, ubicada en Calera y de orientación N140E, desplaza unos 90 m el bloque oeste sobre el este en sentido vertical (Figura 8).

La mineralización metálica en María Teresa comprende lentes irregulares de sulfuros masivos de orientación N150E (Figura 7). Subyacente a estos cuerpos se encuentran zonas de vetillas formando estructuras *"stockwork"* asociadas con abundante sericita, interpretadas como canales de alimentación (*"feeders"*). La mineralización masiva se dio principalmente por reemplazamiento de la secuencia volcánica principal y de sills de composición andesítico-basáltica y andesítica, y localmente también de diques (Pichardo et al. 2019). La pirita es el sulfuro más abundante en María Teresa, y la esfalerita, la calcopirita, la galena y los cobres grises aparecen como componentes mayoritarios. En menor proporción se han identificado otros minerales como bournonita, boulangerita, arsenopirita, enargita, covelita, bornita, digenita, luzonita-famatinita, pirrotina, magnetita, acantita, molibdenita, jamesonita, pirargirita y tsumoita. (Anglo Peruana Terra 2015a, b). La baritina presente es bandeada y de grano fino-medio a escala centimétrica con intercalaciones de capas de chert (Steinmüller et al. 2000; Pichardo et al. 2019).

Sofía D es el principal cuerpo de sulfuros masivos y presenta una zonación de Cu a Zn-Pb-Ba de piso a techo (Figura 8). Al piso de los lentes de sulfuros se presenta una intensa sericitización ± silicificación que pasa gradualmente en profundidad a una zona de piritización y cloritización. Al techo de los cuerpos, la alteración presenta ensambles de epidota, albita, clorita, carbonatos y pirita. La perforación diamantina debajo de los cuerpos de sulfuros masivos ha interceptado tramos con vetillas de cuarzo y mineralización de baja ley, además de segmentos sericitizados que corresponden a zonas de alimentación subverticales (Pichardo et al. 2019).

Cerca de las intrusiones granodioríticas ubicadas al este (Figura 7 y Figura 8), las rocas encajonantes alteradas a sericita han sido afectadas por metamorfismo de contacto, dando lugar a texturas "moteadas" con porfiroblastos de cordierita, granate, biotita, flogopita y actinolita; además, se observa pirrotina como producto de metamorfismo de la pirita (Pichardo et al. 2019), lo cual también se observó en Perubar (Polliand et al. 1999). La alteración sericítica dominante, la abundancia de tetrahedrita-tennantita y la presencia de enargita sugieren que los fluidos hidrotermales ascendentes eran ácidos y oxidantes, en parte de origen magmático, y luego se mezclaron con fluidos más fríos en cierto paleonivel subhorizontal de la secuencia volcánica definiendo un "horizonte prospectivo" para la exploración a escala del distrito (Fontboté 2019; Pichardo et al. 2019).

Figura 7. Mapa geológico del yacimiento tipo VMS María Teresa. Modificado de COLQUISIRI S.A. (2018).

Figura 8. Sección esquemática representativa del cuerpo Sofía D en el yacimiento VMS María Teresa. Modificado de documentos no publicados de Minera Colquisiri. Abreviaciones: bt: biotita; chl: clorita; cord: cordierita; cpy: calcopirita; cz: cuarzo; ef: esfalerita; epi: epidota; gn: galena; grn: granate; py: pirita; ser: sericita; td: tetraedrita.

3. MUESTREO Y TÉCNICAS ANALÍTICAS

3.1. Muestreo y preparación de las muestras

Se recolectaron 27 muestras a partir de sondajes diamantinos del yacimiento María Teresa. Del sector Calera-cuerpo Sofía D-sección 300 se extrajeron la mayoría de muestras (n = 17), ya que esta sección representa mejor a Sofía D, que es el principal cuerpo de sulfuros masivos y presenta una zonación metalífera y mineralógica muy definida. Las otras zonas muestreadas fueron Calera/Sofía D/-340, Calera/Sofía D/-500, Calera/Sofía D/-540, Calera/Sofía D oeste/-700, Bubulina/Ángela B/1050 y Bubulina/Bubulina/1180. El Anexo A contiene la lista de muestras estudiadas, así como sus coordenadas, profundidad, altitud (m.s.n.m), sector-cuerpo mineralizadosección, mineralogía y descripción de campo de los sondajes extraídos.

3.2. Técnicas analíticas

3.2.1. Microscopía óptica de luz reflejada

Se fabricaron 36 secciones pulidas en las instalaciones del laboratorio QEMSCAN en la Sección Ingeniería de Minas de la Pontificia Universidad Católica del Perú (PUCP). Estas preparaciones han sido estudiadas mediante un microscopio petrográfico marca "Zeiss Primotech" de polarización con luz reflejada equipado con una cámara digital. Fichas individuales con la petrografía de cada sección pulida estudiada quedan recogidas en el Anexo B. Además de las muestras de María Teresa, se estudiaron muestras de los yacimientos tipo VMS encajados en secuencias de arco de Perubar (5 secciones pulidas) y Palma (5 secciones pulidas) de Perú, y Cerro de Maimón (1 sección pulida) de República Dominicana (Torró et al. 2016), con el objetivo de comparar los resultados obtenidos.

3.2.2. Microscopía electrónica de barrido (SEM-EDS)

Una selección de las secciones pulidas ha sido estudiada también mediante espectroscopía de rayos X de energía dispersiva (EDS) a través de un microscopio electrónico de barrido (SEM) VEGA II XMU Tescan equipado con un sistema de microanálisis Bruker QUANTAX EDS en el Laboratorio de Caracterización Mineralógica BIZALAB. Las condiciones de operación para los análisis fueron 20 keV de voltaje de aceleración y 5 nA. Las imágenes fueron obtenidas en modo de electrones retrodispersados (BSE). En el Anexo C se muestran algunos análisis representativos de SEM-EDS.

3.2.3. Microsonda electrónica (EPMA)

La composición química puntual de los sulfuros presentes en las muestras se analizó mediante espectroscopía de rayos X de dispersión de longitud de onda (WDS) a través de una microsonda electrónica con un equipo JEOL JXA-8230 equipada con cinco espectrómetros en los Centros Científicos y Tecnológicos de la Universidad de Barcelona (CCiT-UB). El equipo fue operado con un voltaje de aceleración de 20 kV, haz de corriente de 20 nA y diámetro del haz de 5 µm. En la **Error! Reference source not found.** se enumeran las líneas espectrales de análisis y los estándares usados para la medición y calibración de cada elemento. En el Anexo D se muestran análisis representativos de EPMA.

Elemento	Línea espectral	Estándar
Sb	La	Sb
In	Lb	In ₂ Se
S	Ka	Esfalerita
Pb	Ma	PbS
As	Lb	GaAs
Fe	Ka	FeS ₂
Cu	Ka	Calcopirita
Zn	Ka	Esfalerita
Ga	Ka	GaAs
Ge	Ka	Ge
Cd	Lb	CdS
Ag	La	Ag
Sn	La	Sn

Tabla 1. Líneas espectrales y estándares usados para la medición y calibración de cada elemento.

3.2.4. Ablación laser ICP-MS

El análisis de las concentraciones de elementos traza en sulfuros se llevó a cabo en ETH Zürich, Suiza, mediante ablación láser acoplada a espectrometría de masas de sector magnético con fuente de plasma de acoplamiento inductivo (LA-ICP-SF-MS) utilizando un sistema láser excimer ArF RESOlution S-155 (ASI/Applied Spectra) a 193 nm conectado a un ICP-MS de Sector Magnético Element XR (Thermo). Se utilizó una tasa de repetición láser de 3 Hz, un diámetro de spot de 19 µm y una densidad de energía láser en muestra de aprox. 2.5 J·cm⁻². La superficie de muestra se limpió inmediatamente antes de cada análisis mediante tres pulsos de pre-ablación. La ablación se realizó en una celda de ablación S-155 de lavado rápido de doble volumen (Laurin Technic) fluida con gas portador que consta de aprox. $0.5 L·min^{-1}$ de He y gas de reposición que consiste en aprox. 1 L·min⁻¹ de Ar y 2 ml·min⁻¹ de N₂. El aerosol ablacionado se homogenizó mediante un lavado a través de un dispositivo *"squid"* antes de introducirse en el plasma.

El instrumento ICP-MS está equipado con una bomba de interfaz de alta capacidad ($80 \text{ m}^3 \cdot \text{h}^{-1}$) para lograr, en combinación con un muestreador de chorro
y conos H-skimmer normales, una eficiencia de detección (basada en U en vidrio NIST SRM612) en el rango de 2% (Guillong et al. 2020). El instrumento fue optimizado para una sensibilidad máxima en todo el rango de masas, manteniendo baja la producción de óxidos (248 ThO+/ 232 Th+ \leq 0.15%) y una relación U/Th de aprox. 1 (en vidrio NIST SRM612). La lista de isótopos analizados y los tiempos de permanencia correspondientes se proporcionan en el Anexo E. Se adquirieron un total de 68 escaneos de masa (aprox. 0.72 s por cada tiempo de barrido) durante aprox. 50 s de medición (25 s de medición de fondo seguida de 25 s de ablación de muestra).

Para los análisis de elementos traza en galena y cobres grises hemos utilizado un sistema láser excimer ArF Coherent Compex Pro 102-F a 193 nm conectado a un ICP-MS de cuadrupolo NexION 2000. La ablación se realizó en una celda personalizada Plexiglas de volumen individual diseñada internamente para soportes epoxi de 1 pulgada, fluida con gas portador consistente en aprox. 1.0 $L \cdot \min^{-1}$ de He. El gas de reposición, que consiste en aprox. 1 $L \cdot \min^{-1}$ de Ar, se mezcló aguas abajo de la celda de ablación. Hemos utilizado el mismo conjunto de parámetros de ablación que para los otros análisis de sulfuro, excepto un diámetro de spot más grande (30 µm). El instrumento ICP-MS fue optimizado para cumplir los mismos requisitos mencionados anteriormente, con la excepción de una tasa de producción de óxidos más alta (relajada a ²⁴⁸ThO^{+/232}Th⁺ ≤0.5%) considerando el diseño diferente de la celda de ablación. También se analizó la misma lista de elementos que en la rutina descrita anteriormente, pero con diferentes tiempos de permanencia (ver detalles en el Anexo F). Se adquirieron un total de 110 escaneos de masa (aprox. 0.59 s por

cada tiempo de barrido) durante aprox. 65 s de medición (40 s de medición de fondo seguida de 25 s de ablación de muestra).

Las intensidades resultantes se procesaron posteriormente fuera de línea con la versión independiente 1.3.2 del programa SILLS. El análisis de inclusiones minerales requiere la visualización de cada señal de inclusión y la posibilidad de seleccionar intervalos de integración para el fondo (blanco de gas), mineral hospedante e inclusiones de forma precisa y flexible (Guillong et al. 2008). El polvo prensado de sulfuro MASS-1 (antiguo PS-1; Wilson et al. 2002) se utilizó como material de referencia principal para la cuantificación de elementos traza y la corrección de deriva instrumental utilizando el horquillado de muestra estándar convencional. El Cu (para calcopirita y cobres grises), Zn (para esfalerita) y Pb (para galena) obtenidos mediante microsonda electrónica se utilizaron como patrones internos para las correcciones de sensibilidad relativa. Los datos de concentraciones, límites de detección y errores son reportados en el Anexo G.

La reproductibilidad analítica se verificó mediante mediciones repetidas de los materiales de referencia de vidrio GSD-1G (Guillong et al. 2005) y NIST SRM610 (Jochum et al. 2011), y varía entre 10 y 30% relativo (2σ) para la mayoría de los elementos. Las incertidumbres citadas para cada análisis individual corresponden al error estadístico interno (2σ) y la reproducibilidad analítica propagada por adición cuadrática. La precisión se controló mediante mediciones repetidas del polvo prensado de sulfuro UQAC-FeS-1 (datos no publicados de Savard 2018; ver también Baumgartner et al. 2020). Los resultados (reportados en el Anexo G) muestran que las mediciones son precisas dentro de las incertidumbres calculadas.

4. **RESULTADOS**

4.1. Mineralogía y texturas

La mineralogía metálica en las muestras de mena estudiadas del yacimiento de María Teresa está constituida mayoritariamente por pirita, esfalerita, galena y calcopirita. En proporciones menores también contienen arsenopirita y Fe-tennantita, y en proporciones mucho menores, tetrahedrita (variedad argentotetrahedrita), Zntetrahedrita, covelita, cubanita, magnetita, pirrotina, plata aurífera, polibasita, boulangerita y bournonita.

Mineralización hidrotermal

El cuerpo de sulfuros masivos de Sofía D (zona Calera) presenta una zonación mineral y metalífera que incluye i) un núcleo de pirita masiva (Figura 9A) rodeado por ii) una zona de calcopirita y a su vez, iii) por una zona más externa de esfalerita-galena (Figura 9B-H). En cambio, el cuerpo Bubulina (zona Bubulina) no muestra una zonación clara, sino que está conformado principalmente por agregados masivos y semimasivos de pirita y esfalerita (Figura 9I). La zonación definida anteriormente para el cuerpo de Sofía D coincide a grandes rasgos con la zonación característica que describen los cuerpos de sulfuros masivos que han experimentado *"zone refining"* (Eldridge et al. 1983; Large 1992; Hannington et al. 1998; Almodóvar et al. 2019).

Figura 9. Fotografías de muestras de mano de los cuerpos Sofía D (A-H) y Bubulina (I). A) Cristales de pirita en matriz de esfalerita y cobres grises. B) Ensamble de esfalerita marrón de grano medio y pirita cortado por vetillas discontinuas de calcopirita. C) Playas de pirita bordeadas por calcopirita de grano medio a grueso. D) Agregados y vetillas de pirita y cuarzo cortando un agregado masivo de granos de esfalerita centimétricos de color pardo rojizo. E) Ensamble de esfalerita marrón gruesa, calcopirita, pirita y cuarzo. F) Ensamble de pirita, calcopirita y pirrotina (parcialmente oxidada) en contacto con intrusivo dacítico; este último presenta venillas de carbonatos. G) Esfalerita semi-masiva de color marrón con diseminaciones de galena y calcopirita. H) Esfalerita amarilla intercrecida con cobres grises, pirita y cuarzo. I) Agregados de esfalerita amarilla a beige de grano medio con cuarzo y pirita fina diseminada en matriz volcanoclástica. Abreviaciones: CBs: carbonatos; CGRs: cobres grises; cpy: calcopirita; cz: cuarzo; ef: esfalerita; gn: galena; po: pirrotina; py: pirita.

En el cuerpo de sulfuros masivos de Sofía D, la pirita forma cristales anhedrales a subhedrales típicamente microfracturados (textura cataclástica con estructuras de estallido *"blow-apart"*; Figura 10A) con tamaños de hasta 600 µm. La arsenopirita forma cristales subhedrales a euhedrales parcialmente fragmentados. Los granos de pirita y arsenopirita presentan contactos mutuos rectilíneos a curvos laxos por lo que se

interpreta que co-cristalizaron en equilibrio. Tanto los cristales de pirita como los de arsenopirita muestran bordes corroídos que, al igual que el espacio intersticial entre estos y las microfracturas, han sido rellenados por esfalerita, galena, cobres grises y calcopirita (Figura 10A). El ensamble galena-esfalerita se presenta en forma de masas anhedrales con contactos mutuos rectos a curvados y suavizados entre ambos sulfuros. Tanto la galena como la esfalerita presentan evidencias de reemplazamiento mutuo en las muestras estudiadas, lo que sugiere una importante etapa de co-cristalización (Figura 10B). No obstante, localmente se observa reemplazamiento de esfalerita por galena, que también aparece como relleno de fracturas en esfalerita (Figura 10C). La galena presenta intercrecimientos con sulfosales de Cu, Pb y Ag tales como Fetennantita, Zn-tetrahedrita, argentotetrahedrita, bournonita y boulangerita (Figura 10B). Las masas de cobres grises se encuentran intercrecidas con esfalerita (Figura 10D) y de manera puntual, con polibasita en intersticios de pirita (ver Anexo C, muestra 2019-MT-009). Texturalmente, la esfalerita se presenta i) como agregados masivos libre de inclusiones minerales (Figura 10C-D); y ii) conteniendo finas diseminaciones orientadas de calcopirita (calcopiritosis; Figura 10E) principalmente hacia los dominios inferiores del cuerpo (i.e., hacia la zona de calcopirita), dónde la esfalerita ha sido reemplazada por calcopirita (Figura 10F). La calcopirita contiene algunas exsoluciones lamelares rectilíneas y orientadas de cubanita de hasta 600 µm de longitud (Figura 10G). De manera puntual se han identificado relictos de pirrotina extensamente reemplazados por calcopirita (Figura 10H). Muy localmente se han observado minúsculos cristales de plata aurífera acompañados de calcopirita en microfracturas dentro de arsenopirita (Figura 10I; ver Anexo C, muestra 2019-MT-011B).

El cuerpo de Bubulina consiste principalmente en cristales anhedrales a subhedrales de pirita de hasta 700 µm y proporciones mucho menores de arsenopirita que han sido

reemplazados por esfalerita masiva intercrecida con galena (Figura 11A-B). La galena y la esfalerita muestran texturas de reemplazamiento "bidireccional", lo que sugiere, al igual que en Sofía D, una importante etapa de co-cristalización (Figura 11C). El ensamble esfalerita-galena y los cristales de pirita y arsenopirita han sido reemplazados parcialmente por cobres grises (Fe-tennantita) (Figura 11B, D-E). La porosidad y microfracturas en los granos de pirita están rellenadas por galena, cobres grises, esfalerita y calcopirita (Figura 11F). Localmente, la esfalerita presenta inclusiones orientadas de calcopirita (Figura 11B-E).

Mineralización por metamorfismo de contacto

En el cuerpo Sofía D se presentan texturas tipo espuma (*"foam"*) o de recocido (*"annealing"*) con generación ubicua de puntos triples a ~120° en los contactos entre cristales de pirita (Figura 10E) o de otros minerales con pirita (Figura 10J). Esta textura es interpretada como resultado de recristalización por metamorfismo de contacto causado por el emplazamiento cercano de cuerpos intrusivos (Figura 7). Alrededor de diques dacíticos, la pirita ha recristalizado a pirrotina masiva (Figura 9F) ± magnetita de grano grueso (Figura 9F y Figura 10K) a lo largo de bandas de unos 20 cm de espesor. Las exsoluciones lamelares de cubanita descritas anteriormente (Figura 10G) podrían haberse formado como resultado del enfriamiento tras el evento metamórfico (p.ej., Klemd y Okrusch 1990) si bien algunos autores también reportan la presencia de exsoluciones de cubanita en calcopirita en mineralizaciones de sulfuros en fondos oceánicos actuales (p.ej., Münch et al. 2000). Finalmente, el enfriamiento tras el metamorfismo de contacto también se vería reflejado en maclas de transformación (inversión) en calcopirita, que presentan una distribución en gran medida aleatoria y formas de huso (*"spindle shaped"*; Figura 10L).

En el cuerpo Bubulina, los núcleos de pirita y algunas bandas de crecimiento preservan microporosidad (localmente con texturas espongiformes; Figura 11F) posiblemente como reflejo de recristalización hidrotermal (vs. recristalización metamórfica) de agregados microcristalinos primarios de pirita (Velasco et al. 1998). La preservación de estas "delicadas" texturas primarias estaría de acuerdo con una baja incidencia del metamorfismo de contacto debido a la mayor distancia de los cuerpos granodioríticos con respecto al cuerpo de Sofía D (Figura 7).

Figura 10. Microfotografías de la mineralización del cuerpo Sofía D. A) Cristales anhedrales a subhedrales de pirita y arsenopirita, con textura interna cataclástica reemplazados por esfalerita, calcopirita y cobres grises desde sus bordes y microfracturas. B) Intercrecimientos de galena, esfalerita, cobres grises y sulfosales de plomo (boulangerita). Además, se observa un cristal de pirita engolfado con

huecos de corrosión rellenados por galena. C) Esfalerita masiva con porosidad y microfracturas rellenas por calcopirita y galena. D) Masa irregular de cobres grises (Fe-tennantita) parcialmente reemplazada por esfalerita. E) Cristales de pirita subidiomórficos con contactos a ~120° (líneas de color rojo; textura *"foam"* o de *"annealing"*) y esfalerita intersticial con finas diseminaciones de calcopirita (calcopiritosis). F) Esfalerita masivamente reemplazada por calcopirita. G) Calcopirita con exsoluciones lamelares orientadas de cubanita. H) Relictos de pirita, pirrotina y esfalerita incluidos en masa de calcopirita. I) Arsenopirita con microfracturas rellenas por esfalerita, calcopirita y plata aurífera. J) Cristales de pirita con puntos triples (líneas de color rojo) a lo largo de los contactos entre galena y cobres grises en esfalerita. Además, se observa un cristal de pirita con una cavidad rellenada por calcopirita y esfalerita. K) Masa de calcopirita en contacto con pirita, esfalerita y magnetita de grano grueso. L) Maclas de transformación en masa de calcopirita. Abreviaciones: BSE: Back Scattered Electrons; LR: Luz Reflejada; LRx: Luz Reflejada en nicoles cruzados; apy: arsenopirita; CGRs: cobres grises; cpy: calcopirita; cub: cubanita; ef: esfalerita; gn: galena; GGs: gangas; mt: magnetita; Ag_Au: plata aurífera; po: pirrotina; py: pirita; SFSs_Pb: sulfosales de plomo.

Figura 11. Microfotografías de la mineralización del cuerpo Bubulina. A) Cristales anhedrales a subhedrales de pirita reemplazados por ensamble de esfalerita y galena. B) Cristales anhedrales de pirita y cristal anhedral de arsenopirita fuertemente reemplazados por galena, esfalerita y cobres grises (Fetennantita). C) Masa de esfalerita y galena en contacto con zona rica en cristales subhedrales de pirita; la esfalerita contiene finas diseminaciones orientadas de calcopirita (calcopiritosis). D-E) Masa de esfalerita, galena y cobres grises (Fe-tennantita) ocupan espacio intersticial y reemplazan desde los bordes a cristales subhedrales de pirita. F) Microporosidad en núcleos de cristales de pirita con bordes corroídos; huecos y golfos de corrosión son rellenados por esfalerita y puntualmente por galena, cobres grises y calcopirita. Abreviaciones: LR: Luz Reflejada; apy: arsenopirita; CGRs: cobres grises; cpy: calcopirita; ef: esfalerita; gn: galena; GGs: gangas; py: pirita.

Las observaciones mineralógicas y texturales descritas anteriormente permiten la elaboración de una secuencia paragenética para la mineralización en el cuerpo Sofía D (Figura 12). A grandes rasgos, la primera fase de mineralización está compuesta por arsenopirita y pirita. Los contactos rectilíneos entre arsenopirita y pirita sugieren una co-cristalización entre ambos minerales. Posteriormente, estos sulfuros de Fe y As han sido remplazados por un ensamble de sulfuros de metales base, principalmente galena y esfalerita, y por sulfosales como Fe-tennantita, Zn-tetrahedrita, argentotetrahedrita y proporciones mucho menores de polibasita, bournonita y boulangerita. Cabe resaltar que hubo una importante etapa de co-cristalización entre galena y esfalerita a juzgar por la existencia de evidencias de reemplazamiento mutuo. Calcopirita y proporciones mucho menores de plata aurífera han reemplazado de forma tardía la mineralización previa. Mineralizaciones atribuibles a fluidos hidrotermales de baja temperatura pueden superponerse a las de más alta temperatura producto de un retraimiento del sistema (p. cristalización de galena en porosidad y microfracturas de esfalerita). ej., Adicionalmente, las muestras estudiadas del cuerpo Sofía D registran evidencias de metamorfismo de contacto con recristalización ("annealing") de las fases cristalizadas durante la etapa hidrotermal y blástesis de pirrotina, magnetita y cubanita (?). Finalmente, se observan proporciones mucho menores de covelita que se interpretan como producto de alteración supergénica de la calcopirita.

Mineral	Fórmula		Etapa hidrotermal	ſ	Metamorfismo de contacto	Alteración supergênica
Arsenopirita	FeAsS					
Pirrotina	Fe _{1.a} S	7				
Pirita	FeS2	-	-			
Galena	PbS					
Argentotetrahedrita	(Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13		(
Tetrahedrita-Tennantina	(Cu,Zn,Fe)12(Sb,As)2S13	"Zone Refining"				
Boulangerita	Pb ₅ Sb ₄ S ₁₁					
Bournonita	PbCuSbS ₃					
Polibasita	[(Ag,Cu) ₈ (Sb,As) ₂ S ₇][Ag ₆ CuS ₄]					
Esfakrita	ZuS					
Calcopirita	CuFeS ₂			_		
Cubanita	CuFe ₂ S ₃	1		??	?	
Plata aurífera	(Ag,Au)		ŧ			
Magnetita	Fe ² Fe ³⁺ ₂ O ₃					
Covelita	CuS					

Figura 12. Secuencia paragenética del cuerpo Sofía D del yacimiento María Teresa. El ancho de las bandas se aproxima a la abundancia de minerales y las líneas discontinuas indican proporciones minerales mucho menores.

Una secuencia paragenética del cuerpo Bubulina obtenida a partir de las observaciones texturales descritas se muestra en la Figura 13. En líneas generales, la primera fase de cristalización está compuesta por arsenopirita y pirita. Posteriormente ambos minerales fueron parcialmente reemplazados por un ensamble de galena, Fe-tennantita y esfalerita. Este ensamble registró una importante etapa de co-cristalización evidenciada por texturas "bidireccionales" entre ambos minerales. La mineralización previa ha sido reemplazada de forma más tardía por proporciones mucho menores de calcopirita.

Mineral	Fórmula	Etapa hidrotermal
Arsenopirita	FeAsS	
Pirita	FeS ₂	
Galena	PbS	
Fe-tennantina	Cu ₆ (Cu ₄ Fe ₂)As ₄ S ₁₃	
Esfalerita	ZnS	
Calcopirita	CuFeS ₂	

Figura 13. Secuencia paragenética del cuerpo Bubulina del yacimiento María Teresa. El ancho de las bandas se aproxima a la abundancia de minerales y las líneas discontinuas indican proporciones minerales mucho menores.

4.2. Geoquímica mineral

Un resumen de la concentración de elementos mayoritarios y minoritarios obtenida mediante EPMA y de elementos traza obtenida mediante LA-ICP-MS para cada mineral incluyendo concentración mínima, máxima, promedio y rango intercuartil Q_1 - Q_3 (RIC), se muestra en las

Tabla 2 a la Tabla 5. Los valores de concentración de los elementos se reportarán en lo sucesivo como RIC, a menos que se especifique lo contrario. En los diagramas geoquímicos con datos de EPMA, los valores menores al límite de detección de cada elemento fueron descartados, mientras que en los diagramas con datos de LA-ICP-MS se consideró la mitad del valor del límite de detección inferior. En base a perfiles de ablación irregulares, elementos como Sn, Tl, Bi y Pb en esfalerita, y Mo, Au, Tl, Sb, Pb y Bi en calcopirita probablemente se presentan en micro- o nanoinclusiones minerales (Torró et al. 2022).

4.2.1. Resultados de EPMA

4.2.1.1. Esfalerita

El contenido de Fe en granos de esfalerita del yacimiento de María Teresa presentan un RIC de 2.40-5.77 wt.%, mostrando valores más altos en el cuerpo Sofía D (2.58-5.78 wt.%) en comparación con el cuerpo Bubulina (2.02-2.41 wt.%; Tabla 2). La concentración máxima de Fe, de 8.37 wt.% fue hallada en una muestra de esfalerita procedente de Sofía D (muestra 2019-MT-011A). Perubar (5.86-9.71 wt.%) y Palma (4.34-8.87 wt.%) muestran un rango más amplio de concentraciones de Fe exhibiendo valores máximos de 10.07 y 10.37 wt.% de Fe, respectivamente. No se analizaron muestras de Cerro de Maimón.

De acuerdo al diagrama binario de la **Error! Reference source not** found., las concentraciones atómicas (expresadas como átomos por fórmula unidad, a.p.f.u.) de Fe y Zn se correlacionan negativamente a Zn + Fe ~ 1 a.p.f.u. en la mayor parte de los análisis realizados, lo que sugiere una sustitución simple entre dichos elementos (Fe²⁺ \leftrightarrow Zn²⁺).

Figura 14. Diagrama binario de Fe vs. Zn en esfalerita de los yacimientos María Teresa (sector/cuerpo/sección), Palma y Perubar.

Tabla 2. Resumen de las concentraciones de elementos mayoritarios y traza en granos de esfalerita en los yacimientos de María Teresa, Perubar, Palma y Cerro de Maimón. Zinc y Fe se presentan en wt% (datos de EPMA) y el resto de elementos en ppm (datos de LA-ICP-MS).

Depósito	Sector / Cuerpo / Sección		Zn (wt.%)	Fe (wt.%)	Fe (ppm)	Mn (ppm)	Cu (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)
		Mín.	56.8	1.26	9772	107	3.77	1.39	<1.d.	4.57
	Muestras totales	Máx	66.3	8 37	63534	4998	1055.89	94.16	2 329	9 30
	(n*-152 n**-147)	Prom	62.1	4.20	30447	130/	102.43	24.11	0.376	6.07
	(n =152, n =117)	DIC	60 1 61 0	2 40 5 77	17101 41201	228 2202	26 20 07 51	10 57 21 95	0.370	5 50 6 61
		Mín	62.0	2.40-5.77	1/191-41501	2120	70.22	16.02	0.073-0.328	3.30-0.01
	D.1. P. / D.1. P. / 1100	IVIIII.	65.0	1.96	13000	3139	19.32	16.92	<1.d.	4.75
	Bubulina / Bubulina / 1180	Màx.	64.9	2.54	18702	4998	174.17	94.16	0.156	5.81
	$(n^*=8, n^{**}=9)$	Prom.	64.0	2.26	16759	4509	128.51	56.24	0.078	5.26
		RIC	63.2-64.8	2.02-2.41	14676-18377	4447-4844	117.26-142.06	40.28-74.95	0.063-0.080	5.10-5.51
	Caloro / Sofía D musetras	Mín.	56.8	1.26	9772	107	3.77	1.39	<1.d.	4.57
	Calera / Solia D, Indesuas	Máx.	66.3	8.37	63534	2857	1055.89	70.02	2.329	9.30
	totales	Prom.	62.0	4.31	31340	1191	100.67	22.02	0.396	6.12
	$(n^{+}=144, n^{+}=138)$	RIC	60.2-63.9	2.58-5.78	17392-41959	324-2248	35.76-87.77	10.50-30.48	0.116-0.336	5.54-6.65
		Mín	56.8	1.26	9772	107	19.67	3.07	<1d	5.23
María Teresa	Calera / Sofía D / -300	Máy	66.3	8 37	63534	2857	1055.89	38.12	2 320	0.30
(Porí)	(n*-116 n**-105)	Dugan	62.0	4.20	20656	1292	111 44	17.01	0.425	7.50
(reiu)	(n^{-110}, n^{-105})	Prom.	02.0	4.28	29030	1282	111.44	17.91	0.435	0.10
		RIC	60.2-63.9	2.50-5.95	15/34-421/5	249-2354	35.68-102.11	10.38-27.23	0.072-0.348	5.66-6.46
		Mín.	59.2	2.41	18062	113	3.77	1.39	<l.d.< td=""><td>6.68</td></l.d.<>	6.68
	Calera / Sofía D / -340	Máx.	64.3	5.82	42132	1662	76.30	38.39	0.205	7.12
	(n*=11, n**=10)	Prom.	61.3	4.61	33146	891	37.71	19.65	0.128	6.91
		RIC	59.4-63.5	3.56-5.77	26049-41725	137-1650	5.19-70.18	1.51-37.85	0.056-0.179	6.83-7.02
		Mín.	64.2	2.04	15296	512	40.15	9.57	0.170	5.21
	Calera / Sofía D / -500	Máx.	64.6	2.29	59398	2492	94.67	25.57	0.945	7.26
	$(n^*=5, n^{**}=11)$	Prom	64.4	2.18	38677	1537	69.74	17.00	0.414	6.29
	(11 2), 11 (11)	DIC	61 2 61 6	2.10	17122 50010	547 2413	50 56 86 28	11.08.24.26	0.304 0.386	5 40 7 04
		Mín	60.9	1 66	25925	214	91 57	58 20	0.304-0.380	4 57
	Calara / Safa D / 540		00.8	4.00	33833	214	01.37	38.29	<1.u.	4.37
	Calera / Solia D / -340	Max.	62.0	5.31	38973	357	136.74	70.02	1.212	5.44
	$(n^*=12, n^{**}=12)$	Prom.	61.5	5.14	37837	324	91.68	64.53	0.258	5.04
		RIC	61.3-61.7	5.13-5.23	37040-38719	325-340	84.08-89.50	62.76-68.02	0.128-0.229	4.86-5.27
		Mín.	54.7	3.10	30747	667	15.75	3.36	<1.d.	4.04
	Muestras totales	Máx.	63.2	10.07	73876	7639	789.37	32.53	0.489	6.09
	(n*=34, n**=50)	Prom.	58.2	7.62	54183	3578	50.65	17.55	0.112	4.65
		RIC	55.7-60.4	5.86-9.71	39939-68452	901-5993	24.93-41.12	4.67-30.31	0.057-0.160	4.38-4.81
		Mín.	59.9	3.10	30747	667	20.30	11.05	<1.d.	4.28
	Cecilia Sur	Máx	63.2	5.98	42636	1047	789.37	32 53	0.192	5.41
	$(n^*-15 n^{**}-22)$	Drom	60.0	5.20	37862	000	75.14	26.47	0.001	4.71
	(n = 15, n = 22)	PIC	60.0.61.6	172 5 02	22801 40205	909	21 96 17 15	10 76 20 05	0.091	4.71
		KIC N/	57.1	4.72-3.93	50164	677-946	34.80-47.43	19.70-30.93	0.034-0.130	4.33-4.63
	a	Min.	57.1	8.55	59164	6704	22.92	17.19	<l.d.< td=""><td>4.04</td></l.d.<>	4.04
Perubar	Graciela	Máx.	57.8	8.78	66451	7639	30.12	22.34	0.198	4.75
(Perú)	$(n^*=5, n^{**}=10)$	Prom.	57.4	8.65	63489	7271	25.79	20.86	0.112	4.26
		RIC	57.2-57.7	8.58-8.75	62329-64595	7173-7388	23.43-27.50	20.19-21.86	0.058-0.187	4.14-4.32
		Mín.	55.7	9.17	58263	1669	20.43	4.55	<1.d.	4.67
	Juanita	Máx.	56.7	10.05	64193	1973	126.41	8.13	0.489	6.09
	$(n^*=7, n^{**}=4)$	Prom.	56.1	9.69	61345	1804	53.17	6.68	0.183	5.26
		RIC	55.8-56.5	9.54-9.92	58695-63878	1691-1934	22.06-104.53	5.15-7.87	0.054-0.398	4.77-5.87
		Mín	547	9.67	66771	5121	15 75	3 36	<1d	4 39
	Rímac-D	Máx	55.4	10.07	73876	6090	66.28	4 79	0.217	4 90
	(n*-7 n**-14)	Drom	55.1	0.70	71135	5640	20.21	4.79	0.123	4.50
	(n = 7, n = 14)	DIC	55.0 55.2	9.19	71133	5252 5000	29.21	4.20	0.125	4.05
		KIC N/	55.0-55.2	9.70-9.84	20204	3332-3960	21.84-31.00	3.89-4.62	0.000-0.180	4.54-4.81
		Min.	52.8	4.16	28384	2303	5.72	0.61	<l.d.< td=""><td>3.58</td></l.d.<>	3.58
	Muestras totales	Máx.	62.5	10.37	71526	10848	169.56	3.10	9.310	6.31
	$(n^*=39, n^{**}=37)$	Prom.	58.9	6.72	45449	7215	27.90	2.05	1.602	4.91
		RIC	55.5-61.9	4.34-8.87	29589-63929	6718-8794	10.23-32.51	1.89-2.43	0.141-2.650	4.28-5.34
		Mín.	55.1	4.16	28384	2303	5.72	0.61	<1.d.	3.58
	Palma	Máx.	62.5	8.87	63423	7751	169.56	3.10	9.310	6.31
Palma (Perú)	$(n^*=30, n^{**}=28)$	Prom.	60.1	5.79	37648	6198	30.33	1.96	2.075	4.86
		RIC	57.5-62.0	4.30-8.10	29034-48466	6666-7188	10.25-33 50	1.81-2.45	0.151-4 399	4.01-5.61
		Mín	52.0	9.31	64436	9837	8 24	2.00	_1d	4 72
	Santa Lidia	Máy	55.5	10.37	71526	10848	50.10	2.00	0.228	5.21
	(n*=0, n**=0)	Date	55.5	10.37	(1320	10040	20.25	2.07	0.220	5.51
	(n^{-9}, n^{-9})	Prom.	54.8	9.85	09/20	10380	20.35	2.54	0.130	5.07
		RIC	54.6-55.4	9.68-9.94	08810-71353	10085-10653	10.21-28.23	2.17-2.44	0.056-0.180	4.91-5.30
Cerro de		Mín.			<1.d.	406	82.06	69.64	0.233	3.60
Maimón	Cerro de Maimón	Máx.	*:	**	643	539	172.21	95.70	6.245	10.39
(República	(n**=17)	Prom.			503	469	125.96	85.67	1.222	4.51
Dominicana)		RIC			530-592	443-488	112.55-142.69	77.91-95.04	0.623-1.363	3.87-4.52

Depósito	Sector / Cuerpo / Sección		Se (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Hg (ppm)	Tl (ppm)
Deposito	beetor, cuerpo, beeeton	Mín		2.18	/301	0.437	0.137	_1d	97.5	-1d
	Muestres totales	Máy	22.00	66.22	4301	415.014	10.619	10.12	700 2	19516
	(114) $(114$	Max.	32.09	10.41	9409	415.014	19.018	48.15	/88.3	18.510
	$(n^{+}=132, n^{++}=147)$	Prom.	0.80	10.41	0328	01.985	1.141	4.30	397.1	0.981
		RIC	1.53-5.60	4.23-11.74	5251-7373	4.388-79.367	0.234-0.601	0.51-5.35	328.7-452.1	0.058-0.882
		Mín.	4.26	3.16	4720	21.123	0.295	0.05	663.9	<l.d.< td=""></l.d.<>
	Bubulina / Bubulina / 1180	Máx.	5.25	5.15	5044	98.607	3.201	1.11	788.3	0.008
	$(n^*=8, n^{**}=9)$	Prom.	4.82	4.21	4868	70.577	1.303	0.42	724.3	0.006
		RIC	4.42-5.15	3.59-4.68	4783-5000	23.350-94.677	0.350-1.960	0.12-0.69	701.8-740.7	0.004-0.008
	Calera / Sofía D. muestras	Mín.	<l.d.< td=""><td>2.18</td><td>4301</td><td>0.437</td><td>0.137</td><td><l.d.< td=""><td>97.5</td><td><1.d.</td></l.d.<></td></l.d.<>	2.18	4301	0.437	0.137	<l.d.< td=""><td>97.5</td><td><1.d.</td></l.d.<>	97.5	<1.d.
	totalas	Máx.	32.09	66.22	9409	415.014	19.618	48.13	676.7	18.516
	(n*-144 n**-128)	Prom.	7.00	10.82	6637	61.422	1.130	4.55	375.8	1.045
	$(n^{+}=144, n^{++}=130)$	RIC	1.51-5.84	4.33-12.22	5312-7385	4.363-70.933	0.228-0.578	0.57-5.49	323.3-443.1	0.084-1.231
		Mín.	<1.d.	2.18	4896	3.947	0.137	<1.d.	97.5	0.007
María Teresa	Calera / Sofía D / -300	Máx.	32.09	66.22	8051	415.014	16.116	48.13	485.0	18.516
(Perú)	(n*=116, n**=105)	Prom.	7.09	10.51	6409	72.757	0.761	4.85	364.7	1.286
. ,		RIC	1.43-5.55	3.90-12.87	5290-7249	12.009-78.445	0.215-0.482	0.68-5.86	315.1-438.9	0.116-1.724
		Mín	<1d	4 11	5592	0.437	0.180	0.10	213.4	<1d
	Calera / Sofía D / - 340	Máx	7.06	9.22	7044	42 140	1 751	1 10	443.0	0.315
	$(n^*=11 \ n^{**}=10)$	Prom	3.78	7.10	6229	21 201	0.568	0.53	316.4	0.093
	(11) 10)	RIC	1 12-6 65	5 40-8 73	5620-6998	0 529-41 848	0 281-0 619	0.22-0.99	218 1-414 8	0.095
		Mín	1.12-0.05	1 12	4201	1 555	0.175	0.22-0.77	420.1	0.103
	Calera / Sofia D / 500	Már	28.00	4.43	0400	110 326	2 190	22.72	+37.1	0.105
	(n*-5, n**-11)	Duran.	28.00	40.15	9409	55 515	2.169	23.75	577.4	0.790
	$(n^{-}-J, n^{-}-11)$	PIOIII.	1 77 21 67	5 02 25 20	0/40	33.313	0.034	7.21	5777 6257	0.301
		KIC M	2.12	5.92-25.29	4030-9130	0.052	0.227-0.964	2.06-10.40	327.7-625.7	0.185-0.484
	Calara / Safa D / 540	IVIIII.	2.12	5.05	8044	0.932	0.607	0.02	324.9	0.014
	(* 12 ** 12)	Max.	3.72	2/.1/	9168	1.4/3	19.618	11.30	356.4	1.235
	$(n^{+}=12, n^{+}=12)$	Prom.	2.85	10.05	88/8	1.1/8	5.270	2.82	338.0	0.333
		RIC	2.63-3.01	6.40-11.47	8/80-8991	1.058-1.253	1.068-8.847	0.223.77	329.5-348.9	0.050-0.485
	N 1	Min.	<l.d.< td=""><td>1.71</td><td>3977</td><td><l.d.< td=""><td>0.175</td><td><l.d.< td=""><td>15.2</td><td><l.d.< td=""></l.d.<></td></l.d.<></td></l.d.<></td></l.d.<>	1.71	3977	<l.d.< td=""><td>0.175</td><td><l.d.< td=""><td>15.2</td><td><l.d.< td=""></l.d.<></td></l.d.<></td></l.d.<>	0.175	<l.d.< td=""><td>15.2</td><td><l.d.< td=""></l.d.<></td></l.d.<>	15.2	<l.d.< td=""></l.d.<>
	Muestras totales	Màx.	10.24	13.80	7076	7.130	1.364	5.35	116.9	1.043
	$(n^*=34, n^{**}=50)$	Prom.	4.15	5.26	5355	1.702	0.290	0.86	57.7	0.113
		RIC	1.21-7.25	3.53-7.15	4291-6685	0.006-2.269	0.214-0.319	0.17-1.22	18.2-107.2	0.013-0.126
		Mín.	<l.d.< td=""><td>4.27</td><td>5485</td><td><l.d.< td=""><td>0.199</td><td><l.d.< td=""><td>70.6</td><td>0.013</td></l.d.<></td></l.d.<></td></l.d.<>	4.27	5485	<l.d.< td=""><td>0.199</td><td><l.d.< td=""><td>70.6</td><td>0.013</td></l.d.<></td></l.d.<>	0.199	<l.d.< td=""><td>70.6</td><td>0.013</td></l.d.<>	70.6	0.013
	Cecilia Sur	Máx.	4.40	13.80	7076	0.816	0.433	3.99	116.9	1.043
	(n*=15, n**=22)	Prom.	1.66	7.13	6443	0.242	0.312	1.07	98.4	0.178
		RIC	0.70-3.05	5.59-7.92	5808-6812	0.003-0.727	0.258-0.362	0.17-1.95	78.5-108.4	0.6 0.013 6.9 1.043 8.4 0.178 -108.4 0.044-0.217 7.2 0.045
		Mín.	3.23	1.71	4799	1.936	0.175	<1.d.	37.2	0.045
Perubar	Graciela	Máx.	4.19	2.80	5135	2.093	0.225	0.59	42.7	0.169
(Perú)	(n*=5, n**=10)	Prom.	3.72	2.06	4984	2.014	0.204	0.16	40.0	0.084
		RIC	3.35-3.97	1.89-2.11	4944-5041	1.990-2.041	0.187-0.216	0.04-0.27	38.1-41.2	0.051-0.119
		Mín.	2.49	3.57	3977	6.662	0.191	0.38	15.2	0.006
	Juanita	Máx.	3.91	7.35	4388	7.130	1.364	2.99	17.2	0.492
	$(n^*=7, n^{**}=4)$	Prom.	3.13	4.76	4211	6.931	0.512	1.23	16.4	0.153
		RIC	2.63-3.70	3.59-6.64	4021-4372	6.730-7.097	0.195-1.095	0.45-2.46	15.5-17.1	0.014-0.388
		Mín.	6.46	2.49	3996	2.145	0.189	0.14	16.9	<1.d.
	Rímac-D	Máx.	10.24	10.21	4436	2.405	0.356	5.35	19.6	0.119
	(n*=7, n**=14)	Prom.	8.66	4.76	4236	2.277	0.252	0.91	18.0	0.020
		RIC	8.26-9.39	3.76-4.75	4171-4297	2.234-2.324	0.219-0.271	0.20-0.89	17.5-18.6	0.004-0.028
		Mín.	<l.d.< td=""><td>1.71</td><td>4335</td><td><l.d.< td=""><td>0.145</td><td><1.d.</td><td>212.5</td><td><1.d.</td></l.d.<></td></l.d.<>	1.71	4335	<l.d.< td=""><td>0.145</td><td><1.d.</td><td>212.5</td><td><1.d.</td></l.d.<>	0.145	<1.d.	212.5	<1.d.
	Muestras totales	Máx.	1.57	31.98	7951	1.621	0.896	27.69	1214.9	6.245
	$(n^*=39, n^{**}=37)$	Prom.	0.67	11.81	5821	0.148	0.330	4.99	680.1	0.887
		RIC	0.35-0.90	3.78-16.99	4780-7201	0.004-0.151	0.187-0.417	0.52-7.11	586.7-906.8	0.016-1.469
		Mín.	<1.d.	1.71	4335	<l.d.< td=""><td>0.145</td><td><1.d.</td><td>212.5</td><td><1.d.</td></l.d.<>	0.145	<1.d.	212.5	<1.d.
	Palma	Máx.	1.57	31.98	7293	1.621	0.630	15.67	666.9	6.245
Palma (Perú)	$(n^*=30, n^{**}=28)$	Prom.	0.66	12.01	5286	0.126	0.301	3.43	522.8	1.151
		RIC	0.35-0.93	3.45-18.41	4690-5585	0.003-0.026	0.176-0.375	0.35-5.84	355.2-624.4	0.016-1.736
		Mín	<1d	3 72	7109	0.130	0.258	1.11	1146 7	0.006
	Santa Lidia	Máx	1.06	23.03	7951	0.284	0.896	27.69	1214 9	0.213
	$(n^*=9, n^{**}=9)$	Prom	0.70	11.20	7485	0.217	0.423	9.84	1169.6	0.064
		RIC	0.38-0.90	4.73-16.22	7311-7656	0.151-0.272	0.327-0.438	2.46-15.81	1154.2-1180.3	0.012-0.115
Cerro de		Mín	16 89	2.64	3413	5.949	0.144	0.03	20.8	0.036
Maimón	Cerro de Maimón	Máx	67.01	21.32	3905	11 206	2.456	3 30	29.8	1 512
(República	$(n^{**}=17)$	Prom	52.96	5 54	3687	9 591	0.531	0.36	23.9	0.267
Dominicana)	(,	RIC	56.75-61 17	3.00-4 32	3564-3831	9.251-10 322	0.222-0 552	0.04-0.28	22.0-26.3	0.061-0 278
		1.40	01.17	2.00 1.04			0.002	5.5. 0.20	22.0 20.0	

<l.d.: Debajo de su límite de detección

n*: Número de análisis con EPMA, n**: Número de análisis con ablación laser ICP-MS

***: Datos de EPMA de Cerro de Maimón están disponibles en Torró et al. (2016)

4.2.1.1. Galena

El contenido de Pb obtenido en granos de galena de la mineralización de María Teresa (85.1-86.9 wt.%) y Perubar (86.2-87.3 wt.%; Tabla 3) muestra valores relativamente constantes y similares a los valores estequiométricos de galena pura. El resto de elementos analizados devolvieron concentraciones que están sistemáticamente por debajo de los respectivos límites de detección para este método. No se analizaron muestras de galena de Palma y Cerro de Maimón.

4.2.1.2. Calcopirita

En la sección -300 del cuerpo Sofía D, las concentraciones de Cu y Fe en calcopirita muestran valores relativamente constantes (34.54-34.83 wt.% y 29.43-30.17 wt.%, respectivamente; Tabla 4), los cuales coinciden con valores esperables para calcopirita estequiométrica (34.63% de Cu y 30.43% de Fe). El resto de elementos analizados devolvieron concentraciones que están sistemáticamente por debajo de los respectivos límites de detección para este método. No se analizaron muestras de calcopirita de la sección -500 de Sofía D ni de los depósitos de Perubar, Palma y Cerro de Maimón.

4.2.1.3. Cobres grises

Sólo se realizaron dos análisis en muestras de cobres grises procedentes del cuerpo Bubulina en el yacimiento de María Teresa (Tabla 5). La relación As/(As+Sb) presenta valores entre 0.799-0.804 (proporción atómica; **Error! Reference source not found.**) y la relación

Ag/(Ag+Cu) entre 0.0095-0.0121. Por consiguiente, los granos de cobres grises se pueden clasificar como tennantita, y su fórmula empírica promedio es $(Cu_{10.09}Ag_{0.11})(Zn_{0.79}Fe_{1.21})(As_{3.43}Sb_{0.85})S_{13}$. La concentración de Ag y Zn en la tennantita del cuerpo Bubulina es 0.67-0.88 wt.% y 3.06-3.7 wt.%, respectivamente.

Figura 15. Cobres grises del yacimiento María Teresa (sector/cuerpo/sección) en el diagrama binario $As/(As+Sb)_{at.}$ vs. $Ag/(Ag+Cu)_{at.}$ correspondiente a minerales del grupo de la tetraedrita.

Tabla 3. Resumen de las concentraciones de elementos mayoritarios, minoritarios y traza en granos de galena en los yacimientos de María Teresa y Perubar. Plomo se

Depósito	Sector / Cuerpo / Sección		Pb (wt.%)	Cu (ppm)	Ga (ppm)	Ge (ppm)	Se (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Hg (ppm)	Tl (ppm)	Bi (ppm)
		Mín.	84.7	<1.d.	<l.d.< td=""><td>0.328</td><td>29.5</td><td>314</td><td>18.5</td><td><l.d.< td=""><td>0.78</td><td>287</td><td>0.149</td><td>10.8</td><td>3.83</td></l.d.<></td></l.d.<>	0.328	29.5	314	18.5	<l.d.< td=""><td>0.78</td><td>287</td><td>0.149</td><td>10.8</td><td>3.83</td></l.d.<>	0.78	287	0.149	10.8	3.83
	Muestras totales	Máx.	87.5	54.52	1.6873	2.623	181.0	4116	120.0	0.0643	15.22	3783	6.884	264.2	287.44
	(n*=8, n**=29)	Prom.	85.9	11.99	0.1079	1.424	98.7	1116	49.5	0.0250	3.81	1287	0.958	91.9	74.27
		RIC	85.1-86.9	0.56-11.16	0.0212-0.0312	0.583-2.222	49.3-164.9	571-1432	30.8-66.8	0.0085-0.0349	1.88-3.76	483-1851	0.296-0.981	15.3-156.7	4.53-109.27
		Mín.		<1.d.	<l.d.< td=""><td>1.972</td><td>120.0</td><td>314</td><td>21.6</td><td><l.d.< td=""><td>0.78</td><td>287</td><td>0.204</td><td>10.8</td><td>3.83</td></l.d.<></td></l.d.<>	1.972	120.0	314	21.6	<l.d.< td=""><td>0.78</td><td>287</td><td>0.204</td><td>10.8</td><td>3.83</td></l.d.<>	0.78	287	0.204	10.8	3.83
	Bubulina / Bubulina / 1180	Máx.	85.0	7.57	1.6873	2.623	181.0	746	41.0	0.0643	5.64	899	1.215	26.9	4.75
	(n*=1, n**=13)	Prom.	85.0	2.60	0.1551	2.250	154.0	539	31.4	0.0288	2.67	568	0.623	15.7	4.39
		RIC		0.47-5.14	0.0214-0.0351	2.082-2.464	128.8-171.3	431-624	28.3-35.3	0.0190-0.0362	1.43-3.73	388-825	0.382-0.863	13.4-16.7	4.17-4.62
	Calara / Sofía D. muastras	Mín.	84.7	<1.d.	<l.d.< td=""><td>0.328</td><td>29.5</td><td>886</td><td>18.5</td><td><l.d.< td=""><td>1.03</td><td>825</td><td>0.149</td><td>81.1</td><td>52.96</td></l.d.<></td></l.d.<>	0.328	29.5	886	18.5	<l.d.< td=""><td>1.03</td><td>825</td><td>0.149</td><td>81.1</td><td>52.96</td></l.d.<>	1.03	825	0.149	81.1	52.96
	calera / Solia D, indestras	Máx.	87.5	54.52	0.6954	2.418	80.3	4116	120.0	0.0598	15.22	3783	6.884	264.2	287.44
	(-*, 7, -**, 16)	Prom.	86.0	19.62	0.0695	0.753	53.8	1585	64.2	0.0219	4.73	1872	1.230	153.9	131.05
María Teresa	$(n^{*}=7, n^{**}=10)$	RIC	85.3-87.1	5.54-37.07	0.0211-0.0315	0.463-0.861	46.9-68.0	997-1513	44.4-84.5	0.0072-0.0332	1.92-6.81	1045-2427	0.272-1.001	98.6-185.8	56.88-244.33
(Perú)		Mín.	84.7	7.42	<l.d.< td=""><td>0.459</td><td>50.6</td><td>886</td><td>18.5</td><td>0.0252</td><td>2.48</td><td>825</td><td>0.149</td><td>81.1</td><td>128.52</td></l.d.<>	0.459	50.6	886	18.5	0.0252	2.48	825	0.149	81.1	128.52
	Calera / Sofía D / -300	Máx.	86.5	54.52	0.6954	2.418	80.3	1576	69.0	0.0598	15.22	2565	6.884	145.6	287.44
	$(n^{*}=4, n^{**}=7)$	Prom.	85.5	35.83	0.1269	0.988	66.1	1275	45.3	0.0399	7.69	1682	1.283	110.4	218.58
		RIC	84.9-86.2	23.43-53.16	0.0245-0.0656	0.460-1.117	51.3-78.0	935-1517	35.9-58.8	0.0281-0.0527	2.65-14.36	1069-2247	0.212-0.941	85.3-142.5	128.98-285.94
	Calera / Sofía D / -340 (n*=1, n**=2)	Mín.		10.33	<l.d.< td=""><td>0.328</td><td>29.5</td><td>4038</td><td>68.1</td><td><l.d.< td=""><td>1.03</td><td>3664</td><td>2.932</td><td>115.2</td><td>85.80</td></l.d.<></td></l.d.<>	0.328	29.5	4038	68.1	<l.d.< td=""><td>1.03</td><td>3664</td><td>2.932</td><td>115.2</td><td>85.80</td></l.d.<>	1.03	3664	2.932	115.2	85.80
		Máx.	071	10.75	<l.d.< td=""><td>0.393</td><td>31.0</td><td>4116</td><td>73.2</td><td><l.d.< td=""><td>1.58</td><td>3783</td><td>3.185</td><td>116.6</td><td>90.02</td></l.d.<></td></l.d.<>	0.393	31.0	4116	73.2	<l.d.< td=""><td>1.58</td><td>3783</td><td>3.185</td><td>116.6</td><td>90.02</td></l.d.<>	1.58	3783	3.185	116.6	90.02
		Prom.	07.1	10.54	-	0.360	30.2	4077	70.6	-	1.30	3723	3.059	115.9	87.91
		RIC		10.33-10.75	-	0.328-0.393	29.5-31.0	4038-4116	68.1-73.2	-	1.03-1.58	3664-3783	2.932-3.185	115.2-116.6	85.80-90.02
		Mín.	85.6	<l.d.< td=""><td><1.d.</td><td>0.471</td><td>45.9</td><td>939</td><td>43.3</td><td><l.d.< td=""><td>1.87</td><td>926</td><td>0.285</td><td>167.9</td><td>52.96</td></l.d.<></td></l.d.<>	<1.d.	0.471	45.9	939	43.3	<l.d.< td=""><td>1.87</td><td>926</td><td>0.285</td><td>167.9</td><td>52.96</td></l.d.<>	1.87	926	0.285	167.9	52.96
	Calera / Sofía D / -500	Máx.	87.5	11.45	<1.d.	0.803	50.2	1475	120.0	<l.d.< td=""><td>3.52</td><td>2488</td><td>1.011</td><td>264.2</td><td>58.22</td></l.d.<>	3.52	2488	1.011	264.2	58.22
	(n*=2, n**=7)	Prom.	86.5	6.00	-	0.630	48.2	1182	81.4	-	2.74	1533	0.654	208.3	55.86
		RIC	85.6-87.5	1.71-10.87	-	0.478-0.717	46.5-49.6	990-1469	47.6-114.0	-	1.89-3.42	977-1896	0.468-0.974	171.5-255.9	53.70-57.22
		Mín.	86.2	<l.1.< td=""><td><1.d.</td><td><1.d.</td><td>21.0</td><td>663</td><td>21.4</td><td><l.d.< td=""><td>0.29</td><td>602</td><td><1.d.</td><td>20.6</td><td>0.24</td></l.d.<></td></l.1.<>	<1.d.	<1.d.	21.0	663	21.4	<l.d.< td=""><td>0.29</td><td>602</td><td><1.d.</td><td>20.6</td><td>0.24</td></l.d.<>	0.29	602	<1.d.	20.6	0.24
	Muestras totales	Máx.	87.6	16.00	<1.d.	2.078	161.9	1293	44.5	0.0329	8.29	1201	0.123	461.8	5.09
	(n*=4, n**=13)	Prom.	86.7	2.48	-	1.027	86.4	846	33.3	0.0146	1.83	848	0.063	198.1	1.36
		RIC	86.2-87.3	0.67-2.27	-	0.247-1.773	23.3-148.3	699-1027	26.2-41.3	0.0104-0.0181	0.31-2.98	630-1029	0.041-0.089	25.0-335.8	0.27-2.59
		Mín.	86.2	<1.d.	<l.d.< td=""><td><1.d.</td><td>21.0</td><td>663</td><td>28.2</td><td><l.d.< td=""><td>0.29</td><td>602</td><td><1.d.</td><td>20.6</td><td>0.24</td></l.d.<></td></l.d.<>	<1.d.	21.0	663	28.2	<l.d.< td=""><td>0.29</td><td>602</td><td><1.d.</td><td>20.6</td><td>0.24</td></l.d.<>	0.29	602	<1.d.	20.6	0.24
Perubar	Cecilia Sur	Máx.	86.4	16.00	<l.d.< td=""><td>2.078</td><td>161.9</td><td>959</td><td>44.5</td><td>0.0167</td><td>0.94</td><td>1201</td><td>0.123</td><td>461.8</td><td>0.35</td></l.d.<>	2.078	161.9	959	44.5	0.0167	0.94	1201	0.123	461.8	0.35
(Perú)	(n*=3, n**=10)	Prom.	86.3	3.10	-	1.013	87.8	751	36.4	0.0114	0.47	784	0.070	193.3	0.29
		RIC	86.2-86.4	0.75-2.29	-	0.245-1.787	23.0-152.6	687-800	30.0-41.6	0.0099-0.0123	0.31-0.64	624-923	0.043-0.102	24.4-358.1	0.26-0.32
		Mín.		<1.d.	<1.d.	1.002	80.5	1095	21.4	0.0196	5.03	1004	<1.d.	208.3	4.83
	Juanita (n*=1, n**=3)	Máx.	976	<1.d.	<1.d.	1.173	81.9	1293	24.3	0.0329	8.29	1166	<1.d.	224.8	5.09
		Prom.	87.0	-		1.073	81.4	1163	22.7	0.0256	6.35	1059	-	214.3	4.93
		RIC		-	-	1.002-1.173	80.5-81.9	1095-1293	21.4-24.3	0.0196-0.0329	5.03-8.29	1004-1166	-	208.3-224.8	4.83-5.09

presenta en wt% (datos de EPMA) y el resto de elementos en ppm (datos de LA-ICP-MS).

<l.d.: Debajo de su límite de detección

n*: Número de análisis con EPMA, n**: Número de análisis con ablación laser ICP-MS

Tabla 4. Resumen de las concentraciones de elementos mayoritarios, minoritarios y traza en granos de calcopirita en los yacimientos de María Teresa, Perubar y Cerro de

Depósito	Sector / Cuerpo / Sección	1	Cu (wt.%)	Fe (wt.%)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
	Coloro / Soffa D	Mín.	24.4	17.5	152.0	0.07	0.18	<l.d.< td=""><td>10.1</td><td>3.2</td><td>3.492</td><td>10.74</td><td>4.28</td><td>1.412</td><td><l.d.< td=""><td>0.019</td><td>1.36</td><td>0.009</td></l.d.<></td></l.d.<>	10.1	3.2	3.492	10.74	4.28	1.412	<l.d.< td=""><td>0.019</td><td>1.36</td><td>0.009</td></l.d.<>	0.019	1.36	0.009
	Calera / Solia D,	Máx.	35.3	30.5	647.0	23.63	79.60	1.868	59.1	295.5	15.031	49.49	201.25	31.122	3.753	11.173	81.96	5.505
	(n*-27, n**-20)	Prom.	34.3	29.4	302.7	6.71	7.60	0.528	27.8	110.2	9.449	22.83	54.95	9.158	1.378	2.180	13.00	1.842
	$(n^{*}=27, n^{**}=29)$	RIC	34.5-34.8	29.4-30.2	194.0-426.9	2.61-9.45	0.65-4.71	0.284-0.771	17.4-31.4	69.5-158.1	6.215-12.043	12.42-33.02	31.21-77.83	3.210-13.030	0.660-1.951	0.276-2.896	3.80-13.02	0.524-2.558
María		Mín.	24.4	17.5	152.0	0.07	0.18	<1.d.	10.1	3.2	3.492	10.74	4.28	1.412	<1.d.	0.019	1.36	0.009
Toroso	Calera / Sofía D / -300	Máx.	35.3	30.5	529.2	23.63	79.60	1.868	45.2	295.5	15.031	49.49	201.25	31.122	3.753	11.173	81.96	5.505
(Porí)	(n*=27, n**=25)	Prom.	34.3	29.4	287.1	6.24	7.28	0.566	23.9	119.3	9.859	20.50	55.91	9.033	1.220	2.211	14.36	1.931
(Peru)		RIC	34.5-34.8	29.4-30.2	188.0-426.9	2.31-8.20	0.60-2.23	0.286-0.809	16.1-29.9	75.6-173.8	7.208-12.156	12.34-26.69	28.81-82.48	3.163-10.945	0.660-1.630	0.239-2.994	5.12-13.80	0.683-2.699
		Mín.			275.9	8.88	7.27	0.245	49.2	43.8	4.085	34.26	43.30	3.589	0.568	0.620	1.53	0.448
	Calera / Sofía D / -500	Máx.		l	647.0	10.97	12.41	0.364	59.1	68.0	9.567	44.07	52.95	17.194	3.659	3.365	7.92	2.540
	(n**=4)	Prom.		- 1	396.4	9.69	9.62	0.304	52.7	53.1	6.888	37.36	48.94	9.937	2.368	1.985	4.52	1.285
		RIC			284.8-573.1	8.95-10.67	7.45-12.00	0.257-0.352	49.6-57.3	45.3-63.7	4.528-9.186	34.33-42.19	44.35-52.71	3.664-16.664	0.869-3.612	0.915-3.063	1.65-7.60	0.471-2.308
Perubar	Rímac-D				272 5	0.26	0.41	0.120	5 4	0504.0	1.902	0.60	8.60	6.050	4.4	0.251	5.01	4.4
(Perú)	(n**=1)			-	575.5	0.50	0.41	0.139	5.4	8384.2	1.892	0.60	8.00	0.059	<1.d.	0.551	5.01	<ī.d.
Cerro de		Mín.		-	<l.d.< td=""><td>3.06</td><td>4.78</td><td>0.356</td><td>59.7</td><td>8.3</td><td><1.d.</td><td>6.66</td><td>1.19</td><td>0.054</td><td><l.d.< td=""><td>0.026</td><td>5.14</td><td>1.486</td></l.d.<></td></l.d.<>	3.06	4.78	0.356	59.7	8.3	<1.d.	6.66	1.19	0.054	<l.d.< td=""><td>0.026</td><td>5.14</td><td>1.486</td></l.d.<>	0.026	5.14	1.486
Maimón	n Cerro de Maimón	Máx.			71.3	3.87	6.56	1.952	94.3	32.6	0.590	8.68	1.79	0.343	0.266	0.422	39.29	10.281
(República	(n**=11)	Prom.	om.	8.6	3.42	5.65	0.984	81.7	19.2	0.207	7.70	1.48	0.181	0.134	0.117	15.21	4.846	
Dominicana)		RIC			2.0-2.7	3.28-3.59	5.18-6.25	0.528-1.437	78.7-89.4	14.3-22.8	0.128-0.195	7.30-8.15	1.39-1.61	0.088-0.294	0.066-0.202	0.042-0.170	6.70-22.92	1.963-8.871

Maimón. Cobre y Fe se presentan en wt% (datos de EPMA) y el resto de elementos en ppm (datos de LA-ICP-MS).

<l.d.: Debajo de su límite de detección

*n**: Número de análisis con EPMA, *n***: Número de análisis con ablación laser ICP-MS

Tabla 5. Resumen de las concentraciones de elementos mayoritarios, minoritarios y traza en granos de cobres grises en el yacimiento de María Teresa. Cobre, Fe, Zn, As, Sb

Depósito	Sector / Cuerpo / Sección		Cu (wt.%)	Fe (wt.%)	Zn (wt.%)	As (wt.%)	Sb (wt.%)	Ag (wt.%)	Ag (ppm)	Mn (ppm)	Ga (ppm)	Ge (ppm)	Se (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Hg (ppm)	Pb (ppm)	Bi (ppm)
		Mín.	41.4	4.08	3.06	16.56	6.73	0.671	7602	447	<l.d.< th=""><th><l.d.< th=""><th>13.7</th><th>704</th><th>2.44</th><th>0.149</th><th>405</th><th>0.535</th><th>0.189</th></l.d.<></th></l.d.<>	<l.d.< th=""><th>13.7</th><th>704</th><th>2.44</th><th>0.149</th><th>405</th><th>0.535</th><th>0.189</th></l.d.<>	13.7	704	2.44	0.149	405	0.535	0.189
María Teresa	Bubulina / Bubulina / 1180	Máx.	42.4	4.73	3.70	17.03	6.78	0.881	11611	790	0.576	0.798	17.3	1145	5.50	0.357	606	3.356	0.250
(Perú)	(<i>n</i> *=2, <i>n</i> **=7)	Prom.	41.9	4.41	3.38	16.80	6.76	0.776	9214	662	0.293	0.492	15.2	923	3.99	0.244	509	1.436	0.218
		RIC	41.4-42.4	4.08-4.73	3.06-3.70	16.56-17.03	6.73-6.78	0.671-0.881	7617-10561	572-747	0.062-0.508	0.367-0.785	13.9-17.3	774-1127	2.65-5.23	0.184-0.317	432-592	0.544-2.676	0.192-0.246

y Ag se presentan en wt% (datos de EPMA) y el resto de elementos en ppm (datos de LA-ICP-MS).

<l.d.: Debajo de su límite de detección

n*: Número de análisis con EPMA, n**: Número de análisis con ablación laser ICP-MS

4.2.2.1. Esfalerita

Las muestras de esfalerita del cuerpo Bubulina en María Teresa presentan valores altos de Mn (4447-4844 ppm) con respecto a las del cuerpo Sofía D (324-2248 ppm; Figura 16A). Las concentraciones de Mn son sistemáticamente mayores en el yacimiento Palma (6717-8794 ppm), mientras que presentan un amplio rango en los depósitos Perubar (901-5993 ppm) y María Teresa (328-2393 ppm). La concentración de Mn es sistemáticamente baja en esfalerita del yacimiento Cerro de Maimón (443-488 ppm; Figura 17A). De acuerdo al diagrama de la Figura 18A, las concentraciones atómicas de Zn y Mn se correlacionan negativamente.

Los valores más altos de Cu se registraron en esfalerita del cuerpo Bubulina en María Teresa (117-142 ppm) en contraste con el cuerpo Sofía D, que presenta concentraciones más bajas (35.8-87.8 ppm) (Figura 16B). Los valores de Cu son similares en esfalerita de Cerro de Maimón (113-143 ppm), María Teresa (36.4-97.5 ppm) y Perubar (24.9-41.1 ppm) y menores en Palma (10.2-32.5 ppm; Figura 17B).

En esfalerita de María Teresa se encontraron concentraciones significativas de Ga, sobre todo en el cuerpo Bubulina (40.3-75 ppm) con un máximo de 94.2 ppm, y en el cuerpo Sofía D (10.5-30.5 ppm), destacando la sección -540 con un valor máximo de 70 ppm (Figura 16C). El contenido de Ga es mayor en granos de esfalerita de Cerro de Maimón (77.9-95.0 ppm) alcanzando valores de hasta 95.7 ppm (Figura 16C) y menor en Perubar (4.67-30.3 ppm) y particularmente en Palma (1.89-2.43 ppm; Figura 17C). La Figura 18B muestra una correlación positiva entre las concentraciones de Cu y Ga con una proporción Cu/Ga ~ 1, principalmente en muestras de María Teresa, Perubar y Cerro de Maimón.

Figura 16. Diagramas de cajas y bigotes de diversos elementos traza en esfalerita respecto a sector/cuerpo/sección del yacimiento María Teresa. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

Figura 17. Diagramas de cajas y bigotes de diversos elementos traza en esfalerita de los yacimientos María Teresa, Palma, Perubar y Cerro de Maimón. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

En María Teresa, el contenido de Ge en el cuerpo Sofía D (0.116-0.336 ppm) alcanza valores de hasta 2.33 ppm en la sección -300 (Figura 16D). La concentración de Ge es sistemáticamente baja en todos los yacimientos estudiados y alcanza un valor máximo de 9.31 ppm en un reducido rango de valores en el yacimiento Palma (0.141-2.65 ppm) que supera parcialmente a los contenidos en Cerro de Maimón (0.623-1.36 ppm), María Teresa (0.073-0.328 ppm) y Perubar (0.057-0.16 ppm; Figura 17D). El diagrama binario de la Figura 18C indica que los contenidos de Cu y Ge no presentan correlación aparente.

La concentración de As en esfalerita muestra una diferencia minúscula entre los diferentes cuerpos minerales en María Teresa; es generalmente más baja en la sección -540 (4.86-5.27 ppm) de Sofía D y en el cuerpo Bubulina (5.1-5.51 ppm), que en la sección -300 de Sofía D (5.66-6.46 ppm, hasta 9.30 ppm; Figura 16E). La concentración de As es similar o ligeramente menor en esfalerita de Palma (4.28-5.34 ppm), Perubar (4.38-4.81 ppm) y Cerro de Maimón (3.87-4.52 ppm; Figura 17E).

Las concentraciones de Se en esfalerita de los cuerpos Bubulina (4.42-5.15 ppm) y Sofía D (1.51-5.84 ppm) en María Teresa son casi constantes (Figura 16F). El contenido de Se es particularmente alto en Cerro de Maimón (56.8-61.2 ppm), mientras que Perubar (1.21-7.25 ppm), María Teresa (1.53-5.6 ppm) y Palma (0.351-0.898 ppm) presentan concentraciones más bajas (Figura 17F).

En esfalerita de María Teresa, la concentración de Ag es más alta en muestras del cuerpo Sofía D (4.33-12.2) que en Bubulina (3.59-4.68 ppm; Figura 16G). La concentración de Ag en María Teresa alcanza

valores de hasta 66.2 ppm en un rango de 4.23-11.7 ppm, similar a las concentraciones obtenidas para muestras de Palma (3.78-17 ppm) y Perubar (3.53-7.15 ppm), y mayores que las obtenidas para muestras de Cerro de Maimón (3-4.32 ppm; Figura 17G).

Alta concentraciones de Cd, de hasta 9409 ppm, han sido medidas en esfalerita de María Teresa (5251-7373 ppm). El rango de concentraciones de Cd es relativamente amplio en Sofía D (5312-7385 ppm) y más estrecho y ligeramente menor en el cuerpo Bubulina (4783-5000 ppm; Figura 16H). El contenido de Cd en esfalerita de María Teresa es similar al de las muestras de Palma (4780-7201 ppm) y Perubar (4291-6685 ppm), y mayor que el obtenido en muestras de Cerro de Maimón (3564-3831 ppm; Figura 17H).

La concentración de In es particularmente alta en muestras de esfalerita de María Teresa (4.39-79.4 ppm), alcanzando contenidos de hasta 415 ppm en la sección -300 del cuerpo Sofía D. El cuerpo Bubulina también muestra contenidos significativos de In (23.4-94.7 ppm; Figura 16I). En los yacimientos de Cerro de Maimón (9.25-10.3 ppm), Perubar (0.006-2.27 ppm) y Palma (0.004-0.151 ppm) la concentración de In es generalmente menor (Figura 17I). Las proporciones atómicas de In y Cu en el diagrama de la Figura 18D presentan una buena correlación positiva con una proporción Cu/In ~ 1 para muestras de María Teresa, sobre todo en las procedentes de la sección -300 del cuerpo Sofía D. Adicionalmente, el diagrama de la Figura 18E muestra una correlación

al. 2009), particularmente en granos de esfalerita de María Teresa, Perubar y Cerro de Maimón.

Las muestras de esfalerita de las secciones -300 y -540 del cuerpo Sofía D en el yacimiento María Teresa (0.234-0.601 ppm) presentaron concentraciones de Sn de hasta 16.1 y 19.6 ppm, respectivamente (Figura 15J). El contenido de Sn es más bajo en Palma (0.187-0.417 ppm), Perubar (0.214-0.319 ppm) y Cerro de Maimón (0.222-0.552 ppm; Figura 17J).

Existe un patrón irregular del contenido de Sb en las secciones muestreadas en el cuerpo Sofía D (0.575-5.49 ppm), de las cuales la sección -300 destaca con un valor máximo de 48.1 ppm (Figura 16K). El Sb tiende a mostrar concentraciones mayores en Palma (0.522-7.11 ppm) y María Teresa (0.507-5.35 ppm) en comparación con Perubar (0.166-1.22 ppm) y Cerro de Maimón (0.044-0.278 ppm; Figura 17K). El diagrama binario de la Figura 18F muestra una correlación positiva

entre Ag y Sb, principalmente para María Teresa, Palma y Perubar.

Las muestras de esfalerita del cuerpo Bubulina en María Teresa presentan concentraciones más altas de Hg (702-741 ppm) que las del cuerpo Sofía D (323-443 ppm; Figura 16L). Estos valores son similares a los obtenidos en esfalerita de Palma (587-907 ppm) y mayores a los obtenidos en Perubar (18.2-107 ppm) y Cerro de Maimón (22.0-26.3 ppm; Figura 17L).

En María Teresa, la esfalerita del cuerpo Bubulina se encuentra empobrecida en Tl (0.004-0.008 ppm) respecto a la del cuerpo Sofía D (0.08-1.23 ppm; Figura 16M). El Tl muestra un rango reducido de

concentraciones en Palma (0.0162-1.47 ppm), María Teresa (0.0581-0.882 ppm), Cerro de Maimón (0.0614-0.278 ppm) y Perubar (0.0126-0.126 ppm; Figura 17M).

Figura 18. Diagramas binarios de correlación entre concentraciones elementales en esfalerita de los yacimientos María Teresa, Palma, Perubar y Cerro de Maimón. Las líneas punteadas muestran la correlación 1:1.

4.2.2.2. Galena

En el yacimiento María Teresa, las muestras de galena procedentes de la sección -300 en el cuerpo Sofía D presentaron el mayor contenido de Cu (23.4-53.2 ppm) y las procedentes del cuerpo Bubulina la menor concentración (0.467-5.14 ppm; Figura 19A). La mayor concentración de Cu en galena se encuentra en el yacimiento María Teresa (0.562-11.2 ppm) alcanzando un valor máximo de 54.5 ppm en comparación con Perubar, que alcanza un máximo de 16.0 ppm de Cu (Figura 20A).

Con respecto a la Ag, la galena de María Teresa con mayores contenidos procede de la sección -340 del cuerpo Sofía D (4038-4116 ppm; Figura 19B). Las concentraciones más altas de Ag se dan generalmente en María Teresa (571-1432 ppm) y, en menor medida, en Perubar (699-1027 ppm; Figura 20B).

La galena con mayor concentración de Bi procede de la sección -300 de Sofía D (129-286 ppm; Figura 19C), mientras que la galena con mayor concentración de Sb procede de la sección -340 (3664-3783 ppm-, Figura 19D). Además, se observa que la concentración de Bi muestra una tendencia decreciente desde la sección -300 a la -500 en el cuerpo Sofía D (Figura 19C). Las concentraciones de Bi (4.53-109 ppm) y Sb (483-1851 ppm), al igual que con Cu y Ag, son mayores en galena del yacimiento María Teresa, en comparación con la galena de Perubar (Figura 20C-D). La Ag no muestra una correlación positiva con Bi (Figura 21A), en cambio el Cu muestra correlación positiva con Sb (Figura 21B).

Figura 19. Diagramas de cajas y bigotes de diversos elementos traza en galena respecto a sector/cuerpo/sección del yacimiento María Teresa. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

Figura 20. Diagramas de cajas y bigotes de diversos elementos traza en galena de los yacimientos María Teresa y Perubar. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

La concentración de Sn en los granos de galena analizados presenta un valor máximo de 15.22 ppm en muestras de la sección -300 del cuerpo Sofía D en María Teresa (Figura 19E). Las concentraciones de Sn en galena son en general mayores en María Teresa (1.88-3.76 ppm) que en Perubar (0.314-2.98 ppm; Figura 20E).

La máxima concentración de Ge en galena es de 2.62 ppm para una muestra del cuerpo Bubulina del yacimiento de María Teresa (Figura 19F). El contenido de Ge es relativamente bajo tanto en María Teresa (0.583-2.22 ppm) como en Perubar (0.247-1.77 ppm; Figura 20F). El contenido de In presenta una concentración máxima de 0.0643 ppm en el cuerpo Bubulina (Figura 19G). La concentración de In es constantemente baja en las muestras de galena de María Teresa y Perubar (Figura 20G). La concentración de Ga no supera 1.69 ppm en galena de María Teresa y en Perubar todos los análisis de galena dan valores de Ga por debajo de su límite de detección.

El diagrama de la Figura 21C muestra una débil correlación positiva entre In y Sn en los yacimientos de María Teresa y Perubar, la cual también fue observada por George et al. (2015).

Figura 21. Diagramas binarios de correlación entre concentraciones elementales en galena de los yacimientos María Teresa y Perubar. Las líneas punteadas muestran la correlación 1:1.

4.2.2.3. Calcopirita

En la Figura 22A se observa que calcopirita procedente de la sección -500 del cuerpo Sofía D en el yacimiento María Teresa presenta generalmente valores más altos de Zn (285-573 ppm) que calcopirita procedente de la sección -300 (188-427 ppm). La concentración de Zn incrementa en dos órdenes de magnitud desde el yacimiento Cerro de Maimón (2.05-2.69 ppm) a los yacimientos Perubar (374 ppm; un solo análisis fue obtenido para calcopirita de este yacimiento) y María Teresa (194-427 ppm; Figura 23A).

En María Teresa, la concentración de Cd es más alta en calcopirita de la sección -300 (7.21-12.2 ppm) que en calcopirita de la sección -500 de Sofía D (4.53-9.19 ppm) (Figura 22B). La Figura 23B muestra que las

mayores concentraciones de Cd se obtuvieron en muestras de calcopirita de María Teresa (6.22-12.0 ppm), seguidas de Perubar (1.89 ppm) y Cerro de Maimón (0.128-0.195 ppm). En la Figura 24A se observa una correlación positiva entre Zn y Cd en algunos análisis de María Teresa y Cerro de Maimón.

El contenido de Ag en calcopirita de María Teresa es mayor en muestras de la sección -300 (75.6-174 ppm) respecto a muestras de la sección - 500 (45.3-63.7 ppm) del cuerpo Sofía D (Figura 22C). La concentración más alta de Ag se encuentra en el único análisis obtenido para calcopirita de Perubar (8584 ppm). Las muestras de calcopirita de Cerro de Maimón muestran los valores más bajos de Ag (14.3-22.8 ppm) en comparación con María Teresa (69.5-158 ppm) y Perubar (Figura 23C).

El contenido de Sn en calcopirita procedente de la sección -300 (28.8-82.5 ppm) es mayor respecto a la calcopirita de la sección -500 (44.4-52.7 ppm) en el cuerpo Sofía D en el yacimiento María Teresa (Figura 22D). La concentración de Sn se incrementa por un orden de magnitud entre los yacimientos Cerro de Maimón (1.39-1.61 ppm) y Perubar (8.60 ppm) y el yacimiento María Teresa (31.2-77.8 ppm; Figura 23D).

Figura 22. Diagramas de cajas y bigotes de diversos elementos traza en calcopirita respecto a sector/cuerpo/sección del yacimiento María Teresa. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

Figura 23. Diagramas de cajas y bigotes de diversos elementos traza en calcopirita de los yacimientos María Teresa, Perubar y Cerro de Maimón. Los números que aparecen en las cajas hacen referencia al número de análisis utilizados para la elaboración de los diagramas.

Los contenidos más elevados de In (49.5 ppm) son registrados en la calcopirita de la sección -300 (12.3-26.7 ppm) del cuerpo Sofía D (Figura 22E). Perubar (0.598 ppm) y Cerro de Maimón (7.30-8.15 ppm) presentan valores de In un orden de magnitud menores con respecto a María Teresa (12.4-33.0 ppm; Figura 23E). El máximo valor de Ge (79.6 ppm) en calcopirita se encuentra en muestras de la sección -300 (0.605-2.23 ppm) de Sofía D (Figura 22F).

La concentración de Ge en María Teresa (0.648-4.71) es menor que en las muestras de Cerro de Maimón (5.18-6.25 ppm) y mayor que en las muestras de Perubar (0.414 ppm; Figura 23F). Por otro lado, el máximo valor de Ga (23.6 ppm) en calcopirita fue hallado en muestras de la sección -300 (2.31-8.20 ppm) de Sofía D (Figura 22G). La concentración de Ga en calcopirita de Perubar (0.363 ppm) y Cerro de Maimón (3.28-3.59 ppm) es generalmente inferior a la obtenida para muestras de María Teresa (2.61-9.45 ppm; Figura 23G).

En la Figura 24B se observa una débil correlación positiva entre Zn y Ga+Ge+In+Sn, los cuales a su vez muestran una débil correlación negativa con Fe principalmente en algunos análisis de María Teresa (Figura 24C). El diagrama binario de la Figura 24D muestra una clara correlación positiva entre las concentraciones de Sn+Ge y Ga para las muestras de calcopirita de María Teresa.

Figura 24. Diagramas binarios de correlación entre concentraciones elementales en calcopirita de los yacimientos María Teresa, Perubar y Cerro de Maimón.

4.2.2.4. Cobres grises

Las concentraciones de elementos traza en cobres grises solo se analizaron en muestras del cuerpo Bubulina del yacimiento de María Teresa (Tabla 5). Las concentraciones de Ga, Ge e In son bajas, alcanzando valores máximos de 0.576 ppm, 0.798 ppm y 5.50 ppm, respectivamente.

5. DISCUSIÓN

5.1. Enriquecimiento de elementos tecnológicos en María Teresa

Los cuerpos de sulfuros masivos en el vacimiento de María Teresa y en el resto de yacimientos estudiados con fines de comparación no presentan fases en las que el In, Ga o Ge sean elementos estructurales (es decir, estos elementos no forman fases independientes en las muestras de mena analizadas). Los tres elementos han sido detectados en concentraciones variables en las fases minerales analizadas (i.e., esfalerita, calcopirita, galena y cobres grises). La concentración de In tiende a ser mayor en esfalerita (4.39-79.4 ppm, hasta 415 ppm) que en calcopirita (12.4-33.0 ppm, hasta 49.5 ppm), y es muy baja en cobres grises (2.65-5.23 ppm, hasta 5.50 ppm) y galena (0.00846-0.0349 ppm, hasta 0.0643 ppm). El fraccionamiento del In en esfalerita ha sido documentado por varios autores (Schwarz-Schampera y Herzig 2002; Cook et al. 2009, 2011a, b; Carvalho et al. 2018; Torró et al. 2019a, b). De manera similar, los mayores contenidos de Ga tienden a encontrarse en esfalerita (10.6-31.9 ppm, hasta 94.2 ppm) en comparación con calcopirita (2.61-9.45 ppm, hasta 23.6 ppm), galena (0.0212-0.0312 ppm, hasta 1.69 ppm) y cobres grises (0.0615-0.508 ppm, hasta 0.576 ppm). El contenido de Ge es sistemáticamente bajo en los cuatro minerales analizados, excepto por algunos valores puntuales relativamente altos en calcopirita (0.648-4.71 ppm, hasta 79.6 ppm). En María Teresa, la esfalerita es el principal mineral económico y por lo tanto representa, a escala de distrito, el principal mineral hospedante de In y Ga.

Se observa una correlación positiva entre Ag y Sb en esfalerita, principalmente para María Teresa, Palma y Perubar (Figura 18F), lo que sugiere una posible sustitución acoplada $2Zn^{2+} \leftrightarrow Ag^+ + Sb^{3+}$ en la esfalerita. El Cu muestra correlación positiva con Sb en la galena de María Teresa y Perubar (Figura 21B), lo que sugiere una sustitución acoplada (Ag, Cu)⁺ + Sb³⁺ \leftrightarrow 2Pb²⁺.

Las concentraciones molares de In y Cu en esfalerita muestran una correlación positiva a Cu/In ~ 1, la cual está de acuerdo con la sustitución acoplada Cu⁺ + In³⁺ \leftrightarrow 2Zn²⁺, descrita ampliamente en la literatura (Johan 1988; Schwarz-Schampera and Herzig 2002; Cook et al. 2009, 2011a, b; Torró et al. 2019a, b). Por otro lado, la correlación positiva entre Ga y Cu en las muestras de esfalerita analizadas sugiere una sustitución acoplada $Ga^{3+} + Cu^+ \leftrightarrow 2Zn^{2+}$ (Johan 1988; Murakami e Ishihara 2013; Pring et al. 2020). Por esta razón, la presencia de Cu sería clave para la incorporación del In y Ga en la estructura cristalina de la esfalerita. No obstante, y teniendo en cuenta la correlación positiva entre los grupos de elementos representados en el diagrama Ge+Ga+Sn+In vs. Cu+Ag (Figura 18E), no se pueden descartar esquemas de sustitución acoplada más complejos del tipo (Sn, Ge)⁴⁺ + (Ga, In)³⁺ + (Cu, Ag)⁺ \leftrightarrow 4Zn²⁺ (ver Cook et al. 2009). La incorporación de In, Ga y Ge, por lo tanto, podría haber seguido diferentes esquemas de sustitución acoplada en la red cristalina de la esfalerita involucrando elementos univalentes (Cu, Ag, Tl), bivalentes (Ge, Fe, Cd), trivalentes (Ga, In, Sn, Sb) y tetravalentes (Ge, Sn). Cabe resaltar que no se conoce completamente con qué estado de valencia se incorporan el Sn (3+ o 4+) y el Ge (2+ o 4+) en la esfalerita (ver Cook et al. 2009).

Considerando el proceso de *"zone refining"*, la incorporación de In se daría principalmente en la etapa tardía de más alta temperatura en la que la mineralización rica en Cu es introducida en el sistema VMS a la par que la esfalerita es recristalizada a mayores distancias de la zona de alimentación a través de circulación hidrotermal difusa. De hecho, el mayor contenido de In fue obtenido para muestras de esfalerita

de la sección -300, la cual se encuentra más cerca de la zona de calcopirita en el cuerpo Sofía D.

Concentraciones comparativamente altas de Ga fueron encontradas en esfalerita del cuerpo Bubulina, el cual se formó a temperaturas mucho menores en comparación con Sofía D a juzgar por la baja proporción de calcopirita, y por lo tanto mecanismos de sustitución implicando otros elementos más allá del Cu (por ejemplo, Ag) pudieron haber cobrado mayor importancia en la incorporación de este elemento en la esfalerita. Alternativamente, George et al. (2016, 2018) sugieren que una correlación positiva entre Ga, Sn y Ge podría ser evidencia de removilización sinmetamórfica, que en nuestro caso habría sido causada por actividad intrusiva en Sofía D en mayor grado que en Bubulina.

En las muestras de galena de María Teresa, la sutil correlación positiva entre las concentraciones molares de In y Sn podría indicar que los granos enriquecidos en Sn también lo estarían en In, lo que indica que la disponibilidad de estos elementos podría estar ligada a fluidos de origen magmático de acuerdo a George et al. (2015). Sin embargo, el Sn está presente en concentraciones de 2 a 3 órdenes de magnitud más altas que el In (Tabla 3), lo cual George et al. (2015) interpretan como la partición de la mayor parte del Sn en la galena durante la recristalización sinmetamórfica en lugar de incorporarse en la red cristalina de la galena durante la cristalización inicial.

Respecto a análisis de calcopirita, existe una tenue correlación positiva entre Ga+Ge+In+Sn con Zn, lo que sugiere que el Zn^{2+} puede ser incorporado en sustitución acoplada con Ga³⁺, In³⁺, Ge⁴⁺ y Sn⁴⁺ (ver Belissont et al. 2015; Reich et al. 2020). Por otro lado, una sutil correlación negativa entre Ga+Ge+In+Sn con Fe en granos de calcopirita del cuerpo Sofía D, podría sugerir un reemplazo en el sitio tetraédrico de Fe a través de sustituciones acopladas (ver Belissont et al. 2015). Sin embargo, varios

69

autores (Todd y Sherman 2003; Todd et al. 2003; Mikhlin et al. 2005; Pearce et al. 2006; Klekovkina et al. 2014) propusieron diferentes estados de valencia para Cu y Fe en calcopirita [$Cu^{2+}Fe^{2+}S_2$ vs. $Cu^+Fe^{3+}S_2$], mientras otros (Pauling y Brockway 1932; Hall y Stewart 1973; Li et al. 2013) consideraron que el estado de valencia debe comprenderse como un intermedio que fluctúa entre monovalente-divalente y divalente-trivalente para Cu y Fe, respectivamente. Como consecuencia, la determinación de mecanismos de incorporación de elementos traza en la red cristalina de la calcopirita es más compleja que para otros sulfuros, particularmente esfalerita o galena.

La menor cantidad de análisis (2 con EPMA y 7 con LA-ICP-MS) y los bajos contenidos de In, Ge y Ga en granos de cobres grises del cuerpo Bubulina impiden la identificación de mecanismos de incorporación por medio de correlaciones entre concentraciones molares de elementos.

5.2. Temperatura de formación de la esfalerita

Oftedal (1941) y Warren y Thompson (1945) realizaron los primeros estudios respecto a la estrecha relación entre la temperatura de cristalización y la composición de la esfalerita en términos de elementos menores y traza, sugiriendo una asociación de bajas concentraciones de Ga y Ge, y altas concentraciones de Fe, In y Mn en depósitos de "alta temperatura", y altas concentraciones de Ga y Ge, y bajas de Fe, In y Mn en depósitos de "baja temperatura". Frenzel et al. (2016) desarrollaron más esta idea y, mediante comparación con datos microtermométricos de inclusiones fluidas, establecieron una notable correlación entre la geoquímica de la esfalerita y la temperatura de los fluidos asociados a su cristalización proponiendo un geotermómetro basado en los contenidos de Fe, Mn, In, Ge y Ga, conocido como GGIMFis.

La Tabla 6 muestra las temperaturas obtenidas aplicando el geotermómetro GGIMFis en análisis de esfalerita de los depósitos María Teresa, Perubar, Palma y Cerro de Maimón. Los análisis de LA-ICP-MS con valores menores al límite de detección de cada elemento usado fueron descartados para el cálculo.

Tabla 6. Temperatura de formación de esfalerita según el geotermómetro GGIMFis de Frenzel et al.(2016).

Depósito	Sector / Cuerpo / Sección	#n	T prom. (°C)	e	σ	2σ
	Muestras totales	106	296	87	33	66
	Bubulina / Bubulina / 1180	1	303	-	-	-
	Calera / Sofía D, muestras totales	105	296	87	33	67
María Teresa (Perú)	Calera / Sofía D / -300	77	299	85	34	67
	Calera / Sofía D / -340	7	303	44	16	32
	Calera / Sofía D / -500	11	304	73	42	84
	Calera / Sofía D / -540	10	267	26	8	15
	Muestras totales	17	331	52	26	52
	Cecilia Sur	3	284	37	22	45
Perubar (Perú)	Graciela	4	329	29	2	3
	Juanita	2	331	36	12	24
	Rímac-D	8	350	33	2	5
	Muestras totales	22	312	81	38	75
Palma (Perú)	Palma	16	298	96	34	69
	Santa Lidia	6	350	32	3	6
Cerro de Maimón (República Dominicana)	Cerro de Maimón	16	170	29	21	41

#n: número de análisis seleccionados, e: error absoluto, σ: desviación estándar

De acuerdo a los resultados, la esfalerita del yacimiento María Teresa cristalizó a una temperatura promedio de 296 \pm 66 (error 2 σ) °C. La temperatura de cristalización GGIMFis de la esfalerita del cuerpo Sofía D fue de 296 \pm 67 °C, y la del cuerpo Bubulina fue de 300 °C (sólo se tomó en cuenta un análisis). Por lo tanto, según el geotermómetro GGIMFis la esfalerita de ambos cuerpos mineralizados habría cristalizado a temperaturas promedio similares. Sin embargo, se estima que la temperatura de cristalización en Bubulina fue generalmente inferior con respecto a Sofía D debido a la ausencia generalizada de masas de calcopirita en Bubulina. Por otro lado, los rangos de temperatura GGIMFis que registran los granos de esfalerita de todas las secciones muestreadas del cuerpo Sofía D presentan valores similares, a

excepción de la esfalerita de la sección -540 que muestra un valor más bajo (267 ± 15 °C). Adicionalmente, las muestras extraídas del sondaje 34-18-S ubicado en la sección -300 del cuerpo Sofía D (sector Calera) tienden a mostrar una correlación positiva entre profundidad, temperatura de cristalización de la esfalerita (Figura 25D) y contenido de In (Figura 25A), lo que sugiere que la esfalerita más profunda cristalizó a partir de fluidos hidrotermales de mayor temperatura enriquecidos en In durante el proceso de *"zone refining"*. Lo contrario sucede con el contenido de Ge (Figura 25C), el cual muestra una correlación inversa con la profundidad, indicando un empobrecimiento de Ge en esfalerita cristalizada en niveles más profundos.

Figura 25. Correlación de cajas y bigotes entre contenidos de elementos traza (A-C) y temperatura de formación de esfalerita (D) según el geotermómetro GGIMFis de Frenzel et al. (2016) vs. profundidad de muestras en el sondaje 34-18-S ubicado en la sección -300 del cuerpo Sofía D en el yacimiento María Teresa (datos de LA-ICP-MS).

Por lo tanto, de base a techo del cuerpo Sofía D, la esfalerita registra un empobrecimiento en In y Cu, y un enriquecimiento en Ge. Este patrón de distribución concuerda con el aumento de las temperaturas de cristalización y/o influjo de volátiles magmáticos (contribución magmática directa) hacia zonas inferiores de la mineralización masiva. A diferencia del In y Ge, el patrón de distribución del Ga en

granos de esfalerita no define una tendencia clara en su distribución espacial (Figura 25B).

En Perubar y Palma se obtuvieron temperaturas de cristalización GGIMFis de 331 ± 52.3 °C y 312 ± 75.3 °C, respectivamente. Por lo tanto, las temperaturas calculadas para la cristalización de esfalerita en María Teresa, Palma y Perubar se encontrarían dentro del rango de temperaturas de cristalización obtenidos en estudios microtermométricos de inclusiones fluidas en yacimientos VMS ($\leq 200 \text{ a} \sim 360 \text{ °C}$, Bodnar et al. 2014; p. ej. Faja Pirítica Ibérica, España, Almodóvar et al. 1998; depósito Hellyer, Tasmania, Solomon et al. 2004) y directamente en depósitos activos en fondos oceánicos (p. ej. 340-390 °C en exhalación hidrotermal activa TAG, Petersen et al. 2000). No obstante, cabe destacar que, de acuerdo al estudio petrográfico realizado en esta tesis (ver apartado 4.1), María Teresa, particularmente el cuerpo Sofía D, registra una zona de calcopirita más desarrollada que los cuerpos de sulfuros en Perubar y Palma, lo que implicaría que los fluidos hidrotermales alcanzaron o superaron los ~300°C. Sin embargo, las temperaturas GGIMFis calculadas no mostrarían una diferencia remarcable entre estos yacimientos.

Finalmente, la composición de la esfalerita del yacimiento Cerro de Maimón indicaría una temperatura GGIMFis de 170 ± 41.1 °C, muy inferior al rango de 242 a 302 °C de temperatura mínima estimada por Torró et al. (2016) usando la ecuación de regresión de Keith et al. (2014). Por lo tanto, la base de datos aportada en esta tesis indicaría que el geotermómetro GGIMFis puede inducir a la estimación de temperaturas poco plausibles y debe ser usado con precaución. La sobreimpresión metamórfica en la mineralización de sulfuros masivos en estos yacimientos, la cual puede cambiar la composición de elementos traza en la esfalerita, probablemente sea

la causante de las temperaturas de cristalización poco plausibles calculadas en este estudio (Frenzel et al. 2016).

5.3. Recomendaciones para la exploración de In, Ga y Ge en yacimientos tipo VMS en márgenes continentales

- La mayoría de depósitos minerales que contienen In están asociados a límites de placa convergentes, por lo que el margen continental peruano, asociado al límite de las placas de Nazca y Sudamericana, representa un objetivo de exploración para este elemento crítico. Por otro lado, Ga y Ge suelen estar enriquecidos en yacimientos bauxíticos (Ga) y tipo Mississippi Valley - MVT (Ge y Ga), los cuales son depósitos asociados a otros tipos de contextos tectónicos.
- El In tiene afinidad por yacimientos que poseen alguna contribución magmática, como sería el caso de los yacimientos tipo VMS del Cretácico Superior emplazados en un contexto de cuenca intra-arco en la región costera central de Perú (ver Fontboté 2019), mientras que el Ge y el Ga están más asociados a depósitos de baja temperatura sin participación de fluidos magmáticos (p. ej. MVT).
- Encontrar minerales de In, Ga y Ge en sistema naturales es muy raro, especialmente en aquéllos en los que la esfalerita aparece en proporciones importantes (ver Cook et al. 2011b). De hecho, la esfalerita, mineral de mena abundante en muchos tipos de yacimientos incluyendo la mayoría de VMS, es la principal mena de In y una de las principales de Ge y Ga.
- En los yacimientos tipo VMS estudiados, el principal portador de In y Ga es la esfalerita, y de Ge es la calcopirita. En el caso de lentes de sulfuros masivos zonados (proceso de *"zone refining"*) la esfalerita es particularmente rica en In y pobre en Ge cerca al núcleo y/o parte basal del cuerpo (es decir, cerca o dentro de la zona de

calcopirita), donde hubo circulación de fluidos hidrotermales de relativa alta temperatura (> \sim 300 °C). No se observan tendencias espaciales claras respecto al Ga.

El segundo mineral con los contenidos más elevados de In en las mineralizaciones VMS estudiadas en esta tesis es la calcopirita, por lo que también es una fase importante que podría aportar al "endowment" de In en yacimientos tipo VMS. El contenido de Ga y Ge en otras fases minerales distintas de sus principales portadores es sistemáticamente bajo.

6. CONCLUSIONES

- La mineralogía de fases metálicas del yacimiento de María Teresa está constituida mayoritariamente por pirita, esfalerita, galena y calcopirita. En menor proporción contiene arsenopirita y Fe-tennantita, y en proporciones mucho menores, tetrahedrita (variedad argentotetrahedrita), Zn-tetrahedrita, covelita, cubanita, magnetita, pirrotina, plata aurífera, polibasita, boulangerita y bournonita.
- El cuerpo Sofía D presenta una zonación mineral y metalífera que incluye un núcleo de pirita masiva rodeado por una zona de calcopirita y a su vez, por una zona más externa de esfalerita-galena, coincidiendo a grandes rasgos con la zonación típica de cuerpos de sulfuros masivos que han experimentado *"zone refining"*. En cambio, el cuerpo Bubulina no muestra una zonación definida y está constituido por agregados masivos y semimasivos de pirita, esfalerita y galena.
- A grandes rasgos, las secuencias paragenéticas para los cuerpos Sofía D y Bubulina incluyen una etapa hidrotermal que consiste en una primera fase de mineralización dominada por pirita ± arsenopirita, seguida de un estadio de Pb-Zn con esfalerita + galena ± sulfosales de Pb-Cu-Ag y posteriormente, por una etapa de Cu con calcopirita. Además, Sofía D registra una etapa de metamorfismo de contacto con formación de pirrotina, magnetita y probablemente, cubanita, y finalmente, una etapa de alteración supergénica con precipitación de covelita.
- En el yacimiento de María Teresa, el contenido de In tiende a ser mayor en esfalerita (4.39-79.4 ppm, hasta 415 ppm) que en calcopirita (12.4-33.0 ppm, hasta 49.5 ppm), y es muy bajo en cobres grises (2.65-5.23 ppm, hasta 5.50 ppm) y galena (0.00846-0.0349 ppm, hasta 0.0643 ppm). De forma similar, el Ga tiende a concentrarse más en esfalerita (10.6-31.9 ppm, hasta 94.2 ppm) y su contenido es más bajo en calcopirita (2.61-9.45 ppm, hasta 23.6 ppm), galena (0.0212-0.0312 ppm, hasta 1.69 ppm) y cobres grises

(0.0615-0.508 ppm, hasta 0.576 ppm). El contenido de Ge es sistemáticamente bajo en los cuatro minerales analizados, a excepción de algunos valores puntuales relativamente altos en calcopirita (0.648-4.71 ppm, hasta 79.6 ppm).

- ➤ En María Teresa, los análisis en esfalerita muestran claras correlaciones positivas entre los contenidos de In y Ga con Cu que evidencian sustituciones acopladas como Cu⁺ + In³⁺ ↔ 2Zn²⁺ y Cu⁺ + Ga³⁺ ↔ 2Zn²⁺, respectivamente. Además, no se puede descartar esquemas más complejos de sustitución acoplada del tipo (Sn, Ge)⁴⁺ + (Ga, In)³⁺ + (Cu, Ag)⁺ ↔ 4Zn²⁺. Por esta razón, la presencia de Cu en el sistema mineralizante es clave para la incorporación de In y Ga en la estructura cristalina de la esfalerita.
- En María Teresa, los contenidos de In más altos generalmente se presentan en esfalerita que se formó a partir de fluidos hidrotermales de relativamente alta temperatura (>~300 °C).
- El geotermómetro GGIMFis de Frenzel et al. (2016) debe ser usado con precaución en esfalerita de yacimientos que han experimentado metamorfismo.

7. AGRADECIMIENTOS

En primer lugar, agradezco a Dios por darme la oportunidad de culminar con éxito mis estudios universitarios. En segundo lugar, agradezco a mi familia, principalmente a mi madre Carmen, a mi padre Carlos y a mi hermana Deyaneira, quienes siempre estuvieron a mi lado durante los momentos más importantes de mi vida personal y académica.

También agradezco a mis profesores, particularmente, a mi asesor de tesis, Dr. Lisard Torró i Abat, y al Dr. Diego Benites Negrón, por haberme brindando la oportunidad de recurrir a su capacidad y conocimiento científico, y sin cuya exigencia y labor no podría haberse llevado a cabo la presente investigación. Además, agradezco a los jurados Dr. Cesar Muñoz y Dr. Fredrik Sahlström por sus detalladas revisiones y comentarios que permitieron una gran mejora en el contenido de la tesis.

Asimismo, agradezco a Minera Colquisiri S.A. y al Dr. Lluís Fontboté por brindar la información y muestras necesarias para que este estudio pueda llevarse a cabo.

Finalmente, a mis amigos Eduardo Tirado, Ramiro Monge, Rodrigo Hurtado de Mendoza, Johan Ramirez, André Quinteros, Johann Culqui y Robert Silva (Los Propilíticos), quienes son mi segunda familia y siempre me otorgaron su apoyo incondicional.

Este trabajo fue financiado por el CONCYTEC-FONDECYT en el marco de la convocatoria E041-01 [número de contrato 107-2018-FONDECYT-BM-IADT-AV].

8. REFERENCIAS

- Acosta J, Quispe J, Rivera R, et al (2019) Metallogenic Map of Peru: Mining Operations, Projects and Prospects. Description of the Metallogenic Belts. INGEMMET
- Almodóvar GR, Sáez R, Pons JM, et al (1998) Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Miner Depos 33:111–136. https://doi.org/10.1007/s001260050136
- Almodóvar GR, Yesares L, Sáez R, et al (2019) Massive sulfide ores in the Iberian Pyrite Belt: Mineralogical and textural evolution. Minerals 9:20. https://doi.org/10.3390/min9110653
- Anderson CS (2020) Indium. Mineral Commodity Summaries 2020. U S Geol Surv 78-79
- Andreu E, Torró L, Proenza JA, et al (2015) Weathering profile of the Cerro de Maimón VMS deposit (Dominican Republic): Textures, mineralogy, gossan evolution and mobility of gold and silver. Ore Geol Rev 65:165–179. https://doi.org/10.1016/j.oregeorev.2014.09.015
- Anglo Peruana Terra (2015a) Estudio microscópico de 41 muestras de roca-Mina María Teresa. Inf no Publ 102
- Anglo Peruana Terra (2015b) Caracterización mineralógica por medio de microscopía electrónica de barrido. Inf no Publ 60
- Atherton MP (1990) The Coastal Batholith of Peru: The product of rapid recycling of "new" crust formed within rifted continental margin. Geol J 25:337–349. https://doi.org/10.1002/gj.3350250316

- Atherton MP, Aguirre L (1992) Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Peru, in relation to Andean crustal thinning. J South Am Earth Sci 5:47–69. https://doi.org/10.1016/0895-9811(92)90059-8
- Atherton MP, Pitcher WS, Warden V (1983) The Mesozoic marginal basin of central Peru. Nature 305:303–306. https://doi.org/10.1038/305303a0
- Atherton MP, Warden V, Sanderson LM (1985) The Mesozoic marginal basin of central Peru: a geochemical study of within-plate-edge volcanism. Pitcher WS, Athert MP, Cobbing EJ, Beckinsale RD Magmat a plate edge; Peruvian Andes Blackie, Glas 47–58. https://doi.org/10.1007/978-1-4899-5820-4_6
- Atherton MP, Webb S (1989) Volcanic facies, structure, and geochemistry of the marginal basin rocks of central Peru. J South Am Earth Sci 2:241–261. https://doi.org/10.1016/0895-9811(89)90032-1
- Barrett TJ, MacLean WH, Årebäck H (2005) The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: Chemostratigraphy and alteration. Miner Depos 40:368–395. https://doi.org/10.1007/s00126-005-0001-2
- Barrie CT, Hannington MD (1999) Introduction: Classification of VMS deposits based on host rock composition. Volcanic-Associated Massive Sulfide Depos Process Examples Mod Anc Settings 8:2–10
- Baumgartner RJ, Van Kranendonk MJ, Pagès A, et al (2020) Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion–year–old Dresser Formation, Pilbara Craton. Precambrian Res 337:105534. https://doi.org/10.1016/j.precamres.2019.105534

- Belissont R, Boiron M-C, Luais B, et al (2015) Germanium Distribution and Isotopic Study in Sulphides from MVT-Related and VMS-Remobilised Ore Deposits. Strateg Met their sources, ore-forming Process Miner Resour A Sustain WORLD, 13th SGA Bienn Meet 2015 2:683–686
- Benavides-Cáceres V (1999) Orogenic evolution of the Peruvian Andes: The Andean cycle. Soc Econ Geol Spec Publ 7:61–107. https://doi.org/10.5382/sp.07.03
- Benites D, Torró L, Vallance J, et al (2019) Ore mineralogy of the In-bearing Ayawilca Zn-Ag-Sn-Cu. Life with Ore Depos Earth – 15th SGA Bienn Meet 2019 4:1681–1684
- Bente K, Doering T (1995) Experimental studies on the solid state diffusion of Cu + In in ZnS and on "Disease", DIS (Diffusion Induced Segregations), in sphalerite and their geological applications. Mineral Petrol 53:285–305. https://doi.org/10.1007/BF01160153
- Benzaazoua M, Marion P, Pinto A, et al (2003) Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): A multidisciplinary study. Miner Eng 16:1291–1302. https://doi.org/10.1016/j.mineng.2003.07.008
- Bleiwas DI (2010) Byproduct mineral commodities used for the production of photovoltaic cells. U S Geol Surv Circ 1365 1–10. https://doi.org/10.3133/cir1365
- Bodnar RJ, Lecumberri-Sanchez P, Moncada D, Steele-MacInnis M (2014) Fluid Inclusions in Hydrothermal Ore Deposits, 2nd edn. Elsevier Ltd.
- Brauhart CW, Groves DI, Morant P (1998) Regional alteration systems associated with volcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia. Econ Geol 93:292–302. https://doi.org/10.2113/gsecongeo.93.3.292

- Bueno Carreón JP (2019) Herramientas de exploración aplicadas a la generación de nuevos targets en el yacimiento VMS Cerro Lindo. Proexplo 2019, Lima, resúmenes extendidos 332–340
- Bueno Carreón JP, Mendoza Mondragón M (2019) Caracterización litogeoquímica en el yacimiento VMS - Cerro Lindo y su relación con la mineralización para determinar vectores guías en exploración. Proexplo 2019, Lima, resúmenes extendidos 196–201
- Butcher T, Brown T (2014) Gallium. Crit Met Handbook, G Gunn 150–176. https://doi.org/10.1002/9781118755341.ch7
- Campbell IH, McDougall TJ, Turner JS (1984) A note on fluid dynamic processes which can influence the deposition of massive sulfides. Econ Geol 79:1905–1913
- Carvalho JRS, Relvas JMRS, Pinto AMM, et al (2018) Indium and selenium distribution in the Neves-Corvo deposit, Iberian Pyrite Belt, Portugal. Mineral Mag 82:S5–S41. https://doi.org/10.1180/minmag.2017.081.079
- Cobbing EJ (1978) The Andean Geosyncline in Peru, and its distinction from Alpine Geosynclines. J Geol Soc London 135:207–218. https://doi.org/10.1144/gsjgs.135.2.0207
- COLQUISIRI S.A. (2018) Mapa geológico del yacimiento tipo VMS María Teresa. Mapa no Publ
- Cook NJ, Ciobanu CL, Pring A, et al (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim Cosmochim Acta 73:4761–4791. https://doi.org/10.1016/j.gca.2009.05.045

Cook NJ, Ciobanu CL, Williams T (2011a) The mineralogy and mineral chemistry of indium

in sulphide deposits and implications for mineral processing. Hydrometallurgy 108:226–228. https://doi.org/10.1016/j.hydromet.2011.04.003

Cook NJ, Sundblad K, Valkama M, et al (2011b) Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chem Geol 284:62–73. https://doi.org/10.1016/j.chemgeo.2011.02.006

Cox DP, Singer DA (1986) Mineral deposit models. US Geol Surv Bull 1693:379

- Cueva E, Mamani M, Rodriguez R (2010) Magmatismo Y geoquímica del volcanismo Albiano- Cenomaniano (Grupo Casma) Y Maastrichtiano-Daniano entre Pucusana Y Chimbote. XV Congr Peru Geol resúmenes extendidos Soc Geológica Perú, Publ Esp 9:921–924
- Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geol Rev 23:183–222. https://doi.org/10.1016/S0169-1368(03)00035-0
- Duncan RA, Hargraves RB (1984) Plate tectonic evolution of the Caribbean region in the mantle reference frame. Mem Geol Soc Am 162:81–93. https://doi.org/10.1130/MEM162-p81
- Eldridge CS, Barton PB, Ohmoto H (1983) Mineral textures and Their Bearing on Formation of the Kuroko Orebodies. Econ Geol Monogr 5:241–281. https://doi.org/10.5382/mono.05.15
- European Commission (2017) Critical raw materials. https://ec.europa.eu/growth/sectors/rawmaterials/specific-interest/critical_en. Accessed 25 Mar 2020
- European Commission (2020) Study on the EU's list of Critical Raw Materials (final report). European Commission, Brussels 153 p. 1–158. https://doi.org/10.2873/904613.

- Farfán C, Monge R, Fontboté L (2019) Palma , yacimiento de Zn-Pb tipo VMS en una cuenca intra-arco del Cretácico Superior en Perú central : nuevos avances en exploración para un gran potencial. Proexplo 2019, Lima, resúmenes extendidos 209–215
- Foley NK, Jaskula BW, Kimball BE, Schulte RF (2017) Gallium, chap. H of Schulz, K.J., DeYoung, J.H., Seal II, R.R. and Bradley, D.C. Crit Miner Resour United States—
 Economic Environ Geol Prospect Futur supply US Geol Surv Prof Pap 1802 H1–H35. https://doi.org/10.3133/pp1802H
- Fontboté L (2019) Volcanogenic Zn-Pb ± Cu massive sulfide deposits in the Upper Cretaceous plutono- volcanic arc in central Peru. Proexplo 2019, Lima, resúmenes extendidos 45–52
- Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic Massive Sulfide Deposits. One Hundredth Anniv Vol 523–560. https://doi.org/https://doi.org/10.5382/AV100.17
- Frenzel M, Bachmann K, Carvalho JRS, et al (2019) The geometallurgical assessment of byproducts—geochemical proxies for the complex mineralogical deportment of indium at Neves-Corvo, Portugal. Miner Depos 54:959–982. https://doi.org/10.1007/s00126-018-0849-6
- Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type - A meta-analysis. Ore Geol Rev 76:52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017
- Frenzel M, Mikolajczak C, Reuter MA, Gutzmer J (2017) Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resour Policy 52:327–335. https://doi.org/10.1016/j.resourpol.2017.04.008

85

- Galley A, Hannington MD, Jonasson I (2007) Volcanogenic massive sulphide deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada. Miner Depos Div Spec Publ 5:141–161
- Garside M (2019) Share of metal production worldwide from volcanogenic massive sulfide deposits as of 2019, by metal type. Statista
- GEOMECANICA LATINA S.A. (2017) Actualización del estudio hidrogeológico de mina María Teresa. Inf no Publ 55
- George L, Cook NJ, Cristiana C, Wade BP (2015) Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am Mineral 100:548–569. https://doi.org/10.2138/am-2015-4862
- George LL, Cook NJ, Ciobanu CL (2016) Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores. Ore Geol Rev 77:97–116. https://doi.org/10.1016/j.oregeorev.2016.02.009
- George LL, Cook NJ, Crowe BBP, Ciobanu CL (2018) Trace elements in hydrothermal chalcopyrite. Mineral Mag 82:59–88. https://doi.org/10.1180/minmag.2017.081.021
- Goodfellow WD (2007) Metallogeny of the Bathurst Mining Camp , Northern New Brunswick. Miner Depos Canada—A Synth major Depos Dist Metallog Evol Geol Prov Explor methods Geol Assoc Canada, Miner Depos Div Spec Publ 5 449–469

Gordon RG, Jurdy DM (1986) Cenozoic global plate motions

Grenne T, Slack JF (2005) Geochemistry of Jasper Beds from the Ordovician Lokken Ophiolite, Norway: Origin of Proximal and Distal Siliceous Exhalites. Econ Geol 100:1511-1527. https://doi.org/10.2113/100.8.1511

- Guillong M, Hametner K, Reusser E, et al (2005) Preliminary Characterisation of New Glass
 Reference Materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser AblationInductively Coupled Plasma-Mass Spectrometry Using 193 nm, 213 nm and 266 nm
 Wavelengths. Geostand Geoanalytical Res 29:315–331. https://doi.org/10.1111/j.1751908x.2005.tb00903.x
- Guillong M, Meier DL, Allan MM, et al (2008) SILLS: A Matlab-Based Program for the Reduction of Laser Ablation ICP–MS Data of Homogeneous Materials and Inclusions, in Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, P. Sylvester, Editor. 2008. Mineral Assoc Canada Short Course 40:328–333
- Guillong M, Wotzlaw J-F, Looser N, Laurent O (2020) (in review) New analytical and data evaluation protocols to improve the reliability of U-Pb LA-ICP-MS carbonate dating.
 Geochronol Discuss. https://doi.org/10.5194/gchron-2019-20
- Hall SR, Stewart JM (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 29:579–585. https://doi.org/10.1107/s0567740873002943
- Hannington MD, De Ronde CEJ, Petersen S (2005) Sea-Floor Tectonics and Submarine Hydrothermal Systems. Econ Geol 100th Anniv Vol 111–141. https://doi.org/10.5382/av100.06
- Hannington MD, Galley AG, Herzig PM, Petersen S (1998) Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type Massive Sulfide Deposits. Herzig, PM, Humphris, SE, Miller, DJ, Zierenberg, RA (Eds), Proc Ocean Drill Progr Sci Results 158:389–415. https://doi.org/10.2973/odp.proc.sr.158.217.1998

- Hannington MD, Poulsen KH, Thompson JFH, Sillitoe RH (1999) Volcanogenic Gold in the Massive Sulfide Environment. Volcan Assoc Massive Sulfide Depos Process Examples Mod Anc Settings 8:325–356. https://doi.org/10.5382/rev.08.14
- Hannington MD, Scott SD (1989) Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: Evidence from sulfide mineralogy and the composition of sphalerite. Econ Geol 84:1978–1995. https://doi.org/10.2113/gsecongeo.84.7.1978
- Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115. https://doi.org/10.1016/0169-1368(95)00009-7
- Hutchinson RW (1973) Volcanogenic sulfide deposits and their metallogenic significance. Econ Geol 68:1223–1246. https://doi.org/10.2113/gsecongeo.68.8.1223
- Injoque J, Miranda C, Dunin-Borkowski E (1979) Estudio de la genesis del yacimiento de Tambogrande y sus implicancias. Bol la Soc Geol del Peru 64:73–99
- Jaillard E (1994) Kimmeridgian to Paleocene Tectonic and Geodynamic Evolution of the Peruvian (and Ecuadorian) Margin. Salfity JA Cretac tectonics Andes Earth Evol Sci Monogr Ser Wiesbad 101–167. https://doi.org/10.1007/978-3-322-85472-8_3
- Jochum KP, Weis U, Stoll B, et al (2011) Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand Geoanalytical Res 35:397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x
- Johan Z (1988) Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Mineral Petrol 39:211–229. https://doi.org/10.1007/BF01163036

Keith M, Haase KM, Schwarz-schampera U, et al (2014) Effects of temperature, sulfur, and

oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 42:699–702. https://doi.org/10.1130/G35655.1

- Klekovkina V V., Gainov RR, Vagizov FG, et al (2014) Oxidation and magnetic states of chalcopyrite CuFeS2: A first principles calculation. Opt Spectrosc 116:885–888. https://doi.org/10.1134/S0030400X14060149
- Klemd R, Okrusch M (1990) Phase relationships and fluid inclusions characteristics of the metamorphosed, stratiform sulfide deposit Matchless, Namibia. Geol Rundschau 79:433–449. https://doi.org/10.1007/BF01830637
- Koski RA (2012a) Hypogene Ore Characteristics, chap VIII of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 137–146. https://doi.org/10.3133/sir20105070C
- Koski RA (2012b) Supergene Ore and Gangue Characteristics, chap VIII of Shanks III, W.
 C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 185–189. https://doi.org/10.3133/sir20105070C
- Koski RA, Mosier DL (2012) Deposit Type and Associated Commodities, chap II of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 15–21. https://doi.org/10.3133/sir20105070C
- Lambert IB, Sato T (1974) The Kuroko and associated ore deposits of Japan A review of their features and metallogenesis. Econ Geol 69:1215–1236. https://doi.org/10.2113/gsecongeo.69.8.1215
- Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510. https://doi.org/10.2113/gsecongeo.87.3.471

- Large RR (1977) Chemical evolution and zonation of massive sulfide deposits in volcanic terrains. Econ Geol 72:549–572. https://doi.org/10.2113/gsecongeo.72.4.549
- Lazo R (2012) Plano de ubicación de la unidad económica administrativa María Teresa. Mapa no Publ
- Li Y, Kawashima N, Li J, et al (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interface Sci 197–198:1–32. https://doi.org/10.1016/j.cis.2013.03.004
- Lydon JW (1984) Volcanogenic massive sulphide deposits-Part 1. A Descr Model Geosci Canada 11:195–202
- Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Miner Depos 31:1–26. https://doi.org/10.1007/BF00225392
- Melcher F, Buchholz P (2014) Germanium. Crit Met Handbook, G Gunn 177–203. https://doi.org/10.1002/9781118755341.ch8
- Mikhlin Y, Tomashevich Y, Tauson V, et al (2005) A comparative X-ray absorption nearedge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectros Relat Phenomena 142:83–88. https://doi.org/10.1016/j.elspec.2004.09.003
- Monecke T, Petersen S, Hannington MD, et al (2016) The Minor Element Endowment of Modern Sea-Floor Massive Sulfides and Comparison with Deposits Hosted in Ancient Volcanic Successions. Rev Econ Geol 18:245–306. https://doi.org/10.5382/Rev.18.11
- Morgan LA, Schulz KJ (2012) Physical Volcanology of Volcanogenic Massive Sulfide Deposits, chap V of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive

Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 65–100. https://doi.org/10.3133/sir20105070C

- Mosier DL, Berger VI, Singer DA (2009) Volcanogenic Massive Sulfide Deposits of the World — Database and Grade and Tonnage Models. U S Geol Surv Open-File Rep 2009-1034 46
- Mukasa SB (1986) Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes. Geol Soc Am Bull 97:241–254. https://doi.org/10.1130/0016-7606(1986)97<241:zuaosi>2.0.co;2
- Münch U, Halbach P, Fujimoto H (2000) Sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge. JAMSTEC J Deep Sea Res 16:125–132
- Murakami H, Ishihara S (2013) Trace elements of indium-bearing sphalerite from tinpolymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geol Rev 53:223–243. https://doi.org/10.1016/j.oregeorev.2013.01.010
- Nassar NT, Graedel TE, Harper EM (2015) By-product metals are technologically essential but have problematic supply. Sci Adv 1:e1400180. https://doi.org/10.1126/sciadv.1400180
- Oftedal I (1941) Untersuchungen über die Nebenbestandteile von Erzmineralen norwegischer zinkblende-führender Vorkommen. Nor Vidensk Akad Skr Mat- Nat 8:1–103
- Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol Rev 10:135–177. https://doi.org/10.1016/0169-1368(95)00021-6
- Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics 6:233–248.

https://doi.org/10.1029/TC006i003p00233

- Pauling L, Brockway LO (1932) The crystal structure of chalcopyrite. Zeitschrift für Krist Cryst Mater 82:188–194. https://doi.org/10.2183/pjab1912.10.498
- Pearce CI, Pattrick RAD, Vaughan DJ, et al (2006) Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics. Geochim Cosmochim Acta 70:4635–4642. https://doi.org/10.1016/j.gca.2006.05.017
- Peter JM (2003) Ancient iron formations—Their genesis and use in the exploration for stratiform base metal sulphide deposits, with examples from the Bathurst mining camp.
 Geochemistry sediments Sediment rocks—Evolutionary considerations to Miner Depos Form Environ Geol Assoc Canada 4:145–176
- Petersen S, Herzig PM, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner Depos 35:233– 259. https://doi.org/10.1007/s001260050018
- Pichardo E, Fontboté L, Mena T, et al (2019) El yacimiento de Zn-Pb-Cu-Ag tipo VMS María Teresa, Perú: geología y exploración. Proexplo 2019, Lima, resúmenes extendidos 202–208
- Piercey SJ (2010) An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits. Geochemistry Explor Environ Anal 10:119–136. https://doi.org/10.1144/1467-7873/09-221
- Piercey SJ (2011) The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. Miner Depos 46:449–471. https://doi.org/10.1007/s00126-011-0341-z

- Polliand M (2006) Genesis, evolution, and tectonic setting of the Upper Cretaceous Perubar Ba-Pb–Zn volcanic-hosted massive sulfide deposit, central Peru. PhD Thesis Univ Geneva, Terre Environement 60:141
- Polliand M, Fontboté L (2000) The Perubar Ba-Pb-Zn VHMS deposit, Central Peru. VMS Depos Lat Am Geol Assoc Canada, Miner Depos Div Spec Publ Vancouver, Canada 2:439–446
- Polliand M, Fontboté L, Spangenberg J (1999) Tracing back sulfur isotope reequilibration due to contact metamorphism : A case study from the Perubar VMS deposit , Central Peru. Miner Depos Process to Process 5th Bienn SGA Meet London, Engl 967–970
- Polliand M, Schaltegger U, Frank M, Fontboté L (2005) Formation of intra-arc
 volcanosedimentary basins in the western flank of the central Peruvian Andes during
 Late Cretaceous oblique subduction: field evidence and constraints from U Pb ages
 and Hf isotopes. Int J Earth Sci 94:231–242. https://doi.org/10.1007/s00531-005-0464-5
- Pring A, Wade B, McFadden A, et al (2020) Coupled substitutions of minor and trace elements in co-existing sphalerite and wurtzite. Minerals 10:1–14. https://doi.org/10.3390/min10020147
- Reich M, Román N, Barra F, Morata D (2020) Silver-rich chalcopyrite from the active Cerro Pabellón geothermal system, Northern Chile. Minerals 10:1–12. https://doi.org/10.3390/min10020113
- Ríos AM, Castroviejo R, García JM (2008) Los sulfuros masivos volcanogénicos de la Cuenca Lancones (Perú). Geogaceta 44:47–50

Romero D, Quispe J, Carlotto V, Tassinari C (2008) Los depósitos de la cuenca

Maastrichtiano - Daniano: relación con los yacimientos tipo sulfuros masivos volcanogénicos de Pb - Zn - Cu; Perú central. Congr Peru Geol Lima 6

- Savard D (2018) UQAC (Université du Québec à Chicoutimi) FeS-1 data. Data no publicada. https://sulfideslasericpms.wordpress.com/rm-available/. Accessed 8 Apr 2020
- Schwarz-Schampera U (2014) Indium. Crit Met Handbook, G Gunn 204–229. https://doi.org/10.1002/9781118755341.ch9
- Schwarz-Schampera U, Herzig PM (2002) Indium: Geology, Mineralogy and Economics. A Contrib to BGR 2000 Raw Mater with Short Lifetime Reserv Fed Inst Geosci Nat Resour Hann Ger 257
- Scotese CR (1991) Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 87:493–501. https://doi.org/10.1016/0031-0182(91)90145-H
- Shanks III WCP (2012) Hydrothermal Alteration, chap XI of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 169–180. https://doi.org/10.3133/sir20105070C
- Shanks III WCP, Kimball BE, Tolcin AC, Guberman DE (2017) Germanium and indium, chap. I of Schulz, K.J., DeYoung, J.H., Seal II, R.R. and Bradley, D.C. Crit Miner Resour United States—Economic Environ Geol Prospect Futur supply US Geol Surv Prof Pap 1802 I1–I27. https://doi.org/10.3133/pp1802I
- Shanks III WCP, Koski RA (2012) Introduction, chap I of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 5–8. https://doi.org/10.3133/sir20105070C

Slack JF (2012a) Physical Description of Deposit, chap VI of Shanks III, W. C. P. and

Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 105–111. https://doi.org/10.3133/sir20105070C

- Slack JF (2012b) Exhalites, chap X of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 159–163. https://doi.org/10.3133/sir20105070C
- Slack JF (2012c) Hypogene Gangue Characteristics, chap VIII of Shanks III, W. C. P. and Thurston, R. Volcanogenic Massive Sulfide Occur Model U S Geol Surv Sci Investig Rep 2010-5070-C 151–153. https://doi.org/10.3133/sir20105070C
- Soler P (1987) Variations des teneurs en éléments mineurs (Cd, In, Ge, Ga, Ag, Bi, Se, Hg, Sn) des minerais de Pb-Zn de la province polymétallique des Andes du Pérou Central. Miner Depos 22:135–143
- Soler P (1991) El volcanismo Casma del Perú Central: cuenca marginal abortada o simple arco volcanico? VII Congr Peru Geol Resúmenes Extendidos, Soc Geológica del Perú, Lima 659–663
- Soler P, Rotach-Toulhoat N (1990) Implications of the time-dependent evolution of Pb- and Sr-isotopic compositions of Cretaceous and Cenozoic granitoids from the coastal region and the lower Pacific slope of the Andes of central Peru. In: Special Paper of the Geological Society of America. Geological Society of America, pp 161–172
- Solomon M, Gemmell JB, Zaw K (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn-Pb-Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geol Rev 25:89–124. https://doi.org/10.1016/j.oregeorev.2003.11.001

- Steinmüller K, Chacón Abad N, Grant B (2000) Volcanogenic Massive Sulphide Deposits in Peru. Volcanogenic massive sulphide Depos Lat Am Geol Assoc Canada Spec Publ 2:423–437
- Takeuchi T, Nambu M, Suzuki M, Okada K (1956) Germanium Bearing Black Ores from the Kamikita Mine, Aomori Prefecture. Min Geol 6:231–243. https://doi.org/10.11456/shigenchishitsu1951.6.22_231
- Tegart P, Allen G, Carstensen A (2000) Regional setting, stratigraphy, alteration and mineralization of the Tambo Grande VMS district, Piura Department, Northern Peru.
 VMS Depos Lat Am Geol Assoc Canada, Miner Depos Div Spec Publ Vancouver, Canada 2:375–405
- Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65. https://doi.org/10.5670/oceanog.2007.80
- Todd EC, Sherman DM (2003) Surface oxidation of chalcocite (Cu2S) under aqueous (pH = 2-11) and ambient atmospheric conditions: Mineralogy from Cu L- and O K-edge X-ray absorption spectroscopy. Am Mineral 88:1652–1656. https://doi.org/10.2138/am-2003-11-1203
- Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy. Geochim Cosmochim Acta 67:2137–2146. https://doi.org/10.1016/S0016-7037(02)01371-6
- Torró L, Benites D, Vallance J, et al (2022) Trace element geochemistry of sphalerite and chalcopyrite in arc-hosted VMS deposits. J Geochemical Explor 232:106882. https://doi.org/10.1016/j.gexplo.2021.106882

- Torró L, Cazorla M, Melgarejo JC, et al (2019a) Indium mineralization in the volcanic domehosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia. Minerals 9:1–42. https://doi.org/10.3390/min9100604
- Torró L, Melgarejo JC, Gemmrich L, et al (2019b) Spatial and temporal controls on the distribution of indium in xenothermal vein-deposits: The Huari Huari district, Potosí, Bolivia. Minerals 9:1–38. https://doi.org/10.3390/min9050304
- Torró L, Proenza JA, Espaillat J, et al (2018) The discovery of the Romero VMS deposit and its bearing on the metallogenic evolution of hispaniola during the cretaceous. Minerals 8:24. https://doi.org/10.3390/min8110507
- Torró L, Proenza JA, Melgarejo JC, et al (2016) Mineralogy, geochemistry and sulfur isotope characterization of Cerro de Maimón (Dominican Republic), San Fernando and Antonio (Cuba) lower cretaceous VMS deposits: Formation during subduction initiation of the proto-Caribbean lithosphere within a fore-ar. Ore Geol Rev 72:794–817. https://doi.org/10.1016/j.oregeorev.2015.09.017
- Valencia M, Rodríguez I, Villarreal E, Acosta J (2017) Potencial de Zinc en la Cuenca Lancones. Proexplo 2017, Lima, resúmenes extendidos 105–110
- Velasco F, Sánchez-España J, Boyce AJ, et al (1998) A new sulphur isotopic study of some Iberian Pyrite Belt deposits: Evidence of a textural control on sulphur isotope composition. Miner Depos 34:4–18. https://doi.org/10.1007/s001260050182
- Vidal CE (1987) Kuroko-type deposits in the Middle-Cretaceous marginal basin of central Peru. Econ Geol 82:1409–1430. https://doi.org/10.2113/gsecongeo.82.6.1409

Warren H V., Thompson RM (1945) Sphalerites from western Canada. Econ Geol 40:309-

- Wellmer F-W, Hannak W, Krauss U, Thormann A (1990) Deposits of rare metals. In:
 Kürsten M (ed) Raw materials for new technologies. Proc fifth Int Symp held Hann Fed
 Rep Ger Fed Inst Geosci Nat Resour Oct 19–21, 1988, Schweizerbart, Stuttgart 71–122
- Wierzbicka-Wieczorek M, Lottermoser BG, Kiefer S, et al (2019) Indium distribution in metalliferous mine wastes of the Iberian Pyrite Belt, Spain–Portugal. Environ Earth Sci 78:1–14. https://doi.org/10.1007/s12665-019-8263-7
- Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409. https://doi.org/10.1039/B108787H
- Winter LS, Tosdal RM, Franklin JM, Tegart P (2004) A Reconstructed Cretaceous
 Depositional Setting for Giant Volcanogenic Massive Sulfide Deposits at Tambogrande,
 Northwestern Peru. Soc Econ Geol Spec Publ 11:319–340.
 https://doi.org/10.5382/sp.11.18
- Winter LS, Tosdal RM, Mortensen JK, Franklin JM (2010) Volcanic stratigraphy and geochronology of the cretaceous Lancones Basin, Northwestern Peru: Position and Timing of Giant VMS Deposits. Econ Geol 105:713–742. https://doi.org/10.2113/gsecongeo.105.4.713
- Winter LS, Tosdal RM, Tegart P (2002) A step in the formation of the Huancabamba deflection in the Andes of Peru and Ecuador. Geol Soc Am Annu Meet Pap 191–14
- Zevallos PL (2000) Cerro Lindo Project. VMS Depos Lat Am Geol Assoc Canada, Miner Depos Div Spec Publ Vancouver, Canada 2:407–422

Anexo A

Lista de muestras recolectadas y sus respectivas descripciones de campo.

MARÍA TERESA - COLQUISIRI																	
Muestra	Campaña	UTM E	UTM N	Coord. GEO E	Coord. GEO N	Profundidad	Altitud (m.s.n.m)	Drill core	X Collar	Y Collar	Z Collar	X Collar Coord. GEO	Y Collar Coord. GEO	Profundidad final del core	Sector- Cuerpo- Sección	Minerales	Textura, secuencia
2019-MT- 001	Colquisiri Feb 2019	252425.33	8728385.11	-77.269574	-11.494319	72.85	83.48	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, pirita, calcopirita	Esfalerita marrón con pirita; Sofía D cuerpo con Zn en parte superior pasando a py+cpy, pero con dacita en el medio (sin o post?)
2019-MT- 002	Colquisiri Feb 2019	252425.57	8728385.26	-77.269571	-11.494318	74.60	81.75	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita	Esfalerita amarilla masiva gruesa
2019-MT- 003	Colquisiri Feb 2019	252426.43	8728385.76	-77.269564	-11.494313	80.60	75.83	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, pirita	Esfalerita amarilla masiva + vetilla de esfalerita muy amarilla cortando y acompañada por py fina en el medio
2019-MT- 004	Colquisiri Feb 2019	252426.54	8728385.83	-77.269562	-11.494313	81.40	75.05	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, cobres grises	Esfalerita intercrecida con cobres grises
2019-MT- 005	Colquisiri Feb 2019	252426.74	8728385.94	-77.269561	-11.494311	82.80	73.66	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, calcopirita, pirita	Esfalerita acaramelada gruesa + cpy gruesa + py final contacto con el dique
2019-MT- 006	Colquisiri Feb 2019	252426.87	8728386.02	-77.269559	-11.494311	83.70	72.78	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, cobres grises?, calcopirita, pirita	Esfalerita amarilla con cobres grises?, con zonas de calcopirita gruesa + pirita fina (otra pared del dique con respecto a la muestra 5)
2019-MT- 007	Colquisiri Feb 2019	252427.83	8728386.57	-77.269551	-11.494306	90.50	66.07	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, calcopirita, pirita?	Esfalerita acaramelizada de grano medio, cortada por calcopirita en vetillas discontinuas + py?
2019-MT- 008	Colquisiri Feb 2019	252428.90	8728387.17	-77.269541	-11.494301	98.00	58.67	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita, pirita, esfalerita	Calcopirita gruesa en pirita fina + bandas de esfalerita caramelizada (quién corta a quién). No es claro
2019-MT- 009	Colquisiri Feb 2019	252429.47	8728387.48	-77.269536	-11.494298	102.00	54.72	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita, pirita	Calcopirita masiva (medio a fino) + pirita fina
2019-MT- 010	Colquisiri Feb 2019	252429.95	8728387.75	-77.269531	-11.494295	105.40	51.37	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita, pirita, esfalerita?	Calcopirita en vetilla (grano medio) que ha cortado a cpy+/-py (ef?)
2019-MT- 011	Colquisiri Feb 2019	252429.96	8728387.75	-77.269531	-11.494295	105.50	51.27	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	pirita, calcopirita	Vetillas de py+cpy en "coliflor" 10-20 cm
2019-MT- 012	Colquisiri Feb 2019	252430.52	8728388.06	-77.269526	-11.494293	109.40	47.42	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita, pirrotina	Contacto intrusivo rico en cpy (de grano medio a grueso) + zona de po 5cm gruesa muy gruesa (la po desaparece progresivamente alejándose del contacto)
2019-MT- 013	Colquisiri Feb 2019	252430.57	8728388.09	-77.269525	-11.494292	109.80	47.02	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita	Intrusivo con vetillas finas de cpy

Muestra	Campaña	UTM E	UTM N	Coord. GEO E	Coord. GEO N	Profundidad	Altitud (m.s.n.m)	Drill core	X Collar	Y Collar	Z Collar	X Collar Coord. GEO	Y Collar Coord. GEO	Profundidad final del core	Sector- Cuerpo- Sección	Minerales	Textura, secuencia
2019-MT- 014	Colquisiri Feb 2019	252432.14	8728388.97	-77.269511	-11.494285	120.80	36.17	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	calcopirita, pirita, pirrotina, yeso	Cuerpo de cpy-py en dique+po brechada en contacto con yeso
2019-MT- 015	Colquisiri Feb 2019	252433.16	8728389.56	-77.269502	-11.494279	128.00	29.07	34-18-S	252414.99	8728378.76	155.31	-77.269669	-11.494376	261.00	Calera- Sofia D- Sec-300	esfalerita, calcopirita, pirita	Esfalerita acaramelizada reemplazada por cpy y py
2019-MT- 016	Colquisiri Feb 2019	252383.68	8728451.81	-77.269950	-11.493713	47.60	107.00	21-18-S	252362.28	8728440.55	147.99	-77.270147	-11.493813	261.00	Calera- Sofia D- Sec-300	hematita, goethita	Muestra de gossan. Sector Calera Sofía D
2019-MT- 017	Colquisiri Feb 2019	252384.05	8728452.00	-77.269947	-11.493711	48.40	106.31	21-18-S	252362.28	8728440.55	147.99	-77.270147	-11.493813	261.00	Calera- Sofia D- Sec-300	hematita, goethita	Muestra brecha. Clastos blancos en matriz de óxidos. (hm+goe)
2019-MT- 018	Colquisiri Feb 2019	252399.43	8728416.72	-77.269809	-11.494031	63.40	88.63	53-17-S	252394.14	8728412.42	151.66	-77.269857	-11.494070	164.00	Calera- Sofia D- Sec-340	esfalerita, calcopirita	Esfalerita masiva de color marrón a acaramelada con manchas de cpy reemplazándola parcialmente
2019-MT- 019	Colquisiri Feb 2019	252399.64	8728416.89	-77.269807	-11.494030	65.90	86.14	53-17-S	252394.14	8728412.42	151.66	-77.269857	-11.494070	164.00	Calera- Sofia D- Sec-340	esfalerita, calcopirita, pirita	Similar a la muestra anterior, pero con mayor contenido de cpy. También, presencia de pirita.
2019-MT- 020	Colquisiri Feb 2019	252514.49	8728300.08	-77.268763	-11.495094	149.80	18.81	29-17-S	252514.54	8728297.43	168.56	-77.268763	-11.495118	250.80	Calera- Sofia D- Sec-500	cobres grises, calcopirita, pirita?	Muestra rica en cobres grises (Ag?), cpy (+py?).
2019-MT- 021	Colquisiri Feb 2019	252514.50	8728300.10	-77.268763	-11.495093	150.50	18.11	29-17-S	252514.54	8728297.43	168.56	-77.268763	-11.495118	250.80	Calera- Sofia D- Sec-500	calcopirita, cobres grises	Muestra rica en Cu (+/- 4%) y Ag (1.7g/t), con cpy gruesa y cobres grises intersticiales.
2019-MT- 022	Colquisiri Feb 2019	252549.92	8728272.68	-77.268440	-11.495344	127.40	49.30	44-17-S	252567.29	8728281.80	175.18	-77.268280	-11.495263	250.70	Calera- Sofia D- Sec-540	esfalerita, pirita	Muestra con esfalerita acaramelizada gruesa que ha reemplazado? Pirita.
2019-MT- 023	Colquisiri Feb 2019	252549.03	8728272.26	-77.268448	-11.495348	133.80	42.98	44-17-S	252567.29	8728281.80	175.18	-77.268280	-11.495263	250.70	Calera- Sofia D- Sec-540	pirita, cobres grises	Pirita con cobres grises en contacto con clastos de caja silicificada
2019-MT- 024	Colquisiri Feb 2019	252616.69	8728357.04	-77.267822	-11.494586	215.80	-12.06	033-17-S	252514.95	8728297.65	168.60	-77.268759	-11.495116	280.20	Calera- Sofia D- Sec-500	cobres grises	Muestra muy rica en Ag (cobres grises)
2019-MT- 025	Colquisiri Feb 2019	250938.99	8729178.06	-77.283134	-11.487047	6.00	115.33	108-18-M	250937.69	8729177.22	121.13	-77.283146	-11.487055	12.00	Bubulina- Ángela B- Sec1050	pirita, esfalerita	Py fina diseminada reemplazando a matriz fina de volcanoclásticos con esfalerita amarilla/beige de grano medio más tardía
2019-MT- 026	Colquisiri Feb 2019	251259.19	8729519.16	-77.280176	-11.483988	135.10	69.24	85-15-M	251144.37	8729453.68	97.07	-77.281232	-11.484571	256.80	Bubulina- Bubulina- Sec1180	esfalerita, pirita, cobres grises	Esfalerita acaramelizada + pirita, con cobres grises en vetillas en caja volcanoclástica
2019-MT- 027	Colquisiri Feb 2019	252667.54	8728150.27	-77.267371	-11.496458	70.20	68.66	076-17-M	252697.26	8728171.21	128.70	-77.267098	-11.496271	331.70	Calera- Sofia D W- Sec-700	pirita, calcopirita, esfalerita	Andesita vesicular cortada/impregnada por pirita fina (+/- cpy!) y posterior esfalerita oscura

Anexo B

Fichas petrográficas de secciones pulidas obtenidas en María Teresa.

Minerales identificados por luz reflejada:

Arsenopirita Calcopirita Cobres grises Covelita Cubanita Esfalerita Galena Magnetita Pirita Pirrotina Plata aurífera Sulfosales de plata Sulfosales de plomo Minerales identificados por SEM: Cobres grises: Zn-tetrahedrita y argentotetrahedrita Sulfosales de plata: polibasita Sulfosales de plomo: boulangerita y bournonita Plata aurífera (73% Ag y 27% Au)
2019-MT-001B

Minerales: esfalerita (ef) + pirita (py) + galena (gn) \pm cobres grises (CGRs) \pm calcopirita (cpy)

± magnetita (mt)

Cristales anhedrales a subhedrales de pirita de hábito cúbico, microfracturados y reemplazados por galena y esfalerita masiva desde sus bordes, intersticios y microfracturas. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + pirita (py) + galena (gn) \pm calcopirita (cpy) \pm cobres grises (CGRs) Esfalerita masiva con inclusiones de cristales anhedrales a subhedrales de pirita, calcopirita y galena. Además, la galena contiene cristales anhedrales de calcopirita y cobres grises. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-003A

Minerales: esfalerita (ef) + pirita (py) + calcopirita (cpy) ± cobres grises (CGRs) ± galena (gn) ± arsenopirita (apy)

Cristales anhedrales a subhedrales de pirita microfracturados y reemplazados por esfalerita y calcopirita a través de sus intersticios y microfracturas. Además, se observan cobres grises con relictos de galena en esfalerita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + cobres grises (CGRs) + pirita (py) ± calcopirita (cpy) ± galena (gn) ± arsenopirita (apy)

Esfalerita masiva con inclusiones de cristales subhedrales de pirita y arsenopirita, y reemplazada por calcopirita desde sus microfracturas. Además, se observan cobres grises y galena como relictos en esfalerita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + calcopirita (cpy) + pirita (py) \pm galena (gn) \pm cobres grises (CGRs)

\pm magnetita (mt)

Cristales anhedrales a subhedrales de pirita reemplazados por esfalerita y calcopirita. A su vez, la calcopirita ha reemplazado a la esfalerita desde sus bordes. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-006A

Minerales: esfalerita (ef) + pirita (py) + cobres grises (CGRs) ± calcopirita (cpy) ± galena (gn) ± arsenopirita (apy) ± covelita (cv)

Esfalerita masiva con inclusiones de cristales anhedrales a subhedrales de arsenopirita, pirita, galena y cobres grises. Adicionalmente, se observan granos subredondeados a irregulares de calcopirita, galena, cobres grises y esfalerita en porosidad de pirita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-006B

Minerales: esfalerita (ef) + pirita (py) \pm calcopirita (cpy)

Esfalerita masiva con inclusiones de pirita, calcopirita y gangas. Por sectores, los cristales de pirita han sido reemplazados por esfalerita desde sus bordes. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + pirita (py) + calcopirita (cpy) \pm arsenopirita (apy) \pm cobres grises (CGRs)

Cristales subhedrales a anhedrales de pirita reemplazados por esfalerita y calcopirita a partir de sus intersticios y microfracturas. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + pirita (py) + calcopirita (cpy) \pm arsenopirita (apy)

Cristales anhedrales a subhedrales de pirita reemplazados por esfalerita; esta última que por sectores contiene diseminaciones finas de calcopirita. También se observan pequeños cristales de arsenopirita incluidos en esfalerita y calcopirita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: pirita (py) + calcopirita (cpy) + esfalerita (ef) \pm galena (gn) \pm sulfosales de plata (SFSs_Ag) \pm cobres grises (CGRs)

Cristales anhedrales a subhedrales de pirita microfracturados y reemplazados por esfalerita con finas diseminaciones orientadas de calcopirita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-011A

Minerales: calcopirita (cpy) + pirita (py) + esfalerita (ef) \pm pirrotina (po) \pm arsenopirita (apy)

 \pm sulfosales de plata (SFSs_Ag) \pm cobres grises (CGRs)

Cristales anhedrales a subhedrales de pirita reemplazados por esfalerita y calcopirita. A su vez,

la calcopirita presenta diseminaciones de pirrotina.

2019-MT-011B

Minerales: calcopirita (cpy) + pirita (py) + esfalerita (ef) ± arsenopirita (apy) ± plata aurífera (Ag, Au)

Cristales anhedrales a subhedrales de pirita reemplazados por esfalerita y calcopirita. A su vez, la calcopirita presenta diseminaciones de pirrotina y arsenopirita. De manera local, se observan pequeños cristales anhedrales $< 5 \mu m$ de plata aurífera en microfracturas de un cristal de arsenopirita y acompañado de calcopirita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-012A

Minerales: calcopirita (cpy) + pirita (py) + esfalerita (ef) \pm magnetita (mt) \pm cobres grises (CGRs) \pm cubanita (cub)

Cristales anhedrales de pirita reemplazados por esfalerita y a su vez por calcopirita. Por sectores, la esfalerita también presenta diseminaciones de calcopirita. Además, diseminaciones de magnetita se observan en calcopirita; esta última exhibiendo maclas de transformación. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-012B

Minerales: calcopirita (cpy) + pirita (py) + esfalerita (ef) \pm magnetita (mt) \pm cubanita (cub) Cristales anhedrales de pirita reemplazados por esfalerita y a su vez por calcopirita. Por sectores, la esfalerita también presenta diseminaciones de calcopirita. Además, diseminaciones de magnetita y exsoluciones de cubanita se observan en calcopirita; esta última con maclas de transformación. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-012C

Minerales: calcopirita (cpy) + pirita (py) + esfalerita (ef) \pm magnetita (mt) \pm cubanita (cub) Cristales anhedrales de pirita reemplazados por esfalerita y a su vez por calcopirita. Por sectores, la esfalerita también presenta diseminaciones de calcopirita. Además, exsoluciones de cubanita se observan en calcopirita; esta última mostrando maclas de transformación.

2019-MT-015A

Minerales: esfalerita (ef) + pirita (py) + calcopirita (cpy) \pm cobres grises (CGRs) \pm arsenopirita (apy) \pm pirrotina (po) \pm galena (gn)

Esfalerita masiva con inclusiones de pirita y arsenopirita, y reemplazada por calcopirita y cobres grises desde sus bordes. Además, se observan cristales de hábito prismático curvados diseminados en la muestra. Localmente, se observan granos subredondeados de galena y calcopirita en porosidad de pirita. Las gangas (GGs) están constituidas principalmente por micas, baritina, cuarzo y carbonatos.

2019-MT-015B

Minerales: esfalerita (ef) + pirita (py) + calcopirita (cpy) \pm arsenopirita (apy) \pm cobres grises (CGRs)

Cristales anhedrales a subhedrales de pirita reemplazados por esfalerita y calcopirita en bordes y a través de microfracturas. Además, se observan cristales subhedrales de arsenopirita incluidos en calcopirita. Las gangas (GGs) están constituidas principalmente por micas, baritina, cuarzo y carbonatos.

Minerales: esfalerita (ef) + galena (gn) + pirita (py) \pm sulfosales de plomo (SFSs_Pb) \pm magnetita (mt) \pm cobres grises (CGRs)

Esfalerita masiva y galena con inclusiones de magnetita y pirita. Localmente, la pirita presenta forma esquelética. La galena a su vez contiene inclusiones de cobres grises y sulfosales de plomo. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

Minerales: esfalerita (ef) + pirita (py) \pm calcopirita (cpy)

Cristales anhedrales de pirita reemplazados por esfalerita.

Minerales: esfalerita (ef) + pirita (py) + galena (gn) \pm cobres grises (CGRs) \pm sulfosales de plomo (SFSs_Pb)

Agregados de gangas (GGs), principalmente cuarzo y carbonatos, con inclusiones de cristales anhedrales de pirita, reemplazados por galena, cobres grises y esfalerita.

Minerales: pirita (py) + esfalerita (ef) + calcopirita (cpy) ± arsenopirita (apy) ± cobres grises (CGRs) ± pirrotina (po)

Cristales de anhedrales a subhedrales de pirita reemplazados por esfalerita y calcopirita desde sus bordes e intersticios. También, se observan cristales de arsenopirita reemplazados por esfalerita y diseminados en calcopirita. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-022A

Minerales: esfalerita (ef) + pirita (py) + galena (gn) ± calcopirita (cpy) ± cobres grises (CGRs) Esfalerita masiva con inclusiones de pirita y, porosidad y microfracturas rellenas por galena. También, se observan proporciones mucho menores de calcopirita y cobres grises en galena. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-022B

Minerales: esfalerita (ef) + pirita (py) + galena (gn) \pm calcopirita (cpy) \pm arsenopirita (apy) \pm cobres grises (CGRs) \pm sulfosales de plomo (SFSs_Pb)

Esfalerita masiva con inclusiones de pirita; esta última con microfracturas rellenas por galena. También, se observan proporciones mucho menores de calcopirita, arsenopirita, cobres grises y sulfosales de plomo en galena. Las gangas (GGs) están constituidas principalmente por cuarzo y carbonatos.

2019-MT-026A

Minerales: esfalerita (ef) + pirita (py) + galena (gn) + cobres grises (CGRs) ± calcopirita (cpy) ± arsenopirita (apy) ± sulfosales de plomo (SFSs_Pb)

Esfalerita masiva con inclusiones de pirita y, esta última con porosidad y microfracturas rellenas por galena. Localmente, la esfalerita presenta finas diseminaciones orientadas de calcopirita. Adicionalmente, se observan proporciones mucho menores de calcopirita y cobres grises en galena y esfalerita. Las gangas (GGs) están constituidas principalmente por micas, baritina, cuarzo y carbonatos.

2019-MT-026B

Minerales: esfalerita (ef) + pirita (py) + galena (gn) ± cobres grises (CGRs) ± calcopirita (cpy) ± arsenopirita (apy)

Esfalerita masiva con inclusiones de pirita y, esta última con porosidad y microfracturas rellenas por galena. Localmente, la esfalerita presenta finas diseminaciones orientadas de calcopirita. Adicionalmente, se observan proporciones mucho menores de galena y cobres grises en esfalerita. Las gangas (GGs) están constituidas principalmente por micas, baritina, cuarzo y carbonatos.

Anexo C

Mineralogía adicional en María Teresa obtenida por análisis de SEM-EDS.

MUESTRA 2019-MT-009 Nombre: Polibasita

Element	norm. C [wt.%]	Atom. C [at.%]	Error	(3	Sigma) [wt.%]
Silver	62.83	43.12			 5.77

Silver	62.83	43.12	5.77
Sulfur	17.17	39.64	2.04
Antimony	10.90	6.63	1.66
Copper	9.11	10.62	1.78

100.00 Total: 100.00

Spectrum: Objects 5155

MUESTRA 2019-MT-011B Nombre: Plata aurífera

Spectrum: Objects 5166

Element	norm. C [wt.%]	Atom. C [at.%]	Error	(3	Sigma) [wt.%]
Silver Gold	72.65 27.35	82.91 17.09			6.23 4.75
	100 00	100 00			

Total: 100.00 100.00

MUESTRA 2019-MT-024 Nombre: Boulangerita

Spectrum: Objects 5162

Element	norm. C	Atom. C	Error	(3	Sigma)
	[wt.%]	[at.%]			[wt.%]
Sulfur	16.31	51.87			2.12
Antimony	20.12	16.85			2.70
Lead	63.57	31.28			11.76
- · · · ·	100 00	100 00			

Total: 100.00 100.00

MUESTRA 2019-MT-025 Nombre: Bournonita (impureza: As)

Spectrum:	Objects	5170
-----------	---------	------

Element	norm. C [wt.응]	Atom. C [at.%]	Error	(3 Sigma) [wt.%]
Sulfur	18.14 21 54	45.42 14 21		2.08
Copper Lead	14.74	18.62		2.04
Arsenic	5.97	6.40		1.80
Total:	100.00	100.00		

MUESTRA 2019-MT-025 Nombre: Zn-tetrahedrita

Spectrum: Objects 5175

Element	norm. C [wt.%]	Atom. C [at.%]	Error	(3 Sigma) [wt.%]
Antimony Sulfur Copper Zinc Silver	27.25 24.73 39.04 7.86 1.12	12.86 44.33 35.31 6.91 0.59		2.80 2.83 4.14 1.56 0.39
Total:	100.00	100.00		

MUESTRA 2019-MT-025 Nombre: Argentotetrahedrita

Spectrum	: Objects	5171		
Element	norm. C [wt.%]	Atom. C [at.%]	Error	(3 Sigma) [wt.%]
Copper Sulfur Silver Antimony Arsenic Zinc Iron	27.48 23.47 17.50 17.85 6.20 6.25 1.26	25.84 43.72 9.69 8.76 4.94 5.71 1.34		3.67 2.86 2.26 2.30 2.33 1.63 0.54
Total:	100.00	100.00		

132

Anexo D

Resultados de EPMA

ESFALERITA

					Límite de detección >	0.12	0.15	0.07	0.18	0.44	0.23	0.1	0.07	0.06	0.05	0.06	0.05	0.05	
Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-ef-001	0.1289	0.0062	33.46	0.2548	0	0	0	64.29	0	2.41	0.4341	0	0	100.984
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-ef-002	0	0	33.76	0.1198	0	0	0	63.5	0	3.57	0.4171	0.0007	0	101.3676
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo C-ef-001	0	0	33.55	0.0874	0	0	0	64.22	0	3.02	0.3801	0	0.0064	101.2639
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo C-ef-002	0.0028	0	33.39	0.0895	0	0	0	63.21	0	3.71	0.342	0.0352	0.0054	100.7849
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo B-ef-001	0.0155	0	33.3	0.157	0	0.0066	0	62.93	0	3.56	0.4223	0	0.0161	100.4075
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo A-ef-001	0.0423	0	33.69	0.0101	0	0	0	59.55	0.0338	5.77	0.285	0	0	99.3812
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo A-ef-002	0.0081	0.0245	33.94	0	0	0	0	59.56	0.0338	5.78	0.2296	0	0.0064	99.5824
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo B-ef-001	0	0.0623	33.89	0.0071	0	0	0	59.45	0.0115	5.67	0.2656	0.0135	0	99.37
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo B-ef-002	0	0.0686	33.57	0.0369	0	0	0	59.29	0	5.75	0.2347	0.0242	0	98.9744
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo C-ef-001	0	0	33.7	0	0	0	0	59.16	0	5.82	0.2619	0.0284	0	98.9703
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo C-ef-002	0	0	33.45	0.2036	0	0	0	59.41	0.0286	5.65	0.3062	0	0	99.0484
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo A-ef-001	0.016	0	33.55	0	0.0091	0.0113	0	64.32	0.0261	2.22	0.6148	0	0	100.7673
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo A-ef-002	0	0	33.48	0.048	0	0	0	64.52	0	2.13	0.6079	0	0	100.7859
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo B-ef-001	0.0534	0	33.03	0.0489	0	0.0141	0.0058	64.58	0.0245	2.29	0.5852	0	0	100.6319
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-ef-001	0.0409	0.0498	33.11	0.251	0	0	0	64.15	0.0122	2.04	0.6544	0	0	100.3083
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-ef-002	0	0.0315	34.09	0	0	0	0	64.27	0.036	2.23	0.6938	0.0014	0	101.3527
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo A-sl-001	0	0.0815	32.57	0.3431	0	0	0	64.33	0.0476	1.26	0.4847	0.0235	0	99.1404
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo A-sl-002	0	0.1305	33.19	0.2297	0	0	0	64.99	0.0612	1.35	0.4575	0	0	100.4089
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-001	0.0298	0.1168	33.24	0.1035	0.005	0	0	65.12	0.0409	1.4	0.5046	0.0084	0	100.569
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-002	0.0382	0	33.21	0	0	0.0141	0	64.94	0.0395	1.35	0.4857	0.011	0	100.0885
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-003	0	0.056	33.13	0.1122	0	0	0	64.79	0.0935	1.42	0.4462	0	0	100.0479
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo C-sl-001	0.0808	0.081	32.98	0.0596	0	0	0	64.71	0.0434	1.42	0.4908	0	0	99.8656
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo C-sl-002	0.0213	0.1495	33.17	0.1423	0	0	0	64.78	0.0396	1.4	0.5054	0.0091	0	100.2172
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo A-sl-001	0	0.0019	32.58	0.249	0	0	0	64.13	0.008	1.8	0.4205	0	0	99.1894
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo A-sl-002	0.0032	0	32.99	0.2538	0	0	0	64.15	0.0008	2.25	0.3404	0	0.0048	99.993
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-001	0.0813	0.0429	32.92	0	0	0.0246	0	63.95	0.0061	2.53	0.42	0	0.0063	99.9812
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-002	0	0	33	0.1602	0	0	0	63.83	0.0077	2.42	0.3383	0.0552	0	99.8114
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-003	0.0142	0	33.09	0.2069	0	0	0	63.23	0.0325	3.1	0.354	0.002	0	100.0296
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo C-sl-001	0	0.0253	32.77	0.0441	0	0.0318	0	63.65	0	3	0.363	0	0	99.8842
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo C-sl-003	0	0	32.9	0.0506	0	0	0	63.26	0.0218	2.79	0.4124	0.0042	0.0189	99.4579
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo C-sl-001	0	0	32.87	0.1476	0	0	0	56.79	0.3389	7.92	0.2933	0	0.0065	98.3663
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo C-sl-002	0.0327	0	33.39	0.1331	0	0	0	57.25	0.0532	7.81	0.3033	0.0471	0	99.0194
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-sl-001	0	0.0748	33.48	0.1104	0	0.0315	0	56.95	0.2984	7.87	0.3344	0	0	99.1495
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-sl-002	0	0.0403	33.18	0.1156	0	0	0	57.99	0.0316	7.32	0.2993	0	0	98.9768
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-sl	0	0.0312	33.49	0.2567	0	0	0	65.11	0.0333	1.42	0.3135	0.0092	0	100.6639
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo B-sl	0.012	0	33.06	0.0611	0	0	0	63.91	0.0622	2.49	0.477	0.0167	0	100.089
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo A-ef	0.0512	0	33.06	0.2004	0	0	0	63.51	0.0649	2.78	0.4022	0.0237	0	100.0924
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo B-ef	0.0053	0.004	32.74	0.1017	0	0	0	63.63	0.0348	2.91	0.4614	0	0	99.8872

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-sl-001	0	0	34.12	0.045	0	0.0018	0	58.94	0.0044	6.07	0.2441	0	0	99.4253
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-sl-002	0	0.0844	32.84	0.072	0	0	0	59.15	0.0111	6.01	0.2472	0	0	98.4147
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo D-sl-001	0.1144	0.0095	33.05	0.1044	0	0	0	59.21	0.0156	5.96	0.2847	0.0067	0	98.7553
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo D-sl-002	0	0	33.23	0.1584	0	0	0	59.4	0.0228	5.95	0.2179	0	0	98.9791
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo E-sl-001	0	0	33.56	0.1299	0	0	0	59.6	0	6.01	0.2617	0	0.0273	99.5889
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo E-sl-002	0.0762	0	33.56	0.0004	0	0.0163	0	59.3	0.0378	5.74	0.2781	0	0	99.0088
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-sl-001	0.0467	0	33.76	0	0	0.0228	0	59.11	0.0172	6.17	0.2658	0.0213	0.0023	99.4161
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-sl-002	0.0493	0	33.23	0	0	0.0056	0	58.99	0.0326	6.16	0.2622	0.0036	0	98.7333
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo B-sl-001	0	0.0585	33.66	0	0	0	0	58.96	0	6.14	0.3128	0	0.0256	99.1569
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo B-sl-002	0.1407	0	33.5	0	0	0	0	58.99	0.0394	6.24	0.2585	0	0.0157	99.1843
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo C-sl-001	0	0	32.93	0.1399	0	0	0	60.91	0.0041	5.84	0.2572	0	0	100.0812
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo C-sl-002	0.0606	0.0632	33.49	0.3015	0	0	0	60.84	0.024	5.77	0.3005	0	0	100.8498
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo D-sl-001	0	0	33.31	0.1856	0	0	0	61.12	0	5.93	0.2637	0.0045	0	100.8138
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo D-sl-002	0	0.0322	33.46	0.0892	0	0	0.0037	60.99	0.0022	5.71	0.3075	0	0	100.5948
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo A-sl-001	0	0	32.84	0.2114	0	0	0	60.45	0.0385	5.73	0.2973	0.0064	0	99.5736
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo A-sl-002	0	0	33.08	0.0561	0	0	0	60.81	0.0037	5.87	0.2997	0.0234	0	100.1429
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo E-sl-001	0	0.0888	33.29	0	0	0	0	61.17	0	5.8	0.2838	0.0123	0	100.6449
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo E-sl-002	0	0.0566	33.35	0.1164	0	0.0073	0	61.28	0	5.78	0.3193	0	0	100.9096
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo B-sl-001	0	0	33.03	0.1313	0	0	0	60.83	0	5.72	0.2952	0	0.0088	100.0153
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo B-sl-002	0	0.0034	33.06	0.0127	0	0	0	61.1	0	5.66	0.2678	0	0	100.1039
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo D-sl-001	0.0369	0.0155	32.45	0.0197	0	0	0	63.86	0.0049	2.08	0.4231	0	0	98.8901
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo D-sl-002	0.0134	0.1463	32.73	0.0657	0	0.005	0	63.67	0.0347	2.04	0.4546	0	0.0252	99.1849
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-sl-001	0	0	32.74	0.0866	0	0	0	63.82	0.0153	2.06	0.4389	0.0212	0	99.182
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-sl-002	0	0	32.43	0.0419	0	0.005	0	64.27	0.0134	2.04	0.4154	0	0	99.2157
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-sl-001	0.0823	0	32.63	0.0882	0	0	0	63.81	0.0437	1.96	0.4232	0.001	0	99.0384
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-sl-002	0.0048	0	32.44	0.171	0	0	0	63.74	0.0116	2.03	0.4304	0	0	98.8278
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo B-sl-002	0.1363	0.0089	32.56	0.2096	0	0	0	63.73	0.047	1.98	0.4222	0	0	99.094
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo B-sl-001	0	0.0531	32.84	0.1917	0	0.0117	0	63.67	0.0134	2.03	0.4671	0	0	99.277
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo C-sl-001	0	0	33.26	0	0	0	0	65.92	0.0168	1.37	0.5046	0	0	101.0714
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo C-sl-002	0	0	33.03	0.0563	0	0.0184	0	65.89	0.0354	1.38	0.4908	0	0	100.9009
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-001	0.0129	0.0168	32.76	0	0	0	0	65.6	0.1865	1.91	0.4543	0.0297	0	100.9702
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-002	0	0.0095	33.43	0.2237	0	0.0121	0	66.33	0.0041	1.41	0.4863	0.0015	0	101.9072
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-003	0.032	0.0894	32.84	0	0	0	0	65.78	0	1.4	0.5041	0.0247	0	100.6702
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo B-sl-001	0.0414	0.0265	33.12	0.2627	0	0.0033	0	66.07	0.0048	1.36	0.5236	0	0	101.4123
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo B-sl-002	0.0262	0.0586	33.34	0	0	0	0	65.98	0	1.33	0.5062	0	0	101.241
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo D-sl-001	0.0086	0	33.26	0.0672	0	0.0157	0	66.24	0	1.37	0.4416	0.0118	0	101.4149
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo D-sl-002	0	0	33.18	0.0221	0	0	0	66.08	0	1.38	0.5194	0.0091	0	101.1906
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo C-sl-001	0.0013	0	33.1	0.1194	0	0.0128	0	62.83	0.0445	3.14	0.4348	0.0343	0	99.7171
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo C-sl-002	0.06	0.0572	33.14	0.2662	0	0	0	62.73	0.0314	3.12	0.3933	0.0212	0	99.8193
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo A-sl-001	0	0	33.4	0.201	0	0	0	62.59	0.0243	3.66	0.408	0	0	100.2833

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo A-sl-002	0	0.0449	34.17	0.2664	0	0	0	62.69	0.0011	3.54	0.3615	0	0	101.0739
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo B-sl-001	0	0.0174	33.57	0.2064	0	0.0527	0	62.49	0	3.23	0.4404	0	0	100.0069
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo B-sl-002	0	0.0227	33.61	0.0411	0	0	0	62.49	0.0228	2.72	0.3918	0.0148	0	99.3132
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo C-sl-001	0	0	32.87	0.0322	0	0	0	63.9	0.0056	2.93	0.3807	0.0008	0.011	100.1303
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo C-sl-002	0.0988	0.0139	33.28	0.0339	0	0	0	64.07	0.0086	3.01	0.3841	0.0223	0.005	100.9266
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo A-sl-001	0.0251	0	32.85	0	0	0	0	63.62	0.0071	2.95	0.3011	0.0104	0	99.7637
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo A-sl-002	0	0	32.73	0.1938	0	0	0	63.34	0	3.09	0.3455	0	0	99.6993
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo D-sl-001	0.0478	0	32.64	0.0159	0	0	0	64.35	0	2.86	0.3646	0	0	100.2783
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo D-sl-002	0.0054	0	32.8	0.151	0	0	0	63.96	0.0344	2.92	0.3355	0	0	100.2063
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo B-sl-001	0	0.0067	32.94	0.1024	0	0.0035	0	63.97	0.0247	3.15	0.3715	0	0.002	100.5708
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo B-sl-002	0	0.0712	33.02	0	0	0.0149	0.0152	63.95	0.0236	3.14	0.3839	0.0041	0	100.6229
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo E-sl-001	0.0226	0.0886	32.63	0.1884	0	0.0136	0	63.98	0.0112	3.08	0.3406	0.031	0	100.386
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo E-sl-002	0	0.0389	32.65	0.0907	0	0.0022	0	63.58	0	3.03	0.3676	0	0	99.7594
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-001	0.0375	0.0499	33.04	0	0	0	0	62.33	0	4.21	0.2805	0.0181	0	99.966
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-002	0	0.0893	33.29	0.1318	0.006	0	0	62.38	0.003	4.36	0.2818	0	0	100.5419
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-003	0	0.0281	33.29	0	0	0	0	62.65	0	4.12	0.2361	0.0153	0	100.3395
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-004	0.1211	0.0631	33.03	0.0245	0	0	0	62.4	0.0318	4.29	0.2909	0.0248	0.0067	100.2829
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo D-sl-001	0.0127	0	32.98	0.2048	0	0	0	61.6	0.0172	4.24	0.2983	0	0	99.353
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo D-sl-002	0	0.1475	33.08	0	0	0	0	62.07	0.0056	4.61	0.2577	0.0322	0	100.203
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo E-sl-001	0	0	33.34	0.2446	0	0.0019	0	62.33	0	4.37	0.2986	0.0017	0	100.5868
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo E-sl-002	0.0111	0	33.04	0	0	0	0	62.44	0.0112	4.34	0.2886	0.0143	0.0059	100.1511
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo A-sl-001	0.0211	0	32.78	0.0109	0	0.0023	0	61.69	0.0127	4.65	0.2708	0	0	99.4378
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo A-sl-002	0.0219	0.022	32.98	0.2013	0	0	0	61.61	0.0236	4.53	0.2875	0.0014	0.007	99.6847
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo B-sl-001	0.0512	0.1332	32.48	0	0	0	0	61.21	0	4.65	0.2677	0.0433	0	98.8354
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo B-sl-002	0.0059	0	32.7	0.0255	0	0	0	61.78	0.015	4.61	0.2317	0	0	99.3681
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo C-sl-001	0	0.0665	32.66	0.1006	0	0	0	61.32	0.0284	4.75	0.1956	0	0.0255	99.1466
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo C-sl-002	0	0	32.85	0	0	0	0	61.77	0.0413	4.69	0.2626	0	0	99.6139
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo D-sl-001	0.0474	0.0317	32.5	0	0	0	0	61.95	0	4.57	0.3081	0	0	99.4072
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo D-sl-002	0	0.0637	32.95	0.0353	0	0	0	61.68	0.0199	4.63	0.2485	0.0069	0.0028	99.6371
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-sl-001	0.0115	0.0116	32.18	0.3595	0	0	0	58.43	0.0413	7.71	0.3593	0	0	99.1032
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-sl-002	0.0287	0	32.63	0.0685	0	0	0	58.82	0.0828	7.47	0.386	0	0	99.486
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-sl-001	0	0.0652	32.34	0	0	0.0051	0	58.77	0.1219	7.54	0.2987	0	0	99.1409
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-sl-002	0	0.0619	32.78	0	0	0.0131	0	58.36	0.1364	7.7	0.2992	0	0	99.3506
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-sl-001	0.0168	0.0517	32.72	0	0	0	0	58.11	0	8.35	0.2838	0.0014	0.0005	99.5342
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-sl-002	0.0226	0.1242	32.65	0.1691	0	0	0	58.29	0.0633	8.37	0.3151	0.0007	0	100.005
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo C-sl-001	0.0724	0	33.91	0.2443	0	0.0134	0	60.16	0.0332	6.12	0.3104	0.0125	0.0139	100.8901
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo C-sl-002	0	0	33.92	0	0	0	0	60.15	0.0335	5.82	0.3313	0.0125	0	100.2673
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo E-sl-001	0	0.0033	33.74	0.1164	0	0	0	61.1	0.005	5.48	0.4429	0.0112	0	100.8988
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo E-sl-002	0.053	0.0078	33.78	0.1187	0	0	0	61.34	0.0284	5.29	0.308	0	0	100.9259
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo B-sl-001	0	0	33.77	0	0.0251	0.0223	0	61.38	0.0328	5.57	0.3554	0	0	101.1556

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo B-sl-002	0	0	33.98	0.0641	0	0.0049	0	61.24	0.0303	5.66	0.3718	0.0307	0	101.3818
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo D-sl-001	0	0	33.84	0.1107	0	0	0	61.18	0.0392	5.31	0.3417	0.0257	0	100.8473
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo D-sl-002	0	0.1475	33.69	0.167	0.0394	0	0	61.39	0.0573	5.34	0.3646	0.0087	0	101.2045
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo A-sl-001	0.0149	0	33.78	0.1196	0	0	0	60.53	0.0166	6.01	0.3954	0	0	100.8665
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo A-sl-002	0	0	33.84	0.2288	0	0	0	60.25	0.0151	6.23	0.3601	0	0	100.924
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo D-sl-001	0.0133	0.0449	32.86	0.1572	0	0	0	58.72	1.96	5.28	0.4172	0.0242	0	99.4768
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo D-sl-002	0.0412	0.1613	33.05	0.0241	0	0	0	60.41	0.5762	5.55	0.3115	0	0	100.1243
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo A-sl-001	0.0177	0.0084	33.19	0.2151	0	0	0	59.74	0.017	6.47	0.3575	0.0028	0	100.0185
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo A-sl-002	0	0.0709	32.97	0.1046	0	0	0	59.74	0.0295	6.33	0.3576	0	0	99.6026
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo B-sl-001	0.0373	0.0632	32.94	0.1117	0	0.0125	0	57.94	1.96	6.36	0.3744	0.0372	0	99.8363
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo B-sl-002	0.0873	0.0126	32.92	0.0613	0	0.0157	0	58.87	0.2561	6.71	0.3723	0	0.0011	99.3064
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo C-sl-001	0.0777	0.085	32.86	0.3086	0	0	0	59.19	0.0418	6.6	0.3196	0.0151	0	99.4978
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo C-sl-002	0.0444	0.0896	33	0.0586	0	0	0	59.36	0.0487	6.63	0.2743	0	0	99.5056
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo E-sl-001	0.0309	0.0682	33.12	0.1158	0	0	0	58.21	1.85	6.14	0.3722	0	0.0098	99.9169
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo C-sl-001	0.0238	0	33.13	0.2456	0	0	0	61.59	0.0212	5.2	0.5277	0	0.0195	100.7578
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo C-sl-002	0	0.0392	33.3	0.0317	0	0	0	61.53	0	5.16	0.5048	0.0011	0	100.5668
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo A-sl-001	0.1092	0	33.35	0.1367	0	0	0	60.8	0	5.31	0.5508	0	0	100.2567
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo A-sl-002	0.0582	0.1056	33.3	0.0258	0	0	0	61.68	0.0216	5.24	0.516	0.0028	0	100.95
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo B-sl-001	0	0.0673	33.28	0.1547	0	0.0009	0	61.42	0.0072	5.17	0.5073	0	0	100.6074
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo B-sl-002	0.0707	0.0724	33.55	0.0299	0	0	0	61.19	0.0331	5.16	0.5101	0.0077	0	100.6239
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo D-sl-001	0	0	33.19	0	0	0	0	61.28	0.0054	5.26	0.4718	0.0057	0	100.2129
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo B-sl-001	0	0	33.16	0.0689	0	0	0	61.73	0.0212	5.16	0.4558	0.0143	0	100.6102
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo A-sl-001	0	0.0609	33.09	0.1713	0	0	0	61.49	0.018	5.08	0.4785	0	0.0049	100.3936
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo C-sl-001	0.0627	0.0059	32.96	0.175	0	0.0469	0	61.55	0	5.15	0.4779	0.0074	0	100.4358
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo D-sl-001	0.0348	0	33.44	0.0612	0	0	0	61.4	0.0126	5.12	0.5815	0	0	100.6501
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo D-sl-002	0	0.0302	33.21	0	0	0	0	61.97	0	4.66	0.5758	0	0	100.446
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo A-sl-001	0.1369	0.0233	33.03	0.0789	0	0	0	64.85	0.0362	1.96	0.291	0.0472	0.0007	100.4542
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo A-sl-002	0.0075	0.0029	33.06	0.2406	0	0	0	64.28	0.0093	2.54	0.2592	0	0	100.3995
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo C-sl-001	0	0.0723	33.03	0.175	0	0	0	64.43	0	2.41	0.2182	0.008	0	100.3435
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo C-sl-002	0	0	33.71	0	0	0.0388	0	64.39	0.0197	2.4	0.2435	0	0.0131	100.8151
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo E-sl	0.0728	0.0492	33.49	0	0	0	0	64.85	0.0315	2.06	0.28	0	0	100.8335
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo A-sl	0.0398	0	32.42	0	0	0	0	63.1	0	2.39	0.3169	0.0265	0	98.2932
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo D-sl	0	0.0477	32.19	0.1094	0	0	0	63.03	0.0158	2.35	0.3039	0	0	98.0468
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo B-sl	0.0022	0	31.9	0.1512	0	0	0	63.36	0.0151	2	0.2872	0.0052	0	97.7209
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo A-sl-001	0.0106	0.036	33.41	0.1559	0	0.0169	0	55.74	0.0079	8.85	0.2075	0.001	0	98.4358
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo B-sl-001	0	0	32.86	0.1849	0	0	0	55.13	0	8.54	0.2302	0	0	96.9451
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo C-sl-002	0.0295	0	33.09	0.0911	0	0	0	55.74	0.0191	8.87	0.3071	0	0	98.1468
Palma	Palma	Palma		MPP901	MPP901-circulo A-sl-001	0	0.0149	32.87	0.0687	0	0	0	57.56	0.0116	8.05	0.2826	0	0	98.8578
Palma	Palma	Palma		MPP901	MPP901-circulo A-sl-002	0.0534	0.0013	33.29	0.0247	0	0	0	56.74	0.0284	8.61	0.2384	0	0	98.9862
Palma	Palma	Palma		MPP901	MPP901-circulo B-sl-001	0.0348	0.0621	33.17	0.0822	0	0	0	56.98	0	8.45	0.2484	0.0064	0.014	99.0479

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
Palma	Palma	Palma		MPP901	MPP901-circulo B-sl-002	0	0.1159	32.72	0.1536	0	0.0159	0	57.45	0	7.89	0.2381	0.0066	0	98.5901
Palma	Palma	Palma		MPP901	MPP901-circulo C-sl-001	0.0069	0.0054	33.01	0.1974	0	0	0	57.71	0.0131	7.97	0.2104	0.008	0	99.1312
Palma	Palma	Palma		MPP901	MPP901-circulo C-sl-002	0.0111	0.0704	32.79	0.104	0	0	0	58.54	0.0179	7.46	0.2625	0	0	99.2559
Palma	Palma	Palma		MPP901	MPP901-circulo D-sl-001	0.0074	0	32.88	0	0	0	0	57.59	0.0396	8.26	0.2822	0.0285	0	99.0877
Palma	Palma	Palma		MPP901	MPP901-circulo D-sl-002	0.0508	0.048	33.45	0.111	0	0	0	57.47	0.0445	8.47	0.2799	0	0.0212	99.9454
Palma	Palma	Palma		MPP902A	MPP902A-circulo A-sl-001	0.039	0.0982	32	0.1053	0	0.0086	0	61.65	0.0115	4.25	0.2655	0	0	98.4281
Palma	Palma	Palma		MPP902A	MPP902A-circulo A-sl-002	0.0446	0.1903	31.56	0.2744	0	0.0083	0	61.21	0	4.16	0.2326	0	0.0099	97.6901
Palma	Palma	Palma		MPP902A	MPP902A-circulo B-sl-001	0.1322	0.0855	31.63	0.2645	0	0	0	61.73	0	4.28	0.2546	0.0074	0	98.3842
Palma	Palma	Palma		MPP902A	MPP902A-circulo B-sl-002	0	0.0879	31.78	0	0	0	0	61.43	0.0375	4.22	0.2721	0.0351	0	97.8626
Palma	Palma	Palma		MPP902A	MPP902A-circulo C-sl-001	0	0	31.81	0.1589	0.0071	0.0089	0	61.9	0.0074	4.25	0.2823	0	0	98.4246
Palma	Palma	Palma		MPP902A	MPP902A-circulo C-sl-002	0	0	32.06	0.2176	0	0	0	61.51	0	4.35	0.2316	0.0157	0	98.3849
Palma	Palma	Palma		MPP902A	MPP902A-circulo D-sl-001	0	0.0227	31.63	0.1406	0	0	0	61.34	0.0071	4.28	0.1883	0	0	97.6087
Palma	Palma	Palma		MPP902A	MPP902A-circulo D-sl-002	0	0	31.79	0.1362	0	0	0	61.72	0.0234	4.29	0.1795	0.0014	0	98.1405
Palma	Palma	Palma		MPP902A	MPP902A-circulo E-sl-001	0.02	0	31.97	0.0313	0	0.0489	0	61.77	0.0234	4.34	0.2127	0.0083	0	98.4246
Palma	Palma	Palma		MPP902A	MPP902A-circulo E-sl-002	0	0	32.21	0	0	0.0106	0	61.67	0.0271	4.3	0.2441	0	0.0303	98.4921
Palma	Palma	Palma		MPP902B	MPP902B-circulo A-sl-001	0.0559	0	32	0.2036	0	0	0	61.92	0.0093	4.35	0.2161	0.0529	0	98.8078
Palma	Palma	Palma		MPP902B	MPP902B-circulo A-sl-002	0.0471	0	32.46	0.208	0	0.0052	0	62.12	0	4.37	0.1686	0	0	99.3789
Palma	Palma	Palma		MPP902B	MPP902B-circulo B-sl-001	0.2025	0	32.41	0.2328	0	0	0	62.05	0	4.4	0.2304	0	0	99.5257
Palma	Palma	Palma		MPP902B	MPP902B-circulo B-sl-002	0.0833	0	32.48	0.1321	0	0.0205	0	62.09	0.0019	4.4	0.2044	0	0	99.4122
Palma	Palma	Palma		MPP902B	MPP902B-circulo C-sl-001	0	0.012	32.27	0.0865	0	0.0054	0	62.02	0	4.44	0.2205	0.0472	0	99.1016
Palma	Palma	Palma		MPP902B	MPP902B-circulo C-sl-002	0.0049	0	32.33	0.0706	0	0	0	62.12	0.0052	4.49	0.1955	0	0.0247	99.2409
Palma	Palma	Palma		MPP902B	MPP902B-circulo D-sl-001	0	0	31.83	0.0246	0	0.0092	0	62.44	0	4.34	0.2226	0	0	98.8664
Palma	Palma	Palma		MPP902B	MPP902B-circulo E-sl-001	0	0.0006	32.44	0	0	0	0	62.51	0	4.36	0.2161	0.0027	0.0061	99.5355
Palma	Palma	Palma		MPP902B	MPP902B-circulo E-sl-002	0	0	32.51	0.1736	0	0	0	62.02	0.0334	4.41	0.2767	0	0.0154	99.4391
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo A-sl-001	0.0182	0.0504	33.35	0.0254	0	0	0	54.94	0.0244	9.99	0.348	0	0	98.7464
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo A-sl-002	0	0	33.45	0.1283	0	0.0002	0	54.33	0.0195	10.37	0.3645	0	0	98.6625
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo B-sl-001	0	-0	32.93	0	0	0.0009	0	52.83	0	9.31	0.3053	0.0107	0	95.3869
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo C-sl-001	0.0236	0.0831	33.29	0.0271	0	0	0	55.53	0	9.67	0.3405	0	0.0025	98.9668
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo C-sl-002	0.0257	0.0151	33.44	0.1298	0	0	0	55.12	0.0131	9.68	0.3158	0	0	98.7395
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo D-sl-001	0	0.046	33.62	0.0942	0	0	0	55.49	0	9.86	0.258	0	0	99.3682
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo D-sl-002	0	0.0172	33.16	0.2222	0	0	0	55.14	0	9.87	0.2741	0.0415	0	98.725
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo E-sl-001	0.0181	0.03	33.34	0.021	0	0	0	55.25	0.0007	9.89	0.3209	0.0014	0	98.8721
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo E-sl-002	0.0485	0	33.46	0.1006	0	0	0	54.93	0	9.87	0.3212	0.0326	0	98.7629
Perubar	Graciela	Graciela		MPP017	MPP017-circulo A-sl-001	0	0	33.05	0.0988	0	0.0086	0	57.29	0.0127	8.78	0.17	0.0368	0	99.4469
Perubar	Graciela	Graciela		MPP017	MPP017-circulo B-sl-001	0.0486	0	33.41	0.0086	0	0	0	57.36	0.0023	8.6	0.1129	0	0	99.5424
Perubar	Graciela	Graciela		MPP017	MPP017-circulo B-sl-002	0	0.0603	33.13	0.162	0	0.066	0	57.65	0	8.61	0.1292	0	0	99.8075
Perubar	Graciela	Graciela		MPP017	MPP017-circulo C-sl-001	0	0	33.6	0.0458	0	0.0301	0	57.76	0	8.55	0.1079	0	0	100.0938
Perubar	Graciela	Graciela		MPP017	MPP017-circulo D-sl-001	0.0545	0.078	33.12	0.144	0.0202	0	0	57.07	0.0258	8.72	0.1383	0.0077	0	99.3785
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo A-sl-001	0	0	32.36	0.069	0	0.0305	0	56.7	0	9.54	0.1046	0.0172	0	98.8213
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo A-sl-002	0.0452	0.0065	32.49	0.1049	0	0	0	55.97	0	9.92	0.0574	0	0.0016	98.5956
Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
------------	-------------	-------------	---------	----------	---------------------------	--------	--------	-------	--------	----	--------	----	-------	--------	-------	--------	--------	--------	----------
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo B-sl-001	0.0076	0	32.41	0.1056	0	0.023	0	55.77	0	10.05	0.1474	0	0	98.5136
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo C-sl-001	0	0.1317	32.47	0.1195	0	0	0	56.16	0.0138	9.58	0.127	0.0197	0	98.6217
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo C-sl-002	0.112	0	32.04	0.1395	0	0.0165	0	56.53	0	9.17	0.1365	0.019	0	98.1635
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo D-sl-001	0	0.0803	32.04	0.1803	0	0	0	55.66	0.0135	9.71	0.1204	0	0.0124	97.8169
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo D-sl-002	0.039	0	31.88	0.1387	0	0.0234	0	55.79	0.0272	9.86	0.0755	0.0103	0	97.8441
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo C-sl-001	0.0704	0.0098	33.35	0.0811	0	0	0	55.11	0	9.84	0.113	0.0119	0.0293	98.6155
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo C-sl-002	0.1297	0	33.84	0	0	0	0	55.05	0.0061	9.72	0.1074	0	0	98.8532
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo A-sl-001	0.0223	0	33.89	0.027	0	0	0	55.39	0.0244	9.7	0.121	0.0021	0	99.1768
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo D-sl-001	0	0	33.34	0.0667	0	0	0	55.03	0.0291	9.73	0.0635	0	0	98.2593
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo D-sl-002	0.0051	0	33.9	0.0013	0	0.0188	0	55.24	0.0267	9.67	0.0549	0	0	98.9168
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo E-sl-001	0.064	0	33.79	0.1614	0	0	0	55.15	0.0173	9.83	0.106	0	0	99.1187
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo E-sl-002	0.017	0	33.72	0.1379	0	0	0	54.73	0	10.07	0.0946	0	0.0205	98.79
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo A-sl-001	0.0759	0	32.86	0.0056	0	0	0	61.77	0	4.56	0.2726	0.0004	0	99.5445
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo A-sl-002	0.0398	0	33.02	0.2987	0	0	0	61.26	0.028	4.72	0.2736	0.0109	0	99.651
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo D-sl-001	0.0094	0	32.74	0.2154	0	0.0031	0	63.24	0.0075	3.1	0.2816	0.0227	0	99.6197
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo B-sl-001	0	0	33.14	0.2068	0	0	0	61.4	0.033	4.79	0.2654	0	0	99.8352
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo B-sl-002	0	0.044	32.58	0.1279	0	0	0	61.59	0.0208	4.71	0.2693	0.0102	0.0021	99.3543
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo C-sl-001	0.1129	0	33.11	0	0	0	0	61.63	0.0126	5.11	0.2827	0.0172	0	100.2754
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo C-sl-002	0.0831	0.0563	32.78	0	0	0.0459	0	61.7	0.0319	5.02	0.291	0.013	0	100.0212
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo C-sl-001	0	0	33.07	0.0524	0	0.0098	0	60	0	5.98	0.3717	0.0359	0	99.5198
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo C-sl-002	0	0.0574	32.93	0	0	0	0	60.38	0.0284	5.95	0.349	0.0309	0	99.7257
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo A-sl-001	0.0684	0	32.96	0.1508	0	0.03	0	59.98	0.0144	5.92	0.3215	0.0174	0	99.4625
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo A-sl-002	0.085	0	32.95	0.1706	0	0.0116	0	60.38	0.0213	5.9	0.3357	0.0064	0	99.8606
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo D-sl-001	0	0	32.99	0.1385	0	0	0	60.1	0.0119	5.92	0.3082	0.0111	0	99.4797
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo D-sl-002	0	0.015	32.98	0.0994	0	0	0	59.87	0	5.97	0.3008	0	0	99.2352
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo B-sl-001	0.0288	0	32.69	0.189	0	0.0085	0	59.91	0.0018	5.93	0.3162	0	0	99.0743
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo B-sl-002	0	-0	32.65	0.0392	0	0	0	60.09	0.041	5.75	0.3542	0	0	98.9244

ESFALERITA - APFU

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-ef-001	0.0010	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9422	0.0000	0.0413	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9223	0.0000	0.0607	0.0035	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo C-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9386	0.0000	0.0517	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo C-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9283	0.0000	0.0638	0.0029	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo B-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9267	0.0000	0.0614	0.0036	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo A-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8668	0.0000	0.0983	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo A-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8605	0.0000	0.0978	0.0019	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo B-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8602	0.0000	0.0960	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo B-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8661	0.0000	0.0983	0.0020	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo C-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8608	0.0000	0.0991	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-340	2019-MT-019	2019-MT-019-circulo C-ef-002	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8709	0.0000	0.0970	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo A-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9401	0.0000	0.0380	0.0052	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo A-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9450	0.0000	0.0365	0.0052	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo B-ef-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9588	0.0000	0.0398	0.0051	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-ef-001	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9501	0.0000	0.0354	0.0056	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-ef-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9245	0.0000	0.0376	0.0058	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo A-sl-001	0.0000	0.0000	1.0000	0.0016	0.0000	0.0000	0.0000	0.9685	0.0000	0.0222	0.0042	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo A-sl-002	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9602	0.0009	0.0233	0.0039	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9607	0.0000	0.0242	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9589	0.0000	0.0233	0.0042	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo B-sl-003	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9590	0.0014	0.0246	0.0038	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9621	0.0000	0.0247	0.0042	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-004	MT-004-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9577	0.0000	0.0242	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9652	0.0000	0.0317	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo A-sl-002	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9535	0.0000	0.0392	0.0029	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9526	0.0000	0.0441	0.0036	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9485	0.0000	0.0421	0.0029	0.0005	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo B-sl-003	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9370	0.0000	0.0538	0.0031	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9524	0.0000	0.0526	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006B	MT-006B-circulo C-sl-003	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9429	0.0000	0.0487	0.0036	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8472	0.0052	0.1383	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8408	0.0000	0.1343	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8341	0.0045	0.1349	0.0028	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8570	0.0000	0.1266	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-sl	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9533	0.0000	0.0243	0.0027	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo B-sl	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9479	0.0009	0.0432	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo A-ef	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9420	0.0010	0.0483	0.0035	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo B-ef	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9530	0.0000	0.0510	0.0040	0.0000	0.0000

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8471	0.0000	0.1021	0.0020	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8832	0.0000	0.1051	0.0021	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8785	0.0000	0.1035	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8765	0.0000	0.1028	0.0019	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8708	0.0000	0.1028	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8665	0.0000	0.0982	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8586	0.0000	0.1049	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8705	0.0000	0.1064	0.0023	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8589	0.0000	0.1047	0.0027	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo B-sl-002	0.0011	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8635	0.0000	0.1069	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9070	0.0000	0.1018	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo C-sl-002	0.0000	0.0000	1.0000	0.0014	0.0000	0.0000	0.0000	0.8908	0.0000	0.0989	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo D-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8998	0.0000	0.1022	0.0023	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8938	0.0000	0.0980	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9026	0.0000	0.1002	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9014	0.0000	0.1019	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9010	0.0000	0.1000	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9010	0.0000	0.0995	0.0027	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9031	0.0000	0.0994	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001B	2019-MT-001B-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9063	0.0000	0.0983	0.0023	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9650	0.0000	0.0368	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9539	0.0000	0.0358	0.0040	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9559	0.0000	0.0361	0.0038	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9718	0.0000	0.0361	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9589	0.0000	0.0345	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9635	0.0000	0.0359	0.0038	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo B-sl-002	0.0011	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9598	0.0000	0.0349	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo B-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9507	0.0000	0.0355	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9719	0.0000	0.0236	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9782	0.0000	0.0240	0.0042	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9819	0.0029	0.0335	0.0040	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9730	0.0000	0.0242	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo A-sl-003	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9822	0.0000	0.0245	0.0044	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9782	0.0000	0.0236	0.0045	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9704	0.0000	0.0229	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9766	0.0000	0.0236	0.0038	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-003A	2019-MT-003A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9766	0.0000	0.0239	0.0045	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9308	0.0000	0.0545	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo C-sl-002	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.9282	0.0000	0.0540	0.0034	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo A-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9189	0.0000	0.0629	0.0035	0.0000	0.0000

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo A-sl-002	0.0000	0.0000	1.0000	0.0012	0.0000	0.0000	0.0000	0.8996	0.0000	0.0595	0.0030	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo B-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9128	0.0000	0.0552	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9117	0.0000	0.0465	0.0033	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9533	0.0000	0.0512	0.0033	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9440	0.0000	0.0519	0.0033	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9497	0.0000	0.0515	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9490	0.0000	0.0542	0.0030	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9668	0.0000	0.0503	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9562	0.0000	0.0511	0.0029	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9523	0.0000	0.0549	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9497	0.0000	0.0546	0.0033	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo E-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9615	0.0000	0.0542	0.0030	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-006A	2019-MT-006A-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9549	0.0000	0.0533	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9251	0.0000	0.0731	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9189	0.0000	0.0752	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-003	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9228	0.0000	0.0710	0.0020	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo B-sl-004	0.0010	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9264	0.0000	0.0746	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo D-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9159	0.0000	0.0738	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9201	0.0000	0.0800	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo E-sl-001	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9167	0.0000	0.0752	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9267	0.0000	0.0754	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9228	0.0000	0.0814	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo A-sl-002	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.9160	0.0000	0.0788	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9241	0.0000	0.0822	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9264	0.0000	0.0809	0.0020	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9207	0.0000	0.0835	0.0017	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9221	0.0000	0.0820	0.0023	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9347	0.0000	0.0807	0.0027	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-008	2019-MT-008-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9179	0.0000	0.0807	0.0022	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0017	0.0000	0.0000	0.0000	0.8904	0.0000	0.1375	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8839	0.0013	0.1314	0.0034	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8911	0.0019	0.1338	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8730	0.0021	0.1348	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8709	0.0000	0.1465	0.0025	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8754	0.0010	0.1472	0.0028	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.8700	0.0000	0.1036	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8696	0.0000	0.0985	0.0028	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8880	0.0000	0.0932	0.0037	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8904	0.0000	0.0899	0.0026	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8913	0.0000	0.0947	0.0030	0.0000	0.0000

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8838	0.0000	0.0956	0.0031	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8865	0.0000	0.0901	0.0029	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8935	0.0000	0.0910	0.0031	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8787	0.0000	0.1021	0.0033	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015A	2019-MT-015A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.8731	0.0000	0.1057	0.0030	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8763	0.0301	0.0922	0.0036	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo D-sl-002	0.0000	0.0014	1.0000	0.0000	0.0000	0.0000	0.0000	0.8963	0.0088	0.0964	0.0027	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.8826	0.0000	0.1119	0.0031	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8885	0.0000	0.1102	0.0031	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8625	0.0300	0.1108	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8769	0.0039	0.1170	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0015	0.0000	0.0000	0.0000	0.8833	0.0000	0.1153	0.0028	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8821	0.0000	0.1153	0.0024	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8618	0.0282	0.1064	0.0032	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9116	0.0000	0.0901	0.0045	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9061	0.0000	0.0889	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8940	0.0000	0.0914	0.0047	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9083	0.0000	0.0903	0.0044	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9050	0.0000	0.0892	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8943	0.0000	0.0883	0.0043	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022A	2019-MT-022A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9054	0.0000	0.0910	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9129	0.0000	0.0893	0.0039	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9112	0.0000	0.0881	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9157	0.0000	0.0897	0.0041	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9004	0.0000	0.0879	0.0050	0.0000	0.0000
María Teresa	Calera	Sofia D	-540	2019-MT-022B	2019-MT-022B-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9150	0.0000	0.0805	0.0049	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo A-sl-001	0.0011	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9628	0.0000	0.0341	0.0025	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9534	0.0000	0.0441	0.0022	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9565	0.0000	0.0419	0.0019	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9367	0.0000	0.0409	0.0021	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo E-sl	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9495	0.0000	0.0353	0.0024	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo A-sl	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9544	0.0000	0.0423	0.0028	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo D-sl	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9602	0.0000	0.0419	0.0027	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo B-sl	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9740	0.0000	0.0360	0.0026	0.0000	0.0000
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8181	0.0000	0.1521	0.0018	0.0000	0.0000
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo B-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8227	0.0000	0.1492	0.0020	0.0000	0.0000
Palma	Palma	Palma		MPP900(3408)	MPP900(3408)-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8260	0.0000	0.1539	0.0026	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8587	0.0000	0.1406	0.0025	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8358	0.0000	0.1485	0.0020	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8424	0.0000	0.1462	0.0021	0.0000	0.0000

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
Palma	Palma	Palma		MPP901	MPP901-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8610	0.0000	0.1384	0.0021	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo C-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8573	0.0000	0.1386	0.0018	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8754	0.0000	0.1306	0.0023	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8589	0.0000	0.1442	0.0024	0.0000	0.0000
Palma	Palma	Palma		MPP901	MPP901-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8425	0.0000	0.1454	0.0024	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9447	0.0000	0.0762	0.0024	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo A-sl-002	0.0000	0.0017	1.0000	0.0013	0.0000	0.0000	0.0000	0.9511	0.0000	0.0757	0.0021	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo B-sl-001	0.0011	0.0000	1.0000	0.0013	0.0000	0.0000	0.0000	0.9570	0.0000	0.0777	0.0023	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9479	0.0000	0.0762	0.0024	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9542	0.0000	0.0767	0.0025	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9408	0.0000	0.0779	0.0021	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9510	0.0000	0.0777	0.0017	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9520	0.0000	0.0775	0.0016	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9474	0.0000	0.0779	0.0019	0.0000	0.0000
Palma	Palma	Palma		MPP902A	MPP902A-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9389	0.0000	0.0766	0.0022	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo A-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9489	0.0000	0.0780	0.0019	0.0005	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo A-sl-002	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9384	0.0000	0.0773	0.0015	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo B-sl-001	0.0016	0.0000	1.0000	0.0011	0.0000	0.0000	0.0000	0.9388	0.0000	0.0779	0.0020	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9374	0.0000	0.0778	0.0018	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9424	0.0000	0.0790	0.0019	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9422	0.0000	0.0797	0.0017	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9619	0.0000	0.0783	0.0020	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9449	0.0000	0.0772	0.0019	0.0000	0.0000
Palma	Palma	Palma		MPP902B	MPP902B-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9355	0.0000	0.0779	0.0024	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8078	0.0000	0.1720	0.0030	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.7965	0.0000	0.1780	0.0031	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.7867	0.0000	0.1623	0.0026	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8180	0.0000	0.1667	0.0029	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8083	0.0000	0.1662	0.0027	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8093	0.0000	0.1684	0.0022	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo D-sl-002	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.8154	0.0000	0.1709	0.0024	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8126	0.0000	0.1703	0.0027	0.0000	0.0000
Palma	Sta Lidia Project	Sta Lidia Project		MPP903	MPP903-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8050	0.0000	0.1693	0.0027	0.0000	0.0000
Perubar	Graciela	Graciela		MPP017	MPP017-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8500	0.0000	0.1525	0.0015	0.0000	0.0000
Perubar	Graciela	Graciela		MPP017	MPP017-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8419	0.0000	0.1478	0.0010	0.0000	0.0000
Perubar	Graciela	Graciela		MPP017	MPP017-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8533	0.0000	0.1492	0.0011	0.0000	0.0000
Perubar	Graciela	Graciela		MPP017	MPP017-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8430	0.0000	0.1461	0.0009	0.0000	0.0000
Perubar	Graciela	Graciela		MPP017	MPP017-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8450	0.0000	0.1511	0.0012	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8592	0.0000	0.1692	0.0009	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8447	0.0000	0.1753	0.0000	0.0000	0.0000

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo B-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8438	0.0000	0.1780	0.0013	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8481	0.0000	0.1694	0.0011	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8652	0.0000	0.1643	0.0012	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8519	0.0000	0.1740	0.0011	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8581	0.0000	0.1775	0.0007	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8103	0.0000	0.1694	0.0010	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo C-sl-002	0.0010	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.7977	0.0000	0.1649	0.0009	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8015	0.0000	0.1643	0.0010	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8094	0.0000	0.1675	0.0005	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.7990	0.0000	0.1637	0.0000	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo E-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8003	0.0000	0.1670	0.0009	0.0000	0.0000
Perubar	Rímac-D	Rímac-D		MPP-318A	MPP-318A-circulo E-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.7959	0.0000	0.1714	0.0008	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9218	0.0000	0.0797	0.0024	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo A-sl-002	0.0000	0.0000	1.0000	0.0014	0.0000	0.0000	0.0000	0.9097	0.0000	0.0821	0.0024	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo D-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9472	0.0000	0.0544	0.0025	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo B-sl-001	0.0000	0.0000	1.0000	0.0010	0.0000	0.0000	0.0000	0.9085	0.0000	0.0830	0.0023	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9270	0.0000	0.0830	0.0024	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9127	0.0000	0.0886	0.0024	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9230	0.0000	0.0879	0.0025	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo C-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8897	0.0000	0.1038	0.0032	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo C-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8991	0.0000	0.1037	0.0030	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo A-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8924	0.0000	0.1031	0.0028	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo A-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8986	0.0000	0.1028	0.0029	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo D-sl-001	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8933	0.0000	0.1030	0.0027	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo D-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.8902	0.0000	0.1039	0.0026	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo B-sl-001	0.0000	0.0000	1.0000	0.0009	0.0000	0.0000	0.0000	0.8987	0.0000	0.1041	0.0028	0.0000	0.0000
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo B-sl-002	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.9025	0.0000	0.1011	0.0031	0.0000	0.0000

CALCOPIRITA

					Límite de detección >	0.12	0.15	0.07	0.18	0.44	0.23	0.1	0.07	0.06	0.05	0.06	0.05	0.05	
Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo B-cpy-001	0	0.0613	34.63	0.1938	0	0.0406	0.002	0.0562	34.17	30.17	0	0.0113	0.0041	99.3393
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo B-cpy-002	0.0588	0	34.73	0	0	0.0557	0	0.0952	34.26	29.99	0	0.0025	0	99.1922
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-cpy-001	0.0517	0	34.51	0.0577	0	0.0196	0	0.1979	34.42	29.62	0	0	0	98.8769
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-cpy-001	0.0947	0.0065	34.9	0	0	0	0.0855	0.08	34.8	29.99	0	0	0	99.9567
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-cpy-002	0.069	0.0722	34.93	0	0	0.0132	0	0.073	34.58	30.22	0	0.0254	0	99.9828
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo C-cpy-002	0.0265	0.0274	35.27	0.1128	0.0009	0	0.0753	0.0538	34.51	30.49	0	0.0518	0	100.6185
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo C-cpy-001	0	0.0931	35.76	0.239	0	0	0	0.073	34.64	30.52	0	0.0629	0	101.388
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo A-cpy-001	0	0	34.91	0.0739	0	0	0	0.0348	34.73	29.9	0	0.0033	0	99.652
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo A-cpy-002	0.0529	0.0382	35.14	0.085	0	0.0353	0.0357	0.0653	35.19	29.9	0	0.0059	0	100.5483
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo A-cpy-001	0	0.002	35.06	0.0523	0	0.0156	0.0162	0.0523	34.68	30.26	0	0.0031	0	100.1415
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo A-cpy-002	0	0	34.78	0.0173	0	0.0146	0.0925	0.0888	34.63	30.03	0	0.0052	0	99.6584
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo B-cpy	0.0323	0	35.2	0.2369	0	0	0	0.0704	34.45	30.35	0	0.0119	0	100.3515
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo C-cpy-001	0.0462	0	35.03	0.2027	0	0.0447	0.0239	0.1096	34.72	30.08	0	0.0857	0	100.3428
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo A-cpy	0.0067	0	34.9	0.2355	0	0	0	0.0237	34.67	30.49	0	0.0213	0	100.3472
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo B-cpy	0	0.0439	34.81	0.1185	0	0	0	0.042	34.53	30.14	0	0.0126	0	99.697
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo C-cpy	0.0083	0.025	35.03	0.035	0	0	0.0051	0.0401	34.59	30.13	0	0	0	99.8635
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo D-cpy-001	0.0036	0	35.29	0.1337	0	0.0141	0.0264	0.0503	34.65	29.49	0	0	0	99.6581
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo D-cpy-002	0	0	34.99	0.3055	0	0	0.0269	0.0246	34.69	29.29	0	0	0.0005	99.3275
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo A-cpy-001	0	0	34.97	0.0301	0	0	0.0243	0.1109	35.18	29.29	0	0.0063	0	99.6116
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo A-cpy-002	0	0.1146	30.89	0.0123	0	0.0283	0	0.0959	24.39	17.48	0	0	0	73.0111
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-cpy-001	0.0213	0.0057	33.64	0.1234	0	0.0121	0	0.0555	35.27	29.43	0	0.0222	0	98.5802
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-cpy-002	0.0111	0	33.77	0.1463	0	0	0	0.094	35.16	29.37	0	0.0541	0	98.6055
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo A-cpy-001	0.0408	0.0171	33.28	0.1469	0	0.0258	0.0111	0.0688	34.72	29.27	0	0.0227	0.0055	97.6087
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo A-cpy-002	0.1331	0	33.92	0.3217	0	0.0353	0	0.061	34.73	29.25	0	0.0135	0	98.4646
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-cpy-001	0.066	0.1212	33.94	0.0819	0	0.0186	0	0.0594	35.06	29.7	0	0.0261	0.0163	99.0895
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-cpy	0.052	0	33.89	0.0919	0	0	0.0243	0.0641	34.83	29.65	0	0	0.0016	98.6039
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo E-cpy	0	0	34.79	0.0251	0	0.008	0	0.0328	34.97	29.8	0	0	0.0258	99.6517

CALCOPIRITA – APFU

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo B-cpy-001	0.0000	0.0000	2.0000	0.0017	0.0000	0.0000	0.0000	0.0000	0.9956	1.0002	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo B-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0027	0.9953	0.9914	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011B	MT-011B-circulo A-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0056	1.0063	0.9854	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0022	1.0061	0.9866	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo B-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.9989	0.9933	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo C-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9872	0.9925	0.0000	0.0009	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo C-cpy-001	0.0000	0.0000	2.0000	0.0021	0.0000	0.0000	0.0000	0.0020	0.9774	0.9798	0.0000	0.0010	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo A-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0038	0.9833	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012A	MT-012A-circulo A-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0104	0.9769	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo A-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9980	0.9909	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo A-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0025	1.0046	0.9913	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo B-cpy	0.0000	0.0000	2.0000	0.0021	0.0000	0.0000	0.0000	0.0020	0.9875	0.9899	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012B	MT-012B-circulo C-cpy-001	0.0000	0.0000	2.0000	0.0018	0.0000	0.0000	0.0000	0.0031	1.0000	0.9858	0.0000	0.0015	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo A-cpy	0.0000	0.0000	2.0000	0.0021	0.0000	0.0000	0.0000	0.0000	1.0023	1.0030	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo B-cpy	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0009	0.9941	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-012C	MT-012C-circulo C-cpy	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9963	0.9875	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo D-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9907	0.9594	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-005	2019-MT-005-circulo D-cpy-002	0.0000	0.0000	2.0000	0.0027	0.0000	0.0000	0.0000	0.0000	1.0003	0.9610	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo A-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0031	1.0150	0.9616	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-007	2019-MT-007-circulo A-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0030	0.7967	0.6497	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0579	1.0044	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo C-cpy-002	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0027	1.0505	0.9985	0.0000	0.0010	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo A-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0526	1.0097	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo A-cpy-002	0.0021	0.0000	2.0000	0.0029	0.0000	0.0000	0.0000	0.0000	1.0331	0.9900	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo D-cpy-001	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0423	1.0047	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-011A	2019-MT-011A-circulo B-cpy	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0370	1.0044	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-015B	2019-MT-015B-circulo E-cpy	0.0000	0.0000	2.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0142	0.9834	0.0000	0.0000	0.0000

GALENA

					Límite de detección >	0.12	0.15	0.07	0.18	0.44	0.23	0.1	0.07	0.06	0.05	0.06	0.05	0.05	
Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-gn	0.1173	0	12.8	87.06	0	0	0	0	0.0184	0	0.0567	0.0823	0	100.1347
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo B-gn	0.1538	0	13.11	85.57	0	0	0	0.0094	0	0	0	0.0494	0.0036	98.8962
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-gn	0.199	0.0184	13.28	87.47	0	0.0387	0	0.0137	0	0	0.048	0.0215	0	101.0893
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-gn-001	0.0774	0	12.98	85.45	0	0.0117	0.0549	0.0232	0.0287	0	0.0141	0	0	98.64
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-gn	0.1402	0	12.94	86.5	0	0	0	0.0362	0.0294	0.0186	0.0453	0	0	99.7097
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-gn	0.1463	0	12.89	84.69	0	0.0346	0	0.003	0.0128	0	0.0462	0.0895	0	97.9124
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-gn	0.1377	0	12.82	85.34	0	0.0218	0.0768	0	0	0	0.0232	0	0	98.4195
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo B-gn	0.3535	0	12.53	85	0	0.1578	0.0626	0.0099	0.017	0.0022	0.063	0	0	98.196
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo B-gn	0.1742	0	12.5	87.62	0	0.0391	0	0	0	0	0.0035	0.0798	0	100.4166
Perubar	Cecilia Sur	Cecilia Sur		MPP-517	MPP-517-circulo D-gn	0.3727	0	13.08	86.19	0	0.1449	0.0086	0	0.0175	0	0.0178	0	0	99.8315
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo C-gn	0.1635	0.0216	12.79	86.38	0	0.1284	0.0321	0.0128	0.0136	0.0108	0.0505	0	0	99.6033
Perubar	Cecilia Sur	Cecilia Sur		MPP-535	MPP-535-circulo A-gn	0.1891	0	12.92	86.43	0	0.1802	0	0.0305	0.0283	0	0.0049	0.013	0	99.796
GALENA	– APFU																		

GALENA – APFU

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Calera	Sofia D	-340	2019-MT-018	2019-MT-018-circulo A-gn	0.0000	0.0000	1.0000	1.0524	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo B-gn	0.0031	0.0000	1.0000	1.0099	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-500	2019-MT-020	2019-MT-020-circulo C-gn	0.0039	0.0000	1.0000	1.0191	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo A-gn-001	0.0000	0.0000	1.0000	1.0186	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-001A	2019-MT-001A-circulo C-gn	0.0029	0.0000	1.0000	1.0343	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo A-gn	0.0030	0.0000	1.0000	1.0166	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0021	0.0000
María Teresa	Calera	Sofia D	-300	2019-MT-002	2019-MT-002-circulo C-gn	0.0028	0.0000	1.0000	1.0300	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo B-gn	0.0074	0.0000	1.0000	1.0496	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0000	0.0000
Perubar	Juanita	Juanita		MPP317A	MPP317A-circulo B-gn	0.0037	0.0000	1.0000	1.0846	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0000
	Cecilia	Cecilia				~												
Perubar	Sur	Sur		MPP-517	MPP-517-circulo D-gn	0.0075	0.0000	1.0000	1.0196	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Cecilia	Cecilia																ĺ
Perubar	Sur	Sur		MPP-535	MPP-535-circulo C-gn	0.0034	0.0000	1.0000	1.0450	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Cecilia	Cecilia																
Perubar	Sur	Sur		MPP-535	MPP-535-circulo A-gn	0.0039	0.0000	1.0000	1.0351	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

COBRES GRISES

					Límite de detección >	0.12	0.15	0.07	0.18	0.44	0.23	0.1	0.07	0.06	0.05	0.06	0.05	0.05	
Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn	Total
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo D-CGR	6.73	0	27.62	0.1242	17.03	0	0	3.06	42.39	4.73	0	0.8811	0	102.5653
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo C-CGR	6.78	0	26.86	0.1826	16.56	0	0	3.7	41.42	4.08	0	0.6711	0.0195	100.2732

COBRES GRISES – APFU

Yacimiento	Sector	Cuerpo	Sección	Muestra	Análisis	Sb	In	S	Pb	As	Ga	Ge	Zn	Cu	Fe	Cd	Ag	Sn
María Teresa	Bubulina	Bubulina	1180	2019-MT-026A	2019-MT-026A-circulo D-CGR	0.8341	0.0000	13.0000	0.0000	3.4300	0.0000	0.0000	0.7063	10.0654	1.2780	0.0000	0.1233	0.0000
María Teresa	Bubulina	Bubulina	1180	2019-MT-026B	2019-MT-026B-circulo C-CGR	0.8640	0.0000	13.0000	0.0137	3.4298	0.0000	0.0000	0.8781	10.1134	1.1335	0.0000	0.0965	0.0000

Anexo E

Metadata del análisis de LA-ICP-MS de elementos traza en sulfuros pobres en Pb/As.

Laboratorio y Preparación de Muestras	
Nombre del laboratorio	Departamento de Ciencias de la Tierra, Instituto de Geoquímica y
	Petrología- ETH Zurich
Tipo de muestra/mineral	Sulfuro natural
Preparación de muestra	Fragmentos de muestra en soportes epoxi de 1 pulgada
Imagen	Microscopía óptica convencional + SEM-EDS
Sistema de ablación láser	
Marca, modelo y tipo	ASI (Resonetics) RESOlution S-155
Celda de ablación y volumen	Laurin Technic, celda de ablación S-155 de doble volumen, volumen
	efectivo de aprox. 1 cm ³
Longitud de onda del láser (nm)	193 nm
Ancho del pulso (ns)	25 ns
Fluencia (J.m ⁻²)	aprox. 2.5 J.cm ⁻²
Tasa de repetición (Hz)	3 Hz
Duración de ablación	25 s
Diámetro de spot (µm)	19 µm
Modo de muestreo/patrón	Ablación puntual estática
Gas portador	100% de He en la celda, gas de reposición de Ar combinado en embudo
- Francis	de ablación
Flujo de gas portador de la celda (L.min ⁻¹)	0.5 L.min ⁻¹
Instrumento ICP-MS	
Marca, modelo y tipo	Thermo Element XR, ICP-MS de sector magnético de colector individual
Introducción de muestra	Directo
Potencia de RF (W)	1275 a 1455 W (sintonizado diariamente)
Fluio de gas de reposición (L.min ⁻¹)	aprox 0.89 a 0.92 L min ⁻¹ de Ar (sintonizado diariamente) + 0.002 L min ⁻¹
	1 de N ₂
Sistema de detección	Triple (conteo de pulsos, analógico, Faraday), cruzado calibrado diariamente
Masas medidas (amu)	33, 34, 53, 55, 57, 59, 62, 65, 66, 71, 74, 75, 77, 95, 107, 111, 115, 118, 121, 125, 182, 197, 202, 205, 208, 209
Tiempo de integración por pico/tiempos de permanencia (ms)	25 ms excepto en amu 33, 34, 53, 55, 59, 62, 65 y 66 (11 ms)
Tiempo total de integración por punto(s) de	0.719 s
datos de salida	
Tiempo muerto (ns)	22
Tasa típica de oxidación (²⁴⁸ ThO ^{+/232} Th ⁺)	0.15%
Tasa típica de doble carga (Ba ⁺⁺ /Ba ⁺)	3.50%
Procesamiento de data	
Blanco de gas	25 s
Estrategia de calibración	Mass-1 utilizado como material de referencia principal para la
	cuantificación de elementos traza; polvo prensado de sulfuro UQAC-FeS- 1 (Savard 2018) y vidrios de silicato GSD-1G y NIST SRM610 como
	secundarios/validación.
Información del material de referencia	Mass-1 (Wilson et al. 2002)
	UQAC-FeS-1 (data no publicada de Savard 2018; ver también
	Baumgartner et al. 2020)
	GSD-1G (Guillong et al. 2005)
	NIST SRM610 (Jochum et al. 2011)
Paquete de procesamiento de datos	SILLS independiente v. 1.3.2 (Guillong et al. 2008)
utilizado/Corrección para LIEF	
Estándar interno para la cuantificación de	Concentraciones medidas de Zn (esfalerita) y Cu (calcopirita) con EPMA
elementos traza	

Anexo F

Metadata del análisis de LA-ICP-MS d	le elementos traza en	sulfuros ricos	en Pb/As
--------------------------------------	-----------------------	----------------	----------

Laboratorio y Preparación de Muestras	
Nombre del laboratorio	Departamento de Ciencias de la Tierra, Instituto de Geoquímica y Petrología- ETH Zurich
Tipo de muestra/mineral	Sulfuro natural
Preparación de muestra	Fragmentos de muestra en soportes epoxi de 1 pulgada
Imagen	Microscopía óptica convencional + SEM-EDS
Sistema de ablación láser	
Marca, modelo y tipo	Coherent (Lambda Physic) Compex Pro 102-F
Celda de ablación y volumen	Celda de ablación personalizada interna, hecha de plexiglas para soportes de epoxi de 1 pulgada
Longitud de onda del láser (nm)	193 nm
Ancho del pulso (ns)	25 ns
Fluencia (J.m ⁻²)	aprox. 2 J.cm ⁻²
Tasa de repetición (Hz)	3 Hz
Duración de ablación	aprox. 25 s
Diámetro de spot (µm)	30 µm
Modo de muestreo/patrón	Ablación puntual estática
Gas portador	100% de He in la celda, gas de reposición de Ar mezclado aguas abajo de la celda
Flujo de gas portador de la celda (L.min ⁻¹)	aprox. 1.0 L.min ⁻¹
Instrumento ICP-MS	
Marca, modelo y tipo	PerkinElmer NexION 2000, ICP-MS de cuadrupolo de colector individual
Introducción de muestra	Directo
Potencia de RF (W)	1550 W
Flujo de gas de reposición (L.min ⁻¹)	aprox. 1 L.min ⁻¹ de Ar (sintonizado diariamente)
Sistema de detección	Doble (conteo de pulsos, analógico), cruzado calibrado mensualmente en modo solución
Masas medidas (amu)	33, 34, 53, 55, 57, 59, 60, 65, 66, 71, 74, 75, 77, 95, 107, 111, 115, 118, 121, 125, 182, 197, 202, 205, 208, 209
Tiempo de integración por pico/tiempos de permanencia (ms)	30 ms excepto en amu 33, 34, 53, 55, 57, 59, 60, 65, 66 y 208 (10 ms)
Tiempo total de integración por punto(s) de datos de salida	0.585 s
Tiempo muerto (ns)	30
Tasa típica de oxidación (²⁴⁸ ThO ^{+/232} Th ⁺)	0.50%
Tasa típica de doble carga (Ba ⁺⁺ /Ba ⁺)	5.00%
Procesamiento de data	
Blanco de gas	aprox. 45 s
Estrategia de calibración	Mass-1 utilizado como material de referencia principal para la cuantificación de elementos traza; polvo prensado de sulfuro UQAC-FeS-1 (Savard 2018) y vidrios de silicato GSD-1G y NIST SRM610 como secundarios/validación.
Información del material de referencia	Mass-1 (Wilson et al. 2002) UQAC-FeS-1 (data no publicada de Savard 2018; ver también Baumgartner et al. 2020) GSD-1G (Guillong et al. 2005) NIST SRM610 (Jochum et al. 2011)
Paquete de procesamiento de datos utilizado/Corrección para LIEF	SILLS independiente v. 1.3.2 (Guillong et al. 2008)
Estándar interno para la cuantificación de elementos traza	Concentraciones medidas de Pb (galena) y Cu (tetrahedrita-tennantita, enargita) con EPMA

ESFALERITA

Anexo G

Resultados de LA-ICP-MS.

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-026A-Circulo A-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	518636.8674	3139.2831	13000.0907	<0.11661	<1.3252	129.9647	648500	51.4305	0.1558	5.1432	5.0076	0.2455	4.2306	5036.0857	93.5759	0.2953	0.5437	0.0166	736.5863	0.0081	1.8954	< 0.0036108
2019-MT-026A-Circulo A-ef - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	514458.8742	4746.8355	18665.5308	<0.11196	<1.2949	138.3411	642800	59.1636	< 0.12534	5.5935	4.5553	0.3102	4.5359	5044.0101	95.0594	1.6485	0.5354	0.0270	730.9148	0.0072	4.2724	< 0.0034096
2019-MT-026A-Circulo B-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	517467.9805	4571.7373	18702.2267	<0.11471	<1.3683	121.1609	642800	43.0973	< 0.12886	5.2620	5.2543	0.3288	3.1569	4964.4371	93.1017	3.2012	0.0477	0.0155	715.6251	0.0061	0.2061	< 0.003764
2019-MT-026A-Circulo C-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	516570.8457	4707.7339	18087.8106	<0.1452	<1.4696	174.1733	644300	53.9989	< 0.15396	5.8137	4.8381	0.2994	4.5530	4851.1663	98.6067	2.2714	0.3271	0.0204	744.7421	0.0080	0.9308	< 0.0046244
2019-MT-026A-Circulo C-ef - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	502061.7594	4491.7191	17551.1914	<0.1119	<1.4214	145.7778	643900	67.6562	< 0.12723	5.1559	5.2539	0.3350	3.8027	4760.9296	92.7325	1.5074	0.1527	0.0117	699.7779	0.0057	0.8200	< 0.0035675
2019-MT-026A-Circulo C-ef - 3	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	500232.3787	4584.8610	15613.8241	<0.1226	<1.3833	116.2742	643900	37.4556	< 0.13773	5.4259	5.0413	0.3562	5.1506	4820.7225	94.2952	0.3501	1.1124	0.0144	663.8587	< 0.0041418	4.0529	< 0.0040081
2019-MT-026B-Circulo A-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026B	489172.3964	4998.3362	18021.2401	<0.1115	<1.0825	118.2367	631000	82.2521	<0.12187	5.1371	4.2900	0.5095	4.2304	4809.8923	21.1231	1.2320	0.0913	0.0210	735.3183	0.0063	0.4983	< 0.0031445
2019-MT-026B-Circulo B-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026B	489751.4404	4402.7486	13737.5817	<0.14575	<1.7077	79.3173	630300	16.9208	< 0.16767	4.7450	4.2600	0.3585	3.3732	4804.4813	24.6097	0.8710	0.1681	0.0168	788.2930	< 0.0052757	0.6233	< 0.0044863
2019-MT-026B-Circulo B-ef - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026B	477503.1299	4940.2795	17452.8454	<0.11817	<1.3472	133.3835	633600	94.1569	<0.12931	5.0646	4.8934	0.7331	4.8137	4720.3343	22.0894	0.3502	0.8444	0.0155	703.7645	0.0061	4.2557	< 0.0038456
2019-MT-0011B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	479962.6569	2034.9703	58770.7818	< 0.076009	<1.1753	739.6315	569500	5.4683	0.1381	7.8888	5.9059	0.1597	23.7654	6996.0543	52.3813	1.2357	8.4614	0.0145	285.4149	0.8610	17.2677	1.6426
2019-MT-0011B-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	461600.3452	2096.8137	57296.0594	<0.09172	<1.564	226.7148	579900	6.3657	< 0.15594	7.9922	6.2060	0.1432	17.6387	7338.5362	54.2792	1.0262	7.2153	0.0173	301.2809	0.8815	12.6146	1.1470
2019-MT-0012C-Circulo A -ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012C	509829.9518	1109.5122	20926.7028	< 0.084574	<1.1896	50.7928	635100	3.0738	<0.12199	5.9954	14.3091	0.1239	19.7272	7226.1866	44.4125	0.1781	1.5731	0.0244	283.9028	0.0411	10.3983	0.8366
2019-MT-001A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	480272.3448	647.4704	42358.6610	<0.094691	< 0.98597	25.7429	589400	14.2709	<0.11936	5.7199	2.5248	0.0575	9.7640	5356.5961	4.0476	0.3166	5.5385	0.0226	438.3411	0.0302	4.1372	<0.0037319
2019-MT-001A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	485741.9665	654.3818	43074.0609	<0.084398	<0.92673	25.1480	591500	14.2576	0.1526	5.5394	1.6361	0.0781	10.6728	5304.3583	4.0686	0.2157	3.9165	0.0099	433.5398	0.0232	4.9757	0.0035
2019-MT-001A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	477859.6165	632.3065	43713.6994	< 0.090632	<0.79019	22.3261	589900	15.0418	<0.10634	5.6157	2.0395	0.0934	6.6278	5211.9891	4.1297	0.3159	2.1135	0.0094	420.5891	0.0124	2.0729	< 0.0033394
2019-MT-001A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	484061.3933	647.2227	42551.1588	<0.0907	<0.98627	23.3451	591100	14.5356	0.1668	5.6084	1.8830	0.0504	6.4545	5314.1642	3.9466	0.4928	0.3693	< 0.0079241	438.4027	0.0089	0.6444	< 0.003078
2019-MT-001A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	481755.0332	646.7808	44107.8334	<0.11635	<1.2653	25.9885	589900	12.1645	0.1627	5.5377	< 0.89592	0.0485	22.3498	5251.3957	4.1546	0.3820	9.2659	<0.011895	419.2491	0.0451	8.9963	< 0.0042431
2019-MT-001A-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	499108.3868	610.7908	43271.2923	<0.1033	<0.94242	23.0633	592100	15.9325	<0.11738	5.4926	1.6582		5.4082	5438.0394	4.4973	0.5443	1.2645	<0.0086851	463.5089	0.0102	1.6297	<0.0032315
2019-MT-001A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	490687.5906	598.2440	42100.3970	<0.085357	<0.91205	36.0779	594000	14.3287	0.2911	5.7927	2.0557	0.0552	14.4544	5315.1246	4.4061	0.6725	12.6363	0.0241	448.8531	0.0688	8.8062	0.0081
2019-MT-001A-Circulo E-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	495818.4514	633.3842	42249.7221	<0.087289	<0.81854	19.6697	596000	14.3237	<0.099561	5.5140	1.1609	0.0583	6.1561	5281.2807	4.3881	0.2120	2.8961	< 0.0078652	433.6537	0.0431	1.5986	< 0.0030611
2019-MT-001A-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	500898.0716	639.4514	42774.9446	<0.087779	<0.93512	25.0848	593000	14.8009	<0.10729	5.5142	1.3349	0.0648	15.5205	5285.6261	4.5158	0.2720	3.5537	0.0116	425.8118	0.0182	3.4735	< 0.0032895
2019-MT-001B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	497941.1885	561.6537	40733.3251	<0.087105	<1.1491	23.9160	604500	13.8452	0.1379	6.0463	2.4583	0.0658	7.6874	5289.2776	4.2358	0.3172	3.0243	< 0.0082255	453.5375	0.0173	3.2530	< 0.0036292
2019-MT-001B-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	495558.9441	558.0115	40445.6191	<0.11254	<1.064	23.8088	608100	13.5006	<0.12269	5.8651	2.3081	0.7486	8.1808	5071.7833	4.0812	0.3225	3.9842	< 0.0097824	429.8079	0.0218	4.1262	0.0063
2019-MT-001B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	499491.0189	591.3968	40319.7884	< 0.087354	<0.96889	28.5105	608300	13.1495	0.1162	5.7859	2.0302	0.0392	11.1581	5169.6478	4.1351	0.2762	12.9800	0.0089	429.5767	0.1356	7.3072	0.0065
2019-MT-001B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	496602.4765	592.0241	40397.7836	< 0.090653	<0.77869	23.5286	611000	13.4419	0.1495	5.7893	2.3548	0.0435	8.2437	5175.9293	4.1807	0.2343	3.2614	< 0.0088746	425.2728	0.0139	3.5823	< 0.0028926
2019-MT-001B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	508443.0465	589.2187	39044.6453	<0.10579	<1.0476	53.0048	609100	14.2271	<0.13127	5.4624	1.9987	< 0.02574	28.3209	5239.9497	4.3687	0.4873	24.0379	0.0238	439.4397	0.5199	24.1442	0.0215
2019-MT-001B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	493696.4346	578.7116	40634.7910	<0.091121	< 0.94443	27.0418	608400	13.6114	0.1510	5.7427	2.0779	0.0691	13.7678	5047.1480	4.3187	0.3317	7.4280	0.0166	408.4188	0.0506	10.0217	0.0056
2019-MT-001B-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	502237.7749	570.0268	40817.0852	< 0.085682	<1.0354	41.7379	611200	7.8652	< 0.10586	5.8443	1.7819	0.0522	21.4841	5238.8979	4.7079	0.3456	4.6845	< 0.0094396	410.4801	0.0848	8.8942	0.0055
2019-MT-001B-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	491304.3989	563.2387	38763.5939	<0.085786	<0.83393	25.9122	600900	13.5415	<0.09802	5.4112	2.0839	0.0623	12.8685	4896.1775	4.3883	0.2705	5.9532	0.0100	379.3255	0.0410	6.9005	0.0087
2019-MT-001B-Circulo E-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	511415.8136	558.1882	38229.5531	<0.12316	<1.4159	26.2208	611700	13.9558	<0.14482	5.5691	2.7674	0.0464	11.9412	5111.6230	4.2108	0.4217	4.1593	0.0187	427.5311	0.0247	5.0353	0.0055
2019-MT-001B-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	499630.5448	573.0797	40915.9651	<0.086371	<1.0055	27.3359	612800	14.0398	< 0.10054	5.4844	2.6103	0.0441	12.8809	5074.7885	4.3473	0.2763	1.7962	< 0.0086454	410.3585	0.0072	2.0386	0.0050
2019-MT-002-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	504479.5862	128.7006	15390.3044	< 0.094405	0.8675	82.7300	638200	37.4527	1.0466	5.9185	1.7976	0.0388	10.6107	6425.4302	52.9699	0.9507	0.8856	0.0229	379.3534	0.1625	6.5630	< 0.0033204
2019-MT-002-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	510977.4897	138.2206	15747.5338	<0.10701	<1.2356	79.8399	642700	38.0926	0.6752	6.4954	0.9687	0.2154	6.3854	6581.3321	54.2518	0.5550	1.2543	< 0.013261	408.7614	0.1067	3.0474	< 0.0042861
2019-MT-002-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	504417.2746	139.6533	15588.1933	<0.094136	<1.3822	73.9610	636700	37.3542	1.4501	5.7867	1.6831	0.0254	4.6676	6515.5598	48.2998	1.2517	0.1492	<0.01056	390.9091	0.1843	1.6570	< 0.0038058
2019-MT-002-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	507391.1296	139.2268	15417.2792	<0.096875	<1.2719	72.8000	637300	38.1163	1.1814	5.9122	1.3759	0.0419	6.5635	6621.0807	50.1595	0.4696	0.6596	0.0200	398.0626	0.0629	2.4401	< 0.0037214
2019-MT-002-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	491551.3919	138.5609	15917.6101	<0.11308	<1.5017	90.3186	638100	33.5488	1.3545	5.9804	1.2378	< 0.028569	8.2287	6398.2516	61.7528	1.6436	2.8868	0.0455	400.4243	0.3105	5.1683	< 0.0053898
2019-MT-002-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	497728.3516	136.3509	15246.9607	<0.10316	<1.3915	79.7144	637400	31.9422	0.9389	5.5016	1.2162	0.0328	6.5518	6641.9179	61.4409	0.4820	1.6565	< 0.012064	402.2842	0.0877	4.4840	0.0051
2019-MT-002-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	494852.2907	136.7662	15627.0464	< 0.092734	<1.2473	85.0113	638600	31.1193	1.1622	5.7421	1.6014	0.0339	4.5920	6592.1581	68.3858	1.1688	0.0343	<0.010415	391.9965	0.0951	0.5174	< 0.0039603
2019-MT-002-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	491933.7831	139.2824	15720.4660	< 0.087925	< 0.98259	76.9929	636700	28.4094	0.2193	6.2821	1.2603	0.0419	8.4129	6471.7143	69.1598	0.4035	8.3252	0.0136	381.4446	0.3124	8.6924	0.0052

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-003-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	499304.2051	107.0791	10129.1882	<0.098143	<0.94486	30.8712	656000	3.3310	< 0.12554	6.1400	0.9753	< 0.024397	4.6391	6989.5139	11.6707	0.2028	0.2165	0.0123	476.0378	0.4983	1.5269	< 0.0041249
2019-MT-003-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	509025.0956	194.9308	10737.1400	< 0.084408	<1.09	30.4742	663300	9.0132	1.4583	6.4094	1.1713	0.0567	3.6004	6996.9542	11.2085	0.2750	0.3775	<0.010001	468.2164	2.6767	3.5122	< 0.0033635
2019-MT-003-Circulo A-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-003	507134.4679	184.4690	10061.8793	< 0.13743	<1.611	30.4514	657800	8.7126	1.4088	6.1344	1.0185	0.0389	2.1765	6931.0352	10.5645	0.3382	< 0.038278	<0.014617	485.0138	4.1187	0.2551	< 0.0060171
2019-MT-003-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	496802.7967	146.4281	10586.1638	< 0.079269	<0.97243	35.7952	660700	10.8643	1.0082	6.0396	0.8350	0.0391	3.8354	6780.5431	11.1466	0.2255	0.1443	0.0150	443.4773	1.8785	3.5173	< 0.0035931
2019-MT-003-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	500298.9179	175.9147	10632.5118	< 0.094017	<1.013	29.0135	659800	11.1883	1.1491	6.2010	1.1020	0.3207	3.9375	6864.7069	11.5815	0.2583	0.1580	<0.011198	440.7524	1.6569	6.7566	< 0.004205
2019-MT-003-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	494217.6507	169.9356	10635.8871	< 0.098448	<1.1296	44.5370	659200	10.5997	0.6443	9.3027	1.0668	0.0467	5.0635	6906.4374	12.1429	0.2095	2.2967	0.0232	449.8038	4.0897	9.2665	< 0.0035909
2019-MT-003-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	494437.5332	150.6919	10777.0386	< 0.096251	<1.3654	37.9003	658900	10.5617	1.1088	6.8861	0.9922	0.0249	4.1454	6856.8046	11.7965	0.1493	0.9384	0.0181	448.2070	1.9815	5.2582	0.0045
2019-MT-003-Circulo C-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-003	498965.7740	168.9033	10560.8603	< 0.087887	<1.1529	32.5923	659800	10.5188	0.9241	6.6526	0.9893	0.0383	3.8186	7048.4074	12.2142	0.1792	0.5204	< 0.0098224	452.0584	2.0126	5.5336	< 0.0034284
2019-MT-003-Circulo C-ef - 4	María Teresa	Calera/Sofía D/-300	2019-MT-003	497564.8523	172.4077	10578.4224	< 0.090726	<1.1028	42.4791	658900	10.6471	0.6831	7.3727	0.8125	0.0322	4.5693	7114.0463	12.3750	0.1854	1.7968	0.0166	458.0215	3.9321	11.5864	< 0.0037524
2019-MT-003-Circulo C-ef - 5	María Teresa	Calera/Sofía D/-300	2019-MT-003	496243.3362	169.4944	10433.6533	<0.08519	< 0.9303	35.5712	658900	10.4540	0.2596	7.2189	0.6934	0.0414	4.4550	7039.9197	11.9423	0.1747	1.5124	0.0213	454.2795	2.5999	7.6801	0.0039
2019-MT-003-Circulo C-ef - 6	María Teresa	Calera/Sofía D/-300	2019-MT-003	502470.7277	185.9509	10774.5461	<0.099951	<1.3689	46.1191	658900	10.6514	0.2392	9.1623	< 0.6775	<0.02513	6.9170	7022.4081	12.2582	0.1965	7.7564	0.1088	463.1675	8.4208	11.7022	0.0060
2019-MT-003-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	507302.4647	188.7146	10835.5230	<0.091318	<1.1792	31.6073	662400	11.1372	0.7907	6.3806	1.3259	0.0305	3.2980	7184.5537	12.0754	0.1933	0.3264	< 0.010022	448.2592	1.7380	2.1265	< 0.0035887
2019-MT-003-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	504885.6897	164.2926	10447.5476	<0.086171	1.0124	47.4867	660800	11.0124	1.8417	7.0060	0.9269	0.0471	5.2249	6978.6566	12.2535	0.3205	0.7044	0.0206	434.1114	6.5011	9.7935	0.0057
2019-MT-004-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	507410.1846	247.4297	10283.3921	< 0.072021	<1.0845	332.0502	643300	30.5633	2.0636	5.8866	1.4319	0.0443	2.4027	7238.6691	404.5859	0.5781	< 0.033149	0.0171	458.1181	2.1976	0.0376	< 0.0052291
2019-MT-004-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	514704.7852	236.5315	9771.6277	<0.069539	<1.0674	342.3375	649900	31.1689	1.9865	5.9301	1.5303	0.0465	3.8564	7359.3414	415.0137	0.4724	< 0.030793	< 0.0098108	446.9319	1.3136	0.3709	< 0.0045344
2019-MT-004-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	513772.2651	250.7971	10654.3785	< 0.075296	<0.95962	312.5848	651200	30.2615	2.2370	6.0123	1.6755	0.0435	3.3210	7616.7802	395.5341	0.5495	0.0762	0.0147	473.3201	1.8810	0.2900	< 0.0051235
2019-MT-004-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	507706.0358	238.6666	10673.9521	<0.10092	<1.546	324.4855	649400	32.2767	2.3288	6.8930	1.8780	0.0510	3.2887	7489.7350	400.6310	0.4820	1.6052	0.0359	465.7806	1.9482	1.3544	< 0.0065735
2019-MT-004-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	486419.6595	237.3801	11509.7822	<0.10433	<1.4964	324.0297	647100	30.0601	2.1234	8.4627	<1.1175	0.0505	3.1238	7258.8688	405.1032	0.4429	0.7846	<0.014411	458.3506	1.8751	0.9777	< 0.0075154
2019-MT-004-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	511486.5756	233.9614	10378.2776	< 0.071523	<0.89285	326.6423	647800	31.8872	1.9823	6.0730	<0.78476	0.0338	4.4586	7584.7126	406.9180	0.4228	0.2508	0.0345	466.6778	1.4149	3.8761	< 0.0046508
2019-MT-005-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	491929.7211	2781.6052	27539.0529	5.1382	<1.083	30.0289	625900	8.9059	0.3342	6.0722	1.4896	0.4612	2.8567	7110.8668	12.2670	0.2273	0.0402	< 0.0093989	460.1268	0.2558	0.2110	< 0.0039022
2019-MT-005-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-005	494431.3698	2836.7076	27464.0277	4.8325	<1.1408	35.7225	626900	9.4756	0.2859	6.0954	1.6328	0.2064	3.1915	7050.4012	12.2071	0.2007	0.4704	<0.0091734	462.7554	0.2184	0.4818	0.0063
2019-MT-005-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	493857.9078	2773.5817	24725.7299	4.3261	<1.1313	35.7278	624900	10.5994	0.3272	5.7896	1.4664	0.3052	4.2419	7091.1558	12.2664	0.1687	0.4728	0.0191	463.3686	0.1789	1.0376	<0.0039578
2019-MT-005-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	492629.0041	2668.9616	24094.5315	5.7682	<1.3724	38.9920	628900	8.8220	0.2523	6.0130	1.6385	0.1849	6.9427	7087.9329	12.7292	0.1891	1.0314	<0.0099836	457.1542	0.4377	3.4854	< 0.0038207
2019-MT-005-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-005	484443.0642	2561.5637	24615.7759	5.7977	<1.3632	44.2575	627300	8.4340	0.3281	6.6592	1.5340	0.1642	10.9959	6938.0286	13.1309	0.2121	5.4521	0.0302	421.7074	4.2642	8.0366	0.0264
2019-MT-006A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006A	491249.9285	1053.5986	22519.7620	< 0.085343	<0.95618	35.6674	636200	7.8692	0.1513	5.5718	1.5475	0.2192	2.3497	5470.6909	27.0041	0.2867	1.0388	0.0109	318.4078	0.1421	1.9686	0.0030
2019-MT-006A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	498321.6457	1000.2822	21849.8983	< 0.080807	<0.83888	41.5911	633400	7.9258	0.3779	5.5138	1.6875	0.0979	2.7431	5448.5702	26.8375	0.4172	1.6546	0.0117	314.9848	0.3076	2.2970	< 0.0026251
2019-MT-006A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006A	495795.9131	948.3874	22082.2918	<0.1085	<1.5369	35.7285	639700	8.6770	<0.1251	5.5013	0.8862	0.0630	2.7888	5464.2943	26.2930	0.3583	0.2195	<0.010582	328.7455	0.1393	1.3212	< 0.0035515
2019-MT-006A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	504378.2043	925.7246	21611.2006	< 0.0882	<1.0258	36.4881	639500	8.1369	0.1233	5.4256	0.8327	0.0441	2.4124	5227.2217	25.5113	0.3531	0.2141	<0.0086218	314.8131	0.1861	1.6948	< 0.0025268
2019-MT-006A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	503331.8979	1095.9564	20534.1217	<0.10349	<1.1036	40.6105	640700	8.6869	< 0.12906	5.4007	2.0577	0.1051	2.8740	5391.0891	26.4269	0.2228	0.7987	<0.011491	335.2223	0.1442	2.0873	0.0052
2019-MT-006A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	500663.0771	1086.9917	21025.6938	< 0.093588	<0.90622	45.1239	639600	9.1175	0.1628	5.3563	1.6208	0.0848	3.4041	5527.1703	26.2949	0.3000	0.4362	0.0131	330.7779	0.1701	4.3976	< 0.003233
2019-MT-006A-Circulo E-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006A	495165.6522	975.3091	22195.2610	< 0.084187	<0.97009	37.7679	639800	9.2072	<0.104	5.4056	1.6338	0.0868	3.5016	5595.8014	25.2029	0.3340	2.5615	0.0173	331.0147	0.3004	8.5528	0.0047
2019-MT-006A-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	493645.5168	926.5197	20866.3713	< 0.093802	< 0.88425	41.6576	635800	9.2588	<0.10278	5.2334	1.4211	0.0752	3.0596	5290.1041	25.4461	0.2725	1.8995	< 0.0086746	315.6770	0.3153	6.7814	0.0045
2019-MT-006B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006B	511880.7700	1491.7646	12731.1620	< 0.085074	<1.1474	41.2106	641300	4.8784	0.1798	6.6494	1.9092	0.1500	3.4205	6661.6391	42.1376	0.2855	6.2069	0.0342	425.3203	1.7109	13.2519	0.0077
2019-MT-006B-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006B	493721.0910	1608.8614	16804.5251	0.1243	<1.3012	54.5381	641500	17.8890	<0.14179	6.6119	2.4548	0.1319	3.0498	6181.6750	37.8378	0.1800	0.9608	0.0130	386.4314	0.2562	3.6555	< 0.0051646
2019-MT-006B-Circulo A-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-006B	494815.0396	1602.0622	16463.9119	< 0.071853	<0.92738	55.7994	641500	18.3233	0.1944	6.7069	2.1225	0.1026	5.0245	6283.5059	38.0272	0.2074	3.1146	0.0399	377.5858	0.8514	16.8695	< 0.0044412
2019-MT-006B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006B	502724.1208	1431.8458	19038.8946	< 0.07482	<1.0021	54.9997	639500	14.2940	0.1433	6.6822	2.0178	0.1131	4.1541	6338.8288	35.8170	0.2683	0.6656	0.0148	388.5004	0.2259	5.3297	< 0.0046466
2019-MT-006B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006B	500107.3177	1471.8774	18787.2855	<0.063397	<0.93424	70.8810	638300	8.2740	0.2063	7.6053	1.6080	0.1270	8.1767	6574.7442	37.0019	0.1688	30.6795	0.1869	388.1507	6.2365	29.9672	0.0204
2019-MT-006B-Circulo B-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-006B	497962.7143	1352.0765	17813.2950	< 0.074093	<1.0329	55.4930	632300	14.0694	< 0.12756	6.6260	2.1300	0.1185	3.5760	6202.5675	34.9696	0.1367	4.2226	0.0290	364.3247	0.6987	10.2598	0.0053
2019-MT-006B-Circulo B-ef - 4	María Teresa	Calera/Sofía D/-300	2019-MT-006B	487936.8904	1374.9808	18134.2122	< 0.072615	<1.0041	55.3096	632300	13.9711	0.1603	6.5245	1.6533	0.1383	4.1154	6340.6185	35.5428	0.1964	1.3964	0.0244	363.6883	0.2880	4.6385	< 0.0043708
2019-MT-006B-Circulo B-ef - 5	María Teresa	Calera/Sofía D/-300	2019-MT-006B	491290.8192	1406.4755	18268.5289	< 0.072876	< 0.97007	65.8688	632300	10.5686	<0.12445	7.6831	2.2170	0.1184	9.4135	6567.3929	37.2573	0.1670	31.0329	0.1890	358.9931	4.9146	32.5441	0.0131

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-006B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006B	488465.9871	1622.6383	23317.6915	< 0.078984	<1.2836	51.3053	636500	14.1987	< 0.14084	6.6826	2.4338	0.1323	4.0869	6605.4427	36.9885	0.2579	0.8160	0.0158	385.5482	0.2510	7.2856	0.0054
2019-MT-006B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006B	488674.5917	1423.4189	18273.8340	< 0.067927	<1.1413	48.2668	636500	13.7757	0.1964	6.3774	1.5280	0.1410	2.9572	6278.1312	35.7741	0.1685	1.0591	0.0121	371.5037	0.2752	4.8447	0.0065
2019-MT-006B-Circulo C-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-006B	492159.7803	1555.4270	21390.0534	< 0.072452	< 0.85847	48.7518	632600	13.2457	0.1721	6.6736	2.0628	0.1024	3.9818	6834.6115	36.3727	0.1736	3.6590	0.0322	419.8666	0.5686	9.0772	<0.004183
2019-MT-007-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	489645.7927	1383.3716	31638.6144	<0.088159	<1.0047	78.5508	623800	24.5315	0.2452	5.9420	4.7862	0.1045	2.3916	5237.5060	82.6705	0.4341	0.4996	0.0147	184.7672	0.1256	0.2798	<0.0029608
2019-MT-007-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	493841.4707	1470.0208	31519.5825	<0.087147	< 0.97783	81.5293	626500	25.6725	0.1688	5.9073	4.8260	0.5143	3.4859	5043.3964	78.8965	0.2440	0.7127	< 0.0082809	188.7783	0.1646	0.8168	0.0060
2019-MT-007-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-007	486374.9694	1452.3406	30436.6530	< 0.09201	< 0.82087	80.8486	624000	24.0229	< 0.10431	6.1403	4.2092	0.1112	8.0365	5070.5141	79.3672	0.2151	3.5661	0.0107	173.9499	0.4437	6.5049	0.0216
2019-MT-007-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	481234.6702	1707.7318	32796.3213	0.0840	< 0.85988	83.5338	616000	25.3499	0.1474	6.1217	4.1518	0.1346	4.8663	5290.2216	77.9926	0.2751	0.6550	< 0.0086943	189.2416	0.1305	0.9608	0.0095
2019-MT-007-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	495867.5386	1752.6215	31006.8138	< 0.09363	<1.1316	89.6611	623300	24.4988	0.1888	6.2704	4.1652	0.1445	12.0026	5165.8647	76.2514	0.3134	5.8334	0.0228	184.4373	0.4080	8.4118	0.0429
2019-MT-008-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-008	489114.5266	2857.0833	34252.9793	<0.096541	<1.0584	72.6104	624400	28.0294	<0.11279	6.0025	4.3311	0.2140	7.3935	5043.1456	51.3213	0.2101	3.1270	0.0096	97.9768	2.0125	3.8709	0.0428
2019-MT-008-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-008	483904.6542	2777.8277	33671.5139	< 0.092264	<1.1073	72.0431	612100	30.4563	0.2324	6.0731	5.4971	0.2448	5.8980	5038.5155	52.3724	0.2503	2.2528	< 0.0086663	97.5199	0.6985	4.3040	0.0192
2019-MT-008-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-008	486646.5661	2813.8250	35160.8605	0.1250	< 0.92903	72.2451	617800	31.8529	0.1362	5.7788	5.2643	0.2814	4.3583	5107.4256	51.3778	0.2471	0.5072	< 0.0077384	100.4086	0.1869	1.6273	0.0137
2019-MT-008-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-008	490235.3959	2784.2806	34657.5203	< 0.092208	<1.2509	125.9899	613200	30.7455	< 0.11631	6.5684	5.5977	0.1946	11.2913	5137.0263	52.0200	4.7517	16.6317	0.0180	107.1989	0.9929	1.5156	0.0145
2019-MT-008-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-008	487593.4311	2781.1618	34399.5808	< 0.08588	<0.91957	106.0368	617700	31.9797	<0.10944	6.1054	5.6117	0.2250	9.2698	5128.7926	50.7682	0.1952	4.3649	< 0.0081721	100.0525	1.8335	5.6775	0.0571
2019-MT-008-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-008	487379.4917	2820.7823	35338.1123	<0.089742	<0.91519	75.5248	619500	31.4166	0.1437	5.9503	5.4153	0.2271	7.6039	5232.9364	51.9318	0.2118	0.8898	< 0.0089401	101.2895	0.1631	1.3427	0.0187
2019-MT-011A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	507453.3841	1826.8020	63534.3339	<0.11259	<1.303	58.4737	581100	7.0201	< 0.13987	5.5603	8.3251	0.1638	9.0573	7372.6652	50.0279	0.5606	2.6095	0.0160	359.1727	0.0592	2.1757	0.5560
2019-MT-011A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-011A	501315.6767	1672.9303	61643.6274	<0.10753	<1.0405	1055.8950	582900	7.6833	<0.12812	5.4141	8.0303	0.1299	24.3544	7282.0630	48.1944	0.4053	7.2504	0.0334	315.1419	0.6273	14.7926	2.1998
2019-MT-011A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	507725.2548	2255.9437	59055.6877	<0.10893	<1.3442	451.2191	584300	9.2602	0.1491	5.2883	11.3218	0.1709	19.5565	7798.3324	47.1975	15.3933	5.3442	0.0123	360.8913	0.3982	8.9144	0.6032
2019-MT-011A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-011A	522892.5583	2318.0777	61631.5230	<0.11293	<1.2409	481.2041	588200	10.2983	0.5083	5.2469	13.5026	0.1965	16.2789	8050.8541	47.2898	16.1161	3.4249	0.0254	384.1170	0.5098	6.5605	0.5962
2019-MT-015A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	507888.1604	2392.8914	44245.7637	<0.10052	<1.024	158.1714	605300	24.8849	0.3567	6.5785	31.6847	0.2469	9.8076	7372.6856	173.1385	0.3353	1.8889	< 0.0098987	287.8446	0.0761	2.8622	0.4308
2019-MT-015A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	507642.0821	2364.5542	45197.2487	<0.09827	<1.142	164.1494	602500	30.2436	0.3268	6.2518	29.5379	0.2193	6.9380	7370.4335	167.6963	0.2331	0.5834	< 0.0092783	281.5674	0.0198	0.6907	0.1532
2019-MT-015A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	518422.7989	2527.5970	40063.7653	<0.089933	1.3983	176.9058	613800	32.9907	0.3329	6.4675	30.1985	0.2479	19.3182	7496.2347	171.2839	0.4895	3.5076	0.0350	289.9964	0.2255	8.1793	0.7606
2019-MT-015A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	510686.4813	2500.5341	40675.0895	<0.10951	<1.0302	184.7747	612400	37.6119	0.1926	6.2358	29.8662	0.2109	22.8817	7436.0129	176.3551	0.5781	2.6097	0.0316	284.8364	0.2821	10.8259	0.8590
2019-MT-015A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	500417.9591	2468.8107	43322.4049	0.1096	<1.1247	156.5302	601600	29.2107	0.3220	6.4488	28.8659	0.1616	6.3479	7419.2921	165.3713	0.2830	0.9474	< 0.0083766	293.9195	0.0581	0.9361	0.1950
2019-MT-015A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	500436.2327	2524.7818	42899.4601	0.1174	<1.2214	158.3578	601500	15.7136	0.3273	6.1684	29.6718	0.1828	7.5974	7278.0630	166.1837	0.3782	3.2353	< 0.0094393	291.4543	0.2659	0.9590	0.2137
2019-MT-015A-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	511228.8360	2544.2457	38995.8671	< 0.095219	< 0.88437	194.2954	611800	27.8914	0.3395	6.0724	28.6777	0.1973	44.2851	7541.3258	166.9014	0.3433	7.1228	0.0346	309.6837	1.4459	11.9050	1.0228
2019-MT-015A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	507490.0636	2522.3344	37979.3054	<0.091879	<1.1369	267.1313	613900	25.6059	0.2475	6.1006	29.9391	1.6077	66.2236	7528.6657	161.2908	0.3380	9.0494	0.1282	290.4404	18.5159	22.2233	1.9406
2019-MT-015A-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	512906.4220	2621.9921	39384.1283	<0.1051	<1.0145	183.6303	613400	27.2338	0.2859	5.9454	29.2670	0.6029	41.9731	7408.2145	161.4834	0.3007	8.7836	0.0321	306.7500	2.5513	14.6108	1.7263
2019-MT-015B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	523151.5854	2342.8796	47378.5400	< 0.1034	<1.2655	2209.3050	597400	7.3586	0.3197	5.7036	30.6949	0.1582	17.0931	7815.4438	161.8874	1.0246	27.9049	0.0988	366.5898	3.1807	8.6907	0.9526
2019-MT-015B-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	522612.8477	2519.0563	44636.4704	<0.10661	<1.4572	184.6860	597400	23.7652	0.2989	5.6114	31.5973	0.1853	24.5227	7871.9449	156.3936	0.4377	8.2398	< 0.011463	311.2262	2.7638	19.0621	3.4613
2019-MT-015B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	509595.8661	2252.2737	44444.8658	<0.097118	<1.057	4292.1424	579400	15.1241	0.2968	5.6546	31.0405	0.1403	46.1665	7377.5842	157.8610	1.0714	48.1260	0.0271	340.7863	7.8009	28.3232	2.1980
2019-MT-015B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	529985.9189	2616.9578	49633.6693	<0.14812	<1.6354	1731.7641	588700	27.2336	0.2219	5.9314	32.0873	0.2709	28.0538	7709.4349	158.2057	0.5710	12.3784	0.0279	363.1464	1.6747	14.5361	2.5278
2019-MT-015B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	526285.2720	2564.8565	48628.6039	< 0.098389	<1.144	205.7796	591900	24.9883	0.2322	5.7750	29.5562	0.2195	20.3563	7886.0456	153.8699	0.5626	7.4359	< 0.010461	358.3313	1.4912	13.9896	2.1359
2019-MT-015B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	519202.2802	2629.3396	48969.3169	<0.1031	< 0.98279	399.4928	593600	23.1583	0.1659	5.6667	31.5350	0.1697	19.4629	7905.2192	161.9286	0.6011	13.0692	0.0201	346.3903	0.8584	9.9412	1.4993
2019-MT-015B-Circulo E-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	514469.7601	2484.8221	49581.6720	<0.11314	<1.3193	4793.1405	582100	20.6631	0.2299	5.8188	28.7813	0.2309	18.6174	7549.5238	165.7450	4.4043	5.8890	<0.0099656	339.0089	0.2176	2.4511	0.4335
2019-MT-015B-Circulo D-sl - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	500125.9536	2689.1418	46386.0413	<0.107	<1.2872	1623.5051	587200	18.5674	0.2723	5.7470	29.8458	0.2147	27.9750	7230.2244	157.1866	0.4342	25.5037	0.0195	348.0284	4.5137	10.7021	1.6457
2019-MT-0018-Circulo A ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0018	516237.0046	112.9531	18062.4659	0.2403	<0.99857	5.3087	642900	1.6222	0.1171	6.8827	1.5195	0.0364	4.1082	6993.2474	0.6197	0.1801	1.1025	< 0.0091162	410.5757	0.0053	1.0405	< 0.0040534
2019-MT-0018-Circulo A ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0018	514530.1825	131.8264	27026.7028	0.2471	< 0.97035	4.8373	635000	1.5270	0.2026	6.8862	1.3423	0.0275	5.1582	7013.7772	0.5521	0.7200	0.2587	0.0098	442.9617	0.0193	0.3674	<0.0040016
2019-MT-0018-Circulo B ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0018	507123.6115	142.1339	27708.3681	0.2944	<1.01	5.3211	629300	1.3921	< 0.1125	6.8773	1.1904	< 0.022206	5.4780	7044.1267	0.5894	0.5797	0.2390	< 0.0094237	427.5430	0.0186	0.4820	<0.0035418
2019-MT-0018-Circulo C ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0018	500248.8375	138.4136	23115.9158	0.2340	<1.0652	3.7680	642200	1.5108	0.1707	6.9537	< 0.70363	0.0232	7.3459	6473.1422	0.4595	0.2528	0.9485	0.0300	387.0125	0.0109	0.8502	<0.0038518
2019-MT-0018-Circulo C ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0018	513457.1007	139.9803	27373.9190	0.1658	<0.91175	5.6404	632100	1.5109	0.2051	7.1234	0.8892	0.0244	7.9694	6615.4788	0.4373	0.2899	1.1047	0.0136	405.9415	< 0.0055826	0.9367	< 0.0037116

NAME Norma	Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
Description Description Description	2019-MT-0019-Circulo A ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0019	497312.7983	1633.1674	41162.4250	<0.0781	<0.99154	76.2953	595500	38.3932	0.1621	7.0767	6.6074	0.1128	9.2161	5655.5232	41.6482	0.3022	0.6455	< 0.0085005	215.4498	0.2677	2.4634	0.0051
Displace	2019-MT-0019-Circulo A ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0019	494247.0318	1641.5377	41663.3660	< 0.07753	<1.0465	68.9320	595600	37.4065	0.1424	7.0009	7.0617	0.1233	8.0567	5667.1102	41.7875	1.7507	0.0958	<0.0087558	219.8114	0.0614	0.2782	< 0.0039616
Bit	2019-MT-0019-Circulo B ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0019	491431.0871	1661.5947	41911.5550	< 0.082049	<1.0296	69.9605	592900	38.3270	<0.11151	6.7711	6.7932	0.1086	8.7240	5623.7273	41.9639	0.5780	0.3752	< 0.0091864	221.9300	0.1709	1.6864	0.0049
District of the state District of the state <	2019-MT-0019-Circulo C ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0019	491466.0180	1657.0233	42131.7416	< 0.083149	< 0.95524	66.1825	591600	37.1247	<0.11136	6.8461	6.2136	0.1348	6.1767	5591.7263	41.8093	0.5848	0.1763	<0.0083881	218.9177	0.0538	0.4922	< 0.0036253
Normal Condention Normal	2019-MT-0019-Circulo C ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0019	494772.3882	1647.5982	41300.5982	< 0.084869	<1.3369	70.8462	594100	37.6885	0.1156	6.6817	5.8148	0.1009	8.7316	5607.5981	42.1396	0.4426	0.3954	0.0122	213.4288	0.3151	1.9187	0.0040
NAME Observed Observed Observed Observed	2019-MT-0020-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	515985.0886	512.2895	15295.7494	< 0.11327	<1.1991	55.8926	641500	24.1034	0.3270	5.2141	1.6297	0.0331	24.3100	9135.9090	1.5887	1.7428	23.7260	0.0163	618.5933	0.7061	5.5664	< 0.005024
NAME Calcy (Mode)	2019-MT-0020-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0020	521333.1193	584.4094	17459.5892	< 0.10009	<1.3121	40.1475	642700	25.5721	0.9453	5.5927	2.2755	0.0545	16.4949	9409.1705	1.7685	0.9644	0.3083	0.0683	624.2822	0.1032	10.0071	< 0.0042546
NAME Cash Cash Cash Cash Cash Cash Cash Cash	2019-MT-0020-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	528586.5254	546.5524	16356.8134	< 0.10779	<1.2244	45.5937	643200	22.3596	0.3479	5.4255	1.2653	0.0328	25.2858	9045.0749	1.5553	2.1894	15.9893	0.0689	676.6806	0.2968	7.2694	< 0.0046962
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	2019-MT-0020-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	527413.4992	544.7944	17121.9898	< 0.084474	<1.0265	50.5566	645800	24.2586	0.2832	5.3980	1.7685	0.0684	46.1477	9082.2673	1.6980	0.3375	5.4762	0.1072	625.7442	0.4836	44.3297	0.0061
Description Marce Marce Marce Marce	2019-MT-0020-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0020	532128.8784	560.8460	17190.6252	< 0.092809	<1.0822	50.6830	645800	25.1167	0.7386	5.3582	2.4170	0.6059	42.5199	9156.9309	1.7402	0.5300	1.3841	0.0838	663.4501	0.1850	17.7941	< 0.0035345
District of conditional state Di	2019-MT-0021-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	566497.6161	2246.6590	50313.5194	< 0.088894	<1.1246	83.8481	670000	11.0758	0.3531	6.9279	21.4017	0.1597	9.8382	4301.3988	93.3887	0.1973	6.5934	0.0288	439.1178	0.4701	4.2949	0.9271
Substrat Marters Genedation Genedation Genedation Genedation Geneation Geneation Geno	2019-MT-0021-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	578140.6224	2491.8905	59010.1588	< 0.10168	<1.1513	84.3177	670000	11.9411	0.3812	7.2556	20.9835	0.1648	6.2157	5026.8195	96.8970	0.1754	3.2956	<0.011696	556.6754	0.3608	2.6951	0.6219
NHM 002 Charled rel Marters General Desc NUM 002 Signed rel Signe rel Signed rel Sign	2019-MT-0021-Circulo B-ef - 3	María Teresa	Calera/Sofía D/-500	2019-MT-0021	564884.8774	2487.5937	59348.3780	<0.10791	<1.3274	86.1798	670000	11.4713	0.3858	7.0021	21.6678	0.1415	4.4317	4656.0224	94.5076	0.2468	4.7080	0.0168	527.6966	0.1625	0.8119	0.1806
Distribution Distribution<	2019-MT-0021-Circulo B-ef - 4	María Teresa	Calera/Sofía D/-500	2019-MT-0021	567062.2465	2412.9545	59398.1841	< 0.091025	<1.2613	86.2783	670000	11.2661	0.1700	7.2330	21.6671	0.1578	5.8729	4857.5801	102.1908	0.2286	2.0628	0.0142	545.9277	0.2635	2.1611	0.3574
DipArt 201 Carring Carl Unit Terms Clarcy Sub DipArt 201 Win Terms	2019-MT-0021-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	565680.1046	2245.5510	55672.2672	< 0.10327	<1.1594	89.0128	670000	10.2676	0.3221	7.0419	26.4124	0.1513	5.9205	4601.1679	105.0037	0.2270	5.3485	0.0253	511.8304	0.3590	2.6556	0.5798
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	2019-MT-0021-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	571422.5812	2274.0217	58278.6236	< 0.10162	<1.0465	94.6693	670000	9.5698	0.3044	6.7822	28.0030	0.1423	10.4044	4871.2396	110.3257	0.3520	10.3966	0.0533	561.9246	0.7964	4.9462	1.2415
Dip MIT 022 A Criectols Ar 2 Mate Terms Calenas data D 4.00 20434 498 20.444 90.10 20.100 20.800 0.010 20.800 0.010 20.800 0.010 20.800 0.010 4.000 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000 0.0100 0	2019-MT-022A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	515885.0954	319.7643	38232.8017	< 0.099087	< 0.9494	82.0634	608000	58.5201	0.1226	4.9018	3.7241	0.0555	10.6828	8904.7975	1.0941	1.0948	1.5099	0.0169	328.7945	0.0852	3.9214	< 0.0035965
Dipurpurpare Dipurpare Dipurpare <	2019-MT-022A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	524434.4585	326.1646	38972.5703	<0.10718	<1.2483	88.3780	616800	62.6834	0.2311	5.2083	2.8557	0.0472	7.1477	9168.0886	1.1797	8.2114	0.1628	<0.010138	340.7333	0.0357	0.3370	< 0.0032395
2019/HT-022A Clearly 6L-2 Main Terres Calerny Sortial Di-3du 2019/HT-024 Sizes Sizes S	2019-MT-022A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	525687.8694	325.0306	38157.9979	< 0.11025	<1.0785	83.8908	614200	62.9978	0.1576	4.8513	2.6292	0.0555	6.0269	9011.3732	1.1879	9.0594	0.0244	< 0.0094886	340.1479	0.1996	0.0984	< 0.0033939
2019UT-022A-Circulo Ce-f-1 Maria Teresa Calerasofia D-540 2019WT-022A 51232 340.00 384.5697 0.106 cl.888 0.1907 4.565 2070 0.047 21.016 87.040 1.123 4.105 0.020 32.94.44 1.249 30.844 0.011 2019-MT-022A-Circulo Ce-f-2 Maria Teresa Calerasofia D-540 2019MT-022A 51037.69 32.938 366.60 0.107 4.108 0.225 0.026 1.123 4.015 0.010 31.337 0.014 0.013 4.016 0.011 31.337 0.014 0.013 0.011 31.337 0.014 0.0137 0.0014 31.337 0.014 0.0137 0.0014 31.337 0.014 0.0137 0.0101 31.337 0.014 0.0137 0.0101 0.0137 0.0101 0.0137 0.0101 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 0.0116 </td <td>2019-MT-022A-Circulo B-ef - 2</td> <td>María Teresa</td> <td>Calera/Sofía D/-540</td> <td>2019-MT-022A</td> <td>522755.4373</td> <td>338.2667</td> <td>38737.6450</td> <td><0.11836</td> <td>1.7279</td> <td>136.7429</td> <td>611900</td> <td>68.0152</td> <td>1.2121</td> <td>5.1606</td> <td>2.8456</td> <td>0.0405</td> <td>16.0829</td> <td>8879.4165</td> <td>1.2589</td> <td>19.6183</td> <td>11.3618</td> <td><0.011313</td> <td>332.8985</td> <td>1.2303</td> <td>8.7229</td> <td>< 0.0038993</td>	2019-MT-022A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	522755.4373	338.2667	38737.6450	<0.11836	1.7279	136.7429	611900	68.0152	1.2121	5.1606	2.8456	0.0405	16.0829	8879.4165	1.2589	19.6183	11.3618	<0.011313	332.8985	1.2303	8.7229	< 0.0038993
Diput D	2019-MT-022A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	523288.1252	346.0000	38845.6972	<0.1106	<1.2888	107.4895	615900	63.1680	0.1437	4.5655	2.9760	0.0447	27.1661	8786.0461	1.1233	4.9135	4.1068	0.0420	324.9444	1.2349	30.8454	0.0113
2019-MT-022A-Cricedo De-f-1 Mará Teres Calera-Soña D-540 2019-MT-022B 51964-767 338.681 366.6426 c.l.103 4.172 8.172 61200 64.632 0.0372 63.372 643.325 10.245 0.0073 0.180 0.0104 31.4337 0.143 0.0143 <td>2019-MT-022A-Circulo C-ef - 2</td> <td>María Teresa</td> <td>Calera/Sofía D/-540</td> <td>2019-MT-022A</td> <td>516327.6088</td> <td>328.1332</td> <td>36905.3742</td> <td>< 0.10577</td> <td>< 0.97732</td> <td>84.6292</td> <td>615300</td> <td>63.0144</td> <td>0.1995</td> <td>4.7164</td> <td>3.2253</td> <td>0.0402</td> <td>11.7369</td> <td>8828.8075</td> <td>1.0465</td> <td>1.2739</td> <td>1.1354</td> <td>0.0320</td> <td>325.6812</td> <td>0.3241</td> <td>6.9130</td> <td>0.0054</td>	2019-MT-022A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	516327.6088	328.1332	36905.3742	< 0.10577	< 0.97732	84.6292	615300	63.0144	0.1995	4.7164	3.2253	0.0402	11.7369	8828.8075	1.0465	1.2739	1.1354	0.0320	325.6812	0.3241	6.9130	0.0054
2019.MT-022B-Circulo A-cf-1 Maria Teresa Calcara/Sofia D-540 2019.MT-022B 51.99.91 379.95.92 col.1319 col.24 64.66 64.000 64.000 64.001 64.	2019-MT-022A-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	515964.7676	338.6851	38661.6426	<0.11093	<1.172	81.5724	612800	64.6232	0.2058	4.9379	2.9822	0.0372	6.3372	8643.5255	1.0245	0.6073	0.1820	< 0.010414	331.4337	0.0143	0.4757	< 0.0031491
2019-MT-022B-Circulo Be-f-1 Maria Teress Calera Sofia D/-Sofia 2137.470 328.44 3745.480 0.612 class 6.613 0.623 5.625 8.773.70 1.471 2.889 2.7705 4.00966 33.88.44 0.155 0.379 0.0373 2019-MT-022B-Circulo C-1 Maria Teress Calera Sofia D/-Sofi 2103.947 32.0887 0.118 <.0170 6.500 6.501 5.521 0.101 2.889 0.108 3.510 0.039 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373 0.0374 <td>2019-MT-022B-Circulo A-ef - 1</td> <td>María Teresa</td> <td>Calera/Sofía D/-540</td> <td>2019-MT-022B</td> <td>516929.5134</td> <td>329.3938</td> <td>37795.4952</td> <td><0.11319</td> <td><1.4724</td> <td>86.1616</td> <td>614900</td> <td>68.0270</td> <td>0.1647</td> <td>5.4031</td> <td>3.0227</td> <td>0.6719</td> <td>7.5067</td> <td>9102.3269</td> <td>1.3993</td> <td>0.9808</td> <td>1.0128</td> <td>0.0127</td> <td>356.3540</td> <td>0.0824</td> <td>2.5230</td> <td>< 0.0042314</td>	2019-MT-022B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	516929.5134	329.3938	37795.4952	<0.11319	<1.4724	86.1616	614900	68.0270	0.1647	5.4031	3.0227	0.6719	7.5067	9102.3269	1.3993	0.9808	1.0128	0.0127	356.3540	0.0824	2.5230	< 0.0042314
2019.MT-022B-Creade Cerr Maria Teres Calera/Sofia D/-Sofia S1969 S19.87 S20.887 c.1188 6.1018 6.500 5.201 <t< td=""><td>2019-MT-022B-Circulo B-ef - 1</td><td>María Teresa</td><td>Calera/Sofía D/-540</td><td>2019-MT-022B</td><td>511357.4760</td><td>328.2414</td><td>37445.4890</td><td>< 0.10422</td><td><1.2686</td><td>85.6214</td><td>617300</td><td>66.5443</td><td>0.2832</td><td>5.0825</td><td>2.8432</td><td>0.0605</td><td>5.6526</td><td>8777.3760</td><td>1.4731</td><td>2.8869</td><td>2.7705</td><td><0.0096361</td><td>338.8844</td><td>0.1556</td><td>0.3769</td><td>< 0.0032308</td></t<>	2019-MT-022B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	511357.4760	328.2414	37445.4890	< 0.10422	<1.2686	85.6214	617300	66.5443	0.2832	5.0825	2.8432	0.0605	5.6526	8777.3760	1.4731	2.8869	2.7705	<0.0096361	338.8844	0.1556	0.3769	< 0.0032308
2019-MT-022B-Circulo D-ef-1 María Teresa Calera/Sofia D/-540 2019-MT-022B 51203.084 36.0902 3534.902 < 0.1394 < 0.1394 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194 < 0.0194	2019-MT-022B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	517969.9189	357.1867	38220.8876	< 0.11884	<1.0718	86.6171	615500	70.0179	0.2221	5.2941	2.3112	0.0420	6.9061	8931.2070	1.2336	4.3561	0.3190	< 0.010493	351.6131	0.0493	0.6043	< 0.0035319
2019-MT-022B-Circulo D-ef-2 María Teresa Calera/Soña D/-540 2019-MT-022B 51478.128 214.2635 36236.0849 0.1320 < 1.509 58.2916 0.1620 54.392 0.1620 54.392 0.1620 87.662 87.662 69.672 1.0620 87.662 87.662 69.672 1.0640 87.662 87.662 69.672 1.0640 87.662 87.662 69.672 1.0640 87.662 87.662 69.672 1.0640 87.662 87.662 66.500 66.500 66.500 66.572 1.0640 87.662 87.662 66.572 1.0640 87.662 87.662 66.572 1.0640 87.662 $87.$	2019-MT-022B-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	511203.0849	340.6992	35834.9022	< 0.13432	<1.3936	89.8694	614000	68.4921	< 0.14994	4.9083	2.6455	0.0550	6.5688	8677.3050	0.9524	1.0586	0.5491	0.0170	332.2440	0.0524	2.7199	< 0.0040847
Cerro de Maimón Cerro de Maimón Cerro de Maimón CM 521005.216 40.0061 551.7912 <0.14163 <1.2943 82.0573 66500 66.372 1.083 4.8456 6.8781 0.1930 2.6333 3496.986 1.0811 0.2531 0.362 0.082 0.0361 1.9427 0.8983 RD-CM-prov1-ef-2 Maimón Cerro de Maimón CM 51289.130 533.3677 643.4521 <0.13768 <1.522 110.4797 66500 8.8666 0.7835 4.2909 0.1930 2.6533 3496.986 10.831 0.2531 0.362 0.0164 2.9423 0.0361 1.947 0.5031 RD-CM-prov1-ef-3 Maimón Cerro de Maimón CM 507096.5271 494.092 61.3819 <0.972 4.7233 58.5984 1.0831 3.4476 381.988 9.9792 0.3588 0.5106 0.1428 8.7040 51.528 3.302 0.1523 18.5263 3.3028 RD-CM-prov1-ef-4 Maimón Cerro de Maimón CM 491462.0000	2019-MT-022B-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022B	514378.1283	214.2635	36236.0849	< 0.13203	<1.5079	87.1662	619700	58.2916	< 0.14622	5.4434	2.1233	0.0440	8.7966	8828.7307	1.1664	9.1782	10.6902	<0.011765	352.3622	0.5381	3.4596	0.0053
Cerro de Maimón Cerro de Maimón CM 5528.135 533.677 643.451 <0.1376 <1.522 110.477 65000 80.866 0.783 4.290 6.1964 0.2407 2.7504 388.491 10.242 <0.1304 <0.144 <0.144 <0.147 <0.147 <0.1314 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.147 <0.148 <0.147 <0.148	RD-CM-prov1-ef - 1	Cerro de Maimón	Cerro de Maimón	СМ	521005.2168	406.0061	551.7912	< 0.14163	<1.2943	82.0573	665000	69.6372	1.0083	4.8456	60.8781	0.1930	2.6353	3496.9864	10.1831	0.2531	0.3662	0.0182	20.9823	0.0361	1.9427	0.0898
Cerro de Maisón Cerro de Maisón Cerro de Maisón CM 507095.217 494.0962 61.5819 <0.10878 <0.9739 <0.9729 <0.9739 <0.9739 <0.9729 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739 <0.9739	RD-CM-prov1-ef - 2	Cerro de Maimón	Cerro de Maimón	СМ	515289.1350	533.3677	643.4521	< 0.13768	<1.522	110.4797	665000	80.8666	0.7835	4.2909	61.0964	0.2407	2.7504	3889.4991	10.2422	0.5023	0.1304	0.0164	23.3122	0.0614	10.4721	1.0513
RD-CM-prol-6-4 Cerro de Mainón Cerro de Mainón CM 49146.000 481.520 581.280 <.1913 130.907 65000 91.659 5.882 5.8126 5.981	RD-CM-prov1-ef - 3	Cerro de Maimón	Cerro de Maimón	СМ	507096.5217	494.0962	613.5819	<0.10878	< 0.97396	116.3961	665000	95.4460	0.9722	4.7233	58.5984		3.4476	3831.9881	9.9792	0.3588	0.5106	0.2996	22.0613	0.1523	18.5263	3.3028
Cerro de Maisón Cerro de Maisón S11.600 S48.80 S11.600 S48.80 S2.762 S14.80 65000 94.220 6.2452 S1.920 S1.020 S1.020 <ths< td=""><td>RD-CM-prov1-ef - 4</td><td>Cerro de Maimón</td><td>Cerro de Maimón</td><td>СМ</td><td>491462.0000</td><td>481.5200</td><td>581.2890</td><td>< 0.10368</td><td><1.1913</td><td>130.9070</td><td>650000</td><td>91.6594</td><td>1.5662</td><td>3.8862</td><td>59.8136</td><td></td><td>3.1795</td><td>3740.6700</td><td>10.0778</td><td>1.5018</td><td>0.2027</td><td>0.0279</td><td>21.3666</td><td>0.1428</td><td>8.7040</td><td>0.5159</td></ths<>	RD-CM-prov1-ef - 4	Cerro de Maimón	Cerro de Maimón	СМ	491462.0000	481.5200	581.2890	< 0.10368	<1.1913	130.9070	650000	91.6594	1.5662	3.8862	59.8136		3.1795	3740.6700	10.0778	1.5018	0.2027	0.0279	21.3666	0.1428	8.7040	0.5159
Cerro de Cer	RD-CM-prov1-ef - 5	Cerro de Maimón	Cerro de Maimón	СМ	499387.0000	448.3030	511.6000	< 0.22888	<2.7629	147.8280	650000	94.2290	6.2452	10.3940	60.1218	0.1102	3.1302	3600.8600	9.9898	2.4556	3.3031	0.0227	25.7719	0.3308	9.9838	0.5580
RD-CM-prov1-ef-6 Maimón Cerro de Maimón CM 491514.000 461.5650 568.4000 <0.11843 <1.1845 117.5430 65000 94.9672 1.2248 4.1036 57.3696 0.0769 2.7365 3699.5000 9.9517 0.3007 0.1260 <0.01015 24.0864 0.0615 6.5568 0.6054	RD-CM-prov1-ef - 6	Cerro de Maimón	Cerro de Maimón	СМ	491514.0000	461.5650	568.4000	< 0.11843	<1.1845	117.5430	650000	94.9672	1.2248	4.1036	57.3696	0.0769	2.7365	3699.5000	9.9517	0.3007	0.1260	<0.01015	24.0864	0.0615	6.5568	0.6054
RD-CM-prov1-ef - 7 Cerro de Maimón CM 490174.0000 478.1610 572.7740 <0.11401 <1.2281 107.6200 650000 79.9943 0.6553 3.6825 56.1313 0.6326 3.1031 3766.8400 9.6978 0.1608 0.0307 <0.010714 22.3415 0.0455 3.2409 0.2357	RD-CM-prov1-ef - 7	Cerro de Maimón	Cerro de Maimón	СМ	490174.0000	478.1610	572.7740	< 0.11401	<1.2281	107.6200	650000	79.9943	0.5653	3.6825	56.1313	0.6326	3.1031	3766.8400	9.6978	0.1608	0.0307	< 0.010714	22.3415	0.0455	3.2409	0.2357
Cerro de Maimón Cerro de Maimón CM 502772.000 474.900 527.7740 <0.12504 <1.2549 124.9710 650000 95.6999 1.6807 4.1056 60.3145 0.2993 3.9446 3.829.2700 9.8085 0.8370 0.1828 0.0269 20.7926 0.0571 9.1327 0.8905	RD-CM-prov1-ef - 8	Cerro de Maimón	Cerro de Maimón	СМ	502772.0000	474,9000	527.7740	< 0.12504	<1.2549	124.9710	650000	95.6999	1.6807	4,1056	60.3145	0.2993	3.9446	3829.2700	9.8085	0.8370	0.1828	0.0269	20.7926	0.0571	9.1327	0.8905
Cerro de Maimón Cerro de Maimón CM 508281,0000 538,6380 537,0000 <0,1060 95,1165 0,5687 3,6040 59,2881 4 1589 3577 4900 9 4794 0 2115 0 0264 0 0369 22 5615 0 1235 12 9142 0 3570	RD-CM-prov1-ef - 9	Cerro de Maimón	Cerro de Maimón	СМ	508281.0000	538.6380	537.0000	<0.10601	<1.1285	118.8780	650000	95,1165	0.5687	3.6040	59.2881		4.1589	3577.4900	9.4794	0.2115	0.0264	0.0369	22,5615	0.1235	12.9142	0.3250
Cerro de Maimón Cerro de Maimón CM 499220,0000 533,9250 554,8310 <0,1235 <1.057 1.37,550 650000 95,652 0.9858 4 6701 61,2374 4 4.877 3546 1200 9.0233 0.2761 0.2965 0.0493 22.0378 0.2255 23.2529 1.6370	RD-CM-prov1-ef - 10	Cerro de Maimón	Cerro de Maimón	СМ	499220 0000	533 9250	554 8310	<0.12325	<1.057	137 5550	650000	95.6522	0.9858	4.6701	61.2374		4,4877	3546 1200	9.0223	0.2761	0.2966	0.0493	22.0378	0.2256	23 2529	1.6370
Cerro de Maimón Cerro de Maimón CM 511979,0000 465,6660 541,0490 <0,1169 0.9955 121,5940 650000 90,2247 1,5004 4,3375 59,2816 3,9193 3574,2800 10,4562 0,6084 22,6039 0,1622 3,0107	RD-CM-prov1-ef - 11	Cerro de Maimón	Cerro de Maimón	СМ	511979 0000	465 6060	541 0490	<0.1169	0.9955	121 5940	650000	90,2247	1.5004	4.3375	59,2816		3,9193	3574 2800	10.4562	0.6008	0.2584	0.0684	22.6039	0.1622	30 4547	3.5105
Cerro de Maimón Cerro de Maimón CM 509800.0000 446.4340 577.2050 <0.1177 <1.2788 113.9620 650000 85.4108 0.6768 4.0118 64.3829 3.7137 3709.7200 11.2062 0.0254 0.0254 0.0214 5.9381 0.4067	RD-CM-prov1-ef - 12	Cerro de Maimón	Cerro de Maimón	СМ	509800.0000	446.4340	577.2050	<0.11777	<1.2788	113.9620	650000	85.4108	0.6768	4.0118	64.3829		3.7137	3709.7200	11.2062	0.2321	0.0524	0.0254	22.3246	0.0921	5.9381	0.4067

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
RD-CM-prov1-ef - 13	Cerro de Maimón	Cerro de Maimón	СМ	510482.0000	472.2370	595.9950	<0.11472	<1.0346	112.2190	650000	77.8348	0.8043	4.0538	61.3478		3.4960	3833.6700	10.4011	0.2613	0.1425	0.0605	26.7889	0.0932	12.5069	0.5899
RD-CM-prov1-ef - 14	Cerro de Maimón	Cerro de Maimón	СМ	519420.0000	416.6740	636.0770	<0.14564	<1.4039	112.8780	650000	77.2696	0.7264	4.3743	67.0064	0.0559	2.8979	3905.1400	10.6930	0.3237	0.2360	0.0303	28.5333	0.1004	16.6007	1.1812
RD-CM-prov2-ef - 1	Cerro de Maimón	Cerro de Maimón	СМ	500001.0000	466.4720	19.3213	<0.10721	<1.2433	150.9830	650000	77.9930	0.3390	3.8533	19.3915	0.0902	9.2791	3553.8700	5.9494	0.1437	0.0341	0.2290	22.5682	0.7943	5.8256	0.0536
RD-CM-prov2-ef - 2	Cerro de Maimón	Cerro de Maimón	СМ	506457.0000	412.8780	<9.3509	<0.11313	<1.1316	163.2850	650000	72.6215	0.8904	4.1050	16.8931		21.3228	3702.9400	7.3245	0.4378	0.1565	0.1179	29.7834	1.5122	26.4075	0.3367
RD-CM-prov2-ef - 3	Cerro de Maimón	Cerro de Maimón	СМ	509878.0000	439.8630	16.9781	< 0.10578	<1.2876	172.2110	650000	81.6913	0.2326	3.6840	17.2183	1.6689	16.0090	3413.3800	8.5931	0.1664	0.0355	0.1607	28.5393	0.5498	7.3046	0.0605
MPP900-Circulo C-ef - 2	Palma	Palma	MPP900	458689.0000	7028.1300	61903.7000	< 0.10213	<1.0534	85.4568	557400	2.2841	0.1654	5.0034	1.0733	0.5385	13.1365	7072.4900	1.6185	0.3343	3.1412	0.0796	281.0020	0.0475	20.4881	< 0.0030433
MPP900-Circulo C-ef - 4	Palma	Palma	MPP900	449645.0000	6928.7500	63422.9000	<0.10675	<1.2152	65.5850	557400	1.5020	0.1469	5.0301	1.5725	0.4631	8.9890	7292.6400	1.6215	0.2587	1.9318	0.1224	275.9330	0.0521	5.4368	< 0.0031122
MPP901-Circulo A-ef - 1	Palma	Palma	MPP901	484023.0729	2606.3339	63111.0257	24.8665	<1.1046	27.0569	575600	0.7099	0.1461	4.0205	0.9605	0.1905	1.8980	6263.3346	0.0316	0.1673	0.4010	<0.010814	220.7772	0.0148	2.4933	< 0.0031018
MPP901-Circulo B-ef - 1	Palma	Palma	MPP901	501057.2505	2340.0335	56478.5860	24.3299	0.9354	169.5599	569800	0.7351	0.1897	3.8861	0.7519	0.2611	6.5018	5686.2949	0.0320	0.3553	11.5278	0.0731	214.8833	1.5093	38.5825	0.0153
MPP901-Circulo B-ef - 2	Palma	Palma	MPP901	487141.5933	2321.8857	55666.0790	21.9793	<1.1694	12.8158	574500	0.6092	<0.13994	3.5818	<0.85609	0.1262	1.7846	6542.6470	0.0363	0.1794	0.6273	<0.011078	237.4320	0.0095	3.2442	< 0.0037306
MPP901-Circulo C-ef - 1	Palma	Palma	MPP901	490074.6952	2302.8237	53684.7528	22.3266	<0.98371	5.7154	577100	0.7078	<0.11158	3.7425	<0.65531	0.2044	1.7512	6211.2960	0.0316	0.1954	0.7944	< 0.0095443	212.5308	0.0640	3.8530	< 0.0030821
MPP901-Circulo D-ef - 1	Palma	Palma	MPP901	506550.0804	2443.9133	59341.5281	23.9674	<1.6469	19.5804	575900	0.6962	0.1647	3.9813	1.2689	0.1798	1.7071	6986.1048	0.0338	0.2121	0.3304	<0.014921	259.0352	0.0113	1.8264	< 0.003457
MPP902A-Circulo A-ef - 2	Palma	Palma	MPP902A	465949.0000	6657.8300	28383.6000	< 0.09704	<1.0343	34.4931	612100	2.4670	2.2045	5.7744	0.8389	0.3803	29.6834	4781.9500	0.0066	0.2977	6.8016	0.0107	609.4910	0.8919	107.5210	< 0.0028063
MPP902A-Circulo A-ef - 3	Palma	Palma	MPP902A	470035.0000	6663.1300	28546.7000	<0.096448	<1.1184	13.9204	612100	2.2388	0.7368	4.8976	<0.67529	0.4151	11.6780	4574.2400	0.0059	0.2558	3.1089	0.0085	595.2310	0.3654	40.4458	< 0.0026526
MPP902A-Circulo A-ef - 4	Palma	Palma	MPP902A	462991.0000	6673.5000	28508.9000	<0.098088	<1.2248	27.9806	612100	2.2150	4.7948	5.0111	<0.70366	0.4073	18.7128	4537.0600	<0.0065851	0.3432	6.1755	<0.008511	580.5030	1.1326	68.4003	< 0.0027844
MPP902A-Circulo B-ef - 1	Palma	Palma	MPP902A	474817.0000	6804.3600	28786.1000	0.1596	<1.128	28.6495	617300	1.8078	6.0644	5.9536	<0.71339	0.4026	27.1699	4777.6300	0.0063	0.4220	9.9448	< 0.0087454	604.3090	1.4280	99.7473	< 0.0026489
MPP902A-Circulo B-ef - 2	Palma	Palma	MPP902A	473672.0000	6702.1200	28577.8000	0.1719	<1.0326	38.9864	614300	1.8274	5.6030	6.3052	<0.69966	0.3792	31.9776	4791.6700	0.0071	0.6283	15.6711	< 0.0093633	600.3730	1.8066	123.1210	0.0024
MPP902A-Circulo C-ef - 1	Palma	Palma	MPP902A	476437.0000	6874.7900	28997.6000	< 0.10012	<1.1066	41.9243	619000	2.0321	5.1462	5.8622	0.6898	0.5212	31.2252	4663.4800	0.0091	0.5110	9.9694	< 0.0094506	609.3510	3.5851	140.0870	< 0.0026427
MPP902A-Circulo C-ef - 2	Palma	Palma	MPP902A	483581.0000	6740.8400	29163.3000	< 0.09393	<1.1545	23.1978	615100	1.8404	1.6563	5.3642	<0.66515	0.4428	21.7143	4768.2500	0.0111	0.3194	6.0842	<0.0083125	593.7730	0.9574	79.0603	< 0.0026421
MPP902A-Circulo D-ef - 1	Palma	Palma	MPP902A	483376.0000	6790.7400	28942.3000	< 0.11679	<1.393	30.5285	613400	1.9769	3.8891	5.6210	1.1718	0.5242	12.8935	4444.8500	0.0100	0.4606	3.5990	<0.010127	613.5720	2.8843	75.5010	< 0.0031927
MPP902A-Circulo D-ef - 2	Palma	Palma	MPP902A	479190.0000	6733.6500	29142.3000	<0.091787	1.3961	19.7285	617200	1.9317	1.6748	5.3094	0.6970	0.4557	13.6581	4487.0000	0.0072	0.2741	3.2926	<0.008223	577.8880	1.5237	52.2051	< 0.0025074
MPP902A-Circulo E-ef - 1	Palma	Palma	MPP902A	486751.0000	6914.0900	30014.6000	< 0.094477	<0.98723	25.5852	617700	2.3073	9.3098	6.0361	<0.70149	0.3967	17.5170	4472.2000	0.0090	0.3399	2.4214	<0.0091543	605.4750	1.8370	70.7905	< 0.0028513
MPP902A-Circulo E-ef - 2	Palma	Palma	MPP902A	486593.0000	7008.4300	30283.9000	<0.10271	<1.2183	29.1018	616700	2.0612	4.5690	6.2287	1.0140	0.5832	13.1980	4335.1000	0.0095	0.4586	5.0905	<0.008914	592.8230	3.5874	76.7598	< 0.0029019
MPP902B-Circulo A-ef - 1	Palma	Palma	MPP902B	514200.0000	7750.9100	32189.7000	<0.096916	<1.2802	17.3304	619200	2.5159	6.8329	5.5966	<0.66895	0.5130	7.7940	4941.3000	<0.0066951	0.6298	1.3718	< 0.0090738	597.1390	6.2448	103.8940	< 0.0023099
MPP902B-Circulo A-ef - 2	Palma	Palma	MPP902B	518506.0000	7169.6000	31015.6000	< 0.09934	<0.88153	42.0703	621200	2.2339	3.0952	5.1317	<0.66957	0.4692	20.0416	4894.1500	<0.0062573	0.3821	2.1896	< 0.0093798	616.6190	2.8813	92.0031	0.0025
MPP902B-Circulo B-ef - 2	Palma	Palma	MPP902B	512238.0000	7398.5500	32564.9000	<0.10955	<1.2869	8.1451	620900	3.0984	0.1970	4.3785	<0.75211	0.4590	3.3598	5173.9200	<0.0069507	0.1685	0.0425	< 0.0095374	632.8690	0.0055	3.3127	< 0.0027479
MPP902B-Circulo C-ef - 1	Palma	Palma	MPP902B	512191.0000	7194.5600	31973.8000	< 0.11067	<1.2063	8.8328	620200	2.4886	<0.11148	4.2256	1.4509	0.4658	3.7075	5125.0800	<0.0071672	0.1723	0.0799	0.0097	619.6730	0.0126	4.7387	< 0.0028516
MPP902B-Circulo C-ef - 2	Palma	Palma	MPP902B	527005.0000	7204.3300	31915.7000	< 0.11077	<1.2122	9.3997	621200	2.5839	0.2956	4.3928	<0.72679	0.4892	4.5598	5227.7900	0.0075	0.1610	0.1839	< 0.0091239	641.6620	0.0201	9.1483	< 0.0026828
MPP902B-Circulo D-ef - 1	Palma	Palma	MPP902B	536275.0000	7162.2900	32016.0000	< 0.13376	<1.2898	15.3993	624400	2.5350	0.1969	4.3293	<0.89966	0.4725	9.5334	5243.2700	< 0.0083409	0.1758	0.4157	< 0.013172	642.1030	0.2525	24.3489	< 0.0042333
MPP902B-Circulo D-ef - 2	Palma	Palma	MPP902B	526925.0000	7107.1800	31756.3000	<0.11515	0.9890	7.6573	624400	2.3632	0.1776	3.9588	0.8082	0.4361	5.3451	5105.6500	< 0.006414	0.1630	0.1766	<0.0095819	626.0380	0.0902	17.0466	< 0.0029389
MPP902B-Circulo D-ef - 3	Palma	Palma	MPP902B	535286.0000	7410.5100	32745.9000	<0.10954	<1.0636	25.5825	624400	2.3917	0.3994	4.3334	0.8300	0.4630	11.3085	5280.9100	<0.0069556	0.2270	0.7566	0.0110	656.7890	1.0082	33.6300	< 0.003052
MPP902B-Circulo E-ef - 1	Palma	Palma	MPP902B	528038.0000	7242.3900	32189.8000	< 0.10555	<1.0786	8.3786	625100	2.5147	0.1227	4.0102	<0.67463	0.4266	2.5350	5141.3900	<0.0058103	0.1451	< 0.021207	< 0.0096014	652.9080	0.0050	0.1738	< 0.0027944
MPP902B-Circulo E-ef - 2	Palma	Palma	MPP902B	533027.0000	7369.6100	32810.4000	<0.10839	<1.314	6.6967	620200	2.2516	0.1448	3.9949	<0.70134	0.4631	2.8781	5189.4700	<0.0059549	0.1770	< 0.023532	<0.00976	666.9260	< 0.0036288	1.7653	< 0.002931
MPP903-Circulo A-ef - 2	Palma	Santa Lidia	MPP903	495806.0000	10847.7000	71525.5000	14.4070	1.7774	9.3502	543300	2.8729	0.1543	5.3148	1.0627	0.6660	5.6360	7951.4400	0.2595	0.3257	3.7445	0.0358	1214.9400	0.0176	2.9756	< 0.0026105
MPP903-Circulo A-ef - 3	Palma	Santa Lidia	MPP903	487279.0000	9837.4600	64435.7000	14.2981	<1.2641	36.3563	543300	2.2517	0.2280	4.7218	<0.81155	0.6497	23.0337	7665.1900	0.2511	0.8965	27.6890	0.0219	1171.4800	0.2130	16.1207	< 0.00372
MPP903-Circulo A-ef - 4	Palma	Santa Lidia	MPP903	491348.0000	10702.0000	71268.9000	15.1086	<1.0622	11.0619	543300	2.4858	0.1495	5.1287	0.8867	0.6437	3.8302	7646.8400	0.2680	0.3292	1.1694	0.1284	1166.2200	0.0071	1.7568	< 0.003279
MPP903-Circulo C-ef - 1	Palma	Santa Lidia	MPP903	491310.0000	10297.7000	68820.5000	15.2267	<1.27	14.6068	555300	2.3920	<0.11112	5.2808	<0.67935	0.6561	10.9290	7330.8900	0.2842	0.3610	7.4222	0.0134	1183.9400	0.0354	5.6009	< 0.0031814
MPP903-Circulo C-ef - 2	Palma	Santa Lidia	MPP903	488443.0000	10552.9000	70338.5000	15.7257	<1.1601	50.1867	551200	2.3767	<0.11433	5.1200	0.7780	0.6426	14.0587	7109.2300	0.2765	0.4568	17.0068	0.0118	1146.6900	0.1234	6.9214	< 0.003007
MPP903-Circulo D-ef - 1	Palma	Santa Lidia	MPP903	495882.0000	10603.5000	71438.0000	3.6316	<1.0422	8.2350	554900	2.3374	0.1299	4.9564	0.9089	0.6428	3.7224	7535.8800	0.1719	0.2576	1.1064	0.0926	1176.6400	0.0056	1.0520	< 0.0028321
MPP903-Circulo D-ef - 2	Palma	Santa Lidia	MPP903	482000.0000	10410.6000	70900.5000	2.9489	<1.03	16.0555	551400	2.1464	0.2057	4.9224	0.8143	0.6934	7.1310	7314.7000	0.1840	0.3465	3.9367	0.0326	1156.4000	0.0202	4.2579	< 0.0027488

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
MPP903-Circulo E-ef - 1	Palma	Santa Lidia	MPP903	492437.0000	10050.4000	68799.3000	1.2735	<1.0469	17.1563	552500	2.1912	<0.10914	4.9020	<0.71199	0.6561	16.4695	7307.0100	0.1305	0.4196	11.8833	0.0227	1157.9400	0.0462	11.9732	0.0037
MPP903-Circulo E-ef - 2	Palma	Santa Lidia	MPP903	492368.0000	10119.3000	69951.1000	1.7090	<1.2243	20.1026	549300	1.9967	0.1378	5.3121	0.7372	0.6711	15.9665	7499.5200	0.1298	0.4140	14.6097	<0.010581	1151.9600	0.1069	10.4503	< 0.0032107
MPP517-Circulo A-ef - 1	Perubar	Cecilia Sur	MPP517	483942.0000	937.4410	30746.6000	<0.12279	<1.1158	789.3700	617700	12.6837	< 0.13301	4.9412	2.3326	0.0802	13.8041	5730.1600	0.7459	0.3313	1.2432	0.0313	75.8628	0.0551	5.6849	< 0.0036057
MPP517-Circulo A-ef - 2	Perubar	Cecilia Sur	MPP517	477661.0000	939.9640	30821.2000	<0.094611	<1.0316	33.8842	612600	11.0535	0.1295	4.5906	3.2181	0.1048	5.3931	5485.3800	0.7050	0.2371	0.3070	0.0139	72.6656	0.0126	1.2195	< 0.0025217
MPP517-Circulo B-ef - 2	Perubar	Cecilia Sur	MPP517	486304.0000	972.0950	32275.1000	<0.14926	<1.844	30.8859	615000	19.0467	<0.15379	4.3400	4.0613	0.1005	4.7261	5660.6300	0.7255	0.1987	0.0583	0.0156	77.9474	0.0126	0.4607	< 0.0040143
MPP517-Circulo B-ef - 3	Perubar	Cecilia Sur	MPP517	490096.0000	1022.3300	33448.6000	<0.10031	< 0.84349	20.3018	615000	17.0412	<0.10968	4.5963	4.4032	0.0891	5.2402	5731.1900	0.7771	0.2382	0.1759	0.0244	74.2399	0.0206	1.0391	< 0.0028489
MPP517-Circulo B-ef - 4	Perubar	Cecilia Sur	MPP517	498109.0000	978.7170	32279.0000	<0.15973	<2.0599	27.4250	615000	19.7960	<0.16853	4.2815	3.5986	0.0457	7.4773	5818.9300	0.7308	0.4327	0.1592	0.0230	78.9658	0.0401	2.6240	< 0.0043497
MPP517-Circulo C-ef - 1	Perubar	Cecilia Sur	MPP517	498250.0000	977.5950	34038.0000	< 0.12442	<1.5654	46.5534	616300	19.9433	<0.13464	4.6856	3.3822	0.0665	5.6535	5873.9000	0.7732	0.3584	0.0764	<0.0122	78.6629	0.0606	0.8957	< 0.0032115
MPP517-Circulo C-ef - 2	Perubar	Cecilia Sur	MPP517	501436.0000	1047.3000	34978.2000	<0.10803	<1.1576	29.8968	617000	19.6438	0.1573	4.9974	2.9928	0.0903	7.2441	5774.6500	0.8162	0.3015	0.1687	0.0168	70.6194	0.0444	1.8095	< 0.0031281
MPP535-Circulo A-ef - 1	Perubar	Cecilia Sur	MPP535	459885.0000	898.7270	41910.4000	<0.10113	0.9582	42.5119	599800	32.5273	0.1173	5.3604	1.2605	0.0705	6.3716	6920.1700	< 0.0057265	0.3720	0.2315	< 0.0094522	108.1000	0.0958	1.8111	< 0.0024099
MPP535-Circulo A-ef - 2	Perubar	Cecilia Sur	MPP535	461822.0000	934.9970	42635.9000	< 0.096432	<1.0341	39.0631	603800	32.4670	<0.11539	4.8482	1.1995	0.1024	6.0731	7076.3100	0.0063	0.3963	0.6379	< 0.0090417	114.4650	0.2506	3.0280	< 0.0025557
MPP535-Circulo B-ef - 1	Perubar	Cecilia Sur	MPP535	448993.0000	883.4890	40710.6000	< 0.089863	0.9628	41.7654	600000	31.9264	<0.10832	4.7627	1.1295	0.0652	4.2747	6827.0900	0.0057	0.4194	< 0.022936	0.0087	108.1280	0.1598	0.0376	< 0.0030648
MPP535-Circulo B-ef - 2	Perubar	Cecilia Sur	MPP535	457561.0000	900.3550	39948.0000	< 0.089542	< 0.92308	54.2359	600000	31.1863	<0.1137	4.7652	1.2896	0.1994	7.6253	6841.1300	< 0.0056169	0.3163	0.6107	0.0146	111.7500	0.0787	6.4286	< 0.0031104
MPP535-Circulo B-ef - 3	Perubar	Cecilia Sur	MPP535	445415.0000	923.8820	39913.8000	< 0.096344	<1.1345	38.4363	600000	30.9717	0.1596	4.8705	<0.81995	0.0734	4.6875	6700.2500	< 0.006128	0.3099	0.4842	< 0.0085276	107.1820	0.0426	0.8989	< 0.0031737
MPP535-Circulo B-ef - 4	Perubar	Cecilia Sur	MPP535	456273.0000	666.6510	39562.8000	< 0.092975	<1.0141	43.9542	600000	30.4418	<0.10694	4.6224	0.7679	0.0671	7.8308	6806.6100	< 0.0053797	0.2643	2.1969	0.0177	109.8730	0.1759	7.8795	< 0.0029888
MPP535-Circulo B-ef - 5	Perubar	Cecilia Sur	MPP535	452735.0000	889.2940	38973.6000	< 0.097743	1.2131	40.1993	600000	30.0911	<0.1064	4.3492	< 0.69755	0.0993	5.8997	6613.1600	< 0.0059668	0.2648	1.2181	0.0136	108.4660	0.1194	3.8437	< 0.0027498
MPP535-Circulo C-ef - 1	Perubar	Cecilia Sur	MPP535	467877.0000	852.5640	39212.5000	<0.13932	<1.6052	38.3605	600000	30.5038	0.1604	4.5456	<0.96806	0.0638	6.6105	6949.7100	<0.0084381	0.2865	1.7843	0.0132	116.9180	0.2061	5.1355	< 0.0047159
MPP535-Circulo C-ef - 2	Perubar	Cecilia Sur	MPP535	453576.0000	873.0220	40015.9000	<0.10697	<1.2411	50.7188	600000	30.2949	< 0.12056	4.4676	1.2179	0.0924	9.6972	6766.7400	< 0.0064459	0.2395	2.8279	<0.010239	108.0560	0.2515	10.1130	< 0.0029982
MPP535-Circulo C-ef - 3	Perubar	Cecilia Sur	MPP535	453127.0000	901.3650	41039.4000	< 0.096664	<1.0476	35.1872	600000	30.3842	<0.10735	4.6520	1.0944	0.0802	6.1482	6740.8000	0.0060	0.3385	0.2308	0.0143	106.5470	0.0931	1.2258	< 0.0020567
MPP535-Circulo C-ef - 4	Perubar	Cecilia Sur	MPP535	459217.0000	894.9040	40384.4000	< 0.094809	< 0.92659	40.9015	600000	30.5841	<0.11216	4.7598	1.0852	0.0757	6.9875	6698.5900	< 0.0057874	0.3897	0.4893	0.0157	107.4410	0.0872	3.7066	< 0.0029699
MPP535-Circulo D-ef - 1	Perubar	Cecilia Sur	MPP535	459115.0000	886.0040	40120.3000	<0.099821	0.8784	50.1369	600000	30.9454	<0.1078	4.4513	0.7710	0.0905	11.1497	6769.7100	< 0.0057523	0.3442	3.9898	0.0312	107.5780	1.0433	17.2266	< 0.0026476
MPP535-Circulo D-ef - 2	Perubar	Cecilia Sur	MPP535	452002.0000	873.2330	39791.1000	< 0.087025	< 0.84032	81.8024	600000	29.9293	<0.10492	4.5716	< 0.67093	0.1351	7.1203	6580.2900	0.0060	0.3260	2.0277	0.0125	105.1330	0.5660	5.2618	< 0.0026562
MPP535-Circulo D-ef - 3	Perubar	Cecilia Sur	MPP535	455941.0000	875.6690	40023.4000	<0.097247	< 0.96632	39.5067	600000	30.4156	0.1839	4.7436	0.8635	0.0845	8.1987	6682.2000	0.0056	0.2711	1.9220	0.0140	108.3780	0.1792	5.8712	< 0.0025651
MPP535-Circulo D-ef - 4	Perubar	Cecilia Sur	MPP535	456330.0000	877.1200	40144.9000	<0.091084	< 0.85649	37.9131	600000	30.3704	0.1921	5.4114	< 0.66731	0.0714	8.6715	6695.1000	< 0.0053938	0.2271	2.6394	0.0185	108.2400	0.3192	9.6661	< 0.0026651
MPP017-Circulo A-ef - 1	Perubar	Graciela	MPP017	510026.1180	7325.9456	64251.1608	< 0.1204	< 0.98869	22.9180	572900	17.1934	<0.11822	4.2799	3.6831	0.4837	2.1696	4973.1776	2.0264	0.1748	0.1123	<0.011107	40.6359	0.0745	1.3541	< 0.0033574
MPP017-Circulo B-ef - 1	Perubar	Graciela	MPP017	510037.6140	7341.7104	64977.5089	<0.1142	1.0248	27.1514	575100	22.1154	0.1888	4.2189	3.8644	0.4872	2.0915	4961.5540	2.0016	0.2103	< 0.023938	<0.010371	40.2856	0.0615	0.2074	< 0.0025539
MPP017-Circulo B-ef - 2	Perubar	Graciela	MPP017	493071.6012	6703.8449	59163.6652	< 0.18702	<2.424	23.4772	575100	21.0318	0.1859	4.7478	4.1940	0.5423	1.9993	5042.7168	1.9361	0.2038	0.3715	<0.017411	42.6843	0.1690	0.6925	< 0.0047421
MPP017-Circulo B-ef - 3	Perubar	Graciela	MPP017	502032.9736	7375.6567	63737.9002	<0.10818	1.5708	28.5305	575100	21.7765	0.1981	4.2293	3.3893	0.4631	2.7959	4929.2089	2.0372	0.2067	0.5917	< 0.0087945	40.5082	0.1476	3.2058	< 0.0033997
MPP017-Circulo B-ef - 4	Perubar	Graciela	MPP017	513995.4211	7425.2754	64467.3828	< 0.11475	1.3130	26.1813	575100	22.3350	0.1643	4.3165	4.0321	0.4829	2.0785	5034.7628	2.0928	0.2148	0.1235	< 0.010077	41.5284	0.0706	1.2519	< 0.0033815
MPP017-Circulo C-ef - 1	Perubar	Graciela	MPP017	502783.9728	7639.3611	66450.5978	<0.12661	<1.303	23.2936	574200	17.6720	< 0.12609	4.0353	3.2420	0.5468	1.9624	4799.1798	2.0134	0.1847	0.2305	<0.011483	37.4050	0.1100	1.0175	< 0.0032036
MPP017-Circulo C-ef - 4	Perubar	Graciela	MPP017	509787.4192	7173.6463	61512.3051	0.1633	<1.5731	24.5944	574200	21.5344	< 0.15852	4.3213	3.2304	0.3946	1.7123	5135.3154	1.9920	0.2252	0.0432	<0.011371	41.1502	0.0665	0.3847	< 0.0038042
MPP017-Circulo C-ef - 5	Perubar	Graciela	MPP017	502940.9356	7268.3715	64076.6553	<0.1133	<1.1438	25.0473	574200	21.4761	<0.10912	4.0956	3.9470	0.4687	1.8841	4949.3269	2.0536	0.1881	0.0548	<0.010619	38.3365	0.0459	0.2482	< 0.0028713
MPP017-Circulo C-ef - 6	Perubar	Graciela	MPP017	507235.7336	7172.4802	62600.5874	<0.13018	<1.5798	30.1249	574200	21.7768	<0.13626	4.1508	3.6720	0.4400	1.9786	5040.7608	1.9850	0.2212	0.0471	< 0.012594	40.1754	0.0454	0.1768	< 0.0036503
MPP017-Circulo C-ef - 7	Perubar	Graciela	MPP017	502790.9073	7284.7356	63654.5508	< 0.10614	<1.1852	26.6063	574200	21.6632	<0.11051	4.1965	3.9552	0.4905	1.8918	4971.1255	1.9996	0.2112	< 0.022577	< 0.0090656	37.1730	0.0526	0.2089	< 0.0027776
MPP317A-Circulo A-ef - 1	Perubar	Juanita	MPP317A	457876.0000	1816.1900	62933.4000	8.0598	<1	38.8966	567000	6.9595	0.1274	5.2091	2.4910	0.1232	4.4796	4325.2900	7.1301	0.2883	0.6532	< 0.0084504	16.4376	0.0764	0.9362	< 0.0025935
MPP317A-Circulo C-ef - 2	Perubar	Juanita	MPP317A	442417.0000	1668.9800	58263.4000	6.8107	<1.1259	126.4070	565300	4.5452	< 0.10223	5.0882	3.0821	0.1150	7.3538	3977.1300	6.9344	0.1908	2.9850	< 0.0086523	15.1746	0.4920	1.2864	< 0.0025363
MPP317A-Circulo D-ef - 1	Perubar	Juanita	MPP317A	449813.0000	1973.2500	64193.0000	6.5098	<1.2409	26.9446	557900	8.1309	0.4888	6.0912	3.0272	0.1634	3.5654	4154.0000	6.9976	1.3642	0.9035	< 0.010331	16.6120	0.0060	0.6272	< 0.0029703
MPP317A-Circulo D-ef - 2	Perubar	Juanita	MPP317A	453646.0000	1758.7700	59989.2000	6.2456	< 0.99382	20.4347	557900	7.0895	<0.12929	4.6661	3.9080	0.1654	3.6546	4387.9800	6.6616	0.2064	0.3837	< 0.010205	17.2328	0.0390	0.6385	< 0.0035128
MPP318A-Circulo E-ef - 2	Perubar	Rímac-D	MPP318A	490956.7708	5966.2376	73876.4731	7.1902	< 0.95608	15.7459	549400	4.5960	0.1930	4.6762	9.2443	0.4512	3.5502	4179.9326	2.3236	0.2697	0.5610	<0.009311	17.9647	0.0070	0.6011	< 0.0027663
MPP318A-Circulo E-ef - 3	Perubar	Rímac-D	MPP318A	486778.2436	5771.1380	72018.6730	7.8884	<1.1413	29.3413	549400	4.4487	0.1296	4.7286	8.2720	0.3883	4.0301	4275.7479	2.3358	0.2551	0.2618	< 0.011091	17.8052	< 0.0030507	0.3996	< 0.0032318

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
MPP318A-Circulo E-ef - 4	Perubar	Rímac-D	MPP318A	482476.3877	5551.0915	70623.7836	6.8695	1.2659	31.8411	549400	4.2983	0.1539	4.5035	8.2179	0.3794	4.0606	4199.1517	2.3113	0.2359	1.2515	< 0.0099588	16.8988	0.0298	1.0836	< 0.0029894
MPP318A-Circulo D-ef - 1	Perubar	Rímac-D	MPP318A	480428.0393	6090.4082	70299.2013	5.9645	<1.1355	22.2653	550300	4.7868	<0.11652	4.3859	8.4725	0.4340	4.1099	4146.1516	2.3261	0.2187	0.3702	< 0.011431	17.5465	0.0045	0.3795	< 0.0032021
MPP318A-Circulo D-ef - 2	Perubar	Rímac-D	MPP318A	489434.7437	6073.9529	72919.1350	4.2484	<1.0815	30.7962	552400	4.7684	<0.11708	4.6031	10.1689	0.4063	4.0063	4217.8321	2.3236	0.2732	0.6921	< 0.01028	17.4097	0.0043	1.0108	< 0.0031668
MPP318A-Circulo A-ef - 1	Perubar	Rímac-D	MPP318A	491595.0000	5160.0300	70801.9000	5.2515	1.1955	21.6893	551600	3.7828	0.2166	4.8968	8.4479	0.3712	2.4906	4435.5500	2.4052	0.2248	0.3427	0.0108	18.2348	0.0072	0.2247	< 0.0030409
MPP318A-Circulo C-ef - 1	Perubar	Rímac-D	MPP318A	491784.0000	5748.3400	71336.6000	9.0090	1.0915	25.4833	551600	4.5204	0.2060	4.7991	9.4212	0.4175	4.0050	4266.3700	2.2683	0.2584	0.1875	< 0.010066	18.7452	0.0044	0.2542	< 0.0025918
MPP318A-Circulo C-ef - 2	Perubar	Rímac-D	MPP318A	501394.0000	5291.7600	71298.8000	2.9184	<1.1402	21.8513	551600	4.3502	0.1580	4.8289	8.6329	0.3823	3.4786	4334.5600	2.2695	0.2705	0.2001	0.0095	18.3829	0.0043	0.2341	< 0.002943
MPP318A-Circulo C-ef - 3	Perubar	Rímac-D	MPP318A	487907.0000	5372.4000	70460.4000	3.2943	< 0.93314	44.9490	551600	3.9239	0.1272	4.8538	6.9216	0.3427	6.6553	4299.7100	2.2797	0.2188	0.7642	< 0.010585	17.9505	0.0269	1.0190	0.0037
MPP318A-Circulo C-ef - 4	Perubar	Rímac-D	MPP318A	489799.0000	5553.7600	71419.0000	4.5885	1.0784	27.1383	551600	4.3493	< 0.12144	4.5822	10.2397	0.3312	3.8263	4263.8200	2.2046	0.3564	0.1438	0.0114	18.5164	< 0.0031702	0.2687	< 0.0025074
MPP318A-Circulo C-ef - 5	Perubar	Rímac-D	MPP318A	493620.0000	5782.9400	73488.7000	4.7417	<1.0754	23.0674	551600	4.6995	< 0.11449	4.5479	9.3838	0.3370	3.9783	4295.6100	2.2433	0.3078	0.1790	< 0.010114	18.6784	0.0092	0.2731	< 0.0031272
MPP318A-Circulo C-ef - 6	Perubar	Rímac-D	MPP318A	486187.0000	5120,5700	66771.3000	2.8417	<1.4867	21.8150	551600	3.3600	< 0.12973	4.4228	6.4561	0.3403	8.3421	4247,9600	2.1452	0.1892	2.2715	< 0.010842	19.6043	0.0557	1.9041	0.0030
MPP318A-Circulo C-ef - 7	Perubar	Rímac-D	MPP318A	481361.0000	5513.6800	67836.4000	10.4256	<1.232	66.2801	551600	3.3911	<0.12128	4.6000	8.2743	0.3669	10.2081	3995.7800	2.2694	0.2091	5.3539	< 0.010557	17.0938	0.1187	2.6525	< 0.0032876
MPP318A-Circulo E-ef - 1	Perubar	Rímac-D	MPP318A	499004.0000	5958.4800	72735.8000	7.6919	<1.1875	26.6724	551600	4.5780	0.1839	4.6476	9.0849	0.4295	3.9618	4144.1600	2.1771	0.2439	0.2009	< 0.011856	17.6113	0.0041	0.2192	< 0.0031908

CALCOPIRITA

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Cr (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-0011B-Circulo A-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	611238.4684	< 0.43005	1.5187	332685.1781	0.0703	1.4599	344000	269.3083	1.2805	0.4277	0.2293	12.8549	0.0185	71.0553	6.0332	23.1359	77.3374	5.4330	0.1330	<0.12891	2.0594	4.2473	0.3122
2019-MT-0011B-Circulo B-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	745973.7138	< 0.53854	<1.0817	348537.5117	< 0.076493	1.2925	342000	347.0184	8.0982	2.3694	0.2531	15.8215	< 0.024863	116.6141	11.3471	30.2473	86.8783	9.9174	0.4026	0.8989	1.5206	12.3191	0.8972
2019-MT-0011B-Circulo B-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	601643.5817	<0.46121	< 0.92119	290984.0356	< 0.064621	0.8851	343000	427.8421	8.2989	2.2779	0.3786	15.0295	0.0221	85.8453	12.2449	30.2720	78.3189	3.1895	0.1071	0.6737	0.4366	3.3583	0.1870
2019-MT-0011B-Circulo C-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	642503.9119	0.4765	< 0.89308	322240.0172	< 0.064549	1.2278	343000	377.4591	7.5456	1.5830	0.2824	13.1949	0.0372	90.6059	8.4708	19.6370	86.6414	9.2785	0.2027	0.3565	1.8660	8.6483	1.5869
2019-MT-0012A-Circulo A-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	671297.0689	< 0.47604	< 0.94361	337641.4136	< 0.071136	1.5685	347000	155.3671	1.2840	1.0011	1.8676	27.6251	0.0343	74.3483	6.2113	12.2677	20.5358	7.4828	0.0169	1.1723	1.5280	10.9723	3.4939
2019-MT-0012A-Circulo A-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	709125.9504	< 0.45392	< 0.88973	330669.8356	0.0688	1.1396	352000	156.3499	0.4234	0.3124	1.2172	27.2876	0.0206	75.4313	4.2891	14.8203	9.2800	9.2433	0.0392	0.9603	2.4265	13.8805	5.4055
2019-MT-0012A-Circulo A-cpy - 3	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	727762.5062	<0.49725	<1.0005	368983.0286	0.0868	1.7969	352000	151.9788	1.5827	0.3081	0.9007	30.2918	0.0237	75.7404	4.7154	14.7763	19.9934	2.9278	0.0523	0.7914	0.2762	6.0359	2.4863
2019-MT-0012A-Circulo B-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	692540.9974	<0.42923	< 0.8961	346501.5652	<0.066598	1.6660	348000	194.1478	3.1106	0.5716	1.2652	27.5757	0.0439	97.9289	8.1981	36.4410	44.2045	31.1215	0.1068	2.8886	3.6801	33.1935	5.5046
2019-MT-0012A-Circulo C-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	699370.9254	0.6399	<0.99963	348873.2636	< 0.072886	<1.1827	346000	193.9284	3.2808	0.7339	0.8158	30.6804	< 0.020143	197.1546	10.3949	12.4269	45.7392	3.1362	0.0421	0.6467	0.2015	8.0534	2.0694
2019-MT-0012A-Circulo C-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0012A	691081.3378	< 0.45254	1.3611	365654.2478	< 0.067577	<0.94919	345000	171.6173	3.2438	0.7387	1.0397	29.9199	< 0.022896	144.6876	9.7716	13.2497	40.6482	4.0274	0.0134	0.9817	0.2761	10.7803	2.8220
2019-MT-0012B-Circulo A-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012B	696806.3004	<0.46854	< 0.95208	351520.9271	< 0.068581	1.8607	347000	182.3742	2.7885	0.7663	0.7893	32.0395	0.0226	106.1116	13.5455	11.6759	35.0550	11.4841	0.0484	0.7882	0.1778	8.1863	2.5756
2019-MT-0012B-Circulo A-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0012B	708840.2812	<0.46641	<0.97988	363924.5777	< 0.068415	<1.1098	346000	196.4317	2.8564	0.6384	0.5260	32.0713	0.0203	100.7927	12.4328	10.7351	32.7383	3.2299	0.0682	1.8848	0.0189	1.7016	0.2793
2019-MT-0012B-Circulo B-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012B	641278.9424	< 0.42754	< 0.8786	313860.8077	< 0.059461	1.9294	345000	186.0330	2.0324	0.6657	0.7170	27.5498	0.0198	95.3030	9.4863	11.4691	27.9390	9.0107	0.2079	1.2629	0.4856	6.3400	0.9557
2019-MT-0012B-Circulo C-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012B	699516.0116	<0.4074	< 0.864	345792.4300	< 0.060638	1.8790	347000	424.0115	2.6272	0.7583	0.2968	29.9076	0.0184	83.7861	15.0307	12.0776	29.6756	2.0874	0.1316	1.0676	0.0292	2.8517	0.5076
2019-MT-0012C-Circulo A -cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012C	676047.2590	<0.5233	<1.0386	333046.6274	< 0.073512	1.0387	347000	204.1736	3.0497	0.9887	0.2982	27.4249	0.0341	181.5065	11.0204	12.4113	45.1551	2.9899	0.0463	1.3750	0.1249	6.0001	0.9758
2019-MT-0012C-Circulo B -cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0012C	740795.0923	<0.51191	3.4796	345494.5384	< 0.080348	1.1850	345000	208.1137	2.5882	0.6572	0.3090	26.5121	0.0349	192.4500	11.6274	13.0604	43.3082	8.3196	0.0905	2.0174	0.7011	13.7295	2.3544
2019-MT-0012C-Circulo C -cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-0012C	842270.6140	< 0.54305	<1.1646	373971.7684	<0.085819	1.2354	346000	205.5885	3.4862	0.9142	0.3085	25.9354	0.0371	295.4775	11.6818	13.0637	47.9390	5.9326	0.0197	0.4277	0.7410	10.5319	1.3352
2019-MT-0021-Circulo A-cpy - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	717443.4440	< 0.54945	<1.1453	350244.4569	< 0.087764	<1.2332	340000	351.3053	8.8845	7.2725	0.2907	59.1179	0.0233	49.7016	9.5671	44.0716	52.9482	3.5890	0.0159	1.7732	0.6202	2.0095	0.5398
2019-MT-0021-Circulo B-cpy - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	685325.3236	<0.6178	<1.3285	332339.2460	< 0.097672	<1.3558	340000	275.8927	10.9737	12.4078	0.3164	50.6980	0.0329	43.8059	4.0851	34.5652	47.5215	3.8906	0.0219	3.4714	1.7990	1.5305	0.4478
2019-MT-0021-Circulo C-cpy - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	609594.1837	<0.53882	1.4627	312108.5032	< 0.097552	1.8941	340000	646.9978	9.7425	7.9944	0.3637	49.1826	0.0203	51.0372	8.0431	36.5528	51.9912	15.0735	0.0615	0.5675	2.1565	6.6407	1.6123
2019-MT-0021-Circulo C-cpy - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	698129.6197	< 0.5339	4.0604	329625.8444	< 0.089671	1.8098	340000	311.5259	9.1485	10.7927	0.2455	51.8364	< 0.024498	67.9660	5.8568	34.2569	43.2977	17.1937	0.0755	3.6589	3.3646	7.9180	2.5405
2019-MT-007-Circulo A-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-007	734877.5617	<0.55417	<1.0248	303512.5925	< 0.097198	<1.1519	351800	429.0117	22.1037	79.6010	0.3163	10.1139	0.0228	3.2386	12.0664	22.6391	92.5192	1.8983	0.0376	2.3648	0.3183	1.8054	0.0155
2019-MT-007-Circulo A-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	697572.5553	< 0.5473	<1.0575	306091.1414	< 0.10243	2.1169	343900	459.5226	20.9239	73.7892	0.2532	10.6484	0.0354	5.1800	12.0189	22.4763	89.5288	1.4121	0.1000	3.7530	0.1542	1.3600	0.0092
2019-MT-011A-Circulo A-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-011A	693160.5410	< 0.59768	1.6384	310753.4748	< 0.10703	1.3683	347300	529.1556	10.6013	5.1015	0.3346	21.4411	< 0.029896	188.6343	14.7013	18.3982	65.1258	18.4061	0.2167	0.8835	9.4915	31.9335	2.4454
2019-MT-011A-Circulo B-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	633371.8863	<0.49087	< 0.82131	319791.6883	< 0.083459	1.0321	348300		13.3866	4.3099	0.2688	16.3776	0.0258	143.0774	13.1713	31.7743	119.5035	7.8446	0.1197	0.7003	0.7547	8.4357	1.3892
2019-MT-011A-Circulo C-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	764900.9387	< 0.58522	<1.0693	329125.3808	<0.11337	1.2314	352700	470.2717	4.7899	0.6857	0.4067	18.4956	< 0.030436	150.2169	9.9422	46.5074	9.3356	14.5751	0.0306	0.2354	9.4577	35.4545	2.9124
2019-MT-011A-Circulo C-cpy - 2	María Teresa	Calera/Sofía D/-300	2019-MT-011A	686574.5851	< 0.53895	1.4851	320083.1164	<0.10232	2.2364	351600	222.5075	0.0698	0.4200	0.3221	21.9274	0.0336	166.0219	3.4921	11.1089	4.2826	17.9166	<0.011057	0.3192	11.1726	81.9614	5.3586
2019-MT-011A-Circulo D-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	643720.0358	< 0.50278	< 0.90705	331819.4399	< 0.094037	1.2260	350600	288.9817	2.8971	0.1820	< 0.13474	20.3942	0.0287	209.8856	6.2178	18.3285	44.8521	10.4053	0.1171	0.8373	3.8067	28.0425	1.5465
2019-MT-015B-Circulo E-cpy - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	703487.0843	<0.41983	< 0.89615	264303.5478	< 0.081532	<1.0186	349700	438.9974	23.6317	2.1748	0.1809	45.1922	<0.019917	30.8277	8.3616	49.4911	201.2450	24.5630	0.2862	3.1464	3.5622	9.0685	0.8577
RD-CM-prov3-cpy - 2	Cerro de Maimón	Cerro de Maimón	СМ	648512.0000	< 0.60734	1.3817	304328.0000	1.2569	1.5111	346300	71.3491	3.8661	6.2462	1.4369	88.3035	27.4224	22.8229	0.5904	8.6761	1.6058	0.2015	0.0718	<0.14861	0.1235	22.9210	8.8709
RD-CM-prov3-cpy - 3	Cerro de Maimón	Cerro de Maimón	СМ	689324.0000	0.5208	<1.0976	296495.0000	3.1464	<1.1414	346300	<4.911	3.3046	5.6709	1.0957	65.6862	91.9355	21.2520	< 0.31769	8.0230	1.3906	0.3141	0.1310	0.2276	0.4217	39.2943	10.2806
RD-CM-prov3-cpy - 4	Cerro de Maimón	Cerro de Maimón	СМ	699272.0000	<0.46981	<1.0481	281126.0000	1.8368	2.4502	346300	<4.7024	3.1711	5.3402	0.5277	59.7141	52.9516	8.2536	<0.29796	7.3562	1.4904	0.0863	0.0155	<0.11632	0.0416	8.0774	2.3975
RD-CM-prov3-cpy - 5	Cerro de Maimón	Cerro de Maimón	СМ	721241.0000	< 0.54683	<1.2373	310139.0000	1.2268	<1.3122	346300	<5.3771	3.5853	6.2809	0.9040	94.3172	12.8352	14.2904	< 0.33905	8.1459	1.6784	0.1783	0.0377	0.2021	0.0446	7.4285	2.6415
RD-CM-prov3-cpy - 6	Cerro de Maimón	Cerro de Maimón	СМ	736093.0000	< 0.55922	<1.197	313576.0000	1.4103	1.7589	346300	<5.2939	3.3225	5.1839	0.9498	78.7078	79.1152	18.2183	0.3504	7.8525	1.1929	0.1987	0.0576	<0.13191	0.0804	13.8618	4.6384
RD-CM-prov3-cpy - 7	Cerro de Maimón	Cerro de Maimón	СМ	689927.0000	<0.48374	<1.0613	270450.0000	1.4958	<1.1882	346300	<4.6607	3.3439	5.9838	0.5198	83.2237	19.0610	22.6460	< 0.29736	6.6567	1.4745	0.0876	0.0743	0.1191	0.0302	5.8451	1.9628
RD-CM-prov3-cpy - 8	Cerro de Maimón	Cerro de Maimón	СМ	742186.0000	<0.62098	<1.328	316435.0000	1.9944	<1.5537	346300	<5.8328	3.6467	6.5585	1.7953	94.1694	86.2936	26.1210	< 0.38973	8.2981	1.7899	0.2937	0.0694	0.2658	0.1700	19.9940	7.1154
RD-CM-prov3-cpy - 9	Cerro de Maimón	Cerro de Maimón	СМ	679866.0000	<0.47806	<1.0389	303755.0000	2.4833	1.8936	346300	<4.6131	3.4552	5.3184	1.9517	79.0651	249.7780	32.6390	<0.28672	7.4711	1.3979	0.3435	0.0562	0.1521	0.2558	30.4357	9.0810
RD-CM-prov3-cpy - 10	Cerro de Maimón	Cerro de Maimón	СМ	672130.0000	<0.40384	< 0.85721	284053.0000	2.0570	1.5722	346300	<3.7471	3.5710	5.0476	0.6894	82.8828	58.1870	11.0789	< 0.24266	7.8908	1.4443	0.1154	0.0164	0.1511	0.0549	7.5819	1.5354
RD-CM-prov3-cpy - 11	Cerro de Maimón	Cerro de Maimón	СМ	662937.0000	<0.42494	< 0.93345	287172.0000	1.9605	1.1408	346300	<4.0995	3.2810	5.7487	0.3556	83.2059	26.5271	15.9303	< 0.25259	7.0381	1.5550	0.0539	0.0238	0.1025	0.0255	5.1435	1.4859
RD-CM-prov3-cpy - 12	Cerro de Maimón	Cerro de Maimón	СМ	607380.0000	<0.42424	<0.89329	299370.0000	1.7219	< 0.92225	346300	<3.9882	3.0611	4.7769	0.5976	89.4232	5.3656	17.5558	<0.25528	7.2990	1.2725	0.1219	0.0293	<0.10112	0.0429	6.7016	3.2995
MPP318A-Circulo B-cpy - 1	Perubar	Rímac-D	MPP318A	613418.0000	<0.4722	<1.0611	260915.0000	< 0.10851	1.9929	345800	373.4790	0.3630	0.4142	0.1389	5.4474	0.0265	8584.1500	1.8920	0.5979	8.5964	6.0589	0.0265	< 0.15538	0.3514	5.0079	< 0.0029425

GALENA

																	-		-		-					
Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Cr (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-001A-circulo a-gn - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	95882.3000	<2.9889	2.6644		< 0.27349	< 0.51863	23.4261	3.0135	0.6954	2.4178	1.6066	77.2535	<0.28115	1499.1773	35.9206	0.0252	7.9048	1788.6280	< 0.038087	0.1486	85.2978	855000	285.9438
2019-MT-001A-circulo a-gn - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	94886.2264	<3.1433	5.3171	9.3256	< 0.30298	<0.51918	53.1565	1.9393	< 0.048977	1.1166	1.4876	73.3693	< 0.32019	1395.1861	58.7615	0.0527	8.0587	2246.7267	< 0.042101	6.8840	81.1237	855000	281.9757
2019-MT-001A-circulo c-gn - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	100737.8804	<2.994	0.7925	8.1538	< 0.30153	< 0.58045	54.5177	2.7261	< 0.049139	0.8802	<1.2543	78.0080	<0.28471	1517.1999	18.4901	0.0483	14.3630	2161.3789	< 0.033093	0.3071	86.7776	865000	285.8130
2019-MT-001-circulo c-gn - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	100679.3648	<3.1752	2.2984	11.6300	< 0.294	< 0.5562	40.5130	1.5897	< 0.061157	1.0265	1.5350	80.2565	< 0.28416	1575.8542	37.4053	0.0598	15.2213	2564.9027	< 0.039643	0.2674	93.1164	865000	287.4435
2019-MT-002-circulo a-gn - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	94453.8737	<3.0734	< 0.44042	<7.7644	< 0.2602	<0.44794	45.0500	<1.1381	< 0.037438	0.4593	<1.069	51.3462	<0.24137	886.2506	47.9334	0.0281	2.6525	1116.2467	0.0619	0.9407	138.1523	847000	128.5150
2019-MT-002-circulo a-gn - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	90969.7656	<3.0667	< 0.4104	<7.2339	< 0.24876	<0.47891	7.4169	<1.1776	< 0.057834	0.4602	<1.0133	50.5698	< 0.20027	935.0314	49.3530	0.0318	2.4841	824.9999	< 0.029394	0.2246	142.5289	847000	128.9804
2019-MT-002-circulo c-gn - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	91574.1990	<2.9484	0.4547	<7.3938	< 0.26008	< 0.43823	26.7522	<1.1569	0.0656	0.5585	1.1374	52.0916	<0.2922	1117.9379	69.0064	0.0337	3.1511	1068.4719	0.0355	0.2120	145.5549	853000	131.3874
2019-MT-018-circulo a-gn - 1	María Teresa	Calera/Sofía D/-340	2019-MT-018	93353.3445	<3.5286	< 0.47874	<8.6913	< 0.30719	< 0.38152	10.7519	<1.288	< 0.042105	0.3925	<1.0365	30.9843	< 0.25031	4116.4141	73.1750	<0.016287	1.5803	3782.6419	< 0.033463	3.1853	116.5925	871000	90.0197
2019-MT-018-circulo a-gn - 2	María Teresa	Calera/Sofía D/-340	2019-MT-018	93468.6626	<2.8031	< 0.42693	<7.0404	<0.22312	<0.452	10.3255	<1.1151	< 0.040335	0.3277	<0.75805	29.5027	< 0.20682	4038.3963	68.1161	<0.013928	1.0292	3663.6482	< 0.021452	2.9321	115.1864	871000	85.7988
2019-MT-020-circulo b-gn - 1	María Teresa	Calera/Sofía D/-500	2019-MT-020	97156.4344	<2.571	< 0.44995	<7.4382	< 0.31036	< 0.35606	<1.119	<1.2027	< 0.038752	0.4712	< 0.84475	45.8554	<0.24017	989.5777	43.3401	<0.012462	1.9910	925.7458	< 0.025298	0.2847	171.5463	856000	52.9564
2019-MT-020-circulo b-gn - 2	María Teresa	Calera/Sofía D/-500	2019-MT-020	95654.9437	<3.1174	<0.44751	<7.4473	<0.31498	< 0.57571	1.7068	<1.1254	< 0.050773	0.4778	<0.9159	46.4674	<0.17059	938.9241	47.5678	< 0.017629	1.8735	1037.6662	< 0.041078	0.4684	167.8732	856000	53.7020
2019-MT-020-circulo c-gn - 1	María Teresa	Calera/Sofía D/-500	2019-MT-020	100357.0132	<2.9721	< 0.42039	<7.1189	<0.27883	< 0.35707	3.8091	<1.0911	< 0.042742	0.7168	<0.80899	48.3335	< 0.25552	1022.8333	65.4425	<0.014086	1.8941	977.3748	< 0.02585	0.4999	186.1560	875000	54.9191
2019-MT-020-circulo c-gn - 2	María Teresa	Calera/Sofía D/-500	2019-MT-020	102727.8284	<3.1554	<0.44437	<8.3786	< 0.33769	< 0.3833	4.9136	<1.1934	< 0.063734	0.6339	0.9892	48.3299	<0.29494	1017.6238	91.0489	< 0.015627	3.1318	2487.6374	< 0.028533	0.4708	184.6362	875000	57.2190
2019-MT-020-circulo c-gn - 3	María Teresa	Calera/Sofía D/-500	2019-MT-020	102878.7488	<3.1829	<0.47148	<8.7765	< 0.33023	<0.50656	8.7262	2.3145	< 0.054085	0.8026	<0.79887	50.1555	< 0.31629	1363.4665	88.2143	<0.017539	3.3773	1597.6411	0.0247	1.0105	227.9661	875000	56.7767
2019-MT-020-circulo c-gn - 4	María Teresa	Calera/Sofía D/-500	2019-MT-020	103231.3899	<3.0839	< 0.45153	<7.7323	< 0.31952	<0.46904	11.4488	<1.2267	< 0.053141	0.6970	0.9311	48.9103	< 0.30414	1469.2985	114.0470	<0.013479	3.4235	1806.2199	< 0.027422	0.8687	255.8666	875000	58.2209
2019-MT-020-circulo c-gn - 5	María Teresa	Calera/Sofía D/-500	2019-MT-020	102644.0820	<3.3082	0.7951	<9.5475	< 0.32913	< 0.51701	10.8693	<1.4668	< 0.063483	0.6077	< 0.82407	49.6313	<0.27718	1475.2437	120.0004	<0.019723	3.5223	1895.7177	< 0.039246	0.9737	264.2271	875000	57.2020
2019-MT-026a-circulo a-gn - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	91444.7577	<2.8779	3.7463	<7.0368	<0.2899	< 0.30986	6.4253	<0.99972	< 0.056171	2.5020	<0.73723	180.9598	<0.19957	606.8260	26.7738	0.0363	5.6414	880.9970	0.1161	0.9892	17.1222	860000	4.3787
2019-MT-026a-circulo b-gn - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	89397.9808	<3.2621	4.1801	<8.7254	< 0.34594	< 0.58468	3.8499	<1.167	< 0.044556	2.5325	<0.81844	170.5533	0.2869	746.3177	40.3721	0.0226	3.9935	786.3604	0.0526	0.7345	12.4230	860000	4.2386
2019-MT-026a-circulo d-gn - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	92695.0915	<2.9336	3.8544	<7.6897	<0.2978	< 0.57167	2.3090	1.1019	< 0.049196	2.4260	< 0.68429	178.3338	<0.24291	562.6683	33.0505	0.0256	3.1499	485.5557	< 0.039958	0.3870	14.7728	860000	4.5226
2019-MT-026a-circulo d-gn - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	92623.7122	<3.3107	4.1998	<8.6961	< 0.3347	<0.51911	<1.1301	28.4337	< 0.052022	2.6234	<0.76013	172.0407	<0.27391	540.5344	30.9403	0.0643	3.4726	479.4568	0.0417	0.5106	14.3629	860000	4.6105
2019-MT-026a-circulo e-gn - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	94610.4415	<3.5426	4.5102	<7.1436	<0.28972	< 0.37845	7.5717	<1.0333	0.0530	2.3084	104.2904	170.5215	<0.21627	631.5957	23.1061	0.0446	2.5262	898.9264	0.0740	1.1569	15.0999	860000	4.1319
2019-MT-026a-circulo e-gn - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	92396.8169	<3.2469	4.0190	<7.1994	< 0.30298	< 0.66559	7.1450	3.3594	< 0.050776	2.0280	97.2527	165.3340	<0.23581	617.0524	21.5783	0.0260	2.0312	863.4360	0.1466	1.2153	14.8296	860000	3.9905
2019-MT-026a-circulo e-gn - 3	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	92209.0949	<2.9218	2.4709	<6.4316	< 0.24808	< 0.37919	< 0.91537	<0.90793	< 0.039895	2.1228	64.1562	165.1944	< 0.21556	578.9093	30.6584	0.0297	2.4099	478.6988	0.0443	0.2036	16.7938	860000	4.2166
2019-MT-026a-circulo e-gn - 5	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	93987.1632	<3.4413	4.2523	<6.8486	< 0.27404	< 0.442	3.2139	35.0397	< 0.047193	2.0782	55.0515	164.6286	<0.19069	677.8033	32.0575	0.0291	4.6158	668.6983	0.0393	0.7364	15.4101	860000	3.8269
2019-MT-026b-circulo b-gn - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	106361.8727	<3.2684	4.6601	<7.3077	<0.28961	< 0.28543	<1.0596	2.3226	< 0.052342	2.1362	15.4754	120.0339	< 0.20667	473.0063	41.0458	0.0361	2.1566	432.5304	< 0.031816	0.2522	10.8033	850000	4.5954
2019-MT-026b-circulo b-gn - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	104627.9397	<3.1179	3.4602	<7.1356	<0.27959	<0.26991	<1.0099	<1.1003	< 0.034433	1.9720	17.9904	124.0068	< 0.2372	437.9679	31.3817	0.0230	1.5405	394.9797	0.0728	0.5115	12.0588	850000	4.5442
2019-MT-026b-circulo b-gn - 3	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	105301.5587	<3.0121	3.9272	<6.2993	<0.28531	< 0.32161	<0.76136	<1.0503	<0.041048	2.1030	25.4882	125.9283	<0.21215	424.0967	37.4653	0.0145	1.3239	380.5080	0.0485	0.4105	16.6113	850000	4.6507
2019-MT-026b-circulo b-gn - 4	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	104705.1765	<2.938	4.4313	22.8278	< 0.23782	<0.45158	< 0.95254	1.2273	1.6873	2.3348	24.6769	131.7429	<0.21972	313.9892	29.7878	0.0155	1.1253	287.0920	0.1010	0.6138	26.8729	850000	4.7493
2019-MT-026b-circulo b-gn - 5	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	103215.8546	<2.7121	3.0525	<5.7489	< 0.27654	< 0.43333	< 0.81865	<0.8983	0.0421	2.0849	32.7993	132.9953	<0.17107	390.9317	30.2642	< 0.012996	0.7829	350.7211	0.0801	0.3764	16.7361	850000	4.6198

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Cr (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
MPP317A-círculo b-gn - 1	Perubar	Juanita	MPP317A	88520.4000	<3.8008	1.0058	<7.9153	< 0.35773	< 0.50414	<1.3188	2.6452	< 0.044899	1.0441	2.9402	81.8943	< 0.25763	1293.0100	22.3327	0.0329	8.2895	1166.2200	<0.036319	< 0.084425	224.7870	876200	5.0905
MPP317A-círculo b-gn - 2	Perubar	Juanita	MPP317A	87848.4000	<3.5259	< 0.46472	<6.9781	<0.31991	< 0.46499	<1.1273	<0.86899	< 0.048461	1.0022	2.6971	80.4985	< 0.19996	1094.8700	21.4350	0.0196	5.0275	1006.0200	< 0.030233	< 0.080967	209.7430	876200	4.8617
MPP317A-círculo b-gn - 4	Perubar	Juanita	MPP317A	88169.1000	<3.2815	0.5038	21.9254	<0.28551	< 0.47844	<1.202	23.3454	< 0.041649	1.1732	2.1837	81.7065	< 0.23192	1100.4700	24.3193	0.0241	5.7215	1004.3100	< 0.030936	< 0.075283	208.2790	876200	4.8301
MPP517-círculo d-gn- 1	Perubar	Cecilia Sur	MPP517	84715.1000	<5.1888	< 0.64189	<9.14	<0.42976	< 0.59516	2.2857		<0.068909	1.7839	<1.3302	150.2140	< 0.44765	705.0430	41.3769	<0.019861	0.3126	634.7710	< 0.03505	0.0788	25.4071	861900	0.3160
MPP517-círculo d-gn- 2	Perubar	Cecilia Sur	MPP517	82230.0000	<5.1821	< 0.76751	<11.0167	<0.41962	<0.7	2.0837		< 0.10365	1.7982	<1.3626	159.9490	< 0.43568	693.3060	42.4548	< 0.024087	0.3123	622.8880	< 0.054061	0.0758	23.5142	861900	0.3050
MPP517-círculo d-gn- 3	Perubar	Cecilia Sur	MPP517	82373.5000	<5.3404	< 0.76123	<11.0349	<0.48958	< 0.64244	2.2928		< 0.11903	1.4522	<1.3852	145.4410	< 0.51267	669.8760	44.4979	< 0.022171	0.3279	602.4940	< 0.051613	< 0.081114	20.6012	861900	0.3515
MPP517-círculo d-gn- 4	Perubar	Cecilia Sur	MPP517	84938.9000	<5.365	< 0.75238	<10.9981	<0.4808	< 0.70121	2.2350		<0.089299	1.7626	<1.3236	146.4560	< 0.55962	709.0460	41.2651	< 0.026428	0.3153	624.8480	< 0.070306	< 0.077603	25.5620	861900	0.3277
MPP517-círculo d-gn- 5	Perubar	Cecilia Sur	MPP517	81846.5000	<5.4095	< 0.7169	<10.9881	< 0.47501	< 0.77068	<1.434		<0.088645	2.0778	<1.2688	161.9410	< 0.54343	716.4710	41.2833	< 0.023589	0.2884	645.0670	< 0.040852	0.1092	24.6599	861900	0.3136
MPP535-círculo a-gn- 1	Perubar	Cecilia Sur	MPP535	81504.9000	<4.0706	0.9188	<9.7686	< 0.43203	<0.67976		2.0741	<0.061889	<0.4711	<1.1621	23.3115	< 0.24042	959.4760	30.4533	< 0.01933	0.6360	1201.3600	< 0.037811	0.0994	461.8400	864300	0.2441
MPP535-círculo c-gn- 1	Perubar	Cecilia Sur	MPP535	81549.2000	<4.3061	< 0.68952	23.9847	<0.41225	< 0.62938	<1.6109		< 0.064208	<0.49113	1.1806	21.0071	< 0.43905	759.2770	32.8359	0.0167	0.6384	880.4720	0.0405	0.1227	349.4480	863800	0.2592
MPP535-círculo c-gn- 2	Perubar	Cecilia Sur	MPP535	81326.6000	<4.4808	< 0.65604	<10.4597	< 0.39842	< 0.62804	<1.5075		<0.068756	< 0.49796	1.2421	21.9381	< 0.33415	709.7380	28.6260	< 0.021662	0.5296	816.7040	< 0.059912	< 0.094101	322.2000	863800	0.2567
MPP535-círculo c-gn- 3	Perubar	Cecilia Sur	MPP535	81306.2000	<4.2475	1.0984	14.5302	< 0.3898	<0.6478	<1.5093	9.2628	< 0.065875	<0.48941	<1.0703	23.3825	< 0.38311	663.1280	28.1737	< 0.013853	0.4214	762.5650	< 0.032228	< 0.087333	295.3720	863800	0.2987
MPP535-círculo d-gn- 1	Perubar	Cecilia Sur	MPP535	80588.1000	<4.4097	0.9337	<10.9529	<0.47352	<0.78941	15.9960	43.1309	<0.099158	< 0.55468	<1.2015	24.8172	< 0.43875	923.4470	33.3678	< 0.022953	0.9376	1051.5400	< 0.035376	< 0.094524	383.9440	863800	0.2756

COBRES GRISES

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	S (ppm)	Cr (ppm)	Mn (ppm)	Fe (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	Ge (ppm)	As (ppm)	Se (ppm)	Mo (ppm)	Ag (ppm)	Cd (ppm)	In (ppm)	Sn (ppm)	Sb (ppm)	Au (ppm)	Hg (ppm)	Tl (ppm)	Pb (ppm)	Bi (ppm)
2019-MT-026a-circulo d-CGRs - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	341591.5889	<8.8364	728.9932	53042	<0.8809	<1.3744	423900	48403.6518	0.5761	0.7978	251532	17.3303	< 0.65806	10561.0824	797.7200	5.2262	0.1902	71163	< 0.088034	468.3527	0.4057		0.2501
2019-MT-026a-circulo d-CGRs - 3	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	331773.8749	<8.6437	656.1368	52095	<0.79298	<1.1377	423900	48743.3191	0.4729	< 0.78453	242873	15.0643	< 0.57998	8971.4861	703.6515	4.6921	0.3169	69835	0.0289	405.1895	<0.066629		0.2268
2019-MT-026a-circulo d-CGRs - 4	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	322679.2464	<8.7282	695.6965	54142	<0.80211	< 0.97348	423900	48311.2450	0.3119	< 0.73432	227029	17.3025	< 0.55358	10133.9596	774.1393	4.7323	0.1486	69383	< 0.049214	431.8963	< 0.052729	1.9961	0.2464
2019-MT-026a-circulo d-CGRs - 5	María Teresa	Bubulina/Bubulina/1180	2019-MT-026a	345103.0323	<9.2708	790.2474	52630	< 0.89245	<1.3223	423900	50365.4671	0.5077	0.7845	250965	14.5195	< 0.61205	11611.1016	831.2733	5.5010	0.1839	73137	< 0.11096	508.8828	< 0.06939	3.3557	0.2052
2019-MT-026b-circulo c-CGRs - 2	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	345075 0289	<7 7272	446 6082	45123	<0.6758	< 0.88429	414200	59043 8280	<0.12306	<0.75067	<- 45 7218	13 8611	<0.55882	7617 0863	1127 2179	2,6501	0 2484	78145	<0.080736	605 9207	<0.046889	0 5348	0.1892
2019-MT-026b-circulo c-CGRs - 3	María Teresa	Bubulina/Bubulina/1180	2019-MT-0266	322793 9842	<7.604	572 1230	44148	<0.77713	<1 0224	414200	54719 9629	<0.10792	<0.71293	<- 45 4723	14 4084	<0.49881	7601 5964	1078 9078	2.65.61	0.3566	74580	<0.071244	552 6577	<0.044352	0.5526	0.1922
2019-MT-026b-circulo c-CGRs - 4	María Teresa	Bubulina/Bubulina/1180	2019-MT-026b	323315.9536	<7.9184	747.0977	44532	<0.79178	< 0.91673	414200	53987.2632	<0.13115	<0.74334	<- 23.8975	13.7292	<0.48565	7999.4120	1145.3079	2.7050	0.2650	75744	0.0525	591.4908	< 0.048197	0.7423	0.2144

Anexo H

Diagramas binarios para esfalerita.

Anexo I

Mapas de calor para esfalerita.

1,00

2,2

Anexo J

Diagramas binarios para calcopirita.

Anexo K

Diagramas binarios para galena.

Anexo L

Anexo M

Diagramas de cajas y bigotes para esfalerita.

Anexo N

Diagramas de cajas y bigotes para calcopirita.

Anexo Ñ

Diagramas de cajas y bigotes para galena.

Galena Bubulina/Bubulina/1180 Calera/Sofía D/-300 Calera/Sofía D/-340 Calera/Sofía D/-500

Anexo O

Resultados de la aplicación del geotermómetro GGIMFis de Frenzel et al. (2016).

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
2019-MT-026A-Circulo A-ef - 1	María Teresa	Bubulina/Bubulina/1180	2019-MT-026A	51.431	0.156	13000.091	1.300	3139.283	93.576	-1.749	325.908	280.374	303.141	22.767
2019-MT-0011B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-0011B	5.468	0.138	58770.782	5.877	2034.970	52.381	-2.676	383.119	324.047	353.583	29.536
2019-MT-001A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	14.258	0.153	43074.061	4.307	654.382	4.069	-1.820	330.322	283.743	307.032	23.289
2019-MT-001A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001A	14.536	0.167	42551.159	4.255	647.223	3.947	-1.786	328.224	282.142	305.183	23.041
2019-MT-001A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	12.165	0.163	44107.833	4.411	646.781	4.155	-1.850	332.144	285.134	308.639	23.505
2019-MT-001A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001A	14.329	0.291	42100.397	4.210	598.244	4.406	-1.660	320.398	276.167	298.283	22.115
2019-MT-001B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	13.845	0.138	40733.325	4.073	561.654	4.236	-1.802	329.209	282.894	306.052	23.158
2019-MT-001B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-001B	13.149	0.116	40319.788	4.032	591.397	4.135	-1.855	332.469	285.382	308.925	23.543
2019-MT-001B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	13.442	0.149	40397.784	4.040	592.024	4.181	-1.797	328.882	282.644	305.763	23.119
2019-MT-001B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-001B	13.611	0.151	40634.791	4.063	578.712	4.319	-1.793	328.654	282.470	305.562	23.092
2019-MT-002-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	37.453	1.047	15390.304	1.539	128.701	52.970	-0.761	264.928	233.824	249.376	15.552
2019-MT-002-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	38.093	0.675	15747.534	1.575	138.221	54.252	-0.879	272.215	239.386	255.801	16.414
2019-MT-002-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	37.354	1.450	15588.193	1.559	139.653	48.300	-0.700	261.211	230.986	246.099	15.113
2019-MT-002-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	38.116	1.181	15417.279	1.542	139.227	50.160	-0.740	263.685	232.875	248.280	15.405
2019-MT-002-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	33.549	1.355	15917.610	1.592	138.561	61.753	-0.772	265.643	234.370	250.007	15.637
2019-MT-002-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	31.942	0.939	15246.961	1.525	136.351	61.441	-0.844	270.069	237.748	253.909	16.161
2019-MT-002-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-002	31.119	1.162	15627.046	1.563	136.766	68.386	-0.824	268.854	236.820	252.837	16.017
2019-MT-002-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-002	28.409	0.219	15720.466	1.572	139.282	69.160	-1.218	293.164	255.378	274.271	18.893
2019-MT-003-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	9.013	1.458	10737.140	1.074	194.931	11.209	-0.780	266.124	234.737	250.430	15.694
2019-MT-003-Circulo A-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-003	8.713	1.409	10061.879	1.006	184.469	10.565	-0.753	264.488	233.488	248.988	15.500
2019-MT-003-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.864	1.008	10586.164	1.059	146.428	11.147	-0.757	264.707	233.655	249.181	15.526
2019-MT-003-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	11.188	1.149	10632.512	1.063	175.915	11.582	-0.764	265.156	233.998	249.577	15.579
2019-MT-003-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.600	0.644	10635.887	1.064	169.936	12.143	-0.902	273.644	240.477	257.061	16.584
2019-MT-003-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.562	1.109	10777.039	1.078	150.692	11.796	-0.761	264.947	233.838	249.392	15.554

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
2019-MT-003-Circulo C-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.519	0.924	10560.860	1.056	168.903	12.214	-0.821	268.656	236.670	252.663	15.993
2019-MT-003-Circulo C-ef - 4	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.647	0.683	10578.422	1.058	172.408	12.375	-0.891	272.974	239.966	256.470	16.504
2019-MT-003-Circulo C-ef - 5	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.454	0.260	10433.653	1.043	169.494	11.942	-1.095	285.587	249.594	267.590	17.996
2019-MT-003-Circulo C-ef - 6	María Teresa	Calera/Sofía D/-300	2019-MT-003	10.651	0.239	10774.546	1.077	185.951	12.258	-1.143	288.499	251.817	270.158	18.341
2019-MT-003-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-003	11.137	0.791	10835.523	1.084	188.715	12.075	-0.873	271.874	239.126	255.500	16.374
2019-MT-003-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-003	11.012	1.842	10447.548	1.045	164.293	12.254	-0.650	258.107	228.616	243.362	14.745
2019-MT-004-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	30.563	2.064	10283.392	1.028	247.430	404.586	-0.861	271.133	238.560	254.846	16.286
2019-MT-004-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	31.169	1.987	9771.628	0.977	236.532	415.014	-0.840	269.834	237.569	253.702	16.133
2019-MT-004-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	30.262	2.237	10654.378	1.065	250.797	395.534	-0.859	270.994	238.454	254.724	16.270
2019-MT-004-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	32.277	2.329	10673.952	1.067	238.667	400.631	-0.828	269.090	237.001	253.046	16.045
2019-MT-004-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-004	30.060	2.123	11509.782	1.151	237.380	405.103	-0.892	273.039	240.015	256.527	16.512
2019-MT-004-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-004	31.887	1.982	10378.278	1.038	233.961	406.918	-0.853	270.660	238.199	254.430	16.230
2019-MT-005-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	8.906	0.334	27539.053	2.754	2781.605	12.267	-1.997	341.200	292.047	316.624	24.576
2019-MT-005-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-005	9.476	0.286	27464.028	2.746	2836.708	12.207	-2.020	342.625	293.135	317.880	24.745
2019-MT-005-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	10.599	0.327	24725.730	2.473	2773.582	12.266	-1.923	336.631	288.560	312.595	24.036
2019-MT-005-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-005	8.822	0.252	24094.532	2.409	2668.962	12.729	-2.007	341.837	292.534	317.185	24.652
2019-MT-005-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-005	8.434	0.328	24615.776	2.462	2561.564	13.131	-1.962	339.073	290.424	314.749	24.325
2019-MT-006A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006A	7.869	0.151	22519.762	2.252	1053.599	27.004	-2.017	342.421	292.979	317.700	24.721
2019-MT-006A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	7.926	0.378	21849.898	2.185	1000.282	26.837	-1.791	328.524	282.371	305.447	23.077
2019-MT-006A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	8.137	0.123	21611.201	2.161	925.725	25.511	-2.007	341.827	292.526	317.176	24.650
2019-MT-006A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006A	9.118	0.163	21025.694	2.103	1086.992	26.295	-1.946	338.065	289.654	313.860	24.205
2019-MT-006B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006B	4.878	0.180	12731.162	1.273	1491.765	42.138	-1.991	340.858	291.786	316.322	24.536
2019-MT-006B-Circulo A-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-006B	18.323	0.194	16463.912	1.646	1602.062	38.027	-1.781	327.888	281.886	304.887	23.001
2019-MT-006B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-006B	14.294	0.143	19038.895	1.904	1431.846	35.817	-1.927	336.920	288.780	312.850	24.070
2019-MT-006B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006B	8.274	0.206	18787.286	1.879	1471.877	37.002	-1.972	339.660	290.872	315.266	24.394

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
2019-MT-006B-Circulo B-ef - 4	María Teresa	Calera/Sofía D/-300	2019-MT-006B	13.971	0.160	18134.212	1.813	1374.981	35.543	-1.881	334.050	286.589	310.319	23.730
2019-MT-006B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-006B	13.776	0.196	18273.834	1.827	1423.419	35.774	-1.850	332.127	285.121	308.624	23.503
2019-MT-006B-Circulo C-ef - 3	María Teresa	Calera/Sofía D/-300	2019-MT-006B	13.246	0.172	21390.053	2.139	1555.427	36.373	-1.965	339.261	290.567	314.914	24.347
2019-MT-007-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	24.532	0.245	31638.614	3.164	1383.372	82.671	-1.963	339.147	290.480	314.814	24.333
2019-MT-007-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	25.672	0.169	31519.582	3.152	1470.021	78.897	-2.041	343.947	294.144	319.046	24.901
2019-MT-007-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	25.350	0.147	32796.321	3.280	1707.732	77.993	-2.117	348.635	297.723	323.179	25.456
2019-MT-007-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-007	24.499	0.189	31006.814	3.101	1752.622	76.251	-2.052	344.628	294.664	319.646	24.982
2019-MT-008-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-008	30.456	0.232	33671.514	3.367	2777.828	52.372	-2.040	343.863	294.081	318.972	24.891
2019-MT-008-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-008	31.853	0.136	35160.861	3.516	2813.825	51.378	-2.164	351.530	299.933	325.732	25.799
2019-MT-008-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-008	31.417	0.144	35338.112	3.534	2820.782	51.932	-2.159	351.204	299.684	325.444	25.760
2019-MT-011A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-011A	9.260	0.149	59055.688	5.906	2255.944	47.197	-2.554	375.607	318.313	346.960	28.647
2019-MT-011A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-011A	10.298	0.508	61631.523	6.163	2318.078	47.290	-2.283	358.836	305.510	332.173	26.663
2019-MT-015A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	24.885	0.357	44245.764	4.425	2392.891	173.138	-2.193	353.301	301.285	327.293	26.008
2019-MT-015A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	30.244	0.327	45197.249	4.520	2364.554	167.696	-2.171	351.966	300.266	326.116	25.850
2019-MT-015A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	32.991	0.333	40063.765	4.006	2527.597	171.284	-2.119	348.747	297.809	323.278	25.469
2019-MT-015A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	37.612	0.193	40675.090	4.068	2500.534	176.355	-2.217	354.810	302.437	328.623	26.187
2019-MT-015A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	29.211	0.322	43322.405	4.332	2468.811	165.371	-2.174	352.110	300.376	326.243	25.867
2019-MT-015A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	15.714	0.327	42899.460	4.290	2524.782	166.184	-2.308	360.390	306.696	333.543	26.847
2019-MT-015A-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015A	27.891	0.339	38995.867	3.900	2544.246	166.901	-2.140	350.050	298.803	324.427	25.623
2019-MT-015A-Circulo D-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	25.606	0.247	37979.305	3.798	2522.334	161.291	-2.213	354.561	302.246	328.403	26.157
2019-MT-015A-Circulo E-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015A	27.234	0.286	39384.128	3.938	2621.992	161.483	-2.189	353.077	301.114	327.096	25.982
2019-MT-015B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	7.359	0.320	47378.540	4.738	2342.880	161.887	-2.499	372.174	315.692	343.933	28.241
2019-MT-015B-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	23.765	0.299	44636.470	4.464	2519.056	156.394	-2.244	356.472	303.706	330.089	26.383
2019-MT-015B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	15.124	0.297	44444.866	4.444	2252.274	157.861	-2.322	361.284	307.379	334.331	26.953
2019-MT-015B-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	27.234	0.222	49633.669	4.963	2616.958	158.206	-2.328	361.640	307.650	334.645	26.995

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
2019-MT-015B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	24.988	0.232	48628.604	4.863	2564.856	153.870	-2.322	361.287	307.381	334.334	26.953
2019-MT-015B-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-300	2019-MT-015B	23.158	0.166	48969.317	4.897	2629.340	161.929	-2.426	367.697	312.274	339.985	27.711
2019-MT-015B-Circulo E-ef - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	20.663	0.230	49581.672	4.958	2484.822	165.745	-2.375	364.556	309.877	337.217	27.340
2019-MT-015B-Circulo D-sl - 1	María Teresa	Calera/Sofía D/-300	2019-MT-015B	18.567	0.272	46386.041	4.639	2689.142	157.187	-2.347	362.806	308.541	335.673	27.133
2019-MT-0018-Circulo A ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0018	1.622	0.117	18062.466	1.806	112.953	0.620	-1.477	309.123	267.560	288.341	20.781
2019-MT-0018-Circulo A ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0018	1.527	0.203	27026.703	2.703	131.826	0.552	-1.537	312.831	270.391	291.611	21.220
2019-MT-0018-Circulo C ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0018	1.511	0.171	23115.916	2.312	138.414	0.460	-1.509	311.088	269.060	290.074	21.014
2019-MT-0018-Circulo C ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0018	1.511	0.205	27373.919	2.737	139.980	0.437	-1.528	312.258	269.954	291.106	21.152
2019-MT-0019-Circulo A ef - 1	María Teresa	Calera/Sofía D/-340	2019-MT-0019	38.393	0.162	41162.425	4.116	1633.167	41.648	-2.011	342.093	292.729	317.411	24.682
2019-MT-0019-Circulo A ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0019	37.407	0.142	41663.366	4.166	1641.538	41.788	-2.051	344.559	294.612	319.585	24.974
2019-MT-0019-Circulo C ef - 2	María Teresa	Calera/Sofía D/-340	2019-MT-0019	37.688	0.116	41300.598	4.130	1647.598	42.140	-2.094	347.195	296.624	321.909	25.286
2019-MT-0020-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	24.103	0.327	15295.749	1.530	512.290	1.589	-1.002	279.808	245.182	262.495	17.313
2019-MT-0020-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0020	25.572	0.945	17459.589	1.746	584.409	1.769	-0.842	269.970	237.672	253.821	16.149
2019-MT-0020-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	22.360	0.348	16356.813	1.636	546.552	1.555	-1.040	282.172	246.987	264.579	17.592
2019-MT-0020-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0020	24.259	0.283	17121.990	1.712	544.794	1.698	-1.093	285.457	249.495	267.476	17.981
2019-MT-0020-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0020	25.117	0.739	17190.625	1.719	560.846	1.740	-0.885	272.591	239.673	256.132	16.459
2019-MT-0021-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	11.076	0.353	50313.519	5.031	2246.659	93.389	-2.340	362.394	308.226	335.310	27.084
2019-MT-0021-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	11.941	0.381	59010.159	5.901	2491.891	96.897	-2.391	365.504	310.600	338.052	27.452
2019-MT-0021-Circulo B-ef - 3	María Teresa	Calera/Sofía D/-500	2019-MT-0021	11.471	0.386	59348.378	5.935	2487.594	94.508	-2.396	365.822	310.843	338.333	27.490
2019-MT-0021-Circulo B-ef - 4	María Teresa	Calera/Sofía D/-500	2019-MT-0021	11.266	0.170	59398.184	5.940	2412.955	102.191	-2.583	377.367	319.656	348.512	28.855
2019-MT-0021-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-500	2019-MT-0021	10.268	0.322	55672.267	5.567	2245.551	105.004	-2.427	367.772	312.332	340.052	27.720
2019-MT-0021-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-500	2019-MT-0021	9.570	0.304	58278.624	5.828	2274.022	110.326	-2.480	371.027	314.816	342.921	28.105
2019-MT-022A-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	58.520	0.123	38232.802	3.823	319.764	1.094	-1.226	293.649	255.749	274.699	18.950
2019-MT-022A-Circulo A-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	62.683	0.231	38972.570	3.897	326.165	1.180	-1.091	285.305	249.379	267.342	17.963
2019-MT-022A-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	62.998	0.158	38157.998	3.816	325.031	1.188	-1.166	289.959	252.931	271.445	18.514

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
2019-MT-022A-Circulo B-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	68.015	1.212	38737.645	3.874	338.267	1.259	-0.721	262.455	231.936	247.196	15.260
2019-MT-022A-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	63.168	0.144	38845.697	3.885	346.000	1.123	-1.199	291.973	254.469	273.221	18.752
2019-MT-022A-Circulo C-ef - 2	María Teresa	Calera/Sofía D/-540	2019-MT-022A	63.014	0.200	36905.374	3.691	328.133	1.047	-1.090	285.245	249.333	267.289	17.956
2019-MT-022A-Circulo D-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022A	64.623	0.206	38661.643	3.866	338.685	1.025	-1.099	285.791	249.750	267.770	18.021
2019-MT-022B-Circulo A-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	68.027	0.165	37795.495	3.780	329.394	1.399	-1.157	289.375	252.485	270.930	18.445
2019-MT-022B-Circulo B-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	66.544	0.283	37445.489	3.745	328.241	1.473	-1.044	282.409	247.168	264.789	17.621
2019-MT-022B-Circulo C-ef - 1	María Teresa	Calera/Sofía D/-540	2019-MT-022B	70.018	0.222	38220.888	3.822	357.187	1.234	-1.091	285.324	249.393	267.359	17.965
RD-CM-prov1-ef - 1	Cerro de Maimón	Cerro de Maimón	СМ	69.637	1.008	551.791	0.055	406.006	10.183	0.551	192.060	164.019	178.040	14.020
RD-CM-prov1-ef - 2	Cerro de Maimón	Cerro de Maimón	СМ	80.867	0.784	643.452	0.064	533.368	10.242	0.416	198.402	172.327	185.365	13.037
RD-CM-prov1-ef - 3	Cerro de Maimón	Cerro de Maimón	СМ	95.446	0.972	613.582	0.061	494.096	9.979	0.536	192.766	164.944	178.855	13.911
RD-CM-prov1-ef - 4	Cerro de Maimón	Cerro de Maimón	СМ	91.659	1.566	581.289	0.058	481.520	10.078	0.656	187.110	157.534	172.322	14.788
RD-CM-prov1-ef - 5	Cerro de Maimón	Cerro de Maimón	СМ	94.229	6.245	511.600	0.051	448.303	9.990	1.029	169.547	134.527	152.037	17.510
RD-CM-prov1-ef - 6	Cerro de Maimón	Cerro de Maimón	СМ	94.967	1.225	568.400	0.057	461.565	9.952	0.628	188.436	159.272	173.854	14.582
RD-CM-prov1-ef - 7	Cerro de Maimón	Cerro de Maimón	СМ	79.994	0.565	572.774	0.057	478.161	9.698	0.413	198.557	172.530	185.543	13.013
RD-CM-prov1-ef - 8	Cerro de Maimón	Cerro de Maimón	СМ	95.700	1.681	527.774	0.053	474.900	9.808	0.722	183.978	153.432	168.705	15.273
RD-CM-prov1-ef - 9	Cerro de Maimón	Cerro de Maimón	СМ	95.117	0.569	537.000	0.054	538.638	9.479	0.455	196.581	169.941	183.261	13.320
RD-CM-prov1-ef - 10	Cerro de Maimón	Cerro de Maimón	СМ	95.652	0.986	554.831	0.055	533.925	9.022	0.572	191.054	162.701	176.877	14.176
RD-CM-prov1-ef - 11	Cerro de Maimón	Cerro de Maimón	СМ	90.225	1.500	541.049	0.054	465.606	10.456	0.672	186.343	156.530	171.436	14.907
RD-CM-prov1-ef - 12	Cerro de Maimón	Cerro de Maimón	СМ	85.411	0.677	577.205	0.058	446.434	11.206	0.462	196.250	169.508	182.879	13.371
RD-CM-prov1-ef - 13	Cerro de Maimón	Cerro de Maimón	СМ	77.835	0.804	595.995	0.060	472.237	10.401	0.464	196.125	169.344	182.734	13.390
RD-CM-prov1-ef - 14	Cerro de Maimón	Cerro de Maimón	СМ	77.270	0.726	636.077	0.064	416.674	10.693	0.438	197.355	170.955	184.155	13.200
RD-CM-prov2-ef - 1	Cerro de Maimón	Cerro de Maimón	СМ	77.993	0.339	19.321	0.002	466.472	5.949	1.607	142.289	98.821	120.555	21.734
RD-CM-prov2-ef - 3	Cerro de Maimón	Cerro de Maimón	СМ	81.691	0.233	16.978	0.002	439.863	8.593	1.554	144.810	102.123	123.467	21.344
MPP900-Circulo C-ef - 2	Palma	Palma	MPP900	2.284	0.165	61903.700	6.190	7028.130	1.619	-2.713	385.401	325.789	355.595	29.806
MPP900-Circulo C-ef - 4	Palma	Palma	MPP900	1.502	0.147	63422.900	6.342	6928.750	1.621	-2.838	393.092	331.660	362.376	30.716

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
MPP901-Circulo A-ef - 1	Palma	Palma	MPP901	0.710	0.146	63111.026	6.311	2606.334	0.032	-2.373	364.435	309.785	337.110	27.325
MPP901-Circulo B-ef - 1	Palma	Palma	MPP901	0.735	0.190	56478.586	5.648	2340.033	0.032	-2.247	356.640	303.834	330.237	26.403
MPP901-Circulo D-ef - 1	Palma	Palma	MPP901	0.696	0.165	59341.528	5.934	2443.913	0.034	-2.323	361.324	307.410	334.367	26.957
MPP902A-Circulo A-ef - 2	Palma	Palma	MPP902A	2.467	2.204	28383.600	2.838	6657.830	0.007	-1.222	293.426	255.578	274.502	18.924
MPP902A-Circulo A-ef - 3	Palma	Palma	MPP902A	2.239	0.737	28546.700	2.855	6663.130	0.006	-1.475	309.012	267.476	288.244	20.768
MPP902A-Circulo B-ef - 1	Palma	Palma	MPP902A	1.808	6.064	28786.100	2.879	6804.360	0.006	-1.072	284.151	248.498	266.324	17.827
MPP902A-Circulo B-ef - 2	Palma	Palma	MPP902A	1.827	5.603	28577.800	2.858	6702.120	0.007	-1.095	285.567	249.578	267.573	17.994
MPP902A-Circulo C-ef - 1	Palma	Palma	MPP902A	2.032	5.146	28997.600	2.900	6874.790	0.009	-1.128	287.597	251.128	269.362	18.234
MPP902A-Circulo C-ef - 2	Palma	Palma	MPP902A	1.840	1.656	29163.300	2.916	6740.840	0.011	-1.419	305.540	264.826	285.183	20.357
MPP902A-Circulo D-ef - 1	Palma	Palma	MPP902A	1.977	3.889	28942.300	2.894	6790.740	0.010	-1.203	292.223	254.659	273.441	18.782
MPP902A-Circulo D-ef - 2	Palma	Palma	MPP902A	1.932	1.675	29142.300	2.914	6733.650	0.007	-1.357	301.724	261.913	281.819	19.906
MPP902A-Circulo E-ef - 1	Palma	Palma	MPP902A	2.307	9.310	30014.600	3.001	6914.090	0.009	-0.982	278.600	244.260	261.430	17.170
MPP902A-Circulo E-ef - 2	Palma	Palma	MPP902A	2.061	4.569	30283.900	3.028	7008.430	0.009	-1.175	290.485	253.333	271.909	18.576
MPP902B-Circulo C-ef - 2	Palma	Palma	MPP902B	2.584	0.296	31915.700	3.192	7204.330	0.007	-1.727	324.537	279.327	301.932	22.605
MPP903-Circulo A-ef - 2	Palma	Santa Lidia	MPP903	2.873	0.154	71525.500	7.153	10847.700	0.259	-2.617	379.462	321.255	350.358	29.103
MPP903-Circulo A-ef - 3	Palma	Santa Lidia	MPP903	2.252	0.228	64435.700	6.444	9837.460	0.251	-2.523	373.658	316.825	345.241	28.417
MPP903-Circulo A-ef - 4	Palma	Santa Lidia	MPP903	2.486	0.149	71268.900	7.127	10702.000	0.268	-2.655	381.826	323.060	352.443	29.383
MPP903-Circulo D-ef - 1	Palma	Santa Lidia	MPP903	2.337	0.130	71438.000	7.144	10603.500	0.172	-2.650	381.495	322.807	352.151	29.344
MPP903-Circulo D-ef - 2	Palma	Santa Lidia	MPP903	2.146	0.206	70900.500	7.090	10410.600	0.184	-2.568	376.473	318.974	347.723	28.750
MPP903-Circulo E-ef - 2	Palma	Santa Lidia	MPP903	1.997	0.138	69951.100	6.995	10119.300	0.130	-2.623	379.865	321.563	350.714	29.151
MPP517-Circulo A-ef - 2	Perubar	Cecilia Sur	MPP517	11.054	0.130	30821.200	3.082	939.964	0.705	-1.668	320.929	276.573	298.751	22.178
MPP517-Circulo C-ef - 2	Perubar	Cecilia Sur	MPP517	19.644	0.157	34978.200	3.498	1047.300	0.816	-1.584	315.704	272.584	294.144	21.560
MPP535-Circulo D-ef - 3	Perubar	Cecilia Sur	MPP535	30.416	0.184	40023.400	4.002	875.669	0.006	-0.919	274.724	241.301	258.013	16.711
MPP017-Circulo B-ef - 1	Perubar	Graciela	MPP017	22.115	0.189	64977.509	6.498	7341.710	2.002	-2.235	355.877	303.252	329.564	26.313
MPP017-Circulo B-ef - 2	Perubar	Graciela	MPP017	21.032	0.186	59163.665	5.916	6703.845	1.936	-2.193	353.281	301.270	327.275	26.006

Análisis	Yacimiento	Sector/Cuerpo/Sección	Muestra	Ga (ppm)	Ge (ppm)	Fe (ppm)	Fe (wt.%)	Mn (ppm)	In (ppm)	PC1	T máx	T mín	T prom	Error abs
MPP017-Circulo B-ef - 3	Perubar	Graciela	MPP017	21.776	0.198	63737.900	6.374	7375.657	2.037	-2.223	355.168	302.710	328.939	26.229
MPP017-Circulo B-ef - 4	Perubar	Graciela	MPP017	22.335	0.164	64467.383	6.447	7425.275	2.093	-2.267	357.889	304.787	331.338	26.551
MPP317A-Circulo A-ef - 1	Perubar	Juanita	MPP317A	6.960	0.127	62933.400	6.293	1816.190	7.130	-2.424	367.564	312.172	339.868	27.696
MPP317A-Circulo D-ef - 1	Perubar	Juanita	MPP317A	8.131	0.489	64193.000	6.419	1973.250	6.998	-2.116	348.549	297.657	323.103	25.446
MPP318A-Circulo E-ef - 2	Perubar	Rímac-D	MPP318A	4.596	0.193	73876.473	7.388	5966.238	2.324	-2.598	378.286	320.358	349.322	28.964
MPP318A-Circulo E-ef - 3	Perubar	Rímac-D	MPP318A	4.449	0.130	72018.673	7.202	5771.138	2.336	-2.677	383.180	324.094	353.637	29.543
MPP318A-Circulo E-ef - 4	Perubar	Rímac-D	MPP318A	4.298	0.154	70623.784	7.062	5551.091	2.311	-2.631	380.318	321.909	351.113	29.205
MPP318A-Circulo A-ef - 1	Perubar	Rímac-D	MPP318A	3.783	0.217	70801.900	7.080	5160.030	2.405	-2.574	376.834	319.249	348.041	28.792
MPP318A-Circulo C-ef - 1	Perubar	Rímac-D	MPP318A	4.520	0.206	71336.600	7.134	5748.340	2.268	-2.564	376.206	318.770	347.488	28.718
MPP318A-Circulo C-ef - 2	Perubar	Rímac-D	MPP318A	4.350	0.158	71298.800	7.130	5291.760	2.269	-2.614	379.295	321.128	350.212	29.084
MPP318A-Circulo C-ef - 3	Perubar	Rímac-D	MPP318A	3.924	0.127	70460.400	7.046	5372.400	2.280	-2.684	383.584	324.402	353.993	29.591
MPP318A-Circulo E-ef - 1	Perubar	Rímac-D	MPP318A	4.578	0.184	72735.800	7.274	5958.480	2.177	-2.596	378.182	320.278	349.230	28.952

